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Safe Zeroth-Order Optimization Using Linear Programs

Baiwei Guo, Yang Wang, Yuning Jiang, Maryam Kamgarpour, Giancarlo Ferrari-Trecate

Abstract— To solve unmodeled optimization problems with
hard constraints, this paper proposes a novel zeroth-order
approach called Safe Zeroth-order Optimization using Linear
Programs (SZO-LP). The SZO-LP method solves a linear
program in each iteration to find a descent direction, followed
by a step length determination. We prove that, under mild
conditions, the iterates of SZO-LP have an accumulation point
that is also the primal of a KKT pair. We then apply SZO-LP
to solve an Optimal Power Flow (OPF) problem on the IEEE
30-bus system. The results demonstrate that SZO-LP requires
less computation time and samples compared to state-of-the-art
approaches.

I. INTRODUCTION

A variety of applications, including power network opera-
tions, machine learning, trajectory optimization and optimal
control, require solving complex optimization problems with
hard safety constraints. However, it is not always possible
to obtain the expressions of the objective and constraint
functions, or sufficient data on feasible system trajectories
for modeling. In this context, safe zeroth-order optimization
methods can be used to address unmodeled optimization
problems with constraints. These methods rely solely on
sampling by evaluating unknown objective and constraint
functions at selected points [1] and the term “safe” refers
to the feasibility of the samples (i.e., the satisfaction of the
constraints).

Prominent safe zeroth-order methods include SafeOPT and
its variations [2], [3]. These approaches assume knowledge of
a Lipschitz constant of the objective and constraint functions,
while [4] utilizes a Lipschitz constant of function gradients
(the smoothness constants). By using these quantities, one
can build local proxies for the constraint functions. Starting
from a feasible point, [2]–[4] utilize these proxies to search
for potential minimizers. However, for each search, one has
to use a global optimization method to solve a non-convex
subproblem, which makes the algorithm computationally
intractable for problems with many decision variables.

To reduce the computational complexity, another research
direction involves incorporating barrier functions in the ob-
jective to penalize proximity to the boundary of the feasible
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set [5], [6]. The Extremum-Seeking methods [7] and the LB-
SGD algorithm [8] minimize a cost equipped with log-barrier
penalty terms based on the estimated gradient. Although
they do not require solving optimization subproblems, the
performance of these two methods might not be satisfactory
due to the log penalties. In Extremum Seeking, it can be
challenging to tune the weight of the penalty term because a
large weight can lead to suboptimality while a small weight
might result in infeasibility. In LB-SGD, large values of the
log barrier term and its derivative, when the iterates approach
the boundary of the feasible set, can result in small step
lengths and slow down convergence.

Another approach to safe zeroth-order optimization is
SZO-QQ proposed in [9]. It avoids log barrier penalties while
still ensuring sample feasibility and is more sample-efficient
than LB-SGD [9]. This is accomplished by utilizing convex
quadratic proxies for the constraint functions to construct lo-
cal feasible sets, over which the proxy for the objective func-
tion is then minimized. Unlike SafeOPT, the subproblems
of SZO-QQ are convex Quadratically Constrained Quadratic
Programs (QCQPs), which can be solved much faster than
the non-convex subproblems in SafeOPT. However, SZO-
QQ falls behind LB-SGD and Extremum Seeking in terms
of computational efficiency (see Section V) when dealing
with large problems (with hundreds of constraints) because
the size of each QCQP subproblem is almost the same as
the original problem. In this paper, we propose a novel, safe
zeroth-order method whose subproblems have much fewer
constraints and can be computationally efficient.

Optimal Power Flow (OPF) is an example of large-scale
optimization problems that can benefit from zeroth-order op-
timization. Its objective is to allocate the active and reactive
power generation, transmission line flows and voltage levels
to minimize costs while satisfying operational and security
constraints such as transmission line capacity and voltage
level limits. In recent years, OPF has gained considerable
attention due to the rising demand for efficient and reliable
operation of power systems, as well as the integration of
renewable energy sources and energy storage systems [10].
However, the application of OPF to power system operation
is a significant challenge due to the difficulties in accurately
deriving a system model. Therefore, we consider applying
our model-free method to solve OPF problems.

