
Obstacle Avoidance onboard
MAVs using a FMCW RADAR

Master of Science Thesis

Nikhil Wessendorp

Delft University of Technology
12 April 2021

Obstacle Avoidance
onboard MAVs using a

FMCW RADAR
Master of Science Thesis

by

Nikhil Wessendorp
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday April 23, 2021 at 09:00.

Student number: 4432290
Project duration: March 18, 2020 – April 23, 2021
Thesis committee: dr. J.J.G. Dupeyroux, TU Delft, Supervisor

Prof. dr. ir. G.C.H.E. (Guido) de Croon, TU Delft, Supervisor
dr. F. Fioranelli, TU Delft, TT Assistant Professor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

I would like to thank my supervisors Julien Dupeyroux and Dr. Guido de Croon. Julien has been
a tremendous help guiding me throughout the whole project, to solve all sorts of problems and
keeping motivation up, and Guido thank you for sharing your knowledge and wisdom. Further
thanks to Nilay Sheth and Raoul Dinaux for their collaboration with my thesis. Lastly, I would like
to thank my family and friends, especially Giammy, Val, and Lex for their motivational support.

i

Contents

List of Figures iii

Introduction iv

I Scientific Paper 1

II Preliminary Report 8

1 Introduction 9

2 Sensor Detection of Moving Obstacles 12
2.1 Sensing using radar . 12

2.1.1 FMCW radar . 13
2.2 Data representation . 15

3 Multi-Target Tracking 18
3.1 Data Association . 18
3.2 Obstacle state estimation . 20

4 Avoidance of Moving Obstacles 24
4.1 Reactive Controllers . 24
4.2 Behavioural Controllers . 26

5 Spiking Neural Networks 28
5.1 Neuron models . 28
5.2 Encoding Schemes . 30
5.3 Training SNNs . 31

6 Evolutionary Optimisation Algorithms 33
6.1 Encoding and Issues of EAs . 33
6.2 EA applications in robotics . 36

7 Analysis 38

8 Conclusion 40

Bibliography 42

A Neural Network Implementation 47

ii

List of Figures

2.1 Radio signals of FMCW radar. Adapted from [59] . 13
2.2 A 2D FFT, where the horizontal axis represents fast time (one chirp) and the vertical

axis represents slow time (one frame). After performing FFTs on the fast time axis
identifying any peaks (shaded regions), an FFT is performed along the slow time axis
to determine the phase change (doppler shift) of same range bin can be compared
to distinguish one or multiple peaks (objects with different velocities at same range).
Adapted and modified from [38] . 15

2.3 Frequency analysis of fast-chirp FMCW radar, showing the Transmitted (Tx) and re-
ceived (Rx) signals from multiple objects, and mixed to produce the IF signal, and FFT
transform of IF signal to produce range FFT, delineating the 3 objects 17

3.1 5 steps of the Kalman filtering process. Adapted from AE4320, System Identification of
Aerospace Vehicles, Delft University of Technology, Dr.ir. Daan Pool 21

3.2 Structure of a recurrent LSTM network. Adapted from [63] 23

4.1 Velocity Obstacle procedure. Adapted from [18] . 25
4.2 Vector field histogram. Adapted from [7] . 26

5.1 Membrane response to action potential and PSP. Adapted from [23] 30

6.1 The crossover procedure in NEAT. The top number of the genes is the innovation num-
ber. Adapted from [54] . 35

A.1 Processing pipeline of the FMCW radar, beginning with performing the range FFT,
determining the magnitude and ranges by thresholding (2 and 3), and comparing the
phase difference between the two antennas to compute the angle (4,5 and 6). After
this, data association and Kalman filtering remove the noise and estimate the states of
the objects. 47

iii

Introduction

Micro air vehicles (MAVs) are increasingly being considered for aerial tasks such as delivery of goods
and surveillance due to their lightweight, compact design and manoeuvrability. To safely and reli-
ably carry out these tasks and navigate to its objective, especially in complex and cluttered environ-
ments, the MAV is also required to sense and avoid (S&A) obstacles. Due to the MAVs limitations
in weight, power and processing power, vision systems usually prove ideal for sensing the environ-
ment, being a cheap, lightweight, power efficient and a rich source of information. They do however
require adequate computational resources and most importantly, good visibility. When the envi-
ronment does not host these conditions, for instance when flying though dust, smoke or fog, other
sensors need to be utilised that can provide more robust sensing to ensure safe and reliable opera-
tion.

Radar sensors are mostly unaffected by atmospheric conditions and have been used extensively
in the aerospace industry for this purpose. These sensors were traditionally heavy and power hun-
gry, only applicable on ground or in large craft. However other radar sensors have since come about
that are more suited for use in small MAVs. Specifically, lightweight, power efficient and compact
frequency modulated continuous wave (FMCW) radars have increasingly been used in advanced
driver assistance systems as auxiliary sensors, however there has been little work to integrate them
on MAVs. This sensor provides the range, horizontal bearing and radial velocity (Doppler shift) of
any objects in the field of view, which can then be used for multi-target tracking (MTT) [38]. The
major disadvantage of the sensor is the limited field of view (approximately 80 degrees horizontal)
and noisy nature of the sensor, especially in cluttered environments.

The challenge is to explore filtering, tracking and avoidance algorithm pipelines to extract mean-
ingful information from the raw data and investigate the sensor’s effectiveness with respect to ob-
stacle avoidance on MAVs. This will include algorithms such as data association, estimation and
avoidance, as well as an investigation of neural networks to aid in processing the raw data and pro-
vide some filtering. This will be accomplished by integrating the sensor on a MAV and testing and
tuning the algorithms both in real life (in the cyberzoo flying arena of the aerospace faculty), and
using data gathered as part of an obstacle detection and avoidance dataset that was generated dur-
ing this project. This will hopefully allow MAVs to operate safer, either using a standalone radar or
integrated with other sensors.

This report is the final document of a master thesis. The first part is a scientific paper, outlining
the related work, radar sensor, development and results of the study, and the second part is the pre-
liminary report containing the literature study and initial research objectives and questions. Note
that the preliminary report has already been graded as part of the course AE4020.

iv

I
Scientific Paper

1

Obstacle Avoidance onboard MAVs
using a FMCW RADAR

Nikhil Wessendorp, Raoul Dinaux, Julien Dupeyroux and Guido C. H. E. de Croon∗

Abstract— Micro Air Vehicles (MAVs) are increasingly being
used for complex or hazardous tasks in enclosed and cluttered
environments such as surveillance or search and rescue. With
this comes the necessity for sensors that can operate in poor vis-
ibility conditions to facilitate with navigation and avoidance of
objects or people. Radar sensors in particular can provide more
robust sensing of the environment when traditional sensors such
as cameras fail in the presence of dust, fog or smoke. While
extensively used in autonomous driving, miniature FMCW
radars on MAVs have been relatively unexplored. This study
aims to investigate to what extent this sensor is of use in these
environments by employing traditional signal processing such
as multi-target tracking and velocity obstacles. The viability of
the solution is evaluated with an implementation on board a
MAV by running trial tests in an indoor environment containing
obstacles and by comparison with a human pilot, demonstrating
the potential for the sensor to provide a more robust sense and
avoid function in fully autonomous MAVs.

I. INTRODUCTION

Micro Air Vehicles (MAVs) are very well suited for nav-
igation in complex environments such as indoor buildings
as a result of their lightweight, compact design and ma-
noeuvrability, making them ideal for tasks such as search
and rescue in hazardous environments and surveillance.
To ensure safe flight in such environments, the MAV is
usually required to reach a destination while also sensing
and avoiding (S&A) obstacles or people. Apart from dealing
with cluttered, GPS-denied environmental conditions, closed
tight spaces and limited visibility, MAVs are also constrained
by computational, power and weight limitations. For these
reasons, the use of cheap, lightweight, and passive vision
systems are among the most popular methods. Although
cameras are a rich source of information, they also demand
an adequate amount of computational power and sufficient
visibility conditions. In the absence of these requirements,
for example when providing aid and assistance in a smoke-
filled building, other sensors need to be considered for a
more robust solution to guarantee operation and safety.

In low-light conditions, event-based cameras, laser-based
sensors and illumination can compensate for the deficit
left by ordinary cameras. However, these systems quickly
break down in the presence of dust, fog or smoke. To
combat this, ultrasound (sonar) sensors or radar sensors
can be utilised instead. Ultrasound sensors are however
point-based and have difficulty sensing soft or curved edges
at large incidence angles [1]. Radar sensors on the other
hand have been used extensively in the last century for

∗All authors are with Faculty of Aerospace Engineering, Delft Uni-
versity of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands.
j.j.g.dupeyroux@tudelft.nl

object tracking in the aerospace industry. However these
sensors have traditionally been expensive, complex, heavy
and power hungry. Only recently have all these factors
been improved upon to produce cheap, lightweight sensors
that are typically used as auxiliary sensors for applications
such as advanced driver assistance systems and ground
based applications. These new sensors come in the form
of compact millimetre-wave (MMW) frequency-modulated
continuous-wave (FMCW) radars. These radars provide the
range, bearing and radial velocity of detections [2], which
can be used for the purpose of multi-target tracking (MTT)
and ultimately avoidance. Usage of the radar sensor on small
MAVs for indoor obstacle avoidance has not properly been
established yet, and the rare existing work does not allow
for proper bench-marking.

This study will attempt to fill this gap. While physically
ideal for use on small MAVs, the major drawback lies with
the fact that the sensor is noisy, and thus requires fine-tuning
and filtering to extract meaningful data and perform S&A
functions reliably. The challenge that this paper addresses is
to implement such a filtering and tracking pipeline appropri-
ate for real-time use on a MAV. We evaluate the avoidance
capabilities in a flight arena equipped with the OptiTrack
motion tracking system, and test is on a dataset1 acquired
with ground truth positions in the same arena, containing
obstacle avoidance trials.

Section II brings into view the existing work done on
FMCW radars and integration onto Unmanned Aerial Vehi-
cles (UAVs). Section III will explain the processing pipeline
and avoidance algorithms used, followed by Section IV
giving the results and performance of the implementation.

II. RELATED WORK

The underlying technology and processing pipeline for radars
are well explored. While radar sensors are preferably not
used independently due to their lack of fidelity, a lot of
research has been done to fuse target information with vision
systems. Long et al. 2019 [3] for instance develop a system
to aid the visually impaired, which utilises a particle filter
to both fuse information and track objects using FMCW
radar, a normal camera (using a convolutional neural net) and
a stereoscopic IR camera setup, combining the advantages
of vision (object classification and identification) with the
accurate range, bearing and radial velocity measurements
provided by the FMCW radar. Kim et al. 2014 [4] and Ćesić
et al. 2016 [5] also fuse vision and FMCW radar for the

1https://github.com/tudelft/ODA_Dataset

purpose of MTT by means of an association algorithm (joint
probabilistic data association filter - JPDAF) in combination
with a Kalman filter (KF). Both methods perform similar
functions, however a particle filter takes a fully probabilistic
Bayesian approach, while still demonstrating computational
tractability and convergence [6].

With regards to airborne applications, little has been
explored concerning close proximity obstacle avoidance,
although some studies address the use of a (often heavier
and more complex) radar as a complimentary sensor to the
Traffic Collision and Avoidance System (TCAS) and Flight
Alarm (FLARM) for integrating UAVs into the local airspace
[7]–[9]. Eric et al. 2013 [10] achieve this by only utilising a
stand-alone FMCW radar sensor using beamforming for an
increased field of view (FOV), however outdoor domain of
this application is quite different in nature from an indoor
environment. Scannapieco et al. 2015 [11] instead use a
gimbaled 94GHz FMCW radar for mapping an indoor envi-
ronment using Interferometric Synthetic Aperture Radar, and
subsequently using that for path planning, however requiring
significantly more time and processing power. Scannapieco
et al. 2015 [12] evaluate the FMCW radar sensor itself rather
than implementation for obstacle avoidance of MAVs, only
performing outdoor ground tests, and Yu et al. 2020 [13] fuse
information from a camera and FMCW radar for obstacle
avoidance, however are still very reliant on the vision system.

III. SIGNAL PROCESSING

A. Detection

Specifically, the sensor in use is a fast-chirp FMCW radar
and operates by transmitting a saw-tooth FM carrier wave
from its transmitter antenna and listening for the returns
reflected by objects in its two receiver antennas (one period is
referred to as a ’chirp’). The received signals (one per object)
are shifted to the right (a delay in time) with increasing
range, as shown in Figure 1. The transmitted and reflected
signals are then mixed to produce the intermediate frequency
(IF) signal (or beat frequency) and is passed through a low
pass filter followed by an ADC to produce the raw data of
the radar, which consists of the (I,Q) values representing
the electromagnetic wave. Fast-chirp FMCW radars feature
reduced range but better resolution compared with the tradi-
tional FMCW radars, where the chirp duration is one order
magnitude longer. Note that because of this fast-chirp nature,
the Doppler shift in frequency is negligible compared to the
shift in frequency due to range, and is not accounted for in
this step.

Following from this raw data, the IF signal is passed
through a fast-Fourier transform (FFT) (with zero padding),
which highlights the peaks representing range produced by
all objects in the FOV. Once a threshold is applied, the
detections are distinguished with their associated range using
Equation (1):

R =
cTcfb
2B

=
cfb
2S

(1)

Fig. 1. The basic principle behind FMCW radar. Top: the transmitted
(purple) and received (orange) waves of one chirp. Middle: the mixed
IF signal, showing the distinct frequencies that different objects produce.
Bottom: the first range FFT (only the magnitude shown) applied to the IF
signal, delineating the peaks.

where c is the speed of light, B is the bandwidth, fb is the
beat frequency, S is the slope of the frequency modulated
ramp and Tc is the up-chirp time. To determine the horizontal
bearing of the detections, the phases of the two antennas in
the FFT (where only magnitude is shown in Figure 1) are
compared with the use of Equation (2):

θ = arcsin

(
λ∆ωd

2πd

)
= arcsin

(
∆ωd

π

)
(2)

where d is the antenna spacing, λ is the wavelength and ∆ωd

is the phase difference between the two antennas. Note that
d = 0.5λ gives the largest FOV of ±90◦.

The radial velocity of the detected objects can also be
extracted by taking a second set of FFTs over multiple
chirps: this essentially compares the change of phase over
2 consecutive chirps, since the phase is very sensitive to
small changes in distance (essentially, a phase change is a
Doppler frequency shift). This change in phase ∆ω is given
by Equation (3), where V is the radial velocity of the target
and λ is the wavelength.

∆ω =
4πV Tc
λ

(3)

By taking a number M of IF samples instead of 2 (number
of chirps in a frame), a velocity estimate can be computed
for each individual object by taking a Doppler FFT of ∆ω
over the different chirps, creating a 2D FFT matrix shown in
Figure 2. Here objects can be resolved by both their range
and radial velocity.

Fig. 2. A 2D FFT, where the horizontal axis represents fast time (one chirp)
and the vertical axis represents slow time (one frame). After performing
FFTs on the fast time axis identifying any peaks (shaded regions), an FFT is
performed along the slow time axis to determine the phase change (Doppler
shift) of same range bin can be compared to distinguish one or multiple
peaks (objects with different velocities at same range, coloured squares).
Adapted and modified from [2].

B. Filtering

As the sensor is rather noisy, both data association and
tracking have to be employed. Data association involves
handling the detections and objects that are being tracked,
that is, first: assigning detections to existing objects and
discarding detections from clutter, second: creating new
objects when detections indicate there is a new object in the
FOV, and third: deleting objects when they leave the FOV
(when there are no new detections). These operations are
done in conjunction with the Kalman filtering (KF) process.

