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1 Abstract
In the recent years, there has been a growing interest in molten salt reactors as
a source of energy. To ensure molten salt reactor safety, it is vital to know the
thermodynamic properties of the systems involved.

An investigation into the uncertainty of the mixing enthalpy, excess heat ca-
pacity and Gibbs energy parameters of the LiF-KF system is presented in this
study. The program FactSage 7.2 [19] is used, which takes optimized Gibbs en-
ergy parameters as an input and uses these to calculate phase diagram data and
the values of different thermodynamic properties. The uncertainty is quantified
using the polynomial chaos expansion, which analyzes the relationship between
the input Gibbs energy parameters and the output; which is the phase diagram
data, mixing enthalpy and excess heat capacity of the system.

Firstly, an investigation into the accuracy of the polynomial chaos expansion,
when applying different settings, is given. Once the most accurate settings are
found, this expansion is used to generate many different samples of phase dia-
grams and the corresponding mixing enthalpy and excess heat capacity values.
A margin of 10 Kelvin is then introduced as a maximum deviation from the
experimentally determined phase diagram. The input Gibbs energy parameters
and the mixing enthalpy and excess heat capacity values, that correlate with
the phase diagrams within the margin of the experimentally determined phase
diagram, can then be extracted. Once these values are known, the maximum
uncertainty half width of the mixing enthalpy and excess heat capacity can be
given that is still consistent with sensible phase diagrams.

The found values for the maximum uncertainty half range are 1.65 kJ·mol−1 for
the mixing enthalpy which is a 35.6% deviation from the mixing enthalpy value
computed with the original Gibbs energy parameters. For the excess heat capac-
ity, 1.676 J·K−1·mol−1 was found as a maximum uncertainty half range which is
a 44.7% deviation from the excess heat capacity value computed with the origi-
nal Gibbs energy parameters. The one-dimensional uncertainty half range (the
uncertainty half range of one parameter assuming all other parameters possess
zero uncertainty) of Gibbs energy parameters were calculated. Additionally,
scattering plots are generated to illustrate the two- and three-dimensional un-
certainty of the different Gibbs energy parameters.
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2 Introduction
Amid the world’s quest for renewable energy, nuclear reactors as a source of
energy have regained attention. The research into the newer generation of re-
actors, generation IV reactors, is becoming increasingly pertinent. One of these
generation IV reactors is the molten salt reactor [1]. In these types of reactors
the nuclear fuel is dissolved in an inorganic liquid (molten salt) which is pumped
at low pressure through the primary circuit and reactor vessel, where a fission
process takes place. The heat generated by this fission process is transferred to a
secondary coolant in a heat exchanger, which is most often also a molten salt [1].

Since the fuel salt serves multiple purposes in the cycle, it must meet multi-
ple constraints [16]. These constraints are: a low melting point, a large thermal
expansion coefficient, high thermal and radiolytic stability, low vapor pressure,
reasonable hydrodynamic and thermal conductivity, high heat capacity, suffi-
cient dissolution of nuclear fuels and no isotopes/elements with high-parasitic
absorption in a neutron spectral region with high neutron flux [16]. Fluoride
and chloride salts have a high thermal conductivity, large thermal expansion
coefficient and high heat capacity, which make them suitable fuel salt choices
[16]. The fluoride salt which will be analyzed in this research is the LiF-KF.

To ensure the safety of the molten salt reactor, it is vital to have an exact
knowledge of the thermodynamic behavior of these nuclear fuel systems. An
important property is the behavior of the phases of the fuel salt at different
temperatures T and compositions X, which can be displayed in a phase dia-
gram. Calculation of phase diagrams (CALPHAD) modeling is a method used
to calculate the phase diagrams and thermodynamic properties by minimizing
the Gibbs energy of the system. The model takes the input Gibbs energy pa-
rameters and uses them to compute the phase diagram and thermodynamic
properties of the system. Although the phase diagram data is commonly mea-
sured experimentally in the literature, there is often little knowledge of other
crucial thermodynamic properties of these systems. It is therefore of importance
to know the accuracy of these parameters obtained by CALPHAD modeling.

In this thesis, the polynomial chaos expansion is used to determine the func-
tional relationship between the input Gibbs energy parameters and the output;
which is the phase diagram data and the thermodynamic properties mixing
enthalpy and excess heat capacity. Using this relation, and the fact that the
phase diagram data is known, many different phase diagrams corresponding to
different input Gibbs parameters can be generated. The Gibbs parameters and
properties associated with sensible phase diagram data can then be filtered.
Subsequently, the maximum allowed deviation (uncertainty half range) in the
Gibbs energy parameters, the mixing enthalpy and excess heat capacity can be
determined that still correspond to sensible phase diagrams.
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3 The LiF-KF System
In this study, the LiF-KF system was analyzed. Both the phase diagram and
the thermodynamic properties mixing enthalpy and excess heat capacity were
evaluated. This chapter provides some principle information about the LiF-KF
system and its phase diagram and the mixing enthalpy and excess heat capacity.

LiF-KF is a fluoride salt, which makes it efficient at energy storage and con-
venient energy transfer material. Pure fluoride salts have high thermodynamic
stability up to high temperatures and low vapor pressure [10]. Composing mix-
tures of these salts makes it possible to influence characteristics of the systems,
which makes its use beneficial in molten salt reactors [10].

3.1 Phase Diagram
The phase diagram of the LiF-KF system is very simple with one eutectic point
around the composition point X=0.5. This phase diagram is shown in figure 1
together with the experimental values determined by Aukrust et al. (1960) [17].

Figure 1: The phase diagram of a LiF-KF system. The vertical axis represents the
temperature in Kelvin and the horizontal axis the composition X. The red crosses rep-
resent the phase diagram points experimentally determined by Aukrust et al. (1960).

3.2 Mixing Enthalpy
The enthalpy of a system is defined as [11]

H = U + pV, (1)

where U represents the energy, p the pressure and V the volume of a system.
After two miscible liquids are mixed, molecule interaction occurs. Due to this
interaction, positive or negative heat is generated. This energy change is defined
as the mixing enthalpy, and depends on the mixing ratio [12]. The mixing
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enthalpy is defined as the difference between the enthalpy of the solution before
and after mixing, as shown in equation (2) [18]:

∆mixHm =
∑
i

xi(Hm,i −Hm,i), (2)

where ∆mixHm is the enthalpy of mixing, xi the molar fraction,
∑
i xiHm,i is

the sum of partial molar enthalpy of component i and
∑
i xiHm,i is the stoichio-

metric sum of the pure end member’s enthalpy of component i [5]. The excess
enthalpy of mixing is defined as [18]:

∆mixH
excess
m = ∆mixHm −∆mixH

ideal
m = ∆mixHm, (3)

where ∆mixH
excess
m is the excess mixing enthalpy and ∆mixH

ideal
m the ideal mix-

ing enthalpy. Since the mixing enthalpy equals zero in ideal mixtures, the excess
mixing enthalpy equals the mixing enthalpy as shown in equation (3).

The mixing enthalpy of the LiF-KF system was determined experimentally by
Capelli et al. (2013) at 1121 K. These values are plotted in figure 2 together
with the mixing enthalpy values as computed using the CALPHAD model.

Figure 2: The red points represent the mixing enthalpy values as measured by Capelli
et al. (2013) at a temperature of 1121K. This figure includes the corresponding error
bars at each point. The solid black line represents the mixing enthalpy values computed
using the CALPHAD model.

3.3 Heat Capacity
Knowing heat capacity information of a system is essential since this determines
the amount of heat energy stored in a system at a certain temperature. The heat
capacity is defined as the derivative of enthalpy with regards to temperature.
Using this definition and looking at equation (1), at constant pressure the heat
capacity of a system can be calculated using equation (4):

Cp =
dH

dT
. (4)
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The heat capacity of the LiF-KF system at different composition points has been
experimentally determined by Beilmann et al. (2013) using drop calorimetry
to measure enthalpy increments [13]. From these results the heat capacity can
be calculated using equation (4). The results of this experiment are shown in
figure 3.

Figure 3: The heat capacity values as measured by Beilmann et al. (2013) at the
composition points (Li0.75K0.25)F, (Li0.50K0.50)F and (Li0.25K0.75)F at temperatures
ranges 1158 K - 1344 K, 884 K - 1083 K and 1157 K - 1330 K, respectively. This
figure includes the corresponding error bars at each point.

By subtracting the lattice contribution from the obtained heat capacity values,
the excess heat capacity values could be obtained [18]. These values are plotted
in figure 4 together with the excess heat capacity values computed from the
CALPHAD model.
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Figure 4: The red points represent the excess heat capacity values as measured by
Beilmann et al. (2013) at the composition points (Li0.75K0.25)F, (Li0.50K0.50)F and
(Li0.25K0.75)F at temperatures ranges 1158 K - 1344 K, 884 K - 1083 K and 1157 K -
1330 K, respectively. These values are plotted with the corresponding error bars. The
solid black line represents the excess heat capacity data computed from the CALPHAD
model.
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4 Theory

4.1 CALPHAD modelling method
In thermodynamics, the chemical stability of a system are described by the
value of the Gibbs energy. The chemical stability increases as the Gibbs en-
ergy decreases [1]. By minimizing the Gibbs energy, the phase equilibrium can
be determined. In order to construct a temperature-composition (T-X) phase
diagram, the Gibbs energy functions of all the phases present in the system
have to be known. These functions can be acquired through thermodynamic
assessment.

4.1.1 Gibbs Energy

First we analyze the Gibbs energy of a pure element. The Gibbs energy can
be derived from the temperature dependence of enthalpy and entropy. This
relation can be described using the Helmholtz formula shown in equation (5):

G(T ) = H(T )− S(T )T. (5)

Since it is often difficult to obtain the enthalpy function H(T ) and entropy
funtion S(T ), we can rewrite this equation to obtain equation (6) [2],

G(T0) = ∆fH
o(298.15) +

∫ T0

298.15

CpdT − T0(So(298.15) +

∫ T0

298.15

Cp
T
dT ), (6)

in which ∆fH
o(298.15) is the standard enthalpy of formation and So(298.15) the

standard absolute entropy, both at a standard state temperature of T=298.15
K. This describes the Gibbs function for temperatures higher than 298.15 K.
Combining the enthalpy of formation, standard entropy and heat capacity equa-
tion, we can also write the Gibbs energy function analytically as in equation (7)
[2].

G(T ) = a+ bT + cT ln(T ) +
∑

diT
i (7)

The coefficients a, b and c are constants which are determined from experimental
data.

4.1.2 Gibbs energy of binary (solid or liquid) solutions

When considering binary solutions, we must also take the mixing contribution
into account, as can be observed in equation (8).

G(T ) = x1G1(T ) + x2G2(T ) +Gmixing(T ). (8)

In which G1 and G2 are the Gibbs energy formulas for the pure components and
x1 and x2 account for the weighted contributions of these components to the
total Gibbs energy. Gmixing(T ) is the mixing contribution of these end-members
to the total Gibbs energy. [1] The Gibbs energy of mixing can be divided into
the ideal mixing energy and the excess mixing energy. The ideal Gibbs mixing
energy can be described by equation (9):

Gmixing,ideal(T ) = x1RTln(x1) + x2RTln(x2), (9)
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where once again the coefficients x1 and x2 account for the weighted contribu-
tions of the two components of the system to the ideal mixing Gibbs energy.
Additionally, R represents the universal gas constant. Combining equations (8)
and (9), equation (10) can be obtained.

