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Abstract

Credit risk pricing models assume recovery to be at its historical average (historical re-

covery assumption). However, the effect of this assumption is not completely understood.

The heard of this thesis lies in constructing a new pricing model for Credit Default Swaps

(CDS), in particularly allowing for negative correlation between recovery and default.

This model is denoted as partial differential equations for the CDS legs. By means of an

additional Monte Carlo approach we are able to extract continuous implied recovery and

default intensity term structures.

These structures can then be used to assess the historical recovery assumption. It is

in particularly shown that a constant recovery model overestimates the Credit Value

Adjustment (CVA) when allowing for perfect negative correlation. While on the other

hand it underestimates CVA when it is adjusted for its implied historical average.
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Preface

One year ago I started a journey. A journey on financial mathematics, with a special focus

on credit risk. One part of this journey is this thesis, which had to be completed in order

to receive my Masters degree in Applied Mathematics at Delft University of Technology.

However, this journey contained much more. It was a rich experience of working on

this thesis and being at the EY office five/six/seven days a week, surrounded by many

competent people. During this year I was given the opportunity to participate in many

project, such as on-site project of two months at a major bank in the Netherlands and

being a facilitator for an internal training on financial mathematics given in Frankfurt.

All together I have learned much more than what is written inside this thesis.

The first few months were merely a process of realizing that I was nothing but a newbie.

So often did I encounter myself thinking, ‘yes, I got it!’, when less than a minute later

my world would collapse again. So many books and so many article on subjects I had

never heard before. And eager for knowledge as I am, I tried to understand everything,

however soon I realized that some things just had to wait for at least a year.

In short, where this thesis started out as a research on some key questions about implied

recovery, it ended up in the construction of a model for implied recovery (which on turn

was meant to answer these key questions). In order to properly understand ‘why and

how’ this model, here is some guidance.

Chapter 1 starts with an introduction to the introduction, describing the key questions. Its

next sections establish required understanding of the most important underlying elements

for this thesis. Especially with respect to the recovery it looks at statistics (historical)

and its modeling in the pricing framework (forward looking), where I finally end with a

modeling criteria on what I believe to be important within an implied recovery model.

It then seems that there exists a model that does exactly that, which is described in

chapter 2. This model however seemed to have a drawback touching upon its reliability.

Therefore, in chapter 3, I construct my own model. Eventually showing this model to be

a generalization of the model from chapter 2, without the drawback. This section looks

furthermore at the interpretation of the parameters and dynamical stability.

The model that I present is in PDE form and I describe how its solution can be approx-

imated by means of finite differences in section 4. Furthermore I look at properties such

IV



Preface V

as numerical stability and the choice of modeling parameters.

Then in chapter 5, I show how the model can be fitted to market data, present some

examples and reflect on the initially described key questions.

The conclusion then summarizes the findings.

There are also some appendices, where I would like to highlight appendix A, which con-

tains an important proof required for setting up boundary conditions within the finite

differences framework. It also discusses some extensions to our PDE model.

Also appendix I with Matlab code can be interesting for those willing to learn object

orientated programming in Matlab.

On a side note, I would like to mention that proofs are only provided if they are established

by me, in any other case a reference is given.



Symbols

A Alternative notation for CDS premium leg

B Alternative notation for CDS protection leg

C CDS market spread

C CDS spread

D discounting term

Φ standard normal cumulative distribution

function

∆x step size in spacial direction

∆t step size in time direction

F instance of reference filtration

F reference filtration

f risk-free forward interest rate

G instance of greater filtration

G greater filtration

Γ F-hazard process

H instance of default filtration

H default filtration

Lgd absolute loss given default.

lgd percentage loss given default.

λ default intensity

M martingale compensated bankruptcy jump

process

M maximum spacial index on finite differences

grid
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Acronyms VII

N Notional

N maximum time index on finite differences grid

P real-world measure

Prem premium leg of a CDS

Prot protection leg of a CDS

Q risk-neutral measure

R absolute recovery.

ρ percentage recovery.

r risk-free interest rate

S Stock price

T time of maturity

τ time of default

W standard Brownian motion

I Poisson distribution with intensity λ

ξ probability of default over some time span

P value of a zero coupon bond.



Acronyms

APR Absolute Priority Rule

CDS Credit Default Swap

CRR Cox Ross Rubinstein

CVA Credit Value Adjustment

GBM Geometric Brownian Motion

LGD Loss Given Default

lhs Left Hand Side

MCMC Markov Chain Monte Carlo

PC Piecewise Constant

PD Probability of Default

PDE Partial differential Equation

RFV Recovery of Face Value

rhs Right Hand Side

RMV Recovery of Market Value

RT Recovery of present value of debt
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1

Introduction

“A wise man proportions his belief to the evidence.”

– David Hume , An Enquiry Concerning Human Understanding

Recent years financial models started providing better estimates on credit risk. In partic-

ular after the financial crisis of 2007-2008 the market came to understand its importance.

Counterparty credit risk is most importantly identified by the default probability and

recovery. Default probability tells us to what extend we might expect a default to occur,

whereas recovery is the amount payed back (recovered) by the defaulted firm. A lot of

research has been done on the area of default probability, in particular with respect to

structural and reduced form models, see appendix D. However, less research is conducted

on the aspect of recovery. Therefore, in the scope of pricing models, market convention

usually fixes it at its historical average.

With respect to such pricing models it was initially the goal of this thesis to answer the

questions:

1. Is modeling recovery as a constant sufficient?

2. If it is, should we fix it at its historical average?

However, in order to answer such questions we have to have a model for comparison, that

is, a model that allows us to inspect results when the recovery is not fixed at its historical

average. This is where the journey actually begins. To answer the two questions above,

we have to digress from them by providing a model allowing the recovery to be non

constant and to satisfy our desired criteria described more thoroughly in section 1.3.3.4.

The model which we created is called the PDE model and much of this thesis is dedicated

to constructing and analyzing this model. However, before we can get to fully understand

this model we have to have some basics.

1



Introduction 2

First this chapter will describe the historical and pricing measure, these are important to

us as market conventions fixes recovery at its historical average, whereas pricing models

that include the recovery require the pricing measure variant, possibly implying a discrep-

ancy between both.

Next in section 1.2 the Credit Default Swap (CDS) is described, a financial product func-

tioning as a sort of insurance. This insurance product became an important indicator of

a firm’s financial health, and therefore an indicator of default probability and recovery.

The model that we construct later is based on pricing such CDS to separately extract

from it the probability of default and recovery.

In section 1.3 we will look more closely at the recovery, by first looking at the historical

recovery and then at the recovery within the pricing framework. Finally the usual models

for recovery are discussed and we end with our modeling criteria.
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1.1 The correct measure

When calculating certain probabilities or expectations we are always implicitly basing this

upon a certain measure. A measure can be understood as the distribution of probabilities

related to events. In measure M1 event A may have probability 0.3, whereas in measure

M2 this same event may have a probability of 0.4.

The understanding of the usage of measures is especially important in the world of finance.

Formulas and deductions may be simplified if a convenient measure is applied, whereas

results may only be valid under the correct measure.

We won’t get into the details of measure theory as this a very large and specific field within

mathematics. What we do want, is to give some intuition for the two most frequently

used measures within finance. This intuition is often enough to understand which one to

use when.

Two measures are of great importance, namely the physical measure, which contains the

probabilities of certain events occurring in our real world: if firms go bankrupt with

probability 0.01, then on the long term 1% of the firms should have gone bankrupt. The

other measure is the risk-neutral measure, this measure sets probabilities in such way that

they agree with our model and the market expectations: even though on the long term

1% of all firms go bankrupt, the risk-neutral measure might tell us that the probability of

a bankruptcy equals 0.015. We will explain both and their differences more thoroughly.

1.1.1 Risk-neutrality: the Q-measure

The risk-neutral measure describes a complete world in which there are no risks related

to any financial product. All contingent attainable claims are assumed to move according

to a risk free rate (see (B.7)). Thus suppose a contingent attainable claim VT matures at

time T , let the interest rate r be a known constant, then

Vt = EQ
t

[
e−r(T−t)VT

]
. (1.1)

As the risk-neutral world induced by Q-measure assumes there to be no risks, the terminal

payoff VT is risk-free and by a no-arbitrage argument it should be discounted by the risk

free rate. The convenience of this measure is twofold:

1. The discounting term is always set to the risk-free interest rate r, as all products

are risk-free. In reality this payoff doesn’t have to be risk-free such that deciding on

the discounting term is a complicated issue.

2. Everything in this world increases at a risk-free rate and we thus don’t have to decide

upon the correct drift term. The most straightforward example of this convenience
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is seen in modeling the movement of stock prices, which in this world have drift

term r, such that a simple Monte Carlo approach can be used to determine prices.

In appendix B it is shown to some extend how the risk-neutral measure is constructed

as the measure which makes contingent attainable claims a martingale under the money

market account numeraire.

As (1.1) tells us, under the risk neutral measure, all that is required to price a product

is its resulting claim. And as it is very complicated to quantify risk premiums we prefer

determining the claims of products such that discounted by the risk-neutral interest rate

we retrieve the fair price. Usually however, we cannot directly fill in the Right Hand Side

(rhs) of (1.1) as it will depend upon unknown parameters, think for example about a

probability of default. Instead we come up with a model for the claim and then set the

unknown parameters such that the expectation provides us with the correct price. This

process, in which parameters are adjusted to fit the market prices is called calibration. The

resulting parameters are called their implied counterparts, e.g. the implied probability of

default.

As we will show in section 1.1.3, implied parameters do not represent their real world

counterparts due to the lack of risk premiums.

1.1.2 Physical measure: the P-measure

The P-measure corresponds to observed realisations of underlying properties. For exam-

ple: the probability of default in the P-measure corresponds to analysing the probability

of default from historical realisations, thus by observing for example an empirical distri-

bution of defaults.

The P-measure being related to historical observables provides the misleading understand-

ing1 that: ‘anything that is historical is strictly related to the P-measure, whereas anything

that is forward looking is in the Q-measure.’ It is true that observables are P-measure,

thus historical prices are P-measure prices. We may however use these to find historical

implied parameters. The process of calibration can easily be applied to historical data

such that we can get historical implied data, which may sound as a contradiction. An

example of such approach can be found in [SUH14]).

1.1.3 The difference between the P- and Q-measure

At the beginning of this section we stated that probabilities in both measures might

differ. We shall now show you where this difference comes from. In short the answer is:

1I have personally frequently heard this faulty understanding, even from people with a decent amount
of experience.
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Create model
for payoff

Assume real world
to be risk-free
(completeness)

Fit to
market data

Mismatch
with real

parameters

Figure 1.1: The steps in calibrating a pricing model and extracting implied data.

implied/real-world parameters get adjusted to compensate for risk premiums. Lets clarify

this next.

In contrast to what is assumed in the risk-neutral framework, the world is not complete,

such that not everything can be hedged perfectly. Think for example about liquidity risk,

the risk associated to exiting or entering a required position. Another example would be

systematic risk, which is a risk inherent to an entire market and it is therefore a risk for

which you cannot diversify.

This however does not stop us from using our Q-measure model and fit these to market

data anyways. What that means is that implied parameters do not coincide with their

P-measure counterparts, see figure 1.1.

Now we may also understand why calibration is often performed on vanilla options. As

these are very liquid we can be sure that there is no risk-aversion nor liquidity risk present

in these prices, such that implied parameters approximate reality better.

Now that we have seen implied parameters to be different from their real world counter-

parts, lets look at an example to make this completely clear. Suppose we are pricing a

simplified risky bond, both using the P- and Q-measure. It is known that parameters that

define risk become larger (see for example [HPW05]) in the Q-measure, this is what we

shall show next with the probability of default.

Suppose today is time t, and that a bond, paying 1{τ>T}, that is zero if it defaults before

maturity T and one if it does not. In the market we observe the price

‘risky bond price′ = P − s,

where P is the risk-neutral price, that is, under the assumption of a complete world, and

s ≥ 0 is the additional premium to make the bond somewhat cheaper to compensate for

the real world risks. The claim is clear such that by the risk-neutral pricing framework

we can fit it to the market to find

P − s = EQ
[
e−r(T−t)1τ>T

]
(1.2)

= e−r(T−t)EQ [1τ>T ] (1.3)

= e−r(T−t)Q(τ > T ). (1.4)
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On the other hand if the real world would be risk-free, then risk-neutral measure and

real-world measure would coincide such that

P = EQ
[
e−r(T−t)1τ>T

]
(1.5)

= EP
[
e−r(T−t)1τ>T

]
(1.6)

= e−r(T−t)EP [1τ>T ] (1.7)

= e−r(T−t)P(τ > T ). (1.8)

Now we indeed find that the implied probability of default turns out larger then it is in

reality:

Q(τ > T ) = P(τ > T )− er(T−t)s ↔ Q(τ ≤ T ) ≥ P(τ ≤ T ). (1.9)

To get a little ahead of ourselves, we already note that the authors of [SUH14] show that

implied recovery is influenced by incompleteness and systematic risk.
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1.2 The Credit Default Swap

A CDS is a credit derivative which was initially introduced by JP Morgan in 1994 as

a type of insurance upon debt for creditors. As we might expect from an insurance, if

it is very expensive it is probably related to something very risky, whereas if it is fairly

cheap, then the related risk is probably very small. For this reason, prices of CDSs

provide an indication towards the size of certain risks (in particular creditworthiness of a

counterparty), and it is for this reason that we are interested in their behavior.

The CDS works as follow: in exchange for a certain periodic premium, called the CDS

spread/premium, a creditor can buy insurance referencing some kind of debt, debtor and

notional value. Whenever one of the credit events, specified by the CDS, gets triggered

at the side of the debtor, the insured creditor could physically deliver the debt - with a

maximum face value as specified by the notional value - to the insurer in trade for its face

value.

To be more specific: a CDS specifies

1. the type of debt (usually senior unsecured and senior subordinated);

2. the reference entity, which is the debtor of such senior unsecured bonds;

3. the maturity/tenor (the 5 years usually being the most liquid ones);

4. the notional value;

5. credit events which trigger the ‘insurance’ payoff.

6. the CDS spread, which is the periodic payment the premium leg completes until

either maturity of the CDS contract or until a specified credit event gets triggered,

whichever occurs first;

In case of a credit event, the insured party may deliver as many debt contracts, satisfying

the type of debt stated within the CDS contract, referencing the specified debtor as long

as the sum of face values remains below the agreed notional value.

The CDS thus contains three main parties: the insured party, which is usually called the

premium leg as it has to pay a periodic premium in order to be insured by the insurer,

which is referred to as the protection leg as it delivers protection in case of a credit event.

Finally it constitutes the reference entity which is the party to whom the insured debt

references to. This reference entity is however only stated within the contract but doesn’t

have to approve or be aware of the transaction.

See figure 1.2 for a visualisation of the CDS.
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Periodic premium payments

Protection paymend (Lgd)

Default

Premium
leg

Protection
leg

Reference
entity

Figure 1.2: The CDS scheme: if the reference entity defaults (satisfies at least one of
the credit events), then the protection payment, with size of Lgd is triggered. As long

as no default occurs the premium leg keeps on paying the premium agreed on.

1.2.1 Settlement

Initially the settlement procedure was physical settlement : the premium leg would physi-

cally deliver the debt to the protection leg. This used to be a simple and quick procedure

for both parties. A resulting drawback however was the cheapest to deliver option: the

premium leg could deliver their least valuable types of debt satisfying the CDS agree-

ment, as the CDS accepted a variety of slightly different debts. As a consequence the

CDSs would be priced as high as the cheapest to deliver option.

At some point in time the CDS became the primary indicator of an entities’ creditsworthi-

ness. Resulting in the volume of traded CDSs to outstrip the volume of referencing bonds

outstanding: more CDS were traded on a credit than the outstanding bond issuance of

that credit[Sap08]. Physical settlement was not appealing, protection buyers would often

have to go to the open market in order to buy a certain bond to complete the settlement

while protection sellers would be left with cash positions after the credit event. As a

solution towards this problem, cash settlement was introduced. However there was no

clear mechanism yet for determining the fair value for the protection leg to pay. To this

end the credit event auction was introduced: a process in which the value of debt after

the credit event is determined. A result of such auction could be for example that the

value of some debt is determined on 40 cents on the dollar. For a more comprehensive

overview we refer to [Sap08].

Thus, hypothetically speaking, the premium leg would on average be able to sell his debt

on the market for the price specified by the credit event auction. As a result, cash settle-

ment comes down to a single payment made by the protection leg without an exchange

from the premium to the protection leg, where the size of this payment equals

(1− ρ) ·N,
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where ρ stands for the value determined within the auction (ρ = 0.4 in the above example)

and N the agreed notional in the CDS contract.

1.2.2 Credit events

Credit events specified by the CDS describe the events that trigger the protection payment.

Such credit events might differ per CDS. As stated by ISDA2 the possible credit events

are[Mar15]

1. Failure to pay:

2. Bankruptcy:

3. Restructuring:

4. Repudiation or moratorium:

5. Obligation acceleration and obligation default:

Typically, failure to pay, bankruptcy and restructuring are the most common events[Sap08][Mar15].

First, the most commonly included credit event is failure to pay. Second, bankruptcy

is a credit event for corporate reference entities but not for sovereign entities. Third,

restructuring, which refers to actions such as coupon reduction or maturity extension.

Fourth, repudiation or moratorium provides for compensation after specified actions of a

government reference entity and is generally relevant only to emerging market reference

entities. And fifth, obligation acceleration and obligation default, which refer to technical

defaults such as violation of a bond covenant, are rarely included.

1.2.3 Modeling

When pricing a CDS we refer to determining the fair value of the CDS spread. The CDS

consists of two types of payments, namely the periodic payments made by the premium

leg and the possible protection payment completed by the protection leg. The CDS spread

can thus be found by determining the present value of both the legs, setting these equal

at initiation. We will show a common pricing framework, following [BA03].

Consider three firms: A, the premium leg, B, the protection leg, and a reference en-

tity. Firm B will provide firm A with protection over the period (Ta, Tb] in exchange for

a periodic payment C. The payments are transferred at times {Ta+1, .., Tb}, where the

time intervals are equally spaced with ∆T . If a default of the reference entity occurs at

2ISDA (International Swaps and Derivatives Association) provides standardised over the counter con-
tracts.



Introduction 10

time Ta < τ ≤ Tb the protection leg is obliged to complete a protection payment of value

Lgdτ . Let the current time be denoted by t.

1.2.3.1 Premium leg

The premium leg pays the periodic premium, C, to the protection leg as long as no default

occurs:

Periodic payments =
b∑

i=a+1

D(t, Ti)C1{τ≥Ti}. (1.10)

We wrote τ ≥ Ti, instead of τ > Ti, because besides paying the period payments until a

default occurs, the premium leg should also pay an accrual amount whenever a default

occurs in between agreed payment times, such that it actually completes a payment for

the extra time it was insured. Therefore, also if a default occurs at time Ti, a last premium

should be paid corresponding to being insured within (Ti−1, Ti]. Furthermore, this extra

accrual payment in case of a default can be written as

Accrual = D(t, τ)
τ − Tβ(τ)−1

∆T
C1{Ta<τ<Tb}, (1.11)

where β(τ) is the first premium payment time that would follow the default. Equation

(1.11) is indeed in agreement with the accrual model presented by Markit3, which satisfies

the definition provided by ISDA[Mar12].

Thus summing both terms and taking its expectation given all knowledge up till time t -

as it contains several stochastic components - we get the expression for the premium leg

as

Prem (t, Tb) = EQ
t

[
D(t, τ)

τ − Tβ(τ)−1

∆T
C1{Ta<τ<Tb} +

b∑
i=a+1

D(t, Ti)C1{τ≥Ti}

]
(1.12)

Expression (1.12) is a very general one. However, on the basis of four common assumptions

we can come up with an expression which is more often encountered in practice. Assume

1) that t = Ta and that no default occurred by time t, that 2) discounting is performed

on a continuous basis where the short rate is denoted as rt, that 3) the default time is

the first jump of a Poisson process with intensity λt - this λt is called the intensity or

hazard rate, it may be stochastic in which case the Poisson process becomes a Cox process.

More details on the hazard rate and Cox process can be found in Appendix D. Lastly

3Markit is a financial company known for providing both independent data and the pricing of credit
derivatives.
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4) that interest rate and default are independent (i.e. no wrong-way risk)4. Using these

assumption we proceed:

Prem (t, Tb) =

∫ Tb

t
EQ
t

[
D(t, u)

u− Tβ(u)−1

∆T
C1{τ∈(u,u+du]}

]
+

b∑
i=a+1

EQ
t

[
D(t, Ti)C1{τ≥Ti}

]
=

∫ Tb

t
EQ
t

[
D(t, u)

u− Tβ(u)−1

∆T
C

]
Pt(τ ∈ (u, u+ du])

+

b∑
i=a+1

EQ
t [D(t, Ti)C]Pt(τ ≥ Ti)

= C

∫ Tb

t
EQ
t

[
e−
∫ u
t rsds

u− Tβ(u)−1

∆T

]
EQ
t

[
λue
−
∫ u
t λuds

]
+ C

b∑
i=a+1

EQ
t

[
e−
∫ Ti
t rsds

]
EQ
t

[
e−
∫ Ti
t λsds

]
= C

∫ Tb

t
EQ
t

[
e−
∫ u
t rsds

]
EQ
t

[
λue
−
∫ u
t λuds

] u− Tβ(u)−1

∆T

+ C

b∑
i=a+1

EQ
t

[
e−
∫ Ti
t rsds

]
EQ
t

[
e−
∫ Ti
t λsds

]
. (1.13)

The expectation around the terms of λu can be removed if λ is deterministic, i.e. a regular

Poisson process (not a Cox process).

1.2.3.2 Protection leg

The protection leg only needs to complete a payment of the unknown value Lgdτ in case a

default occurs within (Ta, Tb]. This unknown value Lgdτ is called the Loss Given Default

(LGD), which is closely related to the recovery, which we will explain in more detail in

section 1.3. This leg can be written as

Prot (t, Tb) = EQ
t

[
D(t, τ)Lgdτ1{Ta<τ≤Tb}

]
. (1.14)

Now, again with the assumptions described in the previous section we may proceed as

follows

4To get the expressions allowing for wrong-way risk we should leave in the conditional probabilities
given the defaults.
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Prot (t, Tb) =

∫ Tb

t
EQ
t

[
D(t, u)Lgdu1{τ∈(u,u+du]}

]
=

∫ Tb

t
EQ
t [D(t, u)Lgdu]Pt(τ ∈ (u, u+ du])

=

∫ Tb

t
EQ
t

[
e−
∫ u
t rsdsLgdu

]
EQ
t

[
λue
−
∫ u
t λuds

]
du (1.15)

1.2.3.3 The CDS spread

At time t we wish to agree upon a fair CDS spread. In order to determine a fair spread

both legs should be equal at initiation. In the more general case, that is taking equations

(1.14) and (1.12), we’d get

EQ
t

D(t, τ)
τ − Tβ(τ)−1

∆T
C1{Ta<τ<Tb} +

b∑
Ta+1

D(t, Ti)C

 = EQ
t

[
D(t, τ)Lgd1{Ta<τ≤Tb}

]
,

(1.16)

As the CDS spread is a constant value it can be taken out of the equation giving

C =
EQ
t

[
D(t, τ)Lgdτ1{Ta<τ≤Tb}

]
EQ
t

[
D(t, τ)

τ−Tβ(τ)−1

∆T 1{Ta<τ<Tb} +
∑b

Ta+1
D(t, Ti)

] . (1.17)

Note that the numerator depends implicitly upon the notional of the contract, which is

hidden within the LGD Lgd.

For the more practical case, we take (1.13) and (1.15) to find a CDS spread of

C =
EQ
t

[∫ Tb
0 Lgduλue

−
∫ u
0 (rs−λs)dsdu

]
∫ Tb

0 EQ
t

[
e−
∫ u
t (rs+λs)dsλu

]
u−Tβ(u)−1

∆T du+
∑b

Ta+1
EQ
t

[
e−
∫ Ti
t (rs+λs)ds

] . (1.18)

Here we would already like to point out that the spread is now denoted in terms of the

currency it is being sold in, e.g. dollars. However, it is usually depicted in basis points:

the percentage of the spread with respect to the notional, multiplied by 100. To do so

we evaluate both sides in fractions of the notional, such that the LGD above becomes a

fraction of the notional, which we write as lgd (a small capital letter l), which we call

the percentage LGD. Assuming the LGD to be a fraction of the notional is not necessary,

there exist many other assumptions which modify the protection leg. We will look more

closely into these assumptions in section 1.3.3.1.
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1.2.3.4 Piecewise linear intensity

The piecewise linear intensity model is a frequently used model in both literature and prac-

tice (actually Bloomberg uses a similar model to determine the probability of default[FNS09]).

We follow the method described by the authors of [BM06]. Suppose spreads are given

at maturities Ti, i = 1, 2, .., N , then we wish to determine the deterministic intensities

λ(t) = λi, for t ∈ (Ti−1, Ti]. As is market convention we fix the recovery at 40% of face

value, i.e. lgd = 0.6. Then we determine premium and protection legs at time t = 0

Prot (0, Ti) = lgd · EQ
[
e−
∫ τ
0 rsds1{τ≤Ti}

]
= lgd ·

∫ Ti

0
EQ
[
e−
∫ u
0 rsds

]
P (τ ∈ (u, u+ du]).

In a similar fashion we determine the premium leg supposing the spread, Ci, to be con-

tinuously paid up till time Ti, given no default, by doing so we may neglect the accrual

term. We then get

Prem (0, Ti) = EQ
[∫ Ti

0
e−
∫ u
0 rsdsCi1{τ>u}du

]
= Ci

∫ Ti

0
EQ
[
e−
∫ u
0 rsds1{τ>u}

]
du

= Ci

∫ Ti

0
EQ
[
e−
∫ u
0 rsds

]
P (τ > u)du.

Each intensity λi can be determined by solving for the CDS spread

Ci =
lgd ·

∫ Ti
0 EQ

[
e−
∫ u
0 rsds

]
P (τ ∈ (u, u+ du])∫ Ti

0 EQ
[
e−
∫ u
0 rsds

]
P (τ > u)du

.

We start by solving λ1, the intensity over the first year, subsequently for λ2, etc. To do

so, we have to discretize both legs such that this may be evaluated by the computer. Let

∆t = 1
N , such that tk = k∆t and tN = 1. As the intensity process is modeled by a Poisson

process we know that

P (τ ∈ (tk, tk+1]) ≈ λd k+1
N ee

−
∑k
n=1 λd nN e∆t∆t,

P (τ > tk) ≈ e
−
∑k
n=1 λd nN e∆t.
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Note that the intensities are piecewise constant functions such that within a year they

remain constant, which is the reason why we round the indexes of the intensities upward.

Using this discretization and assuming the interest rates to be known values, rk the interest

rate between (tk−1, tk], we can determine the spread by

Ci =
lgd ·

∑Ti·N
l=1 e−

∑l
n=1 rn∆tλd l+1

N
ee
−
∑l
n=1 λd nN e

∆t
∆t∑Ti·N

l=1 e−
∑l
n=1 rn∆te

−
∑l
n=1 λd nN e

∆t
.

Using this formula we can determine the intensities that fit the market spreads. At the

end of this thesis we use this model to compare it to ours. We shall refer to this model

as the PC model.
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1.3 Recovery

Suppose firms5 A and B to have a contract in which A lends money to B where B is

expected to pay back the debt at a later point in time, say T . However, over time the

financial conditions of B might decline and even get so bad that B will no longer be able

to pay back its debt and enters bankruptcy6 at time τ ≤ T . This doesn’t mean that B

has absolutely zero money, it means that its liabilities have become larger than its assets.

In case of a straight bankruptcy7 of party B, the leftover assets will be liquidated in order

to raise money and pay back the creditors - to which A belongs - as good as possible. This

is where recovery comes in. In this specific example, recovery is the money paid back to

A. Most of the times this is less than the original debt8 .

More generally, recovery refers to the amount that the creditor eventually receives on its

contract in case of a default of the debtor, where default is the failure to meet the legal

obligations of the debt repayment.

Note that we don’t state the recovery to be paid by party B: there is a large market asso-

ciated to buying defaulted contracts. The payment the creditor receives on its defaulted

contract, might therefore just as well be a consequence of selling the contract within this

market. The valuation of a defaulted contract can be understood as the expected recovery

that will finally be made by party B.

Just as was the case for the LGD, the recovery is often stated as a percentage, say 40%,

such that 60% has been lost, i.e. lgd = 1 − ρ. Usually this means that 40% of the face

value of the contract has been recovered at default. However, special attention should

be paid at the definition of the percentage recovery as it might be defined differently:

examples of such are percentage of market value or percentage of present value of face

(we will get back to this in section 1.3.3.1).

In a frictionless world, we would expect the recovery to be close to 100%. This would be

a result of solvency as long as the firm’s assets to liabilities remain above 1, and a direct

default when it gets insolvent. However, in practice recoveries of 40% are not exceptional.

The reasons for this are frictions: The first one simply being a delay between insolvency

and the default. Another well-known friction is related to jumps, these reflect sudden

changes of investor’s views, influencing their investment patterns ‘unexpectedly’. As a

last friction we state the bankruptcy costs[CH04].

5A and B not necessarily have to be firms, in case of a mortgage, party A is a bank and B can be an
individual.

6This not necessarily has to be a bankruptcy, it might just as well be another form of default.
7The Chapter 7 bankruptcy is also known as a straight bankruptcy which implies basic liquidation.
8Situations have occurred in which the recovery was more then the original debt.
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1.3.1 Physical recovery

By physical recovery - recovery under the P-measure - we refer to realised recovery. Re-

alised recoveries can only be determined in case of a default. To be more precise we

distinguish two different types of realised recoveries

1. Realised recovery based upon the recovery payment made by the defaulted debtor.

2. Realised recovery based on the value of the defaulted contract.

The first measure, called by [ARS05] as the ultimate recovery, used to be the standard

before the existence of the secondary loan trading market. A drawback of this measure is

the fact that it often takes a very long time before recovery rates can be determined: it

usually takes the whole legal process of bankruptcy or restructuring to be finalised.

At the start of the 21st century the CDS market started to grow at such speed that

at some point more CDSs where being sold than underlying bonds existed, which made

the physical-settlement of CDSs especially complicated, giving rise to the cash-settled

CDS. However, cash settlement could not wait for legal processes to be completed. The

market’s answer to this problem was the CDS auction[Sap08]. This auction determines

the value of the defaulted contract in the secondary market, corresponding to the second

measure. This measure is now regarded as the standard measure for the recovery [ARS05].

Furthermore, note that the second measure might be understood as an expectation of

the secondary market of the first measure. Hence, applying underlying determinants of

the first measure to estimate the second measure seems valid. The models we describe

later might for example implement Absolute Priority Rule (APR), which is not something

that has a direct relation to the value of the defaulted contract, but it is to the ultimate

recovery.

1.3.1.1 Determinants

There are four main determinant classes that influence the recovery: firm-specific char-

acteristics, industry-specific characteristics, macro-economic effects and contract-specific

properties. It is important though to emphasise that this is a discussion of recoveries

extracted from historical data, both at default9 and at emergence. As determinants of

physical recoveries are expected to influence implied recoveries[SUH14], it is in our interest

to look more closely at these.

9Recovery at default is obtained as the market value of defaulted securities shortly after default.
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Firm Under firm-specific characteristics one might think about capital structure (see

appendix C), leverage ratio, the percentage of tangible assets and liquid assets. All of

these directly influence the liquidation process of the firm and, hence, the expected price

of debt securities in distressed situations.

Leverage, roughly said, an indicator for the percentage of a firm that is financed by debt,

is often measured as the amount of long term debt to assets ratio. It may be associ-

ated with greater dispersed ownership requiring greater coordination among bargaining

parties[ABS07], resulting in more complex bankruptcy processes, associated with higher

costs[CH04]. However, on several occasions, highly leveraged transactions were easily re-

structured10[ABS07].

Another important factor is liquidity, an indicator for how fast a firm can turn assets into

cash. There are many measures for liquidity, e.g. the interest coverage ratio, which deter-

mines how easily a company can pay of its debt interest. The assets related to covering

these interest expenses generate relative high earnings, and are therefore likely to give

a higher recovery[SUH14][ABS07] - the authors of [ABS07] scale it under profitability.

Another indicator towards liquidity is the quick ratio, an indicator for the ability of a

firm to quickly pay of its liabilities without having to stop functioning.

A company holding more tangible assets is likely to produce higher recovery rates in case

of a default. The percentage of tangible assets is measured as hard assets (including

property, plants, equipment, etc.) to total assets. A higher recovery can be expected as

these assets can be sold directly in case of a liquidation. In [CV05] it was found that firms

with a high proportion of tangible assets recover roughly 25% more than firms with a low

proportion of tangible assets.

Industry By the authors of [AK96] it is reasoned that industry affiliation is likely to

be important because the business activity of an enterprise dictates the types of assets

and the competitive conditions of firms within different industrial sectors. They study

the severity of bond defaults stratified by the industrial sector (using SIC11 codes) and

debt seniority. It is shown that, between 1971 and 1995, recoveries from ‘public utilities’

averaged at $70.48 and for ‘Chemicals, petroleum, rubber and plastic products at $62.73,

per $100,- of notional. Furthermore they show that the difference between those sectors

and the others are statistically significant, even when adjusting for seniorities.

A primary measure for poor industry conditions is industry distress at the time of default.

It is shown to be statistically significant[CV05]. However, an important factor to consider

is asset specificity: specific assets are related to for example machinery and equipment,

whereas cash and non-industrial real estate are considered non-specific assets. A lower

asset specificity makes firms less sensitive to industry distress. This can be understood

10Restructuring is the action of altering conditions of the contract such that they become more man-
ageable for de debtor. This gives them the opportunity to recover from the distress.

11SIC (Standard Industrial Classification) is a system for classifying industries by four-digit codes. The
first two digit represent the major group and the first three their industry.
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due to fire-sales12. Actually, the authors of [CV05] even show that the recovery for firms

with a very low asset specificity, seem to increase in case of industry distress. Furthermore,

variables such as industry liquidity and industry leverage might function as indicators for

the condition of the issuer’s peer firms. These are expected to negatively influence the

liquidation process of a defaulted firm. Industry liquidity however seems more significant

at emergence than at default[ABS07]. A higher industry leverage could function as a

proxy for difficulty of raising new financing: High leveraged firms may be closer to being

financially constrained[ABS07].

Macro On a macro economic capital level it seems obvious that forces which increase

the default rates will decrease the value of assets of distressed companies, resulting in lower

recoveries. The authors of [ABRS03] show in a large scale statistical research, that for

the defaulted bond market, the correlation coefficient between default rates and recovery

calculates −0.72. Similar results are also provided by the authors of [ABS07] and [CV05]

Interestingly it is shown by the authors of [ABS07] that macro economic variables have

no statistical significance in the presence of a variable accounting for industry distress.

However, when removing this variable, both the GDP and the BDA13 become significant

at a level of 10%. Here we thus see how we should be cautious with blindly accepting

results of regressions as explanatory variables might be dependent ones.

