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Abstract
In recent years, several logistic optimisation models have emerged as power­
ful tools to assess and optimise the planning, costs, and workability of marine
operations. Nevertheless, these models often rely on two underlying assump­
tions: (1) the significant wave height and peak wave period adequately describe
(directional) wave fields, and (2) these two parameters sufficiently describe the
conditions causing weather downtime. However, little is known about how these
underlying assumptions affect the reliability of logistic optimisation tools. This
study, therefore, presents an alternative model that integrates response mo­
tions of vessels and turbine structures into a logistic optimisation tool to ad­
dress and expose the implications that follow from using these assumptions.
A case­study approach, on two recently realised offshore wind farm projects,
showed that integrating response motions results in, up to 10%, less favourable
workability conditions. Further analysis on the data showed that it is crucial
to include the two­dimensional wave energy distribution to expose more com­
plex sea states that induce weather downtime. Moreover, a failure analysis ap­
proach found that the conditions inducing downtime events are more accurately
described by response motions instead of sea state parameters. Therefore, the
findings of this study suggest that integrating response motions into logistic op­
timisation models improves the reliability of the model estimates. Besides, this
study suggest that the industry’s approach potentially overestimates the true
workability and, therefore, imposes unnecessary operational risks. Hence, the
results of this study demonstrate the importance of integrating hydrodynamic
engineering knowledge into the assessment and optimisation of project plan­
ning, costs, and workability.
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Summary
Introduction

In recent years, several logistic optimisation models have emerged as powerful
tools to assess and optimise the planning, expenditure, and workability of ma­
rine operations. Nevertheless, these models commonly rely on two underlying
assumptions:

1. The significant wave height and peak wave period adequately describe
the two­dimensional wave energy distribution of a (directional) wave field.

2. The wave conditions associated with weather downtime are sufficiently
described by these two parameters following a workable limit analysis.

However, what is not yet understood is the extent to which these assumptions
affect the reliability of the planning and engineering of marine operations. This
study, therefore, presents an alternative model that integrates response mo­
tions of vessels and turbine structures into a discrete­event simulation based
logistic optimisation tool to address and expose the implications that follow from
using these assumptions.

Model description

The model presented in this thesis computes time­series of the response mo­
tions during the weather window analysis based on historical data of the gov­
erning directional wave spectra and response amplitude operators (RAOs). To
compute time windows of workable and not workable periods, the model com­
pares these time­series to their respective critical limits and subsequently uses
these alleged weather windows to schedule the installation activities.

This approach provides at least two advantages: (1) the two­dimensional wave
energy distribution is maintained; and (2) the operational limits depend on the
structural dynamics only and apply to all sea states.

Model implementation

A case­study approach was adopted to generate sample data for both meth­
ods. This thesis describes the application of the model to two recently re­
alised offshore wind farm projects, the Hollandse Kust Zuid (HKZ) and Bors­
sele III&IV offshore wind farms. The two projects were specifically chosen be­
cause the weather restricted activities that were modelled correspond to oper­
ations that involve the motions of floating equipment as well as the motions of a
wind turbine generator (WTG) structure. Besides, during the realisation of both
projects, the operations encountered numerous times unexpected weather­
related downtime.
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For each project, the installation sequences that are described by their respec­
tive work methods, were simulated. During the initial simulations, the floating
equipment was aligned with the mean wave direction. Subsequently, the simu­
lations were repeatedly (10,000 times) run with varying start dates over a period
from 1990 to 2020.

Case­study results

The data obtained from the simulations show that the response motion­based
model estimated, for both projects, substantially (up to 10%) less favourable
workability conditions. Further analysis on the data from the Hollandse Kust
Zuid (HKZ) case­study showed that, despite the vessel’s alignment with the
mean wave direction, excessive roll (60% of the cases) and pitch (92% of the
cases)motions were the predominant cause of weather downtime events. How­
ever, the study also found that using an optimising algorithm to acquire the least
response motions helped to improve workability conditions. Moreover, a fail­
ure analysis approach demonstrated that the response motion­based method
approximated the limiting conditions experienced at site more closely than the
allowable sea state approach. Therefore, the case­study findings show that
utilising response motions during the weather window analysis results in less
favourable, but more accurate workability estimates.

Discussion and conclusion

Perhaps the most important finding of this study is that the current approach
used by the industry potentially overestimates the true workability and there­
fore imposes unnecessary operational risks. In particular, this study found that
it is crucial to include the 2D wave energy distribution to expose those (more
complex) sea states that induce weather downtime. Moreover, the results of
this study imply that allowable sea state based operational limits do not ap­
propriately describe the critical conditions that are associated with operational
downtime.

Furthermore, this study showed that the implications of the two underlying as­
sumptions can be resolved by integrating responsemotions instead of allowable
sea states into logistic optimisation models. This study also illustrated that inte­
grating response motions increases the reliability of workability estimates which
is an import aspect for optimising the logistics of marine operations. By com­
bining engineering knowledge from hydrodynamics and logistics, this study pre­
sented a quantitative logistic optimisation model that can predict the workability
more accurately and enables to optimise the project planning and expenditures
of future offshore wind farm projects.
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Chapter 1

Introduction

1.1 Background

The construction of an offshore wind farm is often associated with substantial
installation costs. In recent studies, it was shown that marine contractors spent
15 to 20% of their capital expenditures (CapEx) on constructing an offshore
wind farm (Taylor et al., 2016). Therefore, several researchers tried to reduce
the installation expenses by optimising the logistic operation. However, only
few addressed the operational risks associated with weather downtime that is
often accountable for a significant amount of the project expenses. In a report
by BVG Associates (2019), it was stated that the most effective approach in
affecting the financing costs is by reducing the project risks.

Conventionally, the weather­related operational risks are expressed using the
workability. In marine engineering, assessment of the workability is considered
fundamental in approximating the costs of marine operations. A comprehensive
workability analysis provides the tools to estimate the weather downtime, size
equipment and select the appropriate installation strategy. Project engineers
can subsequently use such information for planning and engineering purposes
and to determine the overall project expenses.

In literature, the workability parameter is often understood as a mea­
sure to express the probability of weather downtime. For instance, ac­
cording to Rip (2015):

“the workability is the amount of time that a time series is in
the operable state, i.e. a certain operation can be executed
in a safe manner”

1
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Traditionally, engineers estimated the workability from metocean statistics. Of­
ten using scatter diagrams, (joint) probability distributions of one or multiple
metocean parameters, and through persistence statistics. Persistence statis­
tics describes the availability of sufficient weather windows by means of prob­
ability exceedance curves and is in literature frequently identified as a crucial
parameter for indicating the occurrence of weather downtime. In that context,
Graham (1982) stated:

“Although one vessel may have a lower charter rate than another, a
study of the planned operations in the context of the weather persis­
tence characteristics might well show that overall, a more expensive
charter, with less potential weather downtime, is more economic.”

Weather windows are explained as periods of time during which the
offshore conditions allow for safe execution of the marine activities.
(Tomaselli et al., 2021).

However, such methods do not account for the sequential nature of marine
operations (Kikuchi & Ishihara, 2016).

Moreover, the construction of an offshore wind farm often involves multiple ves­
sels each executing particular tasks of the logistic operation. A major interest
is to understand how the weather constraints of one vessel impacts the fleet
performance. Therefore, instead, researchers developed scenario simulation
models to simulate the installation process and to assess and optimise the plan­
ning, costs and workability of constructing an offshore wind farm.

Common frameworks to model and analyse the characteristics of logistic op­
erations are discrete­event simulation (DES), linear programming (LP), and
Markov Chain (MC). However, the capacity to model complex logistic flows
and to examine alternative configurations is an important advantage of using
discrete­event simulation over linear programming and Markov Chain analysis
(Jacobson et al., 2013).

In 2018, den Uijl (2018) carried out a research to develop a concept evalua­
tion tool to enable fast and accurate assessment of various work methods of
dredging projects. His thesis, resulted in the development of a DES­based lo­
gistic optimisation tool, OpenCLSim. The tool became the foundation of further
optimisation studies, such as van der Bilt (2019), who assessed the emission
performance of dredging projects, and van Halem (2019), who introduced a new
algorithm for optimising shipping routes that are highly affected by dynamic flow
fields.

https://readthedocs.org/projects/openclsim/
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Fig. 1.1 – Illustration of how describing the sea states by only two characteristic param­
eters affects the input of state­of­the­art models.

1.2 Research problem

1.2.1 Problem description

Nevertheless, today’s state­of­the­art models describe the sea state in at most
two spectral parameters, the significant wave height (𝐻𝑠) and peak wave period
(𝑇𝑝). Such models rely on two underlying model assumptions:

1. The significant wave height and peak wave period adequately describe
the two­dimensional wave energy distribution of a (directional) wave field.

2. The wave conditions associated with weather downtime are sufficiently
described by the two characteristic parameters following a workable limit
analysis

However, it is well­known that floating equipment responds to the combination
of the wave height, wave period and wave direction. Besides, mixed­seas of
wind­sea and swell are frequently encountered at sea. The effects of such seas
are hardly captured when considering a small number of input parameters.

Moreover, during the dynamic analysis of the installation activities, it is com­
mon to describe the wave conditions by a unimodal, JONSWAP, wave spec­
trum. Consequently, details of the various wave components and their respec­
tive propagation directions are omitted.

Therefore, in operations scheduling studies, the operational constraints im­
posed by the offshore environment are poorly described. The potential mod­
elling and data errors may, subsequently, contribute to unexpected costs and
poor performance of the selected installation strategy.
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1.2.2 Previous studies

Studies to describe the occurrence of weather downtime events have been con­
ducted by several researchers. Most notably, in a paper by Acero et al. (2016),
the authors developed a systematic methodology to derive the wave conditions
associated with operational downtime more accurately. The methodology aims
at identifying critical installation activities to establish response­based opera­
tional limits in terms of the allowable sea states, characterised by the significant
wave height and peak wave period. However, the authors acknowledged that
various sources of uncertainty still needed to be addressed. To include the un­
certainties in wave spectral energy distribution, Acero & Li (2018) extended the
methodology in a succeeding study. The authors commented on the previous
with:

“Because wave spectra at an offshore site may be multi­modal and
not necessarily resemble the typical JONSWAP or PM models, the
operational limits will vary for every offshore site.”

The extended methodology uses 2D directional hindcast wave spectra to com­
pute response motions of an auxiliary parameter (i.e. the crane tip velocity)
describing the limiting conditions. For critical values of the auxiliary parameter,
the significant wave height and peak wave period are collected from the corre­
sponding wave spectrum. Because the critical value of the auxiliary parameter
can be violated for a range of (𝐻𝑚0 , 𝑇𝑝) combinations, limiting combinations that
correspond to a characteristic value (i.e. the 5­percentile) are selected.

In a more recent study, Tomaselli et al. (2021) developed a numerical tool for
safe and cost­efficient short­term planning of operation & maintenance (O&M)
activities based on more direct measures of the workability, such as seasick­
ness and vessel (bow) motions. Based on a five­day metocean forecast, the
authors showed that traditional methods would frequently suggest to allow for
commencement, though more direct measures would not.

1.2.3 Knowledge gap

However, little is known about how the underlying model assumptions affect the
weather window analysis and what the consequences are for the reliability of
logistic optimisation tools.

Moreover, existing literature on the development of workability assessmentmod­
els lacks clarity about the accuracy of the applied model approach.

1.2.4 Purpose of new research

Over the past decades, the ever increasing interest in generating offshore re­
newable wind energy caused the industry to develop fast (Seyr & Muskulus,
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2019). Because of this development, the levelised costs of energy (LCOE) per
kilowatt hour (kWh) fell significantly, leading government to end subsidising the
development of offshore wind energy. Inevitably, the shrinking subsidies cut
down profit margins and demanded the industry to adjust, optimise and inno­
vate new installation strategies to cost­effectively construct offshore wind farms
(Graré et al., 2018).

However, despite recent developments, the construction of an offshore wind
farm involves substantial operational costs. Besides, new developments indi­
cate a trend in which designated sites are assigned to more remote regions
(Díaz & Guedes Soares, 2020) offering significantly more persistence and less
turbulent winds. Nevertheless these regions are usually less accessible and
impose high weather­related operational risks. Therefore, in the interest of ma­
rine contractors, it is necessary to obtain accurate estimates of the workability
for the planning and engineering purposes of marine operations.

1.3 Research questions and objectives

The central problem raised in previous sections is that the installation costs
are substantial due to high operational risks. However, a reduction of these
risks benefits the industry and the development of offshore renewable energy.
Moreover, it was established that uncertain estimates of the workability are the
principal cause of these operational risks. Therefore, in this thesis, the research
aims to improve the reliability of workability estimates to reduce operational
costs and allow for optimising the performance of marine operations. Hence,
the main research question addressed in this report is described by:

“How can the reliability of workability estimates involved in the plan­
ning and engineering stage of an offshore wind farm installation be
improved?”