G(T ) = x1G1(T ) +X2G2(T ) + x1RTln(x1) + x2RTln(x2) +Gexcess. (10)

In equation (10), Gexcess represents the excess Gibbs energy of mixing. This
parameter is difficult to determine experimentally, thus optimization is required.
Thermodynamic models are used for this optimization. One of these models is
the modified quasi-chemical model, used for binary liquid solutions. [1]

4.1.3 Modified Quasi-Chemical Model

When considering binary liquid solutions, the modified quasi-chemical model in
the quadruplet approximation proposed by Pelton and coworkers [2] has been
used to optimize excess Gibbs energy functions. [1] In this model, atoms A
and B are distributed over the sites of a quasi lattice [4]. The second nearest
neighbor pair reaction (SNN) for the LiF-KF system is shown schematically in
figure 5.

Figure 5: Exchange reaction of the two different cations (Li and K) on the cation sub-
lattice in the SNN approximation [1]. This figure indicates the first nearest neighbors
(FNN) as well as the second nearest neighbors (SNN) in the sublattice.

The SNN exchange reaction is given by equation (11):

(A−X −A) + (B −X −B) = 2(A−X −B); ∆gAB/X , (11)

in which A and B represent cations and X an anion. [1] In this study, the cations
represented as A and B are the Li+ and K+ atoms, and the X anion represents
the F− atoms. The ∆gAB/X represents the Gibbs energy changes as a result of
this reaction, which in this study equals ∆gLiK/F . These Gibbs energy changes
are given by equation (12),

∆gAB/X = ∆g0AB/X +
∑

(i+j)≥1

gijAB/Xχ
i
AB/Xχ

j
BA/X , (12)

where ∆g0AB/X and gijAB/X are obtained from optimization of experimental data
and are composition independent [1]. The χAB/X and the χBA/X terms are
composition variables defined in equation (13),

χAB/X =
XAA

XAA +XAB +XBB
, (13)
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where XAA, XAB and XBB are the mole fractions of the cation-cation pairs. In
this study, for the LiF-KF system the formulas optimized in the literature for
the excess Gibbs energy are shown in equations (14), (15) and (16). [5]

∆g0LiK/F = −7614.88 + 4.8609712T − 0.0016736T 2 (14)

g10LiK/F = −958.136 + 1.2552T (15)

g01LiK/F = −690.36 + 1.96648T (16)

4.2 Polynomial Chaos Expansion
The Polynomial Chaos Expansion (PCE) is a series expansion used to approx-
imate the output of a model as a polynomial function of the stochastic input
variables. In order to use the polynomial chaos expansion, the stochastic input
variables must first be defined. This set of stochastic input variables is denoted
as ξξξN = (ξ1, ξ2, ξ3, ...ξN ) ∈ RN , and represent the distinct sources of uncertainty
present in the system. The stochasticity of each of these variables corresponds
to a probability density funtion pξξξ(ξξξ). In this study, this set of stochastic input
variables consists of the parameters in the excess Gibbs energy equations (14),
(15) and (16). The probability distribution of these stochastic input variables
should be chosen to agree with the real physical problem [6]. The responses of
interest, of which we want to determine the variability, are given by equation
(17):

R(ξξξ) =

P∑
k=0

rkΨΨΨk(ξξξ), (17)

where rk represents the polynomial chaos coefficient and ΨΨΨk(ξξξ) the polynomial
chaos basis vectors. Thus, if the basis vectors are defined and the coefficients
computed, the dependence of the responses of interest R(ξξξ) on the stochastic
input variables ξξξ can be determined.

4.2.1 Polynomial Chaos Basis Vectors

For each stochastic input variable ξ, polynomials orthogonal to the probability
density function of that stochastic input variable should be chosen [7]. This
principle is represented in the Wiener-Askey scheme. When considering uni-
formly distributed variables, Legendre polynomials are a suitable choice. The
basis vectors can be written as [8]

ΨΨΨk(ξξξ) =

N∏
j=1

ψj,γk,j
(ξj), (18)

where ψj,γk,j
(ξj) ∈ (Heγk,j

(ξj), Pγk,j
(ξj), Laγk,j

(ξj), ..) and represents different
polynomials (Hermite, Legendre, Laguerre,...). γkγkγk represents a multi-index anal-
ogous with the different orders γkγkγk = (γk,1, γk,2, ..., γk,N ). Index j corresponds to
the different random variables [6]. One can then choose to include all multidi-
mensional polynomials having a combined order of at most O, this is a full Oth
order polynomial chaos basis set given by [6]

Γ(O) =

{
ΨΨΨk(ξξξ) :

N∑
j=1

γk,j ≤ O

}
. (19)
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The number of basis vectors in the expansion in equation (15) can be determined
using equation (20):

P + 1 =
(N +O)!

(N !O!)
, (20)

where N is the amount of input parameters and O the maximum polynomial
order. The full polynomial chaos basis set considers all input parameters and
their interactions. However, according to the "sparsity of effects" principle, re-
sponses are often dominated by main effects and low order interactions [6,14].
Thus, not all of the basis vectors need to be considered in order to obtain
accurate responses. Using sparse PCEs has noise robustness and a lower com-
putational cost as a result [14].

Since the polynomial basis vectors are chosen to always be orthogonal to the
probability density functions of the stochastic input parameters, the following
relationship holds:

〈ΨΨΨk(ξξξ),ΨΨΨl(ξξξ)〉 =

∫ ∫
...

∫
ΨΨΨk(ξξξ),ΨΨΨl(ξξξ)pξξξ(ξξξ)dξ1dξ2...dξN

{
0, k 6= l

h2k, k = l,
(21)

where h2k is the norm of the kth basis vector.

4.2.2 Polynomial Chaos Coefficient

There are two different methods that can be used to calculate the PC coefficient.
The first method is the projection approach. This method reproduces each PC
coefficient as a multidimensional integral which can be calculated by simulation
or quadrature. The second method is the regression approach, where the PC
coefficients are estimated by minimizing the mean square error of the response
approximation [19] (R(ξ)−

∑
j rjΨj(ξ))

2. In this section the calculation of the
PC coefficient according to the projection approach, using quadratures and cu-
batures, will be described further.

Using the orthogonality of the basis vectors, the polynomial chaos coefficients
can be determined using spectral projection [8]:

rk =
〈R(ξξξ),ΨΨΨk(ξξξ)〉
〈ΨΨΨk(ξξξ),ΨΨΨk(ξξξ)〉

=

∫ ∫
...
∫
R(ξξξ)ΨΨΨk(ξξξ)pξξξ(ξξξ)dξ1dξ2...dξN
〈ΨΨΨk(ξξξ),ΨΨΨk(ξξξ)〉

=
1

h2k

∫ b1

a1

∫ b2

a2

...

∫ bN

aN

R(ξξξ)

N∏
j=1

ψj,γk,j
(ξj)pξξξ(ξξξ)dξ1dξ2...dξN .

(22)

This equation includes the unknown dependence of the response on the input
parameters. The numerator in equation (22) can be approximated by a cubature
formula which is assembled from one-dimensional quadratures [6],

I(1)f =

∫ b

a

f(ξj)pξj (ξj)dξj ≈ Q(1)
levf =

nlev∑
i=1

f
(
ξ
(i)
j,lev

)
w

(i)
lev. (23)

Equation (23) gives the quadrature formula for a general function f(ξj), where
ξ
(i)
j,lev ∈ [a, b] are predefined quadrature points and w(i)

lev ∈ R weights according to

9



the distribution pξj (ξj) and the quadrature rule. Additionally, the accuracy of
the quadrature approximation increases with the lev index. Using tensorization,
this one-dimensional integral can then be extended into a multi-dimensional
integral [8,9],

I(N)f =
(
Q

(1)
lev1 ⊗Q

(2)
lev2 ⊗ ...⊗Q

(N)
levN

)
f

=

nlev1∑
i1=1

nlev2∑
i2=1

...

nlevN∑
iN=1

(
w

(i1)
lev1w

(i2)
lev2...w

(iN )
levN

)
f
(
ξi11,lev1ξ

i2
2,lev2

, ..., ξiNN,levN

)
=

n∑
i

f
(
ξ(i)ξ(i)ξ(i)
)
w(i).

(24)

Equation (24) includes a full tensorization to obtain cubature points from the
quadrature points. The problem that comes with using the full tensorization
is that the number of function assessments required increases with the dimen-
sionality. Smolyak sparse grids can be used to reduce the amount of required
function assessments and thus significantly decrease the computational cost.
The principle behind these sparse grids is similar to that of the sparse basis vec-
tors. Defining the difference relation ∆

(1)
levf = Q

(1)
levf −

(1)
lev−1 f , where Q

(1)
0 f = 0,

the quadrature rules can be written as Q(1)
levf =

∑lev
l=1 ∆

(1)
l f . After substituting

this relation into equation (24), equation (25) is obtained:

Q
(N)
lev f =

∑
lll∈τ(lev)

(
∆

(1)
l1
⊗∆

(1)
l2
⊗ ...⊗∆

(1)
lN

)
f =

∑
lll∈τ(lev)

∆
(N)
lll f. (25)

In equation (25), the multi-index lll = (l1, l2, ..., lN ) is introduced to distinguish
between different grids, and the set τ(lev) contains the included multi-indices
that depend on the level index levlevlev = (lev1, lev2, ..., levN ) which contains different
quadrature levels in different directions. The original Smolyak grid set is given
by [6]:

τSmolyak(lev) =

{
lll :

N∑
j=1

lj ≤ lev +N − 1

}
, (26)

where the maximum grid equals lev− 1. Using this set and equations (22), (24)
and (25), the following equation for calculating the polynomial chaos coefficients
can be obtained:

rk =
1

h2k

∑
lll∈τSmolyak(lev)

∆
(N)
lll (RΨΨΨk) =

1

h2k

n∑
i

R
(
ξξξ(i)
)
ΨΨΨk

(
ξξξ(i)
)
w(i), (27)

the cubature points ξξξ(i) and corresponding weights w(i) correlate with the grid
given by equation (24), determined with the chosen maximum grid order (lev−
1). Thereafter, the model can be run using these input values, and the response
values R

(
ξξξ(i)
)

can be obtained. Combining this with the value of the basis

vectors ΨΨΨk

(
ξξξ(i)
)
and the weights w(i) at those same cubature points, ultimately

the polynomial chaos coefficients can be calculated using equation (27).
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5 Experimental Method
The Polynomial Chaos expansion (PCE) will be used to determine the un-
certainty range of the mixing enthalpy, the excess heat capacity and the ex-
cess Gibbs energy parameters. In this study, the program Factsage7.2 [19] is
used to perform the thermodynamic calculations and the open source MATLAB
openGPC written by Zoltán Perko is used for the polynomial chaos calculations.

5.1 Linking OpenGPC with FactSage 7.2
In order to apply the polynomial chaos expansion to the LiF-KF system, it is
necessary to link the thermodynamic calculations executed by FactSage with
the polynomial chaos expansion calculations carried out through the openGPC
scripts. In order to achieve this, the GPC settings have to be defined first. Based
on these settings, the openGPC generates different input values, which in this
study are the Gibbs energy parameters. Then, using a MATLAB script, these
values are put into a .TXT file and a MACRO is activated using these parameter
rows as input value parameters. The MACRO then initiates a calculation of the
phase diagram data and equilibrium data in FactSage. The equilibrium data
contains calculations of, among other quantities, the mixing enthalpy and the
excess heat capacity at different compositions. This data can then be extracted
from the calculated files and the openGPC can then analyze the relationship be-
tween the input values (Gibbs energy parameters) and the responses calculated
by FactSage (Phase diagram points and the chosen quantities in equilibrium
files). In this study, the heat capacity and mixing enthalpy data will be ex-
tracted from the equilibrium files and thus included in the PCE calculation.
Additionally, the phase diagram points are interpolated with a value 0.01 and
0.001 in composition. Ultimately, a GPC class is generated which contains a va-
riety of functions that can be used to assess the uncertainty of mixing enthalpy,
the excess heat capacity and the Gibbs energy parameters.

