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ABSTRACT We propose an architecture for scheduling network operations enabling the end-to-end
generation of entanglement according to user demand. The main challenge solved by this architecture is
to allow for the integration of a network schedule with the execution of quantum programs running on
processing end nodes in order to realise quantum network applications. A key element of this architecture
is the definition of an entanglement packet to meet application requirements on near-term quantum
networks where the lifetimes of the qubits stored at the end nodes are limited. Our architecture is fully
modular and hardware agnostic, and defines a framework for further research on specific components that
can now be developed independently of each other. In order to evaluate our architecture, we realise a proof
of concept implementation on a simulated 6-node network in a star topology. We show our architecture
facilitates the execution of quantum network applications, and that robust admission control is required to
maintain quality of service. Finally, we comment on potential bottlenecks in our architecture and provide
suggestions for future improvements.

INDEX TERMS Quantum networks, network architecture, network scheduling

I. INTRODUCTION

The realisation of a quantum internet will enable the use of
new networked applications beyond what is possible with
the current classical internet. Such applications include the
ability to perform verifiably secure secret sharing [1], [2],
secure remote computation [3]–[5] and securely electing
a leader [6], amongst many others [7]. The aim of any
quantum network architecture therefore should be to ensure
that these applications can be successfully executed.

To execute a quantum application, so-called entangled
links between the end nodes, the quantum devices the users
have access to, are required. Each of these entangled links

is a pair of entangled qubits with a fidelity with respect
to an EPR pair [8], where the fidelity is a measure of
the quality of the entangled link [9]. However, such links
are difficult to produce and doing so requires the use of a
limited quantity of resources in the quantum network [10]–
[13]. Furthermore, at present each link has a limited usable
lifetime as quantum memories experience decoherence over
time, reducing the quality of stored entangled links [14].
Therefore, there exist two interacting scheduling problems
which must be solved: firstly how should the limited net-
work resources be assigned to pairs of users to allow them to
generate entangled links (the network scheduling problem),
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and secondly how to efficiently schedule the execution of
quantum applications to efficiently use any entangled links
which are generated (the local scheduling problem).

The first operating system for end nodes, QNodeOS [15],
allows the second of these problems to be solved. Qoala
[16], an application execution environment which runs on
QNodeOS, offers an improved end node execution environ-
ment. QNodeOS breaks an application into a program at
each node, which is then further subdivided into blocks of
instructions that can be scheduled for execution at runtime.
Furthermore, Qoala enables a compiler which can provide
advice about the quantity and quality of entangled links
which are required. Although Qoala successfully address
the local scheduling problem, it requires the existence of a
network schedule to supply allocations of time during which
entanglement generation can take place.

There currently does not exist a network architecture
which can produce schedules which are compatible with
such an execution environment. Without such an architec-
ture, the network scheduling problem cannot be solved in
a manner which still allows the local scheduling problem
to be solved effectively. In this work we therefore propose
such an architecture to unify the approach to the network
and local scheduling problems. In particular:

• We introduce the first quantum network architec-
ture which takes a unified approach to scheduling
the execution of quantum applications on end nodes
and scheduling the use of resources on the network.
As part of this we introduce a notion of packets of
entanglement to capture the requirements on entangled
links imposed by applications, and a corresponding
notion of a packet generation task to allow the
network to efficiently schedule time for the generation
of these packets of entanglement. We also define a
demand format which captures all the information
required by the central controller to be able to compute
network schedules. This architecture also provides a
modular framework within which further research
can be undertaken to develop synergistic network and
local scheduling strategies. This will enable network
schedules to be integrated into local program execution
in a well-defined and consistent manner.

• We provide an example implementation of our
architecture in simulation, using earliest deadline
first derived methods for network scheduling. We use
this implementation to perform numerical simulations
of our architecture and create a baseline performance
evaluation against which to benchmark further work in
the domain of quantum network scheduling. The code
used for this implementation and the data used in the
evaluation is available from [17], [18].

A. STRUCTURE
The rest of this paper is structured as follows: In II we give
some background and related work and discuss how our
work here differs. In III we discuss design considerations

which inform the design of our architecture. In IV we lay
out our proposed network architecture. In V we give an
example of an implementation of the architecture. Finally
in VI we evaluate the performance of our architecture using
a specific implementation, and in VII we comment on future
directions for research. A table summarising all the notation
we use in this paper can be found in Appendix A.

II. BACKGROUND
A. NETWORK MODEL
There are many different models for how a quantum network
should operate. In the literature, one common example is
what we will call a pre-loaded network, where there is
a high probability that entangled links are immediately
available to an application (e.g. [19]–[22]). Such networks
rely on continuously generating and buffering entangle-
ment between each pair of network components. However,
restrictions on achievable entanglement generation rates,
buffer lifetimes and buffer capacities limit the possibility of
near-term implementations of such networks. For example,
experiments on leading hardware [23] have realised a three-
node network, on which they reported memory lifetimes of
11ms and generation rates of one end-to-end link every 40s.
Therefore, we instead consider a generate-when-requested
network. In such networks, we do not assume that end-to-
end entangled links can be stored between any two sched-
uled periods of time. This type of network is implementable
with the technological maturity of current devices and those
that will exist in the coming years.

B. RELATED WORK
Our architecture is designed to be compatible with the
network application execution environment Qoala, which is
described in [16]. Qoala is an extension to the QNodeOS
operating system for quantum network end nodes developed
by Delle Donne et al. in [15]. When using the Qoala
execution environment on QNodeOS, it is assumed that
there exists a network schedule in order for entanglement
generation to occur. One of the aims of this work is to
design an architecture which can produce suitable network
schedules which enable the execution of quantum network
applications using Qoala on QNodeOS.

Our work is also compatible with the network stack
proposed by Dahlberg et al. in [24]. In particular, the
network schedules that our architecture produces replace the
queue used in the implementation of [24] in [23].

We build on the formalism presented in [25]. In particular
we incorporate the framing of entanglement generation as
a problem in the field of scan statistics (see e.g. [26], [27])
into our architecture.

There are several other authors who have proposed ar-
chitectures for quantum networks, however they each have
a different scope for the architecture than ourselves. In
particular, none of them explicitly consider the influence of
requirements of executing local applications on the network.
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For instance, Skrzypczyk et al. in [28] propose an ar-
chitecture around using TDMA schedules to generate good
quality entanglement. Whilst we build on their ideas about
scheduling, they do not consider how their scheduling will
impact the ability of end nodes in the network to execute
the applications requiring this entanglement, nor how the
demands are generated from the applications.

Cicconetti et al. in [29] and Gu et al. in [19] consider the
problem of scheduling requests for entanglement generation
in a quantum network. However in both cases they consider
a pre-loaded network rather than a generate-when-requested
network. Furthermore, they do not consider how the end
nodes use the entanglement which is generated, and also
consider a system where every edge in the network is in
constant communication with the central controller, whereas
we only require sporadic communications. A disadvantage
of this compared to our approach is that due to latency when
communicating between the edges and the central controller,
there is an inherent loss in the quality of entangled links
which can be created. Furthermore, they only consider
requests for single entangled links, whereas we consider
requests for packets of entangled links.

Van Meter et al. in [30] propose an architecture which
focuses on routing of entanglement across many smaller
networks, and the protocols required to do so. This again
does not account for the local nodes, nor does it consider
the interaction of scheduling entanglement generation on
the network with executing the applications on end nodes.
Furthermore, the scope of our work is to provide an archi-
tecture for a single quantum network which can be centrally
controlled, rather than for a quantum internetwork.

Our architecture also has similarities to a software-defined
network [31]–[33]. In particular, we see our work as a
method of facilitating the implementation of a quantum
SDN. There have been several examples of prior work on
defining a quantum SDN. For example in [34], Kozlowski,
Kuipers and Wehner give an implementation of a quantum
SDN using the P4 language. However, this implementation
only focuses on the network aspects, and does not consider
the execution of applications on the end nodes. There have
also been quantum SDNs proposed and demonstrated by
Yang and Cui in [35] and proposed by Chung et al. in [36].
These works do not explicitly consider scheduling at the
end nodes in the network, and they focus on demands being
registered via a web-interface. In contrast we create a fully-
autonomous architecture, where the end nodes, rather than
the users themselves, submit the demands in response to
users wishing to run specific applications.

There have also been several SDN architectures proposed
for quantum key distribution (QKD), e.g. [37]–[46]. How-
ever, our architecture can support arbitrary applications,
rather than just QKD. This imposes more constraints on the
process of generating entanglement than are considered in
these works. For the same reason we cannot use the demand
format in [47]. Furthermore, we are focused on the execution
of these applications rather than adding extra security to a

classical network as in [37].
Our architecture also has similarities to a so-called Time-

triggered Ethernet (TTEthernet) architecture [48]. However,
for our problem one cannot just use a classical TTEthernet
system for a couple of reasons. Firstly, as a classical system
the literature does not directly take into account quantum-
specific constraints such as decoherence. Secondly, the pre-
dominant usages of TTEthernet in the classical sphere are in
control systems, for example in spacecraft [49], [50], where
the sources of (time triggered) demands on the network are
known a priori and can therefore be accounted for. However,
in our model the network does not know where demands will
come from, what resources or objectives they will require,
or for how long they will need to use the network.

III. DESIGN CONSIDERATIONS
Our network architecture defines a framework for integration
of a network schedule with the execution of quantum pro-
grams running on end nodes. The design of the architecture
thus inherits considerations pertaining to robust operation of
a quantum network (see e.g. [24]) and considerations from
the application execution environment of end nodes [16].
We describe at a high level each of the relevant principles
and highlight how they may be consistently combined into
the foundational pillars of a single network architecture.

A. NETWORK
1) Devices and Components
We consider a quantum network comprised of four types
of devices. Figure 1 illustrates an example of how these
components can fit together. The first device type, called
end nodes, execute quantum applications, operate under
independent (local) control, and accept input from users.
An end node may be a processing node with some memory
capabilities, such as in [51]–[58], or a device which is capa-
ble of preparing/measuring single photons, such as in [59],
[60]. Any end node can also perform classical operations,
such as arithmetic operations and classical communication.

End nodes may be connected to a second type of device,
metropolitan hubs. These are devices which enable pairs
of nodes located close together (typically <50km end-to-
end) to create entangled links. Examples of such devices are
entanglement distribution switches [61]–[63] and quantum
routers [64], which employ quantum memories at the hub,
or alternatively entanglement generation switches [65], [66],
which do not rely on quantum memories at the hub. As
quantum routers are physical devices only, a metropolitan
hub based on a quantum router must be paired with a simple
operating system for coordinating entanglement swapping.
A metropolitan hub will typically have many devices con-
nected to it, including both end nodes and junction nodes.

The third type of component we include are repeater
chains, which allow for long distance entangled links to be
created between two parties. Repeater chains are made from
a linear chain of repeater nodes, such as those in [13], [67]–
[70]. We treat repeater chains as a single network component
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FIGURE 1: A general quantum network may be built from four kinds of devices: end nodes, metropolitan hubs, repeater
chains, and junction nodes (see III-A1). These devices may be connected in the manner illustrated. Circles A-G represent
user controlled end nodes, squares Mi are metropolitan hubs and diamonds Ji are junction nodes. Repeater chains are
represented by zig-zag lines, while individual quantum repeater nodes are represented by triangles.

which can be configured to produce links between two
border nodes connected to either end of the repeater chain
at a fixed rate and average fidelity.

The final component we consider in the network are
junction nodes. These provide an interface between mul-
tiple repeater chains and between repeater chains and a
metropolitan hub. As an interface, junction nodes may be
instrumental in essential processes for connecting heteroge-
neous quantum devices, such as waveform matching and
entanglement buffering. Such nodes remove the require-
ment to have direct repeater chains between every pair
of metropolitan hubs. Junction nodes may be implemented
using a combination of one or more of the previous devices.
We refer to repeater chains, metropolitan hubs and junction
nodes collectively as internal components, and end nodes
as external components.

We assume that each internal component of the network
has a control API which can be used to install network
schedules. Furthermore, such an API is able to expose infor-
mation about the operational parameters of the component.
For example, a metropolitan hub may expose the maximum
number of node pairs it can connect simultaneously; a
repeater chain may expose the rate and fidelity at which
entangled links between the end points are created; and
junction nodes may expose the number of links which can
be buffered and for how long.

2) Hardware Agnosticism

Each of the multiple possible implementations of any net-
work device is associated with specific requirements relating
to its operation. However, a network architecture should be
able to seamlessly support whatever hardware is being used.
As a result, where necessary we assume that the control
API of internal network components and the application
execution environment of end nodes make concessions for
the specific requirements of a device, ensuring correct func-

tioning. Thus our network architecture is hardware agnostic
and compatible with a heterogeneous network consisting of
devices based on a variety of different hardware types.