Therefore, the literature study of this research work aims to answer the following
research questions:

1. What methods exist in literature for estimating the workability of marine
operations?

2. What are the weaknesses of today’s state­of­the­art workability models?

Furthermore, following the literature study, this study identified two commonly
applied model assumptions. Nevertheless, research regarding the appropri­
ateness of these model assumptions and its consequences for the engineering
process is limited. Given the lack of research regarding the current modelling
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approach, this study aims to understand how the underlyingmodel assumptions
affect the reliability of the weather window analysis and what the correspond­
ing consequences are for the analysis and optimisation of the logistic operation.
Therefore, this study aims to identify, evaluate the significance of, and address
the consequences of implementing the underlying model assumptions in lo­
gistic optimisation models. Hence, this study sets out to answer the following
research question:

3. What are potential implications of utilising the underlying model assump­
tions during the weather window analysis?

Moreover, the literature study found that the marine industry describes the oper­
ational limits often in terms of the significant wave height and peak wave period
only. However, research regarding the accuracy of this approach is limited.
Therefore, this study aims to validate the accuracy of the operational limits to
what is experienced on site. The corresponding research question is given by:

4. How accurate describe allowable sea state limits the conditions experi­
enced at site that result in weather downtime?

1.4 Report outline

This remainder of this thesis report is structured as follows: In Chapter 2, the
relevant theory that form the basis of this study is provided. It reviews the gov­
erning wave theory, the current methods used (by the industry) to determine
the operational limits of marine operations and existing workability models. In
Chapter 3, the overall research approach is discussed as well as the devel­
opment of the workability assessment model. The chapter also specifies the
model choices and introduces the methods that were used for validating the
model. In Chapter 4, the model is applied to two case studies. These case
studies are used to assess the performance of the model and to explore the dif­
ferent workability assessment methods. In addition, the section also presents
the results of the model validation in order to verify its performance with on site
workability measurements. In Chapter 5, an interpretation of the model results
is provided as well as a discussion on the limitations of the model and recom­
mendations for future studies. Finally, Chapter 6 summarises the research work
by answering the research questions and a general conclusion is provided.



Chapter 2

Literature study

2.1 Ocean surface waves

It is not surprising that, besides winds and currents, ocean surface waves ac­
count for a significant part of the workability of marine operations. Therefore,
to understand how operational limits of certain installation activities affect the
performance of the logistic operation, one must have a general understanding
of how ocean surface waves behave. In the following sections, the govern­
ing wave theory that describes the development, behaviour and mathematical
representation is provided.

The focus of this study is in particular on the fluid structure interaction (FSI)
caused by wind generated waves. It is common to categorise wind gener­
ated waves into two categories: (1) wind­sea and (2) swell. Where wind­sea is
known as the surface waves generated by the locally prevailing wind field. In
contrast, swell is considered as the surface waves propagating independently
from the wind. It is important to note that swell waves are also formed by wind.
However, they have propagated out of the source (storm) area and are, there­
fore, only affected by resistance and land boundaries.

An important distinction is that a wind­sea wave field is characterised by its
irregularity, whilst swell waves have become more regular over time as a con­
sequence of dispersion. That is, a wind­sea dominated wave field has often var­
ious sized waves with a large range of wave frequencies (and wave lengths). A
swell dominated wave field is typically characterised by relatively similar waves
with a narrow band of wave frequencies.

Moreover, the simultaneous presence of both wind­sea and swell wave fields
highlights an critical sea state often found at sea. In a great number of —
especially oceanic — regions across the globe, the local wave field can be
affected by multiple wave trains (comprised out of wind­sea and one or multiple

7
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swell wave trains). This is also referred to as a mixed­sea state or multimodal
sea state and is one of the important drivers for this study.

Fig. 2.1 – Oceanic regions where swell wave fields dominate (Zheng et al., 2015).

It is common to describe the governing surface elevation, 𝜂(𝑥, 𝑦, 𝑡), of an irreg­
ular wave field as the sum of many regular sinusoidal waves, also known as
the superposition principle that was first introduced by St Denis & Pierson Jr
(1953) (Fig. 2.2). Such that,

𝜂(𝑥, 𝑦, 𝑡) =
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1
[𝑎𝑖,𝑗 cos (𝜔𝑖𝑡 − 𝑘𝑖𝑥 cos𝜃𝑗 − 𝑘𝑖𝑦 cos𝜃𝑗 − 𝛼𝑖,𝑗)] (2.1)

where 𝑎 is the amplitude of the partial wave (regular wave component), 𝜔 is
the wave frequency (with 𝜔 = 2𝜋/𝑇), 𝑘 is the wave number (with 𝑘 = 2𝜋/𝐿),
𝜃 is the propagation direction and 𝛼 is the random phase angle. The same
principle is seen in the Fourier Transform (FT), a mathematical transformation
that decomposes a time dependent function into the sum of infinite sinusoidal
functions. The result following the transformation operation is often represented
in the frequency domain, in which the amplitude of all the harmonic components
are expressed against its frequencies.

In ocean engineering, the Fast Fourier Transform (FFT) algorithm is applied to
buoy observations to transform the data from the (temporal) time domain into
the frequency domain (US Department of Commerce & Administration, 1996),
also referred to as the response spectrum. By means of response amplitude
operators the response spectrum is then transformed into a so­called wave
spectrum.

However, as mentioned by Holthuijsen (2010):

“The aim of describing ocean waves with a spectrum is not so much
to describe one observation of the sea surface (i.e., one time record)
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Fig. 2.2 – The superposition principle where the sum of many regular sine waves makes
an irregular wave field (St Denis & Pierson Jr, 1953).

in detail but rather to describe the sea surface as a stochastic pro­
cess, i.e., to characterise all possible observations (time records)
that could have been made, in the conditions of the actual observa­
tion.”

Which gives rise to the random­phase/amplitudemodel. In this formulation, the
amplitudes and phase angles of the (regular) harmonic components, defined by
their respective frequencies, are treated stochastically. Thus, the transforma­
tion of a single observation (into a wave spectrum) is formally treated as one re­
alisation of the stochastic process. In fact, to obtain a reliable wave spectrum, it
is common to compute the expected value of the wave spectrum (i.e. by consid­
ering 𝐸{𝑎𝑖,𝑗}). This, however, requires multiple wave records (measured at the
same site) which are often not available. Instead, to address this rather prac­
tical issue, the time record is often divided into a number of non­overlapping
segments. To each section of the record, the Fast Fourier Transform is then
applied. From which the expected value of the wave spectrum is derived.

Nevertheless, because, in linear wave theory, the wave energy is proportional to
the variance, it is more relevant to compute the variance of each of the harmonic
components. Also, since the measurements present the information based on
discrete frequencies, whereas all frequencies are present at sea, the spectrum
is often modified by distributing the variance over the frequency bands. Hence,
often one finds the wave spectrum in terms of energy density that is given by
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Eq. (2.2).

𝐸(𝑓, 𝜃) = lim
𝑓𝑖→0

lim
𝜃𝑗→0

1
Δ𝑓𝑖Δ𝜃𝑗

𝐸{12 𝑎
2
𝑖,𝑗} (2.2)

From the resulting wave spectrum, a number of characteristic sea state pa­
rameters can be obtained, such as the significant wave height (𝐻𝑚0), the peak
wave period (𝑇𝑝), and mean wave direction (𝜃), but also the maximum wave
height (𝐻max) and the probability that a certain wave height exceeds a particu­
lar threshold level (𝑃(𝐻 > 𝐻)).

The significant wave height is given by,

𝐻𝑚0 = 4√𝑚0 where: 𝑚0 = ∫
∞

0
∫
2𝜋

0
𝐸(𝑓, 𝜃)𝑑𝜃𝑑𝑓 (2.3)

The probability of exceedance is given by,

𝑃(𝐻 > 𝐻) = exp( − 𝐻2
8𝑚0

) (2.4)

Fig. 2.3 – One­dimensional wave spectrum with the definitions of the spectral param­
eters. Note, the first­order moment (𝑚0) highlights the position of the significant wave
height within the spectrum.

It is common for many research and governmental institutes to store and dis­
tribute the corresponding historical wave data by the significant wave height,
peak wave period and mean wave direction instead of the spectral data. How­
ever, characterising the detailed (two dimensional) distribution of the energy
density into three spectral parameters (𝐻𝑚0 , 𝑇𝑝 and 𝜃) is only favourable if the
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current sea state can be considered unimodal. That is, if the spectral density
distribution is only characterised by a single peak (Fig. 2.3).

Nevertheless, many ocean regions are affected by not only the local prevail­
ing wind field, but also by swell waves developed at a distant site. As a result,
the wave spectrum has multiple peaks and is thereforemultimodal (or bi­modal
if it consists of two peaks), this is illustrated in Fig. 2.4. In order to preserve
these sea state characteristics, a spectral partitioning algorithm is applied to
the spectral data to distinguish the different features. After the various (wind­
sea and swell) components are discriminated, the significant wave height, peak
wave period and mean wave direction can be determined for each of the corre­
sponding components. In order to reconstruct the energy density distribution,

Fig. 2.4 – The time averaged (1990­2020) two­dimensional energy density distribution of
the North Sea wave field (Dutch coast). In this area, most wind­sea waves originate from
the west­southwest (WSW) and swell waves solely emerge from the northwest (NW).

theoretical distributions are commonly used. These are often the well­known
JONSWAP and Pierson–Moskowitz spectra. The JONSWAP spectra is given
by Eq. (2.5).

𝑆(𝜔) = 𝐴𝜔−5 exp−𝐵𝜔−4𝛾𝛼 (2.5)

In which, according to Hasselmann et al. (1973),

𝐴 = 4𝜋3𝐻2𝑚0
𝑇4𝑝

, 𝐵 = 23𝜋3
𝑇4𝑝

, 𝛾 = 3.3, 𝛼 = exp−(
0.2049𝑇𝑝𝜔 − 1

√2𝜎
)
2

(2.6)



12 Chapter 2. Literature study

However these spectra are, by definition, one­dimensional and are only ap­
plicable to unimodal sea­states. Nevertheless, it was found by Garcia­Gabin
(2015) that fitting theoretical distributions, such as the JONSWAP spectrum,
to the discriminated spectral components (wind­sea and swell) allows to esti­
mate bi­modal spectra — derived from buoy measurements —more accurately
compared to using a single spectra based on dominant values.

By utilising a directional spread function, the resulting spectra can be used to re­
construct a 2D representation of the directional andmultimodal wave field. Such
directional wave spectra can be obtained by Eq. (2.7) (Ananth et al., 1993).

𝑆(𝜔, 𝜃) = 𝑆(𝜔) ⋅ 𝐷(𝜔, 𝜃) (2.7)

Where 𝑆(𝜔) is the non­directional wave spectrum and 𝐷(𝜔, 𝜃) is a directional
spreading function. A well­known analytical model used to describe the angular
distribution function was proposed by Longuet­Higgins & Smith (1965). The
authors developed a so­called cosine spreading (cos2𝑠) model that takes the
mean wave direction (𝜃0) and width of the directional distribution (𝜎) (Eq. (2.8)).

𝐷(𝜔, 𝜃) = 𝐴 cos2𝑠 (𝜃 − 𝜃02 ) (2.8)

2.2 Workable limit analysis

2.2.1 Background

A workable limit analysis is often conducted during the engineering phase of
marine activities. It allows marine engineers to assess the operational limits
at which certain activities can be performed in a safe manner and to adjust
the work method if needed. The results of a workable limit analysis are often
reported in terms of feasibility and risk assessments prior to the operation, but
also help for active control and anticipation during the operation.

As mentioned in the introduction, in previous studies, a number of researchers
aimed at deriving appropriate methodologies for assessment of the operational
limits. Most notably, in studies published by Acero & Li (2018); Acero et al.
(2016), the authors aimed at obtaining operational limits in terms of the signifi­
cant wave height (𝐻𝑠) and peak wave period (𝑇𝑝), that account for the effects on
the operational limits caused by the wave energy distribution. In this section,
the method proposed by Acero & Li (2018) is reviewed as well as the current
approaches used in today’s industry.

2.2.2 Research methodology

In the paper by Acero & Li (2018), the authors aimed to establish response­
based operational limits in terms of the significant wave height as a function
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of the peak wave period (𝐻𝑠(𝑇𝑝)) that account for the uncertainties from a two­
dimensional wave energy distribution. Therefore, the authors proposed the fol­
lowing procedure:

1. Simulate the critical installation processes using hydrodynamics andmulti­
body system dynamics.

The first step in establishing operational limits is to simulate the dynamic sys­
tem corresponding to a critical installation activity. Therefore, it is essential to
have identified critical events and corresponding limiting parameter, such as
the lowering velocity of a load, the load displacement, or impact force. After
defining hazardous events and limiting parameters, the non­stationary instal­
lation activity can be modelled and simulated using dynamic analysis software
(for example, using OrcaFlex).

