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a b s t r a c t

Recently, the shrinkage approach has increased its popularity in theoretical and applied
statistics, especially, when point estimators for high-dimensional quantities have to be
constructed. A shrinkage estimator is usually obtained by shrinking the sample estimator
towards a deterministic target. This allows to reduce the high volatility that is commonly
present in the sample estimator by introducing a bias such that the mean-square error
of the shrinkage estimator becomes smaller than the one of the corresponding sample
estimator. The procedure has shown great advantages especially in the high-dimensional
problems where, in general case, the sample estimators are not consistent without
imposing structural assumptions on model parameters.

In this paper, we review the mostly used shrinkage estimators for the mean vector,
covariance and precision matrices. The application in portfolio theory is provided where
the weights of optimal portfolios are usually determined as functions of the mean vector
and covariance matrix. Furthermore, a test theory on the mean–variance optimality of
a given portfolio based on the shrinkage approach is presented as well.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

High-dimensional inference procedures play an important role in many fields of science, like in economics, finance,
nvironmetrics, physics, signal processing, etc., when a statistical model is needed to be fitted to real data. For instance,
igh-dimensional optimal portfolios are well motivated by the rapid development of technology, which provides investors
pportunities to construct a portfolio consisting of a large number of assets traded simultaneously across the world.
oreover, the availability of high-frequency financial data provides a considerable amount of information which can be
sed in the construction of optimal portfolios.
It is remarkable that the application of the traditional sample estimators is not recommendable in the high-dimensional

etting. Although the sample estimators work well when the process dimension is fixed and is significantly smaller than
he number of observations, it does not longer hold when the two quantities are comparable. The former case is often
sed in statistics and it is called the standard asymptotic regime (see, [63]). Under this asymptotic regime the traditional
ample estimators, like the maximum likelihood estimator or method of moments estimator, are usually consistent under
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some regularity conditions. However, it does not longer hold true when the process dimension is comparable to or even
larger than the sample size. Here, we are in the situation when both the number of assets and the sample size can
tend to infinity. This double asymptotic regime has an interpretation when the ratio between the process dimension and
the sample size, also known as the concentration ratio, tends to a finite value as the sample size tends to infinity. This
asymptotic regime is known as a high-dimensional asymptotics or ‘‘Kolmogorov’’ asymptotics (see, e.g., [33]). Under the
high-dimensional asymptotics the sample estimators behave very unpredictable and they are far from the optimal ones.
In general, the greater the concentration ratio the worse are the sample estimators. This well-known problem in statistics
is called "the curse of dimensionality".

Recently, new estimators came in play which are biased but can significantly reduce the mean square error in
omparison to the traditional estimators. These estimators are known as shrinkage estimators and were introduced in the
eminal paper of Stein (see, [81]). A shrinkage estimator is usually defined as a linear combination of the corresponding
ample estimator and a known target. The corresponding coefficients in the linear combination are often called shrinkage
ntensities. It is a very challenging task to find consistent estimators for the shrinkage intensities.

The first shrinkage estimator was developed for the mean vector of a multivariate normal distribution with identity
ovariance matrix [58,81] and was extended to the case of an arbitrary covariance matrix in [5,7,8,41,47,50,67,82]. These
esults were obtained in the standard asymptotic regime, while a high-dimensional version of the James–Stein type
stimator was proposed by [38]. Recently, an optimal shrinkage estimator obtained by minimizing the expected quadratic
oss function was derived in [85], while a shrinkage estimator of the mean vector shrunk towards an arbitrary target vector
as introduced in [21].
The situation becomes more challenging when the covariance matrix is estimated and, especially, when one needs

o infer its inverse, the precision matrix. There are some significant improvements when the covariance matrix has
special structure, e.g. sparse, low rank etc. (see, [35,36,75]). The results for the covariance matrix that possesses a

actor structure were derived in [42–44]. In these cases the covariance matrix can consistently be estimated even for
igh-dimensional data. However, when no information about a specific structure of the covariance matrix is available,
he shrinkage estimator seems to be the most favorable approach in the high-dimensional setting (cf., [19,65,66]. The
hrinkage estimators for the precision matrix were derived in [20,62,84], among others.
In order to handle the curse of dimensionality in the case of the high-dimensional asymptotic regime the results from

andom matrix theory are usually used. Random matrix theory is a very fast growing branch of probability theory with
any applications in statistics and finance. It studies the behavior of the eigenvalues of random matrices under the double
symptotic regime (see, e.g., [2–4,13,23,28,49,68,76,78]). It is discovered that appropriately transformed random matrix at
nfinity has a nonrandom behavior and showed how to find the limiting density of its eigenvalues. In particular, Silverstein
nd Bai [78] proved under very general conditions that the Stieltjes transform of the sample covariance matrix tends
lmost surely to a nonrandom function which satisfies some equation. This equation was first derived by [68] who showed
ow the real covariance matrix and its sample estimator are connected at infinity, while a general form of this equation
as given in [76]. Finally, using the results of random matrix theory statistical tests on the structure of the covariance
atrix were suggested by [14,37,46,52,86,88].
Improved estimators of the model parameters constructed by employing random matrix theory, especially shrinkage-

