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Continuous human activity recognition for arbitrary
directions with distributed radars
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∗Microwave Sensing, Signals and Systems (MS3), Delft University of Technology, Delft, Netherlands
†Dipartimento di Ingegneria dell’Informazione, Universita’ Politecnica delle Marche, Ancona, Italy

Abstract—Continuous Activities of Daily Living (ADL) recog-
nition in an arbitrary movement direction using five distributed
pulsed Ultra-Wideband (UWB) radars in a coordinated net-
work is proposed. Classification approaches in unconstrained
activity trajectories that render a more natural occurrence for
Human Activity Recognition (HAR) are investigated. Feature
and decision fusion methods are applied to the priorly extracted
handcrafted features from the range-Doppler. A following multi-
nomial logistic regression classifier, commonly known as Softmax,
provides explicit probabilities associated with each target label.
The outputs of these classifiers from different radar nodes were
combined with a probability prediction balancing approach over
time to improve performances. The final results show average
improvements between 6.8% and 17.5% compared to the usage
of any single radar in unconstrained directions.

Index Terms—Micro-Doppler Classification, Distributed
Radar, Machine Learning, Assisted Living, Human Activity
Recognition.

I. INTRODUCTION

Technologies for monitoring Activities of Daily Living
(ADL), including radar, can support safe and independent
”ageing-in-place” for vulnerable population [1]–[3]. These
technologies can provide prompt detection of critical events
such falls, but also of abnormalities emerging over time, for
example gait impairments during walking [4]. Furthermore,
patterns of daily activities can shed light on physical and
psychological well-being states for people monitored.

In this field, several trends have gained recently attention
in the literature. For example, information fusion across mul-
tiple sensors, including cases of contactless radar technology
together with wearable devices [5]. Equally important is the
recognition of continuous and consecutive ADL apart from
single-recorded activities. In this respect, researchers have
demonstrated detecting sequences of ADLs by using deep
learning techniques, such as the long short-term memory
(LSTM) [6]. Also, state separation between translational and
in-place activities was introduced for the usage of dynamic
classifiers increasing the performance with backward in time
classification and ”re-visiting of activities” [7]–[9]. Other
promising results showed a categorization of different walking
gaits in unconstrained directions associated to different sub-
jects [10].

To expand those studies, we propose here a methodology
for classifying continuous and sometimes contiguous ADL in
arbitrary movement directions by using a coordinated radar
network. To the best of our knowledge, Human Activity

Recognition (HAR) in unconstrained directions and in a radar
network has rarely been considered, since it introduces a
variety of challenges, i.e., radar synchronization, interference
issues, choice of optimal radar location and data fusion.

We approach this problem with a distributed radar network
with nodes located in a circular baseline with 45◦ separation
angle from each other. Five identical pulsed Ultra-Wide Band
(UWB) radars are used with a circular measuring space for
unconstrained activities of approximately 4.39m, as shown in
Fig. 1 with the radar laboratory at TU Delft. To leverage
the multi-perspective views enabled by the radar network,
suitable information fusion approaches are investigated, specif-
ically feature and decision level fusion operating on seven
features extracted from range-Doppler (RD) maps generated
by each radar. Multinomial logistic regression classifiers–
Softmax classifiers–are used to exploit in the information
fusion process with the explicit probabilities associated to
all class labels provided by these classifiers. Performance
improvements in the overall classification results are reported
when using a probability balancing method to concatenate
multiple outputs from the Softmax classifiers across multiple
radar nodes and multiple slow-time bins. We prove that the
proposed classification framework applied on test sequences
of unconstrained ADLs improves performances between 6.8%
and 17.5%, in comparison to using only individual radars.

The main contribution of this paper includes a classification
approach for unconstrained activity recognition. This uses
information fusion implemented as Softmax class probability
balancing over slow-time bins and across multiple radar nodes.

The rest of the paper is organized as follows. Section II
describes the experimental setup, data collection and features
extracted. Section III introduces the Softmax classifiers, the
fusion models, and the probability prediction balancing meth-
ods for improving robustness. In Section IV the results of
the different classification approaches are discussed, with final
remarks given in Section V.

II. EXPERIMENTAL SETUP AND DATA REPRESENTATION

The section introduces the ADLs included in the dataset
together with the features extracted from the RD maps. The
activities were performed in an arbitrary movement trajectory
and recorded simultaneously with five radars. The placement
of the radars is visualized in Fig. 1 with a height of 1m above
ground for a measuring circular space of approximately 4.39m.

