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Constructing Spatiotemporal Load
Profiles of Transit Vehicles with Multiple
Data Sources

Ding Luo1, Loı̈c Bonnetain2, Oded Cats1, and Hans van Lint1

Abstract
Obtaining load profiles of transit vehicles has remained as a difficult task for transit operators because of technical and financial
constraints. Although a significant advance in transit demand and supply data collection has been achieved over the past
decade, information related to load profiles at the vehicular level is either impossible or very difficult to retrieve from them. It
is not even uncommon to see that these data are underutilized by transit operators owing to considerable deficiencies and
shortcomings in the data themselves, and/or the processing algorithms needed to process them. This study is therefore dedi-
cated to addressing this challenge that has largely been overlooked by both researchers and practitioners. First, the issues
which hinder the construction of load profiles based on three prevailing transit data sources are identified, including automatic
fare collection (AFC), automatic vehicle location (AVL), and general transit feed specification (GTFS) data. Second, a methodol-
ogy is developed for sequentially addressing all the issues and generating desirable vehicle load profiles. The methodology con-
sists of four steps, including (1) data pre-processing, (2) matching trips in GTFS and AVL, (3) matching passenger rides to
vehicle trajectories, and (4) improving vehicle trajectories. The resulting spatiotemporal load profiles of transit vehicles enable
detailed investigation into vehicle movements and demand patterns over time and space, including service utilization and the
propagation of delays and crowding. Data collected from the urban transit network in The Hague, The Netherlands are used
to demonstrate the proposed methodology. The visualization of spatiotemporal load profiles through space-time seat occu-
pancy graphs provides operators with a compact and powerful reference for the improvement of their services.

Knowing the on-board load of transit vehicles is key to
improving transit services from both planning and
operational perspectives. However, obtaining such infor-
mation for transit operators has remained as a difficult
task for a long time because of technical and financial
constraints. Although manual surveys have often been
used to estimate on-board passenger loads, such surveys
are too costly to be conducted daily over all offered ser-
vices, and are also subject to error and bias. Opportunities
to change this situation, however, have emerged in recent
years with the fast-growing data richness in transit
research and practice, including automatic vehicle location
(AVL) (1); automatic fare collection (AFC) (2, 3); and
general transit feed specification (GTFS) data (4, 5). In
many cities and regions around the world, transit demand
and supply data have been continuously collected and
managed with fine granularity, accuracy, and spatiotem-
poral scale. Notwithstanding, it is not uncommon to see
transit operators still struggle to obtain some fundamen-
tally important information, such as service utilization
(i.e., passenger load). Data are often underutilized as a

result of considerable deficiencies and shortcomings that
can be frequently overlooked. To unlock their potential, it
becomes necessary to develop sound techniques to over-
come these issues and achieve valuable information, such
as the transit vehicle load, by processing and integrating
different data sources, including AFC, AVL, and GTFS.
The current study is therefore dedicated to this specific
challenge.

To the best of the authors’ knowledge, few scientific
studies and practical reports have attempted to address a
similar problem. One of the main causes for this scarcity
could be the rather limited access to multiple transit data
sets from the same period by researchers. In many cases,
only a single data source is available and the studies
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primarily developed methods to infer missing information.
For example, Chu and Chapleau early on presented how
spatiotemporal bus load profiles could be estimated based
on AFC data only (6). In the absence of real bus trajectory
information, they managed to estimate the spatiotemporal
paths of vehicles by combining the first and last transac-
tion times at each stop and corresponding timetable. Their
work is one of the pioneering studies that revealed the
power of AFC data on load profile construction. Sun
et al. subsequently investigated a similar problem, how-
ever, in the context of a metro system (7). With only AFC
data available (both tap-in and tap-off information
recorded), they developed a methodology for estimating
trains’ trajectories and linked individual passenger rides to
these trajectories, which results in a spatiotemporal density
of metro vehicles. More recently, Moreira-Matias and
Cats proposed a novel method for estimating on-board
loads of buses using AVL data only (8). Passenger loads
are built by applying machine learning algorithms to
smoothen the load profile based on actual dwell time
records. In addition, a web-based application to visualize
bus load profiles, called BusViz, has also been developed
based on the AFC data in Singapore (9). Despite the prog-
ress on the visualization work, their approach to derive
bus trajectories has several constrained assumptions. For
instance, the arrival time of a bus at a stop is equated to
the earliest entry time of the first passenger who boards or
alights at that stop, while the departure time is set equal to
the greatest of the card entry times of passengers who
board or alight at the stop. More advanced vehicle trajec-
tory inference techniques based on AFC data only, (see
for example Min et al. and Zhou et al. [10, 11]), can be
adopted and extended to address these limitations.