ased estimators, are widely used in many fields of science, like in signal processing and finance (see, [34,40,44,45,55,
3,87]). For instance, an improved calibration of the high-dimensional precision matrix was suggested in [87], while
he applications of random matrix theory to signal processing and portfolio theory was discussed in [45]. Furthermore,
everal authors showed that the shrinkage estimators applied to portfolio weights indeed lead to better results (see,
.g., [22,25,48,51,65]. In particular, the shrinkage estimator for the covariance matrix was applied to construct an improved
stimator of the weights of the global minimum variance portfolio by [65], while the multivariate shrinkage estimator
btained by shrinking the portfolio weights directly was suggested in [51]. The same idea was also used by [48] who
onstructed a feasible shrinkage estimator for the global minimum variance portfolio which dominates the traditional
ample estimator. More recently, the shrinkage estimators based on an arbitrary target vector of portfolio weights were
erived by [25] and [22] in the case of the global minimum variance portfolio and mean–variance portfolio, respectively.
inally, statistical test theory on the optimality of portfolio weights was developed in [17,18] that is based on the shrinkage
pproach, while sequential procedures derived on the weights of optimal portfolios were established in [9,10].
The rest of the paper is organized as follows. In Section 2 we present the shrinkage estimator for the high-dimensional

ean vector, covariance matrix and precision matrix. Recent results of the application of the shrinkage approach in finance
s discussed in Section 3. Discussion of the results is provided in Section 4.

. Shrinkage estimation of the mean vector and covariance matrix

Let Xn = (xij)i∈{1,...,p},j∈{1,...,n} with xij be independent and identically distributed with zero mean and variance equal to
one. Throughout the paper it is assumed that the data matrix Yn = [y1, . . . , yn] follows the stochastic model expressed
as

Yn = µ1⊤

n + Σ1/2Xn, (1)

where 1n is the n-dimensional vector of ones and Σ1/2 is a square root of the positive definite matrix Σ. We further assume
4+ε
that E(|xij| ) < ∞ for any small number ε > 0. No specific distributional assumption is imposed on the element of Xn.

2



O. Bodnar, T. Bodnar and N. Parolya Journal of Multivariate Analysis 188 (2022) 104826

C

w
d
a
e
p

s
t
o
h
s
a
(

2

a

o

r

Σ

e

f

C
a

Under model (1) the observation vectors y1, . . . , yn are independent and identically distributed with E(yj) = µ and
ov(yj) = Σ. The two parameters µ and Σ are unknown quantities which have to be inferred by using the observation

matrix Yn. The most commonly used estimators of µ and Σ are the sample estimators expressed as

ȳn =
1
n

n∑
i=1

yn =
1
n
Yn1n and Sn =

1
n − 1

n∑
i=1

(yn − ȳn)(yn − ȳn)⊤ =
1

n − 1
Yn

(
In −

1
n
1n1⊤

n

)
Y⊤

n , (2)

here In denotes the identity matrix of size n. Under the additional assumption that yi are multivariate normally
istributed, ȳn and (n − 1)Sn/n are also the maximum likelihood estimators for µ and Σ and, consequently, they are
symptotically efficient when p is finite and n tends to infinity, i.e., in the classical asymptotic regime. However, both the
stimators possess high variability when p becomes comparable to n. As a result, their application to the high-dimensional
roblems is not desired and new approaches should be employed instead.
In order to reduce the variability which is present in the traditional sample estimators, for example in ȳn and Sn, the

hrinkage estimators have been developed in statistical literature, which are usually (slightly) biased but, on other side,
hey possess considerably smaller variance in comparison to the sample estimators. A shrinkage estimator for a quantity
f interest is not uniquely defined and is obtained by minimizing a risk function, which may depend on the application at
and. In Section 2.1 we review the existent shrinkage estimators for the mean vector, while Sections 2.2 and 2.3 present
hrinkage estimators for the covariance matrix and the precision matrix. Later, in Section 3 the shrinkage approach is a
pplied to infer the weights of optimal portfolios, which are usually present as functions of the mean vector and covariance
precision) matrix.

.1. Shrinkage estimation of the mean vector

A shrinkage estimator for the mean vector µ is usually derived by minimizing the quadratic loss function expressed
s

L(µ̂n,µ) = (µ̂n − µ)⊤Σ−1(µ̂n − µ) (3)

r, its expected value, for an arbitrary estimator µ̂n,

R(µ) = E
(
(µ̂n − µ)⊤Σ−1(µ̂n − µ)

)
. (4)

Depending on the imposed condition on Σ, n, and p several shrinkage estimators exist in the literature which we
eview below.

The James–Stein shrinkage estimator for the mean vector was derived under the assumption that the covariance matrix
is the identity matrix and that n > p > 2. It is given by

µ̂n,JS =

(
1 −

p − 2
nȳ⊤

n ȳn

)
ȳn. (5)

When the concentration ratio c < 1 with c defined by p/n → c as n → ∞, a modified version of the James–Stein
stimator for n > p ≥ 3 and an arbitrary covariance matrix is expressed as

µ̂n,mJS =

(
1 −

p − 2
n − p + 2

1
ȳ⊤
n S

−1
n ȳn

)
ȳn, (6)

where Sn is the sample estimator of Σ given in (2).
For p > n ≥ 3 and an arbitrary covariance matrix Σ, a Baranchik type shrinkage estimator for the mean vector was

discussed in [38] and it is given by

µ̂n,B =

{
Ip −

rSnS+
n

ȳ⊤
n S

+
n ȳn

}
ȳn,

or min{n−1, p} ≥ 3. The symbol S+
n denotes the Moore–Penrose inverse of Sn. It was proved in [38], that µ̂n,B dominates

the sample estimator ȳn under the quadratic less when

0 ≤ r ≤
2(min{n − 1, p} − 2)

n + p − 2min{n − 1, p} + 2
.