20
21

 IE
EE

 R
ad

ar
 C

on
fe

re
nc

e 
(R

ad
ar

C
on

f2
1)

 | 
97

8-
1-

72
81

-7
60

9-
3/

20
/$

31
.0

0 
©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

R
ad

ar
C

on
f2

14
70

09
.2

02
1.

94
54

97
2

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2021 at 12:16:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Radar network layout at TU Delft MS3 lab with a
measuring space of about 4.39m.

A. Radar setting and features extracted

Fig. 2: The 7 features extracted from RD maps: (a) Doppler
frequency & range peak power; (b) Doppler width & range
width; (c) weighted area; (d) area; (e) perimeter length.

The data set was recorded with Humatics (former PulsON)
P410 pulsed radar systems with a fPRF of 122Hz (PRI:
8.2ms). The unambiguous Doppler frequency results in
±61 Hz (±2.2 m/s) [11]–[13]. A variety of different FFT
window sizes and step-widths between consecutive RD maps
were tested. Clutter cancelation is perfromed by subracting
the mean RD matrix evaluated from the training set. Finally,
superior classification was achieved by the RD step-width of
10 samples (82ms) and a window of 150 samples (1.23s). It
was noted, a step-width less than 5 samples did not provide

classification advantages. A RD threshold of 80% was used
to eliminate the noise, with the result shown in Fig. 2a. The
seven extracted features are:

Fig. 2a Doppler peak-power frequency := f
(i)
d

Fig. 2a Range peak-power := r(i)

Fig. 2b Doppler width (x-width) := ∆f
(i)
d

Fig. 2b Range width (y-width) := ∆r(i)

Fig. 2c Weighted area (Strength) := P (i)

Fig. 2d Area := A(i)

Fig. 2e Perimeter length := L(i)

The features of the Doppler peak-power frequency, f
(i)
d ,

and the range peak-power, r(i), are determined by the
maximum peak power sample after noise-cancellation
threshold (Fig. 2a). The Doppler width, ∆f

(i)
d , is found

by the rising energy after summing the Doppler-bins, and
the range width feature, ∆r(i), by the rising energy after
summing the range-bins (Fig. 2b). The area, A(i), is the sum
of the logical pixel (0 or 1) of the RD map (Fig. 2d). The
weighted area (strength), P (i), is the sum of the RD samples
after thresholding (Fig. 2c). Finally, the Perimeter length,
L(i), represents the length of the bounding region (Fig. 2e).
The introduced features are concatenated as discussed more
later in Section III-B, to obtain the feature vector, x(i)

n , equal

to
[
f

(i)
d,n, r

(i)
n ,∆f

(i)
d,n,∆r

(i)
n , A

(i)
n , P

(i)
n , L

(i)
n

]T
, for each radar

node n, at sample time i.

B. Dataset description

The collected dataset consists of 9 classes, namely:
1) Walking
2) Stationary (almost no movement)
3) Sitting down
4) Standing up (from sitting)
5) Bending (while sitting)
6) Bending (while standing)
7) Falling (while walking)
8) Standing up (after falling)
9) Falling (while standing stationary)

We recorded seven training data sequences and one test data
sequence for five subjects, respectively. The training sequence
has a total duration of 8 min (4× 2 min). It is noted that some
sequences contain two activities in pair, i.e., ”sitting down”
and ”standing up from sitting”, and similarly ”falling” and
”standing up after falling”. The class ”stationary” is contained
in all sequences, i.e., at the transition between different activ-
ities, while stopping during the walking sequence, or pausing
while sitting.

Separately recorded test sequences of 2 min for each subject
contain all nine activities listed before, but in a different order
compared to the training sequences. The order of the activities
in the test sequences is shown in Fig. 4.

III. CLASSIFICATION APPROACH

The proposed classification approach uses multinomial lo-
gistic regression classifiers – also called Softmax – to obtain
labels and probabilities for classes of interest, followed by
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fusion models and probability prediction balancing to effec-
tively combine information from multiple radars. For fusion,
feature level and two decision level models are described in
this section and depicted in Fig. 3.