3) SDN Controller
Software defined networks (SDN)s [31]–[33] separate the
data plane of a network, which forwards traffic to the ap-
propriate destinations, from the control plane, which makes
decisions about how traffic should be handled. Decisions
taken by the control plane include routing and resource
access management. The SDN framework aims to simplify
network management and make networks flexible and cost-
effective. We consider the traffic on the data plane of a
quantum network to consist of point to point attempts to
generate entanglement.

We assume that the quantum network follows the general
architecture of an SDN. In particular, we assume that the
network is overseen by a (logically) central controller, sim-
ilar to for example [11], [28], [34], [38]. Such a controller
has the authority to compute and enforce network schedules,
which dictate when entangled links can be generated for
particular pairs of end nodes.

We also assume that the central controller has a complete
overview of the entanglement generation capabilities of the
components of the network (consideration III-A7). However,
we do not assume it knows whether or not any given attempt
to generate an entangled link succeeds or fails.

4) Device Autonomy
We assume that each component of the network is able to
operate without direct interaction with the central controller.
In particular, we assume for each component in the net-
work there is a local controller which handles executing
an installed network schedule on that component without
further input from the central controller. On end nodes, this
local controller takes the form of an execution environment
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A B

FIGURE 2: Example of an entanglement generation proto-
col (heralded entanglement). Nodes A and B probabilisti-
cally send photons to a ‘heralding station’ located midway
between them. This heralding station consists of (single)
photon detectors and a beamsplitter. Depending on the
pattern of photons detected, it is possible to determine if
an elementary entangled link has been generated, and to
subsequently inform the nodes. More details can be found
in, for example, [13].

such as Qoala [16] running on QNodeOS [15]. On internal
components, this local controller may be more limited and
simply implement a rule-set which realises the network
schedule. For example, if a repeater chain is required by the
network schedule to produce entangled links with certain
rate/fidelity characteristics, then we assume there exists a
(logically) centralised local controller which implements
some policy, e.g. [12], [71], on the repeater chain in order
to create the required entangled links.

5) Protocols for generating entanglement

Our architecture is agnostic to how entangled links are
produced at the physical layer. However, we assume that
any protocol which is used allows the rate and fidelity at
which entangled links can be produced to be calculated
and exposed. We also assume that entangled links between
neighbouring nodes are created using a heralded entangle-
ment generation scheme such as [13], [67] (Figure 2). In
particular this means that the nodes attempting to create
an entangled link receive a success or failure outcome,
indicating when an entangled link has been created. Hence
subsequent attempts may be triggered conditioned on the
success or failure of previous attempts.

We refer to entangled links between end-nodes as end-
to-end entangled links, and entangled links between neigh-
bouring nodes as elementary entangled links.

Note that in the literature an entanglement generation
attempt typically refers to an attempt to generate an elemen-
tary entangled link, following some specified entanglement
generation protocol, for example as in Figure 2. However,
when referring to entanglement generation attempts we
will mean attempts to generate end-to-end entangled links,
requiring the use of all internal components along a specified
path and employing a pre-determined protocol. For example,
attempts to generate entanglement between nodes A and D
in Figure 1 require the simultaneous use of resources at M1,
J1, J2, J4 and M2, as well as the repeater chains connecting
these components.

6) Network Stack
A network stack is a layered set of protocols and services
that work together to enable network communication. Each
layer in the stack is responsible for a specific aspect of
network functionality. Together the layers provide a com-
prehensive framework for data transmission across classical
networks [72] or delivery of end-to-end entangled links by
quantum networks [24].

We assume that the underlying network stack is as pro-
posed in [24]. In particular, we assume that the link layer
is implemented using the protocol in [23]. This protocol
assumes the existence of a schedule computed by an external
scheduler which determines when entanglement generation
can take place.

Our architecture facilitates the construction of such sched-
ules, following a synchronous time-slot scheduling approach
with variable length time-slots. We define a periodic timeline
for computation and distribution of network schedules to
network components. A network schedule is a time ordered
plan for the execution of finite duration network tasks. We
provide a precise system for translating the demands for
service originated by applications running on end nodes into
the task executions that make up a schedule. The translation
process takes into account the capabilities of the various
network components, learned through a capability update
process between components and the central controller.

7) Network Capabilities
The network provides information about its capabilities to
the end nodes as a list of pairs (rate, fidelity)i,j ,
describing the rate and fidelity respectively at which en-
tangled links can be generated between a pair of end
nodes i and j. These pairs can also be endowed with
extra information about, for example, the expected jitter and
the availability of each option. We assume that the SDN
controller for the network is able to compute these properties
from its knowledge about the capabilities of each individual
component and the state of the network.

8) Timing
The time required for network elements to complete actions
can only be estimated with finite precision. At the physical
layer, actions have precisely characterised durations, allow-
ing for accurate synchronisation between multiple nodes,
with timing precision ranging from tens of picoseconds (ps)
to microseconds (µs), depending on the operations [52],
[73]. Precise timing of a sequence of operations is crucial
for processes like entanglement generation [53], [54], [57],
[58], [74]–[76].

In contrast, at higher layers of the network stack, ac-
tions have variable durations and latencies, limiting feasible
timing precision to µs or milliseconds (ms). For example,
transmitting a network schedule over the internet from a
central controller to a node 10 km away may take from 50 µs
to several ms. This variability in process duration can be due
a variety of sources. Typical examples include that a single
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process may comprise a large number of computational
(low level) operations, that there may be traffic from other
processes–creating competition and leading to waiting times
for limited computational resources or network bandwidth,
or inter-process interactions that necessitate waiting for
responses from inter-dependent processes [77]–[79]. To ac-
commodate this variability, our network architecture uses a
modular framework, computing and distributing schedules
to nodes in advance.

An additional type of timing consideration is that en-
tanglement generation involves sequential non-overlapping
attempts, each with a particular sequence of operations,
setting a minimum period and maximum rate for the process.
This also means operations cannot change mid-attempt
without disrupting entanglement generation.

B. APPLICATIONS
For simplicity, we assume quantum network applications are
executed between two end nodes. However, our architecture
is directly compatible with applications involving multiple
end nodes.

1) Execution Environment
To execute applications, end nodes require a runtime exe-
cution environment. In this work we assume the Qoala [16]
runtime environment is employed, running on QNodeOS
[15]. Qoala breaks applications down into a program run-
ning on each end node. Each of these programs is then
broken down further into blocks of instructions, which can
be one of four types: classical local (CL), classical commu-
nication (CC), quantum local (QL) or quantum communi-
cation (QC). Quantum communication blocks correspond to
generating entangled links.

When an application is executed, each block of instruc-
tions causes a task to be created, which is then scheduled
for execution by a local scheduler on that end node. The
execution of the task corresponds to realising the block
of instructions. Task execution scheduling can either be
performed in advance or at runtime.

The Qoala environment comes equipped with a compiler
which runs locally on each node. This compiler provides
advice about how local hardware parameters (e.g. memory
lifetimes) are mapped to requirements on any entangled
links produced. The compiler also produces metadata for
every block and for an entire program. This metadata covers
any constraints on the execution of tasks corresponding
to the constituent blocks of a program. This metadata is
used in a process called capability negotiation during which
the nodes ensure that the various programs comprising
the application will be executed in a compatible manner.
Whilst here we assume use of the Qoala environment, our
architecture is compatible with any runtime environment
with an equivalent notion of task scheduling and a compiler
that provides equivalent metadata.

2) Application Classes
There are many different quantum network applications,
and each will have different requirements for entangled
links generated by the network. However, they may be
broadly grouped into two different classes, measure-directly
and create-and-keep [24]. In measure-directly (MD) appli-
cations, qubits are measured as soon as entanglement is
produced, and no states are kept in memory. In this case,
the demand for the generation of entangled links is elastic
[80]. Examples of MD applications include quantum key
distribution (QKD), which facilitates provably secure secret
sharing [1], [2], and deterministic teleportation [81], [82].

In create-and-keep (CK) applications, qubits are stored in
memory after entangled links have been generated. Typically
CK applications will require many qubits to be stored
in memory simultaneously. This places limitations on the
spacing between the generation of new links. An example
of a CK application is blind quantum computing (BQC),
which facilitates secure remote computation (e.g. [3]–[5]).

3) Architecture
Our architecture is agnostic to the architecture of the end
nodes of the network. However, for convenience we assume
that processing nodes have a single monolithic quantum
processing unit (QPU), which is used both for entanglement
generation and performing local gates and measurements.
Such a QPU is assumed to be capable of performing only a
single operation at any given time. This is in line with state-
of-the-art implementations of end nodes [23], [53]. We do
not make any assumptions about the classical processing
capabilities of the end nodes.

4) Knowledge of the network
We assume that an end node has minimal knowledge about
the rest of the network. In particular, we assume that an
end node only knows the capabilities and status of their
own hardware, the identities of any neighbouring network
components and the identity of any control devices in the
network. Furthermore, we assume that an end node only
knows the programs which are running on itself. In partic-
ular, it is not required that an end node knows the precise
program of the other node in the application. Additionally,
each program on a given end node should be independent,
and the ability to execute a program should not require
knowledge of the other programs running on the end node.

IV. NETWORK ARCHITECTURE
Our proposed network architecture comprises on-demand
processes triggered by end nodes and periodic processes
hosted by the central controller. The on-demand processes
are a network capability update, capability negotiation, and
demand submission. In the network capability update and
capability negotiation the end nodes learn information about
each other and the network in order to construct a unified
demand. Demand submission is the process by which end
nodes submit their demands to the central controller. The
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FIGURE 3: Flow of information in the architecture. The processes of ‘Network Capability Update’ and ‘Capability
Negotiation’ allow the nodes to gather enough information to be able to submit a unified demand. These demands are
then used to construct a central network schedule, which in turn is used when constructing the local node schedules.

periodic processes are network scheduling and schedule dis-
tribution, where the central controller computes the network
schedule before distributing it to the end nodes respectively.
The high level flow of information through these processes
is summarised in Figure 3. Example timings of the distinct
processes are illustrated in Figure 4. A detailed overview of
our architecture is illustrated by the interaction diagram in
Figure 5.

Our architecture introduces several unique features which
ensure compatibility of the architecture with end nodes
and program execution. Firstly, we periodically distribute
network schedules to end nodes well before the start time
of the network schedule, which allows nodes enough time
to compute local schedules that incorporate the network
schedule. Secondly, we introduce a demand format which
takes into account local processing time requirements. This
demand format includes a precise description of the entan-
gled links which are required by an application, through
a notion of a packet of entanglement. Finally, the format
and construction of our network schedules ensure that end
nodes are certain about when they can attempt to generate
entanglement, allowing for efficient and effective program
execution.

In the rest of this section, we first introduce several
preliminaries which precisely define how an application’s
requirements translate to a demand for service from end
nodes to the network. Then, we provide a detailed descrip-
tion of each stage of the network architecture.

A. PERIODIC COMPUTATION AND DISTRIBUTION OF
SCHEDULES
The essential task of computing and distributing a network
schedule is executed periodically by the central controller.
Each schedule is associated with a version identifier and
covers an identical execution time known as the scheduling
interval (denoted TSI ). Periodic triggers for computation
and distribution of the schedule are defined with respect to
the TSI . Figure 4 illustrates possible trigger timings for the
components of this periodic task and illustrates the back-to-
back execution of subsequent schedules.

The primary advantage of a periodic approach to schedul-
ing, as compared to various possible on-line approaches
to scheduling, is that it limits the number of updates
to the schedule that may be triggered. In particular, the
central controller does not need to update the schedule
every time a new demand is submitted, which reduces the
number of time-consuming interruptions during scheduling.

This approach is also advantageous for end nodes, which
receive only finalised network schedules. This approach
avoids unnecessary interruptions to local schedules and local
program execution. Furthermore, any buffer between the
time at which a schedule is received and the time it takes
effect allows end nodes to optimise their local program
schedules without compromising execution of the network
schedule.

Compared to on-line network scheduling with an un-
bounded number of updates, the periodic distribution of
pre-computed network schedules reduces the number of
messages which need to be sent by the central controller.
As the loss of a message from the central controller can
lead to a disruption of service, this helps to improve the
reliability of the network. With this approach to scheduling,
all the components of the network know a) when the
schedule is changing and b) which schedule version should
be in effect when, reducing the amount of communication
required between the end nodes and the central controller.
These features reduce the likelihood that network compo-
nents attempt to execute different versions of the network
schedule.

B. APPLICATION SESSIONS
As the outcome of many quantum applications is probabilis-
tic, a single application needs to be executed many times to
extract a useful and reliable output. We refer to each of these
individual executions of an application as an application
instance. Nodes will often require that all these instances are
executed before some time elapses. For example, suppose
Alice and Bob wish to communicate securely within the
next two hours. To do so, they may use QKD to generate
a raw key and extract a secret key which can then be
used to communicate. To generate enough raw key would
then require them to execute many instances of the QKD
application during the next two hours. To capture these
requirements, we define an application session.

