
MXITA: Design and
Implementation of
Microscaling Integer
Accelerator for Neural
Networks
An exploration of multidimensional systolic arrays

Li Ou Hu

MXITA: Design and
Implementation of
Microscaling Integer
Accelerator for Neural

Networks

An exploration of multidimensional systolic arrays

Master’s Thesis

by

Li Ou Hu

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on September 23, 2025 at 09:00

Thesis committee:

Supervisor: Prof. dr. ir. Georgi Gaydadjiev

Daily supervisors: Gamze Islamoglu

Philip Wiese

Project Duration: February, 2025 - September, 2025

Student number: 5236541

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Copyright © Author Name here, 2022

All rights reserved.

Preface

I would like to wholeheartedly thank Prof. Dr. Luca Benini and Prof. Dr. Georgi Gaydadjiev for giving

me the chance to pursue my Master’s thesis project at ETH Zurich. This experience has truly been

life-changing, and I will always remain deeply grateful to them for their support and trust.

I am also grateful to my supervisors Gamze Islamoglu, Philip Wiese and (in extension) Philippe Sauter

for their guidance, discussions, and assistance during the course of this project. Special thanks to Doruk

Bekatli for his help on the back-end implementation, and the Microelectronics Design Center for their

suggestions and improvements.

Finally, I would like to thank my family and friends for their unwavering support in me during this journey.

This achievement would not have been possible without them.

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1

2 Background and Related Work 3

2.1 Microscaling (MX) data format . 3

2.2 Systolic arrays . 4

2.3 Transformer Neural Networks . 10

3 Related work 11

3.1 Hybrid Systolic Array (HSA) . 11

3.2 Precision-Scalable Hardware . 12

3.3 Jack Unit . 13

3.4 Tensor Processing Unit (TPU) . 14

4 Architecture 15

4.1 4D Systolic Array . 16

4.2 Normalizer . 17

4.3 Accumulator . 20

4.4 Output combiner . 20

4.5 Hardware Processing Engine (HWPE) integration . 21

5 Design Implementation 24

5.1 Performance analysis . 24

5.2 Verification . 26

6 Results 27

6.1 Synthesis . 27

6.2 Physical Implementation . 29

6.3 Comparison . 30

7 Conclusion 31

8 Future work 32

References 34

iii

Nomenclature

List of Abbreviations

ALU Arithmetic Logic Unit

AXI Advanced eXtensible Interface

DMA Direct Memory Access

DNN Deep Neural Network

DUT Design Under Test

FIFO First-In First-Out

FSM Finite State Machine

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HWPE Hardware Processing Engine

I/O Input/Output

LLM Large Language Model

MAC Multiply-Accumulate

MHA Multi-Head Attention

ML Machine Learning

MMM Matrix-Matrix Multiplication

MVM Matrix-Vector Multiplication

MX Microscaling

NPU Neural Processing Unit

PE Processing Element

PPA Performance Power Area

SIMD Single-Instruction Multiple-Data

SOTA State Of The Art

SRAM Static Random Access Memory

TCDM Tightly Coupled Data Memory

TOPS Tera Operations Per Second

TPU Tensor Processing Unit

VLSI Very Large-Scale Integration

iv

List of Figures

1.1 Evolution of machine learning model size, GPU performance and Moore’s law across the

past decade. Figure obtained from [3] . 1

2.1 Comparison of FP32 and MXINT8 data format, where a 8-bit block scale S is shared across

k INT8 elements. Depicted in orange is the exponent/scale and in red the mantissa/integer

element. 3

2.2 MXINT8 memory savings w.r.t. FP32 for MX block sizes 64 ≥ k ≥ 1 4

2.3 Dot product between two vectors in MXINT8 data format ~a · ~b. After computing the dot

product of a block in its element-wise INT8 data format, the result is casted to FP32 and then

scaled with Sa and Sb. This scaled FP32 result is then accumulated in order to compute the

dot product across multiple MX blocks. 4

2.4 Matrix multiplication of MX quantized matrices A and B with respective scales Sa, Sb for an

MX block size k = 2 and inner dimension L = 4 . 5

2.5 Dataflow of the input x, weight w and output c matrix within a 2× 2 output stationary systolic
array . 5

2.6 Output stationary processing element (PE) for INT8 MAC operations 6

2.7 Control flow and output multiplexing for a row of PEs . 6

2.8 Optimized output selection design. The pop signal is extended to match the integer output

bit width, and passed as an operand to the AND-gate together with the PE sum. 6

2.9 0-Dimensional systolic array . 7

2.10 1-Dimensional systolic array with M = 4 . 7

2.11 2-Dimensional systolic array with (M,N) = (4, 4) . 8

2.12 3-Dimensional systolic array with (M,N,P) = (4, 2, 2) . 8

2.13 4-Dimensional systolic array with (M,N,P,Q) = (2, 2, 2, 2) 9

2.14 5-Dimensional systolic array with (M,N,P,Q,R) = (2, 2, 2, 2, 4) 9

2.15 Tranformer encoder and multi-head attention block. S: Sequence length, E: Embedding

size, P : Projection space, H: Number of heads. Figure obtained from [9] 10

3.1 Hybrid Systolic Array (HSA) architecture. Figure obtained from [10] 11

3.2 Precision-scalable MAC unit for INT8 (a), FP8/FP6 (b) and FP4 (c), respectively. The

multiplication units are indicated in yellow, the L1 adder in purple, and the L2 adder in red.

Figure obtained from [11] . 12

3.3 PE array, that handles the multiplication of two 64-element square blocks. The design is

implemented with 4× 16 PE arrays. Figure obtained from [11] 13

3.4 Computational flow of Jack Unit for bfloat16 accumulation of mantissas. Figure obtained

from [12] . 13

3.5 Block diagram of a NPU core. Figure obtained from [14] . 14

4.1 High-level overview of the MXITA architecture. Intra-block INT8 arithmetic is performed in

the systolic array. FP32 arithmetic is performed across blocks. 15

4.2 Complete MXITA architecture with 4D systolic array, normalizers, accumulators and combiner 15

4.3 4D systolic array design with output-stationary PEs in configuration (M,N,P,Q) = (2, 2, 2, 2).
Depicted is an MX block size k = 2 and an inner dimension length L = 4 as input matrix

multiplication operands . 16

4.4 Functional representation of the 4D systolic array . 17

4.5 Temporal order of 4-D systolic array output generation . 17

4.6 Normalizer unit, containing a pipelined INT to FP32 cast unit, and 8-bit adders for exponen-

tiating the FP32 output with MX scales . 18

v

List of Figures vi

4.7 Distribution of MX input (red) and weight (blue) scales over output (green) matrix elements,

for a 2× 2 output matrix . 18

4.8 Close-up diagram for the connections of the normalizer units for a 4D systolic array with

dimensions (M,N,P,Q) = (2, 1, 2, 2) and input/weight scale FIFOs 19

4.9 Diagram for input and weight scale sharing over the 4D systolic array output with dimensions

(M,N,P,Q) = (2, 2, 2, 2) . 19

4.10 Accumulator architecture for 4D systolic row (n, p, q) = (1, 1, 1). This design only works

when the FP adder has less than M pipeline registers . 20

4.11 Output combiner design and dataflow for (M,N,P,Q) = (2, 2, 2, 2) 21

4.12 Snitch cluster, MXITA accelerator, wide TCDM interconnect for data transfer and narrow

AXI interconnect for configuration . 21

4.13 HWPE integration for MXITA with parameters (M,N,P,Q) = (8, 4, 4, 4) 22

4.14 Example 512b TCDM transactions for (M,N,P,Q) = (8, 4, 4, 4) 23

5.1 Computational flow for the transformer multi-head attention layer as depicted in Figure 2.15,

where A = softmax(Q×Kᵀ) and FFN represents the feed-forward network 25

5.2 Alternative computational flow for the multi-head attention layer 25

5.3 Functional verification setup . 26

6.1 Area breakdown (in µm2) of the MXITA accelerator for (M,N,P,Q) = (8, 4, 4, 4) 27

6.2 Area-time plot for (M,N,P,Q) = (8, 4, 4, 4) and different target clock frequencies 27

6.3 Area breakdown of Snitch cluster in mm2 . 29

6.4 Physical implementation of Snitch cluster with MXITA in configuration (M,N,P,Q) =
(8, 4, 4, 4) over a 2× 2 mm2 floorplan area . 29

6.5 Placement of 4D systolic array with configuration (M,N,P,Q) = (8, 4, 4, 4). Each group

contains PQ = 16 INT8 MAC units . 29

8.1 TCDM architecture and memory organization of input and output matrix operands 32

8.2 Output dataflow combiner architecture for transposing the output operand matrix of the 4D

systolic array . 33

8.3 L1 TCDM output stationary operand reuse for two input and weight tile operands each. . . 33

List of Tables

6.1 Synthesis results of the MXITA accelerator for different configurations, showing the trade-off

between peak MAC throughput, area, and timing across varying M,N,P,Q parameters. . . 28

6.2 Comparison of state-of-the-art accelerators and the proposed MANTA. Power results for

MXITA are not yet obtained. 30

vii

1
Introduction

The rapid advancement of machine learning algorithms has created a growing demand for specialized high-

performance computing. For example, natural language models have shown to exhibit power-law scaling

in loss with respect to the model size [1], highlighting the increasing computational requirements. While

Moore’s Law [2] historically predicted exponential growth in transistor density, this trend is approaching

physical and practical limitations. As a result, meeting future computational demands will require innovations

not only at the software application level but also in the design and architecture of computing hardware.