5.2 PCE Validation for Accurate Phase Diagram Compu-
tation

When creating the GPC class, the GPC settings must be defined. When gen-
erating GPC classes with different GPC Settings, the accuracy of the samples
generated by the GPC class with respect to the responses computed by FactSage
will vary significantly. For research into the uncertainty, it is vital to generate a
GPC class with the highest accuracy. To test this, GPC Classes were generated
using different GPC settings. Additionally, the step size used to extract the
data can be varied, which affects the accuracy.

In this study, step size values of 0.01 and 0.001 in the composition were tested.
In previous research conducted by T. Schuijtvlot [5], a higher maximum poly-
nomial order and an even maximum grid order resulted in a lower uncertainty.
Due to FactSage 7.2 memory constraints, the maximum polynomial order that
can be used is 6. Therefore, mainly maximum polynomial order 6 and even
maximum grid orders were tested with the different interpolations of 0.01 and
0.001. In order to determine the GPC settings which yield the most accurate re-
sults, the maximum polynomial order (MPO) and maximum grid order (MGO)
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were varied and the corresponding errors computed. To eliminate the noise that
occurred when using an interpolation of 0.001, both calculation methods (cal-
cMethod) regression and projection were tested. The open GPC settings and
their values implemented in this study are displayed in tables 1 and 2.

Table 1: The GPC settings used when generating a GPC class including ∆Hmixing

data. A,B,D,E,F and G represent the Gibbs energy parameters in equations (14), (5)
and (16).

∆Hmixing

Variable names A, B, D, E, F, G
Polynomial type Legendre
Means - 7614.88, 4.8609712, 958.136, 1.2552, 690.36, 1.96648
Half interval 3807.44, 2.4304856, 479.068, 0.6276, 345.18, 0.98324
MPO 4, 6, 7
MGO 5, 6
calcMethod projection, regression

Table 2: The GPC settings used when generating a GPC class with ∆Cp data included.
This table is similar to table 1, except that when generating the GPC the ’C’ value is
included in the computations, since it influences the heat capacity. The maximum
polynomial order (MPO), maximum grid order (MGO) and calculation method (cal-
cMethod) used are those that have proved most accurate in the mixing enthalpy GPC
accuracy calculation.

∆Cp
Variable names A, B, C, D, E, F , G
Polynomial type Legendre
Means - 7614.88, 4.8609712, 0.0016736, 958.136, 1.2552, - 690.36, 1.96648
Half interval 3807.44, 2.4304856, 0.0008368, 479.068, 0.6276, 345.18, 0.98324
MPO,MGO, Most accurate
calcMethod

The means are the stochastic input variables, which in this study are ξξξ =
(A,B,C,D,E,F,G), which represent the optimized excess Gibbs energy param-
eters in equations (14), (15) and (16). A, B and C represent the first, second
and third parameters in equation (14), respectively. D and E represent the first
and second parameters in equation (15), respectively. Lastly, F and G repre-
sent the first and second parameters in equation (16). The third Gibbs energy
parameter in equation (14) C relates to the heat capacity, which is considered
to have negligible influence on the phase diagram and mixing enthalpy data.
For this reason, C is not considered when generating the mixing enthalpy GPC.
However, when considering the excess heat capacity, this parameter is of im-
portance since this is the parameter that mainly influences the heat capacity.
Since experimental data is considered, the probability distribution outcome is
defined as uniform between the bounds [0.5*mean, 1.5*mean], which is why the
half interval is defined as 0.5*mean.

Once the different GPC classes were calculated, the mean absolute errors (MAE)
and the root mean squared errors (RMSE) in the phase diagram data were
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computed. The MAE is defined as the average difference between the phase
diagram points given by the GPC class and the points computed by FactSage.
The RMSE is defined as the square root of the sum of all the separate errors
squared divided by the amount of values (the errors are squared before they are
averaged). The main difference between these two error indicators is that with
the MAE each error carries equal weight, whereas with the RMSE the bigger
errors contribute more to the final value of the RMSE than the smaller errors.

5.3 PCE Function Application
Once the GPC class is generated, its functions can be used to quantify the
uncertainty. One of the functions that can be used is the sampler function.
This function generates many different samples of the phase diagram and mixing
enthalpy and excess heat capacity points that result from varying all of the Gibbs
energy parameters uniformly. Another function which proved informative is
the value function. Whilst the sampler function varies each input parameter
and generates corresponding outputs, the value function enables the manual
adjustment of input parameters. Using the value function, the dependence of
the phase diagram on the different Gibbs energy parameters could independently
be determined. Since equation (15) influences the left hand side and equation
(16) influences the right hand side of the phase diagram, the parameters of
these equations should be coupled when using the value function. This means
that when varying the first parameter in equation (15), the first parameter in
equation (16) should also be varied. The same coupling applies for the second
parameters in equations (15) and (16) (parameters D + F and E + G are
coupled).

5.4 Uncertainty Quantification based on Phase Diagram
Data

Often the phase diagram data of a system is known experimentally, which is
why a method of quantifying the uncertainty based on the phase diagram data
is valuable. The method used for obtaining uncertainty in this study is as fol-
lows: first, a maximum deviation from the experimentally determined phase
diagram of 10K was defined. Then, the functions in the computed GPC class
were used to generate a large number of samples. Subsequently, the samples
that were within the predefined margin were filtered and the corresponding mix-
ing enthalpy and excess heat capacity data were extracted. From this data the
maximum allowed uncertainty range in these quantities that still correspond to
sensible phase diagrams (within the 10K margin of the experimentally deter-
mined phase diagram) could be determined.

5.4.1 Uncertainty in Mixing Enthalpy and Excess Heat Capacity

Once the mixing enthalpy and excess heat capacity data corresponding to the
samples within the 10K margin were filtered, the equations used to quantify the
uncertainty half range are as follows:

∆Hmixing
uncertain(X) =

Hmixing
max (X)−Hmixing

min (X)

2
+MAEGPC (28)
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∆Cexcessp,uncertain(X) =
Cexcessp,max (X)− Cexcessp,min (X)

2
+MAEGPC , (29)

in which the maximum and minimum mixing enthalpy and excess heat capacity
were evaluated at the same composition value point X. Additionally, the mean
absolute error in the mixing enthalpy and excess heat capacity values gener-
ated by the GPC MAEGPC is added. Because this value is very small, it was
considered negligent.

5.4.2 Uncertainty assessment of input Gibbs Energy Parameters

The value function of the GPC class enables the variance of only one Gibbs
energy parameter. Varying one parameter and filtering the GPC responses, the
maximum uncertainty half range in each separate parameter can be assessed.
This is the uncertainty in one parameter when assuming that the other param-
eters all have zero uncertainty. Since parameters D + F and E + G must be
adjusted simultaneously (coupled), and the parameter C is considered to have
little effect on the phase diagram values, in one dimension the uncertainty half
range is calculated only for parameters A and B. This one-dimensional uncer-
tainty half range can be calculated similarly to the uncertainty half range in the
mixing enthalpy and excess heat capacity,

ξuncertain =
ξmax − ξmin

2
+MAEGPC , (30)

where ξ represents a Gibbs energy parameter. Additionally, two different pa-
rameters can be varied simultaneously and the two-dimensional uncertainty can
be determined for different parameter combinations. When looking at the three-
dimensional combinations of Gibbs energy parameters, the uncertainty of pa-
rameters A and B in combination with the coupled parameters D + F and E +
G can also be investigated. Both the two-dimensional and the three-dimensional
uncertainty can be displayed using scattering plots. Realistically, all the Gibbs
energy parameters possess uncertainty, but this assessment is outside the scope
of this research.

14



6 Results

6.1 Accuracy of the PCE
See table 3 for the uncertainty values for different maximum polynomial or-
ders and step size in composition of 0.01 calculated with calculation method
’projection’.

Table 3: The mean absolute error in the phase diagram (MAE PD) and root mean
squared error in the phase diagram (RMSE PD) are displayed for different maximum
polynomial orders (MPO) and maximum grid orders (MGO). All the errors are calcu-
lated for a step size in composition of 0.01.

MPO MGO Step size calcMethod MAE PD (K) RMSE PD (K)
4 5 0.01 projection 0.3155 1.1173
4 6 0.01 projection 0.2615 0.8028
6 6 0.01 projection 0.3941 1.9193
7 6 0.01 projection 0.5742 2.8958

Thus the setting with the smallest deviation from the FactSage responses with
the step size of 0.01 in composition is the MPO 4 and MGO 6. This is consistent
with the prior research conducted by T. Schuijtvlot [5]. However, by decreasing
the step size to 0.001 the error can possibly be decreased even further. This
was tested with the settings in table 4. To eliminate oscillations that the GPC
analyzes with a step size this small (most likely due to FactSage noise), the
calculation method was changed from projection to regression.

Table 4: The mean absolute error in the phase diagram (MAE PD) and root mean
squared error in the phase diagram (RMSE PD) are displayed for maximum polynomial
order (MPO) 4 and maximum grid order (MGO) 6 and step size in composition of
0.001. The errors corresponding to both calculation methods (calcMethod) projection
and regression are displayed. This table also includes the percentile deviations from
the mixing enthalpy values calculated with the optimized Gibbs energy parameters in
equations (14), (15) and (16).

MPO MGO step size calcMethod MAE PD RMSE PD
4 6 0.001 projection 0.2631 0.7796
4 6 0.001 regression 0.0653 0.1567

As can be observed in table 4, the error decreases significantly when decreasing
the step size in composition and changing the calculation method to regression.
Thus, the optimal GPC settings are MPO4 MGO6 with a step size i composition
of 0.001 and calculation method regression. Because of this accuracy, these
settings were used for the uncertainty quantification.

6.2 Obtained Uncertainty
Using the determined GPC settings, the uncertainty was quantified based on
the phase diagram data. This was done for the input Gibbs energy parameters,
the mixing enthalpy and the excess heat capacity.
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6.2.1 Mixing Enthalpy

The mixing enthalpy values corresponding to the phase diagrams that are within
the 10 K margin of the experimentally determined phase diagram were filtered.
Firstly, this was done when varying all the Gibbs energy parameters A, B, D,
E, F and G. The 0th, 50th and 100th percentile lines of the filtered mixing
enthalpy values are plotted together with the values from Capelli et al. (2014)
in figure 6.

Figure 6: The 0th, 50th and 100th mixing enthalpy percentile lines filtered from 100000
samples, plotted with the experimental values from Capelli et al. (2014). The blue
line represents the 0th percentile, the green line the 50th percentile and the red line
represents the 100th percentile. The black dashed line represents the mixing enthalpy
values computed with the original optimized input Gibbs energy parameters.

The uncertainty half range was determined at each composition point X, using
equation (26). The results are shown in table 5.

Table 5: The uncertainty (Unc) half range in the mixing enthalpy values corresponding
to the phase diagrams within a 10 K margin of the experimentally determined phase
diagram. The uncertainty was calculated at different composition points X(KF ), using
equation (28). The percentile deviations from the mixing enthalpy values calculated
with the original optimized Gibbs energy parameters is also included (Unc (%)).