Although multiple transit data sets that are compara-
ble among each other have become increasingly available
to researchers, most research effort has focused on a
selected number of fields, such as transit origin–
destination (OD) estimation (12, 13), travel time reliabil-
ity analysis (14, 15), and passenger assignment modeling
in urban rail systems (16–19). Few existing studies have
comprehensively examined how spatiotemporal load pro-
files of transit vehicles can be constructed using multiple
data sources. This study is therefore devoted to bridging
this gap, which can benefit both researchers and practi-
tioners. The study’s contribution is twofold, including
specific identification of the issues pertaining to a single
or a combination of data sets (AFC, AVL, and GTFS),
and the development of a methodology for addressing
these issues and generating spatiotemporal load profiles
of transit vehicles. The methodology consists of four
steps through which raw data are processed and inte-
grated to generate the passenger load profiles over space
and time. These profiles allow service providers to ana-
lyze vehicle trajectories and demand patterns, and further

investigate service utilization and the propagation of
delays and crowding. The data collected from the urban
transit network in The Hague, The Netherlands are uti-
lized for demonstrating the methodology. A series of
inference and matching steps are employed. This analysis
results in profiles of vehicle trajectories and passenger
loads which are further visualized through space-time
occupancy graphs. Analogously to how space-time
graphs of speed and flow enable traffic engineers to study
spatiotemporal congestion patterns along routes in car
traffic, these space-time occupancy graphs enable transit
operators to study and inspect spatiotemporal on-board
crowding patterns along transit service lines.

The remainder of this study is organized as follows.
The next section describes the transit data sets available
in the Dutch context, including AFC, AVL, and GTFS
data, along with the related issues. Following this the
methodology is described, with an overview and descrip-
tions of all the steps as well as implementation. The
results are then presented, followed by the conclusions
and discussion of future research directions.

Data Description and Issue Identification

In this study three different transit data sets are used, all
of which were collected from the urban transit system in
The Hague, The Netherlands. These comprise AFC,
AVL, and GTFS data. All three data sets cover the
period of March 2015, which includes 22 normal work-
ing days and 9 weekend days. In this period, the system
consisted of 12 tram lines and 8 bus lines, and the incum-
bent transit operator was HTM.

Clarification of Terminology

In order to avoid ambiguity, all terms used in this study
are specified as follows based on what Robinson et al.
proposed (20).

� (Passenger) Ride: This describes the movement of
a passenger on a single vehicle, that is, a bus or
tram. The ride begins at the stop where the pas-
senger boarded the vehicle and ends at the stop
where the passenger alighted the vehicle.

� (Vehicle) Trip: This describes the movement of a
transit vehicle through a pre-defined sequence of
stopping points. It is sometimes called ‘‘run’’ in the
literature.

AFC Data

The Dutch smart card system (OV-chipkaart in Dutch) is
a nationwide fare-collection system (21, 22). An impor-
tant feature of the Dutch smart card system is that pas-
sengers are required to check in and check out for every
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single ride of a journey for fare calculation, except when
transferring within the national railway system and metro
systems. Missing the check-out will result in a much
higher fare, therefore making passengers have a strong
incentive to finish a ride by correctly checking out.
Consequently, information of travelers’ origin and desti-
nation is fairly complete and accurate without the need to
infer passenger alighting stops. However, individual rides
still need to be combined to obtain an OD matrix, which
is an important input for a variety of offline applications.

The smart card data set from The Hague for the whole
month of March 2015 contains close to 8 million validated
records. Each record characterizes a single transit passen-
ger ride with anonymous card ID, line/route ID, date, stop
ID, and time of check-in and check-out. The information
of trip ID and vehicle ID, which would allow for the con-
nection to the AVL data, is not available in this data set.