Specifically, at the software application level, the neural network architecture may be changed and quantized

in order to reduce the computational demands. Furthermore, hardware architectures can be developed

such that patterns found within the computational flow of neural networks can be accelerated as efficiently

as possible. This includes for example reuse of data to reduce memory accesses or exploiting parallelism

for more efficient computations.

Figure 1.1: Evolution of machine learning model size, GPU performance and Moore’s law across the past

decade. Figure obtained from [3]

To reduce the computational and storage costs of deep learning models, low bit width formats such as

INT8 and FP16 are widely adopted in AI-focused hardware, including Graphics Processing Units (GPUs),

Tensor Processing Units (TPUs) [4], and edge inference devices. The main method to reduce neural

network model sizes is through quantization, which involves transforming model weights represented by a

high-precision floating-point format (i.e. FP32) to a lower precision such as 8-bit integer or floating-point

format. This can be done by for example quantizing the model after training (post-training quantization), or

with additional fine-tuning of the model after quantization (quantization-aware training). Such quantized

neural networks rely on scaling factors at the neural network layer level to manage the limited dynamic

range, but often fall short in preserving accuracy.

A more effective quantization strategy involves sharing scaling factors across fine-grained sub-blocks

1

2

within the data format. Microscaling (MX) quantization [5] introduces a family of micro-scaled data types

that reduce memory consumption while preserving accuracy levels comparable to FP32 for both training

and inference. However, these formats require specialized mixed integer–floating point arithmetic to enable

efficient computation.

In neural network inference, matrix multiplications typically dominate execution time. To accelerate

these operations, two major hardware paradigms have been explored: SIMD architectures and systolic

arrays. Systolic arrays are often favored because of their simple and regular structure, built from small,

fast processing elements, and their ability to provide an efficient balance between computation and I/O

bandwidth [6]. Despite these advantages, only limited research has addressed the efficient mapping of

MX quantized matrix multiplications onto systolic arrays.

This thesis investigates the design and evaluation of systolic-array architectures tailored for MX quan-

tized matrix multiplications. The focus is placed on both the MX data format and corresponding hardware

design techniques required to accelerate MX arithmetic efficiently, with a specific emphasis on neural

network workloads.

2
Background and Related Work

2.1. Microscaling (MX) data format
In the MX data format [5], a data format is proposed where a per-block scaling factor S is shared with k
narrow integer or float-point individual elements. The MX specification supports blocks with 4-bit to 8-bit

wide FP elements, or INT8 elements, where elements a in a block share an 8-bit exponent scale value

S as illustrated in Fig. 2.1. With this format, the memory consumption can be reduced compared to only

using a FP32 datatype while maintaining a competitive neural network inference and training accuracy. In

this thesis, we focus on the MXINT8 data format from the MX specification, as MXINT8 has shown to be a

compelling alternative to FP32 for direct-cast inference [5].

FP32
exp

INT8
mantissa

smaller

8b

exp

Figure 2.1: Comparison of FP32 and MXINT8 data format, where a 8-bit block scale S is shared across k
INT8 elements. Depicted in orange is the exponent/scale and in red the mantissa/integer element.

The memory reduction gains from using an MXINT8 data format compared FP32 can be quantified

based on the MX block size k. For instance, the memory consumption for a single MXINT8 block of k
elements will require 8k+8 bits, while the same amount of elements in FP32 will require 32 bits. Therefore,
the memory reduction gains can be defined as 32k

8k+8 , which is plotted in Fig. 2.2. For larger block sizes

k → ∞, it can easily be seen that the theoretical memory reduction gain is 4×, as an INT8 element is

4 times smaller than a FP32 element. However, it is imperative to determine an optimal block size k to

balance the memory reduction tradeoff with the neural network inference accuracy. For this, a range of

block sizes 8 ≤ k ≤ 32 can therefore chosen for a memory reduction 3.56× to 3.88×. Nevertheless, prior
work suggests that k = 16 offers the best trade-off between accuracy retention and memory efficiency [7].

While MX quantization provides a significant amount of memory reduction for minimal neural network

inference accuracy loss, arithmetic with MX datatypes involve computations that require specialized

hardware in order to be executed efficiently. For example, a dot product between two MX blocks 2Sa~a · 2Sb~b
can be represented as 2Sa+Sbc = 2Sa+Sb(~a ·~b). While ~a ·~b can be computed in their native data format, for

vectors longer than k where the vector will consist of multiple blocks i.e. ~a = {2Sa,1 ~a1, 2
Sa,2 ~a2} will require

inter-block arithmetic where the dot-product results are first casted to FP32. For example, the dot product

3

2.2. Systolic arrays 4

1 8 16 32 64
MX block size

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

M
em

or
y

sa
vi

ng
s

Figure 2.2: MXINT8 memory savings w.r.t. FP32 for MX block sizes 64 ≥ k ≥ 1

in this case will be represented as cFP32 = 2Sa,1+Sb,1 ~a1 ~b1 + 2Sa,2+Sb,2 ~a2 ~b2, where the addition of the partial

dot product results has to be performed after conversion to a common data format such as FP32. For

quantizing a block of FP32 results, the scaling value Sc is set to be the largest power-of-two smaller than

max(~c).

Intra-block arithmetic Inter-block arithmetic

Figure 2.3: Dot product between two vectors in MXINT8 data format ~a ·~b. After computing the dot product

of a block in its element-wise INT8 data format, the result is casted to FP32 and then scaled with Sa and

Sb. This scaled FP32 result is then accumulated in order to compute the dot product across multiple MX

blocks.

In this thesis, we focus on MX-quantized neural network inference, where matrix multiplications typically

represent the dominant computational kernel. An example of an MXINT8 matrix multiplication is shown in

Fig. 2.4, involving matrices A and B, which in this work will be referred to as the input and weight matrices,

respectively.

2.2. Systolic arrays
Matrix multiplications are commonly accelerated using systolic arrays. Systolic arrays, a concept introduced

by Kung [6], are computing architectures composed of simple Processing Elements (PEs) interconnected

in a manner that allows data to flow through the system in a ”rhythmic” fashion, as illustrated in Fig. 2.5.

In a typical 2-dimensional configuration, the PEs are arranged in a grid and connected both vertically

and horizontally. The input x (red) and weight w (blue) matrix operands are fed into the array via shift

registers, which introduce skewing to align operands appropriately across the PEs. The resulting output

matrix (green), denoted as c, is time-multiplexed and skewed across the rows. Skew buffers at the output

2.2. Systolic arrays 5

8b INT8 INT8

8b

FP32

Figure 2.4: Matrix multiplication of MX quantized matrices A and B with respective scales Sa, Sb for an

MX block size k = 2 and inner dimension L = 4

stage serve to remove the temporal skew introduced during data propagation, such that the final results

are correctly aligned.

(a) (b) (c)

(d) (e)

Figure 2.5: Dataflow of the input x, weight w and output c matrix within a 2× 2 output stationary systolic
array

This design offers several advantages that make it particularly well-suited for machine learning work-

loads. First, high throughput and parallelism are achieved as multiple PEs can perform computations

simultaneously. Second, the propagation of operands through the systolic array enables reuse of values,

thereby reducing the number of accelerator memory accesses required. Finally, the regular and modular

structure of systolic arrays allows for scalability of the systolic array size, making them highly amenable to

Very-Large Scale Integration (VLSI) implementations.

Output Stationary Processing Element (PE)

In this work, we focus on output-stationary systolic arrays, where each PE performs Multiply-Accumulate

(MAC) operations over a single output matrix element while the input x and weight w operands propagate

through the PE, as illustrated in Fig. 2.6. As the input x and weight w flow sequentially through the

processing element, an INT8 MAC operation onext = xw + o is performed using the current accumulated

value o.

2.2. Systolic arrays 6

Once the PE has completed the accumulation for an entire dot product, the resulting output o is

transmitted to the output matrix. This transfer is initiated by a ”pop” signal, which propagates throughout

the systolic array, as illustrated in Fig. 2.7. The pop signal serves a two functions: it acts as a select signal

for multiplexing the output o, and simultaneously indicates the validity of the output through a ”write enable”

signal.

Figure 2.6: Output stationary processing

element (PE) for INT8 MAC operations

pop

write
enablewrite

enable

Figure 2.7: Control flow and output multiplexing for a row of

PEs

As the number of PEs in a row increases, the number of multiplexers in a chain increases. This chain

of multiplexer will become the critical path of the entire design if the systolic array scales up. As the pop

signal over a row of PEs is a one-hot vector, the multiplexer chain can instead be optimized to AND/OR

gates as illustrated in Fig. 2.8.

pop
21b 21b

Figure 2.8: Optimized output selection design. The pop signal is extended to match the integer output bit

width, and passed as an operand to the AND-gate together with the PE sum.