The contributions of this paper are summarized as follows:
• We present a novel approach called Safe Zeroth-Order

optimization using Linear Programs (SZO-LP). This
method iteratively solves linear programming subprob-
lems to derive descent directions and then decides the
step length by sampling;
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• We show that, under mild assumptions, a subsequence
of SZO-LP’s iterates converges to the primal of a KKT
pair (see Definition 1);

• By application to an IEEE 30-bus benchmark problem,
we show that SZO-LP can efficiently solve an OPF
problem with 11 decision variables and 158 constraints.
We compare SZO-LP with state-of-the-art approaches
and demonstrate its advantages in terms of computation
time and the number of samples required.

Notations: We use ei ∈ Rd to define the i-th standard
basis of vector space Rd and ∥ · ∥ to denote the two norms
throughout the paper. Given a vector x ∈ Rd and a scalar
ϵ > 0, we write x = [x(1), . . . , x(d)]⊤ and Bϵ(x) = {y :
∥y−x∥ ≤ ϵ}. We use Zj

i = {i, i+1, . . . , j} to define the set
of integers ranging from i to j with i < j. For two vectors
x, y ∈ Rd, we use ⟨x, y⟩ := x⊤y to define the inner product.

II. PROBLEM FORMULATION

We consider the constrained optimization problem

min
x∈Rd

f0(x) subject to x ∈ Ω, (1)

where Ω := {x : fi(x) ≤ 0, i ∈ Zm
1 } is the feasible set.

The functions fi : Rd → R, i ∈ Zm
0 , are unknown but

can be sampled at query points. Throughout this paper, we
make the following assumptions on the smoothness of the
objective and constraint functions, availability of a strictly
feasible point x0 and boundedness of a sublevel set that
includes x0.

Assumption 1 The functions fi(x), i ∈ Zm
0 are continu-

ously differentiable and there are known constants Li,Mi >
0 such that for any x1, x2 ∈ Ω,

|fi(x1)− fi(x2)| ≤ Li∥x1 − x2∥, (2a)
∥∇fi(x1)−∇fi(x2)∥ ≤Mi∥x1 − x2∥. (2b)

We assume Li > inf{Li : (2a) holds,∀x1, x2 ∈ Ω} and
Mi > inf{Mi : (2b) holds,∀x1, x2 ∈ Ω} so that (2a) and
(2b) always hold.

In the remainder of this paper, we also define Lmax =
maxi≥1 Li and Mmax = maxi≥1 Mi.

Assumption 2 There exists a known strictly feasible point
x0, i.e., fi(x0) < 0 for all i ∈ Zm

1 .

Assumption 3 There exists β ∈ R such that the sublevel set
Pβ = {x ∈ Ω : f0(x) ≤ β} is bounded and includes the
initial feasible point x0.

Assumption 2 is common in safe zeroth-order methods
[2], [8], [9], [11]. Without the initial feasible point, it would
be impossible to ensure the feasibility of all the samples.
Assumption 3 is not strong since it holds as long as the
feasible region Ω is bounded.

Our aim is to derive an optimization algorithm where a
subsequence of the iterates converges to the primal of a KKT
pair.

Definition 1 If a pair (x, λ) with x ∈ Ω and λ ∈ Rm
≥0

satisfies

∥∇f0(x) +
m∑
i=1

λ(i)∇fi(x)∥ = 0, (3a)

|λ(i)fi(x)| = 0, i ∈ Zm
1 , (3b)

we say that (x, λ) is a KKT pair of the problem (1) and
x ∈ Ω is the primal of the KKT pair.

For a non-convex optimization problem, the primal of the
KKT pair can be a global minimum, local minimum, or a
saddle point of the objective function.

In the following section, we design a safe zeroth-order
algorithm whose iterates, under mild assumptions, have an
accumulation point that is the primal of a KKT pair of (1).

III. ALGORITHM: SZO-LP

In this section, we first describe how to estimate gradients
of the functions in (1) and construct local feasible sets. These
are the essential tools used by our zeroth-order optimization
method.