Definition IV.1 (Application Session). Suppose end nodes
N = (node1, node2,...) wish to execute application
App at least Ninst times, before time texpiry.

Then we write the corresponding application session as

S = (N ,App, Ninst, texpiry) (1)

Application instances are not required to be identically
executed. For example, in an application such as verifiable
blind quantum computing, (e.g. [83]), some instances may
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k − 1 k k + 1 k + 2

Demand Registration

Scheduler Admission Control

Compute Schedule

Distribute Schedule

Execute Schedule

Compute Node Schedule

Scheduling Interval

FIGURE 4: Example of the timings for computing, distributing and executing the kth network schedule (in colour and
hatched). In grey and unhatched are the corresponding operations for preceding and subsequent network schedules. The
process of registering received demands is continuous, however we indicate here the time during which if a demand is
submitted, then it will be first considered for scheduler admission as part of computing the kth network schedule.

correspond to computation rounds (where the calculation is
performed) and others to test rounds (where the veracity of
the server is checked). However, all instances should use
the same programs on each end node.

We expect that the specified expiry time, texpiry, will
be much longer than any time-scale of the network. For
instance, if the network updates (see §IV-I) on the order of
minutes, we expect texpiry to be on the order of hours.

When pairs of nodes send their demands for entanglement
to be generated to the network, they will do so on a per-
session basis, rather than for each individual instance. This
reduces the number of demands that the central controller
has to process. Furthermore, it gives the central controller
an overview of the scope of a demand, and therefore it can
make better decisions regarding whether and how to give it
service.

1) Executing Application Instances and Obtaining Minimal
Service
It will be useful to be able to talk about whether program
instances have executed successfully. Due to the imperfect
nature of qubits, even if all gates are performed perfectly,
an ‘incorrect’ outcome may be obtained, which could be
interpreted as an unsuccessful execution. To clarify what is
meant when we talk about application instances successfully
executing, we make the following series of definitions:

Definition IV.2 (Application Instance Execution). We say
an instance of an application is executed when at least one
of the blocks of instructions are performed by the relevant
processor.

Definition IV.3 (Successful Quantum Block Execution). We
say a block consisting of local gates executed successfully
if all included gates were applied to the qubits without
destroying them and a signal confirming this is passed back
to the local scheduler. We say a quantum communication
(entanglement generation) block executed successfully if a

packet of entanglement (see §IV-C1) is generated, and a
signal confirming this is passed to the local scheduler.

Definition IV.4 (Successful Application Instance Execu-
tion). We say an application instance executed successfully
if all blocks are successfully executed, including receiving
confirmation signals.

Definition IV.5 (Quantum Successful Execution). We say
an application instance achieved quantum success if it was
successfully executed and the correct outcome was obtained.

Definition IV.6 (Minimal Service). We say a session obtains
minimal service if Ninst instances of the application are
successfully executed before the session expiry time texpiry
elapses.

Note that in the literature, what we refer to as ‘quantum
successful execution’ is commonly referred to as “appli-
cation success”, for example, as in [16]. Our fine grained
terminology makes it possible to address the outcomes of
individual application instances and distinguish between an
instance successfully executing and an instance achieving
quantum success.

The aim of the network is to ensure that as many sessions
as possible obtain minimal service. To do so, it facilitates the
successful execution of application instances by scheduling
time to create packets of entanglement. In contrast, the
aim of end nodes is to achieve quantum successes from
successfully executed instances by suitably scheduling the
execution of local gates and operations.

We also define a notion of ‘load’ on the network, corre-
sponding to the number of pairs of users which have sub-
mitted demands for entanglement generation. In particular,
if the load on the network is high, this should correspond to
a decrease in the likelihood of a session obtaining minimal
service from the network, due to the network resources not
being able to serve all submitted demands simultaneously.
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C. DEMAND FORMAT
The network should be agnostic to the particular applica-
tions being executed on end nodes, and only make deci-
sions based on their requirements in terms of entangled
links. Therefore, application sessions should create demands
which can be submitted to the network. These demands al-
low the nodes to communicate their capturing requirements
without revealing the particular application being executed.

To facilitate the central controller creating a schedule
for the generation of entangled links, the the demand
should communicate two sets of information to the central
controller. Firstly, the central controller needs to know the
quantity and quality of entangled links that must be pro-
duced. Secondly, the central controller requires knowledge
of the frequency with which and over what time period these
entangled links must be produced.

1) Packets of Entanglement
We first address specification of the quality and quantity
of entanglement required. Recall from §III-B2 that when
executing an application from the create-and-keep class,
each instance will require many co-existing entangled links.
Each of these links cannot be too old because quantum
memories, which store them, exhibit time-dependent deco-
herence, causing the quality of the links to decrease over
time. The maximum age of a link depends both on the hard-
ware of the specific end nodes and the initial fidelity of the
entangled link. One approach to satisfy these requirements
is to strictly control the jitter between generated entangled
links, for example as in [28]. However, we instead consider
the generation of packets of entanglement, rather than in-
dividual links. The generation of a packet of entanglement
corresponds to the co-existence of all required entangled
links for an instance of an application. As each instance of
an application is independent, there is no time constraint
between the generation of each packet of entanglement.
Therefore, following the definitions in [80], any demands,
both from sessions of measure-directly and of create-and-
keep applications can be treated as elastic.

One may also attempt to control the jitter between the
generation of packets, though the ability to do so will depend
on the network scheduling algorithm employed. Although
jitter may have an impact on node schedules, jitter control
is not necessary to enable execution of application instances.

The following definitions, motivated by the formalism set
out in [25], precisely specify what is meant by packets of
entanglement.

Definition IV.7 (Window). A window in the context of en-
tanglement generation is the longest time that an entangled
link can be kept in memory without decohering too much
to be useful. If a link has been in memory for longer than
the length of the window it is discarded. This means that
all the entangled links required to execute an instance of a
quantum application need to be generated within a window’s
duration of each other.

Definition IV.8 (Entanglement Packet). A packet of en-
tanglement or entanglement packet for a given application
session is the tuple (w, s, Fmin), where w is the window
within which all entangled links must be created, s is
the required number of entangled links and Fmin is the
minimum fidelity new links may be created with.

To see how this is useful, suppose Alice and Bob wish
to execute two instances of an application, each requiring
three entangled links. Further suppose that Alice and Bob’s
hardware is such that each entangled link can only be
stored for 0.5s. Instead of saying that Alice and Bob require
6 entangled links with expected fidelity F , it is much
more precise to say they need two (0.5s, 3, F ) packets
of entanglement. In particular, if the network allocated
resources such that Alice and Bob sequentially generated
6 entangled links, each 1 second apart from the other, this
would satisfy the former requirement, but Alice and Bob
would still not be able to achieve quantum success when
executing their applications. By specifying the packet of
entanglement required, the network can allocate resources
for sufficiently long periods in the network schedule that the
required entanglement, i.e. a packet, can be produced. The
packet formalism thereby ensures that application instances
can actually be executed.

Definition IV.9 (Packet Suitability). A packet of entan-
glement is suitable for an application if the existence of
entangled links adhering to the form of the packet would
allow an instance of the application to be executed with an
acceptable probability of achieving quantum success.

It is possible for an application instance to have multiple
suitable packets of entanglement. This may arise from, for
example, accepting links which are generated with a lower
expected fidelity and shortening the window to compensate.
The end nodes could also include extra links which may not
be directly required by the protocol. End nodes include a
finite subset of all possible suitable packets in their demand.
We write P for the set of suitable packets included in the
demand.

In order to compute the set of suitable packets, the nodes
need to know what quality of entanglement the network can
produce, as well as the hardware on the other node(s). These
pieces of information are obtained in the network capability
update and capability negotiation processes respectively.
Given this, they can establish how long the links can be
stored in memory, and thus construct the set of suitable
packets.

2) Timing Constraints
We now address communicating the frequency and time-
period over which packets of entanglement are produced.
For each suitable packet of entanglement, the nodes specify
an average rate R at which they wish such packets to be
produced. This rate can be set to 0, which indicates to the
central controller that the nodes will be satisfied with the

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TQE.2025.3624658

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Beauchamp et al.: A Modular Quantum Network Architecture for Integrating Network Scheduling with Local Program Execution.

minimum possible rate of packet generation which almost
certainly ensures the session obtains minimal service. In this
case, the nodes also submit Ninst as part of the demand,
so the network can calculate this minimum rate when the
demand is accepted for scheduling.

The central controller will define a service model which
specifies how the requested rate will be treated. For example,
the rate may be met exactly, or alternatively the network may
increase or decrease the rate at which packets are generated
within specified limits, depending on the current network
load.

Alongside the packets and associated rates, the nodes also
submit two further pieces of timing information. Firstly, they
include the expiry time of the session texpiry. Secondly,
they include a minimum separation between attempts to
generate packets of entanglement. This minimum separation
is included to ensure that there is sufficient time for local op-
erations to be performed before the next allocated period of
time for generating entangled links begins. Local operations
may either be additional blocks of quantum operations in
the application program or operations to reset the hardware
between subsequent attempts to generate a packet.

Submitted rates may depend on factors such as how often
the nodes intend to execute instances of an application, as
well as pre-existing device agreements with the network.
Thus, the values are determined as part of the capability
negotiation phase. Determination of the minimum separation
required between attempts to generate a packet and an
appropriate expiry time also requires input from both nodes,
and as a consequence these values are set during capability
negotiation.

3) Full Demand
Combining all of the above we obtain the demand which
end nodes submit to the network:

D =

({
(w, s, F,R)p

}
p∈P

; tminsep, texpiry;Ninst

)
, (2)

where P is the set of submitted suitable packets.
As the demand format needs to be compatible with all end

nodes, the time dependent parameters w,Rpacket, tminsep
and texpiry should be specified in terms of real-time units,
such as seconds or per-second as applicable, rather than in
terms of local or network time slots. The central controller
can then convert them to a notion of time-slots, if required,
when computing and distributing the schedule.

D. NETWORK CAPABILITIES UPDATE
To enable construction of the suitable packets of entangle-
ment, the end nodes need to know whether the network
can generate entangled links between them, and with what
quality these links can be produced. Providing the nodes
with this information is the primary objective of the network
capabilities update process of our architecture (interaction
A in Figure 5).

The application stack obtains this information in the
following manner. Firstly, a query is sent to the quantum
network agent (QNA) (see Figure 5). This query can be
either for an overview of the network, or for the specific
entanglement generation capabilities with another party. If
the QNA has recently obtained the requested information,
then it responds directly, otherwise the query is forwarded to
the network capabilities manager of the central controller.

In the case of an overview request, the response includes
with whom entanglement can be generated, as well as
general information about the status of the network such
as the current load. If the application stack requests the
capabilities for a specific node, this information is returned
in the form of (R,F ) rate-fidelity pairs describing the rate
at which end-to-end links can be generated with fidelity F .

In order to determine the quality of entanglement which
can be generated, the central controller performs the fol-
lowing tasks: First, it establishes along which paths through
the network entangled links can be generated. Then, along
these paths the central controller devises a scheme which
will enable end-to-end entangled links to be produced. Using
the information which the central controller has about the
fidelity of the entangled links which can be produced along
each of the segments of this path, the overall end-to-end
fidelity can be determined and communicated back to the
requesting end node’s quantum network agent.

The central controller retains the right to be selective
about which possibilities it communicates. For instance, it
may discount certain paths or configurations which would
put excessive pressure on the network. Furthermore, the
network only communicates the quality of entanglement and
not the paths back to the nodes. This is to give the controller
flexibility, where possible, to create the same quality links
using multiple different paths as well as to maintain the
agnosticism of the end nodes as to the internals of the
network.

E. CAPABILITY NEGOTIATION
Before any application can be run, or a demand submitted
to the network, the nodes must align amongst themselves
exactly how the application will be run. Ultimately the aim
of this is to create an application session and corresponding
demand, as well as to finalise any metadata about the
programs which still needs to be set. To do this, the nodes
carry out capability negotiation (interaction B in Figure 5).

During capability negotiation end nodes exchange rele-
vant information, for example the quantity and quality of
qubits which can be made available and how other end nodes
need to interact with their programs. In combination with the
data from a network capability update, the end nodes should
be able to exchange sufficient information to determine the
acceptable packets and calculate/decide upon the packet
generation rates they will request from the network. By the
end of this exchange, the end nodes will have set values of
Ninst, texpiry and tminsep. Once capability negotiation has
concluded, up to classical communication in the application
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itself, the end nodes should be able to execute their programs
independently and without further classical communication.