Multidimensional systolic arrays

Output-stationary PEs can be interconnected in different systolic array arrangements. Such systolic array

architectures for matrix multiplication with generic datatypes such as FP32 or INT8 will be presented. These

systolic array designs can be classified according to the degree of operand reuse and the broadcasting

employed, where we introduce the concept of ”multidimensional” systolic arrays. The most basic form is

the 0-dimensional systolic array, illustrated in Fig. 2.9, which exhibits neither operand reuse nor operand

broadcasting. In this design, each PE is responsible for accumulating only a single scalar value, corre-

sponding to one element of the output matrix (green), i.e., a 0-dimensional ”dot”. During each computation

2.2. Systolic arrays 7

cycle, the PE receives and processes elements from the inner dimension L of the input (red) and weight

(blue) matrices to perform the partial accumulation.

Figure 2.9: 0-Dimensional systolic array

Extending this concept, a 1-dimensional systolic array is constructed by arranging multiple PEs into

a row of length M , as shown in Fig. 2.10. This organization enables reuse of the input matrix across M
processing stages. To facilitate this reuse, shift registers are introduced for the weight matrix, ensuring that

its elements are supplied in a skewed manner relative to the shared input matrix. The outputs produced by

the PEs are then multiplexed to form the final result, which requires M cycles to fully propagate through

the array.

Figure 2.10: 1-Dimensional systolic array with M = 4

The most conventional and widely adopted architecture for matrix multiplications is the 2-dimensional

systolic array, illustrated in Fig. 2.11. In this design, PEs are organized into an M ×N grid, allowing for

simultaneous computation of multiple output elements. The structure exploits data reuse by propagating the

input matrix elements alongM columns and the weight matrix elements along the N row. As a result, each

PE receives a unique pair of operands that are reused across the array, thereby improving computational

efficiency and reducing memory bandwidth requirements.

To support this data movement, skew buffers are employed, similar to the 1-dimensional case. In

a 2-dimensional systolic array, skewing is required for both the input and weight matrices to ensure

proper temporal alignment of operands as they traverse the systolic array. Additionally, shift registers are

necessary for the output matrix to correctly synchronize partial sums generated across multiple PE rows.

An extension of the 2-dimensional systolic array is the 3-dimensional systolic array, illustrated in

Fig. 2.12. This architecture is constructed by broadcasting the weight matrix operand across P parallel

2-dimensional systolic arrays. Alternatively, the same construction can be achieved by broadcasting the

input matrix operand instead. Each of these P 2-D systolic arrays is responsible for producing M ×N
output matrix elements, which each form a 2-dimensional ”plane” of the output space. By stacking P planes,

2.2. Systolic arrays 8

Figure 2.11: 2-Dimensional systolic array with (M,N) = (4, 4)

the overall structure produces a 3-dimensional output ”volume”, with the additional P axis serving as the

third dimension. Notably, the 3-dimensional organization has less sequential logic for skewing its operands,

compared to its 2-dimensional counterpart. In particular, when the weight matrix is broadcast across the

P planes, as shown in Fig. 2.12, the broadcast effectively acts as a skip connection, directly delivering

operands to subsequent PEs. This bypass mechanism eliminates the need for weights to propagate

further along theN dimension, thereby reducing the buffering requirements compared to lower-dimensional

systolic array designs.

Figure 2.12: 3-Dimensional systolic array with (M,N,P) = (4, 2, 2)

Extending the concept further, a 4-dimensional systolic array can be realized by broadcasting not

only the weights, as in the 3-dimensional case, but also the input matrix operand. In this design, both

operands are distributed across a 2-dimensional grid of 2-dimensional systolic arrays, thereby further

2.2. Systolic arrays 9

reducing the amount of sequential logic associated with operand propagation. Moreover, the architecture

enables propagation of all data through the array in only M cycles, attaining a peak throughput of NPQ
output elements per cycle. While the 4-dimensional systolic array offers significant advantages in terms

of parallelism and throughput scaling, it also introduces new implementation challenges. In particular,

the routability of the design becomes a primary concern during the place-and-route stage of the physical

design. Because both inputs and weights are broadcast simultaneously, their data paths may overlap,

which scales with the additional broadcast dimensions P and Q. This increased wiring complexity may

lead to congestion in its physical implementation, which can offset the theoretical area reduction.

Figure 2.13: 4-Dimensional systolic array with (M,N,P,Q) = (2, 2, 2, 2)

A 5-dimensional systolic array (Fig. 2.14) can be constructed by adding a stationarity R in the inner

dimension L. In the hardware implementation, it represents turning each PE into a dot-product and

accumulate unit. Each PE receives R input and weight elements per cycle, and requires R times less

cycles to produce the final output matrix result.

Figure 2.14: 5-Dimensional systolic array with (M,N,P,Q,R) = (2, 2, 2, 2, 4)

2.3. Transformer Neural Networks 10

2.3. Transformer Neural Networks
Transformers, introduced by Vaswani et al. [8], depart from recurrent and convolutional architectures by

leveraging self-attention to capture long-range dependencies. After surpassing RNNs in accuracy at similar

cost, they have been adopted across text, image, audio, and video, highlighting both their general-purpose

nature and the pressing need for efficient hardware acceleration.

In this thesis, we use the transformer as a representative workload, focusing specifically on its core

computational kernel: Multi-Head Attention (MHA), illustrated in Fig. 2.15. Given an input of size S × E,
where S is the sequence length and E the embedding dimension, three linear transformations generate

the Query (Q), Key (K), and Value (V) matrices. Each has size S × P , with P denoting the projection

dimension, and these transformations are realized as dense matrix multiplications between the input and

learned weight matrices.

Figure 2.15: Tranformer encoder and multi-head attention block. S: Sequence length, E: Embedding

size, P : Projection space, H: Number of heads. Figure obtained from [9]

The first major operation in attention is the computation of the attention scores through the matrix

multiplication Q × Kᵀ, producing an S × S matrix A, which is in turn followed by a softmax function

to normalize the scores into probabilities. After computing the softmax of the attention matrix A, it is
multiplied by the Value matrix V to generate the weighted output, a second large matrix multiplication. This

step distributes the attention scores to the input token representations. Multi-head attention extends this

computation across multiple heads, each with independent sets of Q, K, and V projections. The outputs

of all heads are then concatenated and passed through a final linear projection, producing an output of

size S × E that matches the input dimensions.

Within the multi-head attention (MHA) layer, illustrated in Fig. 2.15, it should be noted that the softmax

operation is performed on the Q×Kᵀ result, as well as the layer normalization being applied to both the

MHA output and the feed-forward network. The softmax function σ, defined in Equation 2.1, is a widely

used activation function in machine learning workloads. An analysis of these auxiliary functions is crucial,

as these comes with their corresponding computational requirements and data dependencies.

Given an input vector z, the softmax is computed by exponentiating each element zi, followed by

normalizing each exponentiated term ezi with the sum of all exponentiated elements
∑K

j=1 e
zj . It is

important to note that the exponential operation constitutes a computationally expensive step, as it requires

floating-point arithmetic. Although prior works have investigated numerical approximation techniques to

reduce the computational burden of the exponential, such methods are beyond the scope of this thesis.

σ(z)i =
ezi∑K
j=1 e

zj
(2.1)

Furthermore, the computation of the normalization term
∑K

j=1 e
zj introduces a data dependency on the

entire input vector z. This dependency implies that a complete vector (i.e., either a row or a column) of the

output matrix must be computed before the softmax operation can be initiated.

3
Related work

3.1. Hybrid Systolic Array (HSA)
The Hybrid Systolic Array (HSA) [10], proposed by Chen et al., is a systolic array architecture designed

to accelerate both MMMs and MVMs, with a particular focus on workloads associated with LLM. In LLM,

the prefill stage predominantly involves MMMs, whereas the decode stage is dominated by MVMs. Given

that the decode stage accounts for approximately 80% of the runtime, there is a need for accelerators

optimized for MVMs operations.

In HSA, the prefill stage leverages INT8 activation and weight matrices, during which the array is

configured as a standard output-stationary systolic array, as illustrated in Fig. 3.1b. For the decode stage,

the HSA can be reconfigured to perform MVMs using INT8 activation vectors and MXINT4 weight matrices

(Fig. 3.1c). In this mode, the MXINT4 weights are de-quantized to INT8 prior to the MAC operation within

each PE. This de-quantization is achieved by shifting the weights and enabling the appropriate “bucket”

(or row of PEs) based on the most significant bits (MSBs) of the scale.

To improve PE utilization, the HSA is partitioned into PE clusters (PCs), as depicted in Figure 3.1a. This

arrangement allows the activation vector to be broadcast across multiple clusters, increasing throughput

with the support of several SRAM blocks, which collectively occupy approximately 30% of the total design

area. Finally, Chen et al. also propose more efficient hardware for computing various post-processing

functions; however, the design of such computational units fall outside the scope of this thesis.

Figure 3.1: Hybrid Systolic Array (HSA) architecture. Figure obtained from [10]

It should be noted that the HSA does not achieve peak memory bandwidth utilization or full PE utilization

during the MMM and MVM dataflows, respectively. In the MMM dataflow, the weight SRAMs are effectively

underutilized because all PEs are connected to form a single large systolic array. As a result, only

one SRAM module is actively accessed, leaving the remaining weight SRAM modules idle and causing

suboptimal memory bandwidth utilization.

11

3.2. Precision-Scalable Hardware 12

During the MVM dataflow, total PE utilization is limited to only 25%, as illustrated in Fig. 3.1c, due to

the operation of the bucket selector. By selecting only a single row of PEs per cycle, the remaining rows

remain idle, preventing the accelerator from achieving its maximum throughput.