A. Gradient estimation and local feasible set construction

We estimate the gradient through finite difference, i.e.,

∇νfi (x) :=

d∑
j=1

fi (x+ νej)− fi (x)

ν
ej . (4)

The following lemma gives a method to control the estima-
tion error

∆ν
i (x) := ∇νfi (x)−∇fi(x). (5)

Lemma 1 ( [12], Theorem 3.2) Under Assumption 1, we
have

∥∆ν
i (x)∥2 ≤

√
dMi

2
ν. (6)

By letting ν = ν(ϵ) := 2ϵ√
dMmax

we have ∥∆ν(ϵ)
i (x)∥ ≤ ϵ.

By using the estimated gradient, we can build a local
feasible set around x0. We let

l∗0 = min
i∈{1,...,m}

−fi(x0)/Lmax, (7)

and ν∗0 (ϵ) := min{l∗0/
√
d, ν(ϵ)}. Since ν∗0 (ϵ) ≤ ν(ϵ), we

have ∥∆ν∗
0 (ϵ)

i (x0)∥ ≤ ϵ for any ϵ > 0 and i ≥ 1.
Then the set

S(0)(x0) := ∩mi=1 S
(0)
i (x0), where

S(0)i (x0) :=
{
x : fi(x0) +∇ν∗

0 (ϵ0)fi (x0)
⊤
(x− x0)+

2Mi∥x− x0∥2 ≤ 0
} (8)

is feasible as shown in the following theorem.

Theorem 1 ( [9], Theorem 1) All the samples used to con-
struct S0(x0) are feasible. Moreover, the set S(0)(x0) is
convex and any x ∈ S(0)(x0) is strictly feasible.
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In the lack of explicit constraint functions, a local feasible
set is a common tool of several zeroth-order methods [2], [8],
[9] to ensure the feasibility of the iterates, though the specific
formulations are different. In the following, we propose our
method where the local feasible sets are used to select the
step length for the derived descent direction.

B. Algorithm: Safe Zeroth-Order Optimization Using Linear
Programs (SZO-LP)

The main idea of the SZO-LP method, shown in Al-
gorithm 1, is to iteratively select a descent direction by
executing in Line 7 LP(xk, ϵk) defined in (11). Thanks to
the tightening contant ϵk in the linear program involved in
LP(xk, ϵk), the descent direction we obtain points into the
iterior of the feasible set. Along this direction, we select the
step length (Line 9-14) based on local feasible sets and the
pre-defined length

γ(ϵk) :=
ϵk

4(Mmax + Lmax)
.

This step length is guaranteed to give a non-trivial descent
(see Lemma 2) and is useful for the proof of the iterates’
convergence properties (see Theorem 3).

Algorithm 1 Safe Zeroth-Order optimization using Linear
Programs (SZO-LP)
Input: ϵ0, ϵmin, Kswitch, initial feasible point x0 ∈ Ω
Output: x̃

1: k ← 0
2: while ϵk > ϵmin do
3: stmp ← LP(xk, 2ϵk)
4: if ∇ν∗

k(2ϵk)f0(xk)
⊤stmp ≤ −4ϵk then

5: ϵk+1 ← 2ϵk, xk+1 ← xk

6: else
7: s∗k = LP(xk, ϵk)

8: if ∇ν∗
k(ϵk)f0(xk)

⊤s∗k ≤ −2ϵk then
9: if k < Kswitch then

βk = argmax
β≥0

β s.t. xk + βs∗k ∈ S(k)(xk), (9)

αk = argmin
α∈{βk,γ(ϵk)}

f0(xk + αs∗k) (10)

10: xk+1 ← xk + αks
∗
k, ϵk+1 ← ϵk

11: else
12: xk+1 ← xk + γ(ϵk)s

∗
k, ϵk+1 ← ϵk

13: end if
14: else
15: ϵk+1 ← ϵk/2, xk+1 ← xk

16: end if
17: end if
18: k ← k + 1
19: end while

The essential steps are as follows:
1) Providing the input data: The input includes an initial

strictly feasible point x0 (see Assumption 2) and a tightening
constant ϵ0. Each iteration of the algorithm generates a new
tightening constant ϵk, which can be equal to ϵk−1 (Line

10 or 12), 2ϵk−1 (Line 5) or ϵk−1/2 (Line 15), and thus the
selection of the initial value for the tightening constant is not
critical. Since ϵk converges to 0 (see Theorem 2), the user
can control the termination by providing a lower bound ϵmin

for ϵk. The parameter Kswitch marks the boundary of two
methods for selecting step length, see the last bullet point.