X(KF ) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Unc (J·mol−1) 591.7 1059 1398 1596 1650 1571 1368 1046 593.1
Unc (%) 35.5 35.7 35.8 35.7 35.6 35.7 35.9 36.5 37.2

Thus the maximum uncertainty half range in the mixing enthalpy was found to
occur at point X=0.5 and equals 1650 J·mol−1. The maximum percentile de-
viation from the mixing enthalpy values computed with the original optimized
Gibbs parameters occurs at point X=0.9 and equals 37.2 %.

This uncertainty half range and percentile uncertainty can also be determined
for the samples generated when only adjusting certain input parameters. The
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uncertainty half ranges computed for certain parameter combinations at com-
position point X=0.5 are shown in table 6.

Table 6: The uncertainty (Unc) half range in the mixing enthalpy values corresponding
to the phase diagrams within a 10 K margin of the experimentally determined phase
diagram. The uncertainty half range was calculated at composition point X(KF ) = 0.5,
for different adjusted Gibbs energy parameters (Adj. Var.). This table also includes the
percentile deviations from the excess heat capacity value at X(KF ) = 0.5, calculated
with the original optimized Gibbs energy parameters.

Adj. Var. A B DF EG ADF AEG BDF BEG
Unc (Jmol−1) 202.2 33.14 147.8 8.029 210.5 396.5 146.8 72.61
Unc (%) 4.4 0.7 3.2 0.2 4.5 8.6 3.2 1.6

Figure 7: The 0th, 50th and 100th mixing enthalpy percentile lines filtered from 100000
samples, plotted with the experimental values from Capelli et al. (2014). The blue line
represents the 0th percentile, the green line the 50th percentile and the red line repre-
sents the 100th percentile. The black dashed line represents the mixing enthalpy values
computed with the original optimized input Gibbs energy parameters. TOP-LEFT:
only the parameter A was adjusted. TOP-RIGHT: only parameter B was adjusted.
BOTTOM-LEFT: parameters D and F were adjusted simultaneously. BOTTOM-
RIGHT: parameters E and G were adjusted simultaneously

As can be observed in both the plots in figure 7 as the uncertainty (half range)
values in table 6, the considered parameters have a small uncertainty compared
to the uncertainty when all parameters are varied simultaneously in figure 6. To
further investigate which parameters cause this large deviation, the parameter
combinations A + B and D + E + F + G were varied simultaneously and the
results are plotted in figure 8.
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Figure 8: The 0th, 50th and 100th mixing enthalpy percentile lines filtered from 100000
samples, plotted with the experimental values from Capelli et al. (2014). The blue
line represents the 0th percentile, the green line the 50th percentile and the red line
represents the 100th percentile. The black dashed line represents the mixing enthalpy
values computed with the original optimized input Gibbs energy parameters. LEFT:
only input Gibbs energy parameters A and B were adjusted simultaneously. RIGHT:
only input Gibbs energy parameters D, E, F and G were adjusted simultaneously

The uncertainty half ranges corresponding to the plots in figure 8 at X = 0.5
equal 1642 J·mol−1 and 152.5 J·mol−1, respectively. This equals 35.5 % and
3.3 % deviation from the mixing enthalpy values calculated with the original
optimized Gibbs energy parameters. Thus it can be observed that the majority
of the deviation that occurs in the filtered mixing enthalpy values in figure 6 is
due to the combination of the Gibbs energy parameters A and B.

6.2.2 Excess Heat Capacity

Similarly as for the mixing enthalpy, the minimum and maximum filtered excess
heat capacity values are plotted in figure 9 along with the experimental values
from Beilmann et al. (2013).

18



Figure 9: The 0th, 50th and 100th excess heat capacity percentile lines filtered from
100000 GPC samples, plotted with the experimental values from Beilmann et al. (2013)
including the error bars in the heat capacity. The blue line represents the 0th percentile,
the green line the 50th percentile and the red line represents the 100th percentile. The
black dashed line represents the excess heat capacity values corresponding to the original
optimized Gibbs energy parameters.

The uncertainty half range was calculated at the different composition points
X(KF ). The results are shown in table 7.

Table 7: The uncertainty (Unc) half range in the excess heat capacity values corre-
sponding to the phase diagrams within a 10 K margin of the experimentally determined
phase diagram.The uncertainty was calculated at different composition points X(KF ),
using equation (29). This table also includes the percentile deviations from the excess
heat capacity values calculated with the optimized Gibbs energy parameters in equations
(14), (15) and (16).

X(KF ) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Unc (J·K−1·mol−1) 0.5521 1.010 1.367 1.596 1.676 1.594 1.363 1.008 0.5488
Unc (%) 47.1 45.6 44.9 44.6 44.7 44.8 45.2 46.0 47.2

From the data in table 7 it can be seen that the maximum found uncertainty
half range is at the composition X = 0.5 and equals 1.676 J·K−1·mol−1. The
maximum percentile deviation from the excess heat capacity values calculated
with the original Gibbs energy parameters occurs at X=0.9 and equals 47.2 %.

Here, the uncertainty half range and percentile uncertainty could also be de-
termined for the samples generated and filtered when only adjusting certain
input parameters. The results computed for certain parameter combinations at
X=0.5 are shown in table 8.
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Table 8: The uncertainty (Unc) half range in the excess heat capacity values corre-
sponding to the phase diagrams within a 10 K margin of the experimentally determined
phase diagram. The uncertainty half range was calculated at composition point X(KF )
= 0.5, for different adjusted Gibbs energy parameters (Adj. Var.). This table also in-
cludes the percentile deviations from the excess heat capacity value at X(KF ) = 0.5,
calculated with the original optimized Gibbs energy parameters.

Adj. Var. A B C DF EG AC BC ABC CDF
Unc (J·K−1·mol−1) 0.051 0.024 0.69 0.015 0.014 1.48 1.52 1.68 1.14
Unc (%) 1.3 0.63 18.2 0.39 0.37 38.9 40.0 44.2 30.0

In table 8 it can be seen that individually, parameter C causes the largest
deviation in the filtered excess heat capacity values. Especially when combining
the variance of this parameter with the variance of parameter A and B, this
uncertainty half range becomes particularly large. To illustrate the obtained
results, some of these filtered excess heat capacity curves are plotted in figure
10.

Figure 10: The 0th, 50th and 100th excess heat capacity percentile lines filtered from
100000 samples, plotted with the experimental values from Beilmann et al. (2013).
The blue line represents the 0th percentile, the green line the 50th percentile and the
red line represents the 100th percentile. The black dashed line represents the excess heat
capacity values computed with the original optimized input Gibbs energy parameters.
TOP-LEFT: only the parameter C was varied. TOP-RIGHT: only parameters D and
F were varied. BOTTOM-LEFT: parameters A, B and C were varied simultaneously.
BOTTOM-RIGHT: parameters C, D and F were adjusted simultaneously.

6.2.3 Excess Gibbs Energy parameters

The results obtained after filtering 100000 samples and calculating the one-
dimensional uncertainty half range using equation (28) are displayed in table
9.
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Table 9: The maximum one-dimensional uncertainty half range in Gibbs energy pa-
rameters A and B after filtering 100000 samples. This is the maximum uncertainty in
one variable assuming all other parameters have zero uncertainty. The uncertainty half
range in % compared to the original optimized Gibbs parameter values is also included.

Gibbs energy parameter A (J·mol−1) B (J·K−1·mol−1)
Uncertainty half range 217.68 0.2828
Uncertainty half range (%) 2.86 5.82

The filtered values of A and B are displayed in histograms in figure 7 to illustrate
the distribution of the filtered parameter values.

Figure 11: Two histogram plots of the values of the first parameter A and second
parameter B in equation (12) that result in phase diagrams within the 10K margin of
the experimental phase diagram. These are the histograms obtained when assuming
only the parameter in question has an uncertainty.

In the histograms in figure 11 it can be observed that the distribution of the
Gibbs energy parameters A and B corresponding to the filtered phase diagrams
is virtually uniform within the uncertainty half range.

These two parameters can also be coupled so that both are varied simultaneously
and as a result the parameter combinations that produce phase diagrams within
the margin could be determined. The results of this filtering for parameters A
and B are shown in figure 12.
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Figure 12: A point plot of the first Gibbs energy parameter A and the second Gibbs
energy parameter B in equation (14) from 100000 samples generated by the GPC. The
green points represent the parameter combinations that produce phase diagrams within
a margin of 10K of the experimentally determined phase diagram, and the red points
represent those outside of this phase diagram margin. The black cross represents the
original optimized Gibbs energy parameter.

In this figure it can be observed that the parameter combinations within the
margin are distributed as a slanting line. Thus, if parameter A becomes more
negative, B has to become more positive in order to still produce sensible phase
diagram results.

In two dimensions, the two coupled parameter combinations, D + F and E +
G, that still give phase diagrams within the margin can be filtered. These are
plotted in figure 13.

Figure 13: Two-dimensional point plots of 100000 parameter combinations. The green
points represent the points within 10K of the experimental phase diagram and the red
points represent those outside of this margin. The black cross represents the origi-
nal optimized Gibbs energy parameter. LEFT: the first Gibbs energy parameters in
equations (13) and (14), D and F. RIGHT: the second Gibbs energy parameters in
equations (13) and (14), E and G.
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When looking at the point plots in figure 13 it can be observed that for both
coupled variable combinations, many combinations of these variables result in
phase diagrams within the 10K margin. Especially comparing to the point plot
in figure 12, the maximum allowed uncertainty in the parameter combinations
of A and B seems to be much smaller than in the parameter combinations of
coupled variables D + F and E + G.

Four three-dimensional point plots of 100000 points are displayed which illus-
trate the maximum allowed uncertainty range of parameters A and B in com-
bination with the coupled parameters D + F and E + G.

Figure 14: Four three-dimensional point plots of parameters A and B in combination
with the coupled parameters D + F and E + G. 100000 points are plotted of which
the green points represent parameter combinations that correspond to a phase diagram
within the 10K margin and the red points represent those outside of the 10K margin.

The planes observed in the point plots in figure 14 match the two-dimensional
planes plotted in figure 13. From figure 14 it can be observed that these green
planes only exist across a small range of parameters A and B. In the plots with
the coupled parameters with parameter A (A-D-F and A-E-G plots), this range
is even smaller than the plots with parameter B (B-D-F and B-E-G plots). Thus,
the maximum allowed uncertainty range again seems to be relatively smaller in
the parameters A and B than in the coupled parameters D + F and E + G.
Additionally, the maximum allowed uncertainty range seems to be relatively
smaller in parameter A compared to parameter B.
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7 Discussion

7.1 Plausibility of Final Results
7.1.1 Accuracy of the PCE

The GPC class that was ultimately chosen had GPC settings MPO 4, MGO 6,
calculation method regression and step size 0.001 in composition. This resulted
in a GPC Class which was able to generate phase diagrams that only deviated
slightly from the responses calculated by FactSage. See figure 15 for a GPC
response plotted together with a FactSage response for the same input Gibbs
energy parameters.

Figure 15: A phase diagram generated by GPC (red dashed line) plotted with a phase
diagram calculated by FactSage (black line). The x-axis represents the composition
X and the y-axis the temperature T in Kelvin. The left plot shows the whole phase
diagram and the right plot zooms in on the eutectic point.

In this figure it can be observed that the GPC response only diverges slightly
from the FactSage response around the eutectic point. Thus, the PCE used in
this study can be considered quite accurate.