The first process boils down to calculating a cost ma-
trix which indicates the cost of associating a detection
to an object or clutter. For this, a simple global nearest
neighbourhood (GNN) optimisation algorithm is used [14],
which defines the cost as being proportional to the square
of the distance between the detection and prediction of
the object position (using the KF). The cost matrix also
contains the cost associated with misdetecting an object, that
is, no detections associated with the object (right side of
Equation (4) which shows the cost matrix L). Additionally,
gating is used, whereby any detections that are greater than
a threshold distance to a particular object are immediately
discarded (−`n,m = ∞). The GNN algorithm is a greedy
yet computationally efficient approach that works well for
simple scenarios. This cost matrix is then converted to an
assignment matrix by minimising the cost using an algorithm
such as the Hungarian algorithm [15].

L =

−`1,1 . . . −`1,m −`1,0 . . . ∞

...
. . .

...
...

. . .
...

−`n,1 . . . −`n,m ∞ . . . −`n,0

 (4)

`i,0,h = log
(
1− PD

)
(5)

`i,j,h = −1

2

(
zi − ẑi,h

)> (
Si,h

)−1 (
zj − ẑi,h

)
(6)

where n is the number of objects being tracked, m is the
number of radar detections, −`n,m represents the association
cost, and −`n,0 represents the cost of misdetecting the
object. Pd is the probability of detection, zi − ẑi,h is the
distance between the measurement and predicted location of
the object, and Si,h is the innovation covariance of the KF.
The second step is done by keeping track of all detections
within the FOV (associating them to new candidate tracks
which are also tracked with a KF). When the covariance of
the position (in the P i,h matrix of the KF) drops below a
threshold, the object is initiated (track birth) and considered
valid. Likewise, when a tracked object’s covariance rises
above another threshold (when it is misdetected multiple
times) it is removed (track death).

Once a detection has been associated with an object, the
detection is used as the measurement input (range, bearing,
radial velocity) to an ordinary KF that is run for every object
to filter out noise and estimate the tangential velocity as well,
thereby obtaining the range, bearing and their derivatives.
The KF assumes both observation noise, to account for the
sensor noise, and process noise, to account for any non-
linearities in the motion of the objects or MAV, as a constant
acceleration model is assumed.

C. Avoidance

The obstacle avoidance control method used is Velocity
Obstacles (VO), which finds the set of velocity vectors of
the MAV that will result in a collision with the object, taking
into account the radius of both the object and MAV.

The following explanation is retrieved from Fiorini et al.
1998 [16]. Consider a robot A and an obstacle B with
velocities VA and VB and radii rA and rB , as shown in
Figure 3. Mapping B onto the configuration space of A
means enlarging object B by the radius of A to form
object B̂, and reducing A to a point Â and computing
the relative velocity of robot A with respect to object B,
VA,B = VA − VB . The collision cone CCA,B can then be
formed, in which any relative velocity VA,B will result in
a collision with object B. The radar sensor will yield the
relative position and VA,B . Since the ego-velocity VA is
known, VB can also be determined.

By accounting for the velocity of robot A and its limita-
tions in maximum velocity and direction change, a desired
V̂A,B can be computed by adjusting VA,B to lie on one of
the edges of CCA,B (also taking into account any safety
margins). An absolute desired velocity of robot A, V̂A, can
then be found by addition with VB . In the case in Figure 3,
it is most beneficial to slow down and adjust the velocity
vector to the right.

D. Sensor Characteristics

The sensor used in this study is the Infineon XENSIVTM

24GHz Position2Go kit, a small 10g fast-chirp FMCW radar
that features human target detection at a range of 1-12m and
a horizontal-vertical half-power beamwidth (HPBW) FOV

Fig. 3. Robot A and moving obstacle B will collide as VA,B lies within
CCA,B , which is formed by enlarging object with the radius of robot.

of 76◦x19◦. Although this is sufficient for frontal obstacle
avoidance, objects that are moving faster than the MAV
outside the FOV still pose a collision threat, albeit less likely.
With a maximum bandwidth of 200MHz, it is able to resolve
objects 0.75m apart in range, with a range accuracy of ±
15cm and an angular accuracy of ±2◦ from 0− 20◦, and up
to ±8◦ from 20− 65◦. Strict filtering of clutter detections is
required due to the noisy nature of the sensor. Furthermore,
as the sensor only features 2 receiver antennas, and is thus
only able to detect 2 objects at a time in the same range
bin. However taking this into account in the association
algorithm, all objects in the FOV can be detected over
multiple frames (although decreasing the update frequency).

IV. PERFORMANCE EVALUATION

A. Implementation

The FMCW radar sensor was integrated and tested on a
custom made 5-inch MAV, as shown in Figure 4. Two
processing boards are integrated. The first is the Kakute
F7 flight controller running iNav 2.6.0 firmware, the second
companion computer is the Intel Up Core (1.44GHz 64bit
processor with 2GB RAM) running Ubuntu 18.04 LTS. The
latter runs the radar driver, processes the raw data, performs
the MTT and runs a custom made autopilot using ROS
(Robot Operating System) to communicate with the radar
sensor, computing the avoidance manoeuvre and relaying the
desired orientation of the MAV (pitch, roll and yaw angles)
to the flight controller (using MSP protocol), which in turn
handles the low level rate and altitude control using the
TFMini LiDAR rangefinder facing down. The radar sensor
is fixed to the front of the MAV at a slight upward tilt of
10◦ to reduce reflections from the ground.

Fig. 4. Top and front view of the MAV. Light blue indicates the FMCW
radar, yellow the Up Core companion computer, and red the flight controller
(underneath the companion computer) and the LiDAR altimeter.

Testing was done in the flying arena of the TU Delft,
equipped with the OptiTrack motion capture system for
positioning, which is relayed through UDP to the UP Core,
although concerning the avoidance algorithm, only velocity
control was implemented. Furthermore, the avoidance algo-
rithm only considers the nearest obstacle, both for simplicity
and to stimulate different avoidance scenarios. A simpler
avoidance manoeuvre was implemented whereby the MAV
simply translates approximately 1m to the side to better
approximate the flying behaviour displayed in the dataset
in which a human is flying to avoid 1 or 2 obstacles in
the flying arena. The obstacles are cardboard poles roughly
0.5m in diameter placed in the centre of the flying arena,
and avoidance was carried out from all sides and corners.

B. Results

Looking at Figure 5 and Figure 6, showing the trajectories
taken when the MAV is controlled by a human pilot versus
the on board obstacle avoidance controller using the radar, it
is evident that the FMCW radar can reliably detect obstacles
and determine when a collision is imminent, thus allowing
the MAV to safely avoid damage or injury to the MAV or
environment. On occasion the radar will struggle to track
the further obstacle due to the inherent noise of the sensor,
however when brought close enough to the obstacle the MAV
was still able to perform a successful avoidance manoeuvre.
This can best be visualised in Figure 7, which on the left
shows the ground truth trajectory and location of the MAV
and obstacles, and on the right the output of the filtering
and tracking algorithms, showing the relative paths taken
by the obstacles (Doppler information is not displayed).
First obstacle 1 comes into view (orange ground truth and
red detections), which the MAV avoids by moving to the
left (or the obstacle moving to the right relative to the

Fig. 5. Manually flown trajectories of the MAV of 78 samples from the
obstacle avoidance dataset, avoiding 2 obstacles from different angles.

MAV), followed by the second obstacle coming into view
approximately 0.7 seconds later (light blue ground truth and
dark blue detections), which the MAV avoids to the right.

As can be seen in Figure 7 on the right, the error in
tracking is most evident when the MAV changes trajectory,
which in fact represents a non-linearity in the motion of
the obstacle (or MAV) meaning it can take some steps
before the ordinary KF is able to cope with this. However
when the radar sensor would come to a complete halt, an
increase in noise around the obstacle was also observed for
approximately one second, further exacerbating the error.
This however did not impact the MAVs ability to sense and
avoid a collision. Additionally, the error in bearing and range
increases as the obstacles move towards the edge of the
HPBW FOV, which can be seen in Figure 8, showing an
approximately linear trend.

V. CONCLUSION

This work demonstrates the pertinence of using a standalone
FMCW radar sensor for the purpose of sense and avoid.
A multi-target tracking and avoidance algorithm have been
implemented on a MAV and tested on both one and two
obstacles, showing that the MAV is successfully able to avoid
them when solely relying on the radar sensor, demonstrating
that reliance on this sensor can be effective when required,
especially when other sensors fail due to the presence of fog,
smoke or flames. This will ultimately help make MAVs for
applications such as surveillance and search and rescue safer
and more reliable.

To better detect obstacles in cramped spaces, 77GHz
FMCW radars can be used, which feature improved band-
width and resolution, allowing for more accurate detection of

Fig. 6. 26 sample trajectories of the autonomously controlled MAV using
the radar sensor.

Fig. 7. Illustration of what the FMCW radar sensor detects after filtering
and tracking (right) when following the sample trajectory on the left. The
grey lines indicate the HPBW FOV of the radar (78◦) and the ground truth
position is shown in both figures (orange and light blue paths)

obstacles and perhaps classification of walls as well, however
requiring a more robust and computationally expensive data
association algorithm capable of clustering detections (e.g.
DBSCAN [17]). Other FMCW radar sensors also incorporate
more than two receiver antennas (allowing for more detec-

Fig. 8. Data from 4 trials showing the approximately linear trend of the
error in bearing and range as the object moves further from the centre of
the radar.

tions per scan) or beamforming (scanning a larger FOV).
While this study has demonstrated that sense and avoid
using a standalone radar sensor can be very useful, it is best
used when fused with other sensors when circumstances and
conditions allow (even with event-based cameras which can
operate in low-light environments, as shown by Zhang et al.
2019 [18] who fuse the sensors in an EKF to compensate
for the error bounds produced by both sensors.

SUPPLEMENTARY MATERIALS

The ROS implementation our radar-based navigation
system can be found here: https://github.com/
tudelft/radar_nav, along with supporting videos. The
Obstacle Detection and Avoidance dataset is available at:
https://github.com/tudelft/ODA_Dataset.

ACKNOWLEDGEMENTS

This work is part of the Comp4Drones project and has
received funding from the ECSEL Joint Undertaking (JU)
under grant agreement No. 826610. The JU receives support
from the European Union’s Horizon 2020 research and
innovation program and Spain, Austria, Belgium, Czech
Republic, France, Italy, Latvia, Netherlands.

REFERENCES

[1] J. Borenstein and Y. Koren, “Obstacle avoidance with ultrasonic
sensors,” IEEE Journal on Robotics and Automation, vol. 4, no. 2,
pp. 213–218, 1988.

[2] V. Milovanovic, “On fundamental operating principles and range-
doppler estimation in monolithic frequency-modulated continuous-
wave radar sensors,” Facta universitatis - series: Electronics and
Energetics, vol. 31, pp. 547–570, 2018.

[3] N. Long, K. Wang, R. Cheng, W. Hu, and K. Yang, “Unifying
obstacle detection, recognition, and fusion based on millimeter wave
radar and rgb-depth sensors for the visually impaired,” Review of
Scientific Instruments, vol. 90, no. 4, p. 044102, 2019. [Online].
Available: https://doi.org/10.1063/1.5093279

[4] D. Y. Kim and M. Jeon, “Data fusion of radar and image measurements
for multi-object tracking via kalman filtering,” Information Sciences,
vol. 278, pp. 641–652, 2014. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0020025514003715

[5] J. Ćesić, I. Marković, I. Cvišić, and I. Petrović, “Radar and stereo
vision fusion for multitarget tracking on the special euclidean group,”
Robotics and Autonomous Systems, vol. 83, pp. 338–348, 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0921889015303286

[6] C. M. Kreucher, K. D. Kastella, and A. O. Hero III, “Tracking multiple
targets using a particle filter representation of the joint multitarget
probability density,” in Signal and Data Processing of Small Targets
2003, vol. 5204. International Society for Optics and Photonics,
Conference Proceedings, pp. 258–269.

[7] A. M. Allistair, J. R. Matthew, K. Michail, and P. V. Kimon,
“Uav-borne x-band radar for mav collision avoidance,” in Proc.SPIE,
vol. 8045, Conference Proceedings. [Online]. Available: https:
//doi.org/10.1117/12.884150

[8] Y. K. Kwag and C. H. Chung, “Uav based collision avoidance radar
sensor,” in 2007 IEEE International Geoscience and Remote Sensing
Symposium, Conference Proceedings, pp. 639–642.

[9] S. Kemkemian, M. Nouvel-Fiani, P. Cornic, P. L. Bihan, and P. Garrec,
“Radar systems for “sense and avoid” on uav,” in 2009 International
Radar Conference ”Surveillance for a Safer World” (RADAR 2009),
Conference Proceedings, pp. 1–6.

[10] I. Eric, W. Jean-Philippe, M. Sébastien, O. Matern, and H. Albert,
“Fmcw radar for the sense function of sense and avoid systems
onboard uavs,” in Proc.SPIE, vol. 8899, Conference Proceedings.
[Online]. Available: https://doi.org/10.1117/12.2028518

[11] A. F. Scannapieco, A. Renga, and A. Moccia, “Compact millimeter
wave fmcw insar for uas indoor navigation,” in 2015 IEEE Metrology
for Aerospace (MetroAeroSpace), Conference Proceedings, pp. 551–
556.

[12] A. F. Scannapieco, A. Renga, G. Fasano, and A. Moccia, “Ultra-
light radar sensor for autonomous operations by micro-uas,” in 2016
International Conference on Unmanned Aircraft Systems (ICUAS),
Conference Proceedings, pp. 727–735.

[13] H. Yu, F. Zhang, P. Huang, C. Wang, and L. Yuanhao, “Autonomous
obstacle avoidance for uav based on fusion of radar and monocular
camera.”

[14] I. J. Cox, “A review of statistical data association techniques for motion
correspondence,” International Journal of Computer Vision, vol. 10,
no. 1, pp. 53–66, 1993.

[15] B. Sahbani and W. Adiprawita, “Kalman filter and iterative-hungarian
algorithm implementation for low complexity point tracking as part
of fast multiple object tracking system,” in 2016 6th International
Conference on System Engineering and Technology (ICSET). IEEE,
2016, pp. 109–115.

[16] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics
Research, vol. 17, no. 7, pp. 760–772, 1998. [Online]. Available:
https://doi.org/10.1177/027836499801700706

[17] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Kdd, vol. 96, Conference Proceedings, pp. 226–231.

[18] R. Zhang and S. Cao, “Extending reliability of mmwave radar tracking
and detection via fusion with camera,” IEEE Access, vol. 7, pp.
137 065–137 079, 2019.

II
Preliminary Report

8

1
Introduction

The task of safe indoor navigation of micro air vehicles (MAV) remains a challenging one, requir-
ing the MAV to reach a destination while also sensing and avoiding (S&A or SAA) obstacles. Apart
from dealing with cluttered GPS denied environmental conditions and closed tight spaces, MAVs
are also constrained by computational, power and weight limits. For this reason, the use of cheap,
lightweight, and passive vision systems are among the most popular methods, being a rich source of
information. Vision systems however require an adequate amount of computational power and will
not function in poor visibility conditions. This is especially important when using MAVs to provide
aid and assistance in a disaster zone scenario, where lighting might not be available and moving
objects/persons could be present.