Contract On a contract specific level, as a result of the APR, the seniority plays a

very important role[ABS07]. On a sample of 700 defaulted bonds the seniority was found

to play an important role on recoveries: senior secured debt averaged at about 58 percent

of face value; senior unsecured, 48 percent; senior subordinate, 34 percent; and junior

subordinate, about 31 percent [AK96].

Furthermore [JNS14] highlights the importance of liquidity of the security. Which is also

a main result in [ABRS03], which shows that recovery rates are a function of supply and

demand for the underlying security.

Two remarks are in place: 1) The influences of the determinants as described above

do not imply that a model including all of these will be most optimal, as we have seen

how correlations play an important role. 2) All of the above results are deduced from

econometric regressions that tend to be sensitive to the choice of explanatory variables

and the regression methods.

12Fire-sales is the act of selling goods and assets at heavily discounted prices. This is often found to
occur just before a default. Thus indeed, due to the fire-sales a firm with low asset specificity will not be
affected much by industry distress.

13BDA is defined as the total face value amount of defaulted bonds in a year measured at mid-year and
in trillions of dollars.
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1.3.2 Implied recovery

In the previous section we explained physical recovery, so it seems natural to proceed with

the recovery under the Q-measure, i.e, implied recovery. In section 1.1 we discussed in a

general sense that differences exist between the P- and Q-measure. Such differences are

indeed noted when comparing the implied and physical recovery. Let’s start by under-

standing the term implied.

Mechanisms such as, for example, recovery and default are understood by their definition

and in this sense can be incorporated in a model as such. However, understanding of

the functioning of such a mechanism does not yet provide us with the required input

parameters. For example, we might understand that at time T a default occurs with

some probability p and if it does a recovery of R is related to it, whereas in case of no

default we simply get face value F . Therefore the discounted value of this product at time

t equals

Vt = D(t, T ) (F + p ·R) , (1.19)

where D(t, T ) is the discounting term over (t, T ). We thus have a model for the value of

the product, but we cannot yet evaluate it as p and R are still unknown.

The process of configuring these parameters in general is called calibration. If this is

done by equaling the market prices with the model prices to extract the variables, then

the variables are called their implied counterpart, thus as in the example, respectively

implied default probability and implied recovery.

On the other hand if we’d use historical values for the default probability and recovery,

then we understand from the discussion in section 1.1 that our prices will likely not fit to

those found in the market, hence a difference between both measures will be observed.

Summarizing, an implied variable is the configuration of the parameters based upon the

state of the market prices and upon a model.

1.3.2.1 Differences to the physical recovery

In section 1.1.3 we discussed the difference between the P- and Q-measure. This under-

standing can be applied to see how physical and implied recovery might differ. We have

seen in section 1.3.1.1 how both industry specific and macro economical factors can in-

fluence the physical recovery. Therefore, the expectations of investors on the industries’

health might very well be reflected within the implied recovery. The implied recovery is

determined by two components:
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Figure 1.3: The mean and standard deviation of global historical and implied recovery.
It is clear how mean implied recovery is lower, whereas its standard deviation is higher,

implying uncertainty. Source: [SUH14].

1. Underlying physical determinants, which influence the investors expectation with

respect to resulting recovery.

2. The expectations on unhedgeable risk components (such liquidity and systematic

risk) result in a price adjustment, hence influencing the underlying components,

including the implied recovery.

Indeed, the authors of [SUH14] use an approach to isolate the recovery such that they

can estimate its mean, finding the results presented in figure 1.3. As expected, it clearly

shows the implied recovery to fall below the physical counterpart.

In order to justify systematic risk to be an important factor of this difference, they subse-

quently show how uncertainty - represented by the standard deviation - increases in times

of distress, which is exactly what one may expect to happen in a risky period. Besides

such increase in standard deviation also a decrease of the implied recovery is observed,

further strengthening the argument of negative correlation between default and recovery.

Finally they also argue that there might be another premium related to the markets’ lack

of understanding of recovery risk.

Summarizing, we understand that a difference between implied and historical variables is

common. However, especially with respect to implied recovery it is significantly different

from its historical counterpart. This is a consequence of both systematic risk - recoveries

and industry distress are closely related - and a lack of understanding of the recovery,

creating hedging difficulties.
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1.3.2.2 Difficulties

As default and recovery always occur mutually, there is a well known separation problem

- this will be discussed more specifically in section 1.3.3.2 - making independent identifi-

cation of these elements a complicated issue. Due to this difficulty it is market convention

to fix the recovery at around 40% for senior contracts, and at about 20% for subordinated

contracts and sovereigns [EY13][Iwa13]. This is not a random choice, for decades, average

prices at default have been calculated at approximately 40 cents on the dollar. Indeed,

the authors of [AK96] show that the arithmetic average recovery rate on a sample of more

than 700 defaulted senior corporate bond issues was found to be $41.70 per $100 of face

value.

In the context of credit management we could argue this market convention to be suffi-

cient, as observed realised recoveries might provide a decent estimate of future realisations.

However in the case of pricing we should be looking at implied recovery. Observing the

literature on implied recovery we soon understand that assuming such constant implied

recovery is not the most logical choice, although the simplest. We state three main argu-

ments:

1. Historical recovery has shown to be very dependent upon many determinants, such

as contract seniority and firm specific characteristics. Averages may differ significantly[AK96].

2. Taking the historical average recovery as implied recovery might be an overestima-

tion due to incompleteness of the market, and the fact that recovery risk is not very

well understood. Furthermore, it was shown that systematic risk seems to be an

important underlying risk factor of the recovery[SUH14].

3. Assuming the implied recovery to be constant neglects the correlation between the

default process and the recovery. A strong negative correlation between both has

frequently been shown to exist [ABS07], [ABRS03], [CV05].

The importance of a better estimate of the implied recovery is now understood and slowly

more research is being performed within this area.

1.3.3 Modeling implied recovery

1.3.3.1 Assumptions on the recovery

Usually recovery, R, and loss given default, Lgd, are stated as percentages. However stat-

ing the recovery to be 40% leaves open what it is referencing to. The percentage recovery,

ρ, might be a percentage of whatever is being referred to. Changing this reference might

provide a better suiting economic interpretation or a more convenient pricing framework.

This will become more clear in what follows.
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Suppose τ to be the time of default, R(τ) the corresponding recovery with ρ(τ) the

percentage recovery, F the face value of a defaultable debt maturing at T and t indicating

today. Following the authors of [BMZ01] we describe the three assumptions typically

made about the recovery:

i Fractional recovery of face value (RFV): The recovery is a fraction of the face

value of the corresponding contract upon default,

R(τ) = ρ(τ)F. (1.20)

Besides the simplicity of the assumption, [Guh02] shows that it is economically rea-

sonable as bonds of the same issuer and same seniority are valued equally, independent

of their time (left) to maturity. This suggests that dependence is only upon the face

value. Furthermore, the simplicity persists when determining a pricing framework,

especially when the recovery is assumed to be a constant. In Appendix G the gen-

eral defaultable bond pricing formula is deduced, such that a zero coupon bond with

maturity T looks like

Vt = EQ
t

[
e−
∫ T
t (rs+λs)dsF

]
+ EQ

t

[∫ T

t
λue
−
∫ u
t (rs+λs)dsR(u)du

]
. (1.21)

Suppose for simplicity that the face value is 1, F = 1, and that the recovery is a

known constant (as in practice is often assumed), then the general defaultable bond

price reduces to

V RFV
t = EQ

t

[
e−
∫ T
t (rs+λs)ds

]
+ ρ EQ

t

[∫ T

t
λue
−
∫ u
t (rs+λs)dsdu

]
. (1.22)

ii Fractional recovery of market value (RMV): One assumes that upon default a

contract looses a given fraction of its value just prior to default.

R(τ) = ρ(τ)V (τ−), (1.23)

where V (τ−) denotes the market value of the debt just before default τ .

The elegance of this assumption is mainly found in the resulting simplicity of the

framework: let λt the default intensity at time t. Then if X is a defaultable claim at

maturity T , the authors of [DS99] show that the price of this claim at time t satisfies

V RMV
t = EQ

t

[
e−
∫ T
t (rs+λs(1−ρs))dsX

]
, (1.24)

where rs equals the interest rate process and X = 1 for a zero coupon bond. Indeed the

simplicity of the framework comes from the fact that we may define φt = rt+λt(1−ρt)
and price a defaultable claim only by modelling this function. A difficulty that is
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directly apparent is however the fact that the default intensity and recovery are by no

means separately identifiable given a single term structure. Furthermore, the authors

of [DS99] show that while varying the lgd, the result of λt, the default intensity,

does not seem to change depending upon the choice of either Recovery of Face Value

(RFV) or Recovery of Market Value (RMV). Suggesting that the market value just

before default is still close to par. This would suggest both assumptions to be fairly

reasonable.

iii Fractional recovery of the present value of debt (RT): In this approach one

assumes that upon default, debt is valued at a given fraction of the present value with

respect to a treasury bond.

R(τ) = ρ(τ)B(τ, T ))F, (1.25)

where B(τ, T ) equals the value of a treasury bond at time τ maturing at T . The

authors of [BMZ01] state this assumption to present the best fit to their data. Sug-

gesting market participants not to anticipate immediate recovery of face.

The assumption does not provide a pricing framework as easy as the RFV, but it

has a convenient form which is exploited by for example the authors of [SUH14].

Substituting the assumption in (1.21) with face value of 1 gives

V RT
t = EQ

t

[
e−
∫ T
t (rs+λs)ds

]
+ EQ

t

[∫ T

t
λue
−
∫ u
t (rs+λs)dsB(u, T )ρ(u)du

]
. (1.26)

Recall that B(u, T ) = EQ
u [D(u, T )] = EQ

u

[
e−
∫ T
u rsds

]
from which it follows that

EQ
t

[∫ T

t
λue
−
∫ u
t (rs+λs)dsB(u, T )ρ(u)du

]
= EQ

t

[∫ T

t
λue
−
∫ u
t (rs+λs)dsEQ

u

[
e−
∫ T
u rsds

]
ρ(u)du

]
(1.27)

= EQ
t

[∫ T

t
λue
−
∫ u
t (rs+λs)dse−

∫ T
u rsdsρ(u)du

]
(1.28)

= EQ
t

[
e−
∫ T
t rsds

∫ T

t
λue
−
∫ u
t λsdsρ(u)du

]
(1.29)

= EQT
t

[∫ T

t
λue
−
∫ u
t λsdsρ(u)du

]
, (1.30)

where the equality in (1.28) follows from the tower property of conditional expectations

and the last equality is a consequence of the T-forward measure (see Appendix B).

The defaultable bond pricing formula now looks like
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V RT
t = EQ

t

[
e−
∫ T
t (rs+λs)ds

]
+ EQT

t

[∫ T

t
λue
−
∫ u
t λsdsρ(u)du

]
. (1.31)

The above are just three common assumptions upon the recovery. In the literature one

might find more exotic assumptions, such as the assumption that recovery is a percentage

of the future payoffs of a product, e.g. for a coupon paying bond this would take into

consideration the future coupon payments and the final notional payment.

Our model (which will be presented in chapter 3) will use the RFV assumption due

to both its simplicity and the corresponding reasonable economic interpretation.

1.3.3.2 The identification problem

A common misconception14 among academics and practitioners is that fixing the recovery

at a specific value is necessary to achieve econometric identification15.

We have seen that under RMV assumption a zero coupon is priced by the formula

V RMV
n,t = EQ

t

[
e−
∫ T
t (rs+λslgd)ds

]
. (1.32)

Most notably is how the LGD and the default intensity are directly multiplicative linked.

We can therefore understand that given a single term structure with n prices we can at

best only extract a similar number of parameters. Market practice therefore fixes the

LGD such that the intensity process can be calibrated to the market data.

The RFV on the other hand assumes 1−lgdt to be a percentage of face value, where the

same such bond is priced as

V RFV
n,t = EQ

t

[
e−
∫ T
t (rs+λs)ds

]
+

∫ T

t
(1− lgd)EQ

t

[
λse
−
∫ s
t (ru+λu)du

]
ds. (1.33)

14The authors in [DS99] state regarding their RMV model: “[..] under the assumption of exogenous
(λ, lgd, r), the value of a non-callable corporate bond is simply the sum of the present values of the
promised payments. It follows that knowledge of defaultable bond prices (before default alone is not
sufficient to separately identify λ and lgd. At most, we can extract information about the risk-neutral
mean loss rate λtlgdt [..]”. We thus understand from this that identification given the bond’s term
structure is not impossible, however it is within the RMV framework . Indeed, [DS99] is often misused
as reference to state that recovery and default are not separately identifiable (see for example [DH09]).
To make up for this general misconception, Singleton states in [PS08]: “A common impression among
academics and practitioners alike is that fixing lgdt at a specific value is necessary to achieve econometric
identification. This is certainly true in an economic environment in which contracts are priced under the
RMV convention”.

15Econometric identification means that for each solution of a model a unique parameter set is available.
Suppose for example the function y = a · b, fixing the value of y, will not yet identify the values a and b.
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In contrast to (1.32) λt and lgd do not enter in the same multiplicative manner under

the RFV assumption. Now, separate identification does seem possible, as a change in the

LGD changes the dynamics of the rest of the model which then has to adjust. Indeed the

authors of [PS08] proceed by showing how they extract a constant recovery using CDS

spreads. However, the intensity is modeled by a simple Vasicek model and the interest

rate is also assumed to be constant. They were bounded to such simplicity given the

scarce amount of market data compared to the complexity of the model.

Given the difficulties of extracting a constant recovery we can understand that finding

whole term structures for both the intensity and recovery on a stochastic basis is almost

impossible. To the best of our understanding no paper presenting stochastic models for

both the hazard and recovery rate has successfully calibrated its model. The authors

of [Chr05] come closest to such calibration by assuming RFV and introducing a three

factor model in which interest rate, default and recovery are simultaneously modeled

following Vasicek processes. However the model assumes independence between all three

and tractability of the model was found to be unstable.

In our model this problem is solved by assuming a particular relationship between intensity

and recovery. Our choice towards such model becomes clear from the next section where

we describe the different categories of recovery models.

1.3.3.3 A brief overview of current models for implied recovery

Due to the difficulty of identifying recovery, research upon implied recovery is relatively

scarce - especially comparing it to the amount of research on the default process. Re-

search into estimating the implied recovery requires assumptions that can generally be

categorized in one of the following groups[SUH14]:

1. Assuming a constant recovery;

2. Assuming a predefined relation between recovery and default;

3. Assuming independence between recovery and default.

As an example of the first case we might look at [PS08]. In this article the recovery is

modeled as a constant over time and the default intensity is assumed to follow a lognormal

mean reverting process,

d ln(λt) = κ(θ − ln(λt))dt+ σdBt. (1.34)

The CDS price is modelled under the RFV framework16 in which recovery is identifiable.

Subsequently they obtain sovereign CDS prices for Mexico, Turkey and Korea over a pe-

riod spanning 2001-2006 for different maturities. By means of the maximum likelihood

16See the section 1.3.3.1
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method they determine the best fitting parameters for the recovery and the default in-

tensity. Market convention sets sovereign recoveries at around 20%, however estimates of

almost 77% where found. This could be due to many reasons, such as turbulent period

within the sample, or simply that the default process doesn’t seem to capture the distri-

bution of CDS spreads.

In the second category a relationship between probability of default and recovery is con-

sidered. The authors of [JM12] present a model where the properties of affine processes

are exploited. They start out with the CDS price as in (1.18), where they assume the

LGD to be a percentage of the notional, i.e. RFV, and defining

lgdt = β2 + β0e
β1λt , lgdt ∈ (0, 1). (1.35)

By defining so and assuming the interest rate to be a constant and therefore fully neglect-

ing it, they find the protection leg of the CDS to be

∫ T

t
EQ
t

[
e−
∫ u
t λsdsλu

(
1− β2 − β0e

−
∫ u
t λsds

)]
du. (1.36)

Its convenience lies in the fact that the moment generating functions of both exponential

functions have closed formed solutions including Riccati equations under the assumption

of a CIR process. On a dataset of over 4.5 years between January 2004 until May 2008

of daily CDS quotes on ConocoPhilips they performed a Markov chain Monte Carlo al-

gorithm in order to estimate the model parameters for both the stochastic recovery and

constant recovery case. Notable is the significant negativity of β1 they stochastic model

implies, implying the stochastic recovery model to be strongly supported by the data.

Also, the model presented by [DH09] follows a same sort of assumption in which the

recovery and default depend both upon the underlying stock. We will look more deeply

into this model in chapter 2. It got our preference above the model from [JM12] due to its

simplicity and the extra dimension of freedom it gives us as the recovery is not restricted

to one specific function in order for it to be solvable.

The third class of recovery models assumes independence between the default and recovery

process. The authors of [UMG03] describe a model that finds a function of risky bond

prices, referencing different seniorities, resulting in a function of recovery only. More

specifically they deduce that

Vsr(T − t)− Vjr(T − t)
P (t, T )− Vjr(T − t)

=
E[ρsr]− E[ρjr]

1− E[ρjr]
, (1.37)
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where Vsr(T − t) and Vjr(T − t) represent risky bond prices for respectively senior and

junior claims, with a time to maturity of T − t. Furthermore the ρsr and ρjr are the

recovery for respectively senior and junior claims. The right hand side still contains two

different types of recoveries, however using the capital structure the density function of

the underlying firm-wide recovery can be traced back. Results unfortunately show the

model not to fit very nicely, which might be related to the model being too flexible as it

introduces extra parameters to account for violation of the APR.

Another model, worth mentioning, is the one presented by the authors of [SUH14]. It

doesn’t make any of the regular assumptions and is able to present nice results on the

mean and variance of the recovery. Calibrating to CDS spreads, it uses a similar approach

as in [UMG03], but is able to allow for dependence (between default and recovery) by

moving into the T-forward measure (see appendix B).

1.3.3.4 Modeling criteria

We may now proceed to state our modeling criteria based upon our current knowledge

of the implied recovery and find a model that meets these particular requirements. Let’s

start by stating the requirements of the model:

1. It should be able to cope with different seniorities;

2. It has to allow negative correlation between default probability and recovery;

3. It has to provide a term structure.

Let’s clarify these requirements. The first requirement comes from the observed fact that

the seniority of a contract highly influences the physical recovery. Therefore, calibration

of a model might be improved if the model can simultaneously calibrate to different term

structures related to seniorities.

The second requirement also results from historical observations. Negative correlation has

repeatedly been shown to hold, we would therefore like to observe this in our results.

Finally the last requirement is related to the expectations of general risks (as discussed

in both section 1.1.3 and 1.3.2.1), and the need to provide decent estimates for time de-

pendent valuations, such as Credit Value Adjustment (CVA). The market’s expectations

of the recovery might change over time and consequently modify the valuation of CVA.

For such valuations, term structures might provide better estimates.

With these requirements at hand we recall the discussion in section 1.3.3.3 on a brief

overview of current models for the implied recovery. We have shown that such models

usually are based on either a constant recovery, a predefined relation between recovery
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and default and/or assuming independence between recovery and default. Now, clearly

the first and last types do not meet our criteria, such that we are left assuming a prede-

fined relation between both recovery and default.

To this end we choose to study more carefully the model described by the authors of

[DH09]. This model satisfies all of our requirements and shall be described in more detail

in chapter 2.

Remark 1.3.1. One may note we have referred quite some times to the model described

in [SUH14], this model does not fall in any of these groups, however it has the following

drawbacks:

1. It can only provide us with the expected recovery under the T-forward measure;

2. The expected recovery is observed only for maturities at which a CDS quote is

provided, i.e. providing us an expected recovery depending on the maturity of the

contract but neglecting the possible movements of the recovery before maturity. For

example, if the expectation is found to be 0.4, it might very well be straight line

between 0.6 at initiation and 0.2 at maturity;

3. Only the expected recovery would not be enough in the scope of more complex and

time dependent calculations required for formulas such as CVA.



2

Discrete term structures: The

D&H model

“You cant go by common sense, if we could do things by common sense we

wouldn’t need physicists.”

– Richard Dawkins , The Unbelievers

From our discussion on the recovery modelling criteria we decided to take a closer look at

the model described by Das & Hanouna in their paper ‘Implied Recovery’ [DH09]. It is

able to provide us with a term structure for both the recovery and the default probability,

it includes the possibility of correlation between both and can finally simultaneously be

calibrated to multiple seniorities.

To understand the principles of their model we shall first describe it in more detail.

Next in section 2.4 an important restriction of the method will be presented to finally

present a test set to Amazon data in section 2.5.

The drawback which is presented in section 2.4 will be solved in our PDE model in

section 3.

29
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2.1 Description

This model falls into the second category as described in section 1.3.3.3, which assumes

a relationship between default and recovery. It is a hybrid model in the sense that it

has characteristics of both structural models and reduced form models. The first models

default risk as being directly dependent upon stock prices or firm prices, whereas reduced

form models assume defaults to occur exogenously.

This model determines, simultaneously, the term structures for both the default intensity

and the recovery. This is done by letting the default and recovery depend upon the

corresponding stock price, which is modeled by a jump-to-default tree (not the usual

trinomial model in which prices go up, down or remain on the same level). Assuming

a relation between the stock price and default probabilities is not new, see for example

[Lin06],[AFV03] and [DS03]. Furthermore, defaults usually go paired with low resale

values of the underlying asset, confirming the negative correlation. Finally to determine

the form of both default and recovery the method describes a calibration process upon

CDS spreads which uses a backward recursion for both premium and protection legs.
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Figure 2.1: The jump-to-default tree as introduced by Das & Hanouna in [DH09]

2.2 Methodology

2.2.1 The jump-to-default tree

First a jump-to-default tree for the stock price is created. Requirements for this are the

current stock price S0 and its corresponding volatility1 σ. A regular binomial tree can

either go up or down, however in this case we introduce a third option corresponding to

a default. Let the tree take constant time steps of size ∆t. Suppose t to be some time,

then we define

St+∆t =


Stu = Ste

σ
√

∆t, with prob. qS(1− ξS),

Std = Ste
−σ
√

∆t, with prob. (1− qS)(1− ξS),

0, with prob. ξS ,

(2.1)

where qS and ξS are short forms for respectively qSt and ξSt . See figure 2.1 for a visuali-

sation of the tree at initiation.

Without the knowledge of the probabilities, the tree can still be created, given u and

d. In a regular tree the probabilities of an increase and decrease can be determined by

using the risk free interest rate. A similar approach can be used to find an expression for

qS , leaving ξS open for definition. To this end let ft correspond to the risk free forward

interest rate over the period (t, t+∆t). To find qS , note that by the no-arbitrage principle

it holds that

1The volatility may be both historical or implied. The fact that a relationship between stock and
defaults exists is enough. This is a consequence of the existence of a relationship between historical and
implied variables.
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qS(1−ξS)·Stu+(1−qS)(1−ξS)·Std = Ste
ft∆t → qS(1−ξS)·u+(1−qS)(1−ξS)·d = eft∆t,

(2.2)

such that qS should satisfy

qS =
eft∆t/(1− ξS)− d

u− d
. (2.3)

Let’s assume t to be today. The tree takes i possible levels at time ti = t + i∆t. For

convenience we shall write each node on the tree to be a point of the form [i, j] where

i ∈ N≥0, the time index and 0 ≤ j ≤ i, the level index. A level increase corresponds to

an upward movement of the stock price: the first node thus corresponds to [0, 0] and at

time t + ∆t it can either move down to [1, 0] or upwards to [1, 1]. With this notational

convention we can define the probability of default within a time step as:

ξ[i, j] = 1− e−λ[i,j]∆t, with


λ[i, j] =

1

S[i, j]b
, S[i, j] > 0

0 S[i, j] = 0

(2.4)

where we require b ∈ R>0 such that, naturally, default risk increases with a decreasing

stock price2. With S[i, j], q[i, j] and ξ[i, j] defined, the tree can completely be determined.

Next, the functional form of the recovery for the corresponding firm is defined by the

following relation:

ρ[i, j] = Φ(a0 + a1ξ[i, j]), (2.5)

where Φ(x), x ∈ R, corresponds to the standard normal distribution, assuming the recov-

ery to remain within the interval (0, 1). We point out that any other form, satisfying the

properties of the recovery might be chosen3. The authors of [DH09] provide results for

two other functional forms and show results to be dynamically stable.

The code related to computing q, ξ and ρ can be found in appendix I.1.2.

2The first section of this thesis presents both P- and Q-measures. We therefore want to emphasize that
(2.2) just made sure that the stock path increases on average by the risk free rate. This thus guarantees
that our stock is in the risk-free measure, such that the probability of default is defined in consistency
with the Q-measure.

3As we shall show in appendix A.3, changing this form introduces slight different underlying assump-
tions upon the recovery.
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2.2.2 Pricing a CDS

Assumptions In order to price a CDS we need to find the current values for both

premium and protection legs. Suppose, without loss of generality, a CDS with maturity

T and premium payments every ∆t years, thus a total of N = T
∆t premium payments.

Assume that premium payments are made at the end of each period and if a default occurs

in period (k∆t, (k + 1)∆t] where k an integer between 0 and N − 1, then the protection

payment and last premium payment are completed at (k + 1)∆t. Furthermore for the

percentage recovery we assume recovery of face value. And for convenience we take the

face value to be 1.

Backward recursions Let A[i, j] and B[i, j] correspond to respectively the expected

future payments of the premium and protection legs at time ti and level j. Let CT the

corresponding annualized CDS spread4. The backwards recursions that follow are given

by

A[i, j] = e−fi∆tCT + e−fi∆t (q[i, j](1− ξ[i, j])A[i+ 1, j] + (1− q[i, j])(1− ξ[i, j])A[i+ 1, j + 1]) ,

B[i, j] = e−fi∆tξ[i, j](1− ρ[i, j]) + e−fi∆t (q[i, j](1− ξ[i, j])B[i+ 1, j] + (1− q[i, j])(1− ξ[i, j])B[i+ 1, j + 1]) ,

(2.6)

with final conditions A[N, j] = B[N, j] = 0, for 0 ≤ j ≤ N . To be more precise we should

define A[i, j] as the expected premium payments at ti+ (the expected premium payments

at ti would include the premium payment at exactly time ti as well). Both equations are

nothing but working back on the tree. First we understand that both legs are worthless

at maturity, subsequently the tree provides us with probabilities that can be used to find

values for previous time steps, noting that the premium leg pays a premium with some

probability and the protection leg a protection payment.

Also, note that, just as the recovery is based on a face value of 1, so does CT , which is

thus stated as a fraction of notional.

If now the parameters a0, a1 and b are known, we can proceed to price the CDS. Premium

and protection leg should equal at time t0, that is, A[0, 0] = B[0, 0]. Note furthermore

that CT can be taken out of the recursion: let A1[i, j] be the value of A[i, j] with CT = 1,

then for any CT it holds that A[0, 0] = CT ·A1[0, 0] = B[0, 0], from which follows that

CT =
B[0, 0]

A1[0, 0]
.

See appendix I.1.3 for the code related to the pricing of a CDS.

4If in the market we read a spread of C and there are two payments, then we set C = 1
2
C.



Discrete term structures: The D&H model 34

2.2.3 Calibration on CDSs

On the other hand, if a0, a1 and b are unknown parameters, that is, the sensitivity of the

probability of default to the stock price and the recovery to the default are unknown, then

these should be estimated. This can be done by letting these parameters undefined and

calibrating them to CDS data of interest. The simplest procedure would be to perform a

least squares minimisation:

min
a0,a1,b

∑
i

(
CTi(a0, a1, b)− ĈTi

)2
, (2.7)

where i iterates over all maturities, ĈTi represents the observed market spread for a CDS

with maturity Ti. CTi(a0, a1, b) is its model implied counterpart, based on the {a0, a1, b}.
It is finally assumed that all CDSs have the same coupon frequency. The master code of

calibration can be found in appendix I.1.



Discrete term structures: The D&H model 35

2.3 Retrieving recovery and default

The term structure that we wish to create is built up of the expected recoveries and

expected default probability at future time states. Again let i denote a time index and j

a level within the tree with Ji referencing all possible levels at time i excluding the default

states. Then for the probability of default we have

P (τ = i) =
∑
j∈Ji

p(i, j) · ξ[i, j], (2.8)

where ξ[i, j] corresponds to the probability of default at node [i, j] and p(i, j) equals the

probability of reaching node [i, j] (by means of any possible path) - Appendix I.1.4 contains

the code to determine this probability. Thus the probability of default at time i is the

sum of probabilities of default at this time multiplied by the probability of reaching this

particular node. Note how (2.8) represents a weighted average, where the probabilities of

reaching a note are the weights.

For the expected recovery we have a similar expresssion. What we are interested in is

EQ [ρ|τ = i], that is, the expected recovery at time i given a default5. Then

EQ [ρ|τ = ti] =
∑
j∈Ji

ρ[i, j]P (ρ = ρ[i, j]|τ = i). (2.9)

Now, given that we arrived at time i, the probability that the recovery is ρ[i, j] corresponds

to the probability that we reach state [i, j] and that no default occurred, i.e.

P (ρ = ρ[i, j]|τ = i) =
p[i, j]∑
j∈Ji p[i, j]

. (2.10)

Using this we get that

EQ [ρ|τ = ti] =
1∑

j∈Ji p[i, j]

∑
j∈Ji

p[i, j.]ρ[i, j] (2.11)

5Das & Hanouna choose to look at EQ [ρ] instead. We however believe that this has no related practical
understanding as a recovery always goes together with a default: what is the recovery not given a default?
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2.4 Restriction of the method

The D&H model described in this section is both simple and elegant. It however has one

serious drawback, which we will clarify in this section.

Only when the step size, ∆t, converges towards zero, does the tree approach actually

establish the same results as when directly modeling a Geometric Brownian Motion. If

we therefore want to use this method for real quantification - not only for qualitative

results where a large step size might suffice - we’d require smaller time steps.

Recall (2.3) in which we determined the probability of an upward movement of the stock

given no default. We should thus require

0 ≤
eft∆t/(1− ξS)− d

u− d
≤ 1. (2.12)

Using the definition of u, d, and ξS we get

0 ≤
eft∆t/eλS∆t − e−σ

√
∆t

eσ
√

∆t−e−σ
√

∆t
≤ 1 → −σ ≤ (ft + λS)

√
∆t ≤ σ, (2.13)

where we specifically write λS to emphasise that λ depends upon the value of the stock.

Indeed, recall that λS = 1
Sbt

. Note that f, λ, σ > 0, from which trivially follows that

−σ ≤ (ft + λS)
√

∆t. The other requirement is little more involved as it eventually sets a

lower boundary upon the parameter b:

(ft + λS)
√

∆t ≤ σ ↔
(
ft +

1

Sbt

)√
∆t ≤ σ (2.14)

↔ Sbt ≥
1

σ/
√

∆t− ft
(2.15)

↔ b ≥ − ln (σ/
√

∆t− ft)
ln (St)

, ∀t ∈ [0, T ], (2.16)

where T stands for the largest maturity evaluated in the model. As we will now show, this

constraint upon b is a fairly inconvenient one when ∆t is small. Constraint (2.16) should

hold for any t and therefore in our jump-to-default tree also for all possible scenarios of

the stock, in particular the worst case scenario, which equals

S0e
−nσ
√

∆t, n = 0, 1, ..., T ·N. (2.17)

Applying this stock price path to the constraint gives us



Discrete term structures: The D&H model 37

Years

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
in

im
a

l 
v
a

lu
e

 f
o

r 
b

-50

-40

-30

-20

-10

0

5

10

20

30

40

∆t=1/365

∆t=1/52

∆t=1/12

∆t=1

Figure 2.2: Plot of the rhs of (2.18) for all n =. Model parameter b should be at least
the size of maximum value on each line.

b ≥ − ln (σ/
√

∆t− fn)

ln
(
S0e−nσ

√
∆t
) ↔ b ≥ − ln (σ/

√
∆t− fn)

ln (S0)− nσ
√

∆t
. (2.18)

When ln (S0)− nσ
√

∆t switches signs the rhs shoots up in absolute value as it gradually

becomes smaller - it might even touch upon zero - and after switching signs again becomes

larger in absolute value. One may however wonder whether this will occur when we reduce

the value of ∆t substantially? The answer is yes, it clearly does as we can see as follows:

the denominator switches signs around

n =

⌊
S0

σ
√

∆t

⌋
, (2.19)

and as n increases by 1
∆t with each year it is of order 1

∆t . The switching point will thus

unavoidably be reached when decreasing the value of ∆t. The maximum size that b will

attain at such passage point depends on the values of σ and ft, but it can be quite sub-

stantial. In figure 2.2 we plot the values of the rhs of (2.18) and as can be seen switching

points are related to peaks which create an unstable point for model parameter b. Further-

more, it follows indeed that decreasing the value of ∆t is associated to an earlier trigger of

this switching point. And finally, the authors of [PS08] find that especially long-maturity

premia are essential for identification as the impact of changes in the recovery rate on

short-maturity premia is relatively low. With this in mind we note that increasing the

maturity will decrease the value of St in the worst case scenario, as in (2.16), resulting in

‘almost surely’ an unstable switching point.

In theorem 4.3.4 we shall show that violation of this constraint upon b results in a nu-

merical unstable model. In order to cope with this flaw we will provide a new approach:

the PDE model.
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Remark 2.4.1. We might of course choose b such that it always satisfies the required

constraint, but then the model looses its interpretational capabilities as b is found to be

a ‘small’ value. See for example [Mur99], where it is shown that b lies between 1.2 and 2

for Japanese corporates.
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Amazon data

Stock price 7.756
Stock volatility 0.972
Step size 1

Maturity Forward rate Market spreads (bps) Model spreads (bps)

1 0.02259796 899.06 899.19
2 0.02730759 1130.93 1130.41
3 0.03292666 1258.20 1259.80
4 0.03826696 1265.46 1264.72
5 0.04360217 1285.32 1283.32

Parameters (a0, a1, b) (0.19916,−1.2768, 0.80096)
RMSE 1.22

Table 2.1: CDS spreads on Amazon in September 2001

2.5 A test set by Amazon

As to confirm the validity of our results we provide a test set which we may compare

with other results. Indeed the authors of [DH09] provide a small set of CDS spreads on

Amazon for September 2001. The required data they provide can be found in table 2.1.

We have performed several tests in order to find the best fit. As described in section 2.2.3

a least squares approach is used in order to determine a fit.

Matlab has quite a range of optimisation tools of which we used the methods lsqcurvefit

and fmincon. These however might converge towards local minima. To this end we also

implemented a search for the global minimum by using multistart and globalsearch.

Multistart was performed referencing the lsqcurvefit method, whereas globalsearch

is limited to fmincon only. For the parameters {a0, a1, b} we used a starting point of

{0, 0, 1}. This is a purely random point which is at least within required boundary condi-

tions - it can be shown that for this stock and a maturity of 5 years we have b > 0.71118.

Table 2.2 states the fitted results. The most important thing to note here is how the global

approach is a highly important one. It is expected that recovery and default should be

negatively correlated, which in this particular model is represented by a negative value

of the parameter a1. The local minimum parameter set doesn’t reflect this, whereas the

global does.