In order to perform a dynamic analysis, a number of input parameters need
to be specified. For instance, the dynamic response of a rigid body to wave
motion needs to be prescribed using so­called response amplitude operators
(RAOs). Response amplitude operators define the first­order motions of a rigid
body in response to wave­induced pressure fluctuations. The resulting motions
are, subsequently, described by six independent parameters, three translatory
and three rotatory, that define the degrees of freedom (DOF) a rigid body can
move in, i.e. surge, sway, heave, roll, pitch and yaw (Fig. 2.5).

Fig. 2.5 – Illustration of the independent degrees of freedom of ships

Computing the dynamic response is than amatter of multiplication using Eq. (2.9).

𝑆𝑟(𝜔𝑒)⏝⎵⏟⎵⏝
response spectrum

= ∫
2𝜋

0
| 𝑟𝑎𝜁𝑎

(𝜔𝑒 , 𝜃𝑒)⏝⎵⎵⏟⎵⎵⏝
𝑅𝐴𝑂

|
2
⋅ 𝑆𝜁(𝜔𝑒 , 𝜃𝑒)⏝⎵⎵⏟⎵⎵⏝
wave spectrum

𝑑𝜃 (2.9)

https://www.orcina.com/orcaflex/
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in which the subscript, 𝑒, indicates the encounter (wave) frequency and direc­
tion. The resulting response spectrum describes the displacement amplitudes
per frequency per degree of freedom. Hence, integration over the frequency
bands, subsequently, allows to derive the motion response amplitude, 𝑟, for
each of the six degrees of freedom.

The accelerations for each of the frequencies can be obtained by considering
the corresponding harmonics (Eq. (2.10)).

𝑑(𝑡, 𝜔𝑒) = 𝑆𝑟(𝜔𝑒) ⋅ cos (𝜔𝑒 ⋅ 𝑡 + 𝜙) (2.10)

Where 𝑑(𝑡, 𝜔𝑒) represents the displacement over time caused by a certain fre­
quency. The second time derivative allows to obtain the corresponding accel­
eration.

𝑎(𝑡, 𝜔𝑒) =
𝑑
𝑑𝑡2 (𝑆𝑟(𝜔𝑒)⋅cos (𝜔𝑒 ⋅ 𝑡 + 𝜙)) = −𝜔

2
𝑒𝑆𝑟(𝜔𝑒)⋅cos (𝜔𝑒 ⋅ 𝑡 + 𝜙) (2.11)

Simulating the critical installation activities also includes modelling the multi­
body system. Often, the dynamic system can be simplified to the vessel’s struc­
ture, the crane’s hoist sling and the crane load, each of which may experience
translational and rotational displacements. Based on the response motions of
the floating structure to wave motion, the governing equations of motion allow
to derive the displacement and accelerations of the remaining bodies. There­
fore, it is possible to derive internal forces and stresses that define the safety
of the operation.

Fig. 2.6 – Illustrative diagram of the bodies involved in lifting a monopile from a floating
body.

It is worth mentioning that the simulations are based on the rigid body assump­
tion. That is, the vessel’s structure is considered as a solid body in which de­
formations are assumed to be zero. Therefore, the vessel’s dynamic behaviour
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is governed by the motions of a solid body exerted by waves. Consequently,
the dynamic system is significantly reduced in complexity as the large number
of degrees of freedom’s (DOFs) has been lowered to only 6 DOFs per body.
Therefore, the dynamics are governed by the combined actions of different ex­
ternal forces and moments, as well as by the inertia (resistance against motion)
of the bodies themselves (Journée et al., 2015).

Moreover, it is important to note that the objective of this step is to obtain time­
series of the limiting parameter for a given set of wave conditions.

2. Evaluate time­series of the limiting parameter against allowable limits.

After conducting multiple simulations, time­series of the limiting parameters
are evaluated against predefined threshold levels that define the failure limits.
Based on the predefined allowable limits, points of intersection (where failure
occurs) are identified, from which subsequently the corresponding significant
wave height and peak wave period measurements are collected.

3. Acquire a probability distribution using a statistical analysis of the col­
lected values of 𝐻𝑠 and 𝑇𝑝.

In order to find probability distributions, measurements of the significant wave
height are stored in grouped intervals of the peak wave period. For each group,
a histogram or probability distribution of 𝐻𝑠 can accordingly be obtained. Note
that multiple samples of the limiting significant wave height exist for a particular
peak wave period as a consequence of uncertainties following from a 2D wave
field, i.e. varying wave direction and multimodal sea states.

4. Based on required safety levels, the characteristic values can be found.

Finally, for each interval group, the characteristic𝐻𝑠(𝑇𝑝) value is obtained from a
certain percentile that is related to the required safety level. Notice that the char­
acteristic value expresses the resistance against operational failure. There­
fore, by definition, the percentile defines the number of significant wave height
measurements that lead to failure for a particular characteristic value. In other
words, based on the given sample set, failure occurs only to X­percent of the
time for a given significant wave height related to the X­percentile.

2.2.3 The industry’s state of the art

Often, assessments of the workable limits differs from the previously described
methodology. In a tech report by DNV­GL (2017), the common and recom­
mended practices of the marine (in particular the oil and gas) industry are for­
mulated. In order to estimate the hydrodynamic forces, a number of methods
are proposed. In this section, the time domain analysis is discussed.
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In the time domain analysis, the aim is to obtain safe operational limits in terms
of the significant wave height as a function of the peak wave period and wave di­
rection. For each defined wave direction, independent simulations are realised.

Fig. 2.7 – Example of allowable sea state limits derived using a time­domain analysis.

The allowable limits are based on wave “train” realisations from a JONSWAP
wave spectrum. Hence, for every wave direction and peak wave period, a JON­
SWAP wave spectrum is generated using incremental steps of the significant
wave height. Subsequently, the marine operation is simulated under each of
these conditions until critical response parameters exceed (safe) threshold lev­
els.

It is worth mentioning that the time­series of response parameters under certain
conditions can be re­written in terms of a spectrum (using a Fourier Transform).
Therefore, the “exceedance” probability that a certain response parameter ex­
ceeds a predefined threshold can be estimated accordingly.

2.2.4 Drawbacks

The above mentioned methods have both advantages and disadvantages. For
instance, although the “scientific” methodology provides the quantitative tools
to decide effortlessly if an operator or marine warranty surveyor should allow
to initiate operations, it produces probabilistic operational limits that are depen­
dent on the accuracy and specifics of the given wave information and response
amplitude operators. Consequently, the operational limits depend on the loca­
tion of the construction site instead of only on the details of the marine activity
itself.
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In addition, the safety standard of an operation is determined by the probabilistic
analysis that governs the characteristic values of the significant wave height
as a function of the peak wave period. Nevertheless, the variance of a sea
state parameter is undoubtedly affected by its global location. As a result, the
variance of the operational limit depends on the location of the construction site
as well. Thus, the operational limits on certain locationsmay be highly uncertain
and require conservative threshold levels.

Moreover, the proposed methodology implicitly implies that the dynamic re­
sponses of critical response parameters are of a stochastic nature. However,
it should be stressed that it is the stochastic nature of the offshore environment
(variations in wave loading conditions, in particular, wave energy distribution)
that allows the operation to fail at particular combinations of the significant wave
height and peak wave period.

Nevertheless, the industry’s standard approach neglects the possibility of hav­
ing multiple simultaneous wave components such as wind­sea and swell. The
operational limits are solely dependent on a so­called total sea, in which multi­
modal sea states are simplified to or represented as an unimodal sea state. As
a result, multiple multimodal wave spectra may be described as the same uni­
modal wave spectra that, subsequently, produces a single response spectrum.
However, these multimodal wave spectra may each produce different response
spectra due to differences in the components wave directions. Thus, it might be
possible that response parameters (not) exceed their threshold levels, whereas
the workable limit analysis indicates otherwise.

2.3 Workability assessment models

2.3.1 Background

It is common practice for offshore engineers to assess the workability of a ma­
rine operation in the early stages of a project using a so­called workability anal­
ysis. A workability analysis usually involves (1) gathering the relevant environ­
mental data (e.g. wave, wind and current data), (2) defining the operational
limits in terms of the significant wave height as a function of the peak wave
period (corresponding to the specific installation activities e.g., lifting, transport,
etc.) and (3) deriving the (monthly) workability as a fraction of the project du­
ration or as the availability (probability of occurrence) of a sufficient weather
window.

In literature, three types of workability models exist (den Uijl, 2018) that enable
to compute the workability of marine operations: (1) strictly statistical models,
(2) time­domain models and (3) scenario simulation models. Below these three
types of models are discussed in more detail.



18 Chapter 2. Literature study

2.3.2 Statistical models (wave scatter method)

The first category of workability models is characterised by strictly statistical
models. A well­known example of this type of model is the wave scatter ap­
proach, in which (joint) probability distributions of one or more metocean pa­
rameters, usually the significant wave height (𝐻𝑠) and peak wave period (𝑇𝑝)
are used to estimate the workability for a given period of time (e.g. month).

Fig. 2.8 –Observations of the significant wave height and peak wave period. Themethod
obtained its name because of its graphic visualisation using scatter diagrams

Based on a set of operational limits, one can derive the number of occurrences
and corresponding return period of a certain sea state. It is common practice
to collect multiple years of measurements and bin those per month and year.
For each month in the dataset, the workability is derived using Eq. (2.12) (given
that the sample interval is constant throughout time).

𝑊 = number of observations 𝑋𝑖 ≤ 𝑥lim
total number of observations (2.12)

A sufficiently long data record, subsequently, allows to compute the probability
distributions, histograms and box plots of the workability per month (Fig. 2.9).

It should be stressed that the estimated downtime is a fraction of the planned
operational period. Therefore, if one expects to complete the operation in the
first week of January with a 50% workability, the adjusted operation length be­
comes 1.5 weeks. Nevertheless, the additional 3.5 days may experience down­
time as well. As such, the method does not provide a clear insight in the actual
workability with respect to the duration of the marine operation.
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Fig. 2.9 – The estimated workability distributions per month according to the scatter
diagram approach (𝐻𝑠 < 1.5 [m] & 𝑇𝑝 < 8 [s]).

Besides, the method takes only the total sea spectrum into account. There­
fore, the simultaneous presence of both swell and wind­sea is not accurately
described, since it only considers two parameters.

2.3.3 Time­domain models (persistence statistics)

The second type of workability models are time­domain models. A well­known
example of a time­domain model is the persistence statistics method. In liter­
ature, many authors identified the persistence of a certain weather state as a
crucial parameter for indicating the occurrence of weather downtime. That is
because the method describes the availability of workable weather windows,
which in turn, is directly related to the occurrence of waiting on weather events.
Hence, the availability of weather windows and presence of waiting on weather
events can be studies by means of persistence statistics (Rip, 2015).

One of the first to describe persistence statistics was Graham (1982). In his
paper, the author developed a persistence model that was based on two ba­
sic principles: (a) the persistence average duration may be directly related to
the threshold exceedance probability; and (b) the probability of occurrence of
persistence durations may be defined in terms of a Weibull distribution.

In 2013, Walker et al. (2013) developed an equivalentWeibull persistencemodel.
The presented model was able to calculate not only the likelihood of a certain
weather window based on a limiting parameter, but also allowed to assess the
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expected waiting time for such window to occur. The authors used a Weibull
approach to produce probability of exceedance data. That is, collecting mea­
surements of the significant wave height (or any other wave characteristic pa­
rameter) when the acceptable/workable threshold levels are exceeded.

The persistence of a certain weather state is defined by its annual weather
window occurrences and durations. In which a single occurrence relates to
a time period of a number of hours duration when conditions remained either
above or below a pre­defined threshold (Graham, 1982).

Fig. 2.10 – Illustrative representation of the persistence according to Graham (1982)

It is common to represent the persistency by exceedance curves in which the
frequency of exceedance of weather window durations are shown (see Fig. 2.11).
It is worth noticing that these curves indicate how sensitive downtime estimates
are to operational lead and lag times (Graham, 1982).
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Fig. 2.11 – Example exceedance curves (courtesy Rip (2015)).

A measure of persistence was given by Graham (1982), who used the average
duration to parameterise the persistence (see Eq. (2.13)).

𝜏 =
𝑇𝑔
𝑁𝑔

(2.13)

in which:

𝜏 Average duration that offshore conditions exceed threshold levels.
𝑇𝑔 Total hours in which the threshold levels are exceeded.
𝑁𝑔 The number of occurrences in which the threshold levels are

exceeded.