This is the premise of the IMAV 2021 competition, to locate bodies in an indoor dark environment,
and navigate in the presence of moving obstacles and limited visibility, the latter of which the re-
search aims to tackle. Radar and ultrasound sensors are the only ones which can operate in low
visibility conditions. Ultrasound sensors however have more difficulty sensing soft or curved edges,
and its accuracy is sensitive to variations in temperature. Additionally, turbulent airflow from the
propellers can interfere with the readings and can get very noisy requiring signal processing. Radar
has the advantage of also being able to detect the doppler signature of a moving object, from which
the radial velocity can be extracted, and thus is more suited to solve the problem at hand.

The problem of S&A can be divided into two sub-problems, namely sensing (or detecting) and
avoiding. The former deals with selecting the appropriate instrument and signal processing to con-
vert the raw data into a meaningful representation, while the latter involves further processing and
use of the autopilot for extracting information to determine the state of the environment and vehi-
cle, and provide commands to avoid a collision with the use of a controller. There are three types of
control [58]: reactive, behavioural and deliberative. Reactive control involves minimal processing
where the sensors are directly mapped to the actuators or where the avoidance algorithm only con-
siders the instantaneous, local sensor information in the vicinity of the robot. On the other hand, de-
liberative control creates an internal known representation/model of the environment (white box)
which is separated from the avoidance controller, often requiring a lot more memory and process-
ing power. This can apply both to sensing and avoiding: the standard processing pipeline otherwise
known as detection and tracking of moving obstacles (DATMO) [35] is used to explicitly estimate
the state of the environment, while global path planning algorithms serve as the controller. In be-
tween there is behavioural control (grey/black box), which provides additional and more complex
processing/representation than reactive control and is also more robust to sensor noise than delib-
erative control, often involving neural networks (NN).

9

10

This literature study serves to explore the latest knowledge and applications of S&A on an autonomously
navigating MAV in a dynamic, low visibility environment by searching the relevant and latest indus-
try standards, technologies and literature on the matter, such as object tracking and applications of
artificial neural networks (ANN) and spiking neural networks (SNN). This will involve researching
what type of sensors are suitable for S&A in the mentioned environment, how these sensors oper-
ate, what type of data they produce, their limitations and the requirements they should fulfil. Similar
questions have to be answered regarding the conventional processing methods (in this case deliber-
ative control) for S&A regarding their limitations, the methods that are more established than others,
how they can be integrated into the implementation and if they meet the restrains of the problem.
Furthermore, other recent developments and non-conventional behavioural methods can be in-
vestigated, in what ways they perform differently and what situation/environment they are more
suited for. Lastly, an analysis can be done to determine which methods can be combined to design
a system specific for this implementation, and what qualitative or quantitative metrics should be
used to evaluate the controller.

Research Questions
In order to get an overview of the requirements the project should fulfil, the following questions
should be considered:

• What sensors are appropriate to perform S&A in the given environment?

– What are the limitations of the sensor?

– What requirements must the sensor fulfil?

– What type of data is produced by the sensor?

• What existing methods can perform S&A with the given sensors?

– What are the limitations of the method?

– Which methods are more standard/established than others?

– How can they be integrated to process the data and tackle the problem?

– Do the methods fulfil the requirements on their own?

• What parameters determine the effectiveness of a behavioural controller?

– To what complexity should the controller be trained/evolved?

¦ What objectives (fitness functions) should be optimised?

¦ What parameters should be optimised?

– What should the fidelity level of the simulation be?

– What type of controller should be used?

¦ Which inputs should the controller accept?

¦ What type of output should the controller give?

¦ Which models should be used to construct the controller?

• What is the significance of the comparison between the behaviour controller and the standard
method?

– What quantitative/qualitative measures can be used to compare the methods?

– What conclusions can be drawn about the proposed method compared with the stan-
dard methods?

– What improvements and future developments can be recommended?

11

Research Objective
The objective of this research project is to contribute to the development of a dynamic obstacle
avoidance system aboard a MAV by providing an assessment of a neural network behavioural con-
troller trained using evolutionary strategies to utilise data from a FMCW radar.

This study, based on a literature study and theory on radar, tracking, evolutionary strategies and
simulation will give insight into the requirements and constrains of the design, by which means the
neural network behavioural controller will be trained and evaluated in contrast with traditional de-
terministic methods such as velocity obstacles. The confrontation of the results will contribute to
the development and evaluation of the dynamic obstacle avoidance system aboard a MAV.

As for the IMAV competition, the focus is on dynamic obstacle avoidance in an indoor environ-
ment with a small lightweight MAV and poor visibility. The task is relatively straightforward (at least
for humans), and cosidering the small and lightweight constraints the solution should not be overly
complicated. Using EAs to train neural net controllers is an elegant solution, and although they are
rarely implemented on MAVs, especially using radar in a dynamic environment, there is no reason
it cannot be applied to this situation as well. By comparing it with a simple standard tracking and
velocity obstacles method, its performance can be evaluated to discover the benefits and solutions
the algorithm can evolve.

This report is structured as follows: Chapter 2 will cover the operation and characteristics of radar
instruments in consideration, followed by methods used for the standard tracking procedure in
Chapter 3. Chapter 4 will give an overview of the different types of controllers used that gener-
ate commands for the flight controller. Chapter 5 and Chapter 6 will follow by investigating the use
of (spiking) neural nets and evolutionary algorithms, as they have some desirable properties. Chap-
ter 7 will follow up with an analysis of the gathered information, and how it can be applied to the
S&A problem, and lastly the conclusion will be given in Chapter 8.

2
Sensor Detection of Moving Obstacles

The majority of the applications concerning S&A focus on self-driving cars and autonomous ground-
based robots. As such, weight and power (both computational and electrical) are not prioritised
as much, often implementing expensive and heavy Lidar array scanners, which produce denser,
more memory intensive 3D point clouds than radar, or use multiple stereo camera setups which
require more intensive computer vision algorithms. Moreover, deliberative control is the standard
in these industries as a more deterministic approach is preferred to guarantee the predicted control
characteristics, although artificial intelligence (AI) can be used to extract meaningful features, es-
pecially regarding vision. This is usually combined with DATMO (detection and tracking of moving
obstacles), which traditionally requires some form of localisation or positioning system to perform
odometry and estimate the ego-state of the vehicle, which is usually accomplished using GNSS (e.g.
GPS or DGPS) and accurate/expensive IMUs.

However, as is the case with indoor navigation of a MAV, the only direct information about ego-
motion comes from MEMS gyroscopes and accelerometers, which can be used for some rough
state estimation. As an alternative, the external sensors onboard the vehicle can be used to esti-
mate the state of the vehicle, for instance when employing simultaneous localisation and mapping
(SLAM), an inexpensive way to localise [17]. Most studies however assume that the environment is
mostly static. When dealing with a dynamic environment, the problem of SLAM and DATMO are
combined, also known as SLAMMOT [43, 59]. Employing this method with radar based sensors is
difficult however due to the sparse and noisy nature of the data.

2.1. Sensing using radar
Radar has been used since the 2nd world war to detect enemy craft. It is a time of flight sensor,
meaning it determines the distance to another object by the time it takes for the radar energy to
travel to the object and reflect back to the sensor. Unique to radar, it can also detect the change
in frequency of the returned energy, and thus can separate the target from the background clutter
easier.

It can illuminate the object in two different ways, either using a pulse or a continuous wave (CW)
radar, although the principles and processing methods are quite similar. A pulse radar transmits a
pulse train (pulse width modulated - PWM) radar carrier wave and listens for the returns, whereas
a CW radar transmits a continuous carrier wave. In the context of the IMAV competition which fo-
cuses on indoor operation of a drone in a low-visibility, dynamic environment, the requirements are
to detect and avoid dynamic obstacles/posts, which are 0.5m in diameter and moving at a velocity

12

2.1. Sensing using radar 13

up to 2ms−1 in an enclosed space of around 4x4m.

The frequency band of a radar instrument determines its properties such as range, regulations,
interference, and through-wall capabilities. The higher the frequency, the more bandwidth that
is available and hence the better the range resolution. Therefore, for S&A, we speak of millimetre
wave (mmW) radar. 24GHz (K band radar) is a popular radar frequency used in industrial and au-
tonomous driving automotive applications and is also suited for through-wall sensing. It suffers
from high atmospheric attenuation due to the resonance peak of water vapour, which limits it us-
age to short range applications, such as indoor sensing. It is also more susceptible to erroneous
detections due to interfering radar transmitters and subject to regulations, which limits the avail-
able bandwidth.

For these reasons, some industries are switching to 77GHz radar, which offers improved range res-
olution and accuracy (up to a factor of 20 due to higher bandwidth) and also a higher velocity reso-
lution (up to a factor of 3 due to the higher frequency) [46]. These bands commonly use a frequency
modulated CW radar (FMCW). Generally speaking, higher frequencies will reflect better and radar
waves are scattered better by materials with a higher dielectric constant, especially regarding con-
ductive materials such as metals or carbon fibre. Water, concrete, gyps and wood are also good
reflectors of radar waves, while plastics and glass are poor reflectors[34]. It should also be noted
that with this increased resolution, there will be multiple detections per object, and a more robust
data association algorithms would be needed (see Chapter 3).

2.1.1. FMCW radar
A frequency modulated continuous wave (FMCW) radar implementation can be used to determine
the radial distance, velocity, and angle of multiple objects. Traditional FMCW radar operates by
transmitting a saw-tooth FM carrier wave, and then listens for the returns (one cycle is referred to
as a chirp). The received signal in Figure 2.1a is shifted to the right of the emitted signal (delay)
with increasing distance and is shifted vertically due to the Doppler effect (an approaching object
will shift the signal upwards). As can be seen in Figure 2.1b, the difference of the transmitted and
received signal produces an IF signal (one for each object). This signal is then passed through a low
pass filter, followed by an ADC and a DSP for processing and extracting the range frequency Fr and
Doppler frequency Fd .

(a) Emitted (transmitted) and received signals of one chirp.
(b) Corresponding IF/beat frequency by taking absolute difference

Figure 2.1: Radio signals of FMCW radar. Adapted from [59]

An extension of this implementation is known as a ‘fast-chirp FMCW’ radar which offers an im-
provement in range resolution[38][57]. While in classical FMCW radar a chirp typically lasts 1−
10ms, the modulation time in a fast-chirp FMCW radar is limited to under 100µs, and the system
only considers the up-ramp of the modulation that is generated by the synthesizer (Figure 2.3), giv-
ing reduced range but better resolution. This is especially useful in short range applications. Fig-

2.1. Sensing using radar 14

ure 2.3 does not show the effect of the Doppler frequency shift as with fast-chirp FMCW radar, it
becomes significantly smaller than the range frequency shift and can be neglected. Also note that
the delay of the reflected signal τ is typically a small fraction of the total chirp time. As with clas-
sical FMCW radar, the transmitted and received signals are mixed to produce the IF signal and is
transformed into a range FFT. To be able to distinguish between two separate objects at different
distance, they also need to be distinguishable in the range FFT, which is achieved by increasing the
bandwidth, which effectively increases the observation time if the slope S remains constant (if the
slope were to change instead, this would put more demand on the sampling frequency of the ADC).
The range resolution ∆d and maximum range dmax are given by Equation (2.1) and Equation (2.2).

∆d = c

2B
(2.1)

dmax = FSc

2S
(2.2)

Where c is the speed of light, B is the bandwidth, Fs is the sampling frequency and S is the slope
of the frequency modulated ramp. Also note that larger observation time requires a lower Fs of the
ADC. The range can then be calculated using Equation (2.3), where Tc is the up-chirp time and fb is
the beat frequency (IF).

R = cTc fb

2B
= c fb

2S
(2.3)

∆ω= 4πV Tc

λ
(2.4)

The velocity of the detected object is determined by the change of phase over 2 chirps, since the
phase is very sensitive to small changes in distance (essentially, a phase change is a Doppler fre-
quency change). This change in phase ∆ω is given by Equation (2.4), where V is the radial velocity
of the target and λ is the wavelength. By taking N number of IF samples instead of 2, a velocity
estimate can be computed for each individual object by taking a Doppler FFT of ∆ω. Again, the
longer the observation time (the more samples N), the better the velocity resolution. Combining
the range and Doppler FFT creates a 2D FFT (Figure 2.2), which identifies and resolves objects by
their range and radial velocity. Following this, the horizontal bearing of the object to the sensor can
be estimated by adding a second receiver antenna and analysing the phase difference between the
two. Similar to the velocity estimates, adding more samples from more antennas increases the an-
gular resolution by creating an angle FFT, that is, the angular resolution of two objects in the same
range-velocity bin in the 2D FFT[2, 62]. This also means that better range and velocity resolution
eases the requirements on the angular resolution. The equations for velocity resolution and range
are given by Equation (2.5) Equation (2.6) and Equation (2.7).

∆v = λ

2N Tc
(2.5)

vmax = λ

4Tc
(2.6)

Where λ is the wavelength, N is the number of IF samples and Tc is the observation time of one
ramp. Similarly for the angular resolution and bearing calculation:

∆θ = λ

N d cos(θ)
= 2

N
(2.7)

2.2. Data representation 15

θ = arcsin

(
λ∆ω

2πd

)
= arcsin

(
∆ω

π

)
(2.8)

For θ = 0 and d = 0.5λ (which gives the best largest field of view of 90◦). Note that ∆ω in Equa-
tion (2.8) refers to the phase difference between the two antennas, and not the phase difference
between chirps as in Equation (2.4). The radar unit currently in consideration for this research is
the Infineon XENSIV 24GHz Position2Go development kit, a small 10g fast-chirp FMCW radar that
features human target detection at a range of 1-12m and a horizontal field of view of 76deg at half
power beamwidth. For every frame, it outputs the range, bearing and velocity of every target de-
tected. According to the data sheet and specs of the radar, with a maximum bandwidth of 200M H z
the range resolution is around 0.75m, and the velocity resolution can be as low as 0.04ms−1 with a
chirp time Tc = 0.3ms and 64 chirps per frame. From testing, the range accuracy is around ±15cm
and the angular accuracy is around±2◦ from 0−20◦, and up to±8◦ from 20−65◦ 1. If these properties
are insufficient, a 77G H z radar can be considered.

Figure 2.2: A 2D FFT, where the horizontal axis represents fast time (one chirp) and the vertical axis represents slow time
(one frame). After performing FFTs on the fast time axis identifying any peaks (shaded regions), an FFT is performed

along the slow time axis to determine the phase change (doppler shift) of same range bin can be compared to
distinguish one or multiple peaks (objects with different velocities at same range). Adapted and modified from [38]

.

2.2. Data representation
There are several ways that can be used to represent data to facilitate further processing. The most
fundamental is a point cloud, which is natively produced by the sensor (2D plane point cloud). Usu-
ally when dealing with point clouds, they come from scanning Lidar instruments, which produce a
much denser point cloud than radar sensors, and also return a fixed amount of points every frame
instead of a variable amount of detection like radar. The data received from consecutive frames can
be aligned into an global frame of reference using a class of methods known as point cloud registra-
tion (PCR), such as Perfect Match (PM), Iterative Closest Point (ICP) and Normal Distribution Trans-
form (NDT) [53], which is one of the primary steps involved in SLAM. However, for sparse and noisy

1https://www.infineon.com/dgdl/Infineon-P2G_Software_User_Manual-ApplicationNotes-v01_01-EN.
pdf?fileId=5546d4626b2d8e69016b89493bf842af

https://www.infineon.com/dgdl/Infineon-P2G_Software_User_Manual-ApplicationNotes-v01_01-EN.pdf?fileId=5546d4626b2d8e69016b89493bf842af
https://www.infineon.com/dgdl/Infineon-P2G_Software_User_Manual-ApplicationNotes-v01_01-EN.pdf?fileId=5546d4626b2d8e69016b89493bf842af

2.2. Data representation 16

radar data this becomes inaccurate as consecutive frames might differ significantly. Feature based
representation extracts meaningful features from the data and converts or labels it (e.g. by colour,
shapes, geometries) by assuming some knowledge of the environment model, which reduces the
memory and processing requirements. Again, since radar data only produces one detection per ob-
ject due to the low resolution, this cannot be applied.