Finally the resulting expected implied recovery and probability of default over 5 years are

plotted in figure 2.3, together with a plot of the fit of the spreads.
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Method Fitted parameters fmin

lsqcurvefit {−0.4343, 0.20924, 0.93558} 4.9846
fmincon {−0.43431, 0.20925, 0.93558} 4.9846
multistart {0.19899,−1.2765, 0.801} 3.6295
globalsearch {0.19894,−1.2764, 0.80101} 3.6295

Table 2.2: Trinomial model fitted parameters, for several local and
global Matlab methods. fmin indicates the optimised value of the least

squares approximation in basis points.
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3

Continuous term structures: The

PDE model

“Sapere Aude!”

– Immanuel Kant , Answering the Question: What Is Enlightenment?

In section 2 we described the D&H model as introduced by Das & Hanouna in [DH09], a

model satisfying our requirements from section 1.3.3.4.

However, as was shown, it has the drawback that time steps have to be fairly large in

order to provide numerical stability and a tree with proper probabilities. To solve this

issue we note that binomial trees are special cases of some PDE discretization, this can

intuitively be seen from figure 3.1. This means that in a similar way we might find a PDE

which provides the D&H model as a special case. The advantage of having a PDE is that

we have more liberty with regards to the discretization, and in particular choose to use

an implicit discretization which has the favorable property of being conditionally stable.

This section is dedicated to finding a generalization of the D&H model and provide some

further improvements.

This section is constructed as follows. In section 3.1 we provide an understanding of

the underlying dynamics of the continuous model. Then the more technical section 3.2

provides the first steps towards the required PDEs for both premium and protection

legs, by deducing expressions for the dynamics of an infinitesimal time step in both legs.

Then an application of Ito’s lemma is used to combine these results with the underlying

dynamics in section 3.3, providing us with the skeleton of the PDE model. After the

set up we provide a comparison of our model to that of the model by Das & Hanouna.

By now no specific choices have been made upon the form of both default intensity and

recovery, this is provided in section 3.4. Finally we look into how each model parameter

influences both the CDS spread and the recovery and default term structures.

41
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Figure 3.1: An intuitive relation between the PDE discretization
scheme and that of a binomial tree.

3.1 Jump to default stock prices

In the model by Das & Hanouna we have seen that the underlying dynamics where pro-

vided by the stock price. This stock price was modeled by a tree which had two regular

tree directions, going up and down such as is the case for a regular Cox Ross Rubinstein

(CRR) tree [CRR79], and an additional possibility of jumping down to a default state.

In the limit, the regular two options converge towards a regular stock price process under

the assumption of a Geometric Brownian Motion (GBM). A jump to default was modeled

by the probability presented in (2.4), which is nothing but the probability of default of an

exponential distribution with intensity λ depending upon the underlying stock. Therefore

we understand that the default is the first jumping time of a Poisson process with chang-

ing intensity. Such default process is often used in mathematical finance and is referred to

as a hazard process. The intensity of such process is frequently modeled (e.g. a Vasicek

or CIR process) and referred to as the intensity process. In our case the intensity depends

upon the stock such that it is a stochastic process. Such Poisson process is called a Cox

process. For more details and information regarding hazard rate and intensity process we

refer to appendix D.

Putting these pieces together, both the GBM part and the jump to default part, provides

us with a jump-to-default stock price process described by the jump diffusion process

dSt = (rt + λt)St−dt+ σSt−dWt − StdIt, (3.1)
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where r the interest rate, λ the intensity of the default process, W a Brownian motion

and I the Poisson process with intensity λ. The validity of (3.1) is a general result which

can be found in [Mer76]. Note this process to be the pre-default process, that is, this is

the process the path follows up till a default1. After a default it remains insolvent, at

S = 0 (similarly as was defined in the D&H model).

1Using the term pre-default is conventional and not necessary in this case. We will however use this
term more frequently and like to remain consistent.
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3.2 Infinitesimal increments in both legs of a CDS

The underlying dynamics of the premium and protection legs are functions of the stock

prices. Therefore, just as is done for the regular derivation of option prices under Black-

Scholes dynamics, we can apply Ito’s lemma to find the dynamics of both legs (a more

general version of Ito’s lemma, accounting for jumps, has to be applied). This application

shall be provided in section 3.3. However, usually the next step would be to assume the

option of interest to be risk-free under the risk-neutral measure, that is, it is a contingent

attainable claim in the sense of definition B.1.3. This then provides the convenient result

that

EQ [dVt|Gt] = rVtdt,

where Vt the option price, see (B.7). Our premium and protection legs are however not

contingent attainable claims. One may intuitively understand these not to be, however in

the next section we shall prove the martingale condition to be invalid. Therefore we have

to really compute

EQ [dPrem (t, T )|Gt] and EQ [dProt (t, T )|Gt] .

instead of assuming them to be risk-free. Due to this computation this section is a little

more technical. We shall look at the premium and protection leg separately, proof them

not to be martingales under the Q-measure when adjusted for risk-free discounting. Then

finally determine expressions for

d (Prem (t, T )) and d (Prot (t, T )) .

The results provided next are based upon the assumption that the interest rate follows a

continuously compounded process r. This section uses many of the definitions and results

presented in appendix D on the default process.

3.2.1 The premium leg

Proposition 3.2.1. The time t value of a C-continuous paying premium leg of a

CDS with a notional of 1 maturing at time T ≥ t, satisfies

Prem (t, T ) = EQ
[∫ T

t
e−
∫ s
t rudu1{τ>s}Cds

∣∣∣∣Gt] . (3.2)
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Lemma 3.2.1. Let the default time follow a hazard process Γt with stochastic hazard

rate λt. The random variable defined by

e−
∫ t
0 rsds · Prem (t, T ) +

∫ t

0
1{τ>s}e

−
∫ s
0 ruduCds (3.3)

is a G-martingale under the Q-measure.

We distinguish two different proofs. The first being a simple one and the second a little

more complicated, having nice implications for following corollaries.

Proof. Proof 1

Note first that the discounted expected premium leg satisfies

e−
∫ t
0 rsds · Prem (t, T ) = EQ

[∫ T

t
e−
∫ s
0 rudu1{τ>s}Cds

∣∣∣∣Gt] . (3.4)

Then Vt = EQ
[∫ T

0 e−
∫ s
0 rudu1{τ>s}Cds

∣∣∣Gt] is a martingale. This follows immediately by

the tower property of conditional expectations: let t1 ≤ t2 ≤ T , then

EQ [Vt2 |Gt1 ] = Vt1 . (3.5)

The result now follows by the fact that Gt contains all information including the default

process

Vt = EQ
[∫ T

t
e−
∫ s
0 rudu1{τ>s}Cds+

∫ t

0
e−
∫ s
0 rudu1{τ>s}Cds.

∣∣∣∣Gt]
= EQ

[∫ T

t
e−
∫ s
0 rudu1{τ>s}Cds

∣∣∣∣Gt]+

∫ t

0
e−
∫ s
0 rudu1{τ>s}Cds.

Proof. Proof 2

EQ
[∫ T

t
e−
∫ s
0 rudu1{τ>s}Cds

∣∣∣∣Gt] = 1{τ>t}EQ
[∫ T

t
e−
∫ s
0 rudu1{τ>s}Cds

∣∣∣∣Gt]
= 1{τ>t}e

ΓtEQ
[
1{τ>t}

∫ T

t
e−
∫ s
0 rudu1{τ>s}Cds

∣∣∣∣Ft]
= 1{τ>t}e

ΓtEQ
[∫ T

t
e−
∫ s
0 rudue−ΓsCds

∣∣∣∣Ft] (3.6)
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Define the continuous function Ṽt := EQ
[∫ T
t e−

∫ s
0 rudue−ΓsCds

∣∣∣Ft]. Then

EQ

[
dṼt
dt

∣∣∣∣∣Ft
]

= EQ

[
lim

∆t→0

Ṽt+∆t − Ṽt
∆t

∣∣∣∣∣Ft
]
. (3.7)

Now the dominated convergence theorem can directly be applied as

lim
∆t→0

Ṽt+∆t − Ṽt
∆t

=
dṼt
dt

< D ∈ R≥0. (3.8)

Bringing the expectation inside we proceed

EQ

[
dṼt
dt

∣∣∣∣∣Ft
]

= lim
∆t→0

EQ
[
Ṽt+∆t

∣∣∣Ft]− Ṽt
∆t

= lim
∆t→0

EQ
[∫ T
t e−

∫ s
0 rudue−ΓsCds−

∫ t+∆t
t e−

∫ s
0 rudue−ΓsCds

∣∣∣Ft]− Ṽt
∆t

= lim
∆t→0

EQ
[
−
∫ t+∆t
t e−

∫ s
0 rudue−ΓsCds

∣∣∣Ft]
∆t

= lim
∆t→0

EQ

[
−
∫ t+∆t
t e−

∫ s
0 rudue−ΓsCds

∆t

∣∣∣∣∣Ft
]
.

The term inside the expectation did not change, such that interchanging limit and expec-

tation is analogously allowed, giving us

EQ

[
dṼt
dt

∣∣∣∣∣Ft
]

= EQ

[
lim

∆t→0

−
∫ t+∆t
t e−

∫ s
0 rudue−ΓsCds

∆t

∣∣∣∣∣Ft
]

= EQ

[
lim

∆t→0

−e−
∫ t
0 rudue−ΓtC∆t

∆t

∣∣∣∣∣Ft
]

= −e−
∫ t
0 rudue−ΓtC.

Due to continuity of dṼt
dt it is Ft measurable such that

−e−
∫ t
0 rudue−ΓtC = EQ

[
dṼt
dt

∣∣∣∣∣Ft
]

=
dṼt
dt
.

This is the Radon Nikodým derivative and we may write
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dṼ = −e−
∫ t
0 rudue−ΓtCdt. (3.9)

Now only regular Ito calculus is required to finish the proof:

d
(
eΓt Ṽt

)
= eΓtdṼt + Ṽtd

(
eΓt
)

= −eΓte−
∫ t
0 rudue−ΓtCdt+ Ṽte

Γtλtdt

=
(
Ṽte

Γtλt − e−
∫ t
0 ruduC

)
dt.

And finally

d
(
1{τ>t}e

Γt Ṽt

)
= 1{τ>t}d

(
eΓt Ṽt

)
+ eΓt Ṽtd

(
1{τ>t}

)
= (1−Ht) d

(
eΓt Ṽt

)
− eΓt ṼtdHt

= (1−Ht)
(
Ṽte

Γtλt − e−
∫ t
0 ruduC

)
dt− eΓt ṼtdHt

= −eΓt Ṽt (dHt − (1−Ht)λtdt)− (1−Ht) e
−
∫ t
0 ruduCdt

= −eΓt ṼtdM t − (1−Ht) e
−
∫ t
0 ruduCdt. (3.10)

Recalling M t to be a martingale (see appendix D), the result follows immediately when

integrating both sides.

Corollary 3.2.1. e−
∫ τ
0 rsdsPrem (t, T ) is not a G-martingale under the Q-measure.

Lemma 3.2.2. An infinitesimal increment on the premium leg satisfies

d (Prem (t, T )) = −e
∫ t
0 rsdseΓt ṼtdM t − (1−Ht−)Cdt+ rtPrem (t−, T ) dt. (3.11)

Proof. Note from (3.4) and (3.6) that

Prem (t, T ) = e
∫ t
0 rsds1{τ>t}e

Γt Ṽt. (3.12)

Using what was found in (3.10) we proceed
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d (Prem (t, T )) = d (Prem (t−, T )) (3.13)

= e
∫ t
0 rsdsd

(
1{τ>t−}e

Γt Ṽt

)
+ 1{τ>t−}e

Γt Ṽtd
(
e
∫ t
0 rsds

)
= e

∫ t
0 rsds

(
−eΓt ṼtdM t − (1−Ht−) e−

∫ t
0 ruduCdt

)
+ rtPrem (t−, T ) dt

= −e
∫ t
0 rsdseΓt ṼtdM t − (1−Ht−)Cdt+ rtPrem (t−, T ) dt. (3.14)

Now finally we provide the main result of this section as the following corollary.

Corollary 3.2.2. The expectation of an infinitesimal increment on a C-continuous

paying premium leg under the Q-measure conditioning on G satisfies

EQ [d (Prem (t, T ))|Gt−] = −(1−Ht−)Cdt+ rtPrem (t−, T ) dt. (3.15)

3.2.2 The protection leg

In section 3.2.1 results were presented for an infinitesimal increment on the premium leg.

In this section similar results with analogous proofs for the protection leg are presented.

Proposition 3.2.2. The time t value of the protection leg of a CDS maturing at

time T ≥ t with a notional of 1, satisfies

Prot (t, T ) = EQ
[
e−
∫ τ
t rsdslgdτ1{t<τ≤T}

∣∣∣Gt] . (3.16)

where lgdτ is assumed to be the LGD under the RFV assumption.

Lemma 3.2.3. Let the default time follow a hazard process Γt with stochastic hazard

rate λt. The random variable defined by

e−
∫ t
0 rsds · Prot (t, T ) +

∫ t

0

(
1−Hs)λse

−
∫ s
0 rudulgds

)
ds (3.17)

is a G-martingale under the Q-measure.
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Proof.

e−
∫ t
0 rsds · Prot (t, T ) = EQ

[
e−
∫ τ
0 rsdslgdτ1{t<τ≤T}

∣∣∣Gt]
= 1{τ>t}e

ΓtEQ
[
e−
∫ τ
0 rsdslgdτ1{t<τ≤T}

∣∣∣Ft]
= 1{τ>t}e

ΓtEQ
[∫ T

t
e−
∫ u
0 rsdsLudFu

∣∣∣∣Ft]
= 1{τ>t}e

ΓtEQ
[∫ T

t
e−
∫ u
0 rsdsLue

−Γuλudu

∣∣∣∣Ft] . (3.18)

Define Ṽt = EQ
[∫ T
t e−

∫ u
0 rsdse−ΓuLuλudu

∣∣∣Ft]. Using the exact same approach as in the

proof of lemma 3.2.1 we determine

dṼt = −e−
∫ t
0 rsdse−ΓtLtλtdt. (3.19)

The rest of the proof is just an application of regular Ito calculus:

d
(
eΓt Ṽt

)
= eΓtdṼt + Ṽtd

(
eΓt
)

= −eΓte−
∫ t
0 rsdsLte

−Γtλtdt+ Ṽte
Γtλtdt

= λt

(
Ṽte

Γt − e−
∫ t
0 rsdslgdt

)
dt.

And finally to determine d
(
e−
∫ t
0 rsds · Prot (t, T )

)
we solve

d
(
e−
∫ t
0 rsds · Prot (t, T )

)
= d

(
1{τ>t}e

Γt Ṽt

)
= (1−Ht) d

(
eΓt Ṽt

)
− eΓt ṼtdHt

= (1−Ht)λt

(
Ṽte

Γt − e−
∫ t
0 rsdslgdt

)
dt− eΓt ṼtdHt

= −eΓt Ṽt (dHt − (1−Ht)λtdt)− (1−Ht)λte
−
∫ t
0 rsdslgdtdt

(3.20)

= −eΓt ṼtdM t − (1−Ht)λte
−
∫ t
0 rsdslgdtdt.

Integrating both sides gives us the desired result.
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Corollary 3.2.3. The discounted expected protection payment at time t, paying

lgdτ in case of a default, given by

EQ
[
e−
∫ τ
0 rsdslgdτ1{t<τ≤T}

∣∣∣Gt] (3.21)

is not a G-martingale under the Q-measure.

Lemma 3.2.4. An infinitesimal increment on the protection leg satisfies

d (Prot (t, T )) = −e
∫ t
0 rsdseΓt ṼtdM t − (1−Ht−)λtlgdtdt+ rtProt (t−, T ) dt. (3.22)

Proof. Note that

Prot (t, T ) = e
∫ t
0 rsdse−

∫ t
0 rsdsProt (t, T ) (3.23)

and that we may use (3.20) to find

d (Prot (t, T )) = d (Prot (t−, T )) (3.24)

= d
(
e
∫ t
0 rsdse−

∫ t
0 rsdsProt (t−, T )

)
(3.25)

= e
∫ t
0 rsdsd

(
e−
∫ t
0 rsdsProt (t−, T )

)
+ e−

∫ t
0 rsdsProt (t−, T ) d

(
e
∫ t
0 rsds

)
(3.26)

= e
∫ t
0 rsds

(
−eΓt ṼtdM t − (1−Ht−)λte

−
∫ t
0 rsdslgdtdt

)
+ rtProt (t−, T ) dt

(3.27)

= −e
∫ t
0 rsdseΓt ṼtdM t − (1−Ht−)λtlgdtdt+ rtProt (t−, T ) dt (3.28)

Corollary 3.2.4. The expectation of an infinitesimal increment on a protection leg,

paying lgdt as protection payment at default, under the Q-measure conditioning on

G satisfies

EQ [d(Prot (t, T ))|Gt−] = −(1−Ht−)λtlgdtdt+ rtProt (t−, T ) dt. (3.29)
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3.3 Resulting CDS PDEs

In this section we apply Ito’s lemma (see (B.14)) to the stock price process together with

the results from section 3.2 to find dynamics, in the form of PDEs, for both CDS legs.

We have seen in section 3.1 that the stock price process of the underlying jump to default

process satisfies

dSt = (rt + λt)St−dt+ σSt−dWt − St−dNt. (3.30)

Let ft ≡ f(t, St) : [t0,∞) × R → R with f ∈ C1,2. Then note how (3.30) satisfies (B.11)

such that we may apply Ito’s general lemma, (B.14), to find that

df(t, St) =
∂ft−
∂t

dt+ (rt + λt)St−
∂ft−
∂S

dt+
1

2
σ2S2

t−
∂2ft−
∂S2

dt

+
∂ft−
∂S

dWt + (f(t, St− + ∆St)− f(t, St−)) dNt.

(3.31)

Furthermore, note that ∆St equals exactly the size of St− in case of a jump to default,

from which follows

df(t, St) =
∂ft−
∂t

dt+ (rt + λt)St−
∂f

∂S
dt+

1

2
σ2S2

t−
∂2f

∂S2
dt

+
∂f

∂S
dWt + (f(t, 0)− f(t, St−)) dNt.

(3.32)

The next step is to take the risk neutral expectation on both sides conditioning on Gt−.

However in order to do so we need to know the risk neutral expectation of the Cox process

N(t) on a small interval - note how f(t, 0)− f(t, St−) is deterministic under Gt− :

EQ [dN(t)|Gt−] = 1− e−λtdt = (1− (1− λtdt)) = λtdt. (3.33)

Thus taking expectations in (3.32) gives us

EQ [df(t, St)|Gt−] =
∂ft−
∂t

dt+(rt + λt)St−
∂ft−
∂S

dt+
1

2
σ2S2

t−
∂2ft−
∂S2

dt+λt (f(t, 0)− f(t, St−)) dt.

(3.34)

For both legs we understand that after a default, that is when St = 0, no expected further

payments will take place, i.e. Prem (t, T ) = Prot (t, T ) = 0. Then recall from corollary

3.2.2 that

EQ [d (Prem (t, T ))|Gt−] = −(1−Ht−)Cdt+ rtPrem (t−, T ) dt. (3.35)
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and from corollary 3.2.4 that

EQ [d (Prot (t, T ))|Gt−] = −(1−Ht−)λtlgdtdt+ rtProt (t−, T ) dt. (3.36)

Now the resulting theorems can be stated:

Theorem 3.3.1. (A PDE for the CDS premium leg) Suppose a C-continuous paying

CDS with maturity T and assume the reference entity to have a default time governed

by a hazard process with (stochastic) intensity λt, possibly depending upon the stock

St. Let the underlying stock follow the process as defined in (3.30). The expected

future premium payments at time t, denoted by At, satisfy

∂At−
∂t

+ (rt + λt)St−
∂At−
∂S

+
1

2
σ2S2

t−
∂2At−
∂S2

− (rt + λt)At− + C = 0 (3.37)

defined on S ∈ R>0 and t ∈ (0, T ) with initial and boundary conditions

{
A(T, S) = 0,

A(t, 0) = 0, t ∈ [0, T ].
(3.38)

Theorem 3.3.2. (A PDE for the CDS protection leg) Suppose a CDS and assume the

reference entity to have a default time governed by a hazard process with (stochastic)

intensity λt, possibly depending upon the stock St. Let the underlying stock follow the

process as defined in (3.30). Assume lgdt to be the LGD under the RFV assumption.

The expected future protection payment at time t, denoted by Bt, satisfy

∂Bt−
∂t

+ (rt + λt)St−
∂Bt−
∂S

+
1

2
σ2S2

t−
∂2Bt−
∂S2

− (rt + λt)Bt− + λtlgdt = 0, (3.39)

defined on S ∈ R>0 and t ∈ (0, T ) with initial and boundary conditions

{
B(T, S) = 0,

B(t, 0) = 0, t ∈ [0, T ].
(3.40)

Proof. [For both theorem 3.3.1 and 3.3.2 ]

The PDE’s follow immediately after substituting equations (3.35) and (3.36) into (3.34).

One should only that when St− > 0, that is, no default occurred up till time t−, then

Ht− = 0.

Then to show validity of the boundary and initial conditions we note that when t = T ,

then by definition of both premium and protection legs (see (1.13) and (1.15)), these are
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set to zero. Finally when St = 0 we have that τ ≤ t, such that the boundary conditions

follow from both

Prem (t, T ) = 1{τ>t}e
ΓtEQ

[∫ T

t
e−
∫ s
0 rudue−ΓsCds

∣∣∣∣Ft] (3.41)

and

Prot (t, T ) = 1{τ>t}e
ΓtEQ

[∫ T

t
e−
∫ u
t rsdsLue

−Γuλudu

∣∣∣∣Ft] . (3.42)

Remark 3.3.3. Theorems 3.3.1 and 3.3.2 provide general expressions for premium and

protection legs of CDSs. We did not specify the exact forms of both the intensity process

nor the recovery. In section 3.5 we will specify our modeling choice.
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3.4 D&H model as a special case

Theorems 3.3.1 and 3.3.2 provide PDEs which should be related to the backward recur-

sions in the D&H model. Indeed, we argued before that PDEs and tree models are related.

In this section we will more carefully describe this relationship by showing that both are

indeed equal under certain conditions. In particular, the backward recursions denoted

in (2.6) can be created by applying an explicit discretisation for both PDEs, that is, a

backwards time discretisation and central discretisation over S. We shall only provide a

deduction for the premium leg PDE (3.37) as the protection leg follows in a similar fashion.

Let ∆t the time increment and ∆x the stock increment, such that tk = k∆t and T = tN ,

k ≤ N (no maximum stock value has to be inquired). Then we provide the following

discretisations2:
∂At
∂t

=
1

∆t

(
Amn+1 −Amn

)
∂At
∂S

=
1

2∆x

(
Am+1
n+1 −A

m−1
n+1

)
∂2At
∂S2

=
1

∆x2

(
Am+1
n+1 − 2Amn+1 +Am−1

n+1

)
.

(3.43)

Note the time discretization to be Euler forwards, and this is thus an explicit discretization

scheme. We first transform the PDE by using X = log(S), giving us

∂At−
∂t

+

(
rt + λt −

1

2
σ2

)
∂At−
∂X

+
1

2
σ2∂

2At−
∂X2

− (rt + λt)At− + C = 0. (3.44)

Then to simplify even further, the next transformation we’ll apply before starting the

deduction is setting A = e
∫ t
0 (rs+λs)dsĀ, such that we may work with the PDE

∂Āt−
∂t

+

(
rt + λt −

1

2
σ2

)
∂Āt−
∂X

+
1

2
σ2∂

2Āt−
∂X2

+ e−
∫ t
0 (rs−λs)dsC = 0. (3.45)

We now apply the discretization scheme from above. However, just as the particular

choice of the above scheme we have a similar liberty in choosing how to evaluate the

integrals. We shall see that our particular choice of grid evaluation corresponds exactly

to the assumptions made in the D&H model.

We shall evaluate the integral for rs by
∫ (n+1)∆t

0 rsds, n < N (that is backwards in time3),

whereas the integral over λs is chosen to be evaluated forward in time, that is
∫ n∆t

0 λsds.

Next we approximate the integrals by the summation

∫ n∆t

0
f(t)dt ≈

n−1∑
k=0

f(tk)∆t.

2The discretization in time is of first order whereas the central spacial discretizations are of second
order. More on this in section 4.

3Why we call this backwards in time is explained more clearly in section 4.
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Recall that in the model by D&H the intensity process depended on the stock process

only. Therefore we provide the indexm to emphasize dependence on the spacial dimension.

Using this scheme we get the explicit scheme

1

∆t
Āmn =

(
1

∆t
− σ2

∆x2

)
Āmn+1 +

(
rn + λm − 1

2σ
2

2∆x
+

σ2

2∆x2

)
Ām+1
n+1

+

(
σ2

2∆x2
−
rn + λm − 1

2σ
2

2∆x2

)
Ām−1
n+1 + e

∑n
k=0 rk∆t+

∑n−1
k=0 λ

mk∆tC.

(3.46)

Note how we wrote λmk to emphasize that λ may have changed along the way until it

reached the level of m at time n. Multiplying both sides by ∆t to find

Āmn =

(
1−∆t

σ2

∆x2

)
Āmn+1 +

(
rn + λm − 1

2σ
2

2∆x
+

σ2

2∆x2

)
∆tĀm+1

n+1

+

(
σ2

2∆x2
−
rn + λm − 1

2σ
2

2∆x2

)
∆tĀm−1

n+1 + e
∑n
k=0 rk∆t+

∑n−1
k=0 λ

m
k ∆t∆tC.

(3.47)

Recall that the D&H tree model either goes up or down, it never remains on the same

spacial level. Our expression however contains Āmn+1. To remove this term we take

σ2∆t

∆x2
= 1, (3.48)

leaving us with

Āmn =

(
rn + λm − 1

2σ
2

2∆x
+

σ2

2∆x2

)
∆tĀm+1

n+1 +

(
σ2

2∆x2
−
rn + λm − 1

2σ
2

2∆x2

)
∆tĀm−1

n+1

+e
∑n
k=0 rk∆t+

∑n−1
k=0 λ

m
n ∆t∆tC.

(3.49)

Transforming back Ān+1 = e−
∑n
k=0(rk+λk)∆tAn+1 we get the familiar form of the back-

wards recursion

Amn = e−rn∆t

(
rn + λm − 1

2σ
2

2∆x
+

σ2

2∆x2

)
∆t︸ ︷︷ ︸

p

e−λ
m∆tAm+1

n+1

+ e−rn∆t

(
σ2

2∆x2
−
rn + λm − 1

2σ
2

2∆x2

)
∆t︸ ︷︷ ︸

q

e−λ
m∆tAm−1

n+1

+ e−rn∆t∆tC

= e−rn∆t
(
pe−λ

m∆tAm+1
n+1 + qe−λ

m∆tAm−1
n+1 + ∆tC

)
. (3.50)

Indeed, this is the exact same form as in the backward recursion. Now recall that in the

backward recursion the probability of no default (1− ξm) entered the recursion, with ξm

corresponding to the probability of default within the interval ∆t, depending upon the
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level of the stock process. We recognize that

lim
∆t→0

e−λ
m∆t = 1− ξm, (3.51)

due to the definition of the default intensity λ.

Note that just as in the D&H model, the sum these probabilities equals 1:

p+ q =
σ2∆t

∆x2
= 1. (3.52)

Thus we have that q = 1− p. What is left is to show is

1. that p and q satisfy the desired probabilities4 of the D&H model, and

2. that the gridpoints at which the values of A are evaluated correspond to those of

the D&H model.

Both, the discretization just provided and the D&H model, are of first-order in time.

However, we saw that smart transformations let to the above particular results. More

specifically, it is shown by the authors of [CRR79] that there are multiple ways in which

to create a tree with similar results when time steps converge towards zero5. Therefore,

direct comparison of our PDE discretization with the D&H model might not suffice: Both

being first -order approximations, a fair comparison can only be achieved if they match

at this particular order. To this end we start by converting the D&H model parameters

by dropping orders larger than 1.

Recall from (2.3)

ptree =
e(rn+λm)∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆t

=
e(rn+λm)∆t − e−σ

√
∆t

2 sinh(σ
√

∆t)

=
1

2

(
e(rn+λm)∆t − e−σ

√
∆t
)

csch(σ
√

∆t), (3.53)

where csch(·) corresponds to the hyperbolic cosecant, which has the Taylor expansion

csch(x) =
1

x
− 1

6
x+

7

360
x3 +O

(
x5
)
. (3.54)

4We shall later see that not really probabilities result from this choice of p and q, but in order to show
equivalence between both models we only have to show that their limiting values correspond, whether
these are interpretable as probabilities or not.

5Referring to the original paper of the CRR model[CRR79], they show that their choice of parameters

are deduced from the limiting scenario of time towards zero, that is, u = eσ
√

∆t, d = 1
u

correspond exactly
to Black-Scholes only for ∆t→ 0. However, under these conditions they might just as well use a first-order
discretisation of these parameters, but for convenience reasons they leave them continuous.
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Using (3.54), we proceed with (3.53):

ptree =
1

2

(
e(rn+λm)∆t − e−σ

√
∆t
)( 1

σ
√

∆t
− 1

6
σ
√

∆t+O
(

∆t
3/2
))

︸ ︷︷ ︸
f(∆t)

(3.55)

=
1

2

(
(rn + λm)∆t+

1

2
(rn + λm)∆t2 + σ

√
∆t− 1

2
σ2∆t+

1

6
σ3∆t

3/2 +O
(
∆t2

))
f(∆t)

(3.56)

=
(rn + λm)∆t+ 1

2(rn + λm)∆t2 + σ
√

∆t− 1
2σ

2∆t+ 1
6σ

3∆t3/2

2σ
√

∆t
− 1

12
σ2∆t+O

(
∆t2

)
(3.57)

=
1

2
+

(rn + λm − 1
2σ

2)
√

∆t

2σ
+O

(
∆t

3/2
)
. (3.58)

Now, we should confirm that ptree = p+O (∆t) when dropping high-order terms. Recall

the required condition (3.48), such that

∆x = σ
√

∆t. (3.59)

Next, we show that equality holds for both probabilities by solving for p:

p =

(
rn + λm − 1

2σ
2

2∆x
+

σ2

2∆x2

)
∆t

=
1

2
+
rn + λm − 1

2σ
2

2σ
√

∆t
∆t

=
1

2
+

(rn + λm − 1
2σ

2)
√

∆t

2σ
(3.60)

Indeed, we see that (3.58) and (3.60) are equal in the limit ∆t→ 0.

Lastly we confirm that the underlying gridpoints are the same either. For the PDE case

we have a grid spacing as in (3.59), where we note this to be under log transformation of

the underlying asset. For the trinomial case we have, with adjustment for log asset prices:

∆xtree =
1

2

(
ln
(
eσ
√

∆t
)
− ln

(
e−σ
√

∆t
))

= σ
√

∆t, (3.61)

where the term 1
2 comes from the fact that this distance is related to a jump from grid

point [n+ 1,m− 1] to [n+ 1,m+ 1] and thus skipping one grid point.

We have thus shown both methods to be consistent in the sense that they converge towards

the same result.
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3.5 Default and recovery choice

In section 3.3 the PDEs for both the premium and protection leg were determined. These

are general expressions and, as was remarked, do not incorporate any specifics on the

intensity and recovery processes. Next our modeling choices shall be discussed, in partic-

ular our recovery model shall look a little different compared to that of Das & Hanouna

[DH09].

3.5.1 Default

Das & Hanouna [DH09] choose to model the default process as a hybrid process, i.e. a

combination of both a hazard model and a structural model. They model the hazard

rate as being a variable depending upon the stock process,6 λ = S−b, where parameter b

determines its size. As a convenient property we have that for b ≥ 0, an increase of stock

corresponds to a decrease in default intensity. This seems reasonable as we might expect

an increase of stock to go hand in hand with better economical conditions of the entity.

Thus we define in a similar fashion for our PDE model

Definition 3.5.1 (Default for the PDE model). The implied default intensity at

time t, λt, within the PDE framework is defined by

λt =
1

Sbt
, (3.62)

where St the stock value at time t and b ∈ R ∩ [0, 2.5].

Remark 3.5.1. The restriction of b to the real interval [0, 2.5] will be discussed in section

5.1.2.

3.5.2 Recovery

Recall that in [DH09] the recovery is modeled by the relationship

ρ ≡ ρ (a0 + a1ξ) , (3.63)

with ξ the probability of default at the point of evaluation. This seems a decent model,

taking into account a possible correlation between the recovery and the default intensity.

However it has some drawbacks:

6Note that it is the power of this model to let the intensity depend upon the stock as this makes the
intensity dynamic instead of static.
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1. The D&H model incorporated fairly large time steps, such that ξ obtained a ‘proper

value’ larger than zero. In our model we are interested in letting the time steps

converge towards zero, such that the probability of a default converges to zero

together with it and the recovery becoming nearly constant. Instead we naturally

replace the probability of default ξ by the default intensity λ (which is still related

to the probability of default):

ρ ≡ ρ (a0 + a1λ) . (3.64)

We’d like to emphasize another (intuitive) improvement that this particular model

attains. Recall that there is a statistical relation between defaults and the size of

the recovery, more specifically, when the default rate increases the recovery seems

to decrease. This relationship is found from historical realizations of defaults. Thus

we observe a correlation between the default probability given survival up till the

point of default and the recovery. And this is exactly what we correlated in our

recovery model, as from appendix D we know that when t > t0, where t0 is today,

Pt(τ ∈ (t, t+ dt]|τ > t) = λtdt. (3.65)

This model however, still has two drawbacks:

2. The influences of parameter a0 and a1 have some overlapping, resulting in less

convenient interpretability. As an example: suppose we want the initial recovery,

that is ρ0 = Φ(a0 + a1λ) set to 0.4. Then there are many combinations of a0 and

a1 satisfying this requirement. The question ‘what does a0 or a1 actually tell us?’

is thus somewhat involved.

3. The calibration process becomes much more involved due to the increased optimali-

sation domain. This recovery model leaves both parameters a0 and a1 as unbounded.

A larger domain needs a more comprehensive search in order to find the optimal

solution. Furthermore, due to the overlapping in the previous point, more local

solutions were found using that particular approach, thus requiring time consuming

global searches.

A modeling choice which we prefer and therefore present as alternative is stated in defi-

nition 3.5.2

ρ ≡ ρ
(
a0 + a1

(
λ− λ0

λ0

))
, (3.66)

where ρ is some function that manages the value of the recovery and λ0 =
(

1
S0

)b
. With

this model the two drawbacks described before are no longer present. Parameters a0 and
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a1 have clear interpretations which we will describe in section 3.7.2. Furthermore, the

domain of a0 can be restricted in a rational way.

There are various models/functions that might be chosen to manage the recovery. Das

& Hanouna [DH09] present three different types, namely the Probit, Logit and Arctan

models. Each of these has a different influence upon the recovery. A more detailed

discussion about their behavior and underlying assumptions can be found in appendix

A.3. Their functional forms look like:

ρ(Probit)(x) = Φ(x) (≡ Normal cdf) ,

ρ(Logit)(x) =
1

1 + e−x
,

ρ(Arctan)(x) =
1

2

(
arctan (x) · 2

π
+ 1

)
,

(3.67)

such that ρ : R→ (0, 1).