2) Building local feasible sets: For a strictly feasible xk,
we use (7) to define l∗k and

ν∗k(ϵk) := min{l∗k/
√
d, ν(ϵk)}.

We then use ν∗k(ϵk) and (8) to define S(k)(xk), a local
feasible set around xk. From Theorem 1 we know that if
xk+1 ∈ S(k)(xk) then xk+1 is also strictly feasible.

3) Solving subproblems for the descent diretion: In each
iteration, we execute in Line 7 LP(xk, ϵk) to derive a search
direction, which returns

argmin
∥s∥1≤1

(∇ν∗
k(ϵk)f0(xk))

⊤s

s.t. (∇ν∗
k(ϵk)fi(xk))

⊤s+ 2ϵk ≤ 0,

∀i ∈ A(xk, ϵk),

(11)

or NaN if (11) is not feasible. Here, A(x, ϵ) := {i : fi(x) ≥
−2ϵ} is the near-active constraint index set. The solution
to (11) is a direction that not only gives a fast descent but
also points into the interior of the feasible region Ω (away
from the boundary). In (11), due to the tightening constant
ϵk, along the direction s∗k in Line 7, the constraint function
values decrease. Therefore, moving along the direction s∗k
we indeed stay away from the boundary of Ω. This direction
helps to avoid small values of −fi(xk), which lead to conser-
vative local feasible sets S(k)(xk). Moreover, the inclusion of
only near-active constraints makes (11) small-size and easy
to solve. We will later see in Theorem 2 that ϵk converges
to 0. Therefore, it is still possible that a subsequence of the
iterates converges to a point on the feasible set boundary.

We also let stmp = LP(xk, 2ϵk) and check in Line 4
whether ∇ν∗

k(2ϵk)f0(xk)
⊤stmp ≤ −4ϵk, which allows us to

have Proposition 1, the proof of which is in Appendix A of
the techical report [13]. This proposition will be later used
to show in Theorem 3 the properties of the {xk}k≥1 as k
goes to infinity.

Proposition 1 Any ϵk entering Line 7 satisfies

ϵk ≥
1

8
sup{ϵ :s = LP(xk, ϵ) verifies (12)

∇ν∗
k(ϵ)f0(xk)

⊤s ≤ −2ϵ}.

4) Deciding the step length: When a direction s∗k derived
in Line 7 gives sufficient descent (i.e., ∇ν∗

k(ϵk)f0(xk)
⊤s∗k ≤

−2ϵk), we move along the tentative direction s∗k. To decide
the step length, we consider the local feasible set and the
pre-defined step length γ(ϵk) that is guaranteed to achieve
a non-trivial descent (see Lemma 2). In (9), we calculate
by bisection the largest step length within the local feasible
set to derive αk in (10). The use of local feasible sets in
Line 10 allows us to obtain a larger step length than γ(ϵ),
when xk is not close to the boundary of the feasible set.
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This is because, from the formulation (8), smaller values
of fi(xk) lead to larger sizes of S(k)i (xk) while γ(ϵk) is
independent of how far the iterates are from the feasible
set boundary. When k > Kswitch, we let the step length be
γ(ϵk) as in Line 12, which is useful for the proof of the
iterates’ properties as k goes to infinity (see Theorem 3).
The selection of Kswitch is not critical since we use the step
length in Line 10 for k < Kswitch instead of that defined in
Line 12 only to accelerate the descent in the early iterations
of the algorithm.

On the other hand, if the direction s∗k cannot give suf-
ficient descent, we let ϵk+1 = ϵk/2 in Line 15 to relax
the tightened constraints in (11). This relaxation makes it
easier for s∗k+1 to give sufficient descent, i.e., to satisfy
∇ν∗

k(ϵk+1)f0(xk+1)
⊤s∗k+1 ≤ −2ϵk+1. Only when s∗k+1 gives

sufficient descent will we move along s∗k+1 to a new point.