The last representation type is grid based, and there are several types. 2.5D (height maps) discre-
tise the space into a 2D grid on the ground, where each grid contains the maximum height of an
object occupying that grid, while 3D voxelised grids contain the full 3D representation of the envi-
ronment. However since the FMCW radar sensor only produces 2D data (it can only measure angles
horizontally), we speak of occupancy grids in which the observable space is discretised into pixels
that states whether the space is occupied by an object or not (often probabilistic/Gaussian). This is
a means to ensure that each frame contains a fixed number of data points, and also allows for image
processing techniques to be applied, such as optical flow or using convolutional neural nets.

2.2. Data representation 17

Figure 2.3: Frequency analysis of fast-chirp FMCW radar, showing the Transmitted (Tx) and received (Rx) signals from
multiple objects, and mixed to produce the IF signal, and FFT transform of IF signal to produce range FFT, delineating

the 3 objects

3
Multi-Target Tracking

While avoidance algorithms can directly use this data to avoid stationary objects, it is important to
track any dynamic moving objects to assess the risk of collision, also known as multi-target tracking
(MTT) [1]. This involves two steps which work in conjunction with each other: associating each new
data point with an existing target, and determining the state (position, velocity, acceleration) of the
object. Once this is known, the autopilot or controller can adjust the state of the vehicle to avoid
collisions.

3.1. Data Association
Data association is the process which assigns data points to the various targets in the environment
[14]. In some literature, this process is split up into two: gating and association, where gating dis-
cards unlikely measurement candidates, and the association step converts a likelihood matrix into
an assignment matrix according to one of several algorithms. This also involves creating new tenta-
tive tracks for measurements that do not conform with existing tracks. Once these tentative tracks
meet certain criteria, the track is confirmed. Tracks which no longer have any associated measure-
ments are deleted. The process of data association becomes especially difficult when the objects
are in close proximity to each other or in the midst of clutter, where it becomes more difficult to
distinguish between the two. All data association filters use the predicted state of the target based
on the tracking algorithm that is carried out after this step. Note that it is assumed that only one
measurement (radar detection) will be recorded per obstacle.

When considering MTT, we speak of the various Gaussian densities (probability density functions)
given below, namely the posterior density (probability distribution of the state estimate given mea-
surements from time t = 0 to τ), the transition density, and the measurement likelihood, where Q
and R are the covariance matrices of the process and measurement noise, respectively, as will also
be covered in the Kalman Filter process in Section 3.2. With the KF, the state estimate is taken as
the mean of the posterior density. This is a recursive process, where the next time step prediction of
the posterior density p(xk |z1:k−1) is made based on the model and current density, after which the
estimate p(xk |z1:τ) is calculated.

p(xk |z1:τ) =N (xk ; x̂k|τ,Pk|τ) posterior density
p(xk |xk−1) =N (xk ; fk−1(xk−1),Qk−1) transition density
p(zk |xk) =N (zk ;hk (xk),Rk) measurement likelihood

18

3.1. Data Association 19

It is also important to understand the clutter and measurement models. The clutter (false alarms)
can be modelled using the Poisson point process, where the number of clutter detections mc

k ∼
Po(λV), where λ is the expected number of clutter detections per unit volume and V is the observ-
able volume (FoV), over which they are distributed according to the intensity function λc (c) (with
corresponding pdf c ∼ fc (c) within V , and equal to zero outside V). Often, this is uniformly dis-
tributed fc (c) = 1/V . The vector Ck then represents all the clutter detections. A measurement model
can then be defined Zk = {Ok ,Ck }, where the measurements consist of clutter and object detections
Ok , which occur with a probability of P D (xk), where the individual detections have densities ok ∼ gk

(or measurement likelihood p(zk |xk) above). These models will also become important for simula-
tion of the radar sensor.

The problem is to then assign the measurements to the objects with an association θk (Equation (3.1))
at time t = k, and this final posterior density p(xk |Z1:τ) can be found by performing a weighted sum
of all of the individual densities corresponding to the different hypotheses (association possibilities)
as given in Equation (3.2), where the second factor of the sum (Pr) is the (unnormalised) weight, the
probability that the hypothesis is valid and is denoted by wθ, which is given by Equation (3.3).

θi
k =

{
j if measurement i is associated with object j
0 if object j has been misdetected

(3.1)

p(xk |z1:τ) =∑
p(xk |Z1:k−1,θ1:k) ·Pr [θ1:k |Z1:k] (3.2)

wθ = Pr [θ1:k |Z1:k] =
{

1−P D if θi
k = 0

P DN (zθ ;z̄,S)
λc (zθ)

if θi
k = 1...m

(3.3)

Where z̄ = H x and S = HPH T +R (H is the observation matrix and S is calculated in the KF process).
However, in reality it is intractable to keep track of all possible hypotheses which grows exponen-
tially over time, and thus assignment algorithms can either prune the hypotheses (which removes
the ones with small weights) or merge the hypotheses (replace the sum of all Gaussian densities
with a single Gaussian density). Generally when using merging, some form of pruning is done be-
forehand such as gating.

When using the simplest data association method, the global nearest neighbourhood (GNN) [43]
approach, pruning is employed such that only the hypothesis with the largest weight is considered.
This is a very greedy and computationally efficient approach that works well for simple scenarios.
However the algorithm struggles to make correct associations in high clutter, close proximity envi-
ronments. Another method is the joint probabilistic data association filter (JPDAF) [1, 14], which
instead uses merging to reduce the number of hypotheses into one for every track. JPDAF how-
ever cannot account for object births and deaths. Instead of considering a single hypothesis, the
multiple hypothesis tracking (MHT) [33] algorithms takes multiple hypotheses into account over
different time steps, and thus is more likely to converge towards the true posterior density. GNN is
a MHT algorithm where only one hypothesis is considered.

For an unknown number of multiple objects, the data association becomes an assignment opti-
misation problem, where an assignment matrix A should be generated to minimise the cost: A∗ =
ar g mi n(tr (AT L)), where L is the cost matrix. This is equivalent to minimising the sum of the nega-
tive log weights wθ. Both A and L are (n×m+n) matrices, where n is the number of detections and
m is the number of tracks. Equation (3.4) shows the structure of the cost matrix, where the left sec-
tion encodes for the assignment of the measurements to the tracks, and the right section encodes

3.2. Obstacle state estimation 20

for misdetections. The problem is bound by the constraints in Equation (3.7).

L =

−`1,1 −`1,2 . . . −`1,m −`1,0 ∞ . . . ∞
−`2,1 −`2,2 . . . −`2,m ∞ −`2,0 . . . ∞

...
...

. . .
...

...
...

. . .
...

−`n,1 −`n,2 . . . −`n,m ∞ ∞ . . . −`n,0

 (3.4)

`i ,0,h = log
(
1−P D)

(3.5)

`i , j ,h = log

(
P DV

λ̄c

)
− 1

2
log

(
det

(
2πSi ,h

))
− 1

2

(
zi − ẑi ,h

)> (
Si ,h

)−1 (
z j − ẑi ,h

)
(3.6)

subject to Ai , j ∈ {0,1}, i, j ∈ {1, . . . ,n}× {1, . . . ,n +m}∑n+m
j=1 Ai , j = 1, i ∈ {1, . . . ,n}∑n
i=1 Ai , j ∈ {0,1}, j ∈ {1, . . . ,n +m}

(3.7)

In reality a lot of different methods simplify the elements of the cost matrix by only considering
the Euclidean or Mahalanobis distance (which is the last term of Equation (3.6), given in Equa-
tion (3.8)). Furthermore, Gating is used to discard very unlikely measurements and reduce compu-
tational load by creating a bounding region (gate) outside of which any measurements are immedi-
ately discarded. This region is defined by Equation (3.8) which forms an ellipse. If this distance is
greater than a certain threshold r 2 >G , it is discarded (i.e. `i , j ,h =∞). r 2 ∼χ2(nz), and the threshold
G can be selected such that Pr [r 2 >G] = PG , where PG is a value such as 0.995. It turns out however
that this ellipse is computationally expensive to deal with, and a bounding rectangle can be used
instead which encompasses the ellipsoid, again based on the Mahalanobis distance.

[zk − ẑk]T S−1 [zk − ẑk] = r 2 (3.8)

A number of solvers can be used to find the optimal assignment matrix, the simplest being the Hun-
garian algorithm. Furthermore, object birth and death also has to be dealt with. Object death occurs
when the tracked object is misdetected for a certain number of frames. Object birth happens when
clutter detections are associated with new tentative tracks. If the posterior density increases beyond
a certain threshold, the track is confirmed and becomes a new track.

Other approaches to data association include the use of simple artificial neural networks (ANN).
Chung et al. 2007 [11] employs a Hopfield neural net, a simple type of binary, recurrent NN. The
network is trained at every time step to map new detections with the target positions in the pre-
vious time frame. ANNs can also be used in conjunction with a Kalman filter (KF), as Silven 1992
[52] demonstrated, where the ANN is able to convert a likelihood assignment matrix into a binary
assignment matrix, which essentially solves a network of differential equations.

3.2. Obstacle state estimation
Kalman Filters
After new detections are associated with new or existing targets, tracking can be done independently
to determine the state (position, velocity or acceleration) of the objects. The most common method
is the Kalman filter (KF), which is a weighted average between the measured and predicted state.

xk+1 =Φk+1,k xk +Ψk+1,k uk +Γk+1,k wd ,h

zk+1 = Hk+1xk+1 +Dk+1uk+1 + vk+1 (3.9)

3.2. Obstacle state estimation 21

Given a discretised system with process noise wd ,h and sensor noise vk+1 as given in Equation (3.9),
where Φk+1,k is the system transition matrix, Ψk+1,k is the input distribution matrix, Γk+1,k is the
noise input matrix, Hk+1 is the observation matrix and Dk+1 is the feedforward matrix. Using the
5 steps in Figure 3.1, the state can be estimated using the Kalman gain K , which depends on the
uncertainties in the system by optimising a quadratic weighted least square cost function which
tries to minimise state prediction error and the measurement error. In the case of tracking, the
objects position, velocity and acceleration can be estimated.

Figure 3.1: 5 steps of the Kalman filtering process. Adapted from AE4320, System Identification of Aerospace Vehicles,
Delft University of Technology, Dr.ir. Daan Pool

Where x̂k+1,k is the one-step-ahead state prediction, x̂k is the current optimal estimated system
state, x̂k+1,k+1 is the one-step-ahead optimal state estimation, and Pk,k , Qd ,k and Rk+1 are the co-
variance matrices of the current estimation error ε̂k,k , known process noise wd ,h , and known sensor
noise vk+1, respectively.

The Kalman filter however, only applies to linear systems, assumes the noise covariance matrices
are known and requires a fully observable system to converge. When the system behaves differ-
ently in different environments, sometimes the interacting multiple model (IMM) algorithm is used
which uses two or more KFs with different models and selects the best one. Alternatively, the ex-
tended Kalman filter (EKF) can be used for non-linear systems, which linearises the system about
nominal state and input values. Because of this, the system is now defined by the perturbations δx,
δu and δz from the nominal state in Equation (3.10), requiring the calculation of the Jacobian Fx (•)
and Hx (•) of the transition and observation matrices, respectively (the • represents the nominal
condition around which the system is linearised). After this is discretised, steps 2-5 in Figure 3.1
are followed as with the standard KF. The iterative EKF takes this one step further and iterates on
the Jacobian, Kalman gain and measurement update steps, to allow for better convergence and less
sensitivity to initial conditions.

δẋ(t) = Fx (•)δx(t)+G (•) w(t)

δz(t) = Hx (•)δx(t)+ v (t) (3.10)

Particle Filters
Another estimation method is a particle filter (PF), which is an iterative estimation method that
evaluates the probability of hypotheses (particles) (it can also be closely compared to evolutionary

3.2. Obstacle state estimation 22

algorithms). It starts with a set of N particles with randomly distributed positions and velocities and
equal normalised weights 1/N :

1. One step ahead prediction ẑi ,k = h(x̂i ,k) = h(f (x̂i ,k−1))

2. Calculate probability based on error εi ,k = (zk − ẑi ,k)

3. Multiply particle weights by probabilities and re-normalise weights

4. Calculate estimate based on weighted average

5. Create new set of particles with weights 1/N , distributed based on current particle weights

6. Calculate sample covariance Pk = 1
n−1

∑n
i

(
x̂i ,k − x̄

)(
x̂i ,k − x̄

)T

7. Add perturbations to particles by sampling from Pk and multiplying by tuning parameter

Particle filters can coarsely estimate a state as well as the likelihood of a measurement error for many
different types of problems with different models. However, due to the large number of particles
required to accurately estimate the state, it can become computationally expensive. Moreover, since
the uncertainty is represented as a set of particles and weights, the state estimation is usually coarse.

Neural Networks
There are several types of ANN that can complement or replace the standard Kalman filter (KF)
to perform target tracking, especially when dealing with manoeuvring targets. Often, general re-
gression neural networks (GRNN) are used, where the output of the network is a weighted sum of
Gaussian radial basis functions of the inputs (the centres of these functions represent the input
distribution/features). Training can then be done using standard back-propagation or also simple
linear regression. GRNNs can replace KF for target state estimation, especially when considering
manoeuvring targets [30, 32, 55]. Fun-Bin and Chin-Teng 2004 [22] uses a (hand crafted) neural
fuzzy inference network to detect when manoeuvres occur and then adapts the covariance matrix
in the KF process to allow for greater flexibility in the estimation process.

Recurrent neural networks (RNN) are also often used, which have recurrent connections in the hid-
den layer that simulate an internal state (or memory). RNNs have been shown to produce better
results regarding sequential data and variable length inputs. However, standard RNNs have trouble
deleting obsolete information at appropriate times when new input is presented, or do not place
enough significance with new information.

To combat this, gated RNNs are used, such as long short-term memory (LSTM) networks which
are among the most popular. These networks produce an output and state at every cycle. In Fig-
ure 3.2, the forget gate ft processes the input and decides whether or not to delete information in
the state c(t −1). The input gate it decides whether or not to allow information to pass through the
main gate C̄t and add to the state, and the output gate Ot decides what information to output h(t)
from the state c(t). In this way, it can hold the state of the system, while also being adaptive to new
changes or unseen data. RNNs however require more memory for back-propagation to store all the
inputs. Iter, Kuck et al. 2016 [28] which uses 2 LSTM networks to both predict the future position of
a detected object and the distribution of likelihood (variance of prediction). Again, this is especially
effective with manoeuvrable targets.

3.2. Obstacle state estimation 23

Figure 3.2: Structure of a recurrent LSTM network. Adapted from [63]

4
Avoidance of Moving Obstacles

Once the state of the environment and the vehicle is known, it can be determined whether or not
a collision will occur and steer clear. Many methods however do not take into account the velocity
of the obstacles, and merely update the response when the environment has changed, showing
more erratic behaviour [13]. This can be done in a deliberative way where all of the information
from the environment is used to guarantee convergence, such as global path planning methods.
Deliberative methods however are quite memory and processing intensive, while also being less
robust to noise. Alternatively, reactive (or local path planning) methods can be employed, which
are less processing intensive but do not guarantee global convergence and may get stuck in local
minima. Sometimes these methods can be combined Thrun et al. 1998 [15] that utilise a path
planner to provide intermediate goals.