Finally, the flexibility of HSA in supporting different MX block sizes is constrained by the row length of

the systolic array. When the length of an MX block is shorter than the systolic array row length, the array

must be further partitioned ”vertically” into separate column sets, introducing additional complexity and

limiting scalability.

3.2. Precision-Scalable Hardware
The precision-scalable hardware architecture proposed by Cuyckens et al. [11] incorporates multiple MX

formats within each PE, as shown in Figure 3.2. The overall resource usage associated with supporting

these multiple MX formats is reduced by sharing arithmetic units and by reorganizing the presentation of

data to the MAC unit for different MX configurations. Each PE performs a multiplication operation in its

native element-wise data type, after which its results are gradually aggregated into the L1 and L2 adders

in FP32 format. This FP32 result is then accumulated in each PE, requiring an FP32 adder for each MAC

unit, which take up at least 27% of the total design area.

Figure 3.2: Precision-scalable MAC unit for INT8 (a), FP8/FP6 (b) and FP4 (c), respectively. The

multiplication units are indicated in yellow, the L1 adder in purple, and the L2 adder in red. Figure obtained

from [11]

These PEs are organized into a systolic array, as illustrated in Figure 3.3, specifically designed to

accelerate both learning and inference workloads in robotics applications. By implementing square blocks

for the tiling of MMM operands, the memory footprint required for performing matrix transposes can be

significantly reduced.

Although the precision-scalable MACs provide greater flexibility by supporting multiple MX data formats,

the results reported by Cuyckens et al. [11] indicate that the MXINT8 format consistently achieves near-

optimal performance in terms of neural network inference and training accuracy compared to other 8-bit MX

3.3. Jack Unit 13

Figure 3.3: PE array, that handles the multiplication of two 64-element square blocks. The design is

implemented with 4× 16 PE arrays. Figure obtained from [11]

formats (i.e. E4M3 MXFP8 or E5M2 MXFP8). This brings into question the need for supporting different

MX formats. Consequently, the additional area overhead required to support multiple MX formats can be

justified primarily by the memory savings achieved through smaller MX formats, which must be balanced

against potential reductions in training and inference accuracy.

3.3. Jack Unit
Similar to the precision-scalable hardware proposed by Cuyckens et al. [11], the Jack Unit [12] features a

MAC unit that supports integer, floating-point, and MX data formats through hardware reuse across formats.

As illustrated in Fig. 3.4, accumulation of the output matrix is performed in bfloat16 rather than FP32. While

this approach lowers area consumption, it introduces a trade-off in reduced numerical precision.

Figure 3.4: Computational flow of Jack Unit for bfloat16 accumulation of mantissas. Figure obtained

from [12]

3.4. Tensor Processing Unit (TPU) 14

3.4. Tensor Processing Unit (TPU)
The TPU [13], or more generally a NPU, is designed to accelerate matrix multiplications and convolutions,

which constitute the most computationally intensive operations in DNN. As illustrated in Figure 3.5, the

NPU comprises a systolic array, a vector processing unit, a set of vector registers, and SRAM buffers that

store both instructions and vector data.

Figure 3.5: Block diagram of a NPU core. Figure obtained from [14]

The SRAM buffers are populated through DMA operations, which execute independently of the ALU

core pipeline. This approach allows computation to be overlapped with data movement between on-chip

SRAM and off-chip HBM. Within the vector units, multiple SIMD lanes access the vector memory via

load/store instructions and perform computations using the vector register files. The vector units also

manage data transfers from the vector register file to the systolic array FIFO buffers, ensuring efficient

feeding of the processing elements.

A key advantage of the NPU lies in its ability to perform general post-processing computations within the

vector units, unlike specialized hardware that lacks programmability. Furthermore, reuse of data elements

within the vector memory and vector register files can significantly reduce off-chip data transfers. However,

current NPUs do not support MX matrix multiplications.

4
Architecture

In this chapter, we present the hardware architecture of MXITA, with its high-level modules illustrated

in Fig. 4.1. The MXITA accelerator is then integrated with a RISC-V processor cluster.

4D Systolic Array Accumulator Combiner

Intra-block arithmetic Inter-block arithmetic

Normalizer

Figure 4.1: High-level overview of the MXITA architecture. Intra-block INT8 arithmetic is performed in the

systolic array. FP32 arithmetic is performed across blocks.

Fig. 4.2 depicts the connection between high-level modules of the MXITA architecture. For intra-block

INT8 arithmetic, MXITA employs a 4D systolic array for INT8 MAC operations. The integer outputs of this

systolic array are subsequently converted to FP32 and scaled with the MX block scales by the normalizer.

These resulting scaled FP32 values are accumulated and finally forwarded to the output dataflow combiner.

norm

norm

norm

norm

norm

norm

norm

norm

FIFO

Accumulator Combiner

FIFO

FIFO
FIFO

FIFO

FIFO
FIFO

FIFO
FIFO

FIFO

FIFO
FIFO

FIFO
FIFO

FIFO

FIFO
FIFO

FIFO
FIFO

FIFO

Figure 4.2: Complete MXITA architecture with 4D systolic array, normalizers, accumulators and combiner

15

4.1. 4D Systolic Array 16

4.1. 4D Systolic Array
The primary motivation for adopting a 4D systolic array design instead of a conventional 2D systolic array

lies in the time-sharing of the inter-block FP32 arithmetic units. In a 2D systolic array, the time required to

fully empty the systolic array relies on its row length M , requiring M cycles to propagate its output. For an

output-stationary PE as illustrated in Fig. 2.6, while intra-block INT8 MAC operations are performed, an MX

dot-product result for an MX block size k is produced every k cycles. This introduces the constraint k ≥ M ,

which in turn limits the feasible size and scalability of the 2D systolic array to the minimum supported MX

block size, denoted as kmin. By contrast, the 4D systolic array used in MXITA (Fig. 4.3) avoids this limitation

by ”partitioning” the conventional 2D systolic array into a 2D grid of smaller 2D systolic arrays. With this

approach, the systolic row length M can be reduced to support smaller MX block sizes, while additional

parameters (N,P,Q) allow for scaling up the 4D systolic array to achieve a comparable throughput to

conventional 2D systolic arrays.

The 4-dimensional systolic array, shown in Fig. 4.3, is parameterized by four dimensions (M,N,P,Q).
The parameters M and N specify the number of sequential stages for the activation and weight matrices,

respectively, while P and Q define the degree of broadcasting for the activation and weight matrices.

In this design, the shift registers for de-skewing the systolic output matrix are omitted (as opposed to

the 4D systolic array design presented in Fig. 2.13), thereby reducing the amount of sequential logic

required for implementing the 4D systolic array. In addition to the 4D systolic array, a finite state machine

(FSM) manages operand transactions by counting up to the MX block size k for each transaction. After k
transactions have been issued to the systolic array, the accumulated results are propagated (or “popped”)

using the same mechanism described in Fig. 2.7.

Figure 4.3: 4D systolic array design with output-stationary PEs in configuration (M,N,P,Q) = (2, 2, 2, 2).
Depicted is an MX block size k = 2 and an inner dimension length L = 4 as input matrix multiplication

operands

4.2. Normalizer 17

An alternative view of the 4D systolic array is shown in Figure 4.4, where it can be interpreted as a

2D array of MN nodes, each containing PQ PEs. These nodes form PE “islands” or ”nodes”, with each

node producing a PQ-sized sub-matrix per cycle (highlighted in Fig. 4.3). This functional representation

emphasizes a key advantage of the 4D design: reduced sequential logic for propagating input and weight

matrices. In Fig. 4.3, each PE has a flip-flop after the operand broadcast, but equivalently, a flip-flop can

be placed before the broadcast as in Fig. 4.4 to further minimize the amount of sequential logic.

node

Figure 4.4: Functional representation of the 4D systolic array

With the functional representation shown in Fig. 4.4, the temporal order in which the nodes produce

output results (as illustrated in Fig. 4.5) becomes more apparent. The temporal order of which node

generates an output results is identical to a 2D systolic array, except that each node produces a PQ
sub-matrix instead of a single output element.

(a) (b) (c)

Figure 4.5: Temporal order of 4-D systolic array output generation

4.2. Normalizer
The normalizer unit is responsible for dequantizing the results produced by MX arithmetic, ensuring that

outputs can be accumulated in a consistent data format (i.e. FP32) across different MX blocks. As

illustrated in Figure 4.6, this process involves first casting the integer results generated by the systolic

array into an FP32 representation. The corresponding block scale is then applied by adding its value to

the FP exponent, such that the dequantized value of the partial output matrix sum is represented in FP32.

The main complexity of the normalizer architecture stems from the manner in which MX scales are

mapped onto the output results of the 4D systolic array. As illustrated in Fig. 4.7, the output matrix element

crc in a given row r and column c corresponds directly to scale values in the same row of the input matrix

Sr and the same column of the weight matrix Sc. For instance, the output element cwy, located at row w

4.2. Normalizer 18

INT -> FP32
cast

mantissa, sign

input
scale

weight
scale

scaled FP32exponent

Figure 4.6: Normalizer unit, containing a pipelined INT to FP32 cast unit, and 8-bit adders for

exponentiating the FP32 output with MX scales

and column y, is computed from row w of the input matrix and column y of the weight matrix. Consequently,

this element must be normalized using the scales associated with row w of the input and column y of the

weight matrix.