AVL Data

The AVL data of transit vehicles in The Netherlands are
well stored and managed at a national level (23). The
one-month data set used in this study contains over 22
million records in an event-based format. Individual trips
are distinguished by a unique trip ID within an operating
day. Besides information of line ID, stop ID, and vehicle
ID, each row of data is specified as an event and its cor-
responding timestamp(s), such as the start of a trip, on-
route, arrival, dwell, departure, and end of a trip. In
addition, deviation from the scheduled time is indicated
in the data under ‘‘punctuality.’’ The entire fleet of HTM
is equipped with the AVL system.

GTFS Data

GTFS, as one of the most prevailing formats for transit
schedules and associated geographic information, has
been widely adopted in the past decade by transit agen-
cies and operators to share information with the public
(4). In The Netherlands, GTFS data that cover most
transit services nationwide can be accessed via a website
called OVapi (24). These feeds are created from the open
data files published by local transit operators under an
open license. The website is well maintained with fre-
quent updates of GTFS and GTFS-Realtime data.

The GTFS data used in this study contain all trips
scheduled by HTM for March 2015 in The Hague. The
GTFS data can be matched with the AVL data set using
the trip ID.

Data Issues

Several issues pertaining to a single or a combination
of data sets can be identified and need to be resolved
for the current application, that is, constructing the

spatiotemporal load profiles of transit vehicles. These
issues are summarized and presented in Figure 1 in rela-
tion to their sources. Basically, issues specific to each
individual data set are illustrated in the respective oval,
whereas issues that arise when two or more data sources
are combined are positioned at their intersections. The
following issues have been identified:

� (1) Indirect availability of line information about

stops

Information in GTFS data is stored in a trip-based
manner, meaning that what can be directly obtained
from it are only individual vehicle trips that consist of
all the stops per trip. Complete stop sets of service lines,
which are crucial for subsequent analytics, are not
directly available from the GTFS data.

� (2) Erroneous AFC check-in/out records

AFC data contain different types of errors, including
unrealistic alighting times or alighting locations, as well
as missing and unrealistic trip numbers. The issues are
the result of improper passenger behaviors and system
malfunctions.

� (3) Multiple timestamps for one arrival/departure

event

Multiple timestamps can be occasionally found for one
arrival or departure event in the raw AVL data set. It is
unclear why this happens, but it jeopardizes the global
consistency of vehicle trajectories.

� (4) Timestamps missing for one arrival/departure

event

Arrival and/or departure timestamps at a stop can be
missing. The size of missing timestamps ranges from
one event (arrival/departure) at a stop to an entire trip.
Note that issue #3 and this one can happen to the same
stop (e.g., two arrival events, missing departure event),
which makes the issue even worse.

� (5) Inconsistency in trip ID

The vehicle trip ID indices in AVL and GTFS data do

not always match. This inconsistency causes problems
in matching trip and trajectory when combining GTFS
(scheduled trajectories) and AVL (recorded trajectories).

� (6) Lack of information for matching rides to sched-

uled vehicle trips

Since the AFC data set used in this study does not con-
tain vehicle trip ID, it is impossible to directly match
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individual rides to scheduled vehicle trips that are
extracted from the GTFS data.

� (7) Lack of information for matching rides to

recorded vehicle trips

The same issue as #6 holds for this situation too. There
is no direct way to match rides to the recorded vehicle
trips from AVL data.

� (8) Uncertainty in trip cancelation/execution

The GTFS data contain all scheduled trips of a day.
However, this does not provide conclusive evidence
that all these trips are indeed executed. In many cases,
the number of trips found in the AVL data set is
smaller than the scheduled number of trips. It is
uncertain whether this is a result of trip cancelation or
AVL system malfunction without any additional
information. AFC data may be used here to settle the
discrepancy.

These issues are illustrated for a given day and line in
Figure 2, which visualizes the recorded trajectories from
AVL data; scheduled trajectories from GTFS data; and
check-in/out records. Figure 2a first displays all the
recorded trajectories from the AVL data. There are many
gaps in this plot, which indicates that there is either a

missing timestamp or multiple timestamps for the arrival
or departure event at that stop. Figure 2b adds the layer
of all scheduled trajectories (blue lines) underneath the
recorded ones (red lines). It can be observed that overall
vehicle trips adhere to the timetable very well. Next,
check-out (blue circle points) activities are added in
Figure 2c. An important finding from this plot is that
when there is a trajectory gap, check-in/out activities also
do not exist, or are very sparse, which implies that in the
case where the arrival timestamp is missing but departure
has at least one timestamp, the vehicle probably drives
through the stop without serving passengers. Figure 2d
displays a zoom-in plot to allow for a more detailed
inspection. Check-in activities are clustered close to the
vehicle arrival time, unlike check-out activities, because it
is customary for passengers to check out in the segment
directly upstream of the alighting stop.