F. DEMAND REGISTRATION
When demands are received by the central controller (inter-
action C in Figure 5), they undergo an initial registration
process. If a demand passes this process, then it is placed
into the demand queue for consideration by the scheduler
admission control. Otherwise, it is immediately rejected by
the network. The end node which submitted the demand is
informed of the outcome of the demand registration process,
and additionally can be informed as to the reasons for
rejection. In the case no such acknowledgement arrives, end
nodes should assume that the demand has been rejected.

The main aim of this process is to filter out any obviously
infeasible or unreasonable demands. On top of this, this
process may also reject demands based on the load which
the network is experiencing. For example, if load on the
network is high, then the demand registration process may
also immediately reject demands with a high expected queu-
ing time. The precise rules which the demand registration
process implements will depend on the network implemen-
tation and the types of behaviour which the network operator
desires.

1) Leaving the Demand Queue
The central controller determines how and when each de-
mand leaves the demand queue. The positive outcome for
a demand is that it passes the scheduler admission control,
and is accepted to be scheduled. Depending on the load on
the network and the nature of the demand, this may happen
at the start of the next scheduling interval. Alternatively,
a demand may possibly be held in the queue for several
scheduling intervals, until there is sufficient capacity for the
network to serve it.

Alternatively, demands may be removed from the demand
queue. If a queued demand reaches it’s expiry time, it
will be marked as expired by the central controller and
removed from the queue. Demands may also be removed
from the queue before they expire if the central controller
evaluates that removing the demand is beneficial to the
overall performance of the network. For example, the central
controller may apply a rule where any demand which would
have failed demand registration had it been submitted at the
current time is removed from the demand queue. As with
demand registration, the exact rules governing premature
removal from the demand queue should be specified in an
implementation.

G. SESSION INITIALISATION
Following capability negotiation and demand submission,
each end node performs some initial configuration (interac-
tion D in Figure 5). In particular, the blocks of instructions
that make up the program are submitted to the local sched-
uler, and any initial configuration of the end node’s quantum
network stack is performed. An example of configuration

of an end node’s quantum network stack which may be
required is the establishment of a quantum network socket
for the application, as in [16], [73], ensuring that generated
entanglement is assigned to the correct application.

H. PROCESSING DEMANDS AND PACKET
GENERATION TASKS
While the demand format is sufficient for communicating
the requirements of the nodes to the central controller, it
is not an efficient format for use by a network scheduling
algorithm. To address this, when a demand is considered by
the scheduler admission control it is converted into a packet
generation task (PGT). This is an internal representation
of the demand containing only the information required to
construct the network schedule.

1) Finite Execution Times
Due to the probabilistic nature of generating entangled
links, it is impossible to guarantee that a packet will be
generated when any finite execution time is allocated to a
packet generation attempt (PGA). Therefore, the network
only guarantees that a packet will be generated in a given
PGA with some probability ppacket. This probability is
an internal parameter, known only to the network. The
rate at which PGAs are scheduled may be increased to
compensate for ppacket. The value of ppacket can either
be static, or can alternatively be determined using a method
conforming to Algorithm 1. Once the value of ppacket has
been determined, the execution time of each PGA, E can
be determined, using a method conforming to Algorithm 2.

In the process of selecting ppacket, there is a trade-off
between the length of each PGA, E, and the rate at which
PGAs need to be scheduled, Rattempt. As the value of
ppacket increases, the required length of the PGA increases,
whilst the required rate of PGAs decreases. Furthermore, as
E and Rattempt change at different rates with ppacket, the
resource utilisation Uτ := EτR

attempt
τ for a given packet

generation task τ is not constant with ppacket. We will see
in §IV-I1 that the resource utilisation of packet generation
tasks is an important quantity that determines how many or
which demands can be accepted by the scheduler admission
control.

Algorithm 1: Determining ppacket
Input : Network state, service agreements, w, s
Output: Probability of generating a packet in a

PGA, ppacket
1 Determine the value of ppacket for given w, s given

network conditions and adhering to service
agreements.

2) Setting the rate of packet generation attempts
The central controller must determine a suitable rate,
Rattempt, at which to schedule PGAs. If the nodes request
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FIGURE 5: Interaction Diagram for our proposed quantum network architecture. Elements in red are local software
components. Single stroke arrows represent purely classical interactions and double-stroke arrows represent quantum
interactions. The dotted arrows denote the corresponding interaction from the other end node. The QPS and CPS are the
Quantum Processing System and Classical Processing System respectively. The application stack includes the application
code, compiler and execution environment. The Network Capabilities Manager is an oracle which can be queried by end
nodes to find out information about the network as part of the network capabilities update phase of the architecture (IV-D).
The process of Scheduler Admission includes the demand queue. The Quantum Network Stack is that of [24]. The ellipsis
represents the quantum network. The labelled interactions are as follows: A: Network Capability Update; B: Capability
Negotiation; C: Demand Registration; D: Session Initialisation; E: Network Schedule Distribution (note this goes to all
components of the network); F: Input of network schedule into the local schedule; G: Execution of the schedule(s).

Algorithm 2: Determining the length of PGAs
Input : w, s, psucc, ppacket
Output: Length of a PGA, E

1 Calculate the shortest time E such that a packet
(w, s, F ) is generated with probability ppacket in
time E, given a probability of entangled link
generation psucc.

a fixed rate, then the service model determines Rattempt.
For example, if the service model specifies the requested
rate is to be met exactly, then the central controller would
set Rattempt = R/ppacket.

If the requested rate is 0, that is the nodes are requesting
the minimal rate to achieve minimal service, then the central
controller needs to calculate this rate using a method con-
forming to Algorithm 3. In particular, the central controller
sets a value ϵservice for the maximum probability that any
session does not obtain minimal service. This parameter is

known by both the central controller and the relevant end
nodes. In one possible implementation, it may be set by
the network operator when initially setting up the network.
From this, the minimum number of PGAs needed to meet
the service threshold can be determined. Once this number
is known, the minimum rate can be calculated.

Algorithm 3: Determining the minimum rate of
PGAs

Input : Ninst, texpiry, current time, ϵservice,
ppacket

Output: Minimum possible rate at which to
schedule PGAs.

1 Calculate the minimum number of PGAs, Nmin,
required such that the probability of at least Ninst

packets being generated is at least 1− ϵservice;
2 return Nmin/(texpiry − current time)

If permitted by the service model and any agreements
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((2, 1/7, {1, 2,M}), 0, 100) on three nodes, where M represents a number of resources at a metropolitan hub.

with nodes, the central controller also retains the right
to reduce, or throttle, the rates requested. This may be
done in order to reduce the load on the network due to
either a particular demand or the collection of all demands.
Reducing the rate at which PGAs are scheduled may allow
the network to serve more users at any one time, albeit at the
cost of an increased probability that the throttled sessions
do not obtain minimal service.

3) Additional Information
The scheduler requires knowledge of the resource require-
ments ρ of each demand. These depend on the path and
entanglement generation protocol employed by the network
to generate the desired entangled links, and can be obtained
from the central controller’s side of the network capabilities
manager. In addition, the parameters governing the mini-
mum separation time between subsequent PGAs, tminsep,
and the expiry time of the demand, texpiry are carried
forward unchanged to the PGT. These final quantities are
combined with the execution time of each PGA, E, and
the rate at which PGAs should be scheduled, Rattempt, to
define the complete PGT.

4) Complete Packet Generation Task
It is now possible to define the complete PGT.

Definition IV.10 (Realisation of a demand). A realisation
of a demand is a specific choice of how PGAs from a packet
generation task will be executed. In particular, this includes
specifying a protocol for generating end-to-end entangled
links and which suitable packet will be generated. This also
determines the path in the network along which links will
be generated, and therefore the resources which will be
required to execute each PGA.

We write the set of all possible realisations as R.

Definition IV.11 (Packet Generation Task). A packet gen-
eration task (PGT) is the following tuple:

τ =
({

(E,Rattempt, ρ)r
}
r∈R, tminsep, texpiry

)
(3)

where for each possible realisation r ∈ R:

• E is the execution time of each PGA
• Rattempt is the average rate at which PGAs are sched-

uled.
• ρ is the set of resources which are required to execute

each PGA.

The relation of these parameters to a network schedule
can be seen in Figure 6.

We make the distinction between demands, which pertain
to the domain of the end nodes and PGTs which pertain
to the domain of the central controller in order to main-
tain separability in the control structure. This separation
reinforces that the central controller may determine how to
realise a demand based on the information submitted and
its knowledge about the state of the wider network.

If the network scheduling algorithm supports it, the packet
generation task can be interpreted as a multi-mode task,
similar to as in [84]. In such a situation, the network
scheduler can choose the ‘best’ mode in which to schedule
the packet generation task given the current network load. If
such behaviour is not supported, then the central controller
should reduce R to a single realisation/mode in which the
PGT is always scheduled.

I. NETWORK SCHEDULING
Algorithm 4 summarises the procedure of network schedul-
ing. The procedure is subdivided into the processes of
scheduler admission control, computation of the schedule,
and distribution of the schedule. Figure 4 illustrates possible
timings for each of these processes.

1) Scheduler Admission Control
At the start of each scheduling interval, the first task the
central controller undertakes is to identify which demands
should be given service in the next network schedule. To do
this, it will construct a set of PGTs for which PGAs will be
included in the next network schedule.

Any PGTs from the previous schedule which have not
expired or been terminated by the source nodes are auto-
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Source Supplied Parameters
Application script w, s, F, tminsep

End node(s) R, texpiry, Ninst

Central controller (configuration) ppacket, εservice
Central controller (calculation) E,Rattempt

Path and protocol for entanglement generation psucc, ρ

TABLE 1: Table of entities (sources) and the parameters they provide.

Algorithm 4: Network Scheduling
Input : Demands in queue, previously scheduled

PGTs, scheduling interval, service model
Output: Network Schedule

1 Decide which, if any, demands to accept from the
queue into the schedule;

2 Compute the schedule for the next scheduling
interval following the chosen service model;

3 Distribute the schedule to all relevant parties;

matically carried forward into this new set of PGTs. Fur-
thermore, the admission control process may take demands
from the demand queue, convert them into PGTs and then
decide whether or not to add them into the set of PGTs to be
scheduled. If the admission control algorithm decides to add
a given PGT, we say the corresponding demand is accepted
and exits the demand queue. If a PGT cannot be added
(or the admission control algorithm decides not to add it),
then the demand is not accepted, and we leave the precise
behaviour in this case to an implementation. Examples of
possible behaviours could range from leaving the demand
in the queue and attempting to admit it in the next schedule,
to rejecting the demand outright and removing it from the
demand queue.

Any specific implementation of the architecture may
define a tailored admission control routine which addresses
the performance goals of the implementation. However, a
guideline for any implementation is that the utilisation of
any resource, Ur, should satisfy

Ur =
∑

τ :r∈ρτ

Uτ ≤ 1,

where Uτ = Er,τR
attempt
τ and r is the specific realisation

which is scheduled. This is to ensure the schedules are
feasible.

2) Computing the Network Schedule
Once the set of PGTs to schedule has been finalised,
the central controller constructs the network schedule for
the next scheduling interval, using a method conforming
to Algorithm 4. In doing so, each PGT which has been
accepted for scheduling is assigned a series of start times,
from each of which a PGA is executed without preemption.

Such a schedule may be based on fixed duration time-
slots, though this is not required. If a fixed duration time-
slotted schedule is employed, the central controller deter-

mines the length of the time-slots, which are the same for
all resources in the network schedule.

The computed network schedule needs to cover the en-
tirety of a scheduling interval. This can be achieved either
by directly computing a schedule for the whole scheduling
interval or by computing a shorter schedule that can be
repeated to cover the whole scheduling interval.

A constraint applies to the time required to compute
the network schedule, and thus restricts the selection of a
specific scheduling algorithm. This computation time should
be short enough so that a single scheduling interval covers
computation and distribution of the schedule, followed by
a final buffer time for the construction of local schedules.
End nodes require the final buffer to construct their local
schedules, which incorporate the network schedule.

It is the role of an implementation to specify handling
of the situation where the schedule is not computed in
time. An example of a policy which may be employed is
to delay execution of the late computed schedule to the
start of the following scheduling interval. Alternatively, if
the central controller distributes the schedule as soon as
possible then each network component could start executing
the schedule from the time when it is received. Whichever
policy is enforced, if there is a gap between the end of the
previous schedule and the arrival of a new schedule at a
network component, a guideline for implementation is to
instruct all components to only begin executing new PGAs
upon the arrival of the new schedule. This ensures proper
synchronisation across all components.

J. DISTRIBUTING THE NETWORK SCHEDULE
Once the schedule has been computed, it must be distributed
to all components of the network. Each component only
receives the portion of the network schedule relevant to it.
For example, an end node receives only its portion of the
schedule, whereas a metropolitan hub receives the portion of
the schedule concerning all nodes to which it is connected.
To ensure compatibility with requirements of the network
stack and the runtime application execution environment on
end nodes, the format of the schedule must be such that the
relevant end nodes receive the start and end times of each
scheduled PGA together with an identifier of which demand
the scheduled PGA pertains to. Various implementations are
possible.