Figure 4.7: Distribution of MX input (red) and weight (blue) scales over output (green) matrix elements, for

a 2× 2 output matrix

In Fig. 4.8, the connections are illustrated for a single row of ”nodes” n = 1 of the 4D systolic array.

The input of each normalizer unit is time-multiplexed across M elements of the systolic array. As all

output matrix elements crc within the same output matrix row r or column c share the same input or weight

scale respectively, these scales are broadcasted to the corresponding normalizer units. On top of this

spatial dataflow of input and weight scale distribution, the weight scale distribution consists of an additional

temporal dataflow. For example, in Fig. 4.8, weight scale FIFO 1 is matched to columns 1, 3. As these
columns are time multiplexed to the normalizer input, new weight scales need to be retrieved every cycle.

Consequently, the weight scale FIFOs are popped for each cycle when the systolic array produces an

output, while the input scale FIFOs are popped once every k cycles for an MX block size k.

As Fig. 4.8 only illustrates the normalizer dataflow for N = 1, scale reuse can also extend along

the N dimension, as shown in Fig. 4.9. Weight scales are propagated down the columns, since PEs in

subsequent rows r may share the same column c. Because each row in theN dimension produces outputs

one cycle later, additional flip-flops are inserted to correctly skew the weight scales to each island row.

These flip-flops also manage the timing of the pop signal for the input scale FIFOs, ensuring that each PE

receives the appropriate scales at the correct cycle.

Finally, the input to the normalizer units from the systolic array will be stalled if any of the following

conditions occur when the systolic array is about to produce an output:

• The input scale FIFOs are empty.

• Any weight scale FIFOs contain fewer than M scales.

• The output of the normalizer is blocked.

These conditions ensure that the normalizer always has the required scales and space to process the

systolic array outputs correctly.

4.2. Normalizer 19

norm

norm

norm

norm

Input scale
FIFO 1

Input scale
FIFO 2

Weight scale
FIFO 1

Weight scale
FIFO 2

Figure 4.8: Close-up diagram for the connections of the normalizer units for a 4D systolic array with

dimensions (M,N,P,Q) = (2, 1, 2, 2) and input/weight scale FIFOs

norm

norm

norm

norm

Input scale
FIFO 1

Input scale
FIFO 2

Weight scale
FIFO 1

Weight scale
FIFO 2

norm

norm

norm

norm

Input scale
FIFO 3

Input scale
FIFO 4

pop

Figure 4.9: Diagram for input and weight scale sharing over the 4D systolic array output with dimensions

(M,N,P,Q) = (2, 2, 2, 2)

4.3. Accumulator 20

4.3. Accumulator
The purpose of the accumulator is to perform inter-block accumulation of the partial sums generated by a

MX dot product. This accumulation is carried out for each element of the output matrix. Fig. 4.10 illustrates

the accumulator architecture for a single systolic array row and its connection to the normalizer unit, as

this module is replicated across all NPQ systolic array rows. Each accumulator handles a single output

element per cycle, while storing M partial sums in a looped FIFO buffer.

INT
Normalizer

FIFO

FP32 FP32
FP adder

Intra-block arithmetic Inter-block arithmetic

Systolic Array

Figure 4.10: Accumulator architecture for 4D systolic row (n, p, q) = (1, 1, 1). This design only works

when the FP adder has less than M pipeline registers

When the dot product result of the first block along the inner dimension arrives, the output accumulator

FIFO is initially empty. In this case, the second FP adder operand is 0, and the FIFO is not popped. The

resulting FP32 sums are pushed into the output accumulator FIFO if the current block is not the last block.

On the final block, the FIFO is emptied as its FIFO output data is fed into the second operand of the FP32

adder.

4.4. Output combiner
The output combiner illustrated in Fig. 4.11 reorganizes the 4D systolic array output matrix into a 2D output

matrix by time-multiplexing NPQ FIFOs of M deep over the Q dimension. This process reduces the

number of required output ports from NPQ to NP . Furthermore, the output combiner removes the skew

inherent in the systolic array output such that whole columns of the output matrix can be written. At the

peak throughput, the output combiner receives MNPQ FP32 elements every Lmin cycles, and transmits

NP elements each cycle. Therefore, NP ≥ MNPQ
Lmin

has to be valid to match this throughput without any

stalls.

The diagram in Fig. 4.11 illustrates the dataflow for a (M,N,P,Q) = (2, 2, 2, 2) 4D systolic array, which

produces the entire output matrix within three cycles. (a) The first PE island generates PQ elements. (b)

As the next two PE islands produce their outputs in a systolic manner, all output ports of the combiner

have valid data, and elements c11, c21, c31, c41 are popped. (c) Simultaneously, the last PE island’s outputs

are pushed into their corresponding FIFOs.

4.5. Hardware Processing Engine (HWPE) integration 21

(b)

(c)

current Q
(a)

Figure 4.11: Output combiner design and dataflow for (M,N,P,Q) = (2, 2, 2, 2)

4.5. Hardware Processing Engine (HWPE) integration
The MXITA accelerator is integrated with the a multi-processor cluster, as illustrated in Figure 4.12. This

processor cluster consists of several single-cycle RISC-V ”Snitch” cores, and a L1 Tightly Coupled Data

Memory (TCDM) functioning as an accelerator scratchpad. Configuration of the MXITA accelerator is

performed via the narrow AXI interconnect, where the MX block size k and matrix inner dimension L are

set. Additionally, the memory addresses of the input and weight matrices, as well as the corresponding

scales, are provided to the HWPE control module. Once configured, execution is initiated by a Snitch core.

During execution, the HWPE independently accesses the TCDM through the wide TCDM interconnect.

Upon completion, the HWPE signals the Snitch cluster via an interrupt.

Tightly Coupled Data Memory (TCDM)

Bank 0 Bank 1 Bank 31

TCDM Interconnect

Snitch core
MXITA

Narrow AXI Interconnect

64b 64b

64b

64b

64b

512b

configuration

Figure 4.12: Snitch cluster, MXITA accelerator, wide TCDM interconnect for data transfer and narrow AXI

interconnect for configuration

4.5. Hardware Processing Engine (HWPE) integration 22

The HWPE integration is illustrated in Figure 4.13. A HWPE consists of

• The HWPE engine (MXITA accelerator)

• HWPE fence for fencing different dataflows

• FIFOs and data buffers

• HWPE streamer containing sources and sinks for initiating TCDM data transfers

• Multiplexer for multiplexing the different dataflows

• HWPE control module for configuration of the HWPE streamer and engine

The HWPE is parameterized to initiate 512-bit wide transactions with the TCDM. This data width is

chosen based on the required average accelerator bandwidth, which will be discussed in detail in Chapter 5.

Within the HWPE streamer, sources and sinks initiate TCDM read and write transactions, respectively. The

HWPE multiplexer arbitrates which source or sink can initiate the next transaction. For a read transaction,

the returned data is routed from the multiplexer and streamer source to the corresponding data buffer.

As each accelerator data operand may not consume the entire 512-bit packet in a single transaction, the

data element in the HWPE buffers are processed over multiple transactions. To ensure that both the

activation and weight matrix data are available simultaneously for the systolic array, a HWPE fence is

used, guaranteeing that both data packets can be transacted together.

TCDM

HWPE streamer

MXITA

HWPE
fence

Buffer

Buffer

512b

Buffer

HWPE control
peripheral

Buffer

Buffer

mux

FIFO

FIFO

FIFO

FIFO

FIFO

sink

source

source

source

source
128b

256b

128b

32b

512b

input

weight

input scale

weight scale

output

64b
inner dimension, mx block size

Figure 4.13: HWPE integration for MXITA with parameters (M,N,P,Q) = (8, 4, 4, 4)

4.5. Hardware Processing Engine (HWPE) integration 23

An example of TCDM transactions for all MXITA operands is shown in Fig. 4.14. Each TCDM transaction

for the corresponding data operand (input / weight matrix, or scales) has a 512-bit width. This width is

chosen to match the total average accelerator bandwidth, which is larger than the amount of data that

each operand of the MXITA accelerator consumes per cycle. Consequently, the MXITA accelerator can

take multiple transactions per operand to consume an entire 512-bit TCDM packet. For instance, the input

matrix operand requires 8NP = 128 bits per transaction. Therefore, a 512-bit packet can be consumed

over 512
8NP = 4 transactions. In cases where the MXITA accelerator requires fewer than 512 bits in total for

a given MX matrix multiplication operand (e.g., the input scale in Figure 4.14), the remaining data elements

in the packet are padded with zeros.

Transaction 1

TCDM data width

Transaction 2

input DW

weight DW

Transaction 5

output DW

Transaction 3

input scale DW

Transaction 4

weight scale DW

Figure 4.14: Example 512b TCDM transactions for (M,N,P,Q) = (8, 4, 4, 4)

5
Design Implementation

This chapter presents an overview of the targeted performance requirements, which form the basis for

the chosen parameterization of the MXITA architecture. These performance requirements span over not

only the desired accelerator performance and supported workloads, but also the execution of entire neural

network workloads at the system-level. Subsequently, the functional verification methodology of the MXITA

architecture is described.