Methodology

In this section, a methodology for constructing the spa-
tiotemporal loads of transit vehicles based on afore-
mentioned data sources is described. An overview is
first provided, followed by subsections dedicated to
each step. The final subsection describes how this was
implemented.

GTFS Data

AFC Data AVL Data

5. Inconsistency in 
trip ID

6. Lack of Information 
for matching rides to 

scheduled vehicle trips 

7. Lack of Information 
for matching rides to 
recorded vehicle trips 

3. Multiple timestamps for one 
arrival/departure event 

4. Timestamp Missing for 
arrival/departure events 

2. Erroneous check-in/
out records

8. Uncertainty in 
trip cancellation/

execution

1. Indirect availability of line 
information about stops

Figure 1. Identification of the issues pertaining to a single or a combination of data sets for constructing the spatiotemporal load profiles
of transit vehicles. Issues specific to each individual data set are illustrated in the respective oval, whereas issues that arise when two or
more data sources are combined are positioned at their intersections.
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Overview

The methodology consists of four steps as shown in

Figure 3. Raw data from three independent sources are

used throughout the four steps. All three individual data

sets are initially stored in separate databases. In step 1,

the raw data are first obtained from the databases with

all the information restructured at a daily level. By doing

so, the subsequent workflow is made more computation-

ally efficient. Issues #1 and #2 (described earlier) are

addressed at the first step, resulting in data files respec-

tively containing passenger rides; recorded vehicle

trajectories, and scheduled vehicle trajectories. The inte-
gration of recorded and scheduled vehicle trajectories is
then performed at the second step. Issue #5 is solved,
resulting in data files that contain both scheduled and
recorded vehicle trajectories. In step 3, passenger rides
are matched with vehicle trips and trajectories (solving
issues #6 and #7). In the last step, all scheduled trips are
first labeled either ‘‘canceled’’ or ‘‘executed’’ based on the
validation results. The data files from step 3 are used to
perform this validation task, addressing issue #8.
Finally, vehicle trajectories of validated trips are cor-
rected by fusing multiple types of information.

Figure 2. Visualization on how different data sources characterize 1-day services. The example is from line 1 from Delft Tanthof to
Scheveningen Noorderstrand on March 5, 2015. (a) Recorded trajectories (red lines) obtained from the AVL data set; (b) Recorded
trajectories (red lines) on top of all the scheduled trajectories obtained from the GTFS data set; (c) Recorded trajectories (red lines) on
top of all the check-in (black star points) and check-out (blue circle points) activities; (d) Zooming-in for a selected hour (12–13) of the
data presented in (c).
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Consequently, all trajectories have complete trajectory

and load information and are globally consistent. Issues

#3 and #4 are thus solved in this final step. This

sequential method decomposes the process into small

sub-tasks with each step solving one or several of the

identified issues.

AFC
Data

AVL
Data

GTFS
Data

Daily profiles of 
passenger rides

Daily profiles of 
recorded vehicle 

trips & trajectories

Daily profiles of 
scheduled vehicle 
trips & trajectories

Matching recorded vehicle trips 
with scheduled vehicle trips

Daily profiles of integrated vehicle 
trips & trajectories

Matching passenger rides to 
vehicle trajectories

Pre-processing

stupnI

STEP I

ygolodohte
M

STEP II

STEP III

Integrated daily profiles of  passenger 
load & improved vehicle trajectories

Validating trips

Pre-processing Pre-processing

Integrated daily profiles of  passenger 
load & original vehicle trajectories

STEP IV

stuptu
O

Improving vehicle 
trajectories

 

Figure 3. Overview of the four-step methodology. Inputs are raw information from individual data sets, and the final outputs are
integrated profiles containing vehicle trajectories and passenger loads.
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Step 1: Data Pre-Processing

All three types of data are preprocessed in the first step
at a daily level. For AFC data, single transaction records
are first linked to generate individual passenger rides
with both check-in and check-out information (stops and
times). Erroneous rides with unrealistic travel time and
origin or alighting stops are identified and removed in
this process. In this case, the travel time threshold was
set to 90 min, which exceeds the maximal travel time
between any pair of stops in the case study network. In
addition, the indices of stops were also transformed to
be consistent with those of the AVL and GTFS data.