7.1.2 Mixing Enthalpy

The found maximum uncertainty in the mixing enthalpy when varying all the
Gibbs energy parameters simultaneously is equal to 1.65 kJ·mol−1 at X = 0.5.
This equals a 35.6% deviation from the mixing enthalpy values computed with
the original optimizeed Gibbs energy parameters. This value for the mixing
enthalpy is nearly consistent with the results in previous research by T. Schui-
jtvlot [5], which was 1.5 kJ·mol−1. This slight deviation is most likely due to
the difference in the GPC settings with which the GPC was constructed. The
error in the GPC used in this study is smaller than in the GPC generated by T.
Schuijtvlot, and the uncertainty is quantified using double the amount of sam-
ples. Because of these two reasons, the mixing enthalpy uncertainty determined
in this study is likely more precise than the result found by T. Schuijtvlot. Ad-
ditionally, thee found 50th percentile lines from the filtered data corresponds
well with the mixing enthalpy values computed with the original optimized in-
put Gibbs energy parameters.
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However, when comparing the results from varying all parameters with the
experimental values determined by Capelli et al. (2014), there is a large devi-
ation from these experimental values. When varying Gibbs energy parameters
A, B, D + F and E + G, these deviations were much smaller than the deviation
that results when varying all parameters. Only when parameters A and B were
varied simultaneously, the uncertainty half range was 35.5%, which is almost
equally as large as the half range found when all parameters were varied simul-
taneously. Thus, in order to constrain the uncertainty half range in the mixing
enthalpy, the variance of parameters A and B should be limited.

7.1.3 Excess heat capacity

The found maximum uncertainty half range when varying all Gibbs energy pa-
rameters equals 1.676 J·K−1·mol−1 at composition value X=0.5, which is a
44.7% deviation from the excess heat capacity values calculated with the op-
timized Gibbs energy parameters. This deviation is large. When looking at
the samples obtained after varying Gibbs energy parameters individually, it was
observed that varying parameter C resulted in the largest deviation of 18.2%.
Additionally, when varying parameter C together with parameters A and B the
uncertainty half range increases even more to 44.2%. Thus the large deviation
that occurs in the filtered excess heat capacity values is primarily due to the
parameters A, B and C, with C being particularly responsible. Therefore, in
order to constrain the uncertainty half range in the excess heat capacity values,
the variance of parameters A, B and particularly C should be limited.

Comparing the values for the excess mixing enthalpy found in this study with
the values found experimentally by Beilmann et al. (2013), there is a significant
deviation. As can be observed in figure 6, the point at composition X=0.5 de-
viates exceptionally from the filtered GPC responses. This is quite odd, since
the GPC responses do correspond nearly perfectly with the data computed by
FactSage, and the 50th percentile lines overlap very closely with the excess heat
capacity values computed with the original optimized input Gibbs energy pa-
rameters. A possible explanation for the deviation is that, at the point X=0.5
particularly, the values from Beilman et al. (2013) were measured at a temper-
ature of 884 K - 1083 K. This temperature range is significantly lower than the
temperature ranges at points X=0.25 and X=0.75, which are 1158 K - 1344
K and 1157 K -1330 K, respectively. Thus the fact that these measurements
were conducted at a lower temperature explains the deviation from the values
computed by FactSage in this study.

7.1.4 Excess Gibbs Energy Parameters

For the excess Gibbs energy parameters, the found values for the one-dimensional
uncertainty in A and B equal 217.68 J·mol−1 and 0.2828 J·K−1·mol−1, respec-
tively. This is a 2.86% and 5.82% deviation from the original optimized Gibbs
parameters, respectively. This is a relatively small deviation. Additionally,
point plots were generated illustrating the joint two- and three-dimensional un-
certainty in A and B and the coupled parameters D + F and E + G. The
conclusion was drawn that the maximum allowed uncertainty in parameters A
and B (particularly in parameter A) is relatively much smaller than in the cou-
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pled parameters D + F and E + G. Also, in the two-dimensional point plot
for parameters A and B, it can be observed that when parameter A becomes
more negative, B has to become more positive in order to still produce sensible
phase diagram results. Thus, in order to produce sensible phase diagrams, the
value of parameters A and B should remain close to the original values whilst
the values for D, E, F and G can vary much more.

When varying the different Gibbs energy parameters and plotting the corre-
sponding phase diagrams, the phase diagrams corresponding to the variance of
parameters A and B were indeed much more deviant. It is therefore consistent
with the found results.

7.2 Research Limitations
One limitation experienced during the research is the fact that an overflow oc-
curred in FactSage after conducting around 20000 calculations consecutively
(the exact quantity depends among other things on the amount of other pro-
grams running). This limited the maximum grid order with which the GPC
could be computed to 6, since higher grid orders require more samples to be
calculated subsequently in FactSage. A possible solution is to conduct the Fact-
Sage calculations in different parts. Also, if the calculations could be conducted
on a computer which has more memory or a newer version of FactSage, higher
grid orders could be tested without having to separate the calculations. An-
other downside of using the PCE is that finding the most accurate GPC is a
time consuming process, since it requires generating many different GPCs with
different settings.

7.3 Further Research
There is much opportunity for further research on this topic. One possibility
would be to extend the Gibbs energy parameter uncertainty quantification into
all 6 dimensions (or 7, if the heat capacity Gibbs parameter C has significant
effect on the output). Additionally, the uncertainty of more thermodynamic
parameters in the system can be tested. The method of uncertainty quantifica-
tion can also be extended to other, more complex systems, such as the LiF-BeF
system.
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A Appendix

A.1 MATLAB Scripts
A.1.1 userFunction.m

1 function [ r e sponses , IDs , s t a tu s ] = userFunct ion ( phys i ca l Input , ModelDetai l s )
2 %This func t i on accept s phy s i c a l i npu t data from openGPC . I t then t r a n s f e r s
3 %i t to FactSage7 . 0 f o r c a l c u l a t i o n s and r e t r i e v e d the data from FactSage7 . 0
4 %and sends i t back to openGPC .
5 %V1.0 Y2019−M8−D23 Made by Tr i s tan L o c S chu i j t v l o t
6 %V2.0 Y2020−M8−D24 Edited by Fleur Roo i jakkers
7

8 %NOTE! ! ! CHAR Vectors NEED TO BE CHANGED BEFORE USE. Make sure a l l th ing s
9 %with an @@ are changed accord ing to your workspace .

10 %==known i s s u e s==
11 %−FactSage sometimes does not save anything at a l l
12 %−FactSage sometimes f o r g e t s to save 1 or more f i l e s
13 %−FactSage runs out o f memory f o r no reason
14 % %% Folder Preparat ion
15 % %turn pause on
16 pause ( ’ on ’ )
17 %Def ine the user des ignated r e s u l t s f o l d e r o f FactSage7 . 0
18 %Folder where Phasediagrams made by the macro w i l l be saved
19 Resu l tFo lder = ’C: \ f l e u r r o o i j a k k e r s \Resu l t s ’ ;
20 %Saves cur rent work f o l d e r path
21 OldPath = pwd ;
22 %Def ines the crash l i n e . This i s the l i n e where FactSage c ra she s when
23 %read ing a . txt f i l e a f t e r a number o f c a l c u l a t i o n s .
24 % This depends on the amount o f decimal /parameter and the amount o f c a l c s .
25 % Here wirh 15 dec imals per parameter are wr i t t en to a . txt
26 %( f o r 7 parameters ) . FactSage7 . 0 w i l l c rash a f t e r 2369 c a l c s upon read ing
27 %l i n e 237 .
28 % THIS MEANS THAT FACTSAGE CAN CRASH DEPENDING ON byte / l i n e s i z e .
29 %CrashLine = 200 ; %200 For sa f e ty , max o f 70k c a l c u l a t i o n s reached
30 cd ( Resu l tFo lder )
31 %Makes sure that the r e s u l t f o l d e r has no o ld . f i g s . This has been
32 %e f f e c t i v e to stop FactSage7 . 0 from NOT saving f i l e s
33 i f ~isempty ( dir ( ’PHAS∗ . f i g ’ ) )
34 system ( ’ de l ∗ /Q’ )
35 pause (20)
36 end
37 %Safety pause because o f s low computer f i l e p r o c e s s i ng .
38 %Going one f o l d e r up CHANGE THIS TO FOLDER CONTAINING FSInput . txt
39 cd ( ’ . . ’ )
40 %Makes sure that the f o l d e r has no o ld input parameters . txt . This has been
41 %e f f e c t i v e to make FactSage7 . 0 read c o r r e c t f i l e s
42 i f ~isempty ( dir ( ’ FSInput ∗ . tx t ’ ) )
43 system ( ’ de l FSInput ∗ . tx t /Q’ )
44 pause (20)
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45 end
46 %Amount o f FSInput f i l e s f o r FactSage (FS has a READ LINE l im i t t i l l l i n e CrashLine )
47 %nF i l e s = c e i l ( s i z e ( phys i ca l Input , 1 ) /CrashLine ) ;
48 % Amount o f c a l c u l a t i o n s that need to be done
49 nSamples = s ize ( phys i ca l Input , 1 ) ;
50 %wr i t i ng the amound o f c a l c u l a t i o n s to a . txt f o r FactSage7 . 0
51 dlmwrite ( ’C: \ f l e u r r o o i j a k k e r s \nSamples . txt ’ , nSamples , ’ ’ ) ;
52 %Deviding the input parameters f i l e s per crash l i n e amount .
53 zz= 1 ;
54 % fo r a = 1 : nF i l e s
55 % i f nSamples − CrashLine ∗( a−1) > CrashLine
56 % RStep = CrashLine ;
57 % e l s e
58 % RStep = nSamples − CrashLine ∗( a−1) ;
59 % end
60 %Writing FactSage Input . txt f i l e s .
61 FSInFi le = sprintf ( ’C:\\ f l e u r r o o i j a k k e r s \\FSInput . txt ’ ) ; %EDIT : \\FSInput%d . txt ’ , a )
62 f i l e ID = fopen ( FSInFile , ’w ’ ) ;
63 fpr intf ( f i l e ID , ’%.15 f %.15 f −0.001674400000000 %.15 f %.15 f %.15 f %.15 f \ r \n ’ ,

phys i ca l Input ( 1 : nSamples , : ) ’ ) ; %EDIT : phys i ca l Input ( zz : zz+RStep−1 , : ) , C =
−0.001674400000000

64 fc lose ( f i l e ID ) ;
65 % zz = zz +RStep ;
66 % end
67

68

69 %Going to the FactSage f o l d e r . This i s needed to excecute macro ( . mac) f i l e s
70 cd ( ’C: \ FactSage ’ ) ;
71 pause ( 0 . 2 ) %Safe ty Pause
72

73 %Excecuting the FactSage7 . 0 .mac f i l e f o r phase diagram c a l c u l a t i o n s
74 %@@ CHANGE THIS TO THE .mac YOU ARE USING. This runs a command in CMD
75 system ( ’ EquiSage . exe /PhaseDiagram /MACRO Macros\PhasLiFKF_macro_read .mac ’ ) ;
76

77 %Crude check to see i f FactSage saved any . f i g f i l e s . Could be improved .
78 cd ( ’C: \ f l e u r r o o i j a k k e r s \Resu l t s ’ ) ;
79 i f isempty ( dir ( ’PHAS∗ . FIG ’ ) )
80 cd ( ’C: \ FactSage ’ ) ;
81 system ( ’ EquiSage . exe /PhaseDiagram /MACRO Macros\PhasLiFKF_macro_read .mac ’ ) ; %@@