5.1. Performance analysis
5.1.1. Accelerator parameterization
The required throughput and the minimum supported block size kmin jointly constrain the design space

of MXITA, directly determining the choice of the design parameters (M,N,P,Q). These four parameters

define both the size of the 4D systolic array and the number of instantiated inter-block arithmetic modules,

thereby influencing not only the performance but also the area and timing characteristics of the design. To

ensure that MXITA sustains the desired performance while maximizing reuse of expensive FP32 intra-block

arithmetic hardware, the design parameters are subject to several constraints. Among these, the most

critical are the minimum block size kmin > M , which sets a lower bound on supported MX block sizes k
while maximizing the reuse factor M , and the required throughput, quantified as MNPQ, which dictates

the overall performance target in MACs/cycle. In turn, these design parameters influence the resulting

required memory bandwidth of each accelerator data operand:

• Input bandwidth 8NP bits/cycle

• Weight bandwidth 8MQ bits/cycle

• Input scale bandwidth 8NP
k bits/cycle

• Weight bandwidth 8MQ
k bits/cycle

• Output bandwidth 32MNPQ
Lmin

bits/cycle

The accelerator is designed to support a minimum block size of kmin = 8 and a peak throughput of

MNPQ = 512 MAC operations per cycle. To satisfy these constraints, the design fixes M = 8 and allows

a set of possible combinations for (N,P,Q). Among these, the configuration (M = 8, N = 4, P = 4, Q = 4)
was selected as the baseline configuration for MXITA. It should be noted that, as synthesis does not

account for physical routing effects, the accelerator area scales approximately linearly with the parameters

(M,N,P,Q). Consequently, this introduces a direct trade-off between the reuse factor M of the output

accumulator and the flexibility of the minimum block size kmin, since increasingM improves FP32 hardware

reuse but simultaneously restricts the supported MX block size k.

5.1.2. System-level execution
To support complete application workloads, the HWPE is integrated into the Snitch cluster, enabling

post-processing of the output matrix results. Such post-processing may include activation functions, which

typically require multiple cycles to execute on a Snitch core. Since the output throughput of MXITA depends

on the inner dimension L, namely MNPQ
L FP32 elements per cycle, it is necessary to select a minimum

inner dimension, Ldim, that ensures the system can sustain full throughput under worst-case conditions.

24

5.1. Performance analysis 25

To determine an appropriate value for Ldim and evaluate the performance requirements imposed on the

Snitch cluster, we analyze the DeiT-Ti [15] transformer workload as a representative case study.

The Snitch cores are responsible for several key computations. In particular, they execute the softmax

operation onQ×Kᵀ, as well as the layer normalization applied to both the MHA output and the feed-forward

network. We assume that each Snitch core requires approximately 2 cycles to compute the softmax of

a single element. Due to the data dependencies in the softmax operation, output matrix must first be

transferred to the L1 TCDM before the softmax operation can begin. In MXITA, the softmax is computed

row-wise over the Q×Kᵀ output matrix.

Figure 5.1 illustrates the computation timeline, showing the matrix multiplications accelerated on MXITA

and the operations executed on the Snitch cores (highlighted in orange). The softmax computation can

commence as soon as a set of rows of the Q × Kᵀ matrix becomes available, and can overlap with

subsequent matrix multiplications such as A × V . This overlap is enabled by the tiling of the operand

matrices: for instance, the A× V multiplication can be launched before the entire A matrix is computed,

since only the first NP rows of A are required to calculate the first NP rows of A× V .

Figure 5.1: Computational flow for the transformer multi-head attention layer as depicted in Figure 2.15,

where A = softmax(Q×Kᵀ) and FFN represents the feed-forward network

By reordering the sequence of matrix multiplications, as shown in Figure 5.2, the latency constraint for

computing softmax(Q×Kᵀ) can be further relaxed. Specifically, inserting the computation of V between

Q×Kᵀ and A×V enables the softmax evaluation to be overlapped with the independent computation of V .

This scheduling effectively hides part of the softmax latency on the Snitch cores, providing additional slack

and allowing more cycles for its execution without impacting the overall execution time of the multi-head

attention computation.

Figure 5.2: Alternative computational flow for the multi-head attention layer

While the performance requirements of the Snitch cores can be drastically relaxed with efficient

reordering of computations, MXITA is designed to be a general MX matrix multiplication accelerator for

applications where such patterns might not occur. Therefore, assuming a (worst case scenario of) minimum

inner dimension size Lmin ≥ 128, an output throughput of 512/64 = 4 FP32 elements / cycle can therefore

be matched with the 2 cycles / FP32 element throughput per Snitch core, giving 8 Snitch cores per Snitch

cluster.

While efficient reordering of computations can significantly relax the performance requirements of the

Snitch cores, MXITA is designed as a general-purpose MX matrix multiplication accelerator, targeting

applications where such optimizations may not be applicable. Therefore, under a conservative worst-case

assumption with a minimum inner dimension size of Lmin ≥ 128, the accelerator achieves an output

throughput of 512
128 = 4 FP32 elements per cycle. This throughput can be sustained by provisioning 8 Snitch

cores per cluster, as each Snitch core provides a throughput of 1 FP32 element every 2 cycles.

5.2. Verification 26

5.2. Verification
5.2.1. Functional
The verification of the MXITA accelerator was conducted at three hierarchical levels: the MXITA accelerator

toplevel, the HWPE integration, and the Snitch cluster integration. For the accelerator toplevel, a Python

+ SystemVerilog co-simulation framework was developed, as illustrated in Figure 5.3. In this setup, the

Python golden reference generates random 8-bit input matrices, weight matrices, and scale values, which

are then passed to the SystemVerilog testbench as stimulus for the Design Under Test (DUT). The DUT

produces an output matrix file containing FP32 values, which is subsequently numerically compared

against the FP32 golden reference.

Direct bitwise comparison of FP32 values was avoided, as both the golden reference and the DUT

perform floating-point computations according to slightly different implementations of the FP32 specification.

Instead, a numerical tolerance criterion of |REF− DUT| < 0.0001% was adopted. Within this margin, all

test results matched. However, it was observed that the numerical error between the golden reference

and the DUT increases with larger inner dimensions L, due to the accumulation of a greater number of

errors within the FP32 operations.

Source files:
input_matrix.txt
weight_matrix.txt
input_scale.txt
weight_scale.txt

Golden model output_matrix_ref.txt DIFF

Input files:
input_matrix.mem
weight_matrix.mem
input_scale.mem
weight_scale.mem

Output files:
output_matrix_dut.txtDUT

TB

block_size k
inner_dim L

num_blocks L/k ctrl

Figure 5.3: Functional verification setup

5.2.2. Design for Testability (DFT)
Automated Testpattern Generation

The distribution of the input and output values presented to the DUT is a key characteristic when analyzing

whether the design has been tested under realistic conditions. In practice, the outputs of neural network

layers often exhibit non-uniform distributions, typically centered around zero and characterized by varying

degrees of sparsity. Ensuring that the accelerator produces output distributions consistent with expected

statistical behavior is therefore crucial, as it validates not only the correctness of the numerical computations

but also the representativeness of the testbench stimuli. This, in turn, provides confidence that the design

will behave robustly across real workloads rather than being overfitted to synthetic or overly simplistic test

vectors.

In the verification setup, the 8-bit input, weight, and scale matrices are sampled from a uniform

distribution in order to ensure wide and unbiased coverage of the representable value space. This

sampling strategy provides a balanced evaluation scenario that does not inherently favor specific ranges

of values. After performing the matrix multiplications and accumulations within MXITA, the resulting output

matrix exhibits a normal (Gaussian-like) distribution centered around zero. This behavior is expected as a

consequence of the central limit theorem, since the summation of many independent uniformly distributed

random variables asymptotically converges toward a normal distribution.

6
Results

In this chapter, synthesis results of the MXITA accelerator for different configurations will be presented.

Then, physical implementation results of the HWPE integrated accelerator with the Snitch cluster will be

presented. Finally, these results will then be compared with Performance Power Area (PPA) metrics of

other state-of-the-art works. However, due to limited time, power results from the physical implementation

could not be retrieved.

6.1. Synthesis
The MXITA design was synthesized for different (M,N,P,Q) parameterizations using Synopsys DC with

register retiming enabled, targeting the GlobalFoundries 22nm technology node (SS corner, 125◦C, 0.72 V).
As a first step, the synthesis results were analyzed for the baseline configuration (M,N,P,Q) = (8, 4, 4, 4).
The corresponding toplevel accelerator area and timing characteristics are noteed in Table 6.1, with the

detailed area breakdown illustrated in Fig. 6.1.

Fig. 6.2 shows an area-time plot of the (M,N,P,Q) = (8, 4, 4, 4) configuration across the achieved clock
frequencies, ranging from 1334 MHz down to 400 MHz. The design points form a Pareto front, illustrating

the trade-off between area and timing. From this curve, a target frequency of 800 MHz is recommended,

as it lies near the marginal rate of substitution. The marginal rate of substitution represents the point on the

Pareto front where improving one metric (e.g., frequency) starts to incur disproportionately higher costs

in the other metric (e.g., area). Choosing a target frequency at this point ensures a balanced trade-off,

achieving high performance without unnecessarily increasing the design area.