In preceding studies, it was found that there exists to some degree a linear
log­log relationship between the “greater than” average duration (𝜏) and the
significant wave height (𝐻𝑠). After some further examination, it followed that the
relationship was most adequately fitted using a Weibull distribution (Graham,
1982). It is this principle that led to the development of a persistence model
that would take (1) the threshold significant wave height, (2) the exceedance
probability of the significant wave height and (3) the total time period for which
the persistence is calculated and returns a statistical estimate of the downtime
in terms of a Weibull­model.

A major disadvantage, however, is the models dependence on a single meto­
cean parameter. That is, although it was proven that there exists similar linear
relationships with the wind velocity, the time dependence of the threshold level
due to its dependence on other parameters such as, the peak wave period and
incoming wave angle, is not taken into account.
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2.3.4 Scenario simulation models

The third type of workability models are so­called scenario simulation models.
Scenario simulation models aim to simulate the logistic system of the installa­
tion process to assess the project duration, corresponding costs, and weather
downtime. Besides the advantages of being able to assess produce the project
duration and costs, the method was highlighted in previous studies as poten­
tially being the most accurate approach to estimate weather downtime (den Uijl,
2018).

Below, a probabilistic and a discrete event (scenario) simulation model are dis­
cussed in further detail.

Two­state Markov Chain models

In 2019, a paper was released by Bruijn et al. (2019) proposing a new probabilis­
tic model to assess the weather downtime of marine operations. The proposed
model was based on the concept of Markov chain theory. A stochastic system
describing a sequence of possible events in which the probability of each event
depends only on the state attained in the previous event.

Fig. 2.12 – Illustration of the Markov Chain concept (courtesy of Rip (2015)).

The proposed model transforms the actual metocean conditions into workable
states ‘1’ and non­workable states ‘0’ depending on the operational limit. Based
on hindcasting and pre­defined operational limits, a so­called binary ‘workability­
array’ is created. This array is subsequently used to estimate the Markov tran­
sition probabilities between the workable and non­workable states from which
a sequence of workability events can be generated.

In other words, to build a model which predicts the workability, two states can
be assumed, workable and non­workable. Based on hindcasting or histori­
cal records, the corresponding probabilities of occurrence can be estimated.
Therefore, using a random generator a daily sequence of workability states can
be simulated. This would generate a sequence in which the workability states
would randomly jump from one to another, wherein real data the probability of a
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workable state often depends on the previous state. I.e. the probability of hav­
ing a workable state tomorrow might be greater if the operations are allowed to
be run today (Vicapow, 2014). Hence, transitional probabilities are introduced.

The acquired sequence of workability states can then be used to schedule the
marine operation and assess the expected weather downtime. If multiple ac­
tivities, each having their own operational limits, are involved in the marine op­
eration, multiple sequences may be generated. These sequences can, subse­
quently, be used to schedule the successive activities.

Fig. 2.13 – Multiple operations scheduled using multiple binary sequences generated
using the two­state Markov chain model (courtesy of Rip (2015)).

The researchers noticed that the proposed model showed promising results for
analysing the downtime risk. Especially for large cyclic projects, for which the
variation in predicted project duration is greater. However, it was highlighted
that hindcasting could also introduce errors. Specifically when a data record
contains a once in 1000­year storm. It will treat such events with a return period
equal to the length of the data record, whilst its actual return period might be
around 1000 years.

To develop the model a number of assumptions were used. For instance, (1)
the operational limits imposed are strict. Therefore, a time instant is either work­
able or not. Nevertheless, a workable limits analysis shows that the workable
limits in terms of wave height, period and direction may vary depending on the
current velocity. Also, it is well possible that when a certain operational limit is
violated, the work is still continued. Though, at a much slower rate. Moreover,
(2) the net duration of an operation was modelled as a deterministic process.
Therefore, any length variations in repeated cyclic operations are simplified.
As a consequence, whilst the persistency is known to be a vital parameter, the
risks imposed due to these variations are neglected.
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Discrete event simulation models

Discrete event simulation (DES) models are frequently found in literature as an
approach to generate project estimates, such as costs, project duration and
lately also the expected weather downtime. In discrete­event simulation, it is
tried to model the installation process of an offshore wind farm by means of
entities, events and processes. DES represents individual entities, like ves­
sels, that move through a series of queues and activities (processes) at discrete
points in time (Tekle Muhabie et al., 2018). An event is defined as the occur­
rence of a system state change at a particular time instant, e.g., the arrival or
departure event of vessels at a certain port. Hence, by its definition, there are
no state changes between consecutive events. Consequently, the model is al­
lowed to “jump” to the next event without having to iterate over fixed­incremental
time­steps, which is known as next­event time progression.

The main aim, and probably the most valuable property, of discrete event simu­
lationsmodels is to gain insight in the performance of a logistic operating system
at large. Discrete event simulation models assist in identifying (1) bottlenecks
to improve throughput and resource utilisation, and (2) to assess the required
capacity needed for an efficient and effective installation process. Moreover,
the capacity to model complex logistic flows and to examine alternative con­
figurations of logistic operations is an important advantage of using discrete­
event simulation over linear programming and Markov Chain analysis (Jacob­
son et al., 2013).

In DES­models, resources are modelled by means of servers, queues and
clients, in which servers process requests received from clients, and requests
are stored in a queue until the server becomes available. For example, a ves­
sel (the client) aims to dock at a certain port (the resource). Therefore, the
vessel’s captain sends a request to the port authorities (the server) requesting
for an available berth. The port authorities, subsequently, store the request in a
queue and appoint the vessel to a so­called anchorage area. Once a particular
berth has become available for the vessel to dock, the request is granted and
the vessel is permitted to dock. Finally, after departure, the berth is released
and available to other vessels.

Now, assuming that a port has multiple berths available and the arrival rate of
vessels at that port is described by a stochastic process, the discrete event
simulation model will highlight the utilisation of the available berths as well as
the delay that is related to queuing. Hence, the port authorities have been
provided with a decision­tool that allows them to assess the efficiency of any
number of berths available.

The core principle of resources can also be used in order to model the offshore
environment. Identical to the two­state Markov chain model, for each opera­
tion, the offshore environment may be described in workable and not­workable
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states. Prior to a weather restricted operation, a request, including details on
the operation, is submitted by the operator (the client) and received by the ma­
rine warranty surveyor (the server). The marine warranty surveyor stores the
request in a queue until an appropriate workable weather window prevails. As
soon as the offshore conditions allow for a safe and efficient operation, the re­
quest is granted and the operation is initiated.

The time between request and approval is known as weather downtime related
delay. It is interesting to note that, because of modelling the offshore environ­
ment as a resource, the effects of weather downtime that affects the logistics
of marine operations are exposed. Also, notice that the availability of the re­
source is described by persistence statistics. Since the persistence is known
as a crucial parameter for the accessibility of a certain site, the utilisation of a
resource can be considered equally important.



Chapter 3

Methodology

3.1 Research method

3.1.1 Problem description

In the literature section, this study identified two underlying model assumptions
often used in existing workability assessment models:

1. The significant wave height and peak wave period adequately describe
the two­dimensional wave energy distribution of a (directional) wave field.

2. The wave conditions associated with weather downtime are sufficiently
described by the two characteristic parameters following a workable limit
analysis.

However, little is known about how these underlying assumptions affect the
reliability of logistic optimisation tools. The potential modelling and data errors
may, subsequently, contribute to unexpected costs and poor performance of
the selected installation strategy.

Therefore, this study sets out to acquire a general understanding in how these
assumptions affect the performance of DES­based logistic optimisation models.
More specifically, this study aims to understand how the underlying assump­
tions affect the weather window analysis and what the consequences are for
(the optimisation of) scheduling, resource allocation and capacity planning of
marine operations in logistic optimisation tools. Besides, the study aims to as­
sess how accurate the significant wave height and peak wave period describe
the wave conditions experienced at site that result in weather downtime.

26
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3.1.2 Approach

To expose the effects of applying the underlying model assumptions, this study
adopted a case study approach in which a DES­based logistic optimisation
model coupled with a response motions based hydrodynamic model is imple­
mented on recently realised offshore wind farm projects.

The presented model (discussed in Section 3.2) integrates response motions
of vessels and turbine structures into the weather window analysis of the hydro­
dynamic model. Integrating response motions, instead of allowable sea states,
into the weather window analysis provides at least two advantages:

1. The encountered sea states are described in full detail, and therefore, the
approach does not generalise complex sea states that consists of multiple
wave components. Hence, the wave energy distribution is maintained.

2. The operational limits are established from the multibody system dynam­
ics and are therefore independent of wave motion. Consequently, the
approach excludes uncertainties involved in characterising the wave con­
ditions.

In the remainder of this study, this is referred to as the response motion ap­
proach. In order to evaluate the response motions based approach, the hydro­
dynamic model was adapted to allow for the use of allowable sea state limits.
In following sections, this study refers to this industry standard approach as the
allowable sea state approach.

In a recent study by Tomaselli et al. (2021), a similar approach was adopted to
develop a decision­support tool for the short­term planning of operations and
maintenance activities of offshore wind farms. In addition, several researchers
used discrete­event simulation models in their studies to improve the instal­
lation strategy of marine operations. In this study, we adapt the existing open
source OpenCLSimmodel to enable a response­motion based weather window
analysis.

Moreover, a case study approach on (recently) realised offshore wind farm
projects provides the possibility to validate and assess the accuracy of the pre­
sented modelling approach with field data. The validation methods are dis­
cussed in Section 3.3.
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3.2 Model description

3.2.1 Overview

The alternative model discussed in this thesis relies on the discrete­event sim­
ulation framework to model and simulate the logistic installation process of an
offshore wind farm. Therefore, the models main objective is the scheduling
of the corresponding installation activities. During the model simulations, the
scheduling of installation activities is based on (1) the required sequential order
of the installation activities and (2) the availability of resources such as berths
and cranes, but also the presence of sufficient weather windows.

Because the computation of weather windows (by means of a weather win­
dow analysis) can independently be conducted from the logistics simulation,
the model can be distinguished by two main components: the logistics simula­
tor and the weather resource module. The logistics simulator is used to define,
model and simulate the installation process. The weather resource module
stores and processes information regarding the offshore environment. How­
ever, the logistics simulator uses the output of the weather window analysis.
Therefore, both elements communicate throughout the simulations. The con­
ceptual design of the model is illustrated in Fig. 3.1.

Fig. 3.1 – Conceptual illustration of the workability assessment model.

The workability assessment model takes as input parameters: (1) project de­
tails; such as wind farm size, etc. (2) marine spread details; number and type
of vessels, vessel characteristics, response amplitude operators, etc. (3) the
installation strategy and its corresponding activities, (4) hindcast or historical
data of the offshore environment, and (5) the start date of the simulation.

After a single realisation of the model, the model returns the project duration,
costs, estimated waiting on weather events, resource utilisation, an overview
of start and stop dates of the activities, etc. Moreover, to obtain probability
distributions of the workability for a certain month, multiple model realisation
should be acquired. That is, simulating the installation process for multiple start
dates for a certain range of start dates.
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To optimise the logistics, multiple models can be developed using the same
framework in which one can adjust the marine spread, the installation strategy,
etc. to establish a more economic and suitable logistic operation. In fact, further
development of the presented model could allow to numerically derive the most
suitable solution.

3.2.2 Logistics simulator

For the development of the case study specific logistic simulation models, this
study uses the OpenCLSim Python package. OpenCLSim is based on the
SimPy framework which is a Pythonmodule for process­oriented discrete­event
simulation. That is to say, the model uses processes (in this case Python gen­
erator functions) to generate events, e.g. the arrival event of vessels in a port
is generated by one process and the port handling operations by another. A
general simulation process manages the event set.

Thus, DES describes the construction of an offshore wind farm by means pro­
cesses. Therefore, despite the construction of an offshore wind farm involves
a large number of installation activities, it can be generalised by the following
processes:

1. Arrival of vessel(s) at base port.

2. Transfer of structural components and equipment from port to deck.

3. Transit from port to construction site.

4. Positioning on site (using AHVs1 or DP2).

5. Installation of turbine structure components.

6. Return transit from site to port or transit to next site.

This generalised installation cycle is illustrated in Fig. 3.2.

Between these processes, events take place. For instance: (1) arrival in port,
(2) departure from port, (3) lift off, (4) completion, etc. During these events,
system state changes occur, e.g. the number of monopiles in stock, turbines
installed, etc.

In order to model weather delays in the logistics simulator, the model uses the
DES notion of resources. This approach was also used by Tekle Muhabie et al.
(2018). The weather resource is responsible for processing requests and puts
the installation activity in a queue till a suitable weather window is ‘forecasted’.