4.1. Reactive Controllers
One of the simplest reactive methods is known as velocity obstacles (VO), which determines the set
of velocity vectors of the vehicle which will result in a collision with another moving object.

This explanation has been obtained from Fiorini et al. 1998 [18]. Consider a robot A and an ob-
stacle B with velocities VA and VB and radii r A and rB , as given in Figure 4.1a. Mapping B onto the
configuration space of A means enlarging object B by the radius of A to form object B̂ , and reducing
A to a point Â and computing the relative velocity of robot A with respect to object B , VA,B =VA−VB ,
as shown in Figure 4.1b. The collision cone CC A,B can then be formed, in which any relative veloc-
ity VA,B will result in a collision with object B . Then the absolute velocities of robot A which result
in a collision can be found by adding the velocity of object B , VB , to the cone with respect to A to
form the velocity obstacles V OB =CC A,B +VB (using the Minkowski vector sum operator) as seen in
Figure 4.1c.

This can subsequently be done for every detectable obstacle, and the union of these will form the
complete velocity obstacles for the whole environment: V O = ∪m

i=1V OBi . Additionally, prioritising
imminent collisions which will occur within a time frame Th will free up some space for manoeu-
vring in case of clustered environments. This involves subtracting the set of velocities V Oh that will
result in a collision after t = Th : |VA,B | < dm/Th , where dm is the shortest relative distance between
the obstacle and robot. Uncertainties and delays (or acceleration limits) with the robot dynamics
also have to be taken into account, as well as the set of reachable velocities. The advantage of this
method is that all velocities can also be processed relative to the drone’s frame of reference, rather
than an inertial one. To avoid obstacles, the algorithm should select the appropriate avoidance ve-

24

4.1. Reactive Controllers 25

locities while also directing the robot towards a goal.

(a) Robot A and moving obstacle B (b) Relative velocity VA,B and collision cone CC A,B

(c) Velocity obstacle V OB

Figure 4.1: Velocity Obstacle procedure. Adapted from [18]

Another such reactive method is known as vector field histogram (VFH) [7]. The algorithms starts
out by creating an (Cartesian) occupancy grid centred around the robot where the certainty c∗i , j that
the grid (i , j) is occupied increases with more detections, thereby also taking into account previous
detections. Each cell is then assigned a magnitude which is proportional to the square of the cer-
tainty and inversely proportional to the distance mi , j = (c∗i , j)2(a −bdi , j), essentially signifying the
danger to the robot. This is then converted to a one-dimensional polar histogram, where each sec-
tor of the histogram represents a small field of view, and the density of the histogram is the sum of
the magnitudes of the cells in that sector hk = Σi , j mi , j (see Figure 4.2). After applying a smoothing
filter, a threshold is applied. Any regions below the thresholds are grouped together into valleys, and
in the VFH algorithm, the valley closest to the goal is selected. An extension of this is the VFH+ al-
gorithm, which also takes the robot’s dimensions and dynamic limits into account by excluding any
valleys that extend beyond these limits. Additionally, it provides a cost function to the valleys, and
more optimally decides which valley to choose based on the angular distance of the valley (in the
histogram) to the goal, the angular distance from the current robot orientation and angular distance
from the previous direction selected. Building on this the VFH* algorithm simulates candidate di-
rections one time step in advance and explores the subsequent branches, computing the cost after

4.2. Behavioural Controllers 26

N number of steps, thus allowing for a more global approach. Although VFH algorithms do not take
into account the velocity of the obstacles, it is still shown to work for simple, slow moving robots. It
should also be noted that data association and tracking are not necessary for this approach.

(a) Cartesian occupancy grid showing the robot facing right in the
centre and detections of objects A, B and C, the size of the detection

squares represents the magnitude mi , j . The lobes are the
histogram densities hi , j

(b) Conversion into the histogram

Figure 4.2: Vector field histogram. Adapted from [7]

Other methods include using potential fields (from which VFH was derived) to generate a net force
from the obstacles and goal that drives the robot, and the dynamic window approach that incorpo-
rates the dynamic and kinematic constrains of the robot in the optimisation problem.

4.2. Behavioural Controllers
Although the controllers in the above section could also be classified as behavioural in some ways,
in the context of this report, behavioural controllers refer to the use of neural networks (NN) to map
the sensory input to the output actuators.

As mentioned, behavioural control lies in between deliberative and reactive control, and neural net-
works are ideally suited for this type of control due to their smooth optimisation landscape, learning
capabilities, parallel processing capabilities, adaptive solutions, and toleration to noisy input data.
While the result of the tracking procedure from Chapter 3 could be used as input to the NNs, typ-
ically the raw sensors are directly used as input with no pre-processing, although all of the studies
examined here are of a slightly different nature, and deal with stationary obstacles. When deal-
ing with moving obstacles, especially for collision avoidance, most methods require some kind of
knowledge about the state of the environment. Since this study is specific to radar implementation,
the data produced from the radar sensor is also of a different nature than lidar/ultrasound/IR sin-
gle point sensors: firstly the Doppler measurements already give an indication of the state of the
obstacles by measuring the radial velocity, and secondly the radar produces data of variable size,
returning the position and radial velocity of all detections, instead of a fixed, discretised set of range
measurements.

It should also be noted that for a controller to be classified as behavioural, there should strictly
be some sort of memory involved to keep track of targets or the previous state of the controller and
exhibit more behavioural rather than reactive control. Alnajjar et al. 2009 [5] argue that adaptive
(learning) and contextual (memory) properties are necessary for higher fidelity system and dealing
with a changing environment types when constructing their modular controller, allowing it to build
up of knowledge of the environment to use to its advantage. However, memory is also important to

4.2. Behavioural Controllers 27

store the state of the environment, which is necessary for all tracking algorithms. Moreover, modu-
larity allows a complex task to be broken down into simpler sub-tasks, which each module can then
solve independently. In fact when looking at existing studies that use behavioural controllers, even
simple tasks that are trivial for humans are often too complex for a single controller to handle, and
as such, the controller is made modular as some studies do in Chapter 5 and Chapter 6. Moreover,
controllers often also use evolutionary algorithms (EA) as the optimisation algorithm as it can find
solutions with a better interaction with the environment (fitness). This is especially useful when
applied to spiking neural nets, as is explained in the following section.

Other methods besides neural networks can also be applied to create a behavioural controller. Tubb
and Roberts 1998 [58] implement a neuro-fuzzy network, which processes commands and sensor
input through set of weighted rules, followed by defuzzification, from which the robot can move
forwards, turn a certain angle, or maintaining its heading. Another method to go about construct-
ing an obstacle-avoid algorithm is to use genetic programming (not to be confused with genetic
algorithm). Genetic programming evolves a program, a function of different operators such as ad-
dition, multiplication or non-linear function, represented as a tree structure, in order to become
more proficient at performing a task. Oh and Barlow 2004 [41] applies it to a navigational controller
for locating targets, although it lacks the advantages of NN, mainly robustness to noise and better
adaptability/flexibility.

5
Spiking Neural Networks

Spiking neural networks (SNN), also referred to as 3rd generation neural networks, try to more
accurately model biological neural networks and are especially well suited for processing spatio-
temporal data and event based data, as well as being more robust to noise and more computation-
ally efficient for their size [21, 44, 56]. For this reason, this section will discuss the basic operation
and concepts behind SNNs.

Traditional artificial neural networks (ANN) have made tremendous progress over the years with
the advent of training and inference in deep learning. However, ANNs fundamentally lack similar-
ity to biological neural networks, which have evolved to optimise for energy efficiency, analogue
computation, fast inference and parallelism. This is what SNNs try to mimic, and unlike with ANNs
which consist of a network of neurons which output a value based on the non-linear but continuous
activation function at every propagation cycle, SNNs consist of a network of spiking neurons con-
nected with synapses, which either have the property of being weighted or having a transmission
delay.

A post-synaptic spiking neuron generates an action potential (pulse or spike) when its membrane
potential exceeds a threshold. This membrane potential is modulated by the spikes coming from
pre-synaptic neurons or input according to the neuron model used. Additionally, information is en-
coded from digital/analogue input into a spike train and vice versa [60] according to one of several
spike encoding schemes. Moreover, due to the event-based and timing-sensitive nature of SNNs,
they are especially well suited for asynchronous neuromorphic hardware and sensors (such as dy-
namic vision sensors), making them computationally and energy efficient due to the scarce and
information-dense spikes. Despite recent progress, SNNs have not yet achieved the same accuracy
as the top performing ANNs on standard benchmarks such as MNIST or ImageNet [44], however
these datasets were designed for conventional synchronous ANNs, which have been studied far
more extensively.

5.1. Neuron models
In biological neurons, incoming spikes affect the voltage (membrane potential) of the soma, and
when this reaches a threshold, it releases an action potential, which is characterised by a sharp in-
crease in voltage followed by a long negative spike after potential (SAP), also referred to as the refrac-
tory period. The spikes travel down the axon and reaches the synapse, where through a complex set
of reactions between the terminals, neurotransmitters and dendrites, the (excitatory or inhibitory)
post synaptic potential (PSP) passes to the next neuron [23].

28

5.1. Neuron models 29

SRM model
In SNNs, the neuron models are drastically simplified, and dictate how the PSP affects the mem-
brane potential of the neuron. Since action potentials are all very similar, they can be modelled
instead by the timing of the spikes. According to the spike response model (SRM), the membrane
potential u(t) of neuron i can be modelled by Equation (5.1), where η(t − t̂i) describes the effect
of the action potential at time t̂i and SAP on the membrane potential, and κ(t − t̂i , s) being the re-
sponse to the input current I (t − s). When dealing with input from presynaptic spike arrival, the
convolution of κ with the time response of the input spike current yields the PSP response ε as in
Equation (5.2), where it is also assumed that κ is independent of the last spike time t̂i . That is, the
membrane potential is the sum of the action potential effect η plus the sum of the PSP ε over every
spike f and every synapse j with corresponding weight w j . This weight is positive or negative de-
pending on whether the synapse is excitatory or inhibitory. Furthermore, Equation (5.1) assumes
the resting potential is zero (otherwise a constant is added).

ui (t) = η(t − t̂i)+
∫ ∞

0
κ(t − t̂i , s)I (t − s)d s (5.1)

ui (t) = η(t − t̂i)+∑
j

∑
f

wi jεi j

(
t − t f

j

)
(5.2)

The model (also referred to as simplified SRM) only takes into account the latest spike with regards
to η. The neuron fires when u reaches a threshold ϑ:

ui (t) =ϑ and
d

d t
ui (t) > 0 =⇒ t = t (f)

i (5.3)

The PSP kernel ε and action potential kernel η will be of the form in Equation (5.4) and Equa-
tion (5.5), which can be visualised in Figure 5.1.

εi j (s) =
[

exp

(
− s −∆i j

τm

)
−exp

(
− s −∆i j

τs

)]
H

(
s −∆i j

)
(5.4)

η(s) =−η0 exp

(
−S −δabs

t

)
H

(
s −δabs

)
−K H(s)H(δabs − s) (5.5)

Where H(s) =
{

1 if s > 0
0 if s ≤ 0

And ∆i j denotes the transmission delay, 0 < τs < τm are constants that define the duration of the
effects of the PSP and δabs is the duration of the absolute refractoriness (the positive spike scaled by
K).

LIF model
The more popular neuron model for SNNs is the leaky integrate and fire (LIF) [23] model for its
simplicity, which is a modification of the SRM. This model is governed by Equation (5.6), which
describes the state of a circuit, where a capacitor C that is in parallel with a resistor R is driven
by an input current I (τm = RC is a time constant with which voltage decays over time). Unlike
with the SRM model, the action potential is not explicitly modelled, but rather defined by the firing
time t (f), again when u(t (f)) = ϑ, where the membrane potential simply set to the resting potential
ur instead of a SAP: essentially, the model ’leakily’ integrates all the incoming PSPs, releases a spike
when crossing the threshold and resets the membrane potential to the resting potential. Integration
of Equation (5.6) gives a similar form to Equation (5.1).

5.2. Encoding Schemes 30

(a) Example of the effect of the action potential on the membrane
potential, η

(b) Example of an excitatory and inhibitory PSP, ε

Figure 5.1: Membrane response to action potential and PSP. Adapted from [23]

τm
du

d t
=−u(t)+RI (t) (5.6)

Aside from these two threshold dynamics models, Hodgkin-Huxley’s and Izhikevich neuron models
also exist, however the former is computationally expensive and the latter is a less common method,
which is governed by two ordinary differential equations as given in Equation (5.7), where v is the
membrane potential, and a,b,c and d are tuning parameters to create different spike patterns. u
represents a recovery variable [29].

v̇ = 0.04v2 +5v +140−u + I

u̇ = a(bv −u) (5.7)

Where

if v ≥ vt , then

{
v = c
u = u +d

5.2. Encoding Schemes
Furthermore, there are various methods to encode and decode information, and normally the same
method is used for both. Specifically, the input to the neural network must be converted from their
analogue/digital value into spike trains, and vice versa to produce a meaningful output. In the past,
it was thought that all information was encoded using rate coding, where the frequency of spikes
indicates the intensity of the signal. For decoding the spike trains, the spikes can be averaged over a
sufficiently large observation window instead of specific spike sequences due to the variable nature
of a SNN, which is typically between 100−500ms [3, 23], depending on the neuron models as well.
Alternatively they can be averaged over multiple runs or populations, although that further limits
the speed of the network.

For encoding information into spike trains, the signal can be directly converted into firing rates with
additive noise, or probabilistic firing rates can be used, where the probability that a neuron fires is
dependent on the strength of the input signal (such as using a Poisson distribution). Although rate
coding is more resistant to noise, it is much slower due to this observation window, and hence is
also not considered to by biologically realistic (although the peripheral nervous system does exhibit

5.3. Training SNNs 31

rate coding behaviour). Rate coding can also be used to convert conventional ANNs into SNNs [44],
as increasing firing rates is analogous to a higher output value of a neuron.

The other type of encoding is temporal coding (also known as latency coding or time-to-first-spike
coding) [31], with the idea that the precise timing of the spikes also carries information, and is now
thought to play a major role in cognitive processing, due to the fact that functions of the brain are
faster and more precise that rate coding would allow. Information is carried much faster and effi-
ciently, and inputs are processed in much shorter time scales.

Rank-order encoding is one such example. Here each neuron fires at most once, and information
intensity of the signal is represented by the delay of the spikes. This means that where the most
significant information is held in earlier arriving spikes. This is especially useful when considering
the output of the network where the first spike to arrive already gives a very good indication of the
output, meaning the propagation cycle can be halted prematurely, resulting in faster computation
speeds. This advantage is even more apparent when using neuromorphic hardware handling asyn-
chronous data, where precise timing of the spikes is of the essence.