In this thesis we shall only look at the Probit model and we’d like to leave the other models

open for future research. On a large data set it would be nice to see whether one of these

present a better fit, possibly informing us about the underlying market assumptions.

Thus summarizing as a definition:

Definition 3.5.2. The recovery at time t, ρt, within the PDE framework is defined

by

ρt ≡ Φ

(
a0 + a1

(
λt − λ0

λ0

))
, (3.68)

where a0 ∈ R, a1 ∈ R≤0 model parameters, λt the default intensity and λ0 = S−b0

the initial default intensity.

Remark 3.5.2. As will be shown in section 3.7.1, when allowing for positive correlation,

i.e. a1 > 0, unrealistic behavior is seen in the CDS term structure. As positive correlation

has no practical foundation we set it to be negative in this thesis. As discussed in appendix

A.3 future research might change this by looking at another recovery function, e.g. the

Logit function.



Continuous term structures: The PDE model 61

3.6 Retrieving term structures by a Monte Carlo simulation

Among one of the reasons for our interest into the D&H model was its ability to provide

term structures. It created these by the aid of formulas (2.8) and (2.11) which have their

foundations in the probabilities of the jump-to-default tree.

In section 4 we shall describe how finite differences can be used to calibrate the PDE

model. As was shown the PDE model is a generalization of the D&H model, but it will

not provide a tree as it did in the D&H model. As a result, after calibrating the PDE

model we have no straightforward method to create the corresponding term structure.

To solve this issue we implement a Monte Carlo simulation providing us with the term

structures for both default intensity and recovery, see algorithm 1.

The foundation of this simulation approach lies in the fact that the default intensities

and recoveries are governed by the behavior of the stock. Therefore we may use a Monte

Carlo approach for the stock to simulate realisations of intensities and recoveries, and

from these we may extract results such as the average intensities (providing the default

probability density functiom) and the average value of the recovery at default.

There are two important comments we would like to make regarding the algorithm:

1. There is a good rationale for why we choose to observe exactly these two term struc-

tures, that is, the default probability (provided by the probability density function)

and the recovery at default. Reasons being the following: for most practical cases

these are the values of interest. Suppose for example a simple zero coupon bond

with the pricing formula

V (t0) = EQ [1{τ>T}∣∣Gt0]+ EQ [ρτ1{τ≤T}∣∣Gt0] . (3.69)

The values that we see here are the cumulative distribution function of the default

(given all knowledge up till t0) and the recovery given a default. Another interesting

note is that with this particular model we are also able to determine the second

expression on the rhs of (3.69). The above algorithm can easily be applied/modified

to find the mean of this multiplicative function. This can furthermore be extended

to more complex formulas, such as CVA.

2. One may wonder why in the case of a defaulted stock we set λ to zero whereas for

ρ we leave it undefined. The reason being that we’d like to retrieve the probability

density function, which is given by (D.11). Now, recall that
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Algorithm 1 Monte Carlo simulation for retrieving term structures

1: N % amount of steps per year
2: T % amount of years to simulate
3: M % number of simulations
4: dt = 1/N ; % step size in years
5:

6: for m:=1 to M do
7: S(m, 1) = S0

8: for t:=1 to N∗T do
9: if S(m, t) == 0 then

10: λ(m, t) = 0
11: ρ(m, t) = [ ] % Empty
12: else
13: λ(m, t) = S(m, t)−b

14: ρ(m, t) = Φ
(
a0 + a1 ∗

(
λ(m,t)−λ(m,0)

λ(m,0)

))
% Normal CDF

15:

16: end if
17: dI(t) ∼ B

(
1− eλdt

)
% Bernoulli distribution

18: dW (t) ∼ N(0, dt) % Normal distribution

19: noDefault = ((r(t) + λ(m, t)) ∗ S(m, t)) ∗ dt+ σ ∗ S(m, t) ∗ dW (t)
20: S(m, t+ 1) = S(m, t) + noDefault− (S(m, t) + noDefault) ∗ dI(t)
21: end for
22: end for

23: % Term structures Λ(t) = mean (λ(m, ·)) P (t) = mean (ρ(m, ·))

Pt0(τ ∈ (t, t+ dt]) = EQ
[
λte
−
∫ t
t0 λududt

∣∣∣Gt0] , (3.70)

Thus, within this simulation framework, the probability density function can be

found by determining the probability of default over a very small interval divided

by the size of the interval. Thus while simulating paths: in case no default occurred,

the default probability is simply the intensity, whereas if a default did already occur,

there is no longer any default probability, hence λ = 0.

In the case of recovery we are interested in the recovery at default, thus now we

should neglect all defaulted stocks as these cannot default again.
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3.7 Parameter contribution

3.7.1 To the CDS spread term structure

In this section we will look more closely into what the model parameters a0, a1 and b,

add to the resulting term structure of CDS spreads.

To get a proper insight we begin with two a priori notes:

1. Recall that parameter b determines the default intensity based on λt = 1
Sbt

. What

we may note immediately is that we should distinguish two different scenarios:

A When St > 1, then the default intensity is decreasing for increasing b. For our

investigation we take S0 = 100.

B When St < 1, then the default intensity is increasing together with b. For our

investigation we take S0 = 0.75.

The first scenario is of more practical importance, as stock values are usually larger

than one.

For both cases we fix the volatility at σ = 0.5 and the interest rate at r = 0.03.

To get a proper understanding of the influences of each parameter we will vary b

between 0.25 to 1.5 and look at 4 different sets of {a0, a1}, namely: {−0.53,−7.5},
{−0.53, 7.5}, {0.53,−7.5} and {0.53, 7.5}7.

2. As we shall see there is interesting behavior when the correlation is positive, without

real practical interpretability. Combined with the fact that positive correlation

itself has no practical foundation we will exclude this type of correlation from our

simulations in the section with results.

Remark 3.7.1. The results presented are found using implicit finite differences with

{0 ≤ S ≤ 2000,∆S = 0.5} and {0 ≤ t ≤ 5,∆t = 1/52}. More on the finite differences is

presented in section 4.

Scenario A In figure 3.2 we see the term structures of CDS spreads for several pa-

rameter sets. In particular, each color belongs to a specific choice of parameter b, and

at the same time, the differences observed from the left image to the right correspond to

differences induced by the different values of a0 and a1.

The first three main consistent observations are

Main observation 3.7.1 (Influence a0 on CDS spreads). a0 provides initial vertical

shifts: increasing a0 lowers the initial spread.

7The choice of a0 = ±0.53 is not a random one: It approximately corresponds to an initial recovery of
either 70% or 30%.
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Figure 3.2: The term structure of CDS spreads given by the PDE model. We modify
parameter b between 0.25 and 1.25, while looking at 4 different sets of {a0, a1} and

S0 = 100, σ = 0.5, r = 0.03.

Main observation 3.7.2 (Influence a1 on CDS spreads). a1 influences the terminal

value: increasing a1 lowers the final spread.

Main observation 3.7.3 (Influence b on CDS spreads). b provides both height and

form.

These contributions persist throughout all results and are therefore important ones.

Next we will state some of the additional observations and proceed by explaining their

causes. This will provide us with extra intuition for the dynamics. 1) Decreasing b results

in higher spreads, 2) when a1 < 0, smaller b appears to give downward trends on the CDS

term structure, whereas higher b turns out to result in upward trends and 3) observation

2 doesn’t seem to hold when a1 > 0, instead the opposite seems to be true.

1. Lower b results in higher spreads.

Let b2 > b1 then initial default intensities corresponding to these parameters for b

result in

(
1

S0

)b2
<

(
1

S0

)b1
. (3.71)

This follows from the fact that S0 > 1, Telling us that if we decrease b then we

expect the initial default intensity, λ0, to be higher, and as a result - leaving a0 and

a1 unchanged - we get higher spreads.
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2. When a1 < 0, lower and higher values for b result in respectively downward and

upward trends. This observation is indeed a correct one, except when a1 > 0. The

trend of the CDS spreads is determined by the value of the spreads over time. Recall

the general formula for the spreads, (1.17). The CDS spread at time t with maturity

Tb may be approximated: Let t0 = t, tN = Tb and ti − ti−1 = ∆t, for i = 0, 1, ..., N .

Then supposing continuous premium payments, we discretize the CDS value by

Ct(Tb) =

∑N−1
i=0 e−ri(ti−t)(1− ρi)Pt(τ ∈ (ti, ti+1])∑N

i=1 e
−r(Ti−t)

. (3.72)

For ∆t small enough it holds that the probability can be approximated by its value

on the probability density function of the related Cox process, (D.11), such that

Pt(τ ∈ (ti, ti+1]) ≈ EQ
[
λtie

−
∫ ti
t λudu∆t

∣∣∣Gt] . (3.73)

Now clearly the probability density function sums up to one, i.e.∫ ∞
t

EQ
[
λse
−
∫ s
t λudu

∣∣∣Gt] ds = 1. (3.74)

Furthermore, as λ0 := λt is deterministic at time t we have

Pt(τ ∈ (t, t1]) ≈ λ0∆t. (3.75)

From expression (3.74) and (3.75) we may understand the behavior in the following

two scenarios.

(a) λ0 small.

In this case it seems reasonable for the probability of default to further increase,

as recalling (3.74) it should form a probability density function. However, con-

vergence towards zero is required on the long term.

What this reasoning thus tells us is that for some s > t we may expect

Pt(τ ∈ (t, t+ ∆t) ≤ Pt(τ ∈ (s, s+ ∆t)

↔ λt ≤ EQ
[
λse
−
∫ s
t λudu

∣∣∣Gt]
↔ λt ≤ EQ [λs|Gt] .

This however might trigger the question: if the stock is always expected to

increase within the risk neutral framework, and we model the intensity as S−b,

then how could the expected intensity possibly be increasing knowing that the

stock is becoming more ‘safe’.

That may seem counter intuitive, but it’s only a consequence of the difficulty
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Figure 3.3: Term structures for default intensity and recovery for two different param-
eter sets. The first parameter set resulted in a downward CDS term structure whereas

the second results in an upward.

of having a proper intuition for Jensen’s inequality: note that f(x) = x−b is a

convex function, such that

EQ
[
S−b

]
≥
(
EQ [S]

)−b
. (3.76)

Even though the rhs speaks to our intuition it is an underestimation of the true

value. This behavior can be confirmed by a simple example: suppose the stock

to have initial value S0 = 10 and at time 1 it either increases with probability

p = 0.52 to S1 = 11 or decreases with probability 1−p = 0.48 to S1 = 9. Then

we have EQ [S1] = 10.04 (thus 0.4% interest rate). Now, let b = 1 such that

λ0 = 0.1 and subsequently

EQ [S−b] = 0.52 ·
(

1
11

)
+ 0.48 ·

(
1
9

)
≈ 0.1006(

EQ [S]
)−b

= 1
10.04 ≈ 0.0996.

(3.77)

Thus we see that even in this simple example an expected increase of the stock

might correspond to a simultaneously increasing default intensity.

(b) λ0 large.

Using the same reasoning as for small λ0 we may now expect the probability

of default to decrease instead.

The above two statements are no proofs but mere intuition. A Monte Carlo simula-

tion confirming this intuition can be found in figure 3.3. We provided term structures

for the default probability density function and recovery corresponding to a down-

ward and upward trending CDS term structure. Indeed the above reasoning seems

to hold.

3. In contrast to the observation in part 2, when a1 > 0 the exact opposite seems to

occur.

To be more specific, the initial trend seems to be upwards for small b and downwards
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when b is large. This observation is a little more involved and a more in deep

discussion is presented in appendix A.2. We therefore summarize: due to the positive

correlation, decreasing intensity goes together with increasing lgd. However, for

very small lgd a decrease of the intensity produces a relatively very large increase

of lgd, so large that it increases the spread. More specifically we show that when

a1 >
Φ(−a0)
φ(a0) then spreads will initially increase, whereas when a1 <

Φ(−a0)
φ(a0) , then they

will decrease. There thus seems to be an analytically tractable switching line. One

may verify that the parameter set as in the rightmost sub figure of figure 3.2 indeed

corresponds to an increase. This behavior is not persistent and when a certain lgd

has been exceeded the spread will start moving downward.

We have not carefully studied this behavior within the Logit or Arctan model, but we

expect it to be less present. As our results in section 5 are based on the Probit model we

shall neglect positive correlation as it seems more like a flaw of the model than a good

representation of the market.

Scenario B As announced before, the behavior of the default intensity changes to-

gether with S0, in particular when S0 is smaller than 1, then increasing b corresponds to

decreasing intensity. Besides this there are actually no big differences. What we shall see

is that this scenario functions more as a magnifier of results in scenario A. In figure 3.4

we show, analogously to scenario A, CDS term structures to several parameter sets.

The first and third parameter set show us that indeed larger b induces the initial CDS

spread to start higher. Because the initial intensity is of such magnitude and the prob-

ability of default has to remain a probability density function, it quickly drops. This

corresponds to what was noted before: decreasing spreads for higher initial default in-

tensities (when below the switching line). In contrast to scenario A, the initial spreads

remain closer to each other, as a consequence of the fact that the recovery remains close

the zero in all cases. Therefore the difference is only a result of the change the default

intensity.

In the second and fourth we see two interesting things

1. Spreads have an upward term structure, where higher default intensities induce larger

initial gradients.

This is a consequence of all spreads lying above the switching line. Furthermore the

spread related to the highest default intensity lies the furthest above this line and

therefore increases most significantly (see appendix A.2).

2. The term structures drop sooner in the second sub figure than in the fourth sub figure

(see figure 3.4).

Indeed, the closer above the switching line the spread lies, the sooner the drop

starts. In the second image we have a0 = −1 whereas in the fourth a0 = 1. As
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Figure 3.4: Term structure of CDS spreads given by the PDE model. We modify
parameter b between 0.25 and 1.75, while looking at 4 different sets of {a0, a1} and

S0 = 0.75, σ = 0.5, r = 0.03.

we recall from the switching line it lies higher for smaller a0. This can intuitively

be understood from the fact that under smaller a0 the model sets the recovery to

be smaller. And as we recall the switching line occurs at a particular point on the

normal distribution where differences alleviate (around small recoveries).

3.7.2 To the default and recovery term structures

In the previous section we discussed the contribution of the model parameters to the

CDS spread term structure. Eventually however we are also interested in the resulting

term structures of the implied default and recovery. We shall look into that now, starting

with the default intensity. During this section we take S0 = 10, σ = 0.5 and r = 0.03

constant. Furthermore the results presented are determined by the Monte Carlo approach

introduced in section 3.6.

Default intensity In figure 3.5 we plot the expected future default intensities for

several values of b. This gives us an impression of what parameter b exactly does. The

most important thing to note is that the term structure is initially downwards sloping

for small b and upwards sloping for large b. Eventually all term structures will converge

towards zero.

Recovery A priori we expect the following behavior of parameters a0 and a1: Param-

eter a0 fixes the initial recovery and a1 determines the direction and speed at which the
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Figure 3.5: Term structures for the default intensities implied by the
jump to default stock price model; S0 = 10, σ = 0.5, r = 0.03.

term structure moves away from the initial recovery. There are two main possible term

structures for the recovery depending on the pre-default intensity:

1. The pre-default intensity drifts upwards

This implies the recovery to move downwards if a1 < 0 and upwards if a1 > 0.

2. The pre-default intensity drifts downwards

Now the recovery does the opposite, it moves downwards if a1 < 0 and upwards if

a1 > 0.

Any term structure is one of these or a combination of both.

Now let’s look at a simulation of several different recoveries, see figure 3.6. The left

and right side of the figure show respectively the results of moving a0 and a1. Our expec-

tations seem to be right:

Main observation 3.7.4 (Influence a0 on the recovery term structure). a0 controls

the initial recovery by setting it higher for larger a0.

Main observation 3.7.5 (Influence a1 on the recovery term structure). The sign of

a1 fixes the direction of movement away from the initial recovery whereas the norm

of a1 increases the absolute value of the derivative with which it moves away.

There are however two points worth noting.
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Figure 3.6: Term structures for the recovery at default;
S0 = 100, σ = 0.5, r = 0.03, b = 1.

1. For small a0 we note upward drifting of the term structure, whereas for large a0 it

drifts downwards.

This is again a consequence of the fact that the expectation of a function is not

equal to the function of an expectation. For all scenarios the expected pre-default

intensity is the same, and the recovery is a function of this pre-default intensity.

We may verify that the expected pre-default intensity is increasing and thus the

reason for the upward movement when a0 is low is a consequence of the derivative

of the normal distribution: the simulations that result in upward moving default

intensities influence the recovery to go down, however the downward drift is slow

due to the derivative which starts approximating zero. In contrast, the default

intensities moving downwards result in upwards moving recoveries with a larger

derivative, resulting in larger values more heavily impact on the expectation. The

opposite holds for large a0.

It is exactly for this reason why we observe the initial upward bending trends in the

third image of figure 3.2: the larger initial recovery results in a quicker decent of

the recovery bringing with it the upward bend.

2. A similar result seems notable when moving a1. At initiation, a1 with larger absolute

values have a larger derivative, which eventually flattens: The larger the initial

derivative the quicker it seems to flatten. This is clearly seen for dark blue line

b = −10 which has large initial negative derivative but then quickly seems to reach

its lowest point to continue drifting upwards. Furthermore, the second derivative of

the recovery function at 50% is exactly zero and thus by Jensen’s inequality, there

is exact equality between the function of the expectation and the expectation of the

function. Such that, heuristically, for a very small time step we may expect (let

t = 0)



Continuous term structures: The PDE model 71

EQ
t [ρt+dt] = EQ

t

[
Φ

(
a0 + a1

(
λt+dt − λt

λt

))]
≈ Φ

(
a0 + a1

(
EQ
t [λt+dt]− λt

λt

))
,

(3.78)

explaining the initial downward movement. Subsequently the recovery function pushes

upwards as the further upward drifting intensities have less influence on the recovery as

their derivative becomes smaller.

Summarizing, for a1 < 0 the quickly moving downwards at initiation is a consequence

of the upward moving pre-default intensity together with the concave functional form

of the normal distribution around 50%. Next the moving upwards is related to convex

functional form for smaller recovery values. Similarly we understand the results when

a1 > 0.
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3.8 Dynamic Stability

We shall now examine whether the framework is overly sensitive to the input. In section

3.7.2 we have already seen that changing the parameter set does not result in abrupt

changes within the term structure. In the section 5 we provide a description of the cali-

bration process, however for now we will show some calibration results based on shocking

input parameters by one percent. These experiments are performed on datasets for Banco

do Brasil, Shell and Air France - KLM, see table H.1.

We are given a stock value, volatility and market spreads for which we have found optimal

results (a parameter set and term structures) by means of the calibration process. Now,

each of these input components will be shocked by one percent and new results are found

by calibration. We did this for three firms, for which we shall discuss the calibration in

more detail in section 5.3. The results are portrayed in table 3.1. Across all experiments

we see that the calibrated parameters and the resulting term structures do not display

any dramatic changes. Air France - KLM represents most risky data followed by Banco

do Brasil and finally Shell. It seems that more riskier data is more sensitive to the input.

Overall, these results seems to suggest a stable model.
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Banco do Brasil Base case Stock shock Volatility shock Spreads shock

S0 24.35 24.49 24.35 24.35
σ 0.437 0.437 0.441 0.437

a0 0.870 0.878 0.816 0.894
a1 −2.707 −2.735 −2.472 −2.833
b 1.016 1.011 1.023 1.011

RMSE 10.16 10.20 9.78 10.46
pd. diff.8 (%) - 0.72 2.39 1.52
ρ diff.9 (%) - 0.89 1.86 1.17

Shell Base case Stock shock Volatility shock Spreads shock

S0 28.01 28.29 28.01 28.01
σ 0.174 0.174 0.176 0.174

a0 1.916 1.918 1.902 1.923
a1 −5.932 −5.964 −5.752 −6.021
b 1.108 1.104 1.108 1.107

RMSE 3.37 3.38 3.32 3.44
pd. diff (%) - 0.31 0.74 0.98
ρ diff. (%) - 0.26 0.18 0.46

Air France - KLM Base case Stock shock Volatility shock Spreads shock

S0 7.62 7.69 7.62 7.62
σ 0.461 0.461 0.466 0.461

a0 −0.077 −0.074 −0.039 −0.086
a1 −0.027 −0.028 −0.028 −0.027
b 1.666 1.654 1.651 1.662

RMSE 6.00 6.13 6.27 6.24
pd. diff. (%) - 1.12 3.04 1.40
ρ diff. (%) - 0.31 3.29 0.83

Table 3.1: Calibration of scenarios when shocking the stock, volatility
and market spreads 1% upwards. The lower two rows correspond to

respectively the maximum difference of probability density function of
default with respect to the base case and the maximum difference of

the recovery at default ρ with respect to the base case.
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Finite differences for the PDE

model

“Simplicity is the final achievement. After one has played a vast quantity of

notes and more notes, it is simplicity that emerges as the crowning reward of

art.”

– Frédéric Chopin , If Not God, Then What?

In section 3.3 we deduced two PDEs that represent our model towards pricing a CDS.

PDEs are build up of partial derivatives of underlying components. Finite differences

exploit this property by discretizing the dimensions of these components and the corre-

sponding derivatives.

One may understand that depending on the choice of time discretization (e.g. forward

or backwards) the approach is slightly modified. In our scenario both time and stock

dimensions have to be discretized. As at maturity we have the initial condition, we have

to iterate through time, such that iterations may bring with them errors (more on this in

section 4.3), therefore, the choice of discretization is an interesting one.

There are two approaches that we’d like to highlight. To this end, let n = 0, 1, ... be a

discretization of the time dimension

1. Explicit finite differences: the approach resulting from a forward Euler discretization

in the time direction, i.e.

∂yn
∂t

=
yn+1 − yn

∆t
+O (∆t) . (4.1)

2. Fully implicit finite differences: the approach resulting from a backward Euler dis-

cretization in the time direction, i.e.

74
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Figure 4.1: Examples of the explicit and implicit time discretization. In the implicit
case the space elements are evaluated at a the time step on which elements are not yet

determined.

∂yn
∂t

=
yn − yn−1

∆t
+O (∆t) . (4.2)

The big Oh notation indicates both discretization to be of first order. This can easily be

understood from

y(t±∆t) = y(t)±y′(t)∆t+O
(
∆t2

)
→


y′(t) =

y(t+ ∆t)− y(t)

∆t
+O (∆t) ,

y′(t) =
y(t)− y(t−∆t)

∆t
+O (∆t) ,

(4.3)

Other types of discretizations may be deduced in a similar fashion, using the Taylor ex-

pansion.

We should remark that by forward in time we refer to moving away from the initial condi-

tion towards the desired point in time at which we seek a solution, this is not necessarily

forward in time in the absolute sense, see figure 4.1 for a visualisation.

The differences between explicit and full implicit seem very small but have some important

implications, in particular to the numerical stability of the problem: the explicit method is

usually conditionally stable, whereas the implicit method is unconditionally stable. Recall

that we mentioned numerical stability to be an issue in the D&H model. By using implicit

finite differences we can work around this problem. Due to this last convenient result we

will describe the fully implicit method more carefully in the next section.

Remark 4.0.1. When we take a single step in the time direction we call the finite

difference scheme a one-step scheme. There are also multistep finite difference schemes,

e.g. the Leapfrog scheme, which uses central discretization. Such schemes however require

additional initial conditions, which is why we leave such schemes aside.

Remark 4.0.2. Another scheme which also uses central discretization in time is the Crank

Nicolson scheme, a second order scheme in time for the parabolic equations. Although
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it uses central discretization it remains a one-step scheme after some modifications. This

scheme is applicable to our model, however it did not seem to improve convergence.

This section is build up as follows. First we will discuss the fully implicit finite differences

approach, which includes derivations of the PDE’s boundary conditions. After describing

this scheme, in section 4.2 we will look at grid stretching, which is a different way of

ordering the grid points in the spacial direction with the aim of improving results. Next

we investigate upon the convergence and in particular the stability of the explicit scheme,

such that we may conclude the D&H model to be unstable if condition (2.14) is violated.

Finally we discuss the choice of the discretization parameters in section 4.4.
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4.1 Fully Implicit finite differences approach

We shall now show how to deduce the fully implicit finite difference scheme and how to

implement it. In order to price CDSs by means of our PDE model we need to evaluate

both the premium and protection leg PDEs. Recall these to be

∂At−
∂t

+ (rt + λt)St−
∂At−
∂S

+
1

2
σ2S2

t−
∂2At−
∂S2

− (rt + λt)At− + C = 0, (4.4)

defined on S ∈ R>0 and t ∈ (0, T ), with initial and boundary conditions,

{
A(T, S) = 0,

A(t, 0) = 0, t ∈ [0, T ].
(4.5)

And the protection leg

∂Bt−
∂t

+ (rt + λt)St−
∂Bt−
∂S

+
1

2
σ2S2

t−
∂2Bt−
∂S2

− (rt − λt)Bt− + λtlgdt = 0, (4.6)

defined on S ∈ R>0 and t ∈ (0, T ), with initial and boundary conditions,

{
B(T, S) = 0,

B(t, 0) = 0, t ∈ [0, T ].
(4.7)

Clearly, both have similar form and their schemes are therefore virtually identical. To

this end we only show the scheme for the premium leg PDE. The initial and boundary

conditions shall be discussed for both cases.

4.1.1 Initial and boundary conditions

In the next section we will discretize the dimensions of both time and stock. For now

we only want to note that the stock is an infinite dimension, there is no bound on a

maximum stock value in our PDE. However, in the computer we have to implement some

upper bound: the upper bound for the stock will be Smax, some yet to be determined

value. In this section we determine the boundary values for both premium and protection

leg at S = 0 and S = Smax, and the initial condition.

Premium leg The initial condition and the boundary condition at S = 0 are straight-

forward as they follow directly from the definition of the model. However the boundary

condition at S = Smax, corresponding to the truncation of the stock space requires more

attention. What we are looking for is an accurate estimate for A(t, Smax). Recall that
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A(S, t), the value of the expected premium leg given stock value S at time t, is defined

by (3.2). A priori we might expect a good estimate to be payments until maturity, i.e.

A(t, Smax) ≈ EQ
[∫ T

t
e−
∫ s
t ruduCds

∣∣∣∣Gt] , t < T, (4.8)

because the probability of a default becomes very small when the stock price increases

sufficiently. This expectation is indeed correct and can be formalized by means of the

next theorem.

Theorem 4.1.1. Let the default intensity be defined by λ = 1
Sb

, where S the stock

value. Then the C-continuous paying expected premium leg with maturity T and

interest rate rt satisfies

lim
St→∞

Prem (t, T ) = EQ
[∫ T

t
e−
∫ s
t ruduCds

∣∣∣∣Gt] . (4.9)

Proof. Recall that the general expression for the expected premium leg at time t satisfies1

EQ
[∫ T

t
e−
∫ s
t rudu1{τ>s}Cds

∣∣∣∣Gt] = EQ
[∫ T

t
e−
∫ s
t ruduCds

∣∣∣∣Gt]Pt(τ > T )

+ EQ
[∫ T

t
e−
∫ s
t rudu1{τ>s}Cds

∣∣∣∣Gt] (1− Pt(τ > T )) .

(4.10)

As both expectations are bounded it holds that the desired result follows immediately if

lim
St→∞

Pt(τ > T ) = 1. (4.11)

The validity of (4.11) is proven in lemma A.1.1.

Protection leg Similar as for the premium leg case the initial condition and the

boundary condition at S = 0 are straightforward. The condition at S = Smax follows

by a same approach: Intuitively we may expect that if the stock value increases towards

infinity, the probability of default becomes negligible such that the expected value of the

protection leg becomes zero, providing us with the estimate

B(t, Smax) ≈ 0, t < T. (4.12)

1Recall that we assume there to be no wrong-way risk, i.e. interest rate and default times are indepen-
dent.
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This statement can indeed be formalized by the following theorem

Theorem 4.1.2. Let the default intensity be defined by λ = 1
Sb

, where S the stock

value. Then the expected protection leg with maturity T satisfies

lim
St→∞

Prot (t, T ) = 0 (4.13)

Proof. Recall that the general expression for the expected premium leg at time t satisfies

EQ
[
e−
∫ τ
t rudu(1− ρτ )1{τ≤T}

∣∣∣Gt] = EQ
[
e−
∫ τ
t rudu(1− ρτ )

∣∣∣Gt] (1− Pt(τ > T )) . (4.14)

As the expectation is bounded it holds that the desired results follow immediately from

lemma A.1.1.

4.1.2 Discretization

Specifying the grid Before anything we have to discretize the dimensions that we

are working with. In our case these are time and space (stock). We have to truncate

the stock by introducing a maximum stock value, Smax. Furthermore we take N steps

within one time unit (in this thesis, one year) and M steps in the stock direction, such

that the grid consists of points n = 0, 1, ..., T · N, m = 0, 1, ...,M , see figure 4.2. In the

time direction steps have size ∆t = 1
N and in the stock direction ∆x = Smax

M , such that

Amn ≡ A(n∆t,m∆x).

Derivative truncation Each partial derivative needs to be discretized, for the time

component we use backwards Euler and for the stock component central discretization,

i.e. around (n∆t,m∆x):

∂A(n∆t,m∆x)

∂t
=

1

∆t

(
Amn+1 −Amn

)
+O (∆t)

∂A(n∆t,m∆x)

∂S
=

1

2∆x

(
Am+1
n −Am−1

n

)
+O

(
∆x2

)
∂2A(n∆t,m∆x)

∂S2
=

1

∆x2

(
Am+1
n − 2Amn+1 +Am−1

n

)
+O

(
∆x2

)
.

(4.15)

Confusingly this might seem a forward Euler discretization. However, during the evalua-

tion of our PDE we start at the final state and work towards the time of interest, which

is a backward movement through time. We know the value of Amn+1 and we are interested

in Amn . Now one may understand this to be a valid backward Euler discretization.

Note two things with respect to (4.4):
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Figure 4.2: The finite differences grid when discretized for 1 year in time.

1. The PDE states At only, as if it does not depend upon St. However St on its turn

depends on t such that the PDE is a correct representation of A(t, St) ≡ A(t, S).

Note also that the intensity λ depends only on the stock value.

2. The index specifies t−, this is however a specification required due to the continuous

nature of the equation. If at time t there is a default, then differentials become

undefined. However, on the finite differences grid a default occurs only within

(n∆t, (n+ 1)∆t), never at the points n∆t or (n+ 1)∆t, because at these particular

points we are either at S = 0 or S > 0, such that we know whether a default

occurred or not. In the continuous case these intervals are nonexistent such that we

require the notation t− to emphasize that no default occurred yet. We may thus

safely neglect the minus sign.

Substituting (4.18) into (4.4) gives us

Amn+1 −Amn
∆t

+(rmn + λm)m∆x
Am+1
n −Am−1

n

2∆x
+

1

2
σ2m2∆x2A

m+1
n − 2Amn +Am−1

n

∆x2
+C = 0.

(4.16)

Isolating Amn+1 on the left side and ordering, such that

Amn+1 =
(
1 + ∆tσ2m2 + ∆t (rmn + λm)

)
Amn

−1

2

(
∆tσ2m2 −∆t(rmn + λm)

)
Am+1
n

−1

2

(
∆tσ2m2 + ∆t(rmn + λm)

)
Am+1
n + ∆tC.

(4.17)
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To keep the overview we write

αm = ∆tσ2m2

βmn = ∆t (rmn + λm) ,
(4.18)

such that

Amn+1 = (1 + αm + βmn )︸ ︷︷ ︸
dmn

Amn +−1

2
(αm − βmn )︸ ︷︷ ︸
umn

Am+1
n +−1

2
(αm + βmn )︸ ︷︷ ︸

lmn

Am−1
n + ∆tC, (4.19)

for 0 ≤ n < T · N and 0 < m < M , where for m = 0 and m = M we have boundary

conditions. In particular we can write (4.19) in matrix notation as

An+1 = QnAn + bn + ∆tC, (4.20)

with

An =


A1
n
...

AM−1
n

 , Qn =



d1
n u1

n

l1n
. . .

. . .

. . .
. . .

. . .

. . .
. . . uM−2

n

lM−1
n dM−1

n


, b =



l1nA
0
n

0
...

0

uM−1
n AMn


. (4.21)

Elements A0
n and AMn are given by the boundary conditions, more specifically, let r be

the deterministic future continuously compounded interest rate, then

A0
n = 0 and AMn = ∆tC

N∑
j=n

e−
∑j
k=n+1 rk∆t, (4.22)

where for AMn we use the discretized version of (4.8). A visualisation of this top boundary

condition can be found in figure 4.3. Finally, we’d like to emphasize that all boundary

conditions, except this top conditions of the premium leg, are equal to zero and do not

require any extra attention. Also note that our implementation of these boundary condi-

tions can be found in the constructor of the PDE Matlab class2 in appendix (I.2.1)

2Our implementation of the finite difference approach is object orientated programmed.
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rN−3 rN−2 rN−1

0

∆tC · e−rN−1∆t

∆tC ·
(
e−rN−2∆t + e−(rN−2+rN−1)∆t

)
∆tC ·

(
e−rN−3∆t + e−(rN−3+rN−2)∆t + e−(rN−3+rN−2+rN−1)∆t

)
Figure 4.3: The boundary condition at Smax given an annual spread of C. In this

example, the final time node is supposed to be N

Now recall that we started at time T , i.e. n = T ·N , and we are interested in the premium

leg at time zero, that is Prem (t = 0, T ) = A0. We can therefore use (4.20), to determine

backwards

An = Q−1 (An+1 − b−∆tC) . (4.23)
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Figure 4.4: Going from a regular spaced grid to a grid stretched grid in which points
accumulate around 0.5.

4.2 Grid stretching

Grid stretching transforms an underlying grid in such a way that it may improve in

particular two things:

1. An important area may get more attention by accumulating grid points at this area.

This is especially desirable at locations where the function has a large derivative or

is even discontinuous.

2. Less important areas will get less attention by dissipation of grid points, while at

the same time we reach areas more further away, possibly improving approximation

errors in the boundary conditions.

In figure 4.4 we provided a visualization of what grid stretching will actually do for us:

accumulate near a desired point (in the figure around 0.5) and dissipate when we move

away from this point.

4.2.1 Grid stretching on our model

Such a transformation might come in handy in our model around small values for the

stock, because at these values the default intensity experiences larger changes. Recall

that
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Figure 4.5: The premium and protection legs at time zero for several stock values. To
this end we took the recovery to be zero (note that for a recovery value between zero and
one it would depend upon the initial stock value, such that to circumvent this we took

it to be zero). Furthermore we randomly took b = 0.9.

default intensity ≡ λ =
1

Sb
, (4.24)

such that the derivative of the intensity increases near zero. Therefore we expect the

premium and protection legs also to be subject to larger changes near zero: the premium

leg will converge towards zero whereas the protection leg to 100% of notional. Indeed

this behavior can be noticed in figure 4.5. It therefore makes sense to use grid stretching

around small values of the stock.

4.2.2 Methodology

To get this type of behavior without changing the uniform grid as we have in the regular

setup, we transform the grid using the function

Y = ψ(S) =
arcsinh(θ(S −X)))− c1

c2 − c1
. (4.25)

This does not directly make sense, so we clarify: c1 and c2 are chosen such that Y ∈ [0, 1],

θ is called the stretch rate such that larger θ accumulate and dissipate more strongly.