1AHVs: anchor handling vessels
2DP: dynamic positioning

https://readthedocs.org/projects/openclsim/
https://simpy.readthedocs.io/en/latest/


30 Chapter 3. Methodology

Fig. 3.2 – Generalised OWF installation process in DES.
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Because each independent installation process demands specific weather win­
dows to be available, the resource operates similar to a warehouse. In SimPy,
this may be achieved by using the FilterStore class.

Moreover, as demonstrated by the yellow boxes, in­between processes, deci­
sions take place. The decision made at those simulation steps are known as
start events and are responsible for initiating the processes right after.

However, it is important to note that the “sufficient weather window” decision­
box in DES­models is frequently located in the wrong position considering the
actual process. That is, generally the decision to initiate an activity takes place
hours prior to the actual start based on forecasted conditions. For instance, if
only operational limits are imposed on lifting activities, the decision to departure
from port and transit to the construction site depends on the presence of a suf­
ficient weather window in the forecasted data. Therefore, the delay is occurring
prior to the transit activity instead of the lifting activity. Consequently, uncertain­
ties included in weather forecast are inevitably causing delay. In addition, prior
to the start of the lifting operation, a marine warranty surveyor3 has to approve
commencement. Subsequently, if forecasts allowed for a safe execution, it is
still possible to encounter downtime due to severe conditions on site.

This also means that when using hindcasting, accurate observations of the en­
vironmental conditions are available for the entire installation process. There­
fore, it is irrelevant to model unforeseen weather downtime related delays that
occur on site. As a result, the decision to initiate an activity or add delay to the
simulation, may be considered as a process that is part of the activity on which
the operational limits are imposed. Hence, it is sufficient to apply the weather
downtime related delay whilst the vessel is on site.

3.2.3 Weather resource module

The weather resource module is responsible for describing and the offshore
conditions and communicates with the logistics simulator during the simula­
tions. As indicated by Fig. 3.1, the module is independent of the logistics simu­
lator and only processes request made during the simulations. This approach
enables for amuch faster computation time as the database operations involved
demand a serious amount of computational power. Prior to the “actual” simula­
tion start, the module performs a number of initialisation steps as illustrated in
Fig. 3.3.

During the initialisation process, the marine operations defined for the logistics
simulator are gathered. For each of the activities, the corresponding response
amplitude operators, planned operational period (duration) and operational lim­

3A marine warranty surveyor (MWS) is someone who will oversee various phases of a project
and issue their approval of documents, specific operations and the suitability of vessels and equip­
ment by review (documents), certificates of approval (project operations) and suitability inspections
(vessels and equipment). (English, 2019)
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its are determined. In combination with (historical) records of the metocean
conditions, the response motions are computed using Eq. (2.9). Subsequently,
the time­series of the response motions are used to derive workable weather
windows — using a weather window analysis — over the given period of the
metocean database. The resulting weather windows are cached in memory for
fast and efficient use during the logistics simulation.

Fig. 3.3 – Initialisation steps of the weather resource module.

To compute time­series of the motion response spectrum, the spectral wave
data and response amplitude operators are structured in a 3D fashion using
Python’s xarray module. Both the spectral wave data and response amplitude
operators are dependent on the same coordinate reference system, which is
described by the wave frequency, wave direction and time (Fig. 3.4).

However, it is worth mentioning that response amplitude operators are depen­
dent on time because the physical properties of floating equipment, in particular
mass and inertia, are time dependent as a consequence of the marine opera­
tions. However, since the response amplitude operators are considered to be
activity bound and the interest is often in the most unfavourable conditions, one

http://xarray.pydata.org/en/stable/index.html


3.2. Model description 33

may impose time independent response amplitude operators for each separate
activity.

Moreover, it should be stressed that the response amplitude operators are also
dependent on which degree freedom they describe. Therefore, the data struc­
ture is four dimensional (4D) instead of three dimensional (3D).

Fig. 3.4 – Data structures applied in the weather resource module to compute response
motions.

Most favourably, the metocean records consist of a 3D wave spectrum as de­
scribed above. However, if these do not exist over the given period of time,
each observation record should at least contain a partitioned swell and wind­
sea component. For each component, the significant wave height, peak wave
period and mean wave direction and directional standard deviation should be
known. Subsequently, a 3D directional wave spectrum can be reconstructed
using theoretical wave spectra, such as the JONSWAP (Eq. (2.5)) and Pierson­
Moskowitz wave spectrum. This was discussed in further detail in Section 2.1.

Furthermore, in a previous section it was stressed that the wave direction affects
the response motions of floating equipment. However, it should be highlighted
that it is the encounter wave angle with respect to the vessel’s stern that de­
termines the magnitude of the response motions. Hence, the vessel’s heading
determines the encounter wave angle and must be included in the computa­
tions of the response motions. In fact, often the best orientation is chosen by
the operator to acquire the least response motions and therefore enables the
vessel to operate in more turbulent sea states.

To simulate this process, the model applies an algorithm to obtain the vessel’s
heading corresponding to the most favourable response motions conditions.
This optimisation algorithm is included in the initiation of the weather resource
module. Alternatively, one could select the mean wave direction of the total sea
or select the vessel’s heading based onwind and current direction. Note that the
former approach is implicitly incorporated in today’s state­of­the­art workability
assessment models because they omit the wave direction and often establish
the limits on 1D spectra.
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To find the most suitable heading, the algorithm translates and interpolates the
response amplitude operators (for each degree of freedom) on a set of vessel
orientation angles, such that they correspond to the wave propagation direc­
tions (coming from North). For each time instant and orientation angle, the
magnitude of the response motion vector (Eq. (3.1) ) is calculated. Then, for
each time instant, the response motions and heading that correspond to the
smallest magnitude are selected and used for further computation of the work­
able weather windows.

𝑟 = [𝑟heave, 𝑟surge, 𝑟sway, 𝑟roll, 𝑟pitch, 𝑟yaw]T (3.1)

The translation of the encounter wave angle coordinates to propagation angle
coordinates is accomplished by using .

𝜃 = (heading+ 180 − 𝜃𝑒) mod 360 (3.2)

From Fig. 3.4, it is observed that the resulting response motions are expressed
as a function of the harmonic frequency, i.e. a response spectrum. However,
the operational limits apply to the irregular responses. In many cases, ship
motions can be assumed linear (Journée et al., 2015). Therefore, the behaviour
of a vessel or floating structure to an irregular wave field, of which the energy
distribution over the frequencies is known, can be derived by superposition of
the resulting response to the regular harmonic components. The transformation
of an irregular wave field to an irregular responsemotion is illustrated by Fig. 3.5.

Fig. 3.5 – Transformation of the wave energy spectrum to the response energy spectrum
by means response amplitude operators (courtesy of (Journée et al., 2015)).



3.2. Model description 35

However, because spectra describe all possible observations that could have
been made (Section 2.1), one is often interested in the significant response
motion amplitude or the probability that a certain threshold value is violated.
Therefore, one can use Eq. (2.3) and Eq. (2.4) on the response spectra instead
to compute time­series of these parameters. After consulting project engineers,
it was decided to use the significant response motion amplitudes. However,
future studies are recommended to consider the exceedance probabilities be­
cause it is a practical measure to express the operational risks.

The next process in the initialisation of the module is to determine the work­
able weather windows for each of the activities. Calculating weather windows
and waiting for weather events accounts for a significant part of estimating the
workability. The expected outcomes of a weather window analysis are the con­
secutive time periods (windows) in which each of the characteristic parameters
describing the environmental state are below or above a certain threshold level.
In particular, the start and stop dates as well as the length of these windows
are of interest. The (workable) weather window analysis is commonly found in
time­domain and scenario simulation workability models (Section 2.3). For the
sake of completeness, the analysis is explained below in more detail.

Usually, in order to derive weather windows based on historical records, time
series of characteristic metocean parameters are analysed and subsequently
transformed to binary sequences (sequences of zeros and ones) of workable
and non­workable time steps (Rip, 2015). The transformation requires a so­
called limit expression (also known as the limit state function) in which the op­
erational limits are defined. These are essentially Boolean expressions and
return a True (1) or False (0) value depending on the state of the sea and criti­
cal values (see Eq. (3.3)).

LSF = 𝐻𝑠,𝑐𝑟𝑖𝑡(𝑡, 𝑇𝑝(𝑡), 𝜃(𝑡)) − 𝐻𝑠(𝑡) > 0 (3.3)

It is worth mentioning that the limit state function is commonly expressed in
terms of the significant wave height (𝐻𝑠) whose critical value depends on the
incoming wave angle (𝜃) and peak wave period (𝑇𝑝). This is particularly conve­
nient as the threshold level is only expressed in a single parameter. However,
as a consequence, the corresponding threshold level varies with time (Fig. 3.6).

The same approach could be used to limit the motion response (𝑟) instead.
Hence, we may rewrite the limit state function, such that:

LSF = 𝑟𝑐𝑟𝑖𝑡(𝑡) − 𝑟(𝑡) > 0 (3.4)

Unlike the allowable sea state limit expression, the response motion’s limit state
function is, in this study, defined by critical displacements (and corresponding
accelerations) in each of the six degrees of freedom. Therefore, the critical val­
ues of the displacements and accelerations are independent of each other. It
should be noted that, imposing threshold levels on equipment’s accelerations
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results in time­dependent limits. That is because the conversion from displace­
ments to accelerations is based on the wave frequency (Eq. (2.11)), which is
a time­dependent parameter. After finding the suitable weather windows for

Fig. 3.6 – Illustration of the weather window analysis. For a given characteristic parame­
ter (blue lines) and corresponding operational limits (dashed red lines) the corresponding
weather windows can be found.

each of the activities, the simulation is executed. Throughout the simulation,
the weather resource module functions as a “resource” and processes requests
as discussed above and in Section 2.3.4.
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Fig. 3.7 – Illustration of the request processing by the weather resource module.

3.2.4 Model assumptions

1. The current model imposes weather downtime related delay only prior to
the consecutive marine activity based on accurate measurements of the
offshore conditions. In practice, however, the decision to commence the
activity is also made hours prior to the activity, in which forecast accuracy
plays a significant role. Therefore, the current model does not apply the
uncertainties that are involved in that decision­making process.

2. In the current model, the workability is determined by twoworkability states,
workable or not­workable. However, often marine operations can still pro­
ceed, yet at a slower progression rate. Therefore, the workability pro­
duced by the current model is expected to be more strict than observed
in field.

3. The current model generates workable weather windows based on the
most optimal wave heading and least response motions. Therefore, the
workability is expected to be underestimated for operations in which the
orientation is determined by the activity.

3.3 Model validation

The most common and probably most appropriate approach to validate (nu­
meric) models is by comparing estimates (model results) with observations.
Often, this is achieved by performing multiple tests and comparing the obser­
vations to model results. Usually, the various tests are nearly identical and
allow for a thorough assessment. However, due to the sheer size and com­
plexity of offshore wind farm projects, it is to a great extent impossible to run
multiple identical tests.

Nevertheless, the construction of an offshore wind farm is usually well recorded
and much data is available. For instance, it is common to log start and stop
dates of the marine activities in a so­called activity log administration. In addi­
tion, vessel motions are usually recorded using onboard sensors. Therefore,
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facilitating the possibility to validate the accuracy of the estimated response
motions. However, validating the estimated response motions with observed
values suggests that the response amplitude operators are validated, a pro­
cess that has already been conducted by software developers of hydrodynamic
simulation models.

3.3.1 Single installation cycle

Alternatively, a single offshore wind farm project can be considered as multi­
ple cyclic activities. For example, the construction of X monopiles, requires
(almost) the same approach for each of the monopiles. Therefore, one can
consider the installation of many monopiles (that share the same construction
method) as a series of tests.

However, this implies that the construction of each monopile is an independent
process. But, unfortunately that is not the case. Because the operations are
executed in a sequential manner, i.e. one operation directly follows after an­
other has been completed, the operations become time dependent. In other
words, the completion duration of one operations affects the start of another.
As a result, the prevailing weather conditions of the Nth operation, depends on
the completion duration of the (N­1)th operation. Therefore, the workability of
one installation cycle depends on the workability of the previous installation cy­
cle. Hence, despite the repetitive nature, decomposing the installation process
(and removing parts of the logistic cycle) to obtain independent tests may be
considered as an insufficient validation of the DES­based model.

3.3.2 Failure analysis

A second approach to validate the model is to consider the point of failure. In
this case, the point of failure is referred to as the conditions (expressed by the
significant wave height) for which certain installation activities experience delay
due to workability concerns. This approach helps to understand how accurate
current modelling approaches are in describing the actual limiting conditions
experienced at site.