Another temporal encoding scheme is threshold-based encoding (or temporal contrast) where a
spike is released only when the change of the input occurs beyond a certain threshold. Hough
Spiker Algorith (HSA) and Ben’s spiker algorithm (BSA) are encoding schemes where the stimulus
is estimated by applying a linear filter to the spike train (finite impulse response). In Equation (5.8),
which gives the estimation of the signal, h is the filter applied (through convolution) to the spike
train x, where spikes occur at t = tk . With HSA, to encode the information, the process is reversed
and tries to do a reverse convolution of the signal by comparing if a hypothetical spike would be
higher or lower than the signal at each time step. BSA on the other hand uses two error metrics to
decide if a spike should be generated [31, 47], showing a better SNR than HSA. BSA turns out to be
more suited for high frequency signals and can only account for excitatory spikes, while temporal
contrast is more suited for steady signals. Step forward encoding and moving window spike encod-
ings further extend the algorithm to better construct the original signal and be more robust to noise,
respectively [31].

sest = (h ∗x)(t) =
∫ +∞

−∞
x(t −τ)h(τ)dτ=

N∑
k=1

h (t − tk) (5.8)

5.3. Training SNNs
One of the major shortcomings of SNNs is the training. Due to their non-differentiable activation
functions, standard back propagation is difficult. While there are handcrafted solutions for imple-
menting a SNN [27, 42], learning is the preferred choice. Supervised back propagation can be ac-
complished using proxy functions in place of the derivative and error assignment [49] or SpikeProp
(uses backpropagation on the errors based only on the membrane potentials), or alternatively con-
ventional ANNs can be trained and then converted to SNNs, however usage of these methods is still
limited.

Hebbian learning on the other hand is extensively used for unsupervised learning. Based on bi-
ological mechanisms, Hebbian learning strengthens synapses which fire in a correlated manner.
Specifically, spike-timing dependent plasticity (STDP) is a type of Hebbian learning algorithm that
alters the weight of a synapse when the pre- and post-synaptic neurons fire in a correlated manner
through the use of long-term potentiation (LTP) that strengthens the connection when the firing
sequence happens in the expected causal temporal order and long term depression (LTD) which

5.3. Training SNNs 32

weakens the connection when the post-synaptic neuron fires before the pre-synaptic one [12, 31]
based on the exact timing. STDP can be used to make an SNN react quicker to data it has seen be-
fore, and is sometimes used in combination with other learning methods.

Wang, Hou et al. 2008 [61] use a manually constructed rate-coded SNN with LIF neurons and unsu-
pervised Hebbian learning to allow a robot equipped with ultrasonic sensors to avoid objects while
roaming by modifying the weights of the synapses, and showed improved, faster, less erratic, and
more consistent behaviour. Mahadevuni and Li 2017 [36] used STDP learning to train a SNN to de-
cide what direction the robot should turn when confronted with a wall to get to its target as fast
as possible. These controllers however are very simple input-output NN, and should actually be
classified as reactive controllers, since they do not have a hidden layer. Cao, Cheng et al. 2015 [10]
build upon their previous study ([61]) to create a 3-layer modular SNN controller (using the SRM
and rate coding) to reach a goal, follow walls and avoid obstacles. While the obstacle avoid module
is pre-trained (using Hebbian learning), the other connections are further adapted using Hebbian
learning as well. Arena, P et al. 2010 [6] also use STDP conditioning learning on a SNN with Izhike-
vich neurons for navigation and obstacle avoidance aboard a two-wheeled robot, demonstrating the
efficiency of using SNNs for learning the association between visual features and basic behaviours.

As discussed, there are solutions for supervised training of SNNs, however, due to the nature of
the problem at hand, perhaps a more self-supervised approach will be more favourable, as it could
find patterns and solutions in the data beyond human perception. For this, bio-inspired evolution-
ary algorithms (EA) can be used to train both conventional and spiking neural nets that try to mimic
nature. EAs are popular in the field of robotics, often referred to as evolutionary robotics, as they can
find elegant solutions and behaviours to the problem. Chapter 6 will give a more extensive review
of this optimisation algorithm.

6
Evolutionary Optimisation Algorithms

Evolutionary algorithms (EA) are used to optimise a wide variety of problems, especially for SNNs
as they are not gradient descent based. With SNNs, they are sometimes combined with STDP learn-
ing, and EAs are also commonly used to optimise conventional ANNs, especially when dealing with
robotics (often referred to as evolutionary robotics).

An EA is a bio-inspired algorithm for optimising problems based on natural selection. Pertain-
ing to NNs (often coined evolving connectionist systems), the algorithm encodes the parameters
of an initial population of (random or pre-trained) networks into genomes (mostly a string of bi-
nary values). It then evaluates each NN and computes its effectiveness based on a specified fitness
function, which determines the probability that a NN is selected for a number of breeding opera-
tions. These breeding operations determine whether (characteristics of) a particular NN genome
are passed on to the next generation or not. These operations are also probabilistic and include
elitism, which guarantees that the best performing NN is always copied into the next generation,
replication, where a genome is directly copied into the next generation based on their probability
of selection, crossover, which exchanging genes between selected genomes, and mutation, which
randomly changes a gene in a selected genome. This ensures that the optimisation landscape is
searched in a unique way to EAs.

6.1. Encoding and Issues of EAs
The genes (parameters of network) can be encoded in different ways[21]. Direct representation
means that there is a one-to-one mapping of the values into genes (for example if the EA is to op-
timise the synapse weights, then every weight is encoded into the genome). This means that each
genome needs to encode a parameter accurately enough, which can make the genome rather long.
Adaptive encodings try and solve this by encoding the most significant part of the NN e.g. by first
encoding higher level parameters until it converges to a satisfactory solution, at which point it starts
to encode more low level parameters.

Additionally, direct encoding schemes have been shown to produce excellent results in small net-
works, however they do not always scale well with increased network size, causing competing con-
ventions and premature convergence. Competing conventions occurs when different genotypes
code for NN with similar structures or behaviours, reducing diversity and complexity of the solu-
tions. Premature convergence occurs when the algorithm converges to a local minimum which can
also cause a rapid decrease in population diversity. Some methods have been developed to combat
these problems such as the SANE (symbiotic adaptive neuro-evolution, which evolves individual

33

6.1. Encoding and Issues of EAs 34

neurons to cooperate) and neuro-evolution of augmenting topologies (NEAT)[54].

The latter one, NEAT, is quite a popular algorithm that can evolve the structure and weights of NN
simultaneously by using a genetic representation that allows crossover between different topologies
in a meaningful manner using historical marking. NEAT also protects new topological innovations
that might not perform as well initially until the weights are further evolved by only comparing the
fitness of networks with similar structure. The genome contains 2 sets: the node genes, which con-
tain the node number and type of node (input, hidden, output), and the connection genes, which
contain the node in and out connection, the weight, whether it is enabled or disabled and the inno-
vation number. A mutation can create either a connection or a node that is placed in the middle of
an existing connection. When the latter occurs, the old connection is disabled and 2 new connec-
tions and a new node are created in the genotype.

Conversely, crossover compares the 2 parent genes, determines which genes are shared and com-
bines them into the offspring gene as shown in Figure 6.1 [54]. To protect innovation, a method
known as speciation is adapted, where the population is divided into species that share similar
topologies. This is determined if compatibility distance δ is below a certain threshold δt , which
is a function of the number of excess genes E , the disjoint genes D (as displayed in Figure 6.1),
and the average weight differences between the two genomes W . N is the number of genes in the
genome to normalise, as given in Equation (6.1). Species cannot overlap and they are represented
by a random member in the species. Furthermore, to prevent a particular species from dominating
the entire population, fitness sharing is used, where the fitness is penalised for increased species
size, as given in Equation (6.2), where the sharing function sh is equal to 0 if δ > δt and vice versa
[54].

δ= c1E

N
+ c2D

N
+ c3 ·W̄ (6.1)

f ′
i =

fi∑n
j=1 sh(δ(i , j))

(6.2)

Using NEAT, it is less likely to encounter competing conventions and premature convergence as
NEAT attempts to explore the optimisation landscape more (thus less likely to fall in local min-
ima). The objective of the algorithm is to make a simple-as-possible network by starting out with
the smallest network (direct input to output mapping) and building on that by adding new connec-
tions and neurons. Other than direct representations, there are many other methods to encode a
genome, such as ones that encode a process that constructs a NN (such as HyperNEAT, an exten-
sion of NEAT) and implicit representation[21, 26]. An EA can optimise different parameters, includ-
ing synapse weights, fitness function, connectivity between layers, general architecture, activation
function thresholds, and learning rules (such as STDP).

There are several general issues concerning EAs when applied to robotics [16, 40, 50]. The first is
that EAs require large populations and generations to converge well, and this can take a long time
to train as this needs to be carried out in real life or in simulation (which can be done faster). Con-
cerning MAVs, it is undesirable to train the networks in real life as the controller would cause a crash
often. With simulations however, there is always a gap when performing the same tasks in real life
due to noise and inaccuracies in the sensors and model dynamics. Many solutions exist that try to
minimise this gap.

One such is to simulate many generations until convergence, and then use those results as the ini-
tialisation to train the networks in real life for several more generations, which closes the gap [50].

6.1. Encoding and Issues of EAs 35

Figure 6.1: The crossover procedure in NEAT. The top number of the genes is the innovation number. Adapted from [54]

6.2. EA applications in robotics 36

Alternatively, the gap can be minimised by periodically training the network in real life instead of
just in simulation. Furthermore, it has been found that using real sensor data in simulation signif-
icantly improves both the performance and convergence when testing in real life, as was done in
Silva, Correia et al. 2017 [51] using NEAT. It was also shown that using simulated noise in sensors
may not always do better and might introduce an unwanted bias.

As mentioned before, EAs can also suffer from poor fitness functions, where they might not be en-
tirely suitable such that initial evolution fails to produce desirable results (bootstrap problem) or
that it fails to build a gradient towards the global optimum and instead converges towards a local
optimum (deception). There are many solutions to these problems [50], examples of which include
breaking down the task into simpler sub-tasks (or fitness functions), using human intervention to
provide intermediate goals or continuously pushing for behaviour innovation rather than fitness
[16].

6.2. EA applications in robotics
Conventional artificial neural networks
Floreano and Mondada 1994 [19] implement a 2-layer ANN controller using 8 ultrasonic sensors (8
inputs) to allow a miniature ground-based robot to avoid obstacles using the 2 wheels (2 output
neurons). The EA evolved the weights of the ANN in real life rather than simulation by processing
data on a host computer and learned to avoid obstacles in 100 generations. Miglino, Nafasi et al.
1994 [37] use optical sensors (optical flow) as input to a 3-layer RNN with a memory neuron to navi-
gate towards the centre of an enclosure and avoid collision with walls. In this case the EA optimised
the weights of the network in simulation and managed to avoid the walls in real life even if the paths
were different. Nolfi, Miglino et al. 1994 [40] use an EA that evolves both the weights and thresholds
of the connection and neurons in a 3-layer ANN to allow a robot equipped with IR sensors to nav-
igate in a closed environment without colliding with walls. For the simulation, real recorded data
was used as the sensory input to the network and was trained for 300 generations. When transferred
to real life, it was allowed to train for an extra 30 generations, which closed the reality gap almost
completely.

Duarte, Oliveira et al. 2015 [16] present a more recent study that discusses some of the general issues
in evolutionary robotics such as the reality gap, the bootstrap problem and deception, and demon-
strate a modular RNN which is based on the principle that if a task is too complex, it and the fitness
function are broken down into simpler sub-tasks for which a separate 3-layer fully-connected RNN
is evolved. The modular controller showed significant improvement. Silva, Correia et al. 2017 [51]
use an online NEAT algorithm to quickly create a working controller in real life. It was also shown
that pre-training the network in simulation using real sensor data performed the best, rather than
randomly initialising or adding artificially generated noise in the simulation (which added a bias).

Spiking neural networks
SNNs can also make good use of EAs due to the limited learning capabilities. A notable example is
Qiu et al. 2018 [45], which use the NEAT algorithm to train a SNN to control the pole-balancing prob-
lem, which is a behavioural, non-linear problem. For this, they compare a conventional RNN with a
recurrent spiking network, with rate-coded probabilistic firing rates and Izhikevich neuron models,
and show that SNNs actually converge faster than the conventional RNN. The recurrent connec-
tions allow for approximations of derivatives, and to avoid sparse spiking propagation through the
network, a constant background current is applied.

More specific to controllers, Howard et al. [25] utilises a self-adaptive evolutionary algorithm to gen-

6.2. EA applications in robotics 37

erate a robust low-level SNNc(LIF neurons) quadrotor neurocontroller for waypoint holding, while
allowing for plasticity for in-trial training, and demonstrated more accurate performance and bet-
ter robustness to different environments as apposed to PID control. Relating to more higher level
control, Hagras, Pounds-Cornish et al. 2004 [24] presents a controller to perform obstacle avoid-
ance of stationary objects using ultrasound sensors. The weights of a 2-layer SNN are trained using
an adaptive EA with small populations, which changes the mutation and crossover probabilities to
prevent premature convergence. This is also done as in this study learning is done online, which
requires fast convergence in order to quickly produce a stable controller. Mitchell, Bruer et al. 2017
[39] also uses an EA to train a SNN controller on neuromorphic hardware for an autonomous, roam-
ing, obstacle-avoiding ground robot using neuromorphic hardware and lidar single point sensors.
The EA evolves the neuron thresholds, weights, and structure of the network using a method from
Schuman, Disney et al. 2016 [48], and afterwards plasticity is allowed (STDP) to further optimise the
network. This showed that the robot was able to avoid the walls of the enclosure while exploring the
area. Alnajjar et al. 2005 [4] compare the use of EAs and self-organisation algorithms to train SNN
for obstacle avoidance and navigation, demonstrating that while the latter is faster in training, the
EA is able to elicit correct behaviours to perform the tasks.

Floreano, Zufferey et al. 2003 [20] explores the possibility of using an EA to train a 3-layer SNN
(with rate coding and a SRM model) to avoid collision with walls using optical sensors (it essentially
learns to equalise the optical flow on both sides of the vehicle). The EA evolves both the connections
weights and signs between the inter-connected neurons and between the neurons and input (the
structure is fixed, but the connectivity is evolved). The output of the network controls the speed
of the 2 wheels. The study further tries to extend the controller for a blimp craft (which showed
success) and a flapping-wing MAV, the latter of which was not implemented yet, mostly because
an appropriate simulator was not available. The authors also speculated that transferring the SNN
from simulation to real life would present a gap, and a possible solution would be to use some plas-
ticity learning like STDP.

Liquid state machine
Another way to train SNNs is using Liquid State Machines (LSM), which are a class of recurrent SNNs
where the input feeds into the hidden layers, which form a reservoir of neurons with recurrent con-
nections. These connections are randomly initialised and remain fixed. The only connections that
are trained are the output synapses, which greatly reduces the learning problem to a super fast su-
pervised linear regression method. Although the system is sensitive to the initialisation of the ran-
domised weights and might not always produce desired results, many different LSMs can be trained
fast. The reservoir holds information about the state of a system, and the output samples from this
state. Burgsteiner 2020 [8] uses a LSM to train a robot to mimic the behaviour of pre-recorded data
from another NN controller with success. Burgsteiner, Kröll et al. 2007 [9] trains a LSM to predict
the location of a moving object on a 6x8 grid screen some time steps ahead.

7
Analysis

After reviewing relevant literature, the aim is to develop methods that utilise a 24GHz FMCW fast-
chirp radar to perform dynamic obstacle avoidance in a poor visibility environment. Furthermore,
it might prove interesting to demonstrate that a simple neural network controller can be evolved to
display more complex behaviour, and whether it can outperform the traditional method of tracking
avoidance (such as velocity obstacles) in terms of reliability, speed and computational efficiency.
Although few existing studies investigate the use of controllers on MAVs but rather simple ground-
based robots, the controllers can be transferred from the ground to air as the degrees of motion are
similar. This has also been demonstrated by [20].