Every single scheduled trajectory—characterized by
the arrival and departure time at every stop along a
line—is extracted from the GTFS data. This process is
not straightforward because the GTFS standard does
not contain direct information about regular stop
sequences of individual transit routes. Designed origi-
nally for the purpose of route planning, the GTFS data
make it quite handy to obtain arrival and departure
times at each stop of individual trips by storing informa-
tion based on trips. A trip is recorded in the trip.txt file
and further detailed in the stop_times.txt file with its
sequence of stops. All trips, including sub-lines and par-
tial trips with some stops skipped, are thus easily stored
in the data. However, this becomes an obstacle when
information about the most regular and fullest stop
sequence of transit lines is required. To overcome this
problem, a brute-force approach is adopted. All trips of
a transit route from a normal working day are scanned
in order to acquire the complete set and right sequence
of stops on this line and this direction. This is a straight-
forward yet effective solution to this problem. AVL data,
however, do not need to be much processed since the
information is already organized based on stop sequences
of trips. If there is a missing record, a ‘‘Not A Number’’
label is added.

Step 2: Matching Trips in GTFS and AVL

This step is dedicated to matching all the trips recorded
in the AVL data set to all the scheduled trips contained
in the GTFS data. Ideally, the two data sources should
share the same trip ID indexing scheme so that the
matching is very straightforward. However, inconsisten-
cies do exist, as illustrated in the previous section. To
address this issue, the recorded arrival time as well as the
delay at stops from the AVL data are used to compute
the probable scheduled arrival times as follows:

~ps
n, k =pr

n, k � dr
n, k ð1Þ

where ~ps
n, k , and pr

n, k , respectively, denote the probable
scheduled and recorded arrival times of trip n at stop k.

dr
n, k denotes the recorded delay of trip n at stop k from
the AVL data. The scheduled trip that has the closest
arrival time at a stop to this ‘‘estimated’’ scheduled arri-
val time ~ps

n, k is then found, and its trip ID from the
GTFS data is temporarily labeled to this stop visit. After
applying this process to all the stops of this trip, the
GTFS trip ID that has been most frequently labeled is
adopted and assigned to the entire trip. The matching of
the recorded trips (AVL) to scheduled trips (GTFS) is
performed so that those trips that cannot be found in the
AVL data will be later checked to assess whether they
were really executed by taking the AFC data into consid-
eration. In addition, headways based on AVL and GTFS
are also computed and added to the trajectory profiles at
the end of this step.

Step 3: Matching Passenger Rides to Vehicle
Trajectories

The objective of this step is to match all individual pas-
senger rides to the vehicle trips that these passengers tra-
veled with. However, since the trip ID information is
missing in the current AFC data set, a trip ID inference
algorithm for all the rides is first developed, as shown in
Figure 4.

Let tini, k denote the check-in time of passenger i at stop

k. Let pr
n, k and ps

n, k , respectively, denote the recorded

and scheduled arrival times of trip n at stop k.
Essentially, the algorithm attempts to find the trip ID
for a single ride by the ith passenger so that his or her

check-in time at the stop k, tini, k , is closest to the vehicle

arrival time pr
n, k and ps

n, k at the very same stop k along

the trip n. Recorded arrival times pr are used as the
major benchmark because delays can introduce a signifi-
cant bias when performing such inference. If the follow-
ing condition is satisfied, then this ride was labeled with
the trip ID of trip n:

pr
n, k � e�\tini, k �pr

n, k + e+ ð2Þ

where e� and e+, respectively, represent the lower and
upper bounds of the searching time window. In this case
study, e� and e+ were empirically set to be 20 and 50 sec-
onds, respectively, after scrutinizing the data. When the
recorded arrival time of a trip at this stop pr, neverthe-
less, is missing or has multiple values, the scheduled arri-
val time ps is then employed with a larger time window
as follows:

ps
n, k �

hs
n, k

2
\tini, k �ps

n, k +
hs

n+ 1, k

2
ð3Þ

where hs
n, k denotes the scheduled headway between the

current trip n and previous trip n–1 at stop k. Finally, if
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the inference based on the recorded arrival time does not
yield a result, the result based on the scheduled arrival
time will be adopted.