A. The Softmax classifier

The Softmax classifier is a probability driven regression
model. It can be seen as an extended logistic regression model
and provides explicit probabilities for multiclass problems in
addition to the labels. Similar to logistic regression, the Soft-
max probabilities can be expressed by the following activation
function,

p̂k = σ(s (x))k = σ
(
xTΘ(k)

)
=

exp
(
xTΘ(k)

)
K∑
j=1

exp
(
xTΘ(j)

) (1)

with p̂k the estimated probability for the class k in the class
set K. In Eq. 1 the notation includes the parameter vectors
Θ(k), and the feature vectors, x. The score of each class is
σ(s (x))k for the instance, xTΘ(k).

The classifier works for each classification prediction by
determining the highest estimated probability as,

ŷ = argmax
k

[p̂k] (2)

for a predicted class ŷ [14].

B. Fusion models for distributed radars

Classification with the Softmax classifier can be performed
in different ways. In this section three different fusion methods
are introduced, with each method providing the predicted
class, ŷ(i).

For that, we introduce, κ(i)
m,n, denoting the individual fea-

ture samples, with the index i for the time sample index;
{m|1, ...,M} for the individual feature from 1 to 7; and
{n|1, ..., N} for the individual radar from 1 to 5.

The first method is commonly known as feature fu-
sion or early fusion by concatenating all feature sam-
ples from all radars, so that the feature vector x(i) of
length 35 (7 features extracted from 5 radars) is formed as[
κ

(i)
1,1, ..., κ

(i)
M,1, ..., κ

(i)
1,N , ..., κ

(i)
M,N

]T
. For feature fusion, the

Softmax classifier provides the single probabilities p̂(i)
k at each

time instance i, for the classes k. The highest probability
determines the predicted class, ŷ(i), by using Eq. 2.

The alternative fusion method is known as decision fusion
or late fusion. For that, the classifiers provide N probabili-
ties, p̂(i)

k,n , from the 5 radars. The feature vectors are x
(i)
n ,

containing the features from each radar separately, specif-

ically
[
κ

(i)
1,1, ..., κ

(i)
M,1

]T
for x

(i)
1 belonging to radar 1, up

to
[
κ

(i)
1,N , ..., κ

(i)
M,N

]T
for x(i)

N , belonging to radar N . The
probability vectors for decision fusion can be expressed as,

p̂
(i)
k,n =


p̂

(i)
1,n
...

p̂
(i)
K,n

 , n = 1, · · · , N (3)

with k as the class and i the time instances, for the radar n in
the radarset N .

The vector in Eq. 3 is used for the first decision fusion
method by fusing the individual radar probabilities based on
their mean as,

Mean
(
p̂

(i)
k

)
=

1

N

N∑
n=1

p̂
(i)
k,n (4)

with n the index of the radars in the set N . As for feature
fusion, Eq. 2 provides the predicted class as,

ŷ(i) = argmax
k

[
Mean

(
p̂

(i)
k

)]
(5)

For the second decision fusion method, median operation
is used to fuse the probabilities of individual radars. The
elements of p̂(i)

k were sorted according to their values, as
q̂

(i)
k = sort

(
p̂

(i)
k

)
, with (·)υ in the value set Υ, such as,

Med
(
q̂

(i)
k

)
=


q

(i)
k,Υ/2 , if Υ is odd

q
(i)

k,(Υ−1)/2
+ q

(i)

k,(Υ+1)/2

2 , if Υ is even

(6)

The final predicted class is then determined as,

ŷ(i) = argmax
k

[
Med

(
q̂

(i)
k

)]
(7)

C. Probability prediction balancing

The provided probabilities, p̂(i)
k , from the Softmax classifier

can fluctuate over time, especially for the test sequences.
These fluctuations happen regardless of the used fusion model.
They may lead to random jumps between the predicted ŷ(i)

classes. Hence, time filtering of the probabilities increases
the classification robustness. We use the term probability
prediction balancing for probability time filtering.

The balanced probabilities p̂(i)
k for each class k and for the

i-th time instance from the feature fusion method is computed
as,

p̂
(i)
k =

p̂
(i)
k + p̂

(i−1)
k + · · ·+ p̂

(i−w)
k

w

=
1

w

w∑
β=0

p
(i−β)
k

(8)

with β the discrete counter index, and w the balancing window
size over consecutive Softmax predictions.

Similarly to Eq. 8, probability prediction balancing was also
applied to both decision fusion methods, such as

the mean Mean
(
p̂

(i)
k

)
, as Mean

(
p̂

(i)
k

)
,

and the median Med
(
q̂

(i)
k

)
, as Med

(
q̂

(i)
k

)
, respectively.