We refer the readers to Remark 1 for how SZO-LP is
compared with some state-of-the-art methods.

IV. CONVERGENCE PROPERTIES OF THE APPROACH

In this section, we aim to show that, under mild conditions
and by letting ϵmin = 0, the sequence {xk}k≥1 produced
in Algorithm 1 has an accumulation point xc that is also
the primal of a KKT pair of (1). To start with, we show in
Lemma 2 that, whenever xk+1 ̸= xk, the new iterate xk+1

is strictly feasible and the objective function value gets a
non-trivial decrease.

Lemma 2 Suppose s∗k derived in Line 7 of Algorithm 1,
satisfies

∇ν∗
k(ϵk)f0(xk)

⊤s∗k ≤ −2ϵk.

We have that xk + γ(ϵk)s
∗
k is strictly feasible. Furthermore

xk + γ(ϵk)s
∗
k satisfies

f0(xk+γ(ϵk)s
∗
k)−f0(xk) < −ϵ2k/(8(Mmax+Lmax)). (13)

The proof of Lemma 2 is in Appendix B of the technical
report [13]. The main idea is to utilize the smoothness
constants in Assumption 1 to upper-bound fi(xk + γ(ϵk))
for i ∈ Zm

0 . Based on this lemma, we have the following
theorem on the sequences {xk}k≥1 and {ϵk}k≥1 as k goes
to infinity.

Theorem 2 The following arguments hold:
1. The sequence {f0(xk)}k≥1 is non-increasing;
2. There exists at least one accumulation point of the

sequence {xk}k≥1. For any accumulation point xc,

lim
k→∞

f0(xk) = f0(xc) > −∞.

3. The sequence {ϵk}k≥1 converges to 0.

The first point is a direct consequence of Lemma 2.
The second is due to the first point, Assumption 3 and
Bolzano–Weierstrass theorem. The third can be shown
through contradiction. If {ϵk}k≥1 did not converge to 0,
the decrease of the cost function would not diminish either

(see Lemma 2) and therefore {f0(xk)}k≥1 goes to −∞,
which contradicts with Assumption 3. The detailed proof
of Theorem 2 can be found in Section IV of the technical
report [13].

Theorem 2 offers us the essential tools to show in Theo-
rem 3 the properties of an accumulation point of {xk}k≥1

under Assumption 4.

Assumption 4 At least one accumulation point xc of
{xk}k≥1 satisfies Linear Independent Constraint Qualifica-
tion (LICQ), which is to say the gradients ∇fi(xc) with
i ∈ A(xc, 0) are linearly independent.

Assumption 4 is widely used in optimization [14]. For
example, it is used to prove the properties of the limit point
of the Interior Point Method [15].

Theorem 3 Regarding the accumulation point xc in As-
sumption 4, there exists λc ∈ Rm

≥0 such that (xc, λc) is a
KKT pair of (1).

The proof, in Appendix C of the technical report [13], is
based on contradiction. If xc is not the primal of a KKT
pair, we can find r > 0, ϵ > 0 and sϵ ∈ Rd such that
for any xk ∈ Br(xc) the solution s = LP(xk, ϵ) verifies
∇ν∗

k(ϵ)f0(xk)
⊤s ≤ −2ϵ. There are infinitely many k such

that xk ∈ Br(xc) and s∗k is derived through Line 7 in
Algorithm 1. For any of these ks, according to (12), ϵk ≥
ϵ/8, which contradicts Point 3 of Theorem 2.

Remark 1 Like SZO-QQ [9] and LB-SGD [8], the samples
in SZO-LP are all feasible and the iterates, under mild
assumptions, have an accumulation point that is also the
primal of a KKT pair. In contrast, the tightening constant
ϵk of SZO-LP keeps the iterates away from the boundary
of the feasible set and leads to less conservative local
feasible sets than those used in SZO-QQ and LB-SGD.
Moreover, due to the use of the near-active set A(xk, ϵk)
the subproblems (11) are smaller-size and easier to solve
than the QCQPs in SZO-QQ and nonconvex subproblems in
Safe Bayesian Optimization methods [2], [16]. However, to
rigorously show these advantages, we need to upper bound
the number of iterations needed by SZO-LP given certain
accuracy requirements, which is left as future work.