hételat and Wells [38] considered a further generalization of the James–Stein estimator in the case of p > n expressed
s

µ̂n,CW = (Ip − SnS+

n )ȳn +

{
1 −

a
ȳ⊤
n S

+
n ȳn

}
+

SnS+

n ȳn,

where b+ = max(b, 0). They argued that µ̂n,CW dominates the James–Stein shrinkage estimator when

a =
n − 3

.

p − n + 4

3
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A further shrinkage estimator for the mean vector was derived in [85] who suggested to shrink the sample estimator
¯n to the unity target vector. The corresponding shrinkage coefficients are found by minimizing the expected quadratic
oss (4). This leads to the following shrinkage estimator (see, [85]):

µ̂n,W =
Z1,n − Z4,n

Z1,n + Z2,nZ4,n
ȳn +

Z2,nZ3,n
Z1,n + Z2,nZ4,n

1n, (7)

ith

Z1,n =
1

p(n − 1)

∑
i̸=j

y⊤

n,iS
+

n yn,j, Z2,n =
1
np

⎛⎝ n∑
k=1

y⊤

n,kS
+

n yn,k −
1

n − 1

∑
i̸=j

y⊤

n,iS
+

n yn,j

⎞⎠ ,

Z3,n =
1

n1⊤
n S

+
n 1n

n∑
k=1

1⊤

n S
+

n yn,k, Z4,n =
1

p(n − 1)1⊤
n S

+
n 1n

∑
i̸=j

1⊤

n S
+

n yn,iy
⊤

n,jS
+

n 1n,

for p > n. The shrinkage estimator (7) is computationally complicated due to the presence of the double sum over p
and n in its definition. In order to simplify its computation in practice, the application of its asymptotic counterpart was
suggested in [85].

In the case of an arbitrary shrinkage target vector µ0, a linear shrinkage estimator that minimizes the quadratic loss
function (3) was developed by [21]. For c < 1, it is given by

µ̂n,BOP = α̂meanȳn + β̂meanµ0 , (8)

where

α̂mean =

(
ȳ⊤
n S−1

n ȳn −
p/n

1−p/n

)
µ⊤

0 S
−1
n µ0 − (ȳ⊤

n S−1
n µ0)2

ȳ⊤
n S

−1
n ȳnµ⊤

0 S
−1
n µ0 − (ȳ⊤

n S
−1
n µ0)2

(9)

and

β̂mean = (1 − α̂mean)
ȳ⊤
n S−1

n µ0

µ⊤

0 S
−1
n µ0

. (10)

.2. Shrinkage estimation of the covariance matrix

In the derivation of the shrinkage estimation of the covariance matrix several loss functions are considered in the
iterature. Below, we review the approaches which are obtained by minimizing the quadratic loss function which is defined
y the Frobenius norm in the matrix case expressed as

L(Σ̂n,Σ) = ∥Σ̂n − Σ∥
2
F (11)

or a given estimator Σ̂n of Σ with ∥A∥
2
F = tr(AA⊤) for a square matrix A.

At first, Ledoit and Wolf [65] proposed a linear shrinkage estimator of the covariance matrix Σ which shrinks the
ample covariance matrix Sn to the identity matrix and studied its behavior in the high-dimensional setting. This estimator
shrinks the eigenvalues of the sample covariance matrix linearly and is obtained by minimizing the expected quadratic
loss function expressed as

R(Σ) = E
(
∥Σ̂n − Σ∥

2
F

)
. (12)

A generalization of the linear shrinkage estimator of [65] was suggested in [19] where the shrinkage target was chosen
to be an arbitrary nonrandom matrix Σ0. In contrast to the Ledoit and Wolf linear shrinkage estimator of the covariance
matrix, the new shrinkage estimator was derived by minimizing the loss function (11) directly. It is given by

Σ̂n;BGP = α̂covSn + β̂covΣ0, (13)

ith

α̂cov = 1 −

1
n
∥Sn∥2

tr∥Σ0∥
2
F

∥Sn∥2
F∥Σ0∥

2
F −

(
tr(SnΣ0)

)2 (14)

nd

β̂cov =
tr(SnΣ0)

2

(
1 − α̂cov

)
, (15)
∥Σ0∥F

4
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where ∥A∥tr = tr
[(

AA⊤
)1/2] denotes for the trace norm and Σ0 is assumed to possess the bounded trace norm. The

hrinkage estimator (13) was derived under the assumption E(|xij|4+ε) < ∞, while the shrinkage estimator in [65] requires
the existent of 8th moments.