The predicted classes after probability prediction balancing
ŷ(i) are computed by replacing the variables (·)(i)

k by (·)(i)
k in

Eq. 2, 5, and 7, respectively, for the different fusion models.
The flowchart in Fig. 3 provides a graphic summary of the

methods discussed in this section.
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Fig. 3: Flowchart summarizing: feature extraction from range-
Doppler, Softmax classifiers, fusion models, and probability
prediction balancing across multiple radar nodes.

TABLE I: Softmax classifier validation probabilities for 4
randomly selected activity samples.

Pr p̂1 p̂2 p̂3 p̂4

GT 1 4 7 9

1 97.51 0.89 0.26 0.04
2 0.02 1.24 0 0.11
3 0.25 14.12 0.01 6.09
4 0.19 27.31 0 4.27
5 1.77 18.21 0.19 0.21
6 0.06 15.29 0 0.4
7 0.12 0.68 96.58 20.28
8 0.05 12.91 1.99 18.47
9 0.01 9.35 0.97 50.14

IV. RESULTS FOR DIFFERENT TEST METHODOLOGIES

As an example of the probability outputs provided by the
Softmax classifier, we show in Table I four random samples
from validating the Softmax classifier. We picked four samples
from the classes (1) walking, (4) standing up from sitting, (7)
falling from walking, and (9) falling from standing. It can be
seen that walking has a high prediction accuracy (97.51%)
with almost no confusion versus another class. Differently,
in the second example of standing up from sitting (27.31%),

TABLE II: Softmax classifier test probabilities of one ran-
domly selected sample from each true class.

Pr p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9

GT 1 2 3 4 5 6 7 8 9

1 54.2 0.0 0.6 0.2 0.2 2.1 0.3 29.9 1.4
2 1.1 75.2 1.8 22.2 13.4 2.2 0.0 0.6 0.1
3 5.7 6.0 27.9 9.9 17.1 16.2 0.0 5.0 4.3
4 4.4 6.5 19.7 9.8 13.8 23.4 0.0 7.8 6.4
5 0.7 9.3 7.3 37.1 28.3 11.0 0.0 10.6 2.1
6 4.7 1.3 24.3 12.3 20.2 27.9 0.0 2.9 10.9
7 1.2 0.1 0.4 0.5 0.4 0.9 93.0 2.8 3.7
8 10.9 1.5 10.8 5.7 4.4 8.1 3.4 21.7 20.6
9 17.1 0.2 7.2 2.3 2.1 8.2 3.2 18.7 50.6

potential confusion is shown towards other classes, such as
sitting down (14.12%), bending from sitting (18.21%), or
bending from standing (15.29%).

Such confusion in this subset of the four classes occurs
because, i.e., sitting down has a close correlation with standing
up if the person is 180◦ turned around. This happens to
both the Doppler speed and range extent for arbitrary activity
directions. However, depending on the application, confusion
among these classes may not be critical as they are not
life-threatening actions. In contrast, the latter two samples
show life-threatening actions, such as falling from walking
and falling from standing, respectively. Notably, almost no
confusion is reported in this case. In summary, when assessing
performances, confusion in some classes is less critical than
in others and can sometimes be tolerated.

Similar observations were seen by comparing the probabil-
ities from a test sequence, where we picked one sample from
each class randomly, as in Table II. The previous observation
holds, i.e. some classes such as walking, stationary, or falling
have higher prediction accuracy than other in-place classes.

In the rest of this section, we demonstrate our methods on
two different test modalities:

• Test subjects included in the training set
• Test subjects excluded from the training set

Typically, the latter case of ”Leave One Person Out” performs
worse than the former, but is a more robust methodology for
testing classification approaches.

A. Test subjects included in the training set

TABLE III: The fusion methodology accuracies with the
related prediction balancing window, {·}, to Fig. 5 and 6.

Description include person leave person out

Feature fusion 55.72% {14} 52.11% {15}
Decision fusion (mean) 54.96% {9} 51.79% {10}
Decision fusion (median) 53.66% {10} 50.88% {12}
Highest single radar 48.17% {14} 45.29% {13}

Typical results for the first test modality are shown in
Fig. 4a. For a given test sequence we show the results for the
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Fig. 4: Unconstrained activity probabilities from Softmax classifier when including the test subject in the training set.
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Fig. 5: The fusion methodologies according to the prediction
balancing window, with the test subjects included in the
training set.

output of the feature fusion model, ŷ, as the black dotted line.
The output after decision fusion with probability prediction
balancing of 14 consecutive predictions, ŷ, is also plotted
for comparison as the solid purple line. The ground truth
is indicated by the blue line. Fig. 4b shows the predicted
probability over time for the true classes (indicated by the
colour bar at the bottom).