Finally, X is the desired accumulation point and S the regular grid dimension, in our case

that would be the stock value.

In this thesis, when we apply grid stretching, we shall set3 X = S0 such that more

attention is paid around the initial stock value. Also, we take the stretch rate θ = 10, a

3Indeed one may notice that this contradicts the usage of grid stretching around small values of stock
if S0 is large, we will comment on this later in this section.
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Figure 4.6: An example of a grid stretching function, for S0 = 20 and θ = 10.

mere result of some trial and error. As an example we take S0 = 20 and Smax = 100, then

the resulting function is seen in figure 4.6. In practice we shall iterate uniformly over the

y-axis, where each y value is related to some stock value. And indeed for y between 0.2

and 0.7 the stock value is near 20, confirming the accumulation.

If we thus choose a uniform grid on Y then this is related to some accumulated grid on

the stock. So, what we would like to do, with respect to our PDEs, is to transform the

partial derivatives with respect to the stock such that they become with respect to Y .

This can be achieved as follows: let ψ−1(Y ) = η(Y ) = S, then

∂A

∂S
=
∂A

∂Y

∂Y

∂S
=
∂A

∂Y

(
∂Y

∂S

)−1

=
1

η′(Y )

∂A

∂Y
,

∂2A

∂S2
=

(
∂S

∂Y

)−1 ∂

∂Y

((
∂S

∂Y

)−1 ∂A

∂Y

)
=

1

(η′(Y ))2

∂2A

∂Y 2
− η′′(Y )

(η′(Y ))3

∂A

∂Y
,

(4.26)

This thus leaves us with partial derivatives as desired with some complicated looking

expressions in front of them. These expressions however are actually fairly easy. It’s easy

to show that

η(Y ) =
1

θ
sinh(c2Y + c1(1− Y )) + S0,

η′(Y ) =
c2 − c1

θ
cosh(c2Y + c1(1− Y )),

η′′(Y ) =
(c2 − c1)2

θ
sinh(c2Y + c1(1− Y )).

(4.27)
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4.2.3 Implementing in the PDE

Again we show the implementation of grid stretching only for the premium leg, as the

protection leg follows analogously. Recall the PDE from (3.37), substituting into this the

partial derivatives of (4.26) gives us

∂A

∂t
+

[(
rt + λη(Y )

) η(Y )

η′(Y )
− 1

2
σ2 (η(Y ))2η′′(Y )

(η′(Y ))3

]
∂A

∂Y

+
1

2
σ2

(
η(Y )

η′(Y )

)2 ∂2A

∂Y 2
−
(
rt + λη(Y )

)
A+ C = 0,

(4.28)

where we write λη(Y ) to emphasize that the default intensity, which depends upon the

stock, now thus depends upon η(Y ) = S. Now we discretize using backward Euler on the

temporal dimension and central differences on the Y dimension to find

1

∆t

(
Amn+1 −Amn

)
+

[
(rn + λmn )− 1

2
σ2 η

mηm

(ηm)
2

]
ηm

ηm
1

2∆x

(
Am+1
n −Am−1

n

)
+

1

2
σ2

(
ηm

ηm

)2 1

∆x2

(
Am+1
n − 2Amn +Am+1

n

)
− (rn + λmn )Amn + C = 0.

(4.29)

Here we proceed, just as before, using the notation of ∆x to denote the step size in the

dimension of Y , the accumulated stock and the overlining indicates the derivative. After

ordering the terms of A we find

Amn+1 =

(
1 + σ2

(
ηm

ηm

)2 ∆t

∆x2
+ (rn + λnm)∆t

)
Amn

+

(
ηm

ηm
∆t

2∆x

[
1

2
σ2 η

mηm

(ηm)
2 − (rn + λmn )

]
− 1

2
σ2

(
ηm

ηm

)2 ∆t

∆x2

)
Am+1
n

−

(
ηm

ηm
∆t

2∆x

[
1

2
σ2 η

mηm

(ηm)
2 − (rn + λmn )

]
+

1

2
σ2

(
ηm

ηm

)2 ∆t

∆x2

)
Am−1
i − C∆t.

To easy the notation we write

δm =
ηm

ηm
, αm = σ2(δm)2 ∆t

∆x2
,

βmn = (rn + λmn )∆t, γmn =
δm

2∆x

[
1
2σ

2δm
ηm

ηm

]
,

(4.30)

such that we get the simpler looking implicit finite difference scheme
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Amn+1 = (1 + αm + βmn )Amn +

(
γmn −

1

2
αm
)
Am+1
n −

(
γmn +

1

2
αm
)
Am−1
n − C∆t, (4.31)

where we again emphasize that

λm =
1

(Sm)b
=

1

(ηm)b
. (4.32)

4.2.4 Results

This adjustment might be helpful for our discretization as we have seen that both premium

and protection legs have larger derivatives for smaller stock values. This however makes

the decision of whether to use grid stretching or not, not straightforward: when the initial

stock value is small, then surely grid stretching will be beneficial, but when the initial

stock value is large then grid stretching would provide less attention to the smaller stock

values. This particular behavior can indeed be confirmed by the example in figure 4.7. We

truncate the stock values on the grid between 0 and 2000. Next we determine premium

leg, protection leg and spread for the step sizes dx = 2k, k = 2, 1, ..,−3 and observe these

results while changing the initial stock value S0. In the figure, each row represents error

difference plots for different initial stock values.

As we can see the grid stretching method performs best for the lower two rows and worse

for the top two rows. This is exactly in line with our expectations. Indeed when S0 = 100

the grid stretching adjustments provide extra grid points around S = 100, and less around

the low stock values. But exactly at these low stock values both premium and protection

leg become more sensible. On the contrary, when S0 = 3 we are modeling extra grid

points around the low stock values, such that grid stretching performs better.

One might suggest to always choose the accumulation value of the grid stretcher to be

around, say S0 = 10, such that we always take the extreme part of the grid into account.

However, we find results to become even worse for large stock values, which is likely to

be a consequence of dissipation of the grid points around S0. A more proper choice could

be made if we’d more carefully adjust the stretch rate such that we gain enough points

around S0 and still accumulate properly around the low values of the stock. This we leave

for possible future investigation.

With these results in mind, we choose to set the rule to apply grid stretching when stock

values are low, we take S0 ≤ 15, whereas we use the regular grid when S0 > 15.

The focus of this study is on determining CDS spreads and to extract from them the

desired term structures. The Greeks ∆ and Γ, important in the scope of hedging, are

therefore less of in issue in this thesis. The interested reader is referred to [OLH05] for a
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Figure 4.7: Comparison of the performance of grid stretching versus a regular grid.
Each row models a different initial stock value where the rest of the parameters are
randomly taken to be: σ = 0.5, r = 0.03 (constant), a0 = 0.2, a1 = −1.5, b = 0.9,∆t =

1
124 .

more comprehensive study on grid stretching on European and American vanilla options,

including convergence of ∆ and Γ.

Finally, speed is not the main focus of this thesis but it is an important subject nonetheless.

To this end we only mention briefly that, yes, some additional calculations have to be

provided for grid stretching, but on a similar note, less grid points are required to find

the same accuracy as when a regular grid is used. Therefore due to its greater accuracy

at a smaller grid the method can be faster when applied correctly.



Finite differences for the PDE model 89

4.3 Convergence

Convergence is usually an important requirement for finite differences schemes in general,

without convergence of the scheme we will never know how to interpret the results pro-

vided. Intuitively, convergence tells us that for smaller ∆t and ∆x our solution gets closer

to the true solution. This simple statement is not at all clear when there are multiple

solutions to the PDE. However, we shall soon see that our PDEs have unique solutions

and we may therefore stick to this intuitive interpretation.

An important result is the Lax-Richtmyer Equivalence theorem (see theorem F.0.1). We

understand from it that our finite difference scheme converges if

1. the corresponding initial-boundary value problem is linear and well-posed,

2. the finite difference scheme is consistent,

3. and numerically stable.

Recall that we mentioned the D&H model to have numerical stability issues. In this sec-

tion we shall prove this indeed to be the case.

We will start this section by verifying the well-posedness of our PDEs. Then we will

determine the stability region of the explicit method. This then tells us whether the

particular choice that results in the D&H model is a stable choice. We will omit confirming

consistency of the difference schemes as these are generally known results. In a nutshell,

consistency corresponds to the property that a finite difference scheme equals the pde

when both ∆x and ∆t approach zero.

4.3.1 Well-posedness

In order to apply the Lax-Richtmyer Equivalence theorem we require well-posedness

(among consistency and stability) of the PDEs.

Definition 4.3.1. Hadamard’s well-posedness

An initial-boundary value problem for PDEs is well-posed if

1. it has a unique solution (existence and uniqueness),

2. the solution depends continuously on the given data (dynamic stability).

Following [Hof92] we can easily see that our PDEs are of the parabolic type and that for

a parabolic PDE to be well-posed
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1. the solution domain D(t, S) must be open in the time (or timelike) direction,

2. initial data must be specified along the time (or timelike) boundary,

3. continuous boundary conditions must be specified along the physical boundaries of

the solution domain,

4. the boundary conditions can be of the Dirichlet type, the Neuman type, or the

mixed type.

All these conditions are easily met for both the premium and protection leg PDEs: indeed

the solution domain in the time direction is the open domian (0, T ). Initial data is

presented at time T , where T functions as the initial time (even though all other times

in the domain are before T ). Furthermore the boundary conditions at S = 0 are of the

Neumann type as they are set to zero for all t.

4.3.2 Stability

By stability we refer to numerical stability. When a finite difference scheme is numerically

stable then small errors in the solution do not grow when evaluating the next step.

It is a general result that the fully implicit scheme is numerically stable. Therefore using

the Lax-Richtmyer Equivalence theorem we can conclude that this scheme converges. For

the explicit scheme the story is somewhat different. It is well known that the explicit

scheme is conditionally stable, that is, the set of ∆x and ∆t (the stability region) that

produces numerical stable results is restricted.

Recall the D&H model to be an explicit discretization of our PDE’s. We are now in a

position to obtain stability results for the explicit finite difference scheme, and thus also

for the D&H model.

Theorem 4.3.1. Given violation of condition (2.14), the forward-time center-spacing

finite difference scheme to the PDEs (3.37) and (4.6) is unconditionally unstable.

Proof. We follow the approach described in appendix F. It showed us that we may trans-

form a one-step difference scheme to its Fourier counterpart in order to investigate the

stability by the Von Neumann approach. To this end we recall that we may look at the

homogeneous counterpart of the PDEs, which are for both PDEs the same. As we are in-

terested in the forward-time center-spacing finite difference scheme we may proceed with

(3.47), leaving C = 0, and substituting

Amn → eim∆xηAn(η), (4.33)
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gives us

eim∆xηAn(η) =

(
1− σ2∆t

∆x2

)
eim∆xηAn+1(η)

+

(
rn + λm − 1

2σ
2

2∆x
+

σ2

2∆x2

)
∆tei(m+1)∆xηAn+1(η)

+

(
σ2

2∆x2
−
rn + λm − 1

2σ
2

2∆x

)
∆tei(m−1)∆xηAn+1(η).

(4.34)

Let ν = σ2∆t
∆x2 , µ =

rn+λm− 1
2
σ2

2∆x ∆t and θ = ∆xη such that

An(η) =

(
1− ν +

(
µ+

1

2
ν

)
eiθ +

(
1

2
ν − µ

)
e−iθ

)
An(η). (4.35)

Thus we find the amplification factor

g(θ,∆t,∆x) = 1− ν +

(
µ+

1

2
ν

)
eiθ +

(
1

2
ν − µ

)
e−iθ. (4.36)

In order to find stability and its corresponding stability region Λ we have to verify theorem

F.0.2. Next we will show under which conditions stability holds. To this end we start by

determining |g(θ,∆x,∆t)|2:

|g(θ,∆x,∆t)|2 = |1− ν + ν cos(θ) + 2iµ sin(θ)|2

= (1− ν + ν cos(θ))2 + 4µ2 sin2(θ)

=
(
1− 2ν sin2 (θ/2)

)
+ 4µ2 sin2(θ)

= 1− 4ν sin2 (θ/2) + 4ν sin4 (θ/2) + 4µ2 sin2 (θ)

= 1− 4ν sin2 (θ/2) + 4ν sin4 (θ/2) + 4
(
4 sin2 (θ/2) + 4 sin4 (θ/2)

)
= 1 +

(
16µ2 − 4ν

)
sin2 (θ/2) +

(
16µ2 + 4ν2

)
sin4 (θ/2) .

As we have sin4(θ) ≤ sin2(θ) where equality when θ = 0, 1, thus a necessary condition.

Proceeding gives

|g(θ,∆x,∆t)|2 ≤ 1 +
(
32µ2 + 4ν2 − 4ν

)
sin2 (θ/2)

≤ 1 +
(
32µ2 + 4ν2 − 4ν

)
(4.37)

Now suppose |g(θ,∆x,∆t)|2 ≤ 1 + y + C∆t for constants y, C ∈ R then
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|g(θ,∆x,∆t)| ≤
√

1 + y + C∆t

= 1 +
1

2
(y + C∆t)− 1

8
(y2 + C∆t)2 + ... by Taylor expansion

= 1 +
1

2
y − 1

8
y + ...+O (∆t)

=
√

1 + y +O (∆t) .

What we can understand from this is that in order to satisfy theorem F.0.2 we require

y ≤ 0. We should thus write (4.37) in the form 1 + y+C∆t. Subsituting back the values

for µ and ν we get

32µ2 + 4ν2 − 4ν = 8

(
rn + λm − 1

2
σ2

)2 ∆t2

∆x2
+ 4σ4

(
∆t

∆x2

)2

− 4σ2 ∆t

∆x2
. (4.38)

We require (4.38) to be smaller or equal to y+C∆t. To this end we have to consider the

following two possibilities (other possibilities are trivial):

1.
∆t

∆x2
≡ Constant

2.
∆t2

∆x2
≡ Constant

If we’d consider the second option we would get

∆t

∆x2
=

1

∆t

∆t2

∆x2
, (4.39)

which would grow unboundedly when ∆t → 0 such that the requirement would never

hold. Therefore, assume the first to holds. Recall that n and m exist such that

rn + λm ≥ σ√
∆t

.

At this grid point the frozen coefficient problem can be considered[Str89]. It thus follows

that

8

(
rn + λm − 1

2
σ2

)2 ∆t2

∆x2
≥ 8

(
σ√
∆t
− 1

2
σ2

)2 ∆t2

∆x2

= 8σ2 ∆t

∆x2
+O

(
∆t

3/2
)
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We find that a necessary requirement for y ≤ 0 becomes

8σ2 ∆t

∆x2
+ 4σ4

(
∆t

∆x2

)2

− 4σ2 ∆t

∆x2
≤ 0

↔ ∆t

∆x2

(
4σ4

(
∆t

∆x2

)
+ 4σ2

)
≤ 0.

As ∆t,∆x > 0 we find

4σ4

(
∆t

∆x2

)
+ 4σ2 ≤ 0

σ2∆t

∆x2
≤ −1.

This condition can never be satisfied given the Left Hand Side (lhs) to be strictly positive.

Remark 4.3.2. Note that we if we’d remove the condition of violation we would get the

usual stability condition seen for the explicit finite differences scheme, i.e.

σ2∆t

∆x2
≤ 1.

Remark 4.3.3. As is also noted by [Str89], if the frozen coefficient problem is violated

in a small region, the instability phenomena that arise will originate in that area and not

grow outside that area.

To us this would mean that instability only arises there where the stock is very small. Ide-

ally, we’d like to quantify the amplification of errors within this area and its consequences

for the rest of the procedure. However, it is clear that there are several difficulties which

can simply be worked around by applying a different discretization scheme, e.g implicit

schemes.

Theorem 4.3.4. The model by Das & Hanouna is conditionally stable in a stability

region

Λ =
{

∆t ∈ R>0

∣∣ (r + λ)
√

∆t ≤ σ, for all (r, λ) in the tree
}
.

Proof. Recall that we have shown that the D&H model is a special case of the PDE

model, in particular, the PDE model was found to have the discretisation (3.50). We

required a forward-time center-space discretisation with
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σ2∆t

∆x2
= 1. (4.40)

In the light of the previous theorem this would not satisfy the stability condition when

(2.14) is violated. However, the D&H model is not exactly equal to this discretisation,

altough it is in the limit. We can see that the only difference between the D&H model and

the forward-time center-space discretization of the PDEs lies in slightly different up and

down probabilities. This difference was shown to be O (∆t). Consequently the difference

in the amplification factor of the FD discretisation and the D&H model is of order O (∆t).

Now by corollary F.0.1 the result is immediate.

Remark 4.3.5. Note how the result of theorem 4.3.4 is inconvenient when we want to

let ∆t approximate 0. This can immediately be seen as the largest λ in the tree is given

by

λ =
1(

S0e−Nσ
√

∆t
)b =

1

Sb0e
−bσ 1√

∆t

→∞ when ∆t→ 0.

Here we recall that N = 1
∆t .
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4.4 Parameter choice

Before we can run the finite difference iterative scheme we have to set some numerical

parameters, in particular the ones that determine the grid that we are working on, these

are:

∆t, ∆x, Smax.

Depending on their sizes results might differ significantly. Therefore, with the eye on

practice, we wish to establish some rules, that is, depending on certain conditions set

these values such that results are acceptable.

First, by means of a Monte Carlo argument we determine Smax. Thereafter values for ∆t

and ∆x are determined.

4.4.1 A maximum stock value

Within the finite difference approach the stock value has to be capped, requiring the

approximation described in section 4.1.1. Making such approximation introduces an error

to the resulting parameter set found within the calibration. Understanding this error is

not straightforward. Suppose for example two data sets to be known to have respectively

b1 = 1.5 and b2 = 0.6, then in the first data set capping the stock value at 100 leaves

an error of 0.001 at the upper bound, whereas for a similar error in the second case we’d

require capping the stock at 105:

0.001 =
1

1001.5
=

1

1000000.6
.

Unfortunately we do not know the correct value of b before calibrating such that choosing

the maximum value of the stock is not a straightforward exercise. And in particular, if

it is 0.6, do we really want to cap the stock at 105? That seems extremely large, slowing

the calibration process.

We can make the following reasoning which will help us significantly: Suppose b = 0.6

with current stock value S0 = 40 and volatility σ = 0.5. Then suppose that hypothetically

we’d use a Monte Carlo approach to calibrate the parameter set to fit the CDS spreads. If

we’d introduce the extra condition that the probability of default becomes zero when the

stock reaches S = 1000, then this extra condition will probably be of very little influence,

since it is highly unlikely for the stock to reach such extreme value. Indeed we performed

a simple such Monte Carlo run with 105 paths, from these paths only 15 reached the value
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Smax Parameter set (a0, a1, b) χ RMSE

14.376229938415303 10.881154997725107 50 (0.201, −0.157, 0.989) 2.332 · 10−4 9.57
100 (0.798, −0.771, 0.717) 2.503 · 10−4 9.80
200 (0.857, −0.893, 0.699) 2.725 · 10−4 10.17
400 (0.871, −0.925, 0.694) 2.782 · 10−4 10.26
800 (0.879, −0.941, 0.690) 2.790 · 10−4 10.27

1600 (0.881, −0.947, 0.689) 2.792 · 10−4 10.27

Table 4.1: Multiple calibrations for the Amazon data
(S0 = 7.756, σ = 0.972) while changing the maximum value of S within

the finite difference grid. Further chosen parameters:
M = 48, N = 2 · Smax, interest rates such as in D&H including linear

interpolation as described in section 5.2.

of 1000.

Furthermore, a default occurring for a very large value of S does not add any more value

than a default for regular values of S, such that an importance sampling argument would

not change this reasoning.

Thus, as this is the case for the Monte Carlo simulation, so should it be for the finite

difference approach, simply because results should coincide. We may therefore reason

that we do not have to cap the stock at ridiculously large values (such as 105) stated

above. We can confirm the validity of this reasoning by performing some calibrations to

the Amazon data presented by Das & Hanouna. The parameter set that seems to result

takes the value b ≈ 0.69. Results of multiple calibrations are shown in table 4.1. Indeed

we see that the parameter sets, χ4 and the least squares difference converge towards a so-

lution. Furthermore, where initially differences between the parameter sets are relatively

large the Euclidean difference (2-norm) between the last two calibrations is less then 0.007.

There are two things we should take into consideration when choosing the maximum value

of the stock:

1. We expect the stock to have a large probability of default: we shall set the maximum

stock value to 2000. A large probability of default might be expected for example

when observing very large CDS spreads.

2. We expect the stock not to have extreme probability of default: we shall set the

maximum value of the stock at 500.

These considerations are open for discussion if for example the current stock value is

already very large. Take for example the stock value of Berkshire Hathaway which reached

a (closing) stock value of $228, 615 on December 31st 2014. In this case neither 2000 nor

500 would suffice.

4The objective function is explained and provided in section 5.1.1.
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4.4.2 Temporal and stock step sizes

In this section we shall decide on the choice of step sizes ∆t and ∆x. Up till now we

have chosen these values to give decent estimation such that the behavior of the model

would become clear. However, when we calibrate the model to market data we want the

results not to deviate too much from the infinitesimal step sizes counterpart. To this end

we require the results not to deviate more than 1 Bps with the exact solution.

Not knowing the exact solution, we cant give specifications of the error therefore we

determine a dummy error for 3 different scenarios. By dummy error we refer to the error

made with respect to step sizes

∆t = 2−10, ∆x = 2−8. (4.41)

The spacial step size ∆x is not as small compared to ∆t, we shall see however that ∆x,

does not influence the results very much. Furthermore, we are bound by the capabilities

of the computer of creating large matrices (choosing ∆x smaller would make the computer

run out of memory).

In table 4.2 we present the dummy errors of parameter sets found for Banco do Brasil S.A.,

Shell and Amazon. These three sets are just randomly selected to give us an impression

of the results. There are three things that we’d like to note in particular:

1. Changing ∆x doesn’t seem to influence the resulting errors significantly, i.e. from

left two right the differences are minimal compared to the differences when changing

∆t.

2. As expected, when halving ∆t the error also seems to halve more or less. This

corresponds to the error being of order ∆t in time.

3. Even for relatively large values of ∆t and ∆x the error is fairly small. This means

that the model doesn’t require much information to have a sense of where the

solution resides.

From the table we see that larger spreads seem to be related to larger errors, i.e the

extremer the scenario, the larger the error. We could therefore argue that for small

spreads the step sizes can be chosen larger such that the calibration would perform faster.

However, we prefer to remain consistent and choose one pair of ∆t and ∆x that we can

applied to all scenarios. To this it seems a safe choice to take

∆t =
1

48
and ∆x =

1

2
. (4.42)
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Shell Exact 5Y spread 56.4882

∆x

∆t 20 2−1 2−2 2−3 2−4

12−1 0.1517 0.1704 0.1751 0.1762 0.1765

24−1 0.0632 0.0817 0.0864 0.0875 0.0878

48−1 0.0186 0.03718 0.0418 0.0430 0.0433

96−1 0.0037 0.0148 0.0195 0.0206 0.0209

192−1 0.0148 0.0036 0.0083 0.0094 0.0097

Banco do Brasil S.A. Exact 5Y spread 298.8647

∆x

∆t 20 2−1 2−2 2−3 2−4

12−1 0.3291 0.3770 0.3857 0.3880 0.3886

24−1 0.1360 0.1823 0.1909 0.1931 0.1837

48−1 0.0388 0.0842 0.0928 0.0950 0.0955

96−1 0.010 0.0351 0.0436 0.0457 0.0463

192−1 0.0345 0.010 0.0190 0.021 0.0216

Amazon Exact 5Y spread 1286.5833

∆x

∆t 20 2−1 2−2 2−3 2−4

12−1 1.75301 1.7268 1.7188 1.7168 1.7163

24−1 0.8876 0.8612 0.8533 0.8513 0.8508

48−1 0.4552 0.4289 0.4209 0.41890 0.4184

96−1 0.2392 0.2129 0.2049 0.2029 0.2024

192−1 0.1313 0.1049 0.0969 0.0949 0.0944

Table 4.2: Errors on the 5 year spread on data of Banco do Brasil
S.A., Shell and Amazon. Errors are with respect to the ‘exact’

solution. The values depicted are in Basispoints.

The choice of ∆t = 1
48 also has the advantage that when using forward interest rates we

can assume a month to have 4 weeks, such that for monthly provided forward interest

rates we can use one such rate for exactly 4 steps.

Remark 4.4.1. Note how in the spacial direction, the errors do not seem to reduce by

a fourth, as you might expect do to the second order convergence. This might however
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exactly be due to the reason that the errors presented in the time dimension are much

larger than those in space, not letting the spacial convergence come to its right.



5

Calibrations and results

“Is it possible, in the final analysis, for one human being to achieve perfect

understanding of another?

We can invest enormous time and energy in serious efforts to know another

person, but in the end, how close can we come to that person’s essence? We

convince ourselves that we know the other person well, but do we really know

anything important about anyone?”

– Haruki Murakami , The Wind-Up Bird Chronicle

We shall fit the PDE model to market data corresponding to individual firms. To do so

we require the following information of the particular firm

• Stock value at date of evaluation,

• Historical or implied volatility,

• CDS spreads and,

• Interest rates between date of evaluation and longest maturity.

The first three we extract directly from Bloomberg. For the interest rates we use forward

implied interest rates. For the exact procedure we used to extract these from market data

we refer to appendix H.2.

This section is constructed as follows. Recall that previously we have constructed PDEs

and described how to evaluate these by means of finite differences. First we shall therefore

look into how to calibrate the model to its parameters. Next we provide a case comparison

to the D&H model on the Amazon data. In section 5.3 we provide calibrations on senior

spreads whereas in section 5.3.1 we calibrate the model simultaneously to senior and

100
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subordinated spreads. Then in section 5.4 we provide CVA calculations and compare our

model’s results to those of the PC model described in section 1.2.3.4. Finally we provide

a case comparison to the PC model, where we clearly see the differences for this constant

recovery model.
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5.1 Calibration process

Given market spreads of some firm, we wish to determine the parameter set {a0, a1, b}
such that our model implies these same spreads. These parameters then tell us how our

model should look like for this particular firm and subsequently provide us with the de-

sired term structures.

In order to find such parameters we have to perform a process called calibration. Cali-

bration is nothing but finding the parameters that make a financial pricing model fit best

to given market data and it usually consists of an optimization process. This can often

be complicated due to the complexity of the objective functions. The same holds for our

PDE model, which has no straightforward solution, which is why we require the finite

differences numerical solution.

Before looking at the optimization process itself we should decide on the objective function

and describe some constraints.

5.1.1 The objective function

Let t be the current time and C
T

be a market spread with time to maturity T related to

some entity. By Prot (t, T ; b) and Prem (t, T ; a0, a1, b, C) we refer to the protection and

premium legs respectively, where C is the model spread.

We would now like to find the correct parameter set such that the market spreads and

the model spreads coincide, this would suggest the minimization of an objective function

in the following form

min
a0,a1,b

{
N∑
i=1

(
Prot (t, Ti; b)

Prem (t, Ti; a0, a1, b, 1)
− CTi

)2
}
, (5.1)

for N observed spreads. Recall that model spreads can be written as

CT =
Prot (t, Ti; b)

Prem (t, T ; a0, a1, b, 1)
, (5.2)

which comes from the desired relationship

Prem
(
t, T ; a0, a1, b, C

T
)

= Prot (t, T ) , (5.3)

that premium and protection legs should coincide (recalling from formula (1.13), CT can

be taken outside). Thus instead of optimizing equation (5.1) we may look at the more

complete objective function
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N∑
i=1

(
Prem

(
t, Ti; a0, a1, b, C

Ti
)
− Prot (t, Ti)

)2
. (5.4)

It is more complete in the sense that (after calibration) our model is supposed to produce

similar spreads and simultaneously satisfy (5.3). However, the new objective function,

(5.4), has the slight drawback that the optimizer seems to converge when both, premium

and protection legs are getting smaller. This is somewhat misleading, because we want

them to be become equal, not necessarily small. A safer objective function would thus

look like

N∑
i=1

Prem
(
t, Ti; a0, a1, b, C

Ti
)

Prot (t, Ti)
− 1

2

. (5.5)

This then brings us to last issue in which we might be fooling the optimizer, e.g. the

optimizer might get stuck into bringing a0 towards minus infinity. This would leave the

premium leg zero such that the objective function would be getting smaller and smaller

until it reaches a minimum of N . This is easily solved by noting that both premium and

protection are always positive such that (5.3) holds if and only if

(
Prem

(
t, T ; a0, a1, b, C

T
))2

= (Prot (t, T ))2

↔
Prem

(
t, Ti; a0, a1, b, C

Ti
)

Prot (t, Ti)
=

Prot (t, Ti)

Prem
(
t, Ti; a0, a1, b, C

Ti
) .

Such that a new and less ambiguous objective function can be created.

Definition 5.1.1 (PDE CDS pricing objective function). The calibration objective

function to price a CDS under the dynamics of the PDEs from theorem 3.3.1 and

3.3.2 is defined by

χ(a0, a1, b) =

N∑
i=1

Prem
(
t, Ti; a0, a1, b, C

Ti
)

Prot (t, Ti)
− Prot (t, Ti)

Prem
(
t, Ti; a0, a1, b, C

Ti
)
2

.

(5.6)

This function guarantees none of the above problems to arise, in particular the last prob-

lem is now avoided as when the premium leg converges towards zero the second expression

will converge to infinity.
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5.1.2 Constraints

In this optimization we deal with three parameters, namely {a0, a1, b}. At this point we

have only decided upon requiring b ≥ 0, as negative values of b correspond to a decreasing

intensity when the stock increases, which has no practical support. We are thus left with

optimizing (5.6) on the domain

Ω = {(a0, a1, b) ∈ R|a0 ∈ (−∞,∞), a1 ∈ (−∞,∞), b > 0}. (5.7)

This seems an unnecessary large domain. Recall how parameter a0 is connected to the

time zero recovery, i.e. the recovery at evaluation. Depending upon the convergence of

the recovery function towards zero and one, we can create bounded intervals on which

most of the recovery values are represented. We choose the initial recovery values to be

between [−0.001, 0.999], such that for zero a1 we require

a
(probit)
0 ∈ A(probit)

0 = [−3.1, 3.1],

a
(logit)
0 ∈ A(logit)

0 = [−7, 7],

a
(arctan)
0 ∈ A(arctan)

0 = [−319, 319].

(5.8)

Parameter a1 is related to the correlation between recovery and default intensity. We know

from both historical and implied data that it is expected to be negative. To this end, and

recalling the discussion in section 3.7.1, it seems reasonable to assume a1 ≤ 0. For the

lower boundary we cannot create an easy constraint. Very small/large default intensity

may imply very small/large a1. For computational purposes we may fix a |a1| < 5 · 103.

The author of [Mur99] shows that for Japanese companies, b lies between 1.2 and 2. From

our simulations so far we have indeed not found any b to exceed 2. We found them smaller

then 1.2 quite often though. To be on the safe side and compensate for exceptions we

take b ∈ [0, 2.5].

We thus find the final optimization domain to be

Definition 5.1.2 (Optimization domain). The calibration optimization domain for

pricing a CDS under the dynamics of the PDEs from theorem 3.3.1 and 3.3.2 is

defined by

Ω = {(a0, a1, b) ∈ R|a0 ∈ A0, a1 ∈ (−5 · 103, 0), b ∈ [0, 2.5]}. (5.9)
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5.2 Comparing PDE and D&H model results

This section is dedicated to reflecting on the D&H model. Let’s fit the Amazon data just

as was done by Das & Hanouna[DH09], but now also to our PDE model. In table 5.1

we provides the input data for Amazon in September 2001 (specific dates are not provide

by [DH09]) and fitting results for both the D&H and the PDE model. The results are

presented with three decimals as we have seen in table 3.1 that sensitivity of even the

third decimal can be of influence on the results.

Before going to a discussion of the results we’d like to explain our procedure with respect

to the usage of the forward interests rates provided by Das & Hanouna within the PDE

model. As can be seen in the table only 5 forward interests rates are provided. The PDE

model however, requires many more rates, one for every time step. In their paper [DH09],

Das & Hanouna explain that the forward interest rates they provide are averages for

that particular year. Therefore we provide an interpolation such that each year’s average

forward interest rate corresponds to that of Das & Hanouna. In particular we took the

initial forward interest rate as the average forward interest rate for the first year minus

half times the smallest difference between all average forward interest rates. Subsequently

one may find the rates at each year and interpolate to find continuous results1, i.e. let f ′i ,

i = 0, 1, ...4 the forward rate between year i and i + 1, provided by Das & Hanouna, we

then set our rates by

f0 = f ′0 −
1

2
min

{
abs

(
f ′i − f ′i−1

)
|i = 1, ...4

}
,

fN(i+1) = 2 · f ′i − fNi, for i = 0, ...4,
(5.10)

where N as usual indicates the amount of steps in one year for the PDE discretization.

Linear interpolation can now be applied to find the forward interest rates within the year.

What immediately seems to stand out is the relative poor fit of the PDE model: its RMSE

is much larger than that of the D&H model. However, when looking at the first sub figure

of figure 5.1 we see that the fit does seem very reasonable, it furthermore becomes clear

that the high RMSE comes from the relatively large spread at the third year. Recalling

the sample term structures we have seen in section 3.7.1 it seems unreasonable for the

PDE model to provide a fit just as good as that of the D&H model. The term structure of

the market spreads seem to lie on an unrealistic curve with respect to the PDE dynamics.

Let’s now look at the term structures of both models. The difference in recovery at default

is very large, the PDE model provides almost twice as large recoveries. The probability

density functions of both functions are also different but not as striking as the recovery.

1The reason that we used an interpolation and did not provide continuous data from for example
Bloomberg is twofold: Das & Hanouna [DH09] do not specify the exact date of evaluation and their curve
choice. Second, for a fair comparison we do not want to provide extra information by looking up real
rates.
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Now that we have seen the fits of both models on comparable data we are in a position

to summarize

Main observation 5.2.1 (PDE model versus D&H model: Credibility). Both, PDE

and D&H models, are based on the same dynamics (see section 3.4), such that they

should provide the same results. We have seen however that the D&H model requires

large steps in time to overcome both numerical stability and interpretability of the

probabilities on the tree, whereas the PDE model is less than 1 Bps from its exact

solution. These large steps thus seem to bring with them a substantial amount of

errors.

Furthermore, in the light of dynamic stability the resulting differences in recovery

are unacceptable recalling that small deviations in spread should result in small

deviations in the underlying term structures (see section 3.8).

Thus the better fit of the D&H model seems a misleading appearance.

Main observation 5.2.2 (PDE model versus D&H model: Usefulness). In contrast

to the PDE model it is not able to provide continuous term structures. This might

especially provide fairly different results when quantitative calculations have to be

provided. Furthermore, in the light of the Monte Carlo simulation the PDE model is

capable of providing calculations including correlation between recovery and default.

Think of CVA which depends continuously on time and on the correlations between

both processes.