The linear shrinkage estimator of [65] also differs from (13) in its structure. First, it is derived for the specific target

matrix Σ0 = 1/pI. Second, the expression of α̂cov is different in two approaches. Namely, instead of
1
n
∥Sn∥2

tr the Ledoit

nd Wolf shrinkage estimator uses
1
n2

∑n
i=1 ∥yiy⊤

i − Sn∥2
F where yi are the ith columns of the observation matrix Yn. It is

efined by

α̂cov;LW = 1 −
min{b̂2cov, d̂

2
cov}

d̂2cov
, (16)

here

d̂2cov =
1
p
∥Sn∥2

F −
(
1/ptr(Sn)

)2
, b̂2cov =

1
p

1
n2

n∑
i=1

∥yiy⊤

i − Sn∥2
F .

he shrinkage estimator (13) is unconstrained, while the Ledoit and Wolf estimator is constrained. If b̂2cov > d̂2cov in (16),

hen α̂cov;LW = 0, i.e., the Ledoit and Wolf shrinkage estimator coincides with tr(Sn)
1
p
I, independently how large p is with

espect to n. In contrast, we always have that 0 < α̂cov ≤ 1 for (13) with α̂cov = 1 only if c = 0, i.e., the sample covariance
atrix possesses the smallest Frobenius loss only if p is much smaller than n. For c > 0, the sample covariance matrix

s not an optimal estimator for the covariance matrix in terms of minimizing the quadratic loss function (11). Finally, we
ote that the Ledoit and Wolf estimator is more computationally intensive than ((13) with Σ0 =

1
p I, since the quantity

b̂2cov has to be calculated by a loop.
Further improved estimators of the covariance matrix were suggested in [39,53,54,77] among others. These estimators

were derived by minimizing the Stein loss given by (see, [39])

LS(Σ̂n,Σ) = tr
(
Σ̂nΣ

−1)
− log

(
det

(
Σ̂nΣ

−1))
− p (17)

or the corresponding risk function RS(Σ) = E
(
LS(Σ̂n,Σ)

)
, and are defined as orthogonal invariant estimators. The class of

rotation-equivariant estimators of the covariance matrix coincides with the class of estimators which possess the same
eigenvectors as the sample covariance matrix (c.f., [74, Section 5.4]). That is, they are determined as

Σ̂n,OI = HΦ(D)H⊤, (18)

here Sn = HDH⊤ is the eigenvalue decomposition of the sample covariance matrix Sn with D = diag(d1, . . . , dp),
d1 ≥ d2 ≥ · · · ≥ dp and Φ(D) = diag(φ1(d1), . . . , φp(dp)) for continuously differentiable function φi, i ∈ {1, . . . , p}.
ey and Srinivasan [39] derived the set of functions φi(.), i ∈ {1, . . . , p} for which the orthogonal invariant estimator (18)
ominates the sample estimator Sn.
The orthogonal invariant estimator Σ̂n,OI was generalized to the non-linear shrinkage estimator by [66] in the

igh-dimensional setting, which, for i ∈ {1, . . . , p}, is given by

Sn,LWnonlin = Hdiag(dor1 , . . . , d
or
p )H⊤, dori =

{ di
|1−c−cdim̆F (di)|

2 , if di > 0,
1

(c−1)m̆F (0)
, if di = 0,

(19)

where mF (z) denotes the limiting Stieltjes transform of the sample covariance matrix defined for a distribution function
G : R → R as

mG(z) =

∫
+∞

−∞

1
λ− z

dG(λ); z ∈ C+
≡ {z ∈ C : ℑz > 0}.

Moreover, for any x ∈ R the quantities m̆F (x) = limz→x mF (z) and m̆F (x) = limz→x mF (z) = limz→x
c−1
z + cmF (z) exist

nd are finite for c < 1 and c > 1, respectively. The existence of those limits was proven in [64,79]. Albeit the oracle
hrinkage intensities dori depend on the unknown limiting Stieltjes transform, thanks to the recent paper of Ledoit and
olf [66], they can be fast and efficiently estimated using a simple nonparametric procedure.

.3. Shrinkage estimation of precision matrix

A linear shrinkage estimator for the precision matrix Σ−1 was developed in [20] and it is derived by minimizing the
uadratic loss expressed as

L(Π̂ ,Σ−1) = ∥Π̂ − Σ−1
∥
2 (20)
n n F

5
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for an estimator Π̂n of Σ−1. The linear shrinkage estimator for the precision matrix for c < 1 is given by

Π̂n,BGP = α̂precS−1
n + β̂precΠ0, (21)

ith

α̂prec = 1 − p/n −

1
n
∥S−1

n ∥
2
tr∥Π0∥

2
F

∥S−1
n ∥

2
F∥Π0∥

2
F −

(
tr(S−1

n Π0)
)2 (22)

nd

β̂prec =
tr(S−1

n Π0)
∥Π0∥

2
F

(
1 − p/n − α̂prec

)
, (23)

here 1/pΠ0 is assumed to have the bounded trace norm.
Another shrinkage estimator of the precision matrix is the scaled standard estimator (SSE) discussed in [62,72,80]. It

s given by

Π̂SSE =
n − p − 2
n − 1

S−1
n δ(p<n) +

p
n − 1

S+

n δ(p≥n), (24)

here S+
n is the Moore–Penrose inverse of Sn and δ(·) is a Dirac delta function.

The other two shrinkage estimators for the precision were proposed by [41] and by [62] and they are expressed as

Π̂EM =
n − p − 2
n − 1

S−1
n +

p2 + p − 2
(n − 1)tr(Sn)

I (25)

nd

Π̂KS = p ((n − 1)Sn + tr(Sn)I)−1 , (26)

espectively.