As indicated in Figure 4, sufficient time must be allot-
ted for distribution of the network network schedule. The
interval reserved for distribution should be such that the
probability that any component does not receive the network
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schedule is vanishingly small. However, in the case that a
component does not receive the schedule on time, we expect
that the affected components will continue to request the
network schedule from the central controller. Furthermore,
as with the case where the schedule is not computed on
time, such components should not start any new PGAs until
they receive the correct schedule.

Once a network schedule is received by an end node,
it can compute its local schedule. This uses the network
schedule to determine when submitted QC (entanglement
generation) blocks are executed (interaction F in Figure 5).
The remaining instruction blocks are then scheduled relative
to these QC blocks [16], [85]. Once this process has been
completed, the local and network schedules can be executed,
without any extra interaction either between pairs of end
nodes and between end nodes and any internal network
components (interaction G in Figure 5).

V. IMPLEMENTATION
In order to be able to perform an evaluation in §VI, we
provide an example implementation of the central controller
in our architecture, focusing on the process of computing the
network schedule. All the algorithms explicitly presented in
this section are applicable to any network topology, with any
applications being executed over the network. Therefore,
this implementation can act as a baseline against which
future implementations can be compared.

A. NETWORK SCHEDULE FORMAT
We will implement the network schedule as a synchronous
time-slotted network schedule, with timeslots of fixed length
ttimeslot seconds, similar to [28]. In our implementation,
the duration of each of these timeslots is chosen to be of a
similar order of magnitude as the expected time to produce a
single end-to-end entangled link. This allows us to make the
simplifying assumption that at most one link is generated
in a given timeslot of the schedule.

It will also be convenient to express certain quantities
in terms of numbers of time slots, rather than in seconds.
In particular, we will re-normalise the window w to be
expressed as a number of timeslots, and similarly for the
execution time E of PGTs. Furthermore, it will often be
more convenient to work with the period of PGTs (defined
as the reciprocal of the rate of packet generation attempts),
expressed again as a number of timeslots. Therefore, to meet
the required rate of Rattempt PGAs per second, there must
be a PGA scheduled every Tattempt timeslots.

We calculate the period by

Tattempt =

[
1

Rattemptttimeslot

]
N
, (4)

where we write [x]N to be x rounded to the nearest positive
integer. Note that as Rattempt is the number of PGAs per
second, we expect Rattempt < 1 and from the assumptions
above, we expect ttimeslot ≪ 1. Therefore, we expect that
Tattempt ≫ 1 for most PGTs.

B. SERVICE MODEL
For our implementation, the network operates under the
following network model:

Network Service Model SM1 (No Throttling). Under this
model, demands are met exactly, that is PGAs are scheduled
to on average meet exactly the rate requested by the nodes.
In the case where the network is oversubscribed, then
demands which cannot be accepted to be scheduled are
delayed until there is space, or dropped if they can never be
served.

Note that this service model requires some admission
control for the scheduler, to decide which demands are
accepted for scheduling and which are delayed. We give
some examples of such rules in §V-G1.

This service model is particularly applicable to scenarios
where nodes are relying on demands being met exactly.
An example of such a scenario would be using QKD to
underpin the availability and monitoring of secure critical
infrastructure. In such a case, a demand being throttled could
potentially result in loss of access to the infrastructure, due
to not being able to generate keys quick enough. Examples
of such schemes include [86]–[88].

C. NETWORK CAPABILITY UPDATE
The evaluation will be performed on a network with a
star topology (Figure 7), as it removes any influence from
routing or determining schemes for generating end-to-end
entangled links. Consequently, we will not give implemen-
tations of such schemes. For examples of how routing may
be performed in more complicated network topologies, see
for example [89] and [90].

D. CAPABILITY NEGOTIATION
We assume that capability negotiation is carried out using
the exposed hardware interface (EHI) from Qoala [16]. This
allows the end nodes to exchange information about the
hardware and software constraints of their devices.

E. DEMAND REGISTRATION AND QUEUING
We use the following set of rules for demand registration:

Demand Registration Rule DR1. The demand must be
sane. In particular we require w ≥ s, where w is expressed
as a number of timeslots, and that both parties are capable
of generating entangled links.

Demand Registration Rule DR2. Let the utilisation of a
PGT τ with execution time E and period Tattempt be Uτ =
E/Tattempt. Then the utilisation of a PGT resulting from at
least one of the requested service options must be less than
Û = 0.8 (otherwise the demand would never be accepted
by our admission control rules).

Once demands are registered, they are placed into a first-
in-first-out (FIFO) queue for consideration by the scheduler
admission control.
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F. CREATING PACKET GENERATION TASKS
We use a fixed value for the probability, ppacket, that
a packet is successfully generated by a PGA. Then, to
determine the length of a PGA, we use results from scan
statistics. Specifically we use the approximations in [26]
(also given in Appendix C1) for the probability of k
successes in a window w given a total of N trials. From
this we can calculate the minimum execution time of the
PGA, such that the PGA succeeds with probability ppacket,
using interval bisection.

If the nodes have requested the central controller calculate
the minimum rate (R = 0), we use Hoeffding’s inequality
to calculate the minimal Nmin such that after Nmin PGAs,
the session obtains minimal service with probability 1 −
ϵservice. The rate of packet generation attempts is then set
by Nmin/(texpiry − [current time]). This process is
described in detail in Appendix C2. Otherwise (R > 0), we
simply set Rattempt = p−1

packetR

G. NETWORK SCHEDULING
1) Admission of New Demands
The central controller decides which demands to remove
from the queue by checking if accepting a demand would
violate either of the following rules:

Scheduler Admission Control Rule SAC1 (Utilisation
Bound). For all resources r, the utilisation of r, Ur, must
satisfy

Ur =
∑

τ :r∈ρτ

Uτ ≤ Û (5)

for some constant Û ∈ (0, 1].

Scheduler Admission Control Rule SAC2 (Computation
Time Bound). The estimated time to compute the network
schedule cannot exceed αCTSI , for some constant αC ∈
(0, 1).

If neither rule is violated, then the demand is accepted and
the corresponding PGT created. Otherwise, unless DR2 is
violated, the demand is returned to the head of the queue.
Since the queue is FIFO, demands can only be accepted
in the order they were submitted. If a given demand fails
admission control but is not removed from the demand
queue, then no more demands can be accepted from the
demand queue until the next scheduling interval.

The utilization bound Û in SAC1 is restricted to (0, 1] as
if any Ur > 1, then there is not physically enough time to
schedule all the required PGAs. The estimated computation
time in SAC2 may be continuously updated by the central
controller based on its current performance when computing
network schedules. We cannot allow αC ≥ 1, as there
must be some time remaining in the scheduling interval to
distribute the schedule, as per Figure 4.

We write T to be the set of PGTs for which PGAs must
be scheduled in the next network schedule. Every PGT in T
corresponds to a demand that has passed admission control

and has neither expired nor been terminated. Once a demand
has been terminated or expires, then no more PGAs will be
scheduled from it.

2) Computing the Network Schedule
To calculate the network schedule, we adapt priority-based
periodic task scheduling methods from real time systems,
and use a synchronous time-slotted network schedule with
time-slots of fixed duration ttimeslot, similar to as in [28]. In
particular, we will use earliest deadline first (EDF) schedul-
ing, and adapt the following model, which is common to
real-time periodic scheduling (c.f., [91], [92]): A periodic
task creates jobs. Each of these jobs is released at some
time r, only after which can it be executed, and must be
completed by a deadline d. If a job is the ith released by a
task, then its release time is given by r = (i−1)T+σ where
T is the period of the task and σ is an offset determining how
long after the start of the schedule the first job is released.
The corresponding deadline is then set to the start of the
next period, i.e. d = r + T = iT + σ.

In our case, the tasks are PGTs and the jobs are PGAs.
Following the definitions in [91], we take our deadlines to
be soft, which permits PGAs to be scheduled past their
deadlines if it is not possible to do otherwise. In this
way, no PGAs will be skipped, and so the average rate of
packet generation experienced by the end nodes will be as
they requested over the course of the entire lifetime of the
demand.

To be able to determine the release times and deadlines
of each PGA, the period of the PGT, as given by (4), is
required. We also need to determine the offset σi. This is set
to be the start of the scheduling interval during which PGT
τi is first scheduled. We can now determine the release time
and deadlines of each PGA which needs to be scheduled.

For τi ∈ T , let τi,j be the jth PGA from PGT i. Let Ti
and σi be the period and offset of τi respectively, let ri,j ,
di,j be the release time and deadline of τi,j , and let si,j and
ci,j be the start and completion times of τi,j , respectively.
Then,

ri,j = σi +max{(j − 1)Ti, ci,j−1 + tminsep,i} (6)
di,j = σi + jTi (7)

where j = 1, ..., ⌊(texpiry,i − σi)/Ti⌋. Note that we adapt
the determination of the release times from the usual for-
mula in order to incorporate the minimum separation time
between two PGAs.

Definition V.1 (Eligibility for scheduling of a PGA). We
say that a PGA τi,j is eligible for scheduling at time t∗ if
it meets the following criteria:

1) It has been released (t∗ > ri,j)
2) It has not yet been scheduled (the start time si,j is

undefined)
3) The required resources are available

The schedule is then computed according to Algorithm 5.
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Algorithm 5: EDF Scheduling Algorithm.
Input : Desired schedule length, PGTs to be

scheduled, T
Output: Scheduled PGAs

1 Set the initial decision time t∗ to the time at the
start of the schedule;

2 while t∗ is less than the end time of the schedule do
3 while there are eligible PGAs do
4 Schedule the eligible PGA with the earliest

deadline;
5 Update the set of eligible PGAs;
6 end
7 Update t∗ to the next time either a task is

released, a task completes execution, or the end
of the scheduling interval, whichever is earlier;

8 end

FIGURE 7: Example of a star-topology network with 6
nodes. The outer circles represent the end nodes and the
central hexagon a central junction node. In each network
time-slot the central node can attempt to create an entangled
link with each of the end nodes, and then perform entan-
glement swaps to create end-to-end links between pairs of
end nodes. The orange dots represent communication qubits
and the black dots represent memory qubits.

H. END NODE SCHEDULING
As our evaluation focuses on the network portion of the
architecture, we do not compute the local schedules. We
assume that node schedules exist which facilitate the suc-
cessful execution of an application instance given that
packet generation succeeds. For examples of methods of
constructing schedules on end nodes, see the scheduler built
into the Qoala environment simulation in [16] or one of the
schedulers used in [15], [85].

VI. EVALUATION
We now evaluate the performance of our network archi-
tecture using the implementation described in the previous
section. To do so, we simulate two test applications from
different application classes. We define the performance
metrics we consider, and where relevant we provide further
details about the precise model used in our simulations.
Further details about the simulation model can be found
in Appendix D. From the results we obtain we validate the
viability of our architecture and are able to draw conclusions

about the need for good admission control and how nodes
should decide what rates of packet generation to request.

A. METRICS
Definition VI.1 (Termination of a Session). We say a
session is terminated if the session has obtained minimal
service and sent a termination message to the central con-
troller. This results in no further time being allocated for
this demand beyond the end of the schedule currently being
computed.

Definition VI.2 (Expiry of a session). We say a session is
expired if the expiry time has elapsed without a termination
message being received. No packet generation attempts will
be scheduled after the expiry time.

Note that a session can expire and still have obtained min-
imal service, if the nodes choose not to send the termination
message and carry on generating packets. Likewise, a node
could choose to send a termination message before obtaining
minimal service. However, we assume in our evaluation that
neither of these behaviours occur.

Metric I (Proportion of Expired or Terminated Sessions
Obtaining Minimal Service). Let S be the set of application
sessions initiated in a given simulation. Let Ŝ ⊆ S be the
set of those application sessions which ultimately expire or
are terminated. Let M ⊆ Ŝ be the set of those application
sessions which obtained minimal service. Then the metric,
pMS , is given by

pMS =
|M|
|Ŝ|

∈ [0, 1]. (8)

Such a metric is important to both the end nodes and
the central controller. End nodes can use this to estimate
the likelihood of a submitted application session obtaining
minimal service, and therefore what quality of service the
network can provide. On the other hand, by monitoring this
metric, the central controller can assess the effectiveness of
the (scheduler) admission control rules given the traffic on
the network, and update them accordingly.