In order to evaluate the models, observations of the significant wave height
are drawn from the wave database during waiting on weather events. Sub­
sequently, probability exceedance diagrams are developed from the collected
set. Simultaneously, waiting on weather events can be extracted from the on­
board activity logs. During each of the waiting on weather events, the prevailing
significant wave height is collected from the wave database and probability ex­
ceedance curves can be drawn. The resulting diagrams expose specifically
the statistical threshold levels in terms of the significant wave height at which
a waiting on weather event is generally declared and how much the estimates
deviate from the actual observations.
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Case studies

4.1 Introduction

In the following chapter, the workability assessment model, described in the
previous chapter (Section 3.2), is applied to two recently realised offshore wind
farm projects; the Hollandse Kust Zuid (HKZ) and Borssele III&IV offshore wind
farms. For each project, themodel’s input values are discussed, such as the site
specific details (environmental loading conditions), the installation method, and
operational limits. Furthermore, this chapter presents the case study results. In
addition, the results are analysed, evaluated and validated using the methods
described in Chapter 3.

Moreover, the two project were specifically chosen because the weather re­
stricted activities that were modelled correspond to operations that involve the
motions of Van Oord’s floating equipment as well as the motions of a wind tur­
bine generator (WTG) structure. Besides, the projects provided sufficient data
for the validation and modelling steps.

4.2 Hollandse Kust Zuid (HKZ)

One of the study areas considered is the Hollandse Kust Zuid (HKZ) offshore
wind farm. An offshore wind farm that is located in the North Sea, approxi­
mately 18 kilometres of the Dutch coast, and operated by Vattenfall. As part
of the construction, Van Oord was awarded with a contract from TenneT (who
was responsible for the realisation and operation of the offshore and onshore
wind area connections to its onshore high voltage grid) for the delivery and in­
stallation of export cables from the wind farm’s AC substation platforms to the
onshore station (located at the Maasvlakte II).

39



40 Chapter 4. Case studies

The installation comprised of the burying of the export cable up to 5 meters
below the sea bed over a total distance of (approximately) 50 kilometres. In
order to accomplish the task, Van Oord developed together with sub­sea ex­
perts from Soil Machine Dynamics Ltd (SMD) the Deep Dig­It trenching tractor,
a tracked remotely operated vehicle (TROV) that is deployed and operated from
Van Oord’s heavy­lift vessel the MPI Adventure.

4.2.1 Installation campaign

The corresponding installation campaign of the MPI Adventure and Deep Dig­It
trenching tractor was derived from the (onboard) activity log1 of the MPI Ad­
venture. It was found that the installation campaign can be represented by the
following processes: (1) transit (from port to site and vise versa), (2) transit
in field, (3) dynamic positioning (onto the launch location), (4) launch, (5) jet
trenching, and (6) recovery (see Fig. 4.1).

It is worth mentioning that during the jet trenching operations, the MPI Adven­
ture sails alongside the Deep Dig­It trenching tractor towards the exit point.
Moreover, the Deep Dig­It trenching tractor is repeatedly recovered to deck for
maintenance activities. It is estimated, from the activity log, that the Deep Dig­It
trenching tractor is recovered after approximately 2,000 meters. Therefore, it
is considered that a minimum of 25 launch and recovery operations took place
during the cable burying operations. It should be stressed that this is the es­
timated number of installation cycles, and is therefore, expected to differ from
the observations.

Table 4.1 – Example durations of the installation activities.

Activity Duration

Transit to field 4 hrs
Transit in field 1 hr
Dynamic positioning (DP) on site 0.50 hrs
Launch / Recovery 1 hr
Jet trenching 200 m per hr

The duration of the installation activities was determined from the average val­
ues stated in the activity log. In addition, common estimates of the activity dura­
tions made during the tender stage were accessed. Based on the experience of
Van Oord’s engineers and the values derived from the activity log, appropriate
values were selected. Therefore, enabling to develop a representative model
of the installation sequence.

1An activity log is a dataset that holds information of the installation activities such as the start­
and stop­dates and the activity details and remarks.
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Fig. 4.1 – The installation process of the MPI Adventure and Deep Dig­It trenching tractor
as modelled using the workability assessment model.
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4.2.2 Operational limits

Because the Deep Dig­It trenching tractor operates on the seafloor and is op­
erated remotely (from the MPI Adventure), it is to a great extent not subject to
environmental loading conditions. Therefore, commencement of the installation
activities is only dependent on the weather restrictions of the launch and recov­
ery operations. The operational limits of these lifting activities were established
by Van Oord’s engineers following a workable limit analysis (Section 2.2).

As part of the analysis, the engineers modelled the lifting operations of the Deep
Dig­It trenching tractor through the splash zone using OrcaFlex. Based on a
range of values of the significant wave height and the peak wave period, a
number of JONSWAP spectra were constructed. Using the cosine directional
spreading model (Section 3.2), the 1D wave energy density spectrum was sub­
sequently transformed to a 2D spectrum. Then, for each spectrum the response
motions were computed utilising the corresponding response amplitude opera­
tors (RAOs) of the MPI Adventure. Finally, based on the physics of the multi­
body dynamics (equations of motion, etc.), OrcaFlex simulated the installation
activity. The hydrodynamic properties of the MPI Adventure, such as the re­
sponse amplitude operators, were established using Ansys Aqwa.

By defining the limiting criteria, such as the vessels accelerations at the slewing
center, the dynamic load and stroke length of the onboard crane, winch veloc­
ity, trencher motions, etc., the significant wave height, peak wave period and
encounter wave angle corresponding to failure were established.

Fig. 4.2 – An example of the allowable conditions expressed in terms of the significant
wave height, peak wave period and encounter wave angle.
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The operational limits expressed in terms of (vessel) responsemotions were es­
tablished on expert opinion’s and the above mentioned criteria. Also, because
the launch and recovery operations require the Deep Dig­It trenching tractor to
be hoisted through the splash zone, the governing current velocity does affect
the limiting conditions. Nonetheless, in this study, the workable limits (derived
above and established by expert opinion’s) correspond to a zero current veloc­
ity. Therefore, permitting the simulations to neglect the effects of currents on
the workability.

4.2.3 Prevailing wave climate

The representative wave climate for this region was accessed through two re­
sources. First, hourly wave datasets were retrieved from DHI’s MetOcean Data
Portal. This dataset covers the years 1990 to 2019 and is generated based
on global wind data by DHI’s MIKE 21 Spectral Wave Model (SW). From this
dataset, both wave spectra time­series and time­series of the spectral param­
eters were retrieved.

However, since the construction of export cables for the Hollandse Kust Zuid
(HKZ) project took place in 2020, an additional source of wave data was ap­
proached. To cover this time period, hourly ERA5 data was used. ERA5 pro­
vides hourly estimates (following a reanalysis) of oceanic climate variables on a
30 kilometre grid. The ERA5 dataset is derived from advanced models that use
a vast amount of historical records to produce global estimates. Nevertheless,
it provides only time­series of the (discriminated) wind­sea and swell spectral
parameters. Therefore, the wave spectra over the period 2019 ­ 2020 were
reconstructed using the JONSWAP wave spectrum and the cosine directional
spreading model.

Fig. 4.3 – Distribution of the wave energy density over the frequency bands.

https://www.metocean-on-demand.com/
https://www.metocean-on-demand.com/
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Fig. 4.4 – Distribution of spectral wave parameters in the North Sea (52.01N, 3.97E).

4.2.4 Project estimates

In order to study the effects of using the underlying model assumptions, ten­
thousand (10,000) repeated simulations were run with varying start dates over
1990 to 2020. The start dates with hourly incremental time­steps were selected
based on a uniform probability distribution to obtain an evenly distributed proba­
bility of being selected. After every simulation, the start date, estimated project
duration and weather downtime related delays were collected.

From this collection, the empirical cumulative probability distribution (ECDF) of
the project duration was computed using Eq. (4.1). The result is illustrated in
Fig. 4.5.

�̂�𝑛(𝑥) =
1
𝑛

𝑛

∑
𝑖=1
1{𝑋𝑖 ≤ 𝑥} (4.1)

In which,

1{𝑋𝑖 ≤ 𝑥} = {
1 if 𝑋𝑖 ≤ 𝑥
0 otherwise

(4.2)
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Fig. 4.5 – Cumulative distributions of the estimated project durations.

Often, many simulations are required to obtain a good estimate of the actual
distributions (e.g. 10,000 simulations). Therefore, in order to quantify how well
the above empirical cumulative distribution functions describes the ”true” ECDF,
confidence bands are provided using the Dvoretzky­Kiefer­Wolfowitz (DKW)
inequality (Eq. (4.3) and Eq. (4.4)).

𝐿𝐵(𝑥) = max(�̂�𝑛(𝑥) − √
1
𝑛 ln(2𝛼), 0) (4.3)

𝑈𝐵(𝑥) = max(�̂�𝑛(𝑥) + √
1
𝑛 ln(2𝛼), 1) (4.4)

In Fig. 4.5, it is illustrated that the resulting ECDF fits within the five percent
confidence bounds (i.e, 𝛼 = 0.05). Therefore, the sample size of the collection
is considered statistically large enough to approach the “true” ECDF. Moreover,
an exponential (continuous) distribution (Eq. (4.5)) was fitted to the sample set
to illustrate the accuracy of theoretical probability models. Based on the figure, it
appears that the project duration can be described by an exponential probability
model.

𝑝(𝑥) = 𝜆𝑒−𝜆𝑥 (4.5)
It must be stressed, however, that the above distribution represents the prob­
ability of the project duration for any arbitrary start date during the year. As a
result, the figure lacks information regarding the seasonality effects. Instead,
non­parametric distributions (box plots) of the project durations were developed
and illustrated per month of the start date (Fig. 4.6).
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Fig. 4.6 – Non­parametric distributions of the project duration grouped by month.

In the above figure (Fig. 4.6), the seasonality effects are illustrated. As one can
expect for the North Sea region, the (workability) conditions are less favourable
during the winter period. As a consequence, the expected project duration is
significantly longer for operations starting during the winter period (with respect
to the summer months). Also, it appears that there is much more variation
during the winter months. Hence, estimates of the project duration during this
period are, inevitably, much more uncertain.

4.2.5 Workability estimates

Scatter workability

In an attempt to highlight the fundamental differences between the allowable
sea state based method and response motion based method, the workability
was assessed using the statistical scatter model first. For both approaches,
time­series of characteristic parameters (i.e. significant wave, peak wave pe­
riod, heavemotion, etc.) were derived from themetoceanwave dataset. Through
a transformation step, these time­series were transformed into a binary worka­
bility sequence as discussed in Section 2.3.
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Fig. 4.7 –Workability at the Hollandse Kust Zuid (HKZ) based on the launch and recovery
operational limits and the scatter approach.

During this transformation, the vessel was, in both approaches, aligned with
the mean wave direction, therefore neglecting the optimisation step that allows
to reduce the response motions (Section 3.2). After the transformation, the
binary sequence data was grouped by months to which the monthly averaged
workability was computed using Eq. (4.6).

�̅� = 1
𝑛

𝑁

∑
𝑖=1
𝑥𝑖 (4.6)

In Fig. 4.7, an evident dissimilarity is observed between both estimating meth­
ods. In particular, beyond the summer months, the response motion based
method appears to provide less favourable workability conditions. In order to
gain an understanding of the cause leading to the differences, the contribution
of each response motion limit to the downtime was inspected using probability
theory (Eq. (4.7)). This is illustrated in Fig. 4.8.

𝑃(𝐷) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − 𝑃(𝐴 ∧ 𝐵 ∧ 𝐶𝑐)
−𝑃(𝐴 ∧ 𝐵𝑐 ∧ 𝐶) − 𝑃(𝐴𝑐 ∧ 𝐵 ∧ 𝐶) − 𝑃(𝐴 ∧ 𝐵 ∧ 𝐶) (4.7)

Where 𝐷 refers to the downtime event, 𝐴 to the condition that the heave limit
has been violated, 𝐵 to the condition that the roll limit has been violated, and 𝐶
to the condition that the pitch limit has been violated.



48 Chapter 4. Case studies

Fig. 4.8 – Contribution of the different threshold levels to the weather downtime, and
therefore workability.

The image above reveals that the predominant cause of weather downtime
related delay is particularly ascribed to the violation of the pitch motion limit.
Moreover, the data from the figure also suggests that the roll motion limit has
been violated on multiple occasions. The latter is a rather striking result be­
cause it indicates that, although the vessel was positioned towards the mean
wave direction, it has encountered waves from the side that caused excessive
roll motions for which the operations were claimed to be not workable.

This result implies that as a result of the two commonly used assumptions in
workability assessment models (discussed in Section 3.1.1), a significant part of
the weather downtime is ignored (almost 10% of the weather related downtime
in March).