. Application in portfolio theory

In this section we discuss how the theory of shrinkage estimation can be used in portfolio theory where the weights of
ifferent optimal portfolio can often be expressed as functions of the mean vector and covariance matrix (see, e.g., [15,57]).
he practical computation of the considered shrinkage estimators of optimal portfolio weights as well as some shrinkage
stimators for the mean vector and for the covariance matrix presented in the previous section can be performed in the
-packages, like HDShOP (High-Dimensional Shrinkage Optimal Portfolio, see [16]) and DOSPortfolio (Dynamic Optimal

Shrinkage Portfolio see [27]).
Following the Markowitz theory [69], mean–variance optimal portfolios are obtained by minimizing the portfolio

variance for a given level of the expected return. The solutions of the Markowitz problem lie on a parabola in the mean–
variance space, known as the efficient frontier (see, e.g., [6,11,30,60,71]). Let w = (w1, . . . , wp)⊤ be the p-dimensional
ector of portfolio weights. Then the expected return of the portfolio with weights w is w⊤µ, while its variance is

w⊤Σw. Markowitz optimal portfolios can also be deduced as solutions of other optimization problems (e.g., [24]), like by
maximizing the expected utility function (see, [57]) expressed as

w⊤µ −
γ

2
w⊤Σw → max subject to w⊤1p = 1, (27)

where γ > 0 is the coefficient of risk aversion that measures the investor’s attitude towards risk. The solution of (27) is
known as the mean–variance (MV) optimal portfolio and it is given by

wMV =
Σ−11p

1⊤
p Σ

−11p
+ γ−1Qµ, (28)

here

Q = Σ−1
−

Σ−11p1⊤
p Σ

−1

1⊤
p Σ

−11p
.

In the case of the fully risk-averse investor, i.e., γ = ∞, the optimal portfolio is found by minimizing the portfolio
variance, i.e.,

w⊤Σw → min subject to w⊤1p = 1, (29)

nd its weights are given by

wGMV =
Σ−11p
⊤ −1 . (30)
1p Σ 1p

6
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The optimal portfolio with the weights wGMV is known in financial literature as the global minimum variance (GMV)
portfolio. This portfolio lies on the vertex of the efficient frontier, whose equation is given by

(R − RGMV )2 = s(V − VGMV ),

where

RGMV =
µ⊤Σ−11p

1⊤
p Σ

−11p
, RGMV =

1
1⊤
p Σ

−11p
, s = µ⊤Qµ (31)

re the expected return of the GMV portfolio, the variance of the GMV portfolio, and the slope parameter of the efficient
rontier, respectively.

.1. Traditional sample estimators of portfolio weights

Optimal portfolios cannot be constructed by using (27) and (29), since both formulas depend on the true value of the
ean vector and the covariance matrix. Markowitz [70] suggested to use historical data of asset returns y1, . . . , yn to

construct the sample estimators ȳn and Sn of µ and Σ. This leads to the following traditional sample estimators of the
MV portfolio weights

ŵMV ;S =
S−1
n 1p

1⊤
p S

−1
n 1p

+ γ−1Q̂nȳn (32)

ith

Q̂n = S−1
n −

S−1
n 1p1⊤

p S−1
n

1⊤
p S

−1
n 1p

,

nd of the GMV portfolio weights given by

ŵGMV ;S =
S−1
n 1p

1⊤
p S

−1
n 1p

, (33)

espectively. The distributional properties of the estimators (32) and (33) were studied by [15,59,73], among others.

.2. Naive shrinkage approach

Alternatively, one can replace the unknown µ and Σ (or Σ−1) in (28) and (30) by any improved estimator as considered
n Section 2 as in the case of the GMV portfolio discussed in [61,65], among others. This leads to

ŵMV ;nSh =
Σ̂−1

n 1p

1⊤
p Σ̂

−1
n 1p

+ γ−1Q̂n;nShµ̂n, (34)

ith

Q̂n;nSh = Σ̂−1
n −

Σ̂−1
n 1p1⊤

p Σ̂
−1
n

1⊤
p Σ̂

−1
n 1p

nd

ŵGMV ;nSh =
Σ̂−1

n 1p

1⊤
p Σ̂

−1
n 1p

, (35)

where µ̂n and Σ̂n denote improved estimators of the mean vector and of the covariance matrix, respectively. In the
following, we refer to the optimal portfolios constructed by using (34) and (35) as the naive shrinkage estimator of the
MV portfolio weights and of the GMV portfolio weights.

3.3. Optimal shrinkage approach

Although the estimators ŵMV ;nSh are ŵGMV ;nSh are constructed by using less volatile estimators of the mean vector
and of the covariance matrix, they are not optimal in the sense that they maximize some loss functions. Moreover, it
is also questionable, why one has to estimate p(p + 1)/2-dimensional and p-dimensional objects, while estimators for
(p− 1)-dimensional vector of optimal portfolio weights are needed. We deal with this question in the present section by
presenting shrinkage estimators for wMV and wGMV , which are directly derived for the portfolio weights.

In case of the MV optimal portfolio, the loss function is determined following the optimization problem used in its
derivation. Namely, the out-of-sample expected utility function is considered which is given by

ŵ⊤µ −
γ
ŵ⊤Σŵn, (36)
n 2 n

7
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where ŵn denotes a shrinkage estimator of the MV portfolio weights obtained by a linear combination of its sample
estimator ŵMV ;S and the target vector of portfolio weights b such that b⊤1p = 1.