Metric II (Average Time Spent in Queue). Let tsubmit,S be
the time at which the demand corresponding to session S is
submitted to the central controller. Let texit,S be the time
at which the demand corresponding to session S leaves the
queue. Then the metric is given by

t̄queue =
1

|S|
∑
S∈S

(
texit,S − tsubmit,S

)
. (9)

For end nodes, evaluating this metric gives them an
estimation of the expected latency between submitting a
demand and receiving service. This in turn can then be
used to estimate the load on the network, and even inform
the choice of expiry time for the application session. For
the central controller, this metric gives an estimation of
how overloaded the network is, especially in conjunction
with pMS . Using this, the central controller can control the
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Parameter Value
Network time-slot length 100µs

pgen 7.5× 10−5

F 0.925
qubits at end node 5

TABLE 2: Network Parameters for Evaluation. pgen is the
probability of an end-to-end entangled link being created
in a given time-slot. The trends we observe are generally
insensitive to the value of pgen.

Parameter Value
ppacket 0.2
ϵservice 10−5

PGA cap per schedule 1500
Utilisation Bound per link, Û 0.85
Computation time factor, αC 0.5

Scheduling Interval (MDA|CKA) 300s | 3600s

TABLE 3: Scheduler Parameters for Evaluation. Except
where noted, the trends that we observe are insensitive to
the specific values chosen here.

overload by either adapting the admission control rules as
required, or even requesting that nodes reduce the rate at
which new demands are submitted.

B. NETWORK CONFIGURATION
We consider a network consisting of 6 end nodes connected
to a single central node as shown in Figure 7. Each end node
is equipped with 5 qubits, of which at most one can be used
for entanglement generation at any given time. The central
node also has 6 independent communication qubits with no
storage capability beyond the current network time slot. We
assume that in every time slot, an elementary entangled link
may be generated between each end node and the central
node.

Links with the central hub are consumed by performing
deterministic entanglement swapping operations to generate
end-to-end entangled links between pairs of end nodes. The
swap operations which are carried out are determined by
which pairs of end nodes have a PGA scheduled in that
time slot. We assume that the central node has no quantum
memory and therefore any link which is generated must be
consumed within the same time slot or be lost.

We therefore simulate a mathematically equivalent model,
whereby for each disjoint pair of nodes, an end-to-end link
may be generated in each time slot with fixed probability
pgen ≪ 1.

C. ADMISSION CONTROL
1) Utilisation Bound
We set the value of the utilisation bound Û = 0.85. A
restriction to Û ≤ 1 is necessary to ensure the schedule
is feasible. However, as the tasks are non-preemptable, this
is not a sufficient condition because of so-called priority
inversions. These occur when a task is available to be
scheduled, but there is a non-preemptable lower priority
task which is currently being executed preventing the higher

priority task from being scheduled [92]. As it is non-trivial
to determine if a deadline will be missed without computing
the schedule [79], we instead reduce the utilisation bound
to reduce the probability that a priority inversion causes
a missed deadline. By performing additional simulations
beyond those reported on here, we observed that the con-
clusions we draw hold for any value of Û < 1.

2) Schedule Computation Time

We set αC = 0.5, i.e. network schedules cannot take more
than half the scheduling interval to compute. However, to
avoid our results depending on the hardware of the server
on which we perform our simulations, we do not directly
implement SAC2. As the time to compute the schedule
depends on the number of PGAs which will need to be
scheduled, the central controller can implement this rule by
imposing a cap on the estimated number of PGAs which
need scheduling in a given scheduling period. Therefore,
we simply fix this cap a priori and do not update it based
on the observed computation times.

The central controller will be running on dedicated hard-
ware in any actual deployment. This means that we do not
expect the computation times to fluctuate much as there
will not be other background processes consuming CPU
resources. Therefore, despite fixing this cap on the number
of PGAs per schedule to be constant, the results obtained
will still be indicative of real-world performance. In our
simulations, we set this cap to 1500 PGAs per schedule. This
is motivated by empirical characterisation of the time our
computation server takes to calculate the network schedule
for various numbers of PGAs, more details of which can be
found in Appendix D3.

D. SESSION MODEL

1) Creation time

Let tMS/E
S be the time at the end of the scheduling in-

terval during which application session S either expires or
obtains minimal service, and let trenew be an exponentially
distributed waiting time with parameter λ. Then the nodes
involved in S begin a new session S ′ of the same application
at time tMS/E

S + trenew. In each simulation, the value of λ
is the same for all pairs of nodes.

2) Contents

In each of our simulations, all pairs of nodes execute the
same application sessions. Two test applications are consid-
ered: the first is a measure-directly application motivated
by QKD (hereafter MDA), and the second is a create-and-
keep application motivated by the blind quantum computing
algorithm in [83] (hereafter CKA). For further discussion
of the distinction between measure-directly and create-
and-keep application classes refer to Section III-B2. The
Qoala files we use for these test applications are given
in Appendix D6. We fill out the remaining fields in the
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application sessions as follows:

S = (N ,APP, Ninst = 100,

texpiry = tsubmit + tmax duration) (10)

where APP ∈ {MDA,CKA}, tsubmit is the time the corre-
sponding demand is submitted to the central controller and
tmax duration is the maximum duration of a session.

We acknowledge that the value of Ninst = 100 is
very low, as for example a typical QKD application would
require Ninst ≫ 105. However, we make this choice for
simulation purposes, as it cuts down the required run time
of our simulations (some of which run in almost real-time).
We expect that the conclusions drawn from our simulation
results remain valid when Ninst is increased to values
which more accurately reflect the requirements of real-life
applications.

3) Peer-to-Peer vs Client-Server
We consider two regimes under which pairs of nodes execute
sessions, peer-to-peer and client-server. In the peer-to-peer
regime, an end node can undertake an application session
with any other end node. This is the type of behaviour we
would expect for applications such as QKD, where every
end node in the network is capable of carrying out the
application. In the client-server regime, one of the nodes
is designated as the ‘server’, and the rest as ‘clients’. Client
nodes are only able to undertake sessions with the server
and not with each other. This type of behaviour we would
expect for applications such as BQC, where one end node
needs to be much more powerful than the other. We use the
first regime for modelling MDA traffic and the second for
CKA traffic.

4) Termination of Demands
We assume that nodes will send a message to the central
controller to terminate their demand as soon as they obtain
minimal service. Once a demand is terminated, it is not
considered further for scheduling. Nodes will, however,
continue to execute application instances whilst there is time
allocated in the network schedule.

E. RESULTS
Simulation of the implementation (Section V) of our net-
work architecture is an opportunity to confirm the feasibility
of our architecture and to asses the performance of an
implementation, as quantified by the metrics in Section
VI-A. These metrics may depend on parameters that are
specific to how users demand service from the network
as well as on the types of applications from which user
demands originate. We focus on assessing how changes to
the parameters λ and R, respectively the session renewal
rate and the requested rate of packet generation, impact
the values obtained for the performance metrics. To asses
the impact of the type of application, we also compare the
results of simulations where all nodes are running the MDA

test application in the peer-to-peer regime (Figure 8) to
simulations where all nodes are running the CKA application
in the client-server regime (Figure 9).

1) Facilitation of obtaining minimal service
The most important criteria that a network architecture must
meet in order to be considered viable is the capability to
meet user demands. Here we quantify the degree to which an
implementation of our architecture meets user demands with
the performance metric proportion of expired or terminated
sessions which obtain minimal service, pMS , quantified by
(8). For each of the test applications simulated we observe
that the implementation of our network architecture is able
to successfully deliver minimal service to some proportion
of sessions. For the MDA test application operated in the
peer-to-peer regime (Figure 8a) the proportion of demands
which obtain minimal service is always at least 0.45, for
all parameter combinations simulated. In complement, we
observe that for the CKA test application operated in the
client-server regime a much higher proportion (>0.98) of
sessions obtain minimal service, for each combination of
the parameters simulated.

This general increase in the value of pMS between the
client-server CKA and peer-to-peer MDA simulations can
be attributed in part to the decrease in the number of
possible demands. In the client server regime, there are
only 5 sources of demands, whereas in the peer-to-peer
regime there are 15 possible sources of demands. As each
source only has a single demand registered at any time,
the maximum length of the queue is much shorter in the
client-server CKA simulations. This in turn means that as a
fraction of the value of tmax duration, the average queuing
times are much shorter in the CKA simulations, leading to
greater values of pMS .

From Figures 8a and 9a it is clear that the session renewal
rate λ and the requested rate of packet generation R have
a large impact on the proportion of sessions which obtain
minimal service. In particular, as λ increases, the proportion
of sessions which obtain minimal service may only decrease.
This is the expected behaviour, as an increase in λ directly
translates into increased load on the network. We do note
that in the case where R = 0.001Hz in Figure 9a, pMS = 1
for all λ, with only a small non-zero standard deviation
for λ > 2 × 10−5. This indicates that there are parameter
regimes where it is possible for all nodes to obtain minimal
service, regardless of the session renewal rate. Figures 8b
and 9b confirm that the average time a demand spends in the
queue, tqueue always increases as λ increases. An extension
of the duration of time that demands spend queued is direct
evidence of increased load on the network.

The effect of R is more subtle, as we consider two values
of a fixed rate as well as an adaptive rate. In the case
of the MDA test application operated in peer-to-peer mode
(Figure 8) the lower fixed rate results in higher pMS for
all values of λ. In contrast, for the CKA test application
operated in client-server mode, the lower fixed rate results
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FIGURE 8: Results from simulations for peer-to-peer MDA on a six-node star network. (a) Proportion of initiated sessions
which obtained minimal service from the network. (b) The average time a demand spent in the demand queue. The shaded
area represents ±1σ. The red dotted line represents the expected value of t̄queue for a single pair of end nodes submitting
demands. The total simulated time was 6 hours. To produce each data point we average the results of 100 simulations, with
simulations where zero sessions were initiated removed. There were no such simulation runs observed.

in lower pMS . See §VI-E4 for an explanation for why this
is the case. However, as could be expected, for both test-
applications the lower fixed rate results in lower t̄queue. This
is expected because a lower fixed rate again translates to
lower load on the network. In section §VI-E3, we comment
on the effectiveness of adaptive rate requests, in comparison
to requests for fixed rates.

2) Admission Control Requirements

Whilst being able to facilitate some application sessions
obtaining minimal service is sufficient for our architecture
to be viable, it is desirable that this is the case for as many
sessions as possible. In the peer-to-peer MDA simulations,
however, we observe that as λ increases, the value of pMS

drops below 0.6 for the adaptive rate demands and below
0.5 for the fixed R = 0.2Hz demands. This is due to the
increased load which these demands place on the network,
compared to the demands with a fixed rate of R = 0.1Hz. In
particular, as each demand/PGT requires a greater utilisation
of the links to the central junction node, fewer demands
can be served at any one time. This leads to increased
queuing times, as observed in Figure 8b. Therefore, a greater
number of demands reach their expiry time without getting
scheduled, and moreover those demands which are accepted
for scheduling have much less time for generating packets,
leading to a lower probability of obtaining minimal service.

To prevent the value of pMS from dropping so far, the
central controller should not allow the network to become
so overloaded. This may be achieved through the admission
control rules employed, both at demand registration and
scheduler admission. In particular, we expect that if a

demand is rejected, for example for requesting too high
of a rate of packet generation, then the nodes would re-
submit this demand with, for example, lower values of
R. From the data we observed, we can conclude that
the demand registration rules in our implementation were
not stringent enough for the peer-to-peer MDA scenario. In
particular, the fixed rate R = 0.2Hz demands probably
should almost always have been rejected, as accepting them
led to a situation where a significant proportion of sessions
were not able to obtain minimal service from the network
(up to 50% by λ = 0.0025). However, the same set of
admission control rules was sufficient for the client-server
CKA scenario (pMS > 0.98 for all λ). Therefore, when
designing the set of admission control rules to implement,
not only should the properties of the demands themselves
be taken into account, but also the frequency and number
of demands which the central controller expects to receive.

3) Controls on Requesting Adaptive Rates

When nodes submit a demand to the network, they may
either request a fixed or adaptive rate of packet generation.
One may expect that requesting an adaptive rate of packets
is beneficial, as any time that the demand spends queuing
is accounted for when determining how frequently PGAs
need to be scheduled. For adaptive rates therefore, the
process of queuing should not affect the probability that
a session obtains minimal service, and the value of pMS for
adaptive rate demands should be greater than that of fixed
rate demands for all λ.

In both the peer-to-peer MDA and the client-server CKA
simulations, this expected behaviour is observed for small
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FIGURE 9: Results from simulations for client-server CKA on a six-node star network. (a) Proportion of initiated sessions
which obtained minimal service from the network. (b) The average time a demand spent in the demand queue. The shaded
region represents ±1σ. The red dotted line represents the expected value of t̄queue for a single pair of end nodes submitting
demands. The total simulated time was 360 days. All data points are the average of 250 simulations, with simulations where
zero sessions were initiated removed. There were no such simulation runs observed.

values of λ, with the value of pMS matching the value of
the best fixed rate demands. However, once the value of λ
passes a critical value (0.001 for MDA and 10−5 for CKA),
the value of pMS obtained by the adaptive rate demands is
less than that of at least one of the fixed rate demands.