CHANGE THIS TO THE .mac YOU ARE USING. This runs a command in CMD
82 end
83 cd ( ’C: \ FactSage ’ ) ;
84 %Excecuting the FactSage7 . 0 .mac f i l e f o r the Equ i l i b module c a l c u l a t i o n s
85 %@@ CHANGE THIS TO THE .mac YOU ARE USING. This runs a command in CMD
86

87 system ( ’ EquiSage . exe /EQUILIB /MACRO Macros\EquiLiFKF_macro .mac ’ ) ;
88

89 %Crude check to see i f FactSage saved any . txt f i l e s . Could be improved .
90 cd ( ’C: \ f l e u r r o o i j a k k e r s \Resu l t s ’ ) ;
91 i f isempty ( dir ( ’EQUI∗ .TXT’ ) ) %EDIT: changed from EQH to EQUI

30



92 cd ( ’C: \ FactSage ’ ) ;
93 system ( ’ EquiSage . exe /EQUILIB /MACRO Macros\EquiLiFKF_macro .mac ’ ) ; %@@ CHANGE

THIS TO THE .mac YOU ARE USING. This runs a command in CMD
94 end
95 %Returns to the s t a r t i n g work f o l d e r
96 cd (OldPath ) ;
97 %Wanted s t e p s i z e and in the phase diagram us ing l i n e a r i n t e r p o l a t i o n
98 x_inc = 0 . 0 0 1 ;
99 x_res = 0 : x_inc : 1 ;

100 % Extract ing data from created . f i g and . txt f i l e s . z = data c e l l , a =
101 % pr e a l l o c a t i o n array .
102 %@@CHANGE THIS IF : You have a d i f f e r e n t r e s u l t s f o l d e r !
103 [ z , a ] = readPhaseEqui ( ResultFolder , s ize ( phys i ca l Input , 1 ) ) ;
104 %obta in ing the amount o f phase l i n e s found in the . f i g f i l e s
105 global PhaseLines
106 %Memory p r e a l l o c a t i o n
107 r e sponse s = zeros ( a (1 ) , a (2 )+ 3∗ length ( x_res ) ) ;
108

109 %Code f o r data ex t r a c t i on from data c e l l s obta in from
110 [ x , y ] = s ize ( z ) ;
111 f o r i = 1 : x
112 n=1;
113 f o r j = 1 : y
114 [ xx , yy ] = s ize ( z{ i , j }) ;
115 f o r k = 1 : xx
116 f o r l = 1 : yy
117 %Extract ing phase diagram va lue s
118 i f j == 1
119 Extr_Data = z{ i , j }{k , l } ’ ;
120 Extr_Data (1 , 1 ) = 0 ; %Because Factsage uses 1e−5 and 0.99999 f o r

0 and 1
121 Extr_Data (1 , end ) = 1 ;
122 r e sponse s ( i , n : n−1+length ( x_res ) )=interp1 (Extr_Data ( 1 , : ) ,

Extr_Data ( 2 , : ) , x_res ) ;
123 n = n+length ( x_res ) ; %add i f statement f o r d i f f between phase

and equi e x t r a c t i on !
124 end
125 end
126 end
127 %Extract ing Equ i l i b va lue s
128 i f j == 2
129 %HERE ( : , 2 ) MEANS TO EXTRACT H_DELTA!
130 r e sponse s ( i , n : n−1+length ( z{ i , j } ( : , 6 ) ) ) = z{ i , j } ( : , 6 ) ’ ; %EDIT z{ i , j } ( : , 2 )

−−> z{ i , j } ( : , 6 )
131 n = n+length ( z{ i , j } ( : , 6 ) ) ;
132 end
133 end
134 end
135

136

31



137 %ID and Status update f o r openGPC
138 f o r i =1: length ( phys i ca l Input ( : , 1 ) )
139 IDs ( i , 1 ) ={[ ’ ID ’ , da t e s t r ( datet ime ( datetime , ’ Format ’ , ’yyyyMMdd−HHmmSSSSSSSSS ’ ) , ’

yyyymmdd−HHMMSSFFF’ ) , . . .
140 ’ S ’ ,num2str( i ) ] } ;
141 pause (1 e−3) ;
142 i f a l l (~ isnan ( r e sponse s ( i , : ) ) )
143 s t a tu s ( i , 1 )={ ’ Fetched ’ } ;
144 else
145 s t a tu s ( i , 1 )={ ’ Error ’ } ;
146 end
147

148

149 end
150 end

A.1.2 readPhaseEqui.m

1

2 function [ Data , PreA ] = readPhaseEqui ( resu l tPath , SampleAmount )
3 %V1.0 Y2019−M8−D23 Made by Tr i s tan L o c Schu i j t v l o t , based on the code o f an

unknown student .
4 %Feel f r e e to do anything with the code . Just g ive some c r e d i t to me !
5

6 %This Function reads MARKED phase diagram .FIG and e qu i l i b .TXT f i l e s .
7 %THESE MARKERS ARE PHASE∗ AND EQH∗ WHERE THE ∗ IS A NUMBER FROM 1 TO N. N
8 %IS THE AMOUNT OF FILES ! This was done on purpose to work with openGPC .
9

10 %Input :
11 %−r e su l tPath i s the path o f the des ignated r e s u l t s f o l d e r , where the t a r g e t
12 %f i l e s are l o ca t ed
13 %−SampleAmount i s an op t i ona l command to s e t the amount o f PHASE∗ and EQH∗
14 %f i l e s .
15 %Output :
16 % −Data , a c e l l conta in ing phase diagram l i n e data in (x , 1 ) and e q u i l i b
17 % data in (x , 2 ) . x i s here the number o f the cor respond ing f i l e .
18 % −PreA , saves data f o r f u r t h e r p r e a l l o c a t i o n o f memory . (1 ) i s the amount
19 % of f i l e s extracted , (2 ) i s the amount o f
20

21 % SUMMARY
22 %This matlab s c r i p t l ooks f o r the Factsage7 . 0 f i g u r e f i l e s (PHASE∗ . FIG) and
23 %the Equ i l ib module t ex t (EQH∗ . tx t ) f i l e s in the user des ignated Resu l t s
24 %Folder . I t f i r s t l ook s in to the . f i g f i l e f o r the l i n e s where the
25 %coord ina t e s o f the phase diagram are stored , reads the coo rd ina t e s and
26 %puts s t o r e s i t in N c e l l s . N corresponds to the amount o f found phase
27 %l i n e s in the phase diagram and s t o r e s i t in a c e l l ’ data ’ at p o s i t i o n
28 %{x , 1 } . Where X i s corresponds to the Xth f i l e . making i t ready to be
29 %exported .
30

31 %Then i t l ooks at the e q u i l i b module t ex t f i l e ( cor re spond ing to the Xth
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32 %phase f i l e ) and f i n d s the l i n e s where the thermodynamic data i s s to r ed .
33 %The s c r i p t puts t h i s in a matrix and a l s o s t o r e s i t in the data c e l l at
34 %po s i t i o n {x ,2}
35

36 %NOTE THIS SCRIPT CURRENTLY ONLY LOOKS FOR LINES , NOTHING MAY BE ADDED TO
37 %THE .FIG GRAPH LIKE SYMBOLS AND TEXT! I t i s way be t t e r to add t h i s data
38 %via matlab and not v ia FactSage7 . 0 as t h i s can be very buggy with macros .
39

40 %Data c e l l s work l i k e the f o l l ow i ng . A column at (x , 1 ) g i v e s the data
41 %obtained from the phase diagram ( a 1x3 c e l l f o r LiF−KF) In t h i s c e l l the r e
42 %are other c e l l s that each g ive a s e t o f po in t s to p l o t a phase diagram
43 %l i n e . In these phase l i n e c e l l s , row 1 i s the Composition and row 2 the
44 %Temperature
45 % The other c e l l in g i v e s the data at (x , 2 ) i s obta ined from the Factsage7 . 0
46 % 7.0 Equ i l i b module . Where i t i s organ ized in a matrix . The column are
47 % organ ized as Composition , DELTA H, DELTA G, DELTA V, DELTA S , DELTA Cp.
48 % NOTE that more data can be ext rac t ed from the e q u i l i b . txt f i l e but t h i s
49 % was not r e l e van t f o r cur rent r e s ea r ch .
50

51

52

53 %−−Troubleshoot ing−−
54 %−I s your work f o l d e r cu r r en t l y in Folder / S c r i p t s ?
55 %−I s the re a Resu l t s Folder ? −Do the F i l e s names correspond
56 %to the names in the s c r i p t ?
57 %−Are there any f i l e s in the Resu l t s f o l d e r ?
58 %−Do any other f i l e s have the same names as the expected . f i g (PHASE∗) and
59 %. txt (EQH∗) f i l e s ?
60 %−Make sure that the . f i g f i l e has nothing added manually l i k e data po in t s
61

62 %−−Edited by Fleur r oo i j akke r s−−
63 %l i n e 107 : Changed ’000END’ to ’001CMT DEL/FIN act ivated ’
64 %l i n e 135 : Changed ’EQH%d ’ to ’EQUI%d ’
65 %% Set t i ng parameters
66

67 %checks i s the r e s u l t s f o l d e r path i s a charac t e r vec to r
68 i f i s c h a r ( r e su l tPath ) ~= 1
69 error ( ’ P lease use a char as input ! \ nCurrent input c l a s s : %s ’ , c l a s s ( r e su l tPath ) )
70 end
71

72 %se t a g l oba l v a r i ab l e f o r the max amount o f l i n e s
73 %found in the phase diagram . More convienent to put g l oba l
74 clear PhaseLines
75 global PhaseLines
76

77 oldPath = cd ; %Get path o f cur rent workfo lder , to re turn when done .
78 %Set t ing cur rent f o l d e r as the Resu l t s Folder
79 cd ( r e su l tPath )
80 %Checking i f the Sample Amount i s s e t
81 i f ~exist ( ’ SampleAmount ’ , ’ var ’ )
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82 FIG = dir ( ’PHAS∗ . FIG ’ ) ;
83 a2 = numel (FIG) ; %Get amount o f f i g s
84 else
85 a2 = SampleAmount ;
86 end
87

88 PhaseLines = 0 ;
89 de l im i t e r I n = ’ ’ ; %s e t t i n g d e l im i t e r o f the . FIG f i l e s
90 head e r l i n e s I n = 9999 ;
91 %the Data va r i ab l e i s a c e l l which conta in s the va lue s from the Phasediagram and

Equ i l i b per column r e s p e c t i v e l y . One s e t o f c a l c u l a t i o n s per row .
92 %Prea l l o c a t i on
93 Data = c e l l ( a2 , 2 ) ;
94 PreA = [ a2 0 ] ;
95 %fo r loop to ex t r a c t PHASx. f i g and EQH∗ . tx t
96 f o r x = 1 : a2
97

98 %% Obtaining data from Phase f ig s , i . e . f i g f i l e s
99 % Works on any . f i g f i l e that has no manual f i g u r e add i t i on s .