Furthermore, most studies assume a static environment, thus rarely involving the use of radar in-
struments and preferring single point sensors such as Lidar or ultrasound, which produce simpler
data. Avoiding moving obstacles and incorporating the velocity of the moving obstacles in the con-
troller also presents a new level of complexity to the problem. This is the reason that evolutionary
algorithms are explored, with the hope that it can search the optimisation landscape better and find
a more optimum solution that could not be found manually. It is also the intent to reduce the com-
putational load such that the methods can be applied to platforms that have inferior computational
resources available, such as lightweight miniature drones or flapping wings.

In order to evaluate the proposed NN-based behavioural controller, a standard more established
method should be constructed for comparison. This will involve selecting the appropriate con-
troller, the primary choice being velocity obstacles as it also takes into account the velocity of the
obstacles (which is also the intention for the behavioural controller). When using velocity obstacles,
multi-target tracking will have to be done. A data association method has to be selected based on
the motion of the obstacles, clutter present in the environment and the characteristics of the radar,
such as the range, velocity and angular resolutions. Moreover, the radar parameters should also be
tuned, such as bandwidth, chirp time and power to get the best characteristics and minimal noise
or clutter. Since the objects remain relatively separated in the obstacle course, a simpler method
such as GNN can be tested. Depending on the settings of the radar, and whether the clutter from
the walls interfere with the procedure, a more complex method can be explored.

Furthermore, a tracking procedure also has to be selected for velocity obstacles. Again since the mo-
tion of the obstacles is relatively constant and linear, the ordinary KF can be applied to estimate the
position, velocity and acceleration of the obstacles. Since there is also limited computational power
to perform S&A in real time, both the data association and state estimation procedures should not
be too complex. Regarding velocity obstacles, the avoidance manoeuvres and parameters should

38

39

also be tuned to account for the MAV dynamics and reaction speed, which will mostly depend on
the update speed of the algorithms based on the computation time.

Concerning the NN-based behavioural controller, the appropriate type and structure has to be se-
lected, for instance, what the input and output of the network will be and their dimensions, and
whether or not spiking neurons will be used. The most direct approach is to feed the NN with the po-
sition and radial velocity of every detection directly from the radar with no pre-processing. Because
of the variable possible detections at every time instant, the network could process every obstacle
individually and then sum the outputs to generate meaningful avoidance commands. Alternatively,
some filters can be applied, either to simply discard some clutter or apply the full MTT association
and tracking procedure, with as input to the network the exact velocity of the obstacles (rather than
the radial velocity) and estimated positions. Another option is to discretise the observation space
into a 2D (polar) occupancy grid where the radial velocity could also be incorporated into the multi-
dimensional grid, which can then be fed into the NN as a fixed dimensional input pixel by pixel, or
even by using convolutions. A similar approach to the VFH algorithm in Section 4.1 can also be
considered, where the observation space is discretised into a polar histogram, with this as input to
the network to generate meaningful commands. This last one is perhaps more in line with existing
studies, which use multiple single point sensors (which already represents a polar discretised data
form). These options would however increase the number of nodes in the network and thus also
increase computation time and training. The output of the network also has to be selected, which
could simply be a stopping command, or alternatively turn rate/angle and velocity commands to
the autopilot.

When this has been established, a suitable learning algorithm should be selected that optimises
certain network parameters. When dealing with SNNs, the most attractive method ((in this case) is
using evolutionary algorithms. For instance, NEAT optimises both the structure and weights of the
network. If employed, an appropriate fitness function will have to be selected (i.e. what the network
has to learn) in order to allow for better convergence and training speed. One option is to train the
network to mimic human response to the moving obstacles by training it with data gathered from
flying the MAV manually through the obstacle course. The fitness function would then indicate how
similar the paths taken are between the human operator and controller. Alternatively, some other
objectives that could constitute a fitness function include the time taken to traverse the obstacle
course, (lateral) distance travelled, proximity to the obstacles (or collisions with obstacles) or the
number of avoidance manoeuvres required. The other possibility is to use a LSM network, which
can be trained much faster through linear regression. This solution is perhaps less controlled since
most of the network is randomly selected.

The most important aspect of using evolutionary algorithms is ensuring that the simulation is of
high enough fidelity to simulate the dynamics of the MAV and characteristics of the radar sensor,
such as noise and clutter. This will involve collecting data of the radar in the environment and ei-
ther analysing and simulating it, or using it as direct input when simulating. This has to be done
in order to reduce the gap when transferring the controller to reality, while also being efficient such
that training is fast enough.

Lastly, some metrics have to be defined to evaluate the controller against the standard method.
This will include the computational power required (or cpu load), consistency of results with differ-
ent starting configurations, the objectives defined in the fitness function and a qualitative analysis
of the behaviour. Based on this confrontation, possible issues can be addressed and recommenda-
tions can be given.

8
Conclusion

This study has explored the latest knowledge and applications of sense and avoid (S&A) concerning
autonomous navigation of a MAV in a dynamic environment with poor visibility, delving into the
existing literature and technologies of object tracking and controllers.

Firstly it has been shown how radars function and sense the environment. Specifically, how fast-
chirp FMCW radars are best suited for short range S&A applications, the processing involved and the
data that the sensor produces. Following, the standard methods used to further process this data
into useful information have been explored, including the standard data association algorithms,
such as global nearest neighbour, joint probabilistic data association and multiple hypothesis track-
ing filters, and tracking algorithms such as the Kalman filter. This information can then be better
used by the avoidance algorithms.

This study has explored the more established and deterministic methods of S&A controllers, such as
velocity obstacles and vector field histograms, as well as looking into what behavioural controllers
are and how they differ from the standard avoidance algorithms. This has shown that neural net-
work based controllers can exhibit more complex behaviour while also being more robust to noise
and possibly more computationally efficient, with the added advantage of their learning capabili-
ties. Subsequently, it was explored how neural network based behavioural controllers can be con-
structed using spiking neural nets by investigating how spiking nets operate, and how they can be
trained using Hebbian learning and evolutionary strategies, the latter of which is commonly applied
to robotics.

Lastly, an analysis was done to determine which methods can be combined to design a system spe-
cific for this implementation using the knowledge gathered in this study. The main takeaway is to
investigate whether a neural network based controller can outperform the standard pipeline and
be more computationally efficient. Most studies that implement behavioural controllers however
deal with ground based robots in a static environment. For this reason, evolutionary algorithms are
considered to better search the optimisation landscape to find an optimum.

The biggest challenge to evolutionary algorithms is constructing a simulation for training, as this
decreases the time needed. The simulation needs to approximate the drone dynamics and sensor
characteristics to a high enough degree such that when the controller is transferred to real life, the
difference in behaviour is minimal. Furthermore, it is important to consider what format the input
and output should be of, which will influence the structure of the neural net and the complexity of
the behaviour.

40

41

Next to this, an implementation using the standard methods of association, tracking and avoid-
ance should be constructed as a means to compare and evaluate the proposed behavioural con-
troller, which should not be overly complex given the nature of the problem and the computational
constraints, as well as providing an equivalent control test. This involves constructing a standard
pipeline consisting of FFT processing, GNN data association, Kalman Filtering and Velocity Obsta-
cles. The intention is to use a simple controller that can exhibit more complex behaviour. Lastly, the
evaluation will take place according to the appropriate metrics and criteria, which will be a com-
bination of quantitative metrics, such as speed, distance and computational power, and qualitative
analysis, as behaviour is more difficult to quantify.

Bibliography

[1] Multitarget Tracking, pages 1–15. doi: 10.1002/047134608x.W8275. URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8275.

[2] Introduction to mmwave sensing: Fmcw radars. URL https://training.ti.com/sites/
default/files/docs/mmwaveSensing-FMCW-offlineviewing_4.pdf.

[3] Dr Ammar Almomani, Mohammad Alauthman, Mohammed Alweshah, Osama Dorgham, and
Firas Albalas. A comparative study on spiking neural network encoding schema: implemented
with cloud computing. Cluster Computing, 22, 2019. doi: 10.1007/s10586-018-02891-0.

[4] Fady Alnajjar and K. Murase. Self-organization of spiking neural network generating au-
tonomous behavior in a miniature mobile robot. In Kazuyuki Murase, Kosuke Sekiyama, To-
mohide Naniwa, Naoyuki Kubota, and Joaquin Sitte, editors, Proceedings of the 3rd Interna-
tional Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005),
pages 255–260. Springer Berlin Heidelberg. ISBN 978-3-540-29344-6.

[5] Fady Alnajjar, Indra Bin Mohd Zin, and Kazuyuki Murase. A hierarchical autonomous robot
controller for learning and memory: Adaptation in a dynamic environment. Adaptive Be-
havior, 17(3):179–196, 2009. ISSN 1059-7123. doi: 10.1177/1059712309105814. URL https:
//doi.org/10.1177/1059712309105814.

[6] P. Arena, S. De Fiore, L. Patané, M. Pollino, and C. Ventura. Insect inspired unsupervised
learning for tactic and phobic behavior enhancement in a hybrid robot. In The 2010 In-
ternational Joint Conference on Neural Networks (IJCNN), pages 1–8. ISBN 2161-4407. doi:
10.1109/IJCNN.2010.5596542.

[7] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance for mobile
robots. IEEE Transactions on Robotics and Automation, 7(3):278–288, 1991. ISSN 2374-958X.
doi: 10.1109/70.88137.

[8] Harald Burgsteiner. Training networks of biological realistic spiking neurons for real-time robot
control. 2020.

[9] Harald Burgsteiner, Mark Kröll, Alexander Leopold, and Gerald Steinbauer. Movement predic-
tion from real-world images using a liquid state machine. Applied Intelligence, 26(2):99–109,
2007. ISSN 1573-7497. doi: 10.1007/s10489-006-0007-1. URL https://doi.org/10.1007/
s10489-006-0007-1.

[10] Zhiqiang Cao, Long Cheng, Chao Zhou, Nong Gu, Xu Wang, and Min Tan. Spiking neural
network-based target tracking control for autonomous mobile robots. Neural Computing and
Applications, 26(8):1839–1847, 2015. ISSN 1433-3058. doi: 10.1007/s00521-015-1848-5. URL
https://doi.org/10.1007/s00521-015-1848-5.

[11] Y. Chung, P. Chou, M. Yang, and H. Chen. Multiple-target tracking with competitive hopfield
neural network based data association. IEEE Transactions on Aerospace and Electronic Systems,
43(3):1180–1188, 2007. ISSN 1557-9603. doi: 10.1109/TAES.2007.4383609.

42

https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8275
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8275
https://training.ti.com/sites/default/files/docs/mmwaveSensing-FMCW-offlineviewing_4.pdf
https://training.ti.com/sites/default/files/docs/mmwaveSensing-FMCW-offlineviewing_4.pdf
https://doi.org/10.1177/1059712309105814
https://doi.org/10.1177/1059712309105814
https://doi.org/10.1007/s10489-006-0007-1
https://doi.org/10.1007/s10489-006-0007-1
https://doi.org/10.1007/s00521-015-1848-5

Bibliography 43

[12] André Cyr and Mounir Boukadoum. Classical conditioning in different temporal constraints:
an stdp learning rule for robots controlled by spiking neural networks. Adaptive Behavior, 20
(4):257–272, 2012. ISSN 1059-7123. doi: 10.1177/1059712312442231. URL https://doi.org/
10.1177/1059712312442231.

[13] B. Damas and J. Santos-Victor. Avoiding moving obstacles: the forbidden velocity map. In 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4393–4398. ISBN
2153-0866. doi: 10.1109/IROS.2009.5354210.

[14] Hubertus Wilfridus de Waard. A new approach to distributed data fusion. Universiteit van
Amsterdam [Host], 2008. ISBN 9090235027.

[15] Sebastian Thruny ArnoBücken WolframBurgard DieterFox and ThorstenFröhlinghaus Daniel-
Hennig ThomasHofmann MichaelKrell TimoSchmidt. Map learning and high-speed naviga-
tion in rhino. 1998.

[16] Miguel Duarte, Sancho Moura Oliveira, and Anders Lyhne Christensen. Evolution of hybrid
robotic controllers for complex tasks. Journal of Intelligent & Robotic Systems, 78(3-4):463–484,
2015. ISSN 0921-0296.

[17] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i. IEEE
Robotics & Automation Magazine, 13(2):99–110, 2006. ISSN 1558-223X. doi: 10.1109/MRA.
2006.1638022.

[18] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using velocity obsta-
cles. The International Journal of Robotics Research, 17(7):760–772, 1998. ISSN 0278-3649. doi:
10.1177/027836499801700706. URL https://doi.org/10.1177/027836499801700706.

[19] Dario Floreano and Francesco Mondada. Automatic creation of an autonomous agent. genetic
evolution of a neural network driven robot, 1994. URL http://hdl.handle.net/20.500.
11850/82611.

[20] Dario Floreano, J. C. Zufferey, and J. D. Nicoud. From wheels to wings with evolutionary spiking
circuits. In Fernando Moura Pires and Salvador Abreu, editors, Progress in Artificial Intelligence,
pages 3–3. Springer Berlin Heidelberg. ISBN 978-3-540-24580-3.

[21] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architectures
to learning. Evolutionary Intelligence, 1(1):47–62, 2008. ISSN 1864-5917. doi: 10.1007/
s12065-007-0002-4. URL https://doi.org/10.1007/s12065-007-0002-4.

[22] Duh Fun-Bin and Lin Chin-Teng. Tracking a maneuvering target using neural fuzzy network.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1):16–33, 2004.
ISSN 1941-0492. doi: 10.1109/TSMCB.2003.810953.

[23] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002. ISBN 0521890799.

[24] H. Hagras, A. Pounds-Cornish, M. Colley, V. Callaghan, and G. Clarke. Evolving spiking neural
network controllers for autonomous robots. In IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004, volume 5, pages 4620–4626 Vol.5. ISBN 1050-
4729. doi: 10.1109/ROBOT.2004.1302446.

[25] David Howard and Alberto Elfes. Evolving spiking networks for turbulence-tolerant quadro-
tor control. In Artificial Life Conference Proceedings 14, pages 431–438. MIT Press. ISBN
0262326213.

https://doi.org/10.1177/1059712312442231
https://doi.org/10.1177/1059712312442231
https://doi.org/10.1177/027836499801700706
http://hdl.handle.net/20.500.11850/82611
http://hdl.handle.net/20.500.11850/82611
https://doi.org/10.1007/s12065-007-0002-4

Bibliography 44

[26] Benjamin Inden and Jürgen Jost. Evolving neural networks to follow trajectories of arbitrary
complexity. Neural Networks, 116:224–236, 2019. ISSN 0893-6080. doi: https://doi.org/10.
1016/j.neunet.2019.04.013. URL http://www.sciencedirect.com/science/article/pii/
S089360801930111X.

[27] Giacomo Indiveri and Paul Verschure. Autonomous vehicle guidance using analog vlsi neu-
romorphic sensors. In International Conference on Artificial Neural Networks, pages 811–816.
Springer.

[28] Dan Iter, Jonathan Kuck, Philip Zhuang, and CM Learning. Target tracking with kalman filter-
ing, knn and lstms, 2016.

[29] E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14
(6):1569–1572, 2003. ISSN 1941-0093. doi: 10.1109/TNN.2003.820440.

[30] W. Juszkiewicz. Target tracking with recurrent artificial neural network. In 2006 International
Radar Symposium, pages 1–4. ISBN 2155-5753. doi: 10.1109/IRS.2006.4338062.