The maximization of (36) leads to the formula of the optimal shrinkage estimator of the MV portfolio expressed as [22]

ŵMV ;oSh = α̂n;MV ŵMV ;S + (1 − α̂n;MV )b (37)

ith

α̂n;MV =

γ−1
(
(R̂GMV ;S − R̂b;S)

(
1 +

1
1−c

)
+ γ (V̂b;S − V̂GMV ;c) +

γ−1

1−c ŝc
)

V̂GMV ;c
1−c − 2

(
V̂GMV ;c +

γ−1

1−c (R̂b;S − R̂GMV ;S)
)

+ γ−2
(

ŝc+c
(1−c)3

)
+ V̂b;S

, (38)

here R̂GMV ;S , V̂GMV ;c , ŝc , R̂b;S , and V̂b;S are consistent estimators of the three parameters of the efficient frontier given in
(31), and of the expected return Rb = µ⊤b and the variance Vb = b⊤Σb of the target portfolio. They are equal to

R̂GMV ;S =
ȳ⊤
n S−1

n 1p

1⊤
p S

−1
n 1p

, V̂GMV ;c =
1

1 − c
V̂GMV ;S, ŝc = (1 − c)ŝ − c, R̂b;S = µ̂

⊤b, V̂b;S = b⊤Snb

with

V̂GMV ;S =
1

1⊤
p S

−1
n 1p

, ŝ = ȳ⊤

n Q̂nȳn.

The out-of-sample variance is considered as a loss function when the investor is fully risk averse, i.e., γ = ∞, (see,
.g., [25,48]), that is in the case of the GMV portfolio. It is given by

ŵ⊤

n Σŵn, (39)

here ŵn denotes a shrinkage estimator of the GMV portfolio weights defined obtained by a linear combination of its
ample estimator ŵGMV ;S and the target vector of portfolio weights b such that b⊤1p = 1.
The solution of (39) is given by (see, [25])

ŵGMV ;oSh = α̂n;GMV ŵGMV ;S + (1 − α̂n;GMV )b (40)

ith

α̂n;GMV =
V̂b;S − V̂GMV ;c

V̂GMV ;c
1−c − 2V̂GMV ;c + V̂b;S

. (41)

Another shrinkage estimator of the GMV portfolio weights was developed by [48] and it is given by

ŵGMV ;FM = α̂n;FMŵGMV ;S + (1 − α̂n;FM )b (42)

ith

α̂n;FM =
p − 3

n − p + 2
V̂GMV ;S

b⊤Snb − V̂GMV ;S
. (43)

.4. Tests on mean–variance optimality of portfolios based on the shrinkage approach

In the previous subsection the point shrinkage estimators for the MV portfolio weights and for the GMV portfolio
eights are established. In order to complete this discussion, the interval estimators of the weights of these optimal
ortfolios are discussed in this subsection. Using the one-to-one correspondence between the interval estimation and the
est theory (see [1]), we present first high-dimensional asymptotic tests on the weights of optimal portfolios, and then
how how these findings can be used to construct confidence regions for optimal portfolio weights.
Tests for general linear hypotheses imposed on the weights of the MV portfolio and of the GMV portfolio were

uggested under the traditional asymptotic setting in [29] and [32], while they were extended to the high-dimensional
symptotic setting by [15]. Unfortunately, these approaches cannot be used to test the whole structure of a portfolio in
single step and allow to make inference only on a finite number of the components of the vector of portfolio weights.

n order to deal with the problem, shrinkage-type tests were developed in [18] for the GMV portfolio and in [17] for the
V portfolio under the high-dimensional asymptotic regime.
For the MV portfolio, the goal is to test the hypotheses

H0 : wMV = w0 against H1 : wMV ̸= w0, (44)

.e., that the portfolio with weights w is mean–variance efficient under H .
0 0

8
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It was shown in [22] that α̂n;MV
a.s.
→ αMV (b) for p/n → c ∈ [0, 1) as n → ∞ where

αMV (b) =

γ−1
(
(RGMV − Rb)

(
1 +

1
1−c

)
+ γ (Vb − VGMV ) +

γ−1

1−c s
)

VGMV
1−c − 2

(
VGMV +

γ−1

1−c (Rb − RGMV )
)

+ γ−2
(

s+c
(1−c)3

)
+ Vb

. (45)

oreover, if w0 is mean–variance efficient for the considered risk aversion coefficient γ , then αMV (w0) = 0, i.e., the
hrinkage intensity computed for the target portfolio w0 tends almost surely to zero in the high-dimensional asymptotic
etting. This observation motivates the consideration of the following hypotheses

H0 : αMV (w0) = 0 against H1 : αMV (w0) ̸= 0. (46)

urthermore, it was proved in [17] that the null hypothesis in (44) implies (46), i.e., the rejection of (46) will ensure that
0 portfolio is not mean–variance efficient.
For testing (46) the following test statistic was suggested in [17], expressed as

TMV (w0) =
√
n
α̂n;MV (w0)B̂n(w0)√

d′

0Ω̂(w0)d0

, (47)

where α̂n;MV (w0) is the optimal shrinkage intensity as defined in (45) with b = w0,

B̂n(w0) =
V̂GMV ;c

1 − c
− 2

(
V̂GMV ;c +

γ−1

1 − c
(R̂w0;S − R̂GMV ;S)

)
+ γ−2

(
ŝc + c
(1 − c)3

)
+ V̂w0;S,

d0 =

⎛⎜⎜⎜⎜⎜⎝
γ−1

+
γ−1

1−c
−1
γ−2

1−c

−γ−1
−

γ−1

1−c
1

⎞⎟⎟⎟⎟⎟⎠ ,

and

Ω̂(w0)