In Fig. 5, the impact of the different fusion models is
shown. For all methods, a probability prediction balancing
over a certain window improves the classification performance,
while feature fusion shows superior results. In contrast, single
radar classification is not capable of providing the achieved

performance of any fusion model (highest: Feature fusion with
55.72% ). Here, radar 3 provides the best average accuracy
with 48.17% with a window size of 14 consecutive predictions.
The average test accuracies are summarized in Table III,
picking the highest value as a function of the window size
for probability balancing (Fig. 5).

B. Test subjects excluded from the training set
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Fig. 6: The fusion methodologies according to the prediction
balancing window, with the test subjects excluded from the
training set.

The second test modality is based on leaving each test
subject out of the training process and assessing the average
result across all subjects. A slight decrease in performance
is expected, as each individual moves differently even when
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performing the same action (human ethogram [15]), hence
their feature samples for the same classes will vary as well.
Our results show that the average test accuracy drops by
approximately 3% in comparison to the first test modality, as
shown in Table III. The best result of 52.11% was achieved
with balancing 15 (window size) consecutive predictions with
feature fusion. Furthermore, decision fusion in both applica-
tions can almost compete with feature fusion, with 51.79%
and 50.88%, respectively. The best average accuracy, 45.29%,
for a single radar was achieved with 13 consecutive Softmax
predictions, whereas other radars show performances below
40% average accuracy.

In Fig. 6 the effect of varying the number of time bins for
balancing prediction probabilities is demonstrate. Specifically,
the curves flatten within the window size between 8 and 15
samples for feature fusion. In fact, feature fusion can be seen
as the most robust method in terms of the prediction as a
function of the window size.

C. Discussion

When classifying realistic, continuous sequences of activi-
ties, a discussion is needed to assess the results beyond accu-
racy metrics typically used for the classification of individual,
separated activities. In Fig. 4b the prediction probability is
shown over time to help assess the results.

In some cases, as around sample 215, the ”stationary” class
was identified correctly but with a delay of some samples;
in other cases, not shown here for conciseness, there was an
anticipation of few samples, perhaps due to errors in ground-
truth labelling. While our accuracy calculation is performed
on each time sample (or over a window of a certain number
of samples as in Table III), it may make more sense assessing
correct/wrong transitions between activities rather than assess-
ing individual time samples. This also accounts for the fact
that some activities and classes are inherently continuous, i.e.
spread over many time samples (e.g. walking, or stationary),
whereas others are one-off actions (e.g. sitting, bending). In
first instance, detecting these activities in the sequence can be
a sufficient outcome, rather than focusing on their duration in
terms of time samples that are much shorter (tens of ms) than
normal human kinematics.

Different is the case where actual misclassification happens,
as around samples 160 and 195 when the prediction of ”sitting
down” and ”bending from sitting” were confused. While
this is a mistake reducing the overall accuracy for the way
we set up this classification problem, one may argue that
it is not a critical mistake: the person was still sitting, no
dangerous events like a fall were missed nor false alarms
raised. In summary, the definition of accuracy used in this
section and uncritically taken from conventional individual,
separated activities analysis, may need a refresh in future work
extending this analysis of continuous sequences of activities.
Still, average test prediction accuracy above 50% for 9 classes
are acceptable preliminary results compared to e.g. ≈ 70% for
5 classes of different walking gaits in [10].

V. CONCLUSION

In this paper, we propose a distributed sensing approach
classify Activities of Daily Living in arbitrary movement
directions. With a radar network consisting of 5 UWB nodes,
average classification improvements between 6.8% and 17.5%
compared to single radar classification are demonstrated. The
Softmax (multinomial logistic regression) classifier was used
in conjunction with feature and decision fusion approaches to
combine information across multiple radars, as well as over
multiple time bins for improved robustness. These methods
were evaluated on experimental data including nine activities
performed along unconstrained trajectories. Feature fusion
shows the best and most robust results, closely followed by
decision fusion, with both significantly outperforming the use
of single radars.
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