Remark 5.2.1. Finally, we would like to comment on the choice of modeling the expected

recovery as done by Das & Hanouna. Recall that we have chosen to model the expected

recovery at default within the framework of Das & Hanouna by (2.11). In their paper

they instead provide results for

∑
j∈{0,Ji}

p[i, j]ρ[i, j], (5.11)

see section 2.3 for more details.

This however is not the expected recovery at default, but, as they call it, the expected

recovery. An important question which then arises is: what exactly is expected recovery

if it is not at default?

As a result of their definition/usage of the expected recovery, it will always converge

towards zero at infinity. This has the particular consequence that the term structures

they present are seemingly continuously declining, as default states always adds a recovery

value of zero to the summation.
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Amazon fit comparison (Das & Hanouna and the PDE model)

Stock price 7.756
Stock volatility 0.972
Trinomial step size 1

T Fwd interest Market spread (bps) Trinomial (bps) PDE (bps)

1 0.0226 899.06 899.19 898.10
2 0.0273 1130.93 1130.41 1140.06
3 0.0329 1258.20 1259.80 1239.40
4 0.0383 1265.46 1264.72 1274.85
5 0.0436 1285.32 1283.32 1286.15

Parameters D&H (a0, a1, b) (0.199,−1.277, 0.801)
Parameters PDE (a0, a1, b) (0.924,−1.036, 0.681)
RMSE (bps) 1.22 10.26
χ - 0.000278

Table 5.1: Input and fitted data for both the trinomial and the PDE
model, corresponding to the Amazon data of September 2001
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Figure 5.1: Spreads and both the default intensity and recovery term structures for
both the D&H and the PDE model. The input data is based upon Amazon data from

September 2001.

5.3 Individual firm calibration with single seniority

We shall now provide three calibrations on different firms and present their results. The

three cases that we will look at are:

1. Banco do Brasil S.A.

This Brazilian state owned bank is the largest in Latin America. It performs a

variety of services including those performed by regular commercial banks. But

their services are more profound and from [SIC15] we find many more industry

affiliation, such as agriculture and transportation. Financial institutions as a whole
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list very low on the recovery rank list2, however being state owned is expected to

promote the recovery as a bailout might be expected in case of bankruptcy.

2. Shell

Shell is known for its oil and gas extraction but its industry reaches much further,

including public utilities and manufacturing. These last two list very high on the

historical recovery rate [AK96]. Besides being part of an industry which seems to

promote high recoveries, it has a lot of tangible assets, think about example crude

oil and factories.

3. Air France - KLM

Being one of the largest airliners in Europe it had some complications in 2014. At

the end of September 2014 a strike lasted for over a week pressing the financial

wealth of the company, indeed this resulted in trimming their forecast on earning

before interest, tax, depreciation and amortization [Reu14]. Such happenings change

the market’s expectations on default probabilities. Furthermore, air transportation

estimates a historical recovery of around 40% [AK96].

In table 5.2 we present the initial data, such as date of evaluation and the corresponding

stock price and volatility. The volatility is computed by Bloomberg, it corresponds to

the historical3 volatility Bloomberg uses to price a vanilla option with a 5 year maturity.

Furthermore, figures 5.2 - 5.4 provide the visualisation of the fit and the corresponding

term structures for both probability density function of the default and the expected

recovery at default.

It is first of all interesting to note that all expected recoveries start of at their highest value

and always decline. The authors of [DH09] reason this to be related to the higher recovery

when it should happen suddenly within a very short period from now. As this comes so

unexpected the firm was probably not for too long in a bad situation such that they did

not spend all their assets yet, resulting in a larger recovery. The level of the recovery

seems very reasonable given the industries of the firms. Indeed for Shell one might expect

a large recovery due to the large amount of tangible assets. For Banco do Brasil S.A. the

expectation is actually somewhat uncertain: financials usually do not have the reputation

to provide large recoveries, however, considering this bank to be state owned and providing

many more services besides regular commercial banks, the somewhat high recovery seems

reasonable. Finally for Air France the recovery drifts around the 46%, somewhat larger

than the historical recovery found within the industry of air transportation.

Now looking at the probability density function for the coming five years the market seems

2Financial institutions usually have a bad name when it comes to recovery. Indeed financial institutions
have historical recovery of around 35% of notional [AK96]. This should be interpreted with caution, as
when looking at a more specific list we see that for example mortgage banks list second on highest average
recoveries. We can therefore not simply state that all banks are expected to have low recoveries.

3For completeness we note again that historical volatility is allowed in this implied framework, reason
being that we only require the underlying stochastic process, in this case the stock, to be related to the
implied data. As implied and historical data are related, the historical volatility suffices.
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Banco do Brasil S.A. Shell Air France - KLM

Date 20-12-2014 24-12-2014 24-12-2014
(S0, σ) (24.35, 43.68%) (18.01, 17.38%) (7.62, 46.16%)
RMSE 11.11 Bps 3.44 Bps 6.17 Bps

χ 5.537 · 10−3 2.146 · 10−2 1.791 · 10−3

(a0, a1, b) (0.870, −2.707, 1.015) (1.916, −5.93, 1.108) (−0.077, −0.0268, 1.664)

T Mkt. spr. Model spr. Mkt. spr. Model spr. Mkt. spr. Model spr.

1 159.10 156.46 22.80 21.88 229.88 225.34
2 201.01 209.43 31.04 34.21 262.05 267.36
3 240.75 248.18 40.93 43.65 293.38 302.08
4 278.68 277.30 53.41 50.95 335.22 327.81
5 318.48 298.96 62.23 56.53 356.60 345.60

Table 5.2: Data and results for three calibrations performed on firms
only using the senior secured CDS curves.
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Figure 5.2: The calibrated PDE model on data of Banco do Brasil S.A. and the resulting
term structures it induces.

to foresee difficulties for Air France where the default probability seems to increase. The

density for Shell on the other hand seems fairly stable.

Finally, the fit on the spreads of Air France - KLM seems to be very reasonable, the

curvature is somewhat towards the right, however, in the cases of Shell and Banco do

Brasil S.A., the spreads seem to lie more on a linear line, which the model has difficulty

with fitting, which leads us to the following observation:

Main observation 5.3.1 (A drawback). The PDE model has difficulty in fitting

spreads that lie on a straight lie. This can be explained as follows:
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Figure 5.3: The calibrated PDE model on data of Shell and the resulting term struc-
tures it induces.
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Figure 5.4: The calibrated PDE model on data of Air France - KLM and the resulting
term structures it induces.

1. The future default probability will decline due to the expected increase of un-

derlying stock.

2. Due to the negative assumed correlation the recovery will increase together

with it.

These two factors together make the spread decrease on the longer term explaining the

tendency for curving to the right. Recalling that the PDE model provides perfect

negative correlation, this tendency of bending to the right might be decreased by

introducing less correlation, e.g. allowing for positive correlation with for example



Calibrations and results 111

the Logit recovery model, or introducing a stochastic variable to alternate between

positive and negative correlations.

Remark 5.3.1. The PDE is a fairly parsimonious model, providing only 3 model param-

eters and extending it with an additional model parameter allowing for extra flexibility

is therefore possible. Furthermore, the CDS term structure contains quotes between 6

months up to 10 years, so additional market data might be of help within the calibration

process.

Remark 5.3.2. A difficulty of implied data and its reliability is that it cannot be tested

for. The best way in which we might establish the reliability of our results is to provide

inter-comparison and relate this to historical results. For example, from historical data

we know that firms from the sector of public utilities, on average, provide larger recoveries

than financials [AK96]. Therefore the same might be expect from implied recovery. For

such investigation, the model should be applied to a large data set.

5.3.1 Individual firm calibration with multiple seniorities

A benefit of our model is that we can use it to calibrate the term structures to multiple

seniority curves. We can take both senior and subordinated curves quoted on the same

firm and calibrate these by letting parameter b be the same for both curves while letting

the recovery be different. This is what is expected: when a senior CDS is triggered due

to a default, then so is the subordinated, such that both have the same probability of

default, i.e. the same parameter b. Thus for two such curves we have to calibrate

Parameter set = (a0
0, a

0
1, a

1
0, a

1
1, b), (5.12)

with the aid of (in our case) 10 quotes. As was discussed before, the seniority is an

important underlying of the recovery, therefore, introducing such extra curve could help

us find better implied results.

We only found financials having curves for multiple seniorities. This could very well be

due to the fact that these companies trade more in such products. We have therefore

chosen to look at JPMorgan Chase & Co and ING group, both being very large banks.

With respect to the term structures we have one single expectation, namely that the

senior secured recovery should be larger than the senior unsecured.

In table 5.3 and 5.4 we present the initial data and results. A visualization of the fit on

the spreads and the term structures of both JPMorgan Chase & Co. and ING Group can

be found in respectively figures 5.5 and 5.6.

We expected the senior recovery to be larger than the subordinated recovery, which is

clearly the case for the ING Group data. However, for JPMorgan Chase & Co. we see
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JPMorgan Chase & Co.

Date 20-12-2014

(S0, σ) (61.93, 18.69%)

senior RMSE 4.65 Bps

subordinated RMSE 8.85 Bps

χ 4.057 · 10−2

(a0
0, a

0
1, a

1
0, a

1
1, b) (2.292, −9.101, 3.100, −19.940, 0.812)

Senior Subordinated

T Mkt. spr. Model spr. Mkt. spr. Model spr.

1 22.13 21.34 34.50 36.80

2 32.39 34.76 56.80 56.96

3 39.26 43.39 65.40 67.59

4 48.54 48.88 69.77 73.49

5 61.50 52.32 95.94 76.76

Table 5.3: Data and results for calibration on the multiple seniority
curves for JPMorgan Chase & Co.
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Figure 5.5: The calibrated PDE model on data of JPMorgan Chase & Co. and the
resulting term structures it induces.
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ING Group

Date 24-12-2014

(S0, σ) (10.95, 28.34%)

senior RMSE 0.82 Bps

subordinated RMSE 2.10 Bps

χ 1.934 · 10−3

(a0
0, a

0
1, a

1
0, a

1
1, b) (1.81,−0.77, 0.82,−0.71, 1.51)

Senior Subordinated

T Mkt. spr. Model spr. Mkt. spr. Model spr.

1 15.33 15.50 72.22 70.96

2 25.81 24.95 85.15 87.21

3 34.86 35.94 100.14 102.75

4 47.63 46.73 118.60 116.49

5 55.50 56.25 130.03 127.86

Table 5.4: Data and results calibration on the multiple seniority
curves for ING Group.
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Figure 5.6: The calibrated PDE model on data of ING Group and the resulting term
structures it induces.
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that at initiation the recoveries cross each another. This can be understood by the fact

that the extrapolation of the spreads within our model also cross each other, and as this

cannot be explained by the default intensity which is the same for both it has to be due to

the recovery. Unfortunately this contradicts the rules of the market as we would expect

them to be. But from these spreads it is also clear that liquidity plays a big role within

these spreads as the five year CDS spread is unreasonably large compared to the other

spreads. Liquidity will unfortunately always be a difficulty as it functions as non uniform

noise on the spreads4.

The fit on ING Group seems to be near perfect considering the shape that our model

accepts. Note also that the recovery turns out fairly high.

4Liquidity is a known issue with respect to CDSs. It should however be noted that in the light of
capital charge, Basel III will recognize a CDS as a hedge, providing incentive to buy CDSs and hopefully
decreasing liquidity spreads.
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5.4 Determining CVA

Up till now the usage of our model was merely to determine term structures for both

the default intensity and the recovery. These structures can also be used to calculate

credit risk adjustments, such as CVA. This particular adjustment is used to determine

the counterparty credit risk on the value of financial products, such as interest rate swaps.

As the focus of our model was not on interest rates, and instead we used the forward rate

to forecast these values, it seems unreasonable to determine the CVA on an interest rate

swap. Furthermore, we want to compare the CVA of our model with that of the PC

model, so that focus on the exposure term of the CVA is not of great importance. To

this end we determine the CVA on a 5 year plain vanilla call option on the corresponding

stock price sold by the same party. Furthermore, we set the call option to be ATM, i.e.

strike value is S0, and use the average forward value as the interest rate to evaluate the

Black Scholes formula5.

For a more comprehensive discussion on CVA we refer to [BMP13], a book on coun-

terparty credit risk. We shall use the formula they provide for unilateral CVA evaluated

on a product maturing at time T :

UCVA(t, T ) := EQ
t

[
lgdτ1{t<τ≤T}D(t, τ)Ex(τ)

]
(5.13)

=

∫ T

t
EQ
t [lgduD(t, u)Ex(u)]Q (τ ∈ (u, u+ du) (5.14)

=

∫ T

t
EQ
t [lgduD(t, u)Ex(u)]λue

−
∫ u
t λsdsdu, (5.15)

where Ex(u) corresponds to the exposure at time u and D(t, u) the discount factor. Fur-

thermore, in the second equation we neglect wrong-way risk and in the third we take the

default time to be modeled by a hazard process with intensity λ, as is the case for both

the PC and PDE model.

For the plain vanilla option, the exposure at time u is simply the value of the option at

time u, being the expected value we stand to receive, which is always positive.

Finally, for the PC model we assume the lgd to be constant, that is, based on market

convention, 40% for senior debt and 20% for subordinated debt. For the PDE model we

can evaluate (5.15) by means of a Monte Carlo simulation. Each run simulates a stock

5Evaluating the Black Scholes model in this sense provides in no way a fair price of such plain vanilla
option. However, it is not our goal to model this price in a perfect way, instead we just want some exposure
structure which makes sense to some extend. Note furthermore that plain vanilla call options are usually
very liquid such that determing the CVA is not required, as the credit risk is likely to already be mingled
within the price of the option.
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CVA values

PDE model PC model

Banco do Brasil S.A. 1122.9 1460.8

Royal Dutch Shell 239.3 308.38

Air France - KLM 1208.5 1521.6

JPMorgan Chase & Co. (senior) 216.1 310.3

JPMorgan Chase & Co. (subordinated) 318.4 485.6

ING Group (senior) 219.0 275.6

ING Group (subordinated) 518.4 630.4

Table 5.5: CVA of plain vanilla 5Y ATM call options sold by the
same company. The value is presented in basispoints with respect to

the corresponding currency.

path corresponding to a particular intensity and recovery process, giving us all we require

to determine the CVA.

In table 5.5 we present the results of the CVA for both the PDE and the PC model. It

provides CVA in terms of basis points with respect to the price of the plain vanilla option.

The results lead us to the next immediate observation

Main observation 5.4.1 (CVA estimates). It follows clearly from table 5.5 that

the PDE model values CVA strictly lower than the PC model.

In section 5.5 we show this to be a consequence of correlation.
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Shifted PDE model for Air France - KLM

T Market spreads Model spreads

1 229.88 230.82
2 262.05 273.75
3 293.38 309.12
4 327.81 335.32
5 356.60 353.44

Table 5.6: Results of the shifted PDE spreads on Air France - KLM,
corresponding to the parameter set (−0.110, −0.0268, 1.664).

5.5 A case comparison to the PC model

We shall now look at a particular example in which differences between our PDE model

and the more simplistic PC model become evident. More specifically we shall show a

scenario in which it becomes clear that our PDE model fits similar data but sets the

recovery higher and the intensity lower, i.e. less overall expected risky results. This might

be important for results such as CVA.

To this end we look at the Air France - KLM data which we calibrated before in section

5.3. We have calibrated the PC model such that it ‘perfectly’ fits the CDS spreads.

However, as we have seen in figure 5.4, the PDE model spreads do not fit perfectly and

sometimes are somewhat lower than the data. One might therefore argue that this might

not be a fair comparison. To this end we recall from section 3.7.1 that a0 shifts the CDS

spread curve vertically and from section 3.8 we know this to occur gradually. Furthermore

it does not influence the probability of default. Trial and error shows us that shifting a0

from −0.077 to −0.110 provides a term structure which reaches above all spreads. Thus,

for fair comparison we use the parameter set

(a0, a1, b) = (−0.110, −0.0268, 1.664). (5.16)

The corresponding spreads are found in table 5.6, from which we indeed see that the model

spreads are at least as large as their market counterparts. Furthermore the resulting curve

is presented in figure 5.7.

As the PDE model’s curve now lies above the market spreads, it represents a somewhat

more risky scenario. However, when comparing the term structures for the PC and PDE

models (see figure 5.8), that is, comparing their expected implied recovery and default

intensities, we see that the PDE model presents both an overall larger recovery and smaller

default intensity. This is furthermore confirmed by the resulting CVA of 1244.1 Bps in

comparison to the 1521.6 Bps in the PC framework.
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This result can be understood by the fact that, for our PDE model, each time the intensity

goes up, the recovery will go down, such that many risky scenarios are covered by their

mutual movement. However, one might argue that the same thing occurs for downward

movements of the intensity, which is true, however, the upwards movements are unbounded

and seem therefore more influential. It is for this reason that modeling the correlation may

be important, and hence, so is modeling the recovery. We can understand this reasoning

in the following simplified example:

Example 5.5.1 (Influence of negative correlation). Suppose a spread is simply deter-

mined by LGD times intensity and that we have 5 scenarios in which one is extreme,

that is we have 4 times the intensity-recovery pair (0.03, 0.4) resulting in the spreads

C0 = 0.0180 and once the riskier scenario (0.1, 0.2) resulting in C1 = 0.08. The

average intensity and recovery are found to be

mI =
4 · 0.03 + 0.1

5
= 0.044 mR =

4 · 0.4 + 0.2

5
= 0.36. (5.17)

If we’d use the average recovery to find the same spreads we’d require 4 times I0
mR =

0.0281 and once I1
mR = 0.1250, so that the average intensity for constant recovery

equals

mImR =
4 · 0.0281 + 0.1250

5
= 0.0475. (5.18)

This indeed shows very simplistically that mI ≤ mImR, i.e. the intensity is lower

when an extreme upward case is present and the recovery is negatively related.

Main observation 5.5.1 (Importance of correlation). In table 5.5 we have seen that

CVA is strictly lower in the PDE model compared to the PC model. Subsequently we

have looked at a comparison favoring the PC model, providing similar results. Then

from example 5.5.1 we understand this to be a consequence of negative correlation,

enlightening us with its modeling importance.
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ρ Air France - KLM Banco do Brasil Shell JPMorgan (senior)

0.5 1492.51 1450.92 311.15 308.13
0.4 1529.97 1481.27 312.38 309.35
0.3 1557.37 1504.29 313.25 310.18
0.2 1578.49 1521.60 313.91 310.80
0.1 1595.15 1535.19 314.42 311.28

0 1608.63 1546.16 314.84 311.66

Table 5.7: CVA values in basispoints when adjusting the recovery.

5.6 Implied recovery at its historical average

Finally, this last section will only look at the PC model. It has been discussed in both

sections 1.1 and 1.3.2.1 how implied and historical data might differ. In particular it was

seen that the implied recovery differs significantly from its historical counterpart due to

additional premiums. In this section we provide a simple experiment to access whether

setting the recovery at its historical average is justified.

For four data sets (Air France - KLM, Banco do Brasil and Shell) we calibrate the PC

model and determine its CVA as explained in section 5.4 for five different recovery values,

namely ρ = {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The results are portrayed in table 5.7. We can

clearly see that for the safer two firms, that is Shell and JPMorgan, a decrease of 10%

in recovery corresponds in almost all cases to an increase of less than 1% in CVA. For

the two more riskier sets, Air France - KLM and Banco do Brasil, a similar decrease in

recovery results in differences up to almost 40 bps.

Main observation 5.6.1 (Implied or historical recovery?). Recall from section

1.3.2.1 that implied recoveries are found to be much lower than their historical counter

parts. Taking into consideration the results of table 5.7, the PC model seems to sub-

stantially underestimate CVA.

Remark 5.6.1. We have seen that the PC model overestimates CVA in comparison with

the PDE model, but that it underestimates the CVA if it is adjusted for its implied

average. This once again emphasizes the necessity of conducting more research on the

recovery in order to come up with more satisfactory results.



6

Conclusion

“You stand to win everything. Call it.”

– Anton Chigurh , No Country for Old Men

The original questions

This study originated from two questions on the constant recovery, of whether modeling

the recovery as a constant suffices and if it does, whether it should be fixed at its historical

average. In the literature study it became apparent that, due to additional risk premiums,

a discrepancy between historical and implied average recovery exists. In particular, the

implied recovery is substantially smaller than its historical counterpart. We have then

shown that in a constant recovery framework a lower recovery results in larger CVA,

especially notable for riskier firms, thus implying underestimation of market convention.

However, under the specifications of the PDE model with perfect negative correlation

between recovery and default we have seen CVA to be lower in comparison to the PC

model, such that the assumption of constant recovery seems conservative in the light of

capital requirements.

These results thus do not provide a satisfactory answer to our key questions. Future

research might resolve this by adjusting the PDE model, as described next, and using a

larger data set.

The PDE model

To the best of our knowledge this thesis is first in presenting a continuous not necessarily

constant term structure for implied recovery. This is done by setting up a PDE, underlying

the stock value, for both legs of the CDS. The recovery can be specified freely as a function

of time, stock and/or default intensity. We choose to look at the former, allowing for

negative correlation between recovery and default, and provided a similar specification as

in the model introduced by Das & Hanouna [DH09], which under the correct assumptions

and an explicit discretization is a special case of our PDE model. Their model results in a

jump-to-default tree which lacks interpretability and numerical stability when time steps
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converge to zero and they consequently required large steps. Under these large time steps

we have shown that results lack credibility.

The PDE model provides numerical stability, seems to indicate dynamic stability and its

model parameters show clear interpretation. With the stock as underlying we are able to

determine term structures for the expected default intensity and recovery at default by

means of a Monte Carlo simulation. Within this Monte Carlo framework we can in turn

provide more complex calculations, e.g. CVA, and account for negative correlation.

Not all market CDS spreads could be explained completely by means of the PDE model.

This could be a consequence of the following three reasons:

1. The model is fairly parsimonious, possibly not obtaining the required flexibility.

2. To overcome the identification problem a relationship between recovery and intensity

was assumed. In particular it was set up to reflect perfect negative correlation. This

in turn might be too stringent for a fair representation.

3. Prices might be affected by a lack of liquidity possibly introducing a premium for

risk-aversion.

For future research, a different formulation for the intensity and/or recovery might allow

for extra flexibility, e.g. the intensity depending on the stock with an additional variable.

In this thesis we used spreads up to five years, however extra market data from the ten-

year term structure might be used. Also, to reduce the amount of correlation one might

model the dependence of the recovery on the intensity stochastically, providing a more

realistic scenario without perfect negative correlation. If such issues are solved, then we

may again reflect upon our key questions.
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The PDE model: Supplements
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A.1 The probability of default under the stock limit

Lemma A.1.1. Let the default intensity be defined by λ = 1
Sb

, where S the stock

value. Then when the stock increases towards infinity we have the following expres-

sion for the default probability

lim
St→∞

Pt(τ > T ) = 1, (A.1)

for t ≤ T <∞.

Proof. What we need to prove is a statement of convergence in distribution, with the

probability as the random variable. However, it is a general result that almost surely

convergence implies convergence in distribution, and we therefore proceed to show such

convergence to be valid.

Recall by the definition of the hazard process that

P (τ > T ) = EQ
[
e−
∫ T
t S−bs ds

∣∣∣Gt] , (A.2)

where the stock price corresponds to the pre-default stock price, which follows a time

inhomogeneous Geometric Brownian Motion.

The definition of almost surely convergence states that, ∀ε > 0

P

(
lim
st→∞

{
ω ∈ Ω :

∣∣∣∣EQ
[
e−
∫ T
t S−bs ds

∣∣∣Gt]− 1

∣∣∣∣ < ε

})
= 1 (A.3)

should hold. Note that Ω scales together with the limit such that it consistently contains

all the possible stock paths starting at the correct initial value, St. We shall prove this

statement by contradiction.

Suppose (A.3) not to hold, then a subsequence
(
S(n)

)
n∈N exists with limn→∞ S

(n) = ∞
on which the path sets Ωn = {ω : St = S(n)} are defined, such that ∀n ∈ N we can find

an ωn ∈ Ωn for which

∣∣∣∣e− ∫ Tt S−bs (ωn)ds − 1

∣∣∣∣ > ε. (A.4)

As the lhs of (A.4) is strictly negative, it implies that
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1− e−
∫ T
t S−bs (ωn)ds > ε ↔ −

∫ T

t
S−bs (ωn)ds < ln(1− ε)

↔
∫ T

t
S−bs (ωn)ds > ln

(
1

1− ε

)
.

Let S ∈ R be the value for which it holds that

∫ T

t
S−bs (ωn)ds =

T − t
S
b
, (A.5)

then we know that Smin(ωn) := mint≤s≤T {Ss(ωn)} ≤ S. From this we find that

Sbmin(ωn) < T − t/ln

(
1

1− ε

)
. (A.6)

As for very small ε we have

ln

(
1

1− ε

)
≈ ε, (A.7)

we may approximate (A.6) by

Sbmin(ωn) <
T − t
ε

. (A.8)

As this holds for all ωn this is a contradiction to the property of bounded variation.
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Figure A.1: The term structure of CDS spreads given by the PDE model. We modify
parameter b between 0.25 and 1.75, while looking at 4 different sets of {10, a1} and

S0 = 100, σ = 0.5, r = 0.03.

A.2 The switching line

During the discussion of the contribution of the model parameters on the PDE we found

there to be an interesting behavior for positive correlation within the Probit framework,

that is when a1 > 0. Recall the initial upward drifting of the CDS spread from figure 3.2.

In this section we show more carefully the dynamics behind this behavior and work out

the formula presented in section 3.7.1.

The reason for this behavior is actually a consequence of a characteristic that is even more

profoundly present in the recovery model more similar to that of the D&H model. To

this end we take a step back and show how a similar scenario as figure 3.2 would look like

using the recovery model

ρ(a0 + a1λ). (A.9)

Recovery model by D&H In figure A.1 we plotted a similar result when using (A.9).

In the case of a0 = 1, a1 = 3 we see that the case b = 0.25 behaves somewhat strange in

contrast to the rest. It moves upwards at initiation and it starts lower than when b = 0.5.

As we shall see this is analogous to our initial observation.

For each parameter set {1, 3, 0.25}, {1, 3, 0.5} and {1, 3, 0.75} we shall work out synthetic

CDS spreads with maturity ∆t, where we take ∆t = 0.001, some very small time step

into the future. Then we will analyze what causes the spread to start low, then increase
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and subsequently decrease.

Note first that for the pricing of a CDS in the very near future we can use the approxi-

mation1:

C =
Protection leg

Premium leg
≈ λ0(1− ρ0)∆t

1− λ0∆t
(A.10)

• Parameter set {1, 3, 0.25}: λ0 =
(

1
100

)0.25 ≈ 0.316 and ρ0 = Φ(1 + 3λ0) ≈ 0.9743,

such that 1− ρ0 ≈ 0.0257. Then

C0.25 =
0.316(1− 0.9743) · 0.001

1− 0.316 · 0.001
= 8.1191 · 10−6. (A.11)

• Parameter set {1, 3, 0.5}: λ0 =
(

1
100

)0.5
= 0.1 and ρ0 = Φ(1 + 3λ0) ≈ 0.9032, such

that 1− ρ0 ≈ 0.0968. Then

C0.5 =
0.1(1− 0.9032) · 0.001

1− 0.1 · 001
= 9.6810 · 10−6. (A.12)

• Parameter set {1, 3, 0.75}: λ0 =
(

1
100

)0.75 ≈ 0.0316 and ρ0 = Φ(1 + 3λ0) ≈ 0.8632,

such that 1− ρ0 ≈ 0.1368. Then

C0.75 =
0.0316(1− 0.8632) · 0.001

1− 0.0316 · 0.001
= 4.3257 · 10−6. (A.13)

As expected we get C0.25 < C0.5 and C0.75 < C0.5. Just as we observed in figure A.1

the spread first increases and subsequently decreases. Now that we have worked out the

above synthetic spreads we can understand where this behavior comes from: it is due to

the fact that the LGD makes large relative jumps when it is very small. More specifically,

looking back at the example we see that the LGDs are respectively 0.0257, 0.0968 and

0.1368, such that

0.0968

0.0257
≈ 3.767,

0.1368

0.0968
≈ 0.707. (A.14)

This can better be understood when looking at LGD with respect to the log axis in figure

A.2. Indeed, the derivative of log(LGD) gets steeper for larger values of a0 + a1λ.

There thus seems to be a switching point, which is an interesting issue, as it tells us

something about the dynamics of the model. Suppose for example that we have priced a

5 year CDS today, and we expect the intensity to increase between today and tomorrow,

1The premium leg stated next corresponds to the premium leg taking the spread to be 1. Furthermore,
to get the spread as in figure A.1, we have to divide by the step size, ∆t, (the spreads in the figure A.1
are with respect to one year) and multiply by 104 due to the basispoints representation.
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Figure A.2: The recovery and LGD with respect to the log y axis. Increments become
larger when they approach zero.

then how would the price of a 5 year CDS look like tomorrow? We know now whether

the CDS spread curve will shift up or down, this is determined by the switching point.

We shall determine this switching point.

We have thus seen that the synthetic spread for some initial intensity, given by

Cλ0 =
λ0(1− Φ(a0 + a1λ0))∆t

1− λ0∆t
, (A.15)

increases for small λ0 and decreases for larger λ0. Its not too complicated to show that

the derivative of the dummy spread is given by

dCλ0

dλ0
=

((1− Φ)∆t− a1λ0φ∆t) (1− λ0∆t) + λ0(1− Φ) (∆t)2

(1− λ0∆t)2 , (A.16)

where φ corresponds to the probability density function of the normal distribution and

we have used the short notation Φ ≡ Φ(a0 + a1λ) and φ ≡ φ(a0 + a1λ). Recalling that

the dummy spread is defined for very small values of ∆t only, such that we may use the

following approximation by neglecting higher orders of ∆t:

dCλ0

dλ0
=

(1− Φ)∆t− a1λ0φ∆t

1− 2λ0∆t
. (A.17)

The switching point is thus where the numerator equals zero. Setting x = a0 + a1λ0, we

are interested in the points where

1− Φ(x) = (x− a0)φ(x) ↔ a0 = x− Φ(−x)

φ(x)
, (A.18)
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Figure A.3: The switching point at which the spread increases or decreases, in terms
of a1λ0 for several values of a0.

where we used the fact that 1 − Φ(x) = Φ(−x). We can compute the right hand side of

(A.18) for several values of x such that we determine simultaneously the values of x and

a0 that lie exactly on the switching line. Subsequently we can use that a1λ0 = x− a0. In

figure A.3 we provided a plot of this line for several values of a0, that is, for each a0 we

know a1λ such that there is neither increase nor decrease in the spread.

In figure A.3 we see that the value of a1λ which determines the switching point for a0 = 1

is approximately 0.5. Recall that we were working with an example where a0 = 1 and

a1 = 3. We now know that the value for a1λ0 required to put us on the switching point is

approximately 0.5, such that λ0 = 0.167. And indeed, this result seems to be in line with

the previous observation that the switching line was found to lie between
(

1
100

)0.5
= 0.1

and
(

1
100

)0.75 ≈ 0.0316.

Back to the PDE recovery model Now that we have a proper notion of such

switching line we can understand the analogy to our model. Note that

a0 + a1

(
λ− λ0

λ0

)
= [a0 − a1]︸ ︷︷ ︸

a∗0

+

[
a1

λ0

]
︸ ︷︷ ︸
a∗1

λ. (A.19)

Thus the same result holds for our model, in contrast however we shall not note this

difference at initiation but over time. Thus for our case, when a0 = 0.53 and a1 = 7.5,

then a∗0 = −6.97 and a∗1 = a1
λ0

. As at initiation we have λ = λ0 we find that a∗1λ0 = a1.

From figure A.5 we see that for a∗0 = −6.97 the switching line is at a1 = a∗1λ0 ≈ 5.626.
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This implies that the spreads will move in the opposite direction in comparison to the

default intensity. Furthermore, we may note that now

dCλ
dλ

∣∣∣∣
λ=λ0

=
(1− Φ(a∗0 + a∗1λ))dt− a∗1λφdt

1− 2λdt

∣∣∣∣
λ=λ0

(A.20)

=
(1− Φ(a0))dt− a1φdt

1− 2λ0dt
, (A.21)

such that

dCλ
dλ

∣∣∣∣
λ=λ0

> 0↔ a1 >
Φ(−a0)

φ(a0)
. (A.22)

This means that when a1 is larger than the rhs of (A.22) the spreads will initially move

into the opposite direction of λ, whereas when it is below it moves in the same direction.

In particular, when a0 = 0.53, we require a1 = 0.86 to set the time derivative in the initial

spreads at zero. This can be confirmed by looking at figure A.5.

We thus conclude that the existence of this switching line is no coincidence and that it

could be specified exactly for the Probit model. Finally we’d like to note that depending

upon the choice of the recovery model this behavior might differ (see appendix A.3).
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A.3 More recovery models for the PDE model

In this thesis we have only looked at the Probit model for the recovery. We are however

not bounded to this particular model, there are many other possibilities, two of which we

shall discuss here. Recall our discussion on the switching line in section 3.7.1, where we

noted the results of a quicker increasing lgd compared to the intensity. This gives us an

insight in the importance of the underlying recovery model.

Suppose at time t0 the default intensity to be 0.1 and the LGD 0.4. Now at time t1 the

default intensity has dropped to 0.025, that is, it decreases by a factor 4. What may

we expect from the LGD, with which rate will it decrease? This has no straightforward

answer, but there are two important notes we should make:

1. We can control the amount at which it decreases to some extend by changing the

value of a1: when a1 is large this means that the jump from 0.1 tot 0.025 influences

the recovery even more.

2. On the other hand we are bounded by the functional form of the recovery model.

It is exactly the second note that is important to us for understanding why a certain

model might fit better. Suppose ρt and ρt+dt to be the recoveries at respectively time t

and time t+ dt where dt is taken to be small. The recovery thus increases by a factor

ρt+dt
ρt

.
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This particular relative increment depends on the functional form of the recovery function.

And the speed at which it increases can be observed by looking at the derivative of log(ρt).

However, the speed can be adjusted by simply modifying the value of a1, which is the

amount of change within the speed bounded by the functional form which we cannot

influence by our model choice. Thus what we should really be looking at is the derivative

of this speed (the acceleration of the recovery), i.e. the second derivative of log(ρt). In

figure A.6 we plot these two functions together with the recovery value itself on the left.

We can now clearly see some particular underlying assumptions that each model brings

with it.

Each model has an underlying practical assumption:

1. The Probit model has its highest relative speed at minus infinity and then steadily

decelerates towards a recovery value of 1. Practically: for small recovery values, a

small movement in the default intensity is expected to result in large relative jumps

(for the recovery). Whereas for large recovery, differences in the intensity are not

expected to make any changes to the recovery.

2. The Logit model is more symmetrical. To both sides of the spectrum it converges

to a steady state with a constant relative speed. However in the middle, that is

around a 50% of recovery, it reduces its speed. This can practically be understood

as assuming the recovery to have a constant sensitivity to the default intensity at the

left of the spectrum, and then slowly (and symmetrically) becoming less sensitive

until it becomes completely insensitive at infinity.