=

⎛⎜⎜⎜⎜⎜⎜⎝

V̂GMV ;c (ŝc+1)
1−c 0 0 V̂GMV ;c −2V̂GMV ;c (R̂w0;S − R̂GMV ;S )

0 2
V̂ 2
GMV ;c
1−c 0 0 2V̂ 2

GMV ;c

0 0 2 ((ŝc+1)2+c−1)
1−c 2(R̂w0;S − R̂GMV ;S ) −2(R̂w0;S − R̂GMV ;S )2

V̂GMV ;c 0 2(R̂w0;S − R̂GMV ;S ) V̂w0;S 0
−2V̂GMV ;c (R̂w0;S − R̂GMV ;S ) 2V̂ 2

GMV ;c −2(R̂w0;S − R̂GMV ;S )2 0 2V̂ 2
w0;S

⎞⎟⎟⎟⎟⎟⎟⎠ . (48)

Under the null hypothesis in (46) it holds that for p/n → c ∈ [0, 1) as n → ∞

TMV (w0)
d

→ N (0, 1)

and, hence, the hypothesis that w0 are the weights of the MV optimal portfolio is rejected as soon as |TMV (w0)| > z1−δ/2,
where z1−δ/2 is the (1 − δ/2) quantile of the standard normal distribution.

Finally, using the correspondence between a statistical test and a confidence region (see, [1]), (1−δ) confidence region
for mean–variance optimal portfolios corresponding to risk aversion coefficient γ is given by

ΩMV ;1−δ(w) =
{
w ∈ R

p
: w⊤1p = 1 and |TMV (w)| ≤ z1−δ/2

}
. (49)

Similarly, a test on the weights of the GMV portfolio is constructed. For testing the hypothesis that a portfolio with
weights w0 coincides with the GMV portfolio, i.e.,

H0 : wGMV = w0 against H1 : wGMV ̸= w0, (50)

we note that α̂n;GMV
a.s.
→ αGMV (b) for p/n → c ∈ [0, 1) as n → ∞ with (see, [25])

αGMV (b) =
Vb − VGMV

c
1−c VGMV + (Vb − VGMV )

, (51)

nd, consequently, αGMV (w0) = 0 as soon as w0 is the GMV portfolio. Hence, the hypotheses in (50) can be rewritten as

H : α (w ) = 0 against H : α (w ) ̸= 0. (52)
0 GMV 0 1 GMV 0

9
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For testing (52), the following test statistic was suggested [18]:

TGMV (w0) =
√
n

(1 − c) L̂w0

c + (1 − c) L̂w0

, (53)

here

L̂w0 = (1 − c)w⊤

0 Snw01⊤

p S
−1
n 1p − 1.

Under the null hypothesis in (52) it holds that for p/n → c ∈ [0, 1) as n → ∞

TGMV (w0)
d

→ N
(
0, 2

1 − c
c

)
.

Then, the null hypothesis that w0 is the GMV optimal portfolio, is rejected as soon as |TGMV (w0)| >
√
2 1−c

c z1−δ/2.
Finally, (1 − δ) confidence region for mean–variance optimal portfolios corresponding to risk aversion coefficient γ is

iven by

ΩGMV ;1−δ(w) =

{
w ∈ R

p
: w⊤1p = 1 and |TGMV (w0)| >

√
2
1 − c
c

z1−δ/2

}
. (54)

.5. Dynamic shrinkage approach

Recently, two dynamic shrinkage estimators for the weights of the GMV portfolio were developed in [26]. The first
ynamic shrinkage estimation strategy corresponds to the case where non-overlapping samples are present, while the
econd strategy allows overlapping samples. Next, we describe both the approaches.
We consider an investor, who constructs a GMV portfolio at time t1 by using the shrinkage estimator (40) with the

arget portfolio b. The attention of the investor is to continue investing into the GMV portfolio over next T trading
periods. Namely, the holding portfolio can be reconstructed at time points ti for i ∈ {2, . . . , T } as new information
arrives on the capital market. This information is presented in this section by the sample of asset returns between ti−1
and ti which is collected into the data matrix Yni . At each time point ti the investor aims to continue investing in the
MV portfolio and uses the most recent information to update the holding portfolio. Since the transaction costs might
e very large, the investor decides to shrink the traditional estimator of the GMV portfolio constructed by using data
ni = [yni−1+1, yni−1+2, . . . , yni ] with n0 = 0 (non-overlapping case) and YNi = [Yn1 ,Yn2 , . . . ,Yni ] with Ni = n1 + · · · + ni

(overlapping case) to the weights of the holding portfolio constructed at time ti−1.
Following model (1), it is assumed that

Yni = µ1⊤

ni + Σ1/2Xni , (55)

where Xni is a p× ni matrix which consists of independent and identically distributed random variables with zero mean,
unit variance, and finite 4 + ε, ε > 0, moments. No specific distributional assumption is imposed on the element of Xni ,
i ∈ {1, . . . , T }. Furthermore, Yni , i ∈ {1, . . . , T }, are assumed to independent random matrices.