Persistence statistics

Likewise, the two approaches were used in a time­domain workability assess­
ment model to highlight the differences. Through a weather window analysis
on the binary workability sequences (obtained for the launch and recovery op­
erations of the Deep Dig­It trenching tractor), workable periods were obtained.
Then, the durations of the workable weather windows were computed and the
windows were, subsequently, grouped by the month of the start date. Follow­
ing, for each corresponding month, non­parametric distributions (box plots) of
the window durations were obtained. This is illustrated in Fig. 4.9.
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Fig. 4.9 – non­parametric distribution of the workable weather window durations given
the operational constraints that correspond to the launch and recovery operations.

From the image, it becomes evident that the allowable sea state approach pro­
duces more frequently longer workable periods. That is to say, the probability
to encounter “long” workable weather periods is greater for the allowable sea
state approach compared to the response motion approach. Therefore, the
data from the figure implies that the workability is less favourable for the re­
sponse motions based method.

Nevertheless, because the launch and recovery operations often do not require
particularly long workable weather windows (2 — 3 hrs), the workability is pre­
sumably dominated by the duration of waiting on weather events. Therefore,
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waiting on weather events related to the launch and recovery operations were
derived using the same approach as mentioned above, however, for windows
in which the weather conditions are insufficient. This is illustrated in Fig. 4.10.

Fig. 4.10 – Distribution of the duration of waiting on weather events based on the launch
and recovery operations.

The above figure shows that the allowable sea state based method also gener­
ates longer durations of the waiting on weather events (almost twice as much).
Hence, although themethod offersmore often workable weather windows, once
the encountered weather conditions do not allow for commencement, the prob­
ability to encounter long waiting on weather events is greater compared to the
response motions based approach.
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Because in logistics optimisation tools the goal is to identify bottlenecks (long
delays) and resource utilisation, discrete­event simulation will show how the
above findings affect the logistic operation.

Discrete event simulation

After simulating the installation process over 10,000 times with varying start
dates ranging from 1990 to 2020 (Section 4.2.4), workability estimates were
derived per simulation. The data was, subsequently, grouped by month and
non­parametric distribution (using box plots) were obtained. The results are
shown in Fig. 4.11.

Fig. 4.11 – Non­parametric distributions of the workability following the workability as­
sessment model as discussed in Section 3.2
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From Fig. 4.11, it appears that the workability estimates are more favourable for
the response motion based method. In particular, during the winter period, the
response motion based method generates up to 10% more favourable worka­
bility conditions. This result is somewhat counter­intuitive. However, it must be
stressed that during these simulation runs, the vessel’s heading was optimised
in order to obtain the least response motions. Because a common approach is
to position the vessels such that it’s bow is headed towards the mean wave di­
rection (MWD) and in order to compare it with previously found results, identical
simulations were run using this approach.

Fig. 4.12 – Mean workability per month when positioning the vessel towards the mean
wave direction.

As a result of this approach, the workability decreases substantially and be­
comes, during the winter period, more favourable for the allowable sea state
based method.

4.2.6 Failure analysis

In an attempt to support the “waiting on weather“ decisions made by the model,
observations of the significant wave height were extracted from thewave database
for those periods in which the model identified not workable conditions. The
retrieved values are referred to as the point of failure and help to identify at
which critical values the model decides to let a time­step “fail” (i.e. is not work­
able). Simultaneously, wave height observations were extracted from the wave
data base during periods in which the activity log registered waiting on weather
events. For both significant wave height sample sets, empirical cumulative den­
sity distributions and quantile­quantile plots were drawn. These are shown in
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Fig. 4.13 and Fig. 4.14, respectively.

Fig. 4.13 – Empirical cumulative distributions of the point of failure expressed in the sig­
nificant wave height at which the simulated and realised operations experienced weather
downtime (operational failure).

The data from the above chart illustrates that allowable sea state based method
states on several occasions not workable conditions for small values of the
significant wave height. It was found that this is related to the abrupt change
of the allowable sea state limit. That is, because the workable limit analysis
derives operational limits for a range of peak wave periods, the allowable value
of the significant wave height outside of that range is deliberately set to zero. As
a result, small values of the significant wave height that correspond to long wave
periods (for instance swell waves with frequencies above 10.00 seconds) will
trigger the model to declare not workable conditions. Interestingly, the image
indicates that this issue is resolved using the response motion based method.

Furthermore, the figure illustrates that both the response motion and allowable
sea state based methods impose up to a certain degree more strict limits. It
follows that fifty percentile limit corresponds to a wave height of approximately
1.50meters. In contrast, the corresponding observed wave height is nearly 2.25
meters. However, it must be stressed that due to the limited waiting on weather
events during the Hollandse Kust Zuid (HKZ) offshore wind farm project, the
corresponding sample size of the critical values observed during operational
failure is rather small. As a consequence, the resulting empirical cumulative
distributions of the observed values only describes a fraction of the conditions
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that result in weather downtime.

Fig. 4.14 – Quantile­Quantile (q­q) plots of the significant wave heights during the ob­
served and estimated waiting on weather events.

In the above graph, it is illustrated that the models predict at a rather calm sea
state operational failure compared to the observations. Besides, as mentioned
above, the response motions based method appears to describe the not work­
able conditions more accurately at smaller values of the significant wave height.
Most likely because low wave frequencies (0 to 0.10 Hz) are not accounted for
during the workable limit analysis.
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4.3 Borssele III&IV

The Borssele III&IVoffshore wind farm project was chosen in addition to the Hol­
landse Kust Zuid (HKZ) case. The Borssele III&IV offshore wind farm is located
approximately 24 kilometers of the coast (refer to Chapter B of the appendix)
and consists of 77 wind turbine generators (WTGs). The case study is par­
ticularly interesting for this research because of the type of weather downtime
experienced on site. It was found that during the mating process — in which
the turbine blades are connected with the hub and nacelle — tower oscillations
were that significant that it became impossible to “mate” the blades and hub.
Therefore, ultimately resulting in weather downtime.

Fig. 4.15 – Coupling of the turbine blades with the nacelle from the Aeolus (HLV) self­
elevating unit at Borssele III&IV offshore wind farm.

However, more interesting, it was not the oscillating motions of the load (the
blades) that caused the delay, but the tower structure’s oscillations. It became
apparent that the towers frequently oscillated considerably during rather “ideal”
weather conditions. These oscillations were ultimately related to the wave exci­
tation of the natural frequency. In particular short­crested waves, that are char­
acterised by a wave period of 3 to 4 seconds, forced the structure to oscillate
at its natural frequency. Hence, stimulating the structure to resonate.
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4.3.1 Installation campaign

At the time of the construction of the Borssele III&IV offshore wind farm, Van
Oord deployed the Aeolus (HLV) to install the turbine structures. According to
the onboard activity log, the corresponding work method consisted of (1) transit
to port, (2) the transfer of the structural components from port to deck, (3) transit
to the construction site, (4) (dynamic) positioning, (5) jacking up, (6) installation
of the tower component, (7) installation of the hub and nacelle, (8) the mating
process of the blades with the hub, and (9) jacking down.

4.3.2 Operational limits

Because the activity log recorded mostly weather downtime related delays as a
consequence of the excessive tower oscillations, it was chosen to impose only
operational limits on the blade mating process. The corresponding limits were
expressed in terms of the horizontal displacement amplitude of the turbine struc­
ture at the height of the hub and were established based on field experience2.
Moreover, the allowable sea state conditions were derived using the response
amplitude operator of the tower structure (Fig. 4.16). Therefore, the operational
limits are, for both the allowable sea state and response motion based method,
entirely identical. Hence, the case only illustrates the uncertainties that arise
from describing the offshore state by only two parameters (𝐻𝑚0 and 𝑇𝑝).

Fig. 4.16 – The response amplitude operator of the tower structure.

2The workable limit (in terms of the displacement amplitude) was determined in consideration
with the operators that worked on site.
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4.3.3 Workability estimates

Scatter workability

A similar approach as the Hollandse Kust Zuid (HKZ) case study was used to
illustrate the differences of both approaches for the Borssele III&IV case study.
For this case, however, operational limits were imposed on the blade root mat­
ing process, for which the maximum oscillating tower motions were set at X
centimeter horizontal displacement amplitude. After computing the displace­
ment amplitudes using the response amplitude operator, the binary workability
sequence was computed using the workable limit. Simultaneously, the binary
workability sequence of the allowable sea state method was computed based
on the observed wave heights and period. Based on the corresponding months
and years of the data points, non­parametric distributions of the workability were
obtained. In order to compare both methods, the mean values were obtained
from the non­parametric distributions. This is illustrated in Fig. 4.17.

Fig. 4.17 –Workability of the blade root ­ hubmating process using the scatter workability
model.

From the figure, it can be seen that both approaches yield different results.
Equally to the previous case, these results show that response motion based
approach generates less favourable workability results. Because the opera­
tional limits of both approaches are identical, these results imply that describing
the offshore environment only by means of two characteristic parameters (the
significant wave height and peak wave period), causes the models to neglect a
significant part of the weather downtime.
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Persistence statistics

In Fig. 4.18, the persistence model results of Borssele III&IV offshore wind farm
are presented.

Fig. 4.18 – Non­parametric distribution of the workable weather window durations.

From the image it appears that, also for this case, the allowable sea state based
method generates considerably more favourable workability conditions. How­
ever, more interesting is that the results show little to no dependence on sea­
sonal variation. It is believed that the governing wave climate that triggers the
tower oscillating motions occurs throughout the year uniformly. Especially, be­
cause the natural frequency of the structure corresponds to small wave frequen­
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cies. Hence, the presence of unfavourable motions does not rely on “extreme”
events, but occur more occasionally. This is illustrated in Fig. 4.19.

Fig. 4.19 – Non­parametric distributions of the peak wave period. Note that the interquar­
tile range (IQR) remains relatively equal throughout the year.

From the above image, it is found that the peak wave period meets the natural
frequency somewhere between 15 ­ 25% of the time. This range remains fairly
equal throughout the year. As a result, the weather downtime related delays
are not particularly dependent on seasonality. Nevertheless, the corresponding
wave height still needs to be considerably in order to cause excessive tower
motions.
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Discrete event simulation

In Fig. 4.20, the workability results generated by the workability assessment
model are presented for the Borssele III&IV case study. Also for this case study,
it is found that the response motion based method estimates less favourable
workability conditions.

Fig. 4.20 – Non­parametric distributions of the workability of the Borssele III&IV case
study.
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4.3.4 Failure analysis

The point of failure (i.e. the value of the significant wave height for which a time­
step was considered not workable) was also examined for the Borssele III&IV
case study. Again, observations of the significant wave height were extracted
from the wave database for those periods in which themodel identified not work­
able conditions. In the same way, wave height observations were extracted
from the wave data base during periods in which the activity log registered wait­
ing on weather events. Correspondingly, for each of the significant wave height
sample sets, empirical cumulative distributions and quantile­quantile diagrams
were drawn. These are provided in Fig. 4.21 and Fig. 4.22, respectively.

Fig. 4.21 – Empirical cumulative distribution functions of the significant wave height ob­
served during waiting on weather events

In the above plot, it is shown that the significant wave height observations
that caused weather downtime during construction are sampled around a 50­
percentile value of 1.00 [m]. Nevertheless, both estimating models indicate at
an earlier state not workable conditions and terminate the installation at signifi­
cant wave heights lower than 1.00 [m] (with respect to the p50­value). Besides,
it appears that the allowable sea state method imposes a slightly stricter limit
in terms of the significant wave height.

Although, these results are counter intuitive with respect to the workability re­
sults shown in figure Fig. 4.20, one must notice that it is believed that the prob­
lem occurred predominately for a small range of wave frequencies (3.40 [s] —
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3.70 [s]). Therefore, any wave component that has a frequency which is close to
the natural frequency needs enough energy to produce considerable response
motions. For instance, a regular wave component with a frequency at 3.70 [s]
needs a height of 1.00 [m] to obtain tower displacements of 0.05 [m].

Fig. 4.22 –Quantile­Quantile diagrams of the significant wave height observations during
waiting on weather events.
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Discussion

5.1 Research findings

In reviewing literature, it was established that uncertain estimates of the worka­
bility are the principal cause of substantial operational risks, and therefore con­
struction expenses. A reduction of the operational risks benefits the industry
and the development of offshore renewable energy. Therefore, this study set
out to improve the reliability of workability estimates. Hence, the main research
question raised in the introduction section was:

“How can the reliability of workability estimates involved in the plan­
ning and engineering stage of an offshore wind farm installation be
improved?”

Below, the key research findings of this study are summarised and interpreted.

In the first place, the literature study of this research (Chapter 2) identified two
underlying model assumptions that are often used to model and estimate the
workability. These being:

1. The significant wave height and peak wave period adequately describe
the two­dimensional wave energy distribution of a (directional) wave field.