V. EXPERIMENT ON AN OPF PROBLEM

To illustrate the performance of SZO-LP, we consider
applying it to an OPF problem on the IEEE 30-bus system.

A. Formulation of the OPF problem

To formulate an OPF problem, we introduce the following
notations and assumptions:

• Let B = {b1, b2, . . . , bn} be the bus set and let
T = {(bi, bj) : there is a transmission line between
bi and bj} be a set of undirected edges representing the
transmission lines;
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• We denote PGi
, PLi

, QLi
, Ui and θi as the active power

generation, active power consumption, reactive power
consumption, voltage and voltage angle at bi;

• From the bi to bj , the active power and the reactive
power transferred are written respectively as Pij(Ui, Uj ,
θi, θj) and Qij(Ui, Uj , θi, θj), while the current is de-
noted as Iij(Ui, Uj , θi, θj). We refer the readers to [17]
for the explicit expressions of these functions;

• We also assume that there are nG generators at the buses
bi, i ∈ ZnG

1 and b1 is a slack bus providing active power
to maintain the power balance within the network and
has a voltage angle of 0.

Then the OPF problem is formulated [17] as

min
PGi

,Ui,θi

nG∑
i=1

Ci(PGi
) (14a)

subject to

PGi
= PLi

+
∑

(i,j)∈T

Pij(Ui, Uj , θi, θj), ∀i (14b)

−QLi =
∑

(i,j)∈T

Qij(Ui, Uj , θi, θj), i > nG (14c)

PGi
= 0, for i > nG, θ1 = 0, (14d)

PG,min ≤ PGi
≤ PG,max, for i ≤ nG, (14e)

Iij,min ≤ Iij(Ui, Uj , θi, θj) ≤ Iij,max, ∀(i, j) ∈ T, (14f)
Umin ≤ Ui ≤ Umax,∀i. (14g)

where Ci(·) is a quadratic function accounting for the
generation cost and the equations (14e)-(14g) give the safe
intervals for the corresponding variables.

The main challenges of OPF applications lie in modelling
the system and deriving the accurate expressions of (14).
The difficulties include the nonlinearity of device dynamics,
slowly changing physical parameters and disturbances [18].
Inaccurate models can result in suboptimal OPF solutions
(leading to more generation cost) or violate the true hard
constraints (causing damages to devices) [19]. Therefore, we
consider the black-box setting and use SZO-LP.

To this aim, we reformulate (14) as optimization with
only inequality constraint to fit (1) used by SZO-LP. Let
{PGi}

nG
i=2 and {Ui}nG

i=1 be the main decision variables. Then
by assigning values to {PGi}

nG
i=2 and {Ui}nG

i=1, one can solve
the power flow equations (14b)-(14d) to derive the values
for all the other decision variables in (14). Therefore, (14b)-
(14d) give us the functions

Ui = Ui({PGj}
nG
j=2, {Uj}nG

j=1), i = nG + 1, . . . , n,

θi = θi({PGj
}nG
j=2, {Uj}nG

j=1), i = 1, . . . , n.
(15)

By substituting (15) to (14), we obtain a reformulation where
{{PGj

}nG
j=2, {Uj}nG

j=1} are the only decision variables and
there are not equality constraints.

B. Experiment results

We run SZO-LP to solve a specific OPF problem on
the IEEE 30-bus system where nG = 6 . In total, there
are 11 decision variables and 158 constraints. We do not

assume knowledge of the system model for the optimization
task. However, given a set of values for all 11 decision
variables, we can use a black-box simulation model in
Matpower [20] to sample the voltages of all the 30 buses
and the current through all the transmission lines in the
network. Additionally, we assume the availability of initial
values for all the decision variables to start the SZO-LP
algorithm from a feasible point.