100

101 %se t s the f i l e name to PHASEx, where x i s a i n t e g e r
102 f i l ename = sprintf ( ’PHAS%d .FIG ’ , x ) ;
103 %imports the Phase ∗ . f i g where ∗ i s a wi ldcard
104 FIG = importdata ( f i l ename , de l im i t e r In , h e ad e r l i n e s I n ) ;
105 %looks f o r the l i n e s that mark the s o l u t i o n / l i n e data in the . f i g f i l e
106 index = find ( strncmp (FIG , ’ 701LIN ’ ,5 ) ) ;
107 %Finds the end markers o f the data in the f i l e .
108 %Only works i f PHASE f i g u r e has NOTHING added
109 index ( numel ( index )+1) = find (strcmp (FIG , ’ 001CMT DEL/FIN ac t i va t ed ’ ) ) ; %Changed

from ’000END’
110 A1 = c e l l (1 , numel ( index )−1) ; %Memory a l l o c a t i o n
111 B1 = c e l l (1 , numel ( index )−1) ;
112 %Sp l i t the "FIG c e l l " up in usab le par t s
113 f o r i = 1 : numel (A1)
114 A1{ i } = ce l l 2mat (FIG( index ( i )+1: index ( i +1)−1) ) ;
115 end
116 Vl = 0 ;
117 %Converting s t r i n g s to numbers . Note : can probably be opt imized
118 f o r i = 1 : numel (A1)
119 f o r j = 1 : s ize (A1{ i } ,1)
120 B1{ i }( j , : ) = str2num(A1{ i }( j , 1 3 : s ize (A1{ i } ,2) ) ) ;
121 end
122 end
123

124 Data{x ,1} = B1 ;
125 PhaseLines = numel (B1) ;
126 % UNCOMMENT FOR PLOTS! WHEN RAM IS 4GB DO NOT PLOT WHEN AMOUNT OF PLOTS>20!
127 % f i g u r e ( ) ; hold on %p l o t t i n g a phase diagram f o r i = 1 : numel (B1)
128 % plo t (B1{ i } ( : , 1 ) ,B1{ i } ( : , 2 ) ) %Know that Factsage p l o t s mu l t ip l e
129 % l i n e s f o r the phase diagram . Excatly the same method here
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130 % end hold o f f
131 % Could be made in to an IF statement
132

133 %% Obtaining data from equ i l i b
134

135 % Finds the EQHx. txt f i l e where x i s an i n t e r g e r
136 f i l ename2 = sprintf ( ’EQUI%d .TXT’ , x ) ; %Edited : Changed to EQUI from EQH
137 %Loading f i l e as a Ce l l
138 TXT = importdata ( f i l ename2 , de l im i t e r In , h e ad e r l i n e s I n ) ;
139 %look f o r s t r i n g where the f r a c t i o n o f r eac tant "A" i s l o ca t ed
140 f indA = s t r f i n d (TXT, ’ i s ’ ) ;
141 %Store s the indexes o f the TXT Ce l l where "A" data i s l o ca t ed
142 indexCel lA = find (~ c e l l f u n ( ’ isempty ’ , f indA ) ) ;
143 %Memory a l l o c a t i o n , t h i s Matrix w i l l s t o r e a l l va lue s from Equ i l ib
144 Values = zeros ( length ( indexCel lA ) ,6 ) ;
145 f o r i = 1 : numel ( indexCel lA )
146 Values ( i , 1 ) = str2num(TXT{ indexCel lA ( i ) } . . .
147 ( findA{ indexCel lA ( i ) } + 3 : end ) ) ;%A va lue s p lace in f i r s t column
148 end
149

150 %looks f o r s t r i n g where data i s located , NOTE The data i s 3 l i n e s
151 %lower and the Delta va lue s are twice g iven in the . txt
152 f indDValues = s t r f i n d (TXT, ’ DELTA H DELTA G’ ) ; %EDIT ’ DELTA H

DELTA G’ −−> S Cp
153 %Same prog r e s s above at "A data
154 indexCel lDValues = find (~ c e l l f u n ( ’ isempty ’ , f indDValues ) ) ;
155 f o r i = 1 : numel ( indexCel lDValues )
156 Values ( i , 2 : end ) = str2num(TXT{ indexCel lDValues ( i )+3}) ;
157 end
158 Vl = Vl + i ;
159

160 Data{x ,2} = Values ; %Store s data in the data c e l l f o r l a t e r e x t r a c t i on
161 % UNCOMMENT IF YOU DO WANT A PLOT!
162 % f i g u r e ( ) ; p l o t ( Values ( : , 1 ) , Values ( : , 2 ) , ’− ’ ) ; %Plot DeltaH
163 % Could be made in to an IF statement
164 i f PreA (2) < Vl
165 % Save the number o f needed rows and colums ( j u s t H_delta )
166 % fo r Memory Pr e a l l o c a t i on
167 PreA = [ a2 Vl ] ;
168 end
169 end
170 cd ( oldPath )%re tu rn ing to s t a r t i n g Work f o l d e r
171

172 end

A.1.3 errorcheck.m

1 function [ E r r o r Ind i c a t o r s ] = er ro r check (GPCClass , Integrat ionData )
2 %% Plot 1 l i n e
3
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4 InputVar = Integrat ionData . Er ro rScenar i o s . A l l . a b s c i s s a s ( 1 0 , : ) ;
5 InputVarR = GPCClass . De t a i l s . means+ InputVar .∗GPCClass . De t a i l s . s td s ;
6 FSResp = Integrat ionData . Er ro rScenar i o s . A l l . r e sponse s ( 1 0 , : ) ;
7 GPCResp = GPCClass . va lue ( InputVarR )
8

9 x_res = 0 : 0 . 0 0 1 : 1 ;
10 n=1;
11 f igure ( ) ; xlabel ( ’X(KF) ’ ) ; ylabel ( ’ Temperature (K) ’ )
12 f o r k = 1 :3
13 hold on
14 plot ( x_res , FSResp ( : , n : n+length ( x_res )−1) , ’ k ’ , x_res ,GPCResp ( : , n : n+length ( x_res )

−1) , ’−−r ’ ) %x_res , Samples ( : , n : n+length ( x_res )−1) , ’ xk ’ )
15 n= n+length ( x_res ) ;
16 end
17 %% Generation o f Error I nd i c a t o r s o f the PCE
18 InputVar = Integrat ionData . Er ro rScenar i o s . A l l . a b s c i s s a s ;
19 InputVarR = GPCClass . De t a i l s . means+ InputVar .∗GPCClass . De t a i l s . s td s ;
20 Responses = Integrat ionData . Er ro rScenar i o s . A l l . r e sponse s ;
21 GPCSamp = GPCClass . va lue ( InputVarR ) ;
22

23 %Saving r e l e van t in fo rmat ion
24 MaxP = GPCClass . De t a i l s . maxPolOrder ;%Max Polynomial Order o f GPCClass
25 MaxGO = GPCClass . De t a i l s . maxGridLevel ;%Max Grid Order o f GPCClass
26 ExtraLvl = GPCClass . De t a i l s . nExtraLevels ;%Numb of extra l e v e l s o f GPCClass
27 %Calcu l a t ing the e r r o r
28 Err = Responses − GPCSamp; %Error between GPCClass and FactSage
29 ErrP = Err ( : , 1 : 3 0 0 3 ) ; %Error phase diagram part
30 ErrE = Err ( : , 3 0 04 : 3 0 14 ) ;%Error mixing enthalpy part
31 %Calcu l a t ing the Mean Absolute e r r o r
32 MAEP = sum(abs (ErrP ) , ’ a l l ’ ) /numel (ErrP ) ; %Mean Absolute Error phase diagram part
33 MAEE = sum(abs (ErrE ) , ’ a l l ’ ) /numel (ErrE ) ; %mixing enthalpy part
34 MAE = [MAEP,MAEE] ;
35 %Calcu l a t ing the Root Mean Squared Error
36 RMSEP = sqrt (sum(ErrP .^2 , ’ a l l ’ ) /numel (ErrP ) ) ;%Root Mean Squared Error phase diagram

part
37 RMSEE = sqrt (sum(ErrE .^2 , ’ a l l ’ ) /numel (ErrE ) ) ;%mixing enthalpy part
38 RMSE = [RMSEP,RMSEE] ;
39 %Calcu l a t ing Mean Error and Mean Squared Error
40 %Mean Error o f a l l c a l u l a t i o n s per po int o f the 314 re sponse s
41 ME = sum( Err , 1 ) / s ize ( Err , 1 ) ;
42 MSE = sum( Err .^2 , ’ a l l ’ ) /numel ( Err ) ; %Mean Squared Error ALL part
43

44

45 %Making the Error I nd i c a t o r s s t r u c tu r e
46 Er ro r Ind i c a t o r s = s t r u c t ( ’ Error ’ , Err , ’MeanSquaredError ’ ,MSE, . . .
47 ’ RootMeanSquareError ’ ,RMSE, ’ MeanAbsoluteError ’ , . . .
48 MAE, ’MaximumPolynomialOrder ’ ,MaxP, ’MaximumGridOrder ’ , . . .
49 MaxGO, ’ ExtraLeve l s ’ , ExtraLvl , ’MeanError ’ ,ME) ;
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A.1.4 HmixPhaseMargin.m

1 function [H_mix, H_err ] = HmixPhaseMargin (GPCClass , Samples )
2 %%
3 %This func t i on f i l t e r s the samples that are with in the de f ined margin ( in K) o f
4 %the phase diagram and then r e tu rn s the cor re spond ing mixing enthalpy data points ,
5 %Gibbs energy parameters and the unce r ta in ty in these mixing enthalpy
6 %po in t s ( d i f f e r e n c e between the minimum and maximum va lues )
7

8 %%
9 %cd ( ’C: \ f r o o i j a k k e r s \opengpc\ src ’ ) ;

10 %Generates GPC samples and correspond ing input v a r i a b l e s (Gibbs energy parameters )
11 %[ Samples , InputVar ] = GPCClass . sample (SampAmount) ;
12 %Unnormalizing the input v a r i a b l e s
13 %InputVar = GPCClass . De t a i l s . means+ x .∗GPCClass . De t a i l s . s td s
14

15 %o r i g i n a l phase diagram po in t s
16 Phase_control = [762 .053773000000 ,762 .053773000000 , . . . ,

762.053773000000 ,762.053773000000 ,0 ,−1665.96000000000 ,
17 −2970.60000000000 ,−3908.58000000000 ,−4465.36000000000 ,
18 −4629.22000000000 ,−4402.99000000000 ,−3806.14000000000 ,
19 −2864.68000000000 ,−1596.61000000000 ,0] ;%Phase c on t r o l va lue s with i n t e r p o l a t i o n 0 .01
20 Phase_control = [762 . 035971000000 , 762 . 035971000000 , . . . ,
21 762 .035971000000 ,762 .035971000000 ,762 .035971000000 ,
22 762 .035971000000 ,762 .035971000000 ] ; %Phase c on t r o l va lue s with i n t e r p o l a t i o n 0 .001
23 Margin = 10 ;
24 PhaseLines = 3 ;
25 H_len = 11 ; %amount o f mixing enthalpy rows in Samples
26 c o l = s ize ( Samples , 2 )− H_len ; %Amount o f phase diagram columns in samples
27 %H_mix = ze ro s (1 ,H_len ) ; %I n i t i a t e mixing enthalpy matrix
28 %Gibbs = ze ro s (1 , s i z e ( InputVar , 2 ) ) ; %I n i t i a t e Gibbs energy matrix
29 j = 1 ;
30 h = 1 ;
31

32 f o r i = 1 : s ize ( Samples , 1 )
33 i f a l l (abs ( Samples ( i , 1 : c o l ) − Phase_control ( 1 : c o l ) ) < Margin )
34 % Phas ( j , : ) = Samples ( i , : ) ;
35 H_mix( j , : ) = Samples ( i , ( c o l +1) : s ize ( Samples , 2 ) ) ;
36 % Gibbs ( j , : ) = InputVar ( i , : ) ;
37 j = j + 1 ;
38 else
39 % Phasr (h , : ) = Samples ( i , : ) ;
40 % Gibbsr (h , : ) = InputVar ( i , : ) ;
41 h = h + 1 ;
42 end
43 end
44