Accumulator

32.7%
(59811)

Normalizer

11.6%
(21116)

Systolic Array

39.9%
(72848) Combiner

15.8%
(28946)

Figure 6.1: Area breakdown (in µm2) of the

MXITA accelerator for

(M,N,P,Q) = (8, 4, 4, 4)

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Clock period (ns)

0.150

0.155

0.160

0.165

0.170

0.175

0.180

0.185

0.190

To
ta

l A
re

a
(m

m
^2

)

Area-Time plot GF22 (Retiming, 6.75T, SS corner, 0.72V, 125 deg C)

Figure 6.2: Area-time plot for (M,N,P,Q) = (8, 4, 4, 4)
and different target clock frequencies

27

6.1. Synthesis 28

Table 6.1: Synthesis results of the MXITA accelerator for different configurations, showing the trade-off

between peak MAC throughput, area, and timing across varying M,N,P,Q parameters.

M N P Q Peak perf. (MACs/cycle) Area (mm2) Timing (MHz)

8 4 4 4 512 0.183 1334

16 4 4 2 512 0.158 1363

32 4 2 2 512 0.147 1383

32 16 1 1 512 0.161 1380

32 1 4 4 512 0.150 1375

8 8 4 4 1024 0.365 1282

8 4 8 4 1024 0.352 1278

8 4 4 8 1024 0.350 1276

16 4 4 4 1024 0.301 1304

32 4 4 2 1024 0.278 1346

8 8 4 8 2048 0.698 1219

16 8 4 4 2048 0.593 1250

32 4 4 4 2048 0.544 1296

Next, the design size was increased to investigate scalability of the throughput in terms of area and

timing. Table 6.1 shows that scaling the design along either M or (N,P,Q) affects the total accelerator

area differently. Increasing M has a smaller impact on total area, as it primarily determines the degree of

inter-block peripheral reuse. Maximizing reuse is desirable as the FP32 inter-block arithmetic hardware

occupy more area than the systolic array itself.

However, M also sets the minimum block size kmin that can be supported without stalling the systolic

array, which in turn limits by how much M can be increased. Regarding timing, the critical path lies within

the 1-stage pipelined floating-point unit and appears to be limited to 1.3 GHz. Furthermore, with the output

multiplexer chain as illustrated in Fig. 2.7, the critical path shifts to the 4D systolic array atM ≥ 32, causing
a drop in maximum frequency from approximately 1300 MHz to 900 MHz. Therefore, the optimized output

selection design illustrated in Fig. 2.8 is implemented, maintaining a maximum ≈ 1.3 GHz clock frequency
across the entire parameter space.

To summarize, varying (M,N,P,Q) will have the following design trade-offs: Increasing M improves

inter-block reuse and reduces area growth, but at the cost of larger minimum MX block sizes. Scaling

(N,P,Q) increases throughput but directly increases area without providing peripheral reuse benefits.

6.2. Physical Implementation 29

6.2. Physical Implementation
After analysis of the design tradeoffs for different systolic array parameters, we perform the physical

implementation of the Snitch cluster and HWPE integrated MXITA accelerator in the (M,N,P,Q) =
(8, 4, 4, 4) configuration. Fig. 6.3 shows the synthesis area breakdown of the Snitch cluster. It can be seen

that the additional area overhead from the HWPE integration can account for 36% of the HWPE total area.

Figure 6.3: Area breakdown of Snitch cluster in mm2

Fig. 6.4 and Fig. 6.5 shows the physical implementation of the entire Snitch cluster with a 128 kB TCDM

and the 4D systolic array respectively. An overall target frequency of 800 MHz was achieved. Furthermore,

it was found that the physical implementation area of the MXITA accelerator is approximately the same

as area results reported after synthesis. In the future, further analysis of the 4D systolic array scalability

should be performed with larger configurations (1024, 2048+ MACs/cycle).

Figure 6.4: Physical implementation of Snitch cluster with

MXITA in configuration (M,N,P,Q) = (8, 4, 4, 4) over a 2× 2
mm2 floorplan area

Figure 6.5: Placement of 4D

systolic array with configuration

(M,N,P,Q) = (8, 4, 4, 4). Each
group contains PQ = 16 INT8

MAC units

6.3. Comparison 30

Table 6.2: Comparison of state-of-the-art accelerators and the proposed MANTA. Power results for

MXITA are not yet obtained.

Metric HSA [10] Cuyckens et al. [11]* JackUnit [12]* This work*

Tech. [nm] 28 16 65 22

Dataflow MMM, MVM MMM MMM MMM

Area [mm2] 0.287 1.064 12.04 0.16

Frequency [MHz] 500 400 400 800

Power [W] 0.0864 3.98 (MXINT8) 1.853 —

Data format INT8 (MMM), MXINT4 (MVM) MXFP4/6/8, MXINT8 bloat16, FP8, INT4/8, MXFP8, MXINT4/8 MXINT8

Peak Perf. [TOPS] 0.512 (MMM), 0.128 (MVM) 3.28 0.819 (MXINT8) 0.819

Area Eff. [TOPS/mm2] 1.784 (MMM), 0.446 (MVM) 3.08 0.068 (MXINT8) 5.12 (MXINT8)

Energy Eff. [TOPS/W] 5.93 (MMM), 1.48 (MVM) 0.823 (MXINT8) 0.442 (MXINT8) —

* Synthesis results

6.3. Comparison
MXITA will be quantitavely compared with HSA [10], Cuyckens et al. [11], and Jack Unit [12]. Since these

works report PPA metrics under different conditions (technology nodes, synthesis vs. post-layout, and

varying throughput definitions), we normalize their results for a fair comparison.

Performance

The performance in TOPS can be derived from the clock frequency and the number of MACs performed

per cycle. We count a MAC operation to be 2 operations (multiplication, addition). For MXITA, 512
PEs supporting 512 MACs/cycle and a 800 MHz clock frequency allows the design to reach 2 × 512 ×
0.8× 109/1012 = 0.819 TOPS. HSA [10] has implemented 256 PEs operating at 500 MHz, giving a peak

performance of 0.512 TOPS. However, during the HSA’s MVM dataflow, the PE utilization drops to 25%
resulting in a throughput of 0.128 TOPS. Cuyckens et al. [11] implement 4096 PEs at 400 MHz, which

leads to a peak performance of 2×4096×400×106

1012 = 3.277 TOPS. Similar calculations were done for the

performance results of Jack Unit [12], where 1024 PEs with full utilization at 400 MHz leads to a peak

performance of 2×1024×400×106

1012 = 0.819 TOPS.

Area

For the area, we only take the PE area for a fair comparison, as in this work we focus on the accelerator

implementation instead of its system-level integration. In HSA [10], the PEs take up 44.5% of the reported

0.646 mm2 total post-layout design area in TSMC 28nm CMOS technology, for an effective 0.287 mm2 PE

area. Cuyckens et al. [11] report a MAC synthesis area of 2078.42 µm in TSMC 16nm FinFET technology.

By extrapolating the single PE area to their 4096 implemented PEs, we obtain a systolic array area of 8.511
mm2 out of the total 8.92 mm2 design area. Jack Unit [12] presents a synthesis area of 11762 µm2 per

MAC unit in a 65 nm CMOS library, giving a 12.04 mm2 PE area for their 32× 32 implemented PEs. For

MXITA, the results are obtained from synthesis of the entire accelerator using GF22 technology. However,

due to the accelerators being implemented in different process technologies, a normalized area quantity

i.e. Gate Equivalent needs to be determined for a more fair comparison.

Power

For the energy efficiency, we take the reported energy consumption of MAC operations from HSA [10], the

energy consumption per operation per PE from Cuyckens et al. [11] and the average power consumption

per PE from Jack Unit [12]. However, as of the moment of writing this thesis, power results of the MXITA

accelerator are not yet obtained due to blocking issues in the physical design implementation flow.

Nevertheless, in Table 6.2 it can be seen that MXITA outperforms both HSA [10], Cuyckens et al. [11]

and Jack Unit [12] in terms of area efficiency, due to MXITA lacking flexiblity of supporting different dataflows

and/or support for the entire MX specification. Furthermore, part of the area efficiency discrepancy can be

attributed to the lack of area normalization across different process technologies.

7
Conclusion

The motivation behind this work stems from the rapid growth of deep learning models, particularly Trans-

formers, which has far outpaced hardware scaling. While INT8 quantization reduces memory footprint,

it often degrades accuracy. The MXINT8 format mitigates this trade-off by grouping INT8 values with a

shared exponent, preserving FP32-level accuracy while achieving up to 4×memory savings in Transformer

workloads. However, exploiting these formats requires specialized hardware capable of efficiently handling

mixed integer–floating-point operations. Prior systolic MX accelerators have been limited by underutilized

processing elements or costly FP32 peripheries.

This thesis presented MXITA, a multi-dimensional systolic array accelerator for efficient execution of

Microscaling (MX) matrix multiplications in neural network workloads. The architecture was designed,

implemented, and verified, with integration into the Snitch cluster demonstrating both functional correctness

and system-level compatibility. The parameterizable design, defined by (M,N,P,Q), enables trade-offs
between the minimum supported MX block size and the degree of FP32 peripheral reuse, while maintaining

consistent throughput. Post-processing performance requirements of the Snitch cores were also analyzed

to ensure balanced system-level operation.