Step 4: Improving Vehicle Trajectories

The last step is dedicated to the correction of vehicle tra-
jectory profiles based on the results from step 3. It

attempts to resolve the issues identified in the AVL data
(#3, #4, and #8). The central idea is that the integrated
information from three different data sources at the same
detail level, including the recorded (AVL) and scheduled
(GTFS) arrival/departure times, as well as check-in/out
times at stops (AFC), will allow (1) whether a vehicle trip
was indeed executed to be inferred, and (2) actual vehicle
trajectories to be restored to the maximal extent. In the

Read the daily profile of 
passengers’ rides from Step 1

Select the i-th passenger’s ride 
t ini,kwith check-in time 

Read the daily profile of vehicle 
trajectories from Step 2

Find all the stops with the same check -in 
stop ID and direction ID as the current ride

The arrival only
has one timestamp ?

Select the stop of next trip

Yes

The trip ID of the ride is equal to 
the current  stop’s trip ID

Yes

No

The trip ID of the ride is equal to 
the reserved  stop’s trip ID

Last stop?

No

No

Reserve the trip ID of the current stop

Yes

No

Yes

Figure 4. Algorithm for infering the trip ID of individual passenger rides.
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current study, practical solutions consisting of several
rules were developed and applied.

To infer whether a trip is executed or canceled in real-
ity, a series of rules are proposed based on the practical
investigation. The inference takes into account (1)
whether there is sufficient information about recorded
timestamps for a trip; and (2) whether there are enough
check-in activities that can be reasonably associated with
this trip. Eventually, all scheduled trips are labeled as
either ‘‘executed’’ or ‘‘canceled.’’

The restoration of vehicle trajectories is performed
using a practical approach which attempts to fill in all
the gaps in the recorded trajectories (exemplified in
Figure 2a). Two rules and one assumption are made in
this process:

� Rule 1: The arrival time cannot be later than the
departure time at a given stop.

� Rule 2: The arrival time at any given stop cannot
be earlier than the departure time from the last
stop.

� Assumption 1: When only a timestamp for the
departure is available, the arrival time should be
equal to the departure time because the vehicle
presumably did not have to serve this stop.

By applying these rules and this assumption, it is ensured
that the vehicle trajectory of a trip is globally consistent

in a sense that vehicles can never move backward. The
assumption is made based on the practical investigation
into the data. As Figure 2c illustrates, when there is a gap
in the recorded trajectory, very few check-in/out activities
can be spotted. Therefore, it can be safely assumed that
vehicles skipped the stops when only departure times are
logged in the database.

Implementation

All three raw data sets are stored in a PostgreSQL 9.3
database. A series of indices on date, line ID, stop ID,
and so forth, were created to improve the SQL query per-
formance. All of the abovementioned steps were coded in
MATLAB.

Results

For simplicity and tractability, only the results of tram
line 1 for the entire month of March 2015 are described in
this section. Line 1 connects Delft, a mid-size old univer-
sity city, to The Hague, the main city in its urban agglom-
eration, serving 41 stops per direction, including three
major train stations. The service is frequent, with 208
trips on a normal weekday and up to 8 trams per hour in
the peak on each direction. More than 670,000 passenger
rides are recorded for line 1 in the AFC database over the
case study period. After applying the pre-processing to

Figure 5. Results for trip ID inference of rides and trip validation. (a) Illustration of trip ID inference for rides that are based on
recorded trajectories (AVL) and scheduled trajectories (GTFS), respectively. The line shows the percentage of rides of which trip IDs are
inferred based on the recorded trajectories (AVL); (b) Comparison of numbers of scheduled trips, recorded trips and validated trips.
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these rides, around 0.03% (around 200) rides were dis-
carded because of the issues described earlier.

Figure 5a shows the result of vehicle trip ID inference
for passenger rides. For most of the days, over 90% of

Figure 6. Illustrations of spatiotemporal seat occupancy of line 1 from Scheveningen Noorderstrand to Delft Tanthof over the first week
of March 2015.
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the rides’ trip ID can be successfully inferred based on
the recorded trajectories owning to the relatively high
quality of AVL data on these days. Two particular days,
that is, the 6th and 18th of March, are noticeable because
of their low AVL-based inference percentage. This is
arguably caused as a result of the significant loss of AVL
data on those two days, which implies that many infer-
ences rely instead on just the scheduled trajectories.