2. The wave conditions associated with weather downtime are sufficiently
described by the two characteristic parameters following a workable limit
analysis

However, research regarding the workability lacks clarity on the appropriate­
ness of implementing these assumptions and the accuracy of existingmodelling
approaches.

63
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To study the appropriateness and accuracy of using these assumptions, this
research presented an alternative logistics optimisation model that integrates
response motions of vessels and turbine structures into the weather window
analysis of the coupled hydrodynamic model. Subsequently, the model was
implemented on two recently realised offshore wind farm projects operated by
Van Oord.

Following the two case studies, the most important finding of this study is per­
haps that the current approach adopted by the industry potentially overesti­
mates the true workability and therefore imposes unnecessary operational risks.
This study found two possible explanations for this result.

The first possible explanation for this result might be that the two­dimensional
(2D) wave energy distribution describes the wave field more accurately and
therefore exposes additional wave conditions that result in weather downtime.
Because the allowable sea state method applies an unimodal one­dimensional
wave spectra to model the wave conditions, it may not necessarily describe bi­
modal or multimodal sea states properly. This was also emphasised by Garcia­
Gabin (2015). Therefore, because of the loss of detail, the model might not
have been able to identify critical sea states. In contrast, the response motions
modelling approach maintains the two dimensional wave energy distribution.
Therefore, the model is able to describe the wave conditions in more detail and
potentially enables it to identify weather downtime conditions more often.

Support for this explanation was, in particular, provided by the results from the
Borssele III&IV case­study. In the Borssele III&IV case­study, the operational
limits in terms of the allowable sea state and response motions were essentially
identical. Therefore, the only differences between both modelling approaches
existed in the representation of the offshore environment. Nevertheless, the
case study found a significant decrease of the workability.

Additional proof for this explanation was provided by the results from the Hol­
landse Kust Zuid (HKZ) case­study. In Fig. 4.8, the contribution of the response
motion limits of the MPI Adventure to the monthly weather downtime was illus­
trated. Despite that the model aligned the vessel (for this analysis) with mean
wave direction (MWD), the study found that both pitch and roll motions are
mostly accountable for the occurrence of weather downtime. However, be­
cause of its alignment with the mean wave direction, one expects roll motions
to occur only if wave components encounter the vessel at an angle. To capture
this motion behaviour, one must at account for the propagation direction of the
independent wave components. Therefore, these results highlight an important
feature of the response motions modelling approach.

Another possible explanation for this research finding is that allowable sea state
operational limits inadequately describe the sea state conditions that result in
weather downtime events. That is, because the workable limit analysis estab­
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lishes operational limits based on an unimodal sea state, it may well be possible
that those workable limits do not apply to multimodal sea states. This problem
was also acknowledged by Acero & Li (2018).

Nevertheless, the model validation results from the Hollandse Kust Zuid (HKZ)
case­study (Figs. 4.13 and 4.14) showed that the wave conditions causing
weather downtime are to a certain degree similar for bothmodelling approaches.
However, because of the fact that the allowable sea state limits were only de­
rived for a finite range of wave frequencies, the approach claimed on a number
of occasions not workable conditions where in practice the operators would al­
low for commencement. This problem is resolved by means of the response
motions based approach, however, it does not provide support for the above
explanation.

In fact, it appears that the allowable sea state modelling approach is (slightly)
more conservative in terms of the acceptable maximum significant wave height.
Therefore, one expects to find more favourable workability conditions for the re­
sponse motions approach. However, the failure analysis of both case­studies
also showed that the response motions modelling approach is more accurate
in identifying critical sea states. Therefore, these findings suggest that the re­
liability of workability estimates can be improved by integrating the response
motions.

Furthermore, this study found in Section 4.2 that adjusting the vessel’s heading
to generate the least response motions provides the possibility to optimise the
workability to be more favourable compared to positioning the vessel towards
the mean wave direction.

5.2 Interpretation of the findings

Based on the research findings discussed in the previous section, it can be
stated that the two underlying model assumptions applied in most workability
models give rise to inaccurate workability estimates. Consequently, project es­
timates such as the project duration and corresponding costs become uncertain
and increase the risks of economic loss due to unexpected weather downtime
events.

Moreover, because these model assumptions are often implemented in (DES­
based) logistic optimisation tools, the reliability and performance of operation
scheduling studies is affected. As a result, limited space is available for the opti­
misation of the logistics operation. However, in literature the optimisation of the
logistic operation is described as the most effective approach to fundamentally
decrease operational costs. Therefore, the findings of this study highlight the
importance of accurately describing the offshore environment, and therefore,
workability.
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5.3 Implications of the findings

In this thesis, the main objective was to improve the reliability of workability
estimates. Therefore, this study aimed at identifying the weaknesses of to­
day’s workability modelling approaches, describing the implications following
from these weaknesses and addressing them accordingly. It was shown that
by integrating responsemotions into the workability analysis provides the possi­
bility to improve the reliability of workability estimates and to optimise the logistic
operation of the construction process. Therefore, the results of this study may
help others to better understand how engineering decisions on the logistic op­
eration affect the workability and therefore the performance of the installation
process.

5.4 Limitation of the findings

The findings in this report are subject to at least four limitations. These are
explained below.

First, despite that the results of this study appear to be consistent with previous
studies, due to the lack of “actual” data on the workability, it is at this moment not
possible to provide constructive evidence to support the claim that the response
motion basedmodelling approach is more accurate than the allowable sea state
based model.

Moreover, the results of this study were computed for an offshore environment
in which wind and current do not exist. However, the workability issues encoun­
tered at sea were also affected by the wind and current. For instance, the limits
corresponding to the launch and recovery operations of the Deep Dig­It trench­
ing tractor through the splash zone are a function of the current. Especially,
because drag forces should be accounted for.

Besides, because the current study focused only on offshore wind farm projects
realised in the North Sea region (in particular of the Dutch coast), the effects of
multimodal spectra that were shown in the results, may be considered limited
(due to the governing wave climate). Therefore, it is expected that these effects
become more evident for projects located in coastal regions that are affected
by both wind­sea and swell waves on more frequent occasions.

Also, to derive weather windows, it was chosen to compute the significant re­
sponse motion amplitudes from the response spectra (the average of the high­
est one third). Alternatively, following reliability theory, the exceedance proba­
bility of occurrence could have been used to describe the occurrence of a failure
event. Consequently, it is expected that workability results found in this study
are less strict compared to the application of exceedance probability.
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5.5 Recommendations

Currently, the operational limits are based on a workable limit analysis. How­
ever, through an iterative process (calibrating the workability model with work­
ability observations), the actual operational limits — that relate to the field con­
ditions and experience of onboard personnel and the operators — can be de­
termined. This sort of calibration, however, requires appropriate data to be
available.

Furthermore, in the current study, it was tried to assess the accuracy of work­
ability models. However, because of the sheer size and extreme complexity of
marine operations, it is complicated to obtain proper validation methods. There­
fore, future research is recommended to address the validation and possibly
calibration of workability models.

Moreover, as stated in the model assumptions section (Section 3.2.4), current
decisions of the model (to initiate the activity) are based on the true values of
the response motions. However, during the actual process, this is often based
on forecasts which can introduce uncertainties. As a result, it is possible that
operations are delayed whilst they could have been executed. Therefore, fu­
ture research is recommended to study the effects of hindcasting and decision­
making processes on the resulting weather downtime and project duration.

Also, it is recommended to include the possibility in scenario simulation models
to execute the activity at a slower rate in case that is possible. This implies that
the workability is not longer described by two states. Therefore, a not­workable
state may be workable, but imposes a certain amount of delay.

Finally, response amplitude operators are a function of the structural mass.
Hence, during a marine operation, the properties of the response amplitude op­
erators may potentially change. This will affect the estimated responsemotions.
Hence, future research is recommended to address the change in dynamic re­
sponse of floating equipment as a consequence of a change in response am­
plitude operators.
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Conclusion

6.1 Answers to research questions

This study set out to address the substantial installation costs associated with
the construction of an offshore wind farm. Therefore, the study aimed to im­
prove the reliability of workability estimates to reduce operational risks and to
allow for optimising the logistics of marine operations. Hence, throughout the
research, the main objective was to obtain an answer to the question:

“How can workability estimates involved in the planning and engi­
neering stage of an offshore wind farm installation be improved?”

Below, answers to the subset of research questions are provided first. After
presenting answers to the sub­questions, the main research question is ad­
dressed.

6.1.1 Sub­questions

1. What methods exist in literature for estimating the workability of marine
operations?

In the literature section, it was found that three types of workability assessment
models exist that provide support for determining the workability of marine oper­
ations. These are: (1) strictly statistical models, commonly known as the scatter
model, (2) time­domain models that in order to derive the workability account for
the persistency of certain offshore conditions and (3) scenario simulation mod­
els that allow to model the installation activities that define the marine operation
and simulate the weather related delay of those respective activities.

Moreover, according to den Uijl (2018), scenario simulation models are likely
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to be the most accurate method for estimating the workability. That is because
they allow to model multiple (sequential) installation activities that may or may
not be weather restricted. Besides, it is believed that these types of models
respect the seasonality and the persistency of the offshore environment. The
latter is in literature frequently referred to as the most crucial parameter for
indicating the occurrence of weather downtime.

2. What are the weaknesses of today’s state­of­the­art workability models?

Following the literature study, this study found that current workability models
describe the sea state in at most two spectral parameters, the significant wave
height (𝐻𝑠) and peak wave period (𝑇𝑝). Therefore, these models rely on two
underlying model assumptions. These being:

1. The significant wave height and peak wave period adequately describe
the two­dimensional wave energy distribution of a (directional) wave field.

2. The wave conditions associated with weather downtime are sufficiently
described by the two characteristic parameters following a workable limit
analysis

However, in a number of studies, researchers acknowledged that this approach
could introduce uncertainties into the workability analysis. Therefore, this study
set out to investigate their impact on workability estimates and the accuracy of
the modelling approach.

3. What are potential implications of utilising the underlying model assump­
tions during the weather window analysis?

By integrating response motions of vessels and turbine structures into the work­
ability analysis, this thesis revealed that conventional state­of­the­art workability
models potentially overestimate the true workability. It is believed that charac­
terising complex sea states into one­dimensional uni­modal wave spectra re­
sults in more favourable wave conditions. Therefore, the model is unable to
identify critical complex sea states that cause weather downtime. Hence, the
resulting workability estimates are more favourable.

4. How accurate describe allowable sea state limits the conditions experi­
enced at site that result in weather downtime?

Based on the results from the failure analysis, this thesis found that allowable
sea state limits are more conservative than experienced at site. However, as
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stated in Chapter 5, due to the lack of observation data, it is not possible to
provide constructive evidence for this claim. Nevertheless, on the basis of the
available data, this thesis has shown that a response motions based modelling
approach is (in certain cases) more accurate in describing the limiting condi­
tions.

6.1.2 Main question

On the question of “How can workability estimates involved in the planning and
engineering stage of an offshore wind farm installation be improved?”, this study
identified two commonly used model assumptions. These being: (1) the wave
energy distribution of a 2D wave field can adequately be characterised by the
significant wave height and peak wave period, and (2) the operational limits of
marine activities may be expressed in terms of these characteristic parameters
following a workable limit analysis.

Furthermore, this research work aimed to investigate their impact and appro­
priateness (in terms of accuracy). This thesis found that conventional state­of­
the­art workability models potentially overestimate the true workability. In par­
ticular, this study found that reducing the two­dimensional (2D) distribution of
the wave energy into two characteristic parameters (the significant wave height
and peak wave period) of a one­dimension (1D) unimodal wave spectrum re­
sults in underestimating the weather downtime, and therefore, overestimating
the workability. Therefore, because these models are often adopted by the
industry for planning and engineering purposes, the potential modelling and
data errors may contribute to unexpected costs and poor performance of the
selected installation strategy.

Instead, this study presented an alternative model that integrates response mo­
tions of vessels and turbine structures into the weather window analysis. This
approach has at least two major advantages:

1. The encountered sea states are described in full detail, and therefore, the
approach does not generalise complex sea states that consists of multiple
wave components. Hence, the wave energy distribution is maintained.

2. The operational limits are established from the multibody system dynam­
ics and are therefore independent of wave motion. Consequently, the
approach excludes uncertainties involved in characterising the wave con­
ditions.

It was shown that, by means of this modelling approach, the model was able to
expose not workable conditions that were previously not accounted for. There­
fore, it appeared that the approach is more accurate compared to the allowable
sea state method.
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Chapter A

Response amplitude operators

A.1 MPI Adventure

On the following pages, the response amplitude operators of the MPI Adventure
used in the study are displayed.
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Chapter B

Dutch offshore wind farm
zones
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