In the non-overlapping case, the sample of asset returns Yni is used to construct the traditional sample estimator of
the GMV portfolio at each time ti given by

ŵdS;ni =
S−1
ni 1p

1⊤
p S

−1
ni 1p

, Sni =
1

ni − 1
Yni

(
Ini −

1
ni
1ni1

⊤

ni

)
Y⊤

ni . (56)

Then, the shrinkage estimator of the weights of the GMV portfolio at time ti is obtained by minimizing the out-of-
ample variance, namely,

ŵ⊤

niΣŵni , (57)

here ŵni is expressed as linear combination of ŵS;ni and the holding portfolio determined at time ti−1, that is ŵdSh;ni−1
or i ∈ {1, . . . , T } with ŵdSh;n0 = b. The solution to the sequence of optimization problems (57) is given by (see, [26])

ŵdSh;ni = ψ̂dSh;iŵS;ni + (1 − ψ̂dSh;i)ŵdSh;ni−1 (58)

ith

ψ̂dSh;i =
(ni − p)r̂i−1

(ni − p)r̂i−1 + p
, (59)

here r̂i is computed recursively by

r̂i = ψ̂2
dSh;i

p
+ (1 − ψ̂dSh;i)2 r̂i−1 (60)
ni − p
10
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with

r̂0 =

(
1 −

p
n1

)
1⊤

p S
−1
n1 1pb⊤Sn1b − 1. (61)

Similarly, in the overlapping case, the matrix of asset returns YNi is used to construct the traditional sample estimator
of wGMV given by

ŵS;Ni =
S−1
Ni

1p

1⊤
p S

−1
Ni

1p
, SNi =

1
Ni − 1

YNi

(
INi −

1
Ni

1Ni1
⊤

Ni

)
Y⊤

Ni
, (62)

hich is shrunk at time ti to the holding portfolio weights ŵdSh;Ni−1 . The minimization of the out-of-sample variance at
time ti then leads to

ŵdSh;Ni = Ψ̂dSh;iŵS;Ni + (1 − Ψ̂dSh;i)ŵdSh;Ni−1 , (63)

or p/Nj → Cj ∈ (0, 1) as Nj → ∞, j ∈ {1, . . . , i} and i ∈ {1, . . . , T }, where

Ψ̂dSh;i =
(R̂i−1 + 1) − K̂i

(R̂i−1 + 1) + (1 − Ci)−1 − 2K̂i
, (64)

ith

R̂0 = r̂0, R̂i = Ψ̂ 2
dSh;i

Ci

1 − Ci
+ (1 − Ψ̂dSh;i)2R̂i−1 + 2Ψ̂dSh;i(1 − Ψ̂dSh;i)(K̂i − 1), (65)

and

K̂i = β̂i−1;0 +

i−1∑
j=1

β̂i−1;jDj,i, (66)

where

β̂0;0 = 1, β̂i−1;i−1 = Ψ̂dSh;i−1, β̂i−1;j = (1 − Ψ̂dSh;i−1)β̂i−2;j, j ∈ {0, . . . , i − 2} (67)

and

Dj,i = 1 −
2(1 − Cj)

(1 − Cj) + (1 − Ci)
Cj
Ci

+

√(
1 −

Cj
Ci

)2
+ 4(1 − Ci)

Cj
Ci

. (68)

Although the dynamic shrinkage estimator of the GMV portfolio weights based on the overlapping sample is more
computationally intensive, it possesses a great advantage with respect to non-overlapping samples since it requires that
only n1 > p. All other values of ni can be smaller than p. In contrast, it is needed that all ni > p in the non-overlapping
ase. To this end, we note that the practical implementation of both dynamic shrinkage strategies are available in the R
ackage DOSPortfolio. The presented dynamic approach for the GMV portfolio weights can further be extended to the MV
ortfolio with much more involved recursive formulas for the shrinkage intensities Ψ̂dSh;i.

. Discussion and future directions of the research

Estimation of high-dimensional model parameters and functions of high-dimensional model parameters is a chal-
enging task in modern statistical theory. Traditional approaches from frequentist statistics, like the maximum-likelihood
stimation or method of moments estimation, do not provide a good answer to the problem by resulting in estimators
hich are very volatile in the high-dimensional setting.
The shrinkage approach has appeared to be a promising tool to reduce high volatility which is present in the traditional

stimators of high-dimensional quantities. This is achieved by shrinking the traditional estimator to deterministic
uantities. Although the procedure introduces bias in new estimators, it also considerably reduces the variance such that
he mean-square error becomes smaller than the one of the corresponding traditional estimator.

In the present paper we review several shrinkage estimators for the mean vector, covariance matrix, precision matrix
nd for the weights of optimal portfolios which are functions of the mean-vector and covariance matrix. Although,
ost of the theoretical results related to the considered shrinkage estimators were in the high-dimensional asymptotic
etting, they dealt with the case when the model dimension is smaller than the sample size. On the other hand, in
any applications of biostatistics, the sample size is smaller than the model dimension. Under such a setup, the sample
ovariance matrix is singular and its inverse does not exist. One of the possible solutions is to replace the inverse of the
ample covariance matrix by, for example, a generalized inverse or Moore–Penrose inverse (see, e.g., [13,23,56]), which
ill require the derivation of new asymptotic results that might lead to more complicated formulas of the shrinkage

ntensities. Another line of possible future research might be related to the development of sequential control procedures
11
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for monitoring changes in the high-dimensional parameters of stochastic models, like mean vector [31] or covariance
matrix [12], or for sequential surveillance of optimal portfolio weights [10]. New approaches can be based on the shrinkage
approach and can extend the statistical tests on portfolio weights discussed in the present paper.

Acknowledgments

The authors would like to thank Professor Dietrich von Rosen and Professor Tǒnu Kollo for their constructive comments
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