The percentages of recorded trips in the AVL data
and the executed trips that are eventually validated com-
pared with the total number of scheduled trips are calcu-
lated and displayed in Figure 5b. Both directions are
considered at the same time. It can be seen that on many
days, not all scheduled trips were executed. A significant
plunge appears on the 6th of March, where fewer than
80% of scheduled trips are recorded in the AVL data,
whereas over 90% trips could be validated when also
using information from check-in/out activities on that
day. In addition, the 18th and 29th also yield results that
are clearly worse than the average. As a result of incon-
sistent and incomplete trajectories from the AVL data,
trip ID inference of rides on these days become more
unreliable, resulting in a stronger reliance on GTFS-
based inference as shown in Figure 5a for March 18th
and 29th.

The final output profiles are visualized by plotting so-
called space-time vehicle seat occupancy graphs (Figure
6). These seat occupancy graphs relate the vehicle occu-
pancy to the seating capacity. In the color schemes in
Figure 6, 100% occupancy means that the number of
passengers on board is equal to the number of seats (76
for all the vehicles running on line 1). Significant crowd-
edness is thus easily identified when the seat occupancy
is higher than 100% (warmer color). The upper bound is
set to 200%, corresponding to the maximal vehicle
capacity (around 150 people). It should be emphasized
that this visualization technique has great potential for
decision support in transit planning and operations,
ranging from timetable optimization, network and fleet
scheduling, and designing sub-services running over par-
tial lines, to name just a few. The graphs provide a single,
information-rich, and intuitive global view of service
quality.

Although detailed analyses are beyond the scope of
this exploratory study, example visualizations presented
in Figure 6 (line 1 from Scheveningen Noorderstrand to
Delft Tanthof over the first week of March 2015; March
1st is a Sunday) allow for identification of crowdedness
over space and time. Overall, similar crowding patterns
can be recognized on weekdays with clearly visible morn-
ing and afternoon peak-hour flows, while there are more
variations during weekends. For instance, severe on-
board crowding always occurs from Station Hollands
Spoor to Badhuiskade in the morning, and from

Vredespaleis to Station Hollands Spoor in the afternoon
during this week.

Conclusions and Future Research

Obtaining on-board load profiles of transit vehicles has
remained as a difficult task for operators in recent years
as a result of technical and financial constraints. In this
paper, a new methodology for constructing such profiles
with multiple transit data sources is presented, including
AFC, AVL, and GTFS. Difficulties of utilizing these
data are discussed with the issues arising from a single or
a combination of data sets specifically identified. The
methodology consists of four steps through which the
raw information from individual data sources is pro-
cessed and corrected. The output profiles can convey
integrated information regarding both vehicle trajec-
tories and passenger demand on a large spatiotemporal
scale. The methodology is demonstrated with data col-
lected from the urban transit system in The Hague, The
Netherlands. A key output is so-called space-time seat
occupancy graphs, which provides operators with a com-
pact and powerful reference to intuitively examine the
on-board crowding patterns over time and space, thus
helping to improve their services, such as timetable opti-
mization, network and fleet scheduling, designing sub-
services running over partial lines, and so forth.

The contribution of this study is twofold. First, the
study aimed to integrate different transit data sources for
obtaining state estimations for passenger loads. In this
process, the issues related to each and the combination
of different data sets, namely AFC, AVL, and GTFS,
are specifically identified. Although based on data avail-
able in the Dutch context, most of their properties are
universal, and this way of presenting all the issues can be
beneficial for researchers and practitioners with different
data formats but similar difficulties. Second, a methodol-
ogy that solves these issues in a sequential manner is
described and yields service profiles containing both
vehicle trajectories and passenger loads. The complexity
of approaches and algorithms in each step can vary
depending on the availability of information.

On the basis of the current study, several research
directions can be further explored. For example, more
advanced techniques for correcting vehicle trajectories
while assuring global coherence can be developed to
replace the current rule-based approach. In addition, the
resulting data set can significantly benefit network-wide
transit flow analysis to deepen the understanding of tran-
sit system dynamics.
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