3. At minus infinity, the Arctan model starts with zero acceleration and then around a

50% recovery it changes from acceleration to quick and large deceleration to finally

end in a steady state. Practically this would mean that the recovery slowly becomes

more sensitive to intensity changes, being most sensitive at around 30 − 40% of

recovery. Then it finally drops in sensitivity to reach a steady state of zero sensitivity

at infinity.

Now one may make a better modeling choice upon his believes of the recovery. In this

thesis we will calibrate only the Probit model and leave the others for further research.

At this point we might expect the Probit and the Logit model to be more natural than

the Arctan due to its sudden drops in sensitivity.
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Appendix B

Pricing basics

This section presents basics on pricing theory, in particular it defines the money market, its

resulting risk neutral discounting and the martingale property. The martingale property

for pricing is one frequently used when a derivative can be hedged, a property which the

CDS legs lack. Finally we recall Ito’s lemma, a practical tool towards a pricing PDE.

134
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B.1 The risk neutral martingale framework

The definitions and theorems presented can be found in [BM06].

Definition B.1.1 (Money-market account). Define B(t) the value of a bank account

at time t ≥ 0. Assume B(0) = 1 - an initial investment of 1 - and that the bank

evolves according to

dB(t) = rtB(t)dt, B(0) = 1 (B.1)

where rt a positive function of time. It thus follows that

B(t) = e
∫ t
0 rsds (B.2)

It is thus stated that an initial investment of B(0) in the money market yields a value of

B(t) at time t.

We will often speak of a discount rate, defined by

D(t, T ) =
B(t)

B(T )
= e−

∫ T
t rsds, t ≤ T, (B.3)

where for convenience we define D(t, T ) = 0, t > T . It can intuitively be understood as

the value you need to invest in the money market at time t such that at time T you will

be left with 1.

Consider a time horizon T > 0 and a probability space (Ω,F ,Q). Here F gives rise to

a right continuous filtration Ft. Let the price process of a non-dividend paying security

defined by S = {St : 0 ≤ t ≤ T}.

Definition B.1.2. A 1-dimensional trading strategy is a locally bounded and pre-

dictable process φ = {φt : 0 ≤ t ≤ T}. The value process associated with such

strategy is defined by

Vt(φ) = φtSt. (B.4)

The predictability of φ corresponds to the condition that φt is known just before t, i.e. at

t− (this condition is required in case St doesn’t follow a continuous path).

Now [BM06] shows that the definition of self-financing can be reduced to

dVt(φ) = φtdSt. (B.5)

Intuitively, the self financing strategy means that the value only changes due to changes

in the corresponding assets. No additional cash in- or outflow is required (after initial

time). Note that dVt(φ) = d(φtSt) would follow trivially from (B.4), but that (B.5) is not

at all a trivial statement.
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Definition B.1.3 (Contingent attainable claim). A contingent claim is a square-

integrable and positive random variable on (Ω,F ,Q). A contingent claim H is at-

tainable if there exists some self-financing strategy φ exists such that VT (φ) = H.

Definition B.1.4. A numeraire is any positive non-divident-paying asset.

The changing of numeraire gives rise to a new probability measure, more specifically an

equivalent martingale measure, as defined by [BM06]:

Definition B.1.5 (Equivalent martingale measure). An equivalent martingale mea-

sure QN is a probability measure on the space (Ω,F) such that

i Q and QN are equivalent measures, i.e. Q(A) = 0↔ QN (A) = 0, ∀A ∈ F .

ii The Radon-Nikodym derivative
dQN

dQ
belongs to L2(Ω,F ,Q).

iii The discounted asset price’ process D(0, ·)S is an (F ,QN )-martingale, i.e.

EQN [D(0, t)St|Fu] = D(0, u)Su, for 0 ≤ u ≤ t ≤ T .

Proposition B.1.1 (Changing of numeraire). Let U be an arbitrary numeraire, then

there exists a probability measure QU , equivalent to Q, such that the price of any

attainable claim Y , normalized under U is a martingale under QU :

Yt
Ut

= EQU
[
YT
UT
|Ft
]

(B.6)

The risk-neutral measure Q - on which we provide some intuition in section 1.1 - is a

measure that leaves any attainable claim normalised by the money market account as a

martingale, that is:

Yt
B(t)

= EQ
[
YT
B(T )

|Ft
]
→ Y (t) = EQ [D(t, T )YT |Ft] , 0 ≤ t ≤ T. (B.7)

As can be seen, the risk-neutral measure uses the money market as its numeraire. However,

as proposition B.1.1 states, any numeraire might be used: the T-Forward measure is

defined as an equivalent measure with respect to the zero-coupon numeraire. The authors

of [BM06] define the zero-coupon bond with maturity T as a contract that guarantees

its holder a payment of one unit at time T , without any intermediate payments, more

specifically it holds that 1

P (t, T ) = EQ
t [D(t, T )] . (B.8)

1The zero coupon bond we refer to here is assumed to be risk free.
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Where P (t, T ) denotes its contract value at time t, clearly P (T, T ) = 1. The T-Forward

measure, exploits the fact that P (T, T ) = 1 by defining its numeraire as P (·, T ). Denote

QT as the T-Forward measure, then we have that

Yt
P (t, T )

= EQT
[

YT
P (T, T )

|Ft
]
→ Y (t) = P (t, T )EQT [YT |Ft] , 0 ≤ t ≤ T. (B.9)

Note finally how the rhs of (B.9) would follow from (B.7) when assuming independence

between the money market account and the attainable claim.
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B.2 Ito’s lemma

We end this appendix by recalling Ito’s lemma. Ito’s lemma is not exclusively used in the

pricing context, however it is a practical tool towards pricing PDEs, hence, we state it in

this particular appendix.

We shall present its more general version, applicable for jump diffusion processes, used

within this thesis.

Consider a general jump diffusion process X(t) for t ≤ t0 = 0 given by

X(t) = X(t0) +

∫ ∞
−∞

b(u,Xu−)du+

∫ ∞
−∞

σ(u,Xu−)dWu +

N(t)∑
n=1

∆Xn, (B.10)

or in short form notation

X(t) = b(t,Xt−)dt+ σ(t,Xt−)dWt + ∆XndN(t), (B.11)

where b(t,Xt−) and σ(t,Xt−) are continuous adapted processes (that is measurable and

predictable with respect to the canonical filtration Ft), with EQ
t0

[∫ t
t0
σ(u,Xu−)2du

]
<∞

and ∆Xn = XTn −XTn− where Tn, n = 1, ..., N(t) denote the jumping times of Xt.

Consider a function f : [t0,∞) × R → R with f ∈ C1,2. Note that stating f to be twice

continuous differentiable does note mean that the resulting function may not have jumps

do to a underlying jumping process.

When t ∈ (Tn, Tn+1), that is in between two jumping times, Ito’s lemma for a regular

diffusion process holds, that is in short form:

df(t,Xt) =
∂f

∂t
(t,Xt−)dt+b(t,Xt−)

∂f

∂X
(t,Xt−)dt+

1

2
σ2(t,Xt−)

∂2f

∂X2
dt+σ(t,Xt−)

∂f

∂X
dWt

(B.12)

If however t corresponds to a jumping time, then the resulting change in f(t,Xt) consti-

tutes of the extra term

f(t,Xt− + ∆Xt)− f(t,Xt−). (B.13)

Ito’s lemma for a jump diffusion process can be determined as the sum of the continuous

part and the jumping part, that is
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df(t,Xt) =
∂f

∂t
(t,Xt−)dt+ b(t,Xt−)

∂f

∂X
(t,Xt−)dt

+
1

2
σ2(t,Xt−)

∂2f

∂X2
(t,Xt−)dt+ σ(t,Xt−)

∂f

∂X
(t,Xt−)dWt

+ (f(t,Xt− + ∆Xt)− f(t,Xt−)) dNt.

(B.14)

This is not a full proof, but it does provide a decent understanding of the result.



Appendix C

Debt hierarchy and capital

structure

Suppose a firm with two debts: debts A and B. If this firm goes bankrupt it usually

doesn’t have enough money to completely pay back both creditors. When paying back

the corresponding recovery th efirm has to follow the APR: debt with a higher rank should

be settled first. Such rank is called the seniority and the related hierarchy is called the

debt hierarchy. This debt hierarchy roughly looks as follows:

• Senior secured;

• Senior unsecured/unsubordinated;

• Senior subordinated;

• Subordinated;

• Junior subordinated.

Proceeding the example: if debt A is senior unsubordinated and debt B is subordinated,

then following the APR, debt A will be settled completely prior to settling B.

The term secured in the hierarchy refers to being backed up by collateral. It should be

noted that senior secured has full priority over unsecured debt, but only up to the value

of the collateral. Only after all creditors are payed back, the shareholders receive their

part of the deal.

The above list is not the most detailed one may find. For example, secured debt has a

special further breakdown called lien: 1st lien, 2nd lien, etc., which indicates the order

of priority the creditor/debtholder has against the secured assets. The coarse overview

however suffices for our understanding.

Besides intüıtively understanding the importance of the capital structure in case of a
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default, it is indeed empirically shown to be a highly influential determinant of recovery.

For this reason it can be exploited when creating models within credit risk, see for exam-

ple [SUH14] and [UMG03].

The capital structure of a firm is an overview of its outstanding debts based upon the

debt hierarchy. It shows us the percentage of each type of debt with respect to its

total liabilities. It can be of great importance to know the capital structure of a firm

when lending it money. Suppose a firm to have 20% of secured debt and over 70% of

unsubordinated debt, then an institution should be cautious with lending it a senior

subordinated obligation, whereas this would seem less of a problem if unsubordinated

debt would constitute, for example, only 10% of the total liabilities.



Appendix D

Modeling the default time

An important issue of working with credit derivatives is modeling the default process.

There are two main approaches to model the default process. The first one being the

structural approach, which comes down to making the default time dependent on the firm

values. An example of such may be seen in [FJOS10], where default is supposed to occur

when the firm value hits a certain lower threshold. The second approach is called the

reduced-form approach. This approach is based on the assumption that default occurs by

‘surprise’: it is an exogenous process or more precisely its stopping time is totally inacces-

sible. The latter meaning that no increasing sequence of stopping times exists such that

the default can be announced. The term reduced-form comes from the fact that the flow

of information is reduced in the sense that there is no information telling us something

about when a default might occur.

What follows is a deeper understanding and some required results of the hazard process

approach, an often used reduced-form model. Many results, and in particular those in

section 3.2, depend on a proper understanding of this approach.

If not specified differently, definitions and results come from [BJR07].
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D.1 Filtrations

A filtration is an increasing sequence of σ-algebras defined on a measurable space, that is,

suppose the probability space (Ω,W, P ), then a filtration is a sequence of sub-σ-algebras

{Wt}t≥0 where for t1 ≤ t2 it holds that Wt1 ⊆ Wt2 .

Intüıtively, a filtration in the way that we will use it, might be understood as a flow

of information: at each time a certain amount of information is observed and we do not

forget any information.

We fix a finite horizon date by T , e.g. the maturity of a product of interest.

Definition D.1.1. The reference filtration F = (Ft)0≤t≤T is generated by prices of

assets and other common economic factors, e.g. interest rates and volatilities.

Definition D.1.2. Let τ be the time of default and associate to this a right-

continuous increasing process defined by

Ht := 1{t≥τ} =

{
1, t ≥ τ
0, t < τ

(D.1)

With the usage of definition D.1.2 we can introduce a second filtration generated by this

particular default indicator function.

Definition D.1.3. The default filtration H = (Ht)0≤t≤T is generated by Ht, more

specifically: Ht = σ(Hu : u ≤ t). Intüıtively this sigma algebra contains exclusively

information regarding the default process.

By definition of generating σ-algebras, H is the smallest filtration making the function Ht

measurable.

Finally we define an enlarged filtration containing both information regarding economic

factors and the default process:

Definition D.1.4. The greater filtration is defined as G = F ∪H = (Ft ∪Ht)0≤t≤T .

Remark D.1.1 (Alternative notation of the greater filtration). When we write a condi-

tional probability or expectation using the subscript of a time, e.g. Pt(·) or Et[·], then

this is always with respect to the greater filtration.

Definitions are in place in order to state an important lemma regarding change of filtration.

Let (Ω,G, P ) be a probability space, where G is a filtration on it. The following lemma is

proved in several references such as [BM01] and [BJR07]:
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Lemma D.1.1 (Change of filtration). For any G-measurable random variable Y such

that EP [Y ] <∞, and any t ∈ R≥0, it holds that

EP
[
1{τ>t}Y

∣∣Gt] = 1{τ>t}EP [Y |Gt] = 1{τ>t}
EP
[
1{τ>t}Y

∣∣Ft]
P (τ ≤ t|Ft)

. (D.2)

Finally, a random variable X is said to be W-measurable if and only if E [X|W] = X.

Intüıtively this means that the outcome of the random variable is knowable based on the

information of W.
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D.2 The hazard process

Even though the default time is not known within the filtration F we can associate prob-

abilities to it. This is exactly what is done with the hazard process.

Let (Ω,G, P ) be a probability space such that G is a filtration on it. For any t ∈ R≥0

we write Ft = P (τ > t|Ft). Note how Ft corresponds to the distribution function of the

F-default time. It however incorporates a stochastic feature by letting the distribution

function depend on F. This implies that at some time s < t, we may not know Ft, a

feature especially interesting for a Cox process which will be defined soon. Furthermore

define Gt = 1− Ft = P (τ > t|Ft), the survival function of the default process.

An F-hazard process - if the F filtration underlying it is obvious we will omit referring to

it - can now be defined as follows:

Definition D.2.1. Assume that Ft < 1 for any t ∈ R≥0. The F-hazard process of τ

under P is denoted by Γ and is defined by satisfying Gt := e−Γt .

An especially interesting result from the hazard process is the following martingale propo-

sition

Proposition D.2.1 (the martingale compensated bankruptcy jump process[Lin06])).

If the process Γt is increasing and continuous (which we will see to be valid for the

canonical hazard rate process), then the process defined by Mt := Ht−Γ (max{t, τ})
is a G-martingale.

For the proof of this proposition we refer to [BJR07].

The canonical hazard process The canonical hazard process is the most commonly

used construction of a hazard process. A nice feature is that its form corresponds to

that of the interest rate. The canonical hazard process is constructed by taking a non-

negative, F-progressively measurable process λ = (λt)0≤t≤T , called the intensity process,

and subsequently defining

Γ(t) ≡ Γt =

∫ t

0
λsds. (D.3)

We are not yet ready however, because the definition of the hazard process (definition

D.2.1) states that there is a relation between the survival function and (D.3). Indeed, we

might simply implement this, but the beauty lies in the fact that we can more specifically

define the default time τ : let ξ ∼ Exp(1), then, following the authors of[BM01] and

[BJR07], we define the default time by
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τ := inf{t ∈ R≥0 : Γt ≤ ξ}, (D.4)

such that as written in [BM06] we have

Γτ = ξ ↔ τ = Γ−1(ξ). (D.5)

The exogenous property of the default time is thus understood by being related to the

time value of the random variable ξ. Our model has no influence upon ξ. Of course a

very large λt indicates that the default time should be reached earlier, but more than this

cannot be said.

With the definition of the default time as in (D.4) we can indeed make sense of definition

D.2.1:

P (τ > t|Ft) = P (Γτ > Γt|Ft) = e−Γt . (D.6)

Finally we note that Γt is continuous and increasing by construction, from which follows

that the proposition D.2.1 is satisfied. Furthermore the fact that λt is progressively mea-

surable tells us that it may depend upon components underlying Ft.
At some point in this thesis we will define λt = S−bt and as a consequence the survival

function will be a stochastic process: a Cox process, or also called, doubly stochastic

Poisson process.

We end this section with two simple propositions which will be used several times within

this thesis.

Proposition D.2.2. Let Γt be a canonical hazard process, with intensity λt, then

the following two statements are valid

i dFt = e−Γtλtdt,

ii d
(
eΓt
)

= eΓtλtdt.

Proof. Recall that Γt =
∫ t

0 λsds, from which follows that

d (Γt) = d

(∫ t

0
λsds

)
=

∫ t+dt

0
λsds−

∫ t

0
λsds =

∫ t+dt

t
λsds = λtdt. (D.7)

The propositions now follow from working out only the first one, the second is immediate

when this deduction is understood.
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dFt = d
(
1− e−Γt

)
= −d

(
e−Γt

)
= e−Γtd (Γt) = e−Γtλtdt (D.8)
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D.3 The Cox process

A Cox process is a canonical hazard process where the intensity itself is stochastic, Ft-
addapted and right continuous (and thus progressive). As it is a canonical hazard process

it follows the same building blocks for the default time, such that we still have

Γτ = ξ. (D.9)

What now changes are the probabilities of default: the rhs of (D.6) is not a valid probabil-

ity in the Cox process as the intensities in the exponent are unknown within the filtration

Ft. Therefore we state the following results as a proposition, such that we may use these

throughout this thesis:

Proposition D.3.1. Let the default time τ follow a Cox process with intensity λ,

then for s ≥ t the survival probability is given by

Pt(τ > s) = EQ
[
e−
∫ s
t λudu

∣∣∣Gt] . (D.10)

Furthermore, the probability density function of the default, given no default up till

time t, is given by

EQ
[
λse

∫ s
t λudu

∣∣∣Gt] . (D.11)

They have their proof in [BM06] which is a result of using the tower property and a similar

deduction as was used to deduce the survival probability for the regular canonical process.

From the probability density function we thus also find [BM06]

P (τ ∈ (s, s+ ds]) = EQ
[
λse

∫ s
t λududs

∣∣∣Gt] . (D.12)



Appendix E

Convertible bond and PDE model

A typical convertible bond is a callable bond that also includes an option for the investor

to convert the bond into a given number of shares of equity (known as the conversion

ratio)[DS03]. More specifically a convertible bond pays the maximum between the agreed

face value and the value of the stock (times the conversion ratio). Whenever the issuer

decides to call a convertible the investor still has the option to either accept the called

upon value or the shares.

We are especially interested in modeling such convertible bonds, as we will see these

can be represented by similar PDEs as we have found for both legs of the CDS, with some

additional interpretation.
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E.1 A pricing PDE

The deduction that follows comes from [AFV03]. Denote by V (t, S) the value of a con-

vertible bond, where t the time of valuation and S the corresponding stock. Let’s further-

more assume the simplified case in which there are no call features as described above,

this means that conversion can only be performed at maturity of the contract. Define by

S+ the value of the stock right after a default and S− just before the default such that

S+ = (1− η)S− for some η ∈ [0, 1]. For η = 1 we are looking at stock process that jumps

to zero in case of default (so is the case for the jump to default model used to determine

the PDE model). Finally, denote by γ the conversion rate.

Next we proceed to apply a hedging argument to determine a model for the convertible.

To this end we construct a hedging portfolio

Π = V − βS, (E.1)

where β indicates the amount of stocks in the portfolio. For convenience we shall first

determine the PDE for this portfolio when the stock is risk free (in the sense that it

doesn’t have the ability of jumping to default), that is

dS = µSdt+ σSdWt. (E.2)

By Ito’s lemma we find that

dΠ =
∂V

∂t
dt+

∂V

∂S
dS +

1

2
σ2∂

2V

∂S2
dS2 − βdS

=

(
∂V

∂t
+
∂V

∂S
+

1

2
σ2∂

2V

∂S2
− βµS

)
dt+ σS

(
∂V

∂S
− β

)
dWt

=

(
∂V

∂t
+

1

2
σ2∂

2V

∂S2

)
dt,

where for the last equation we took β = ∂V
∂S . Let’s now look at the risky stock, that is

the stock that jumps to (1 − η)S− in case of a default. To this end we take λ to be the

hazard rate and ρ the recovery of the bond. Now, we assume the following to hold at

default: the bond holder may choose between

1. the recovery of the bond, or

2. shares worth γS+ = γS−(1− η).

The change of value in the portfolio during t→ t+ dt for very small dt is
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dΠ = (1− λdt)
(
∂V

∂t
+

1

2
σ2∂

2V

∂S2

)
dt+ λdt

(
max

{
γS−(1− η), ρ

}
− V + β

(
S+ − S−

))
= (1− λdt)

(
∂V

∂t
+

1

2
σ2∂

2V

∂S2

)
dt− λ

(
V − ∂V

∂S
Sη

)
dt+ λmax

{
γS−(1− η), ρ

}
dt

=

(
∂V

∂t
+

1

2
σ2∂

2V

∂S2

)
dt− λ

(
V − ∂V

∂S
Sη

)
dt+ λmax

{
γS−(1− η), ρ

}
dt, (E.3)

where we have taken the convention that S ≡ S− and removed higher orders of dt.

Assuming the expected return on the portfolio to be risk free, that is

EQ
t [dΠ] = rΠdt. (E.4)

Using this expectation in (E.3), we find

rΠdt =

(
∂V

∂t
+

1

2
σ2∂

2V

∂S2

)
dt− λ

(
V − ∂V

∂S
Sη

)
dt+ λmax

{
γS−(1− η), ρ

}
dt

↔ r

(
V − ∂V

∂S
S

)
=

(
∂V

∂t
+

1

2
σ2∂

2V

∂S2

)
− λ

(
V − ∂V

∂S
Sη

)
+ λmax

{
γS−(1− η), ρ

}
↔ ∂V

∂t
+ (r + λη)S

∂V

∂S
+

1

2
σ2∂

2V

∂S2
− (λ+ r)V + λmax

{
γS−(1− η), ρ

}
= 0. (E.5)

The similarity between (E.5) and both (3.37) and (4.6) is clear. In particular it looks very

similar to the (4.6) where instead of the LGD we now take the recovery. If we furthermore

make the assumption that the stock jumps to zero in case of a default, i.e. η = 1, we get

the exact same PDE as (4.6):

↔ ∂V

∂t
+ (r + λ)S

∂V

∂S
+

1

2
σ2∂

2V

∂S2
− (λ+ r)V + λρ = 0. (E.6)

Note that the similarity is only in the form of the PDE, that is, in the behavior of both

values. Boundary conditions are different and consequently so are the solutions. But we

can understand why both behave the same way: the protection leg corresponds to the

protection that the CDS seller has to pay in case of a default, in other words, it pays

exactly the amount the CDS buyer may have lost on a reference bond. The buyer of a

convertible bond receives exactly the amount that was recovered from such bond. Thus

both move the same way, as they are related to the same object, however from the con-

vertible bond it receives the recovery, whereas from the CDS it gets the LGD.
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Recall that we have already mentioned that such hedging approach would not work for

our CDS legs. Compared to the convertible bond, our PDE lacks two things: 1) the stock

jumps to zero such that the stock is worthless and 2) the option holder still has the right

on the bond, representing the recovery.
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Von Neumann numerical stability

The Von Neumann stability analysis provides a very general method to investigate sta-

bility of finite differences schemes. In this section we explain how this method works and

how it may be used to evaluate one-step finite differences schemes for linear inhomogenous

variable coeficient PDE’s, such as (3.3.1) and (3.3.2).

We’d like to emphasize here that stability in this sense refers to numerical stability, that

is numerical errors generated during the iterations of discretized equations should not

be magnified, in contrast to dynamic stability which refers to a system in which small

variations from a reference state will not grow.

Before we get down to the Von Neumann stability analysis we should answer the ques-

tion, why are we interested in obtaining numerical stability? Obviously a first answer

would be: numerical instability would interfere with our result and therefore the result

might not be a good approximation of the true solution. That is of course true. But even

a deeper answer lies upon the result of the Lax-Richtmyer Equivalence theorem, stated

next[GO86].

Theorem F.0.1. The Lax-Richtmyer Equivalence theorem A well-posed linear

problem with a consistent approximation is convergent if and only if it is numerical

stable.

In other words, if we are able to show that a linear well-posed PDE has a consistent and

stable finite difference scheme, then we can assert convergence.

The Von Neumann stability analysis works by specifying a condition in the Fourier trans-

formed domain. To this end a Fourier transformation should be applied, therefore this is

where we start our explanation.

Let umn correspond to the solution of a finite difference scheme where n = 0, 1, .., N cor-

responds to the time index and m = 0, 1, ..,M to the spacial index. Furthermore we take
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stepsize ∆t in the time direction and ∆x in the spacial direction. The Fourier transform

of umn indexing over the stock index is defined by

Proposition F.0.1. A simple Fourier transform

Define

ûn(η) =
∆x√

2π

M∑
m=0

e−im∆xηumn , η ∈
[
− π

∆x
,
π

∆x

]
, (F.1)

then

umn =
1√
2π

∫ π
∆x

− π
∆x

eim∆xηûn(η)dη. (F.2)

Proof.

1√
2π

∫ π
∆x

− π
∆x

eim∆xηûn(η)dη =
1√
2π

∫ π
∆x

− π
∆x

eim∆xη

(
h√
2π

M∑
l=0

e−iml∆xηuln

)
dη

=
∆x

2π

M∑
l=0

uln

∫ π
∆x

− π
∆x

eim∆xηe−il∆xηdη

=
∆x

2π

M∑
l=0

uln

∫ π
∆x

− π
∆x

ei(m−l)∆xηdη

=
∆x

2π
umn

2π

∆x

= umn .

Next we provide a toy example to introduce the amplification factor. Subsequently we

shall state the stability theorem and show how this works out on this particular exam-

ple.

Example F.0.1. Suppose the simple PDE given by vt + avx = 0, x, t > 0. Lets

discretize this PDE with a forward-time backward-space scheme, such that we get:

umn+1 − umn
∆t

+ a
umn − um−1

n

∆x
= 0. (F.3)

This scheme may be rewritten to

umn+1 = (1− aλ)umn + aλum−1
n , (F.4)

where λ = ∆t
∆x . Next, apply (F.2) such that (F.4) becomes

1√
2π

∫ π
∆x

− π
∆x

eim∆xηûn+1(η)dη =
1√
2π

∫ π
∆x

− π
∆x

eim∆xη
(
(1− aλ) + aλe−i∆xη

)
ûn(η)dη.

(F.5)
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Due to the fact that the Fourier transform is unique we understand that the inte-

grands of (F.5) should equal, that is

ûn+1(η) =
(
(1− aλ) + aλe−i∆xη

)
ûn(η), η ∈

[
− π

∆x
,
π

∆x

]
. (F.6)

Now, the amplification factor is g(θ) where θ = ∆xη, such that ûn+1(η) = g(θ)ûn(η).

Thus in this example we have g(θ) = (1− aλ) + aλe−i∆xη.

We are now in a position to provide the theorem for stability that we require. This

theorem is stated and proven in [Str89].

Theorem F.0.2. (Stability condition)

A one-step finite difference scheme is stable in a stability region Λ if and only if there

exists a constant C ∈ R (independent of θ, ∆x and ∆t) such that for the amplification

factor it holds that

|g(θ,∆x,∆t)| ≤ 1 + C∆t, (F.7)

where (∆t,∆x) ∈ Λ.

The restriction placed upon the amplification factor makes sense in the non Fourier trans-

formed world. However as the theorem states stability is granted when such restriction

is placed in the Fourier transformed world. This result can however be understood by

Parsevals identity which states that

‖umn ‖2 = ‖ûn(η)‖2. (F.8)

where the subscripts refer to the L2-norm. And thus the restriction persists.

There are two important notes we’d like to make regarding the Stability condition:

1. The Fourier transformation presented in proposition F.0.1 and the deduction in the

toy example show us that in order to investigate on stability, all that is required is

to substitute umn by eim∆xηun(η) and retrieve the amplification factor.

2. The original theorem as in [Str89] requires the PDE to be constant coefficient. This

requirement may however be removed as it also states in [Str89] that the variable

coefficient PDE can be evaluated in the exact same way, where one might consider

the so called frozen coefficient problem, that is, fixing the problem for all possible

coefficients and solving (F.7).

3. As may be seen in the toy example, the amplification factor was easily found. How-

ever when observing a inhomogeneous PDE this is not straightforward as an

additional constant would enter (F.6) additively. However, due to Duhamel’s prin-

ciple which states that the solution of an imhomogeneous PDE is a superposition
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of solutions to the homogeneous PDE, it follows that a finite difference scheme for

an inhomogeneous scheme is stable if the corresponding homogeneous scheme is

stable[Str89].

Remark F.0.3. Theorem F.0.2 gives an analogous result to stability as in the matrix

approach. In a nutshell: if the PDE may be discretized into the form

un+1 = Aun, (F.9)

for some discretization matrix A, then a necessary and sufficient condition for stability

satisfies

‖A‖ ≤ 1 + C∆t (F.10)

for some constant C ∈ R.

We now state a corollary which will also be used in this thesis. For the proof we refer to

[Str89].

Corollary F.0.1. If a scheme as in theorem F.0.2 is modified such that the modifi-

cations result only in the addition to the amplification factor of terms that are O (∆t)

uniformly in η, then the modified scheme is stable if and only if the original scheme

is stable.
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Pricing a defaultable bond

Suppose a defaultable bond with maturity T , face value F , and paying n coupons of value

C at times
{
T−t
n , 2T−tn , ..., T

}
, where t indicates the current time. Let τ be the time of

default modeled by a hazard process with time dependent intensity λs. The price of the

defaultable bond today, t, can be written as

Vt = EQ
t

 n∑
j=1

Ce−
∫ t+T−t

n j

t rsds1{τ>t+T−t
n
j}

+ EQ
t

[
e−
∫ T
t rsdsF1{τ>T}

]
+EQ

t

[∫ T

t
e−
∫ u
t rsdsR(τ)d1{τ<u}

]
,

(G.1)

where rs corresponds to the interest rate process and R(τ) to the recovery at default.

The first expectation represents the coupon payments which are only paid if no default

occurred by the time of the required payment. The second expectation is the discounted

value final face value payment. This payment will only be completed in case no default

occurred within the lifetime of the contract. Finally, the last expectation corresponds to

the recovery payment in case of a default. We can simplify this expression somewhat by

first applying the tower property for expectations: let FT be as defined in appendix D.

Vt = EQ
t

EQ

 n∑
j=1

Ce−
∫ t+T−t

n j

t rsds1{τ>t+T−t
n
j}

∣∣∣∣∣∣FT


+ EQ
t

[
EQ
[
e−
∫ T
t rsdsF1{τ>T}

∣∣∣FT ]]
+ EQ

t

[
EQ
[∫ T

t
e−
∫ u
t rsdsR(τ)d1{τ<u}

∣∣∣∣FT]] .
(G.2)

Under this filtration the interest rate process, rs, is known, thus:
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Vt = EQ
t

 n∑
j=1

Ce−
∫ t+T−t

n j

t rsdsEQ
[
1{τ>t+T−t

n
j}
∣∣∣FT ]


+ EQ

t

[
e−
∫ T
t rsdsFEQ [1{τ>T}∣∣FT ]]

+ EQ
t

[∫ T

t
e−
∫ u
t rsdsR(τ)EQ [d1{τ<u}∣∣FT ]] .

(G.3)

Now, under the filtration at time T , also the realised intensity process is known. We

therefore recall

 EQ
T

[
1{τ>s}

]
= Q (τ > s) = e−

∫ s
t λudu

EQ
T

[
d1{τ<s}

]
= λse

−
∫ s
t λududs

, t ≤ s ≤ T, (G.4)

where t is supposed to be the initial time of interest. Using this for (G.3) we find the

general defaultable bond pricing formula

Vt = EQ
t

 n∑
j=1

Ce−
∫ t+T−t

n j

t (rs+λs)ds

+ EQ
t

[
e−
∫ T
t (rs+λs)dsF

]
+EQ

t

[∫ T

t
λT e

−
∫ u
t (rs+λs)dsR(u)du

]
.

(G.5)

For similar deductions in this thesis we assumed no wrong-way risk, where instead of

the tower property we use conditional expectations. The above formulas therefore allow

wrong-way risk to exist in the model.
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H.1 Firm data

The data used in this thesis is summarized in table H.1.



Data 161

A
ir

F
ra

n
c
e

-
K

L
M

B
a
n

c
o

d
o

B
ra

si
l

S
.A

.
IN

G
G

ro
u

p
IN

G
G

ro
u

p
(s

u
b

.)
D

at
a

2
4-

12
-2

01
4

20
-1

2-
20

14
24

-1
2-

20
14

24
-1

2-
20

14
C

u
rr

en
cy

E
U

R
U

S
D

U
S

D
E

U
R

S
0

7.
61

5
24

.3
50

10
.9

50
10

.9
50

σ
(%

)
4
6.

16
43

.6
8

28
.3

4
28

.3
4

(a
0
,a

1
,b

)
(−

0
.0

77
,
−

0
.0

27
,

1.
6
64

)
(0
.8

70
,
−

2.
70

7
,

1.
01

5)
(1
.8

15
,
−

0
.7

73
,

1.
50

8)
(0
.8

20
,
−

0.
71

5
,

1.
50

8)
R

M
S

E
6.

1
7

11
.1

1
0.

82
2.

10

S
p

re
a
d

s
(T

)
M

a
rk

et
P

D
E

M
a
rk

et
P

D
E

M
a
rk

et
P

D
E

M
a
rk

et
P

D
E

1
2
29

.8
8

2
25

.3
4

15
9.

10
15

6.
46

15
.3

3
15

.5
0

72
.2

2
70

.9
6

2
2
62

.0
5

2
67

.3
6

20
1.

01
20

9.
43

25
.8

1
24

.9
5

85
.1

5
87

.2
1

3
2
93

.3
8

3
02

.0
8

24
0.

75
24

8.
18

34
.8

6
35

.9
4

10
0.

14
10

2.
75

4
3
35

.2
2

3
27

.8
1

27
8.

68
27

7.
30

47
.6

3
46

.7
3

11
8.

60
11

6.
49

5
3
56

.6
0

3
45

.6
0

31
8.

48
29

8.
96

55
.5

0
56

.2
5

13
0.

03
12

7.
86

J
P

M
o
rg

a
n

C
h

a
se

&
C

o
.

J
P

M
o
rg

a
n

C
h

a
se

&
C

o
.

(s
u

b
.)

R
o
y
a
l

D
u

tc
h

S
h

e
ll

P
L

C
A

m
a
z
o
n

D
a
ta

2
0-

12
-2

01
4

20
-1

2-
20

14
24

-1
2-

20
14

09
-2

00
1

C
u

rr
en

cy
U

S
D

U
S

D
E

U
R

-
S

0
61

.9
30

61
.9

30
18

.0
10

7.
75

6
σ

(%
)

18
.6

9
18

.6
9

17
.3

8
90

.7
2

(a
0
,a

1
,b

)
2.

2
92
,
−

9.
1
01
,

0
.8

1
2

3
.1

00
,−

19
.9

40
,0
.8

12
(1
.9

16
,−

5
.9

32
,1
.1

08
)

(0
.8

91
,−

0.
95

9,
0.

69
3)

R
M

S
E

4.
6
5

8.
85

3
.4

4
10
.2

6

S
p

re
a
d

s
(T

)
M

a
rk

et
P

D
E

M
a
rk

et
P

D
E

M
a
rk

et
P

D
E

M
a
rk

et
P

D
E

1
22

.1
3

21
.3

4
34

.5
0

38
.8

0
22

.8
0

21
.8

8
89

9.
06

89
8.