This reversal can be explained by considering the effect
that queuing has on the rate at which PGAs are scheduled,
Rattempt, for adaptive rate demands. Recall that when end
nodes request an adaptive rate, the central controller will
attempt to schedule at least Nmin (equal to 850 for both test
applications) PGAs in the time before the demand expires.
This ensures that if a demand is accepted for scheduling,
the session will obtain minimal service with probability
at least 1 − ϵservice. The consequence of this is that the
longer an adaptive rate demand waits in the demand queue,
the greater the resulting value of Rattempt will be. This
in turn leads to each PGT contributing more PGAs to a
schedule, and utilising more of the resources in the network.
Therefore, fewer PGTs can be scheduled in any given
network schedule, leading to even longer queuing times
and creating a feedback loop. In particular, more demands
will expire before being scheduled, leading to the observed
decrease in the value of pMS . This queuing behaviour is also
reflected in Figures 8b and 9b, where a (sharp) increase in
the value of t̄queue occurs as λ passes the critical values
above.

4) Best Fixed Rate for Nodes to Request

End nodes may alternatively derive some benefits by re-
questing a fixed rate of packet generation. For instance,
the rate of packet generation will be independent of any

other network traffic, and can be chosen to reflect other
requirements of the application not captured by, say the
expiry time. For example, suppose that Alice and Bob want
to generate a QKD key within the next half hour, but once
they start generating the key, they want to complete key
generation within a minute. This desired behaviour could
be captured by requesting a high fixed rate of generation,
substantially larger than the minimum rate to generate
the required packets across the full half hour before the
application session expires. Furthermore, as we have seen in
the previous section, there are even some network conditions
where requesting a fixed rate will lead to a greater likelihood
of obtaining minimal service from the network.

From the results of the peer-to-peer MDA simulations in
Figure 8, we observe that it is beneficial for end nodes to
request a lower rate of packet generation. This not only
leads to an increased value of pMS , but also shorter queuing
times and latency before being scheduled. In comparison, in
the client-server CKA simulations, we observe the opposite
effect. Whilst increasing the requested rate of packets does
increase the queuing time, the value of pMS also increases
(it is exactly 1 for all λ).

We can explain this behaviour as follows: In general it
is beneficial to request a higher rate of packet generation.
Requesting a higher rate of packet generation will result
in more PGAs being scheduled in any given time interval,
increasing the likelihood of obtaining minimal service. In
particular, this also makes them more resilient against hav-
ing to wait in the demand queue.

However, higher rates also results in longer queuing times
through greater utilisation and PGA contributions to a sched-
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ule. Therefore, there is a critical value of R, depending on
the demands and demand submission characteristics, where
the effects from extended queuing times starts to outweigh
the benefits of potentially more PGAs being scheduled.
This is precisely what we see in Figure 8a with the fixed
R = 0.2Hz demands for peer-to-peer MDA. On the other
hand, for the client-server CKA, R = 0.001Hz is still below
this critical value of R, and so the demands gain all the
benefits of scheduling PGAs at a higher rate. The existence
of such a critical value of R is not surprising, as networks
with control of limited numbers of resources are well known
to have finite capacity regions (e.g. [65], [93]).

VII. CONCLUSIONS AND FUTURE WORK
We have designed a novel architecture for a quantum net-
work which allows for the integration of network scheduling
with local program execution. This is achieved by intro-
ducing an application-motivated demand format for end
nodes to request packets of entanglement generation. This
is in contrast to more limited demand formats in previous
work. In such demands, one requests a rate of end-to-end
entangled link generation, which fails to capture some of
the requirements for executing applications.

We also defined a scheme for producing network sched-
ules in a format which can be used by the local execution
environment on an end node to more efficiently schedule
local operations. To do this, we introduced packet generation
tasks and packet generation attempts to allow the central
controller of the quantum network to effectively allocate
the use of shared resources in order to satisfy submitted
demands.

We presented an example implementation of our archi-
tecture using a network scheduler based on EDF schedul-
ing. Using this implementation, we performed numerical
simulations of our architecture on a star-shaped network.
The results of these numerical simulations highlight that
the architecture successfully provides application sessions
with minimal service, both for measure-directly and create-
and-keep type applications. Furthermore, we have seen that
there is a need for smart admission control, both in selecting
which demands are accepted upon arrival and in selecting
which queued demands to accept for scheduling. Finally,
according to the performance metric of the proportion of
sessions obtaining minimal service, we have seen that there
is no single best fixed rate to request, but rather the optimal
rate depends on current traffic on the network.

Our contributions open up many opportunities for future
research. Each of the phases of the architecture, from admis-
sion control, to queuing, to computing the network schedule,
requires a tailored algorithm. Design and optimisation of
various possibilities for each type of algorithm merits in
depth investigation. The properties of such algorithms di-
rectly impact the performance of the network. In particular,
the choice of scheduling algorithm will have a great effect
on the specific performance guarantees which the network
can promise to the nodes.

We have shown that there is a need for efficient admission
control. An algorithm for admission control should be
tailored to enforce the desired network behaviour and to
account for the expected traffic on the network. Given a
target set of performance metrics, the impact of an admis-
sion control algorithm depends strongly on the scheduling
algorithm. Thus, we expect scheduling algorithm design to
inform the design of admission control algorithms, perhaps
following some of the same ideas as in [94].

We also showed that whilst adaptive rates may seem
like a good idea, they require extra care to handle to
avoid the unintended consequence of leading to overload
on the network. Whilst such requests are good at adapting
to momentary variations in the load on the network, if the
increased demand is sustained then the benefits are lost. This
is consistent with previous work on rate control algorithms
in both the classical and quantum domain, which suggests
that for variable request rates to be effective they need to
be combined with a rate control algorithm (see for example
[65], [93]). It remains to determine conditions on when
precisely this occurs, and bounds on how much the value
of Rattempt may vary without causing an overload.

Similarly, the optimal fixed rate which nodes should
request merits further investigation. We have shown here
that in some cases it is better to request a higher fixed rate,
and in other cases it is better to request a lower fixed rate.
However, it remains to determine precisely what is causing
this bifurcation, and what the optimal rate to request is.

Finally, whilst we have only considered bipartite ap-
plications in our implementation and analysis, there do
exist quantum network applications involving multipartite
entangled states, for example in the domain of anonymous
transmission [95], [96]. The architecture we have presented
can in principle support multi-partite applications, however
to enable this, one must first define a new notion of a ‘packet
of entanglement’ to encompass more complex entangled
links, and also define a function which can convert demands
for these packets into PGTs. Given both of these, the rest
of the architecture should then operate as described above,
replacing the functions we define for bipartite applications
and demands with those for multipartite demands. We leave
the development of such packet formats and conversion
functions to future work.

APPENDIX
A. NOTATION
A summary of the notation used in the paper is given in
Table 4.

B. WHO KNOWS WHAT
1) Central Controller
The central controller knows the following information:

• Probability of PGA success ppacket
• Network topology
• Network traffic
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Symbol Definition
Application Sessions

S Application session
N Set of nodes in the network
App placeholder for a quantum application
Ninst Minimum number of application instances required for minimal service
texpiry Expiry time of an application session/demand/packet generation task

Packets of Entanglement
p packet of entanglement
w time window of packet
s number of pairs in a packet
F (average) minimum fidelity of links generated as part of a packet

Demands
D Network Demand
R Requested rate of packet generation

tminsep Minimum time between two packet generation attempts
Packet Generation Tasks

τ Packet generation task (PGT)
τi,j The jth packet generation attempt (PGA) stemming from PGT τ
E Execution time of a PGA

Rattempt (Minimum) rate at which PGAs should be scheduled
ρ Resources required to execute a PGA.

Network Schedules
TSI Duration of the scheduling interval

Evaluation
ϵservice Probability that a session does not obtain minimal service
ppacket Probability that a packet is generated in a given PGA
pgen Probability that an attempt to create a single entangled link succeeds

tsubmit Time at which a demand is received by the central controller
tmax duration Maximum duration of an application session. Used for dynamically setting expiry times.

Applications
MDA Measure Directly Application, based on QKD
CKA Create and Keep Application, based on BQC

EDF Scheduler
T (Effective) period of a PGT
σ Offset from t = 0 of a PGT
ri,j release time of PGA j from PGT i
di,j deadline of PGA j from PGT i
si,j start time of PGA j from PGT i
ci,j completion time of PGA j from PGT i
t∗ scheduler decision time

Admission Control
Uτ Utilisation of PGT τ
Ur utilisation of resource r

Û Utilisation bound
αC Proportion of the scheduling interval allocated to compute the network schedule within.
T Set of PGTs from which PGAs should be scheduled in the next network schedule.

TABLE 4: Notation used throughout this paper. Entries which fall into multiple categories are only shown once.

• EGPs available on the network
• Capabilities of internal components, e.g. repeater

chains.

The central controller does not know the following infor-
mation:

• If a PGA is/was successful
• What application(s) are being run

2) End Nodes
The end nodes in the network know the following informa-
tion:

• Local hardware capabilities
• Local utilisation
• Application program(s) [Number of pairs required,

local gates]
• If an application instance executes (successfully)

• Identity of nearest neighbour and metropolitan hub.

The end nodes of the network do not know the following
information:

• Full network topology
• EGPs used on the network
• ppacket (up to empirical deduction)
• Application sessions being run on other nodes.

C. METHODS FOR CREATING PACKET GENERATION
TASKS
1) Approximations from Naus ’82 for determining the length
of PGAs
When determining how long a PGA should be, we need
to be able to calculate the probability of a packet of
entanglement being generated in some timeframe consisting
of a known number of trials. This is precisely the sort of
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problem which is addressed in the field of scan statistics,
which is dedicated to looking at the probability that random
events are grouped together [27]. In particular, the process of
generating a packet is equivalent to the generalised birthday
problem, which looks at the probability of getting k events
(or successes) in a window of size m. Exact formulae as well
as approximations exist to calculate these probabilities, we
use the one in the following section which is due to Naus
[26].

The following theorem and discussion is due to Naus [26]:

Theorem 1. Let Tk,m be the time at which we first observe
k events in a window of size m. Then if we write

P ′(k|m,N, p) = P[Tk,m < N ]

= 1−Q′(k|m;N ; p),

and abbreviate Q′(k|m;Lm; p) as Q′
L, then

Q′
L ≈ Q′

2

(
Q′

3

Q′
2

)N
m−2

(11)

Naus also gives formulae for calculating Q′
2 and Q′

3

exactly:
Let

b(k;m, p) =

(
m
k

)
pk(1− p)m−k,

Fb(r; s, p) =

{∑r
i=0 b(i; s; p) r = 0, 1, ..., s

0 r < 0
.

Then for 2 < k < N , 0 < p < 1, we have

Q′
2 =(Fp(k − 1;m, p))

2

− (k − 1)b(k;m, p)Fb(k − 2;m, p)

+mpb(k;m, p)Fb(k − 3;m− 1, p) (12)

and

Q′
3 = (Fb(k − 1,m, p))

3 −A1 +A2 +A3 −A4 (13)

where

A1 = 2b(k;m, p)Fb(k − 1;m, p)

{
(k − 1)Fb(k − 2;m, p)

−mpFb(k − 3;m− 1, p)

}
A2 =

1

2
b2k ((k − 1)(k − 2)Fb(k − 3;m, p)

− 2(k − 2)mpFb(k − 4;m− 1, p)

+m(m− 1)p2Fb(k − 5;m− 2, p)
)

A3 =

k−1∑
r=1

b2k−rF
2
b (r − 1;m, p)

A4 =

k−1∑
r=2

b2k−rbr((r − 1)Fb(r − 2;m, p)

−mpFb(r − 3;m− 1, p))

Given this approximation, we can calculate the probability
that a packet is produced in a PGA of length N timesteps.

From here, we can use a method such as interval bisection to
calculate the length of PGA required to exceed the desired
value of ppacket.

One implication of using this method for calculating the
length of PGAs is the scaling with regards to different
parameters. In particular, if we tighten the window or
increase the value of ppacket, then the required length of the
PGA grows rapidly, much faster than the value of Rattempt

decreases.

2) Calculating Minimum Rate using Hoeffding’s inequality.
Let packet generation attempts occur at rate R, and succeed
with probability p. Let the session have an acceptable
probability of failure of at most ϵservice ≪ 1, an expiry time
of texpiry and require Ninst instances to be successfully
executed to obtain minimal service. Let N = R × texpiry,
and let Ninst = αN . Let SN be the number of successfully
executed instances.