45 %H_mix = Phas ( : , 3 0 04 : 3 0 14 ) ;
46 %
47 H_err = abs (max(H_mix ( : , 6 ) ) − min(H_mix ( : , 6 ) ) ) /2 ;
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48 % fo r c=1: s i z e (Gibbs , 2 )
49 % G_err ( c ) = abs (max(Gibbs ( : , c ) ) − min(Gibbs ( : , c ) ) ) /2 ;
50 % end
51

52 %GibbsErr = abs (max(Gibbs ( : , pos ) ) − min(Gibbs ( : , pos ) ) ) /2
53 prc100S = p r c t i l e (H_mix, 100 , 1 ) ;
54 prc50S = p r c t i l e (H_mix, 5 0 , 1 ) ;
55 prc0S = p r c t i l e (H_mix, 0 , 1 ) ;
56

57 %Plot the f i l t e r e d mixing enthalpy va lues
58 x = 0 : 0 . 1 : 1 ;
59 x_exp = [ 0 . 2 5 , 0 . 5 0 , 0 . 7 5 ] ;
60 Exp = [ 3 . 7 5 , 9 . 75 , 5 . 9 ] ;
61 Err = [ 4 . 6 , 5 . 8 , 5 . 5 ] ;
62 l im = [ 0 , 1 6 ]
63

64 errorbar (x_exp , Exp , Err , ’ ko ’ )
65 ylim ( l im )
66 hold on
67 plot (x , prc0S , ’b ’ , x , prc50S , ’ g ’ , x , prc100S , ’ r ’ )
68 xlabel ( ’X(KF) ’ )
69 ylabel ( ’ \Delta C_p (J/K) ’ )
70 hold on
71 y = GPCClass . va lue (GPCClass . De t a i l s . means )
72 plot (x , y (3004 :3014) , ’−−k ’ )
73 % x_res = 0 : 0 . 0 0 1 : 1
74 % plo t (x , Phas ( : , 3 0 04 : 3 0 14 ) )
75 % hold on
76 %
77 % X = [0 , 0 . 4 771 , 0 . 5 609 , 0 . 4 420 , 0 . 6 542 , 0 . 1 901 , 0 . 2 669 , 0 . 8 028 , 0 . 3 415 , 0 . 9 029 , 1 ]
78 % H = [0 , −4110 ,−4350 ,−4200 ,−3950 ,−2410 ,−3660 ,−3340 ,−3940 ,−2950 ,0]
79 % Err = [ 0 , 808 ,800 ,805 ,814 ,867 ,823 ,836 ,814 ,850 ,0 ]
80 %
81 %plo t (X,H, ’ ko ’ )
82 % er ro rba r (X,H, Err , ’ ko ’ )
83 % x labe l ( ’X(KF) ’ )
84 % y labe l ( ’ \ Delta_{mix}H(J mol^{−1}) ’ )
85 %plo t (x , Phase_control (3004 :3014) , ’−o ’ )
86 % er ro rba r (x , Phase_control ( 304 : 314 ) ,H_err )
87 % n=1;
88 % f i g u r e ( ) ; t i t l e ( ’ PhasDia ’ ) ; x l ab e l ( ’ mol f r a c t i on ’ ) ; y l ab e l ( ’ Temperature (K) ’ )
89 % fo r k = 1 : PhaseLines
90 % hold on
91 % plo t ( x_res , Phas ( : , n : n+length ( x_res )−1) , ’ g ’ , x_res , Phase_control ( : , n : n+length (

x_res )−1) , ’ ko ’ ) %,x_res , Phasr ( : , n : n+length ( x_res )−1) , ’ r ’ %x_res , Samples ( : , n : n+
length ( x_res )−1) , ’ xk ’ )

92 % n= n+length ( x_res ) ;
93 % end

A.1.5 Value.m
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1 function [H_mix, H_err ] = Value (GPCClass , nSamples , pos )
2 %%
3

4 [ Samples , InputVar ] = GPCClass . sample ( nSamples ) ;
5 InputVar = GPCClass . De t a i l s . means+ InputVar .∗GPCClass . De t a i l s . s td s ;
6

7 x = repmat (GPCClass . De t a i l s . means , nSamples , 1 ) ;
8

9 i f pos == 5 | | pos == 7
10 x ( : , 7 ) = InputVar ( : , 7 ) ;
11 x ( : , 5 ) = InputVar ( : , 5 ) ;
12 e l s e i f pos == 4 | | pos == 6
13 x ( : , 4 ) = InputVar ( : , 4 ) ;
14 x ( : , 6 ) = InputVar ( : , 6 ) ;
15 else
16 x ( : , pos ) = InputVar ( : , pos ) ;
17 end
18 % x ( : , 3 ) = InputVar ( : , 3 ) ;
19 % x ( : , 2 ) = InputVar ( : , 2 ) ;
20 disp ( x )
21 Samp = GPCClass . va lue (x ) ;
22 [H_mix, H_err ] = HmixPhaseMargin (GPCClass , Samp)

A.1.6 pointPlot.m

1 function [ Gibbs , Gibbsr ] = po intP lo t (GPCClass , nSamples , var1 , var2 )
2

3 [ Samples , InputVar ] = GPCClass . sample ( nSamples ) ;
4 InputVar = GPCClass . De t a i l s . means+ InputVar .∗GPCClass . De t a i l s . s td s ;
5

6 x = repmat (GPCClass . De t a i l s . means , nSamples , 1 ) ;
7

8 % i f var1 == 3
9 % var2 = 5

10 % e l s e i f var1 == 5
11 % var2 = 3
12 % e l s e i f var1 == 4
13 % var2 = 6
14 % e l s e i f var1 == 6
15 % var2 = 4
16 % end
17 %
18 % i f var2 == 3
19 % var1 = 5
20 % e l s e i f var2 == 5
21 % var1 = 3
22 % e l s e i f var2 == 4
23 % var1 = 6
24 % e l s e i f var2 == 6
25 % var1 = 4
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26 % end
27 % i f var1 == 3 | | var1 == 5
28 % x ( : , 3 ) = InputVar ( : , 3 ) ;
29 % x ( : , 5 ) = InputVar ( : , 5 ) ;
30 % e l s e i f var1 == 4 | | var1 == 6
31 % x ( : , 4 ) = InputVar ( : , 4 ) ;
32 % x ( : , 6 ) = InputVar ( : , 6 ) ;
33 % e l s e
34 % x ( : , var1 ) = InputVar ( : , var1 ) ;
35 % end
36 %
37 % i f var2 == 3 | | var2 == 5
38 % x ( : , 3 ) = InputVar ( : , 3 ) ;
39 % x ( : , 5 ) = InputVar ( : , 5 ) ;
40 % e l s e i f var2 == 4 | | var2 == 6
41 % x ( : , 4 ) = InputVar ( : , 4 ) ;
42 % x ( : , 6 ) = InputVar ( : , 6 ) ;
43 % e l s e
44 % x ( : , var2 ) = InputVar ( : , var2 ) ;
45 % end
46

47 x ( : , var1 ) = InputVar ( : , var1 ) ;
48 x ( : , var2 ) = InputVar ( : , var2 ) ;
49

50 Samples = GPCClass . va lue (x ) ;
51 Phase_control = [762 .053773000000 ,762 .053773000000 , . . . ,

762.053773000000 ,762.053773000000 ,0 ,−1665.96000000000 ,
52 −2970.60000000000 ,−3908.58000000000 ,−4465.36000000000 ,
53 −4629.22000000000 ,−4402.99000000000 ,−3806.14000000000 ,
54 −2864.68000000000 ,−1596.61000000000 ,0] ;%Phase c on t r o l va lue s with i n t e r p o l a t i o n 0 .01
55 Phase_control = [762 . 035971000000 , 762 . 035971000000 , . . . ,
56 762 .035971000000 ,762 .035971000000 ,762 .035971000000 ,
57 762 .035971000000 ,762 .035971000000 ] ; %Phase c on t r o l va lue s with i n t e r p o l a t i o n 0 .001
58 Margin = 10 ;
59 PhaseLines = 3 ;
60 H_len = 11 ; %amount o f mixing enthalpy rows in Samples
61 c o l = s ize ( Samples , 2 )− H_len ; %Amount o f phase diagram columns in samples
62 %H_mix = ze ro s (1 ,H_len ) ; %I n i t i a t e mixing enthalpy matrix
63 %Gibbs = ze ro s (1 , s i z e ( InputVar , 2 ) ) ; %I n i t i a t e Gibbs energy matrix
64 j = 1 ;
65 h = 1 ;
66

67 f o r i = 1 : nSamples
68 i f a l l (abs ( Samples ( i , 1 : c o l ) − Phase_control ( 1 : c o l ) ) < Margin )
69 % H_mix( j , : ) = Samples ( i , ( c o l +1) : s i z e ( Samples , 2 ) ) ;
70 Gibbs ( j , : ) = x ( i , : ) ;
71 j = j + 1 ;
72 else
73 Gibbsr (h , : ) = x ( i , : ) ;
74 h = h + 1 ;
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75 end
76 end
77

78 % fo r c=1: s i z e (Gibbs , 2 )
79 % G_err ( c ) = abs (max(Gibbs ( : , c ) ) − min(Gibbs ( : , c ) ) ) /2 ;
80 % end
81

82 %Point p l o t
83 % x = Gibbs ( : , var1 )
84 % y = Gibbs ( : , var2 )
85 % z = Gibbs ( : , var3 )
86 %
87 % xr = Gibbsr ( : , var1 ) ;
88 % yr = Gibbsr ( : , var2 ) ;
89 % zr = Gibbsr ( : , var3 ) ;
90 % plo t (x , y , z , ’ og ’ , xr , yr , zr , ’ or ’ )
91 % x labe l ( ’E ( J\cdotK^{−1}\cdotmol^{−1}) ’ )
92 % y labe l ( ’G (J\cdotK^{−1}\cdotmol^{−1}) ’ )
93 % hold on
94 %plo t (GPCClass . De t a i l s . means ( var1 ) ,GPCClass . De t a i l s . means ( var2 ) , ’+k ’ )
95 %(J\cdotK^{−1}\cdotmol^{−1})
96 %(J\cdotmol^{−1})


	Abstract
	Abstract
	Introduction
	The LiF-KF System
	Phase Diagram
	Mixing Enthalpy
	Heat Capacity

	Theory
	CALPHAD modelling method
	Gibbs Energy
	Gibbs energy of binary (solid or liquid) solutions
	Modified Quasi-Chemical Model

	Polynomial Chaos Expansion
	Polynomial Chaos Basis Vectors
	Polynomial Chaos Coefficient


	Experimental Method
	Linking OpenGPC with FactSage 7.2
	PCE Validation for Accurate Phase Diagram Computation
	PCE Function Application
	Uncertainty Quantification based on Phase Diagram Data
	Uncertainty in Mixing Enthalpy and Excess Heat Capacity
	Uncertainty assessment of input Gibbs Energy Parameters


	Results
	Accuracy of the PCE
	Obtained Uncertainty
	Mixing Enthalpy
	Excess Heat Capacity
	Excess Gibbs Energy parameters


	Discussion
	Plausibility of Final Results
	Accuracy of the PCE
	Mixing Enthalpy
	Excess heat capacity
	Excess Gibbs Energy Parameters 

	Research Limitations
	Further Research

	References
	Appendix
	MATLAB Scripts
	userFunction.m
	readPhaseEqui.m
	errorcheck.m
	HmixPhaseMargin.m
	Value.m
	pointPlot.m