10
2

32
.3

9
34

.7
6

56
.8

0
56

.9
6

31
.0

4
34

.2
1

11
30

.9
3

11
40

.0
6

3
39

.2
6

43
.3

9
65

.4
0

67
.5

9
40

.9
3

43
.6

5
12

58
.2

0
12

39
.4

0
4

48
.5

4
48

.8
8

69
.7

7
73

.4
9

53
.4

1
50

.9
5

12
65

.4
6

12
74

.8
5

5
61

.5
0

52
.3

2
95

.9
4

76
.7

6
62

.2
3

56
.5

3
12

85
.3

2
12

86
.1

5

T
a
b
l
e
H
.1
:

In
p

u
t

d
at

a
an

d
P

D
E

m
o
d

el
fi

tt
ed

d
a
ta

fo
r

th
e

se
le

ct
ed

fi
rm

s.
B

o
th

IN
G

a
n

d
J
P

M
a
re

ca
li

b
ra

te
d

si
m

u
lt

a
n

eo
u

sl
y

a
n

d
th

er
ef

or
e

h
av

e
th

e
sa

m
e

va
lu

e
fo

r
p

ar
am

et
er
b.

F
u

rt
h

er
m

o
re

th
e

fo
rw

a
rd

in
te

re
st

ra
te

d
a
ta

is
fo

u
n

d
in

B
lo

o
m

b
er

g
w

it
h

th
e

m
et

h
o
d

ol
og

y
d

es
cr

ib
ed

in
se

ct
io

n
H

.2
.

A
m

a
zo

n
d

a
ta

is
fo

u
n

d
in

D
a
s

&
H

a
n

o
u

n
a

[D
H

0
9
].



Data 162

H.2 Risk-free interest rates

One of the model input parameters is the risk free interest rate rt. We have modeled the

interest rate as an annual interest rate with continuous compounding, i.e. if X0 is the

initial investment and we let it gain interest over the period (0,∆t) years then we end up

with

X0e
∫∆t
0 rtdt.

We’d like to find such future interest rates and provide these to our model as input. This

could be done by for example using a model for the interest rate, such as the simple Vasicek

or the more complicated CIR model (for more interesting models and their calibration

see [BM01][BA03]). However this thesis’ focus is not on such model nor its calibration

and we therefore provide another approximation. Instead we shall search for forward risk

neutral interest rates, similarly was done by Das & Hanouna [DH09].

Forward rates can be extracted from the fixed leg of an interest rate swap and can be

understood as expected interest rates, in the Q-measure, at future states over the time

of the swap. Thus, for example, the 6-month EURIBOR forward swap rate over 2 years

gives us an indication of the expected interest rate corresponding to a 6 month period

over 2 years from now. So, ideally we’d need a continuous stream of interest rate swaps

referencing a risk free interest rate with infinitesimal maturities. This would then provide

us with rt at every t. This requirement can be split up into two sub questions:

1. Which curve provides us with risk free interest rates? Before the credit crunch in

2007/2008 it was common practice assume the EURIBOR or LIBOR rates as being

risk free. They both correspond to average interest rates at which large banks lend

each other money over some predefined period, e.g. 1 month or 6 months. However

during the credit crunch it became clear that even large banks might default and

that therefore the corresponding interest rate have some credit spread on them. To

minimize this, it became market practice to look at overnight interest rates, the

rates at which money is lend overnight. This has the advantage that it minimizes

default risk as it corresponds to a very short time. For the EURO zone such average

interest rate is quoted by EONIA (Euro Overnight Index Average). This is thus a

better indication of the risk free interest rate and we shall therefore look at swaps

on EONIA curves.

2. How can we approximate a continuous stream of interest rate swaps with infinitesi-

mal maturities? With the aid of Bloomberg, the best we can do is to use 1 month

EONIA swaps with intervals of 1 month. Bloomberg doesn’t provide any shorter

tenors nor shorter intervals. Furthermore, the interest rates are quotes are as annual

rates without compounding. Therefore we have to transform the provided quotes

to continuously compounded counterparts.
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The quotes are stated as annual quotes under the day count convention actual/360. This

convention states that if we want to calculate a fraction of years then we should use

′Actual amount of days in the period′

360
.

Thus the total interest that we get over 1 month would approximately be

1 +
30

360
r∗,

where r∗ the interest rate of the 1-month swap. Thus to find the corresponding continu-

ously compounded interest rate r we determine

e
30
360

r = 1 +
30

360
r∗

↔ r =
360

30
ln

(
1 +

30

360
r∗
)
.

When r∗ is very small both interest rates will be virtually equal. This is the case for

the current market where interest rates are very low. However, for completeness and

future scenarios in which the interest rate may increase this transformation might be of

influence.
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I.1 D&H model of Das&Hanouna

I.1.1 Main code for Calibration and pricing of CDSs

This code functions as master code. It contains a section for inputting market data and a

section for test data. For the market data an extra section is included in order to perform

the calibration. Finally a section is presented where results of the recovery and probability

of default are plotted.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-- Main: binomial callibration of default and recovery (Das&Hanouna) ---%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Setup

format short G;

format compact;

global S D f blb; % Defining the global variables

addpath('Functions')

S0=7.756;

sigma=0.972;

data=[1 1 899.06 ; 2 1 1130.93 ; 3 1 1258.20 ; 4 1 1265.46 ; 5 1 1285.32];

xdata=data(:,1:end-1);

ydata=data(:,end);

h=1;

maxT=max(data(:,1));

N=maxT/h;

f=[0.0226 0.0273 0.0329 0.0283 0.0436]';

constantR=false;

%% Discount and Stock tree

[S, D, blb] = TrinomialTree(maxT, h, S0, sigma, f);

%% Optimization

[xmin,fmin,flag,outpt,allmins] = tri_optimize(ydata,xdata,h,'lsqcurvefit');

%% Creating and plotting the term structures

[C, P, R, Lambda] = calcSpreads(xmin,xdata,h,true);

Default = sum(P.*Lambda,2);

expectedRecovery = (sum(P,2)).ˆ(-1).*(sum(R.*P,2));

subplot(1,2,1)

plotsTerm=plotyy(1:N,Default(1:end),1:N,expectedRecovery(1:end));

subplot(1,2,2)
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plotsQuotes(1)=plot(xdata(:,1), ydata, 'ko');

hold on

plotsQuotes(2)=plot(xdata(:,1), C, 'go');

I.1.2 Calculation of multiple spreads

Here is a master file for calculating spreads given the required input data. The recovery

and probability of default at each node are calculated in this code.

%%%-----------------------------------------

% CalcSpreads.m

% Calculates multiple spreads for given CDSs

%%%-----------------------------------------

% INPUT

% local

% - (3x1)-vector 'params': parameters [a0 a1 b]

% - (ix2)-vector 'xdata': Each row corresponds to a spread

% calculation and the columns take [T N]

% global

% - (maxT x maxT)-matrix 'S': tril-binomial tree of stock prices

% - (maxT x 1)-vector 'D': forward discount values

% OUTPUT

% - (ix1)-vector 'C': with the calculated spreads

function [C, P, R, Lambda, A, B] = calcSpreads(params,xdata,h,...

compute_totalProbabilities)

mult_seniorities=false;

if(length(params)==5)

mult_seniorities=true;

end

% Retreived data

global S D;

a01=params(1);

a11=params(2);

if(mult_seniorities)

a02=params(3);

a12=params(4);

b=params(5);

else

b=params(3);

end

% Creating matrices Lambda, Q and Recovery

Lambda_withtriu=1-exp(-(1./S.ˆb).*h);

Lambda=tril(Lambda_withtriu);
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% Form by D&H

R1_withtriu=0.5*erfc((-a01-a11*Lambda)/sqrt(2));

% Alternative form based on default intensity

%l0=1./S(1,1).ˆb;

%R1_withtriu=0.5*erfc((-a01-a11*(1./S.ˆb-l0)./l0)/sqrt(2));

R1=tril(R1_withtriu);

if(length(S)>1)

u=S(2,2)/S(1,1); d=1/u;

Q_withtriu=(repmat((1./D),1,length(S))./(1-Lambda)-d)./(u-d);

Q=tril(Q_withtriu);

end

% in order to proceed computing with Q we modify the inf values to 1e13

% (simply very large)

Q(Q==inf)=1e14;

if(mult_seniorities)

R2_withtriu=0.5*erfc((-a02-a12*Lambda)/sqrt(2));

R2=tril(R2_withtriu);

end

if(compute_totalProbabilities)

P = totalProbabilities(Q,Lambda);

end

% Determine each CDS spread by means of calcSpread

s=size(xdata);

C=zeros(s(1),1);

for idx=1:s(1)

T=xdata(idx,1);

N=xdata(idx,2);

seniority=1;

if(mult_seniorities)

seniority=xdata(idx,3);

end

if(seniority==1)

[C(idx), A(idx), B(idx)] =calcSpread(Lambda, Q, R1, T, N, h);

elseif(seniority==2)

[C(idx), A(idx), B(idx)] =calcSpread(Lambda, Q, R2, T, N, h);

end

end

if(mult_seniorities)

R(:,:,1)=R1;

R(:,:,2)=R2;

else

R=R1;

end
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I.1.3 Calculation of spread given input variables and parameters

This is the final layer of calibration, where a single spread is determined based upon

all input (market/test) parameters and the previously found default probabilities and

recovery values.

%%%-----------------------------------------

% CalcSpread.m

% Calculates multiple spreads for given CDSs

%%%-----------------------------------------

% INPUT

% local

% - (maxT x maxT)-matrix 'Lambda': probilities of default

% - (maxT x maxT)-matrix 'Q': up probability given no default

% - (maxT x maxT)-matrix 'R': percentage recovery

% - scalar 'T': maturity in years

% - scalar 'N': amount of premium payment if no default occurs % - scalar 'h': binomial-tree stepsize

% global

% - (>T x 1)-vector 'D': forward discount values

% - (>T x 1)-vector 'f': forward interest rates

% OUTPUT

% - scalar 'C': calculated spread

function [C, A, B] = calcSpread(Lambda, Q, R, T, N, h)

global D;

% Maturity should be a multiple of the stepsize

Steps=round(T/h)+1;

if(mod(Steps,1)~=0); error('Stepsize and maturity do not match'); end

% Backwards recursion for premium and protection leg

% At the end, both legs, have expected future payments of 0.

% The last premium payment is always calculated as discounted payment in

% the time step before (thus also for the last time step)

A=zeros(1,Steps);

B=zeros(1,Steps);

for t=Steps-1:-1:1

A(1:t)=D(t)*h+D(t)*...

(Q(t,1:t).*(1-Lambda(t,1:t)).*A(2:t+1) ...

+ (1-Q(t,1:t)).*(1-Lambda(t,1:t)).*A(1:t));

B(1:t)=D(t)*Lambda(t,1:t).*(1-R(t,1:t))+D(t)*...

(Q(t,1:t).*(1-Lambda(t,1:t)).*B(2:t+1)...

+ (1-Q(t,1:t)).*(1-Lambda(t,1:t)).*B(1:t));

end

A=A(1,1);

B=B(1,1);

C=B/A*10000;
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I.1.4 Reaching probabilities

This code corresponds to determining the probability of reaching nodes in the jump-to-

default tree.

%%%-----------------------------------------

% totalProbabilities.m

% Determining the probablity of reaching

% nodes in the trinomial.

%%%-----------------------------------------

% INPUT

% local

% - (>T x >T)-matrix 'Lambda': probilities of default

% - (>T x >T)-matrix 'Q': up probability given no default

% OUTPUT

% - (maxT x maxT)-matrix 'P': the probability of reaching the nodes

function P = totalProbabilities(Q,Lambda)

u=Q.*(1-Lambda);

d=(1-Q).*(1-Lambda);

% Test code to see if it corresponds to our expectations

%syms u11 u21 u22 u31 u32 u33 d11 d21 d22 d31 d32 d33;

%u=[u11 0 0 ; u21 u22 0 ; u31 u32 u33];

%d=[d11 0 0 ; d21 d22 0 ; d31 d32 d33];

n=length(Q);

P=zeros(n);

P(1,1)=1;

for i=2:n

P(i,1:i-1)=P(i-1,1:i-1).*d(i-1,1:i-1);

P(i,2:i)=P(i,2:i)+P(i-1,1:i-1).*u(i-1,1:i-1);

end
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I.2 Main optimization file

global S0 f sigma T S;

addpath('functions');

addpath('../../Data');

addpath('../../MC/functions')

recoverytype={'Probit'};

multiseniority=0;

S.min=0;

S.max=500;

S.N=2*S.max;

T.min=0;

T.N=48;

[S0, sigma, data, currency, f, xmin] = getData('airfrance',T.N,multiseniority);

tMax=max(data(:,1));

T.max=tMax;

times=data(:,1);

%% Optimisation

[xmin,fmin,flag,outpt,allmins]=pde_optimize(data,'fmincon patternsearch',...

recoverytype, xmin);

%% Create grid

if(multiseniority)

paramtemp=zeros(1,3);

paramtemp(1,:)=[xmin(1:2) xmin(5)];

paramtemp(2,:)=[xmin(3:4) xmin(5)];

else

paramtemp=xmin;

end

K=multiseniority+1;

for k=1:K

params=paramtemp(k,:);

grid = Grid(S0,params,f,sigma,T,S,recoverytype);

Spreads.duration=data(5*(k-1)+1:5*k,1);

Spreads.spread=data(5*(k-1)+1:5*k,2)/1e4;

Spreads.nr=size(Spreads.duration,1);

dt=0.1;

maturities=dt:dt:tMax;

for i=1:length(maturities)
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pde(2*i-1)=PDE(grid,[],0,...

maturities(i), 1,'premium leg');

pde(2*i)=PDE(grid,[],0,maturities(i),[],'protection leg');

end

pdelist=PDEList(pde);

[prem, prot] = FiniteDifference(grid,pdelist,'implicit');

Sinner=grid.Sgrid(2:end-1,1);

% retrieve CDS spreads

C=prot(:,:,1)./prem(:,:,1)*10000;

spreads = interp1(Sinner',C,S0)';

subplot(1,2,1)

plot(maturities,spreads)

hold on

C=ismember(maturities,data(5*(k-1)+1:5*k,1));

idx=find(C);

RMSE = sqrt(sum((spreads(idx)-data(5*(k-1)+1:5*k,2)).ˆ2/5));

end

plot(times(1:5), data(1:5,2))

if(k==2)

hold on

plot(times(6:10), data(6:10,2))

end

%% Calling the termstructures by means of the monte carlo approach

subplot(1,2,2)

[mL,RatD] = mc(S0,sigma,f,T.max,xmin',recoverytype,true,false);

I.2.1 Classes

classdef PDE

properties

% grid should contain the object Grid

grid

% boundary should contain

% boundary.left

% boundary.bottom

% boundary.right

% boundary.top

% Length of grid.t and the boundaries do not have to be equal.
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% The PDE may be defined on a subgrid.

% grid.s and boundary.left and boundary.right should be of same

% size.

boundary

% specifies the domain where the pde is defined

tmin

tmax

% type sets whether the PDE corresponds to the 'premium leg' or the

% 'protection leg'.

type

spread

end

methods

function obj = PDE(Grid,Boundary,Tmin,Tmax,Spread,Type)

% if some of the components are defined as constant we expand

% them into being defined all over the grid

% we fix the sizes of the boundary conditions if needed

ls=Grid.s.N+1;

lt=Grid.t.N*Grid.t.max+1;

% if the Boundary delivered is empty we create it with the

% default values for the premium and protection leg

if(isempty(Boundary))

Boundary.bottom=0;

Boundary.right=0;

if(strcmp(Type,'premium leg'))

duration=round(Grid.t.N*Tmax);

R=Grid.r(1:duration);

R=repmat(R,length(R),1);

R=sum(triu(cumprod(exp(-R*Grid.t.d),2)),2);

disc=Grid.t.d.*Spread*R;

Boundary.top = [disc' 0];

elseif(strcmp(Type,'protection leg'))

Boundary.top=0;

end

end

if(isfield(Boundary,'left'))

Boundary.left = fixSize(Boundary.left,1,ls);

end

if(isfield(Boundary,'bottom'))

Boundary.bottom = fixSize(Boundary.bottom,lt,1);

end

if(isfield(Boundary,'right'))

Boundary.right = fixSize(Boundary.right,1,ls);
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end

if(isfield(Boundary,'top'))

Boundary.top = fixSize(Boundary.top,lt,1);

end

obj.boundary = Boundary;

obj.grid = Grid;

obj.tmin = Tmin;

obj.tmax = Tmax;

obj.type = Type;

obj.spread = Spread;

end

end

end

classdef PDEList

properties

pdes

tmax

end

methods

function obj = PDEList(pdes)

obj.pdes = pdes;

obj.tmax = max([pdes.tmax]);

end

function var = getboundary(obj,idx,boundtype, x)

if(strcmp(boundtype,'bottom'))

bound = [obj.pdes(idx).boundary];

bot = vertcat(bound.bottom);

var = bot(:,x)';

elseif(strcmp(boundtype,'top'))

bound = [obj.pdes(idx).boundary];

top = vertcat(bound.top);

var = top(:,x)';

elseif(strcmp(boundtype,'left'))

bound = [obj.pdes(idx).boundary];

lef = horzcat(bound.left);

var = lef(x,:);

elseif(strcmp(boundtype,'right'))

bound = [obj.pdes(idx).boundary];

rig = horzcat(bound.right);

var = rig(x,:);

end

end
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function spreads = getspreads(obj, idx)

spreads=[obj.pdes(idx).spread];

end

function idx = firstindex(obj,str)

idx = find(~cellfun(@isempty,strfind({obj.pdes.type},str)),1,'first');
end

function a = amount(obj,str)

a = sum(cell2mat(strfind({obj.pdes.type},str)));

end

end

end

% Constructing the required functions for grid stretching

classdef gridstretcher

properties

k

xi

a

b

n

phi % This contains phi normal and its first two derivatives

end

methods

function obj = gridstretcher(K, Xi, A, B, N)

obj.xi=Xi;

obj.k=K;

obj.a=A;

obj.b=B;

obj.n=N;

c1=asinh(Xi*(A-K));

c2=asinh(Xi*(B-K));

y=(0:1/N:1)';

eval=c2*y+c1*(1-y);

obj.phi.d0=max(1/Xi*sinh(eval)+K,0);

obj.phi.d1=(c2-c1)/Xi*cosh(eval);

obj.phi.d2=(c2-c1)ˆ2/Xi*sinh(eval);

end

end

end
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I.2.2 Functions

function [xmin,fmin,flag,outpt,allmins] = pde_optimize(data, optimtype,...

recoverytype, init)

% Constraints

if(strcmp(recoverytype,'Probit'))

lb=[-3.1 ; -5e3 ; 0];

ub=[3.1 ; 0 ; 2.5];

elseif(strcmp(recoverytype,'Logit'))

lb=[-7 ; -5e3 ; 0];

ub=[7 ; 0 ; 2.5];

elseif(strcmp(recoverytype,'Arctan'))

lb=[-319 ; -5e3 ; 0];

ub=[319 ; 0 ; 2.5];

end

multiseniority=length(init)>3;

if(multiseniority)

lb(5)=lb(3); lb(3)=lb(1); lb(4)=lb(2);

ub(5)=ub(3); ub(3)=ub(1); ub(4)=ub(2);

end

x0=init;

% Defaults

flag=0;

outpt=0;

allmins=0;

w=[1 1 1 1 1]';

w=repmat(w,multiseniority+1,1);

w=w./sum(w);

optimfun = @(x) sum( w.*(calc_pdes(x,data, recoverytype, multiseniority)).ˆ2 );

if (~isempty(strfind(optimtype,'lsqcurvefit')))

optimfun = @(x,xdata)calc_pdes(x,xdata, recoverytype);

[xmin, fmin] = lsqcurvefit(optimfun,x0,data,ydata,lb,ub);

end

if(~isempty(strfind(optimtype,'fmincon')))

% Local

optimoptions(@fmincon,'Display','iter','TolFun',1e-10,'TolX', 1e-10);

[xmin,fmin] = fmincon(optimfun,x0,[],[],[],[],lb,ub);

x0=xmin;

end

if(~isempty(strfind(optimtype,'patternsearch')))
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opts = psoptimset('PlotFcns',{@psplotbestf,@psplotfuncount},...

'Display','iter','InitialMeshSize',10,'TolX',1e-5, 'MaxIter', 1e4);

[xmin,fmin] = patternsearch(optimfun,x0,[],[],[],[],lb,ub,[],opts);

end

if(~isempty(strfind(optimtype,'simannealing')))
[xmin,fmin,~,~] = simulannealbnd(optimfun,x0,lb,ub);

end

function [diff, spreads] = calc_pdes(params,data,...

recoverytype, multiseniority)

global S0 f sigma T S;

if(multiseniority)

paramtemp=zeros(1,3);

paramtemp(1,:)=[params(1:2) params(5)];

paramtemp(2,:)=[params(3:4) params(5)];

else

paramtemp=params;

end

K=multiseniority+1;

for k=1:K

params=paramtemp(k,:);

grid = Grid(S0,params,f,sigma,T,S,recoverytype);

Spreads.duration=data(5*(k-1)+1:5*k,1);

Spreads.spread=data(5*(k-1)+1:5*k,2)/1e4;

Spreads.nr=size(Spreads.duration,1);

for i=1:Spreads.nr

pde(2*i-1)=PDE(grid,[],0,...

Spreads.duration(i), Spreads.spread(i),'premium leg');

pde(2*i)=PDE(grid,[],0,Spreads.duration(i),[],'protection leg');

end

pdelist=PDEList(pde);

[prem, prot] = FiniteDifference(grid,pdelist,'implicit');

Sinner=grid.Sgrid(2:end-1,1);

% retrieve CDS spreads

C=prot(:,:,1)./prem(:,:,1)*1e4;

spreads = interp1(Sinner',C,S0)';
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premS0=interp1(Sinner',prem(:,:,1),S0)';

protS0=interp1(Sinner',prot(:,:,1),S0)';

if(sum(sum([premS0 protS0]<0))>0)

diff(:,k)=Inf*ones(size(premS0));

else

diff(:,k)=protS0./premS0-premS0./protS0;

end

end

diff=diff(:);

function [prem, prot] = FiniteDifference(grid,pdelist,scheme)

% pdelist contains the list array of pdes (it is created as it contains

% other practical methods for the list).

pdes=pdelist.pdes;

Spreads.times=grid.t.N*[pdes.tmax]+1;

% Setting initial (or actually final) conditions.

% We assume that each of all premium legs have the same inital condition,

% the same is assumed for the protection leg. Thus we pick the first

% boundary condition for each.

iprem=firstindex(pdelist,'premium leg');

nrprem=amount(pdelist,'premium leg');

iprot=firstindex(pdelist,'protection leg');

nrprot=amount(pdelist,'protection leg');

% the initial conditions are set to the whole grid for each pde

% dimension: (S,t,amount)

if(iprem>0)

prem=repmat(pdes(iprem).boundary.right(2:end-1),...

1,nrprem,pdelist.tmax*grid.t.N+1);

end

if(iprot>0)

prot=repmat(pdes(iprot).boundary.right(2:end-1),...

1,nrprot,pdelist.tmax*grid.t.N+1);

end

if(strcmp(scheme,'cranknicolson'))

i=pdelist.tmax*grid.t.N+1;

if(strcmp(grid.type,'gridstretching'))

% The diagonal matrix which has to be inverted.

% Will be used for evaluation of premium and protection leg.

l=-(grid.pdevar.del(2:grid.s.N,i)+0.5.*grid.pdevar.alp(2:grid.s.N));

d=1+grid.pdevar.alp(2:grid.s.N)+grid.pdevar.bet(2:grid.s.N,i);

u=grid.pdevar.del(2:grid.s.N,i)-0.5.*grid.pdevar.alp(2:grid.s.N);

elseif (strcmp(grid.type,'regular'))
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j=(1:1:grid.s.N-1)'; % only consider the inner-grid

j2=j.ˆ2;

l=-0.5*(grid.pdevar.alp*j2-grid.pdevar.bet(2:grid.s.N,i).*j);

d=1+grid.pdevar.alp*j2+grid.pdevar.bet(2:grid.s.N,i);

u=-0.5*(grid.pdevar.alp*j2+grid.pdevar.bet(2:grid.s.N,i).*j);

end

l=l./2;

d=d./2+1/2;

u=u./2;

end

% Performing finite difference by looping over time

for i=pdelist.tmax*grid.t.N:-1:1

premactive=(i<=Spreads.times & strcmp({pdes.type},'premium leg'));

protactive=(i<=Spreads.times & strcmp({pdes.type},'protection leg'));

Premactive=sum(premactive);

Premactiveindex=find(premactive);

Protactive=sum(protactive);

Protactiveindex=find(protactive);

if(strcmp(scheme,'cranknicolson'))

le=-l;

de=-d+2;

ue=-u;

end

if(strcmp(grid.type,'gridstretching'))

% The diagonal matrix which has to be inverted.

% Will be used for evaluation of premium and protection leg.

l=-(grid.pdevar.del(2:grid.s.N,i)+0.5.*grid.pdevar.alp(2:grid.s.N));

d=1+grid.pdevar.alp(2:grid.s.N)+grid.pdevar.bet(2:grid.s.N,i);

u=grid.pdevar.del(2:grid.s.N,i)-0.5.*grid.pdevar.alp(2:grid.s.N);

elseif (strcmp(grid.type,'regular'))

j=(1:1:grid.s.N-1)'; % only consider the inner-grid

j2=j.ˆ2;

l=-0.5*(grid.pdevar.alp*j2-grid.pdevar.bet(2:grid.s.N,i).*j);

d=1+grid.pdevar.alp*j2+grid.pdevar.bet(2:grid.s.N,i);

u=-0.5*(grid.pdevar.alp*j2+grid.pdevar.bet(2:grid.s.N,i).*j);

end

if(strcmp(scheme,'cranknicolson'))

l=l./2;

d=d./2+1/2;

u=u./2;

Ae=spdiags(le(2:end),-1,grid.s.N-1,grid.s.N-1)...

+spdiags(de,0,grid.s.N-1,grid.s.N-1)...

+spdiags([0 ; ue(1:end-1)],1,grid.s.N-1,grid.s.N-1);

end
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A=spdiags(l(2:end),-1,grid.s.N-1,grid.s.N-1)...

+spdiags(d,0,grid.s.N-1,grid.s.N-1)...

+spdiags([0 ; u(1:end-1)],1,grid.s.N-1,grid.s.N-1);

% setting the boundary contidions for premium and protection leg

if(Premactive>0)

spread=getspreads(pdelist,Premactiveindex);

bA=-grid.t.d*repmat(spread,length(2:grid.s.N),1);

bA(1,:)=bA(1,:)+l(1,:)...

.*getboundary(pdelist,Premactiveindex,'bottom',i);

bA(grid.s.N-1,:)=bA(grid.s.N-1,:)+u(end)...

.*getboundary(pdelist,Premactiveindex,'top',i);

idxPrem=(nrprem-Premactive+1):1:nrprem;

% Solving the Crank Nicolson scheme

if(strcmp(scheme,'cranknicolson'))

bAe=zeros(length(2:grid.s.N),Premactive);

bAe(1,:)=le(1,:).*getboundary(pdelist,Premactiveindex,'bottom',i+1);

bAe(grid.s.N-1,:)=bAe(grid.s.N-1,:)+ue(end)...

.*getboundary(pdelist,Premactiveindex,'top',i+1);

prem(:,idxPrem,i)=A\(Ae*prem(:,idxPrem,i+1)-bA+bAe);

elseif(strcmp(scheme,'implicit'))

% Solving the implicit finite difference equation

prem(:,idxPrem,i)=A\(prem(:,idxPrem,i+1)-bA);

end

end

if(Protactive>0)

bB=-grid.t.d*grid.lambda(2:grid.s.N,i).*(1-grid.rho(2:grid.s.N,i));

bB=repmat(bB,1,Protactive);

bB(1,:)=bB(1,:)+l(1,:)...

.*getboundary(pdelist,Protactiveindex,'bottom',i);

bB(grid.s.N-1,:)=bB(grid.s.N-1,:)+u(end)...

.*getboundary(pdelist,Protactiveindex,'top',i);

idxProt=(nrprot-Protactive+1):1:nrprot;

% Solving the Crank Nicolson scheme

if(strcmp(scheme,'cranknicolson'))

bBe=zeros(length(2:grid.s.N),Protactive);

bBe(1,:)=le(1,:).*getboundary(pdelist,Protactiveindex,'bottom',i+1);

bBe(grid.s.N-1,:)=bBe(grid.s.N-1,:)+ue(end)...

.*getboundary(pdelist,Protactiveindex,'top',i+1);

prot(:,idxProt,i)=A\(Ae*prot(:,idxProt,i+1)-bB+bBe);

elseif(strcmp(scheme,'implicit'))

% Solving the implicit finite difference equation

prot(:,idxProt,i)=A\(prot(:,idxProt,i+1)-bB);

end

end



Matlab code 180

end

I.2.3 Dummy functions

function a = amount(celarray,str)

a = sum(cell2mat(strfind(celarray,str)));

end

function idx = index(celarray,str)

idx = find(~cellfun(@isempty,strfind(celarray,str)),1,'first');

end

% Takes any variable and extends its size to that of the

% specificied dimensions.

function var = fixSize(var,lX,lY)

if(length(var)==1)

var=kron(var, ones(lY,lX));

end

if(size(var,1)==1)

var=repmat(var,lY,1);

end

if(size(var,2)==1)

var=repmat(var,1,lX);

end

if(size(var,1)<=lY)

var(size(var,1)+1:lY,:)=0;

end

if(size(var,2)<=lX)

var(:,size(var,2)+1:lX)=0;

end

end

I.2.4 Monte Carlo for retrieving the term structure

function [mL,RatD,LGDPD] = mc(S0,sigma,f,T,params,modeltype,doplot,CVA)

multiseniority=length(params)>3;
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N=length(f)./T;

dt=1/N;

M=1e5;

S=S0*ones(M,1);

if(multiseniority)

b=params(5);

else

b=params(3);

end

lambda=zeros(M,N);

for t=1:(N*T)

lambda(:,t)=S(:,t).ˆ(-b);

lambda(lambda==Inf)=0;

dNt=binornd(1,dt*lambda(:,t));

dWt=sqrt(dt)*randn(M,1);

incr=((f(t)+lambda(:,t)).*S(:,t))*dt+sigma*S(:,t).*dWt;

S(:,t+1) = S(:,t)+incr-(S(:,t)+incr).*dNt;

end

% Mean expected stock without default

t=0:dt:T;

mL=mean(lambda);

K=multiseniority+1;

for k=1:K

a0=params(2*(k-1)+1);

a1=params(2*k);

% Recovery at default

l0=(1/S0)ˆb;

x=a0+a1*(lambda-l0)./l0;

if(strcmp(modeltype, 'Probit'))

R=normcdf(x);

elseif(strcmp(modeltype, 'Logit'))

R=1./(1+exp(-x));

elseif(strcmp(modeltype, 'Atan'))

R=0.5*(atan(a0+a1*x)*2/pi+1);

end

R(lambda==0)=0; % set to zero where a default already occured

RatD=sum(R,1)./sum(R~=0,1);

% CVA

if(CVA)

PD=dt.*lambda.*exp(-1*cumsum(lambda,2)*dt);

discount=exp(-1.*cumsum(repmat(f,M,1),2)*dt);

LGDPD(:,:,k)=discount.*(1-R).*PD;

end
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% Plot both recovery and default intensity

if(doplot)

%subplot(1,sets,i)

%particularly for amazon the probability density function:

if(~exist('plots'))
[plots, line_default, line_recovery] = plotyy(t(1:end-1), mL(:),...

t(1:end-1), RatD(:));

else

hold(plots(2));

f=plot(plots(2),t(1:end-1),RatD(:));

legend(f,'Recovery subordinated');

end

ylabel(plots(1), 'Intensity')

ylabel(plots(2), 'Fraction of notional')

legend([line_default ; line_recovery],{'Default' 'Recovery'})

end

end
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[BA03] Damiano Brigo and Aurélien Alfonsi. Credit default swaps calibration and

option pricing with the ssrd stochastic intensity and interest-rate model. In

Proceedings of the 6-th Columbia=JAFEE Conference, pages 15–16, 2003.

[BJR07] Tomasz R. Bielecki, Monique Jeanblanc, and Marek Rutkoski. Valuation and

hedging of credit derivatives. Lecture Notes, April 2007. URL: https://

cel.archives-ouvertes.fr/cel-00398075/document.

[BM01] Damiano Brigo and Fabio Mercurio. Interest rate models: theory and practice.

Springer finance. Springer, Berlin, Heidelberg, Paris, 2001.

[BM06] Damiano Brigo and Fabio Mercurio. Interest rate models - theory and

practice: With smile, inflation and credit (springer finance). August

2006. URL: http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/B0042JTAP6.

[BMP13] Damiano Brigo, Massimo Morini, and Andrea Pallavicini. Counterparty Credit

Risk, Collateral and Funding. Wiley, 2013.

183

https://cel.archives-ouvertes.fr/cel-00398075/document
https://cel.archives-ouvertes.fr/cel-00398075/document
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/B0042JTAP6
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/B0042JTAP6


Bibliography 184

[BMZ01] Gurdip Bakshi, Dilip Madan, and Frank Zhang. Understanding the role of

recovery in default risk models: Empirical comparisons and implied recovery

rates. Working Paper, 2001.

[CES06] Richard Cantor, Kenneth Emery, and Pamela Stumpp. Probability of default

ratings and loss given default assessments for non-financial speculative-grade

corporate obligors in the united states and canada. Technical Report 98771,

Rating Methodology: Moody’s, August 2006.

[CH04] Daniel Covitz and Song Han. An empirical analysis of bond recovery rates:

Exploring a structural view of default. Working Paper, December 2004.

URL: http://www.federalreserve.gov/pubs/feds/2005/200510/

200510pap.pdf.

[Chr05] Jens H. E. Christensen. Joint estimation of default and recovery risk: A sim-

ulation study. Working Paper, January 2005.

[CRR79] John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing: A

simplified approach. Journal of Financial Economics, (7):229–263, 1979.

[CV05] Richard Cantor and Praveen Varma. Determinants of recovery rates on de-

faulted bonds and loans for north american corporate issuers: 1983-2003. Jour-

nal of Fixed Income, 14(4):29–44, March 2005.

[DH09] Sanjiv R. Das and Paul Hanouna. Implied recovery. Journal of Economic

Dynamics and Control, 33(11):1837–1857, 2009.

[DS99] Darrell Duffie and Kenneth J. Singleton. Modeling term structures of default-

able bonds. The Review of Financial Studies, 12(4):687–720, 1999.

[DS03] Darrell Duffie and Kenneth J. Singleton. Credit Risk: Pricing, Measurement

and Management. Princeton University Press, 2003.

[EY13] EY. Credit valuation adjustments at non-financial organiza-

tions, 2013. accessed 15-01-2015. URL: http://www.ey.com/

Publication/vwLUAssets/Credit_valuation_adjustments_at_

non-financial_organizations/$FILE/2013_Credit_valuation_

adjustments.pdf.

[FJOS10] Fang Fang, Henrik Jönsson, Cornelis W. Oosterlee, and Wim Schoutens. Fast

valuation and calibration of credit default swaps under lévy dynamics. Journal
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