Let (Xi)
N
i=1

iid∼ Bernoulli(p). Then SN
d
=

∑N
i=1Xi. Let

M be the event that minimal service is obtained. Then

P[M ′] = P[SN < Ninst]

= P[E[SN ]− SN > E[SN ]−Ninst]

= P[pN − SN > N(p− α)]

≤ exp(−2N(p− α)2) (14)

where the last inequality is by Hoeffding’s inequality [97].
The minimum number of packet generation attempts

required is then given by

min
{
N | ϵservice > exp(−2N(p− α)2) ∧N > Ninst

}
(15)

from which we can then recover the minimum rate.

D. ADDITIONAL EVALUATION DETAILS
1) Entanglement Generation Model
Werner States We assume that all generated links are Werner
states [98], and can be written in the format

ρ =
1− F

3
I2 +

4F − 1

3
|ψ⟩⟨ψ|. (16)

where

|ψ⟩ = |00⟩+ |11⟩
2

and F , the fidelity of ρ, is fixed.
The precise values we use are given in Table 2.

2) Entanglement Generation
In our implementation, we assume that there are network-
wide timeslots, at the end of which an entangled link
between the outer nodes and the central junction node is
generated with known probability at a given fidelity. These
are then instantaneously and deterministically swapped, if
possible, to create the desired end-to-end entangled links.
We also assume that the central node has no memories, and
so it cannot store links for longer than one time-slot.
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This means that there is only one possible scheme for
generating end-to-end links, which is used by all pairs of
nodes.

We also assume that all links are homogeneous, in partic-
ular that they all produce links of the same average fidelity.

3) Choice of cap on number of PGAs per schedule

To be able to estimate a suitable choice of cap on the number
of PGAs per schedule, we computed 1125 network sched-
ules. This was achieved by running the same simulation
used for the evaluation, without a cap on the number of
PGAs per schedule, and recording the number of PGAs
which were scheduled and the time each schedule took
to compute. We used the QKD application with requested
packet rates of R ∈ {1.0, 1.1, 1.5} and renewal rates
λ ∈ {0.001, 0.0015, 0.002}. Each simulation lasted 7800
simulated seconds, for a total of 25 schedules computed in
each simulation. We repeated each simulation 5 times.

Our implementation of the scheduling algorithm has
complexity O(N2) where N is the number of PGAs to be
scheduled. We therefore fitted a quadratic curve to the data
and used this to obtain an estimate of the maximum number
of PGAs which could be scheduled in under 150s (half the
scheduling period). This can be seen in Figure 10.

From this we obtained an estimate of 1397, which we then
rounded up to 1500 for neatness. This was done in part as
we still had some uncertainty about the performance of the
server whilst performing these simulations. In particular on
other hardware we observed lower computational times, in
which case the cap would be greater. Furthermore, in the
MDA simulations, each PGT typically contributes between
150 and 300 PGAs to a schedule, and so increasing the cap
by less than 150 will not allow more demands to be accepted
from the queue.

4) Choice of Expiry times and Rates

Using the method in C2, we find that to have ϵservice =
10−5, 850 PGAs should be scheduled. Therefore, we choose
the rates to simulate such that at least 850 PGAs can be
scheduled within tmax duration − TSI where TSI is the
scheduling interval.

In particular, we choose to simulate the end nodes re-
questing:

• An adaptive rate (R = 0).
• Fixed rates of:

– Approximately the minimum rate required for 850
PGAs to be scheduled in tmax duration, Rmin

ϵservice
.

– approximately 2Rmin
ϵservice

We choose to look at demands requesting a fixed packet gen-
eration rate of Rmin

ϵservice
, as it serves as a good comparison to

the adaptive rate (which would use this rate in the absence
of queuing). The choice of 2Rmin

ϵservice
gives us a motivated

choice of a higher rate which we can compare against to see
the impact of the choice of R on the performance metrics.

To choose the values of tmax duration, we look to the
utilisation of the resulting PGTs when requesting the lowest
fixed rate, Rmin

ϵservice
. As there are only 6 nodes in the

network, if we choose a value of tmax duration sufficiently
long that the minimum rate gives a utilisation less than Û/5,
then all demands will always be immediately accepted and
everyone will get minimal service almost surely. Likewise,
if we set the value of tmax duration too short, then only a
couple of demands will be serviceable at a time without
violating either SAC1 or SAC2, due to the high utilisation
required. In a given deployment, we would expect that this
is not desirable behaviour, and so such demands would
be predominantly filtered out by the demand registration.
Therefore, we choose the values of tmax duration such that
the utilisation of tasks requesting the slowest fixed rate is ap-
proximately 0.2, as then almost all demands can be satisfied
simultaneously whilst the demand queue can still exert some
influence over the performance of the network. We therefore
choose tMDAmax duration = 2100s and tCKAmax duration = 4 days.
Note that with a scheduling interval T MDA

SI = 300s, the choice
of tMDAmax duration = 2100s results in an effective schedulable
time of half an hour. For both MDA and CKA, we see the
same trends for different values of tmax duration whilst the
same pressures from Û and the PGA cap exist.

5) Scheduler Model
We use the network scheduler as described in V-G, with a
scheduling interval of 300 seconds for the MDA simulations
and 3600 seconds (1 hour) for the CKA simulations. We
take a longer scheduling interval for the CKA simulations
as these demands last for much longer to serve than the
MDA demands. Subsequently, this means that sessions are
renewed on a much longer timescale and so the network
state (schedule and demand queue) changes on a longer time
scale.

6) Qoala files
Measure Directly Application (MDA)

META_START
name: alice
parameters: bob_id
csockets: 0 -> bob
epr_sockets: 0 -> bob

META_END

^b1 {type = QC}:
tuple<m0> = run_request(tuple<>) : req

^b2 {type = CL}:
return_result(m0)

REQUEST req
callback_type: wait_all
callback:
return_vars: m0
remote_id: {bob_id}
epr_socket_id: 0
num_pairs: 1
virt_ids: all 0
timeout: 1000
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FIGURE 10: Times taken for our computational server to compute network schedules. The server has an Intel® Xeon®

Gold 6230 CPU, with each core running at a maximum clock speed of 3.9GHz, and 189GB of random access memory.
Each simulation was run on a single core, with up to 40 simulations being run in parallel. The regression modelling was
performed using the numpy Python module

fidelity: 1.0
typ: measure_directly
role: create

Listing 1: Qoala file for Alice

META_START
name: alice
parameters: bob_id
csockets: 0 -> bob
epr_sockets: 0 -> bob

META_END

^b1 {type = QC}:
tuple<m0> = run_request(tuple<>) : req

^b2 {type = CL}:
return_result(m0)

REQUEST req
callback_type: wait_all
callback:
return_vars: m0
remote_id: {bob_id}
epr_socket_id: 0
num_pairs: 1
virt_ids: all 0
timeout: 1000
fidelity: 1.0
typ: measure_directly
role: create

Listing 2: Qoala file for Bob

Create and Keep Application (CKA)
META_START

name: client

parameters: server_id, alpha, beta, theta1,
theta2

csockets: 0 -> server
epr_sockets: 0 -> server

META_END

^b0 {type = CL}:
csocket = assign_cval() : 0

^b1 {type = QC}:
run_request(tuple<>) : req0

^b2 {type = QL}:
tuple<p2> = run_subroutine(tuple<theta2>) :

post_epr_0
^b3 {type = QL}:

tuple<p1> = run_subroutine(tuple<theta1>) :
post_epr_1

^b4 {type = CL}:
x = mult_const(p1) : 16
minus_theta1 = mult_const(theta1) : -1
delta1 = add_cval_c(minus_theta1, x)
delta1 = add_cval_c(delta1, alpha)
send_cmsg(csocket, delta1)

^b5 {type = CC}:
m1 = recv_cmsg(csocket)

^b6 {type = CL}:
y = mult_const(p2) : 16
minus_theta2 = mult_const(theta2) : -1
new_beta = bcond_mult_const(beta, m1) : -1
delta2 = add_cval_c(new_beta, minus_theta2)
delta2 = add_cval_c(delta2, y)
send_cmsg(csocket, delta2)

return_result(p1)
return_result(p2)
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SUBROUTINE post_epr_0
params: theta2
returns: p2
uses: 0
keeps:
request:

NETQASM_START
load C0 @input[0]
set Q0 0
rot_z Q0 C0 4
h Q0
meas Q0 M0
store M0 @output[0]

NETQASM_END

SUBROUTINE post_epr_1
params: theta1
returns: p1
uses: 1
keeps:
request:

NETQASM_START
load C0 @input[0]
set Q0 1
rot_z Q0 C0 4
h Q0
meas Q0 M1
store M1 @output[0]

NETQASM_END

REQUEST req0
callback_type: wait_all
callback:
return_vars:
remote_id: {server_id}
epr_socket_id: 0
num_pairs: 2
window: 5_000_000
virt_ids: increment 0
timeout: 1000
fidelity: 1.0
typ: create_keep
role: create

Listing 3: Qoala file for Client

META_START
name: server
parameters: client_id
csockets: 0 -> client
epr_sockets: 0 -> client

META_END

^b0 {type = CL}:
csocket = assign_cval() : 0
iterations = assign_cval() : 0

^b1 {type = QC}:
run_request(tuple<>) : req0

^b2 {type = QL}:
run_subroutine(tuple<>) : local_cphase

^b3 {type = CC}:
delta1 = recv_cmsg(csocket)

^b4 {type = QL}:
tuple<m1> = run_subroutine(tuple<delta1>) :

meas_qubit_1

^b5 {type = CL}:
send_cmsg(csocket, m1)

^b6 {type = CC}:
delta2 = recv_cmsg(csocket)

^b7 {type = QL}:
tuple<m2> = run_subroutine(tuple<delta2>) :

meas_qubit_0

^b8 {type = CL}:
return_result(m1)
return_result(m2)

SUBROUTINE local_cphase
params:
returns:
uses: 0, 1
keeps: 0, 1
request:

NETQASM_START
set Q0 1
set Q1 0
cphase Q0 Q1

NETQASM_END

SUBROUTINE meas_qubit_1
params: delta1
returns: m1
uses: 0, 1
keeps: 0
request:

NETQASM_START
load C0 @input[0]
set Q1 1
rot_z Q1 C0 4
h Q1
meas Q1 M0
store M0 @output[0]

NETQASM_END

SUBROUTINE meas_qubit_0
params: delta2
returns: m2
uses: 0, 1
keeps:
request:

NETQASM_START
load C0 @input[0]
set Q0 0
rot_z Q0 C0 4
h Q0
meas Q0 M0
store M0 @output[0]

NETQASM_END

REQUEST req0
callback_type: wait_all
callback:
return_vars:
remote_id: {client_id}
epr_socket_id: 0
num_pairs: 2
window: 5_000_000
virt_ids: increment 0
timeout: 1000
fidelity: 1.0
typ: create_keep
role: receive

Listing 4: Qoala file for Server

VOLUME 4, 2016 27

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TQE.2025.3624658

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Beauchamp et al.: A Modular Quantum Network Architecture for Integrating Network Scheduling with Local Program Execution.

7) Sensitivity to parameters
In order to speed up our simulations when testing the
sensitivity of our simulations to the chosen parameters,
we do not explicitly calculate the network schedule each
time. To determine when a session obtains minimal ser-
vice, it is simply required to know how many PGAs for
a particular demand were scheduled in a given network
schedule/scheduling interval. From this we can obtain the
number of packets which were actually generated by sam-
pling a Binomial(N, ppacket) distribution, and thereby es-
tablish whether the session obtained minimal service in that
scheduling interval.

As our network scheduler schedules precisely one PGA
per period of the PGT, given which demands/PGTs have
been admitted by the scheduler admission control, we can
calculate how many PGAs will be scheduled without having
to calculate the schedule directly. Then as described above
we can establish how many packets were generated and thus
whether a session obtained minimal service.

We use this method of simulating the network scheduling
for the additional data gathered for sensitivity testing of
the simulation parameters. We also validated it against
computing the network schedule and saw a perfect match
for the same datasets.

8) Calculating the expected queuing time
We use the notation from § VI-D. Let trenew ∼
Exponential(λ). Then the time which a demand D would
sit in the demand queue for in the absence of other demands
is Q ≡ TSI − trenew mod TSI . For convenience we write
TSI = T , and let tD be the time demand D is submitted.
We then calculate:

FQ(τ) = P[Q ≤ τ ]

= P

[
tD ∈

∞⋃
k=1

[kT − τ, kT ]

]

=

∞∑
k=1

∫ kT

kT−τ

λe−λxdx

=

∞∑
k=1

e−kTλ(−1 + eλτ )

=
−1 + eλτ

−1 + eλT
(17)

E[Q] =

∫ T

0

τ dFQ

=

∫ T

0

τλeλτ

−1 + eλT
dτ

= T

(
1− 1

λT
+

1

eλT − 1

)
(18)
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