Verification confirmed correctness across accelerator internals, HWPE integration, and Snitch co-

processing. Synthesis in GF22 technology quantified the impact of (M,N,P,Q) scaling on area, timing,

and critical paths, identifying optimal configurations along the area–time Pareto frontier. Results showed

that MXITA achieves higher area efficiency than prior state-of-the-art accelerators by amortizing the cost of

FP32 hardware across compute tiles, thereby reducing overhead compared to designs supporting multiple

dataflows or the full MX specification.

31

8
Future work

TCDM bank conflict mitigation

The L1 TCDM, with which the HWPE is integrated, consists of a memory bank structure, as (simplified)

illustrated in Figure 8.1. For clarity, the MX scales are omitted from the diagram. Each bank in the L1

TCDM supports only a single 32-bit read or write per cycle. Therefore, if multiple ports attempt to access

elements within the same bank simultaneously, a bank conflict occurs, causing memory accesses to stall

and thereby reduces accelerator performance. To prevent these conflicts, the operands of the MX matrix

multiplication should be arranged in memory so that all simultaneous accesses target different banks.

Access patterns differ between the input and weight matrices, as shown in Figure 2.13: input matrix tiles are

accessed column-wise, whereas weight matrix tiles are accessed row-wise. Future work could implement

a mechanism, either in hardware or software, to reorganize operands for more efficient memory utilization.

Tightly Coupled Data Memory (TCDM)

Bank 1 Bank 2 Bank 3 Bank 4

Figure 8.1: TCDM architecture and memory organization of input and output matrix operands

Output matrix transpose

A potential hardware approach for reorganizing the output matrix operand is to transpose the resulting

output matrix within the MXITA dataflow combiner module. The combiner architecture supporting the

output transpose is illustrated in Figure 8.2. Notably, this architecture is identical to the non-transposed

combiner shown in Figure 4.11, with the only differences being the FIFO dimensions and multiplexer

selection. Consequently, MXITA could be configured with M = N and P = Q so that the output matrix can

be transposed with minimal architectural changes and negligible area overhead in future implementations.

Output matrix quantization

Transferring the FP32 output matrix to the TCDM allows the Snitch cores to directly perform post-processing

operations on the output matrix. However, this approach demands high data bandwidth due to the size of

FP32 elements. To reduce this bandwidth requirement, additional circuitry can be integrated within the

output dataflow combiner to perform MX quantization before writing the result back to the L1 TCDM. As

discussed in Section 2.1, the maximum reasonable MX block size for balancing neural network inference

accuracy and memory savings is k = 32. Moreover, MX re-quantization only requires identifying the largest

32

33

current P

Figure 8.2: Output dataflow combiner architecture for transposing the output operand matrix of the 4D

systolic array

power-of-two smaller than the maximum of k elements. Therefore, the optional FIFOs shown in Figure

4.11 can be sized to hold k elements per row, and a divider or re-quantization module can be placed at the

output of the dataflow combiner module.

Multiple HWPE execution contexts

Configuring and initiating execution of the HWPE accelerator incurs a latency overhead that becomes

significant for small inner dimensions L. To mitigate this overhead caused by the Snitch cluster software

interface and the HWPE, the configuration and execution of the HWPE can be overlapped by implementing

multiple control contexts within the HWPE integration.

L1 TCDM matrix tiling and reuse

Any computations performed on the L1 TCDM require the data to be first loaded from the L2 memory.

However, the L2 memory bandwidth is limited, and in systems with multiple Snitch clusters, this limited

bandwidth must be shared among the clusters. Therefore, reusing tiles loaded into the L1 TCDM reduces

the number of L2 memory accesses, at the cost of increased total L1 TCDM memory consumption, by

reusing tile operands as illustrated in Figure 8.3.

L1 access load from L2 /
write to L2

input weight output

(a) (b)

(c) (d)

Figure 8.3: L1 TCDM output stationary operand reuse for two input and weight tile operands each.

References

[1] Jared Kaplan et al. Scaling Laws for Neural Language Models. 2020. arXiv: 2001.08361 [cs.LG].
URL: https://arxiv.org/abs/2001.08361.

[2] R.R. Schaller. “Moore’s law: past, present and future”. In: IEEE Spectrum 34.6 (1997), pp. 52–59.

DOI: 10.1109/6.591665.

[3] Marian Verhelst et al. “How to Keep Pushing ML Accelerator Performance? Know Your Rooflines!” In:

IEEE Journal of Solid-State Circuits 60.6 (2025), pp. 1888–1905. DOI: 10.1109/JSSC.2025.3553765.

[4] Norman P. Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing Unit. 2017.

arXiv: 1704.04760 [cs.AR]. URL: https://arxiv.org/abs/1704.04760.

[5] Bita Darvish Rouhani et al. Microscaling Data Formats for Deep Learning. 2023. arXiv: 2310.10537
[cs.LG]. URL: https://arxiv.org/abs/2310.10537.

[6] H. T. Kung. “Why Systolic Architectures?” In: Computer 15.1 (Jan. 1982), pp. 37–46. DOI: 10.1109/
MC.1982.1653825. URL: https://doi-org.tudelft.idm.oclc.org/10.1109/MC.1982.1653825.

[7] Brian Chmiel et al. FP4 All the Way: Fully Quantized Training of LLMs. 2025. arXiv: 2505.19115
[cs.LG]. URL: https://arxiv.org/abs/2505.19115.

[8] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL]. URL: https:
//arxiv.org/abs/1706.03762.

[9] Gamze Islamoglu et al. “ITA: An Energy-Efficient Attention and Softmax Accelerator for Quantized

Transformers”. In: 2023 IEEE/ACM International Symposium on Low Power Electronics and Design

(ISLPED). IEEE, Aug. 2023, pp. 1–6. DOI: 10.1109/islped58423.2023.10244348. URL: http:
//dx.doi.org/10.1109/ISLPED58423.2023.10244348.

[10] Chun-Ting Chen et al. Hybrid Systolic Array Accelerator with Optimized Dataflow for Edge Large

Language Model Inference. 2025. arXiv: 2507.09010 [cs.AR]. URL: https://arxiv.org/abs/
2507.09010.

[11] Stef Cuyckens et al. Efficient Precision-Scalable Hardware for Microscaling (MX) Processing in

Robotics Learning. 2025. arXiv: 2505.22404 [cs.AR]. URL: https://arxiv.org/abs/2505.22404.

[12] Seock-Hwan Noh et al. Jack Unit: An Area- and Energy-Efficient Multiply-Accumulate (MAC) Unit

Supporting Diverse Data Formats. 2025. arXiv: 2507.04772 [cs.AR]. URL: https://arxiv.org/
abs/2507.04772.

[13] Norman P. Jouppi et al. “A domain-specific supercomputer for training deep neural networks”.

In: Commun. ACM 63.7 (June 2020), pp. 67–78. DOI: 10.1145/3360307. URL: https://doi-
org.tudelft.idm.oclc.org/10.1145/3360307.

[14] Yuqi Xue et al. “V10: Hardware-Assisted NPU Multi-tenancy for Improved Resource Utilization and

Fairness”. In: Proceedings of the 50th Annual International Symposium on Computer Architecture.

ISCA ’23. Orlando, FL, USA: Association for Computing Machinery, 2023. DOI: 10.1145/3579371.
3589059. URL: https://doi.org/10.1145/3579371.3589059.

[15] Hugo Touvron et al. Training data-efficient image transformers & distillation through attention. 2021.

arXiv: 2012.12877 [cs.CV]. URL: https://arxiv.org/abs/2012.12877.

34

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.1109/6.591665
https://doi.org/10.1109/JSSC.2025.3553765
https://arxiv.org/abs/1704.04760
https://arxiv.org/abs/1704.04760
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2310.10537
https://doi.org/10.1109/MC.1982.1653825
https://doi.org/10.1109/MC.1982.1653825
https://doi-org.tudelft.idm.oclc.org/10.1109/MC.1982.1653825
https://arxiv.org/abs/2505.19115
https://arxiv.org/abs/2505.19115
https://arxiv.org/abs/2505.19115
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/islped58423.2023.10244348
http://dx.doi.org/10.1109/ISLPED58423.2023.10244348
http://dx.doi.org/10.1109/ISLPED58423.2023.10244348
https://arxiv.org/abs/2507.09010
https://arxiv.org/abs/2507.09010
https://arxiv.org/abs/2507.09010
https://arxiv.org/abs/2505.22404
https://arxiv.org/abs/2505.22404
https://arxiv.org/abs/2507.04772
https://arxiv.org/abs/2507.04772
https://arxiv.org/abs/2507.04772
https://doi.org/10.1145/3360307
https://doi-org.tudelft.idm.oclc.org/10.1145/3360307
https://doi-org.tudelft.idm.oclc.org/10.1145/3360307
https://doi.org/10.1145/3579371.3589059
https://doi.org/10.1145/3579371.3589059
https://doi.org/10.1145/3579371.3589059
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/2012.12877

	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Microscaling (MX) data format
	Systolic arrays
	Transformer Neural Networks

	Related work
	Hybrid Systolic Array (HSA)
	Precision-Scalable Hardware
	Jack Unit
	Tensor Processing Unit (TPU)

	Architecture
	4D Systolic Array
	Normalizer
	Accumulator
	Output combiner
	Hardware Processing Engine (HWPE) integration

	Design Implementation
	Performance analysis
	Verification

	Results
	Synthesis
	Physical Implementation
	Comparison

	Conclusion
	Future work
	References