We employ SZO-LP to reduce the quadratic cost induced
by the initial decision values. The numerical experiments are
executed on a PC with an Intel Core i9 processor. The solver
we adopt for subproblems (11) is LINPROG in Matlab. We
let Mi = Mmax = 0.13 and Li = Lmax = 0.5. The tuning
of these two parameters is described in [9]. Moreover, we
set ϵ0 = 0.05, ϵmin = 10−6 and Kswitch = 200.

Fig. 1: Decrease of cost and growth of the largest constraint
function values with respect to computation time

Fig. 2: Decrease of cost with respect to the number of
iterations

In Figures 1 and 2 , we present the results of our
numerical experiments, where we compare the performance
of SZO-LP with SZO-QQ [9], LB-SGD [8] and Extremum
Seeking [21]. The QCQP subproblems in SZO-QQ are solved
using MOSEK. The reference solution of the OPF problem
is returned by the optimization based on the true model
and utilizing Gurobi [22] as the solver. The computation
time in Figure 1 includes that consumed by power grid
simulation (through Matpower) when we query the objective
and constraint functions. We observe that all four methods
keep the iterates feasible and eventually achieve a generation
cost very close to that (800.14) derived based on the true
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model. However, SZO-LP achieves a faster decrease in the
generation cost than the other methods.

One main reason for the superior performance of SZO-
LP over SZO-QQ with respect to computation time shown
in Figure 1, is that the linear programming subproblems
can be solved faster. We notice that to finish the first 60
subproblems, SZO-LP takes 5.63 seconds while SZO-QQ
takes 72.06 seconds. Firstly, the subproblem in SZO-LP
only takes into account the near-active constraints while the
subproblem in SZO-QQ involves all constraints. Among the
iterations of SZO-LP, the largest number of constraints is
2. Secondly, although the big gap in efficiency shown in
Figure 1 may be due to the specific solvers we select, linear
programs, in general, are open to a wider selection of solvers
and thus allow for more efficient implementations.

Unlike SZO-LP and SZO-QQ, LB-SGD and Extremum
Seeking do not require solving any subproblems, thus al-
lowing for more iterations within a certain time length. This
is why LB-SGD can also achieve a low generation cost in
a short time. However, considering the four methods take
the same number of samples every iteration, LB-SGD and
Extremum Seeking are less sample-efficient than SZO-LP
and SZO-QQ since they require more iterations as shown in
Figure 2. Moreover, since LB-SGD and Extremum Seeking
are based on log barriers, these two methods require tuning
of the barrier function coefficients. Improper tuning might
lead to suboptimality in LB-SGD or even infeasibility in
Extremum Seeking.

SZO-LP has another advantage over SZO-QQ, which is
the feature of SZO-LP keeping the iterates away from the
feasible set boundary before getting close to the primal of
a KKT pair. Iterates getting too close to the feasible set
boundary might impede the decrease of the cost. To see
this point, we notice from Figure 1 that in SZO-QQ the
decrease of the generation cost slows down when the largest
constraint function value is larger than -0.005. The reason
is that, when the largest constraint function value is close
to 0, the local feasible set constructed in SZO-QQ gets
conservative, and thus the step length becomes small. When
the largest constraint function value gets larger than -0.005
for the first time, the generation cost in SZO-QQ is 805.27
while the corresponding cost in SZO-LP is 801.77, which is
much closer to 800.14 (derived by optimization based on the
true model). Therefore, we see that in SZO-QQ the decrease
of the objective function value can slow down at a much
earlier stage.

In conclusion, from the experiment results, we see that
SZO-LP is the most computation-efficient and sample-
efficient method, among the four approaches.

VI. CONCLUSION

In this paper, we proposed a safe zeroth-order method
SZO-LP, which iteratively solves linear programs to obtain
descent directions and determines the step lengths. We
showed that, under mild conditions, the iterates of SZO-
LP have an accumulation point that is also the primal of
a KKT pair. Through an experiment on an OPF problem, we

see that SZO-LP is both computation-efficient and sample-
efficient. Our future directions include the derivation of the
computation complexity of SZO-LP to check whether it is
efficient in general and the extension of SZO-LP to account
for measurement noises.
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