[31] Nikola K Kasabov. Time-space, spiking neural networks and brain-inspired artificial intelli-
gence. Springer, 2019. ISBN 3662577135.

[32] W. Kazimierski. Determining of marine radar target movement models for the needs of mul-
tiple model neural tracking filter. In 2011 12th International Radar Symposium (IRS), pages
611–616. ISBN 2155-5753.

[33] Chanho Kim, Fuxin Li, Arridhana Ciptadi, and James M Rehg. Multiple hypothesis tracking
revisited. In Proceedings of the IEEE International Conference on Computer Vision, pages 4696–
4704.

[34] Tarmo Koppel, Andrei Shishkin, Heldur Haldre, Nikolajs Toropovs, Inese Vilcane, and Piia
Tint. Reflection and transmission properties of common construction materials at 2.4 ghz
frequency. Energy Procedia, 113:158–165, 2017. ISSN 1876-6102. doi: https://doi.org/10.
1016/j.egypro.2017.04.045. URL http://www.sciencedirect.com/science/article/pii/
S1876610217321689.

[35] Ángel Llamazares, Eduardo J. Molinos, and Manuel Ocaña. Detection and track-
ing of moving obstacles (datmo): A review. Robotica, 38(5):761–774, 2020. ISSN
0263-5747. doi: 10.1017/S0263574719001024. URL https://www.cambridge.org/
core/article/detection-and-tracking-of-moving-obstacles-datmo-a-review/
BB94A95B06491BE09227A8BE7EDB7777.

[36] A. Mahadevuni and P. Li. Navigating mobile robots to target in near shortest time using re-
inforcement learning with spiking neural networks. In 2017 International Joint Conference
on Neural Networks (IJCNN), pages 2243–2250. ISBN 2161-4407. doi: 10.1109/IJCNN.2017.
7966127.

[37] Orazio Miglino, Kourosh Nafasi, and Charles E. Taylor. Selection for wandering behavior in
a small robot. Artificial Life, 2(1):101–116, 1994. doi: 10.1162/artl.1994.2.1.101. URL https:
//www.mitpressjournals.org/doi/abs/10.1162/artl.1994.2.1.101.

[38] Vladimir Milovanovic. On fundamental operating principles and range-doppler estimation in
monolithic frequency-modulated continuous-wave radar sensors. Facta universitatis - series:
Electronics and Energetics, 31:547–570, 2018. doi: 10.2298/FUEE1804547M.

http://www.sciencedirect.com/science/article/pii/S089360801930111X
http://www.sciencedirect.com/science/article/pii/S089360801930111X
http://www.sciencedirect.com/science/article/pii/S1876610217321689
http://www.sciencedirect.com/science/article/pii/S1876610217321689
https://www.cambridge.org/core/article/detection-and-tracking-of-moving-obstacles-datmo-a-review/BB94A95B06491BE09227A8BE7EDB7777
https://www.cambridge.org/core/article/detection-and-tracking-of-moving-obstacles-datmo-a-review/BB94A95B06491BE09227A8BE7EDB7777
https://www.cambridge.org/core/article/detection-and-tracking-of-moving-obstacles-datmo-a-review/BB94A95B06491BE09227A8BE7EDB7777
https://www.mitpressjournals.org/doi/abs/10.1162/artl.1994.2.1.101
https://www.mitpressjournals.org/doi/abs/10.1162/artl.1994.2.1.101

Bibliography 45

[39] J. P. Mitchell, G. Bruer, M. E. Dean, J. S. Plank, G. S. Rose, and C. D. Schuman. Neon: Neuro-
morphic control for autonomous robotic navigation. In 2017 IEEE International Symposium
on Robotics and Intelligent Sensors (IRIS), pages 136–142. doi: 10.1109/IRIS.2017.8250111.

[40] Stefano Nolfi, Dario Floreano, Orazio Miglino, Francesco Mondada, Rodney Brooks, and Pattie
Maes. How to evolve autonomous robots: Different approaches in evolutionary robotics. 1994.

[41] C. K. Oh and G. J. Barlow. Autonomous controller design for unmanned aerial vehicles using
multi-objective genetic programming. In Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No.04TH8753), volume 2, pages 1538–1545 Vol.2. doi: 10.1109/CEC.
2004.1331079.

[42] G. Orchard, R. Benosman, R. Etienne-Cummings, and N. V. Thakor. A spiking neural network
architecture for visual motion estimation. In 2013 IEEE Biomedical Circuits and Systems Con-
ference (BioCAS), pages 298–301. ISBN 2163-4025. doi: 10.1109/BioCAS.2013.6679698.

[43] A Pancham, N Tlale, and G Bright. Literature review of slam and datmo, 2011. URL http:
//hdl.handle.net/10204/5457.

[44] Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: Opportunities and
challenges. Frontiers in Neuroscience, 12(774), 2018. ISSN 1662-453X. doi: 10.3389/fnins.2018.
00774. URL https://www.frontiersin.org/article/10.3389/fnins.2018.00774.

[45] H. Qiu, M. Garratt, D. Howard, and S. Anavatti. Evolving spiking neural networks for nonlinear
control problems. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages
1367–1373. doi: 10.1109/SSCI.2018.8628848.

[46] Karthik Ramasubramanian, Kishore Ramaiah, and Artem Aginskiy, 2017. URL http://www.
ti.com/lit/wp/spry312/spry312.pdf?ts=1588318620318.

[47] B. Schrauwen and J. Van Campenhout. Bsa, a fast and accurate spike train encoding scheme.
In Proceedings of the International Joint Conference on Neural Networks, 2003., volume 4, pages
2825–2830 vol.4. ISBN 1098-7576. doi: 10.1109/IJCNN.2003.1224019.

[48] C. D. Schuman, A. Disney, S. P. Singh, G. Bruer, J. P. Mitchell, A. Klibisz, and J. S. Plank. Parallel
evolutionary optimization for neuromorphic network training. In 2016 2nd Workshop on Ma-
chine Learning in HPC Environments (MLHPC), pages 36–46. doi: 10.1109/MLHPC.2016.008.

[49] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in
time. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages
1412–1421. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7415-slayer-spike-layer-error-reassignment-in-time.pdf.

[50] Fernando Silva, Miguel Duarte, Luís Correia, Sancho Moura Oliveira, and Anders Lyhne Chris-
tensen. Open issues in evolutionary robotics. Evolutionary Computation, 24(2):205–236, 2016.
doi: 10.1162/EVCO_a_00172%M26581015. URL https://www.mitpressjournals.org/doi/
abs/10.1162/EVCO_a_00172.

[51] Fernando Silva, Luís Correia, and Anders Lyhne Christensen. Evolutionary online behaviour
learning and adaptation in real robots. Royal Society Open Science, 4(7):160938, 2017. doi:
doi:10.1098/rsos.160938. URL https://royalsocietypublishing.org/doi/abs/10.1098/
rsos.160938.

http://hdl.handle.net/10204/5457
http://hdl.handle.net/10204/5457
https://www.frontiersin.org/article/10.3389/fnins.2018.00774
http://www.ti.com/lit/wp/spry312/spry312.pdf?ts=1588318620318
http://www.ti.com/lit/wp/spry312/spry312.pdf?ts=1588318620318
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
https://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00172
https://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00172
https://royalsocietypublishing.org/doi/abs/10.1098/rsos.160938
https://royalsocietypublishing.org/doi/abs/10.1098/rsos.160938

Bibliography 46

[52] S. Silven. A neural approach to the assignment algorithm for multiple-target tracking. IEEE
Journal of Oceanic Engineering, 17(4):326–332, 1992. ISSN 1558-1691. doi: 10.1109/48.180301.

[53] Héber Sobreira, Carlos M. Costa, Ivo Sousa, Luis Rocha, José Lima, P. C. M. A. Farias, Paulo
Costa, and A. Paulo Moreira. Map-matching algorithms for robot self-localization: A com-
parison between perfect match, iterative closest point and normal distributions transform.
Journal of Intelligent & Robotic Systems, 93(3):533–546, 2019. ISSN 1573-0409. doi: 10.1007/
s10846-017-0765-5. URL https://doi.org/10.1007/s10846-017-0765-5.

[54] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10(2):99–127, 2002. doi: 10.1162/106365602320169811.
URL https://www.mitpressjournals.org/doi/abs/10.1162/106365602320169811.

[55] A. Stateczny and W. Kazimierski. A comparison of the target tracking in marine navigational
radars by means of grnn filter and numerical filter. In 2008 IEEE Radar Conference, pages 1–4.
ISBN 2375-5318. doi: 10.1109/RADAR.2008.4721044.

[56] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier,
and Anthony Maida. Deep learning in spiking neural networks. Neural Networks, 111:47–
63, 2019. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2018.12.002. URL http:
//www.sciencedirect.com/science/article/pii/S0893608018303332.

[57] Z. Tong, R. Renter, and M. Fujimoto. Fast chirp fmcw radar in automotive applications. In IET
International Radar Conference 2015, pages 1–4. doi: 10.1049/cp.2015.1362.

[58] C. A. J. Tubb and G. N. Roberts. Development of a fuzzy behavioural controller for an au-
tonomous vehicle. In UKACC International Conference on Control ’98 (Conf. Publ. No. 455),
pages 1717–1722 vol.2. ISBN 0537-9989. doi: 10.1049/cp:19980488.

[59] Damien Vivet, Paul Checchin, Roland Chapuis, Patrice Faure, Raphaël Rouveure, and Marie-
Odile Monod. A mobile ground-based radar sensor for detection and tracking of moving ob-
jects. EURASIP Journal on Advances in Signal Processing, 2012(1):45, 2012. ISSN 1687-6180.
doi: 10.1186/1687-6180-2012-45. URL https://doi.org/10.1186/1687-6180-2012-45.

[60] Jilles Vreeken. Spiking neural networks, an introduction, 2003.

[61] Xiuqing Wang, Zeng-Guang Hou, Anmin Zou, Min Tan, and Long Cheng. A behavior con-
troller based on spiking neural networks for mobile robots. Neurocomputing, 71(4):655–
666, 2008. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2007.08.025. URL http:
//www.sciencedirect.com/science/article/pii/S0925231207003025.

[62] Andrzej Wojtkiewicz, Jacek Misiurewicz, Marek Nałęcz, Konrad Jedrzejewski, and Krzysztof
Kulpa. Two-dimensional Signal Processing in FMCW Radars. 1997.

[63] Xiaofeng Yuan, Lin Li, and Yalin Wang. Nonlinear dynamic soft sensor modeling with super-
vised long short-term memory network. IEEE Transactions on Industrial Informatics, PP:1–1,
2019. doi: 10.1109/TII.2019.2902129.

https://doi.org/10.1007/s10846-017-0765-5
https://www.mitpressjournals.org/doi/abs/10.1162/106365602320169811
http://www.sciencedirect.com/science/article/pii/S0893608018303332
http://www.sciencedirect.com/science/article/pii/S0893608018303332
https://doi.org/10.1186/1687-6180-2012-45
http://www.sciencedirect.com/science/article/pii/S0925231207003025
http://www.sciencedirect.com/science/article/pii/S0925231207003025

A
Neural Network Implementation

This section will outline the work done with neural networks during this thesis that was not covered
in the scientific paper or preliminary report, although not implemented in the final working result.

Neural Network implementation
While the standard processing pipeline was able to reliably process the raw data of the FMCW radar,
determine the state of the environment and avoid the obstacles, an alternate method was explored
using neural networks (NN) to process the data.

To better get an understanding of the part of the processing pipeline that needs to be learned by
NNs, Figure A.1 gives this architecture, from the raw data of the radar, to the raw unfiltered object
detections in the field of view, and the filtered detections after data association and Kalman filter-
ing. Note that the calculation of the radial velocity (Doppler component) is not included in the
figure and was also not considered in this implementation for simplicity.

It was decided to focus development of the NNs on the raw data processing and filtering with the
hope of improving the quality of the filtering procedure, as this study is more an evaluation of the
sensor itself rather than the avoidance capabilities, on which there is already quite some literature
[19, 36, 37, 40, 61]. This will also allow for the future development of an end-to-end (spiking) NN
pipeline.

Implementation
The intention was to construct an ordinary NN and train it using standard back-propagation and
stochastic gradient descent (SGD) in a self-supervised manner. Thus training data was needed for

Figure A.1: Processing pipeline of the FMCW radar, beginning with performing the range FFT, determining the magnitude
and ranges by thresholding (2 and 3), and comparing the phase difference between the two antennas to compute the angle
(4,5 and 6). After this, data association and Kalman filtering remove the noise and estimate the states of the objects.

47

48

this purpose, for which the obstacle detection and avoidance dataset for drones was used (https:
//github.com/tudelft/ODA_Dataset). This dataset contains approximately 1000 usable flight
runs of a MAV equipped with a FMCW radar. For each run, the pilot takes off and flies towards the
centre of the flying arena, where one or two stationary poles are placed. Depending on the posi-
tion and path of the MAV with respect to the pole, the pilot either chooses to avoid left, right, or fly
straight forward. Each trial contains the ground truth position and orientation of the MAV and the
pole, as well as the raw data recorded from the FMCW radar.

Implementation of the NN was done using Pytorch and its associated dataset class, wherein the
raw data was loaded, processed and stored as the different steps in Figure A.1, as well as converting
the global frame of reference ground truth positions to the MAVs local body frame of reference. The
input consisted of 128 samples of complex values from both antennas (therefore 4x128 values, rep-
resenting the raw data from one chirp. Other chirps were not considered as Doppler calculations
were not taken into account), and for the output, initially two representations were considered. The
first is a histogram representation, where each bin (or neuron) represents 1 degree of the FOV, and
the magnitude of that bin will be equal to the inverse of the distance to a detection, such that closer
objects represent a higher significance, and that the magnitude of 1-degree-bins with no objects
present is equal to 0. The second representation chosen was to only represent the range and bear-
ing (2 neurons) of object that was closest to the MAV.

Results
Initially, an attempt was made to train the network to learn the ground truth positions (filtered de-
tections) from the raw data end-to-end using a standard multi-layer perceptron (MLP - a number of
fully connected layers with ReLU activation functions). Different hyper parameters were varied to
try and converge the network. This included changing the number of layers up to 10, the number of
neurons up to 2048 neurons per layer, trying different common activation functions at the output
such as ReLU, Softmax, Sigmoid and tanh, different optimisers such as SGD, adaptive SGD, ADAM
and RMSprop algorithms, and general parameters such as the learning rate. However after quickly
realising that the network would only converge to random values in the output, the problem was
broken down to instead first determine the raw detections with one NN, and the filtered detections
with another NN. The two NN would then later be combined and retrained.

Moreover, the first calculation step in the processing pipeline (to determine the range FFT) was
done separately for two reasons: firstly the fast Fourier transform is in itself already a really efficient
algorithm that scales computationally in the order of O(N · l og (N)), as opposed to a neural network
that scales computationally with O(N 2). Secondly, as the FFT is a linear function, a NN approxi-
mating this function will have linear activation functions, which defeats the purpose of the NN’s
implementation. When performing an FFT, the information is simply transformed into a different
domain (frequency instead of time). Furthermore, after the FFT is performed (after step 1), only the
first 20 values of the FFT are used as input to the NN to reduce dimensionality, which represents a
maximum range of 7.5m as this study concerns mostly close proximity obstacle avoidance (lower
frequency represents closer range, where each frequency bin is equal to 0.375m. See Chapter 2).

The same procedure was applied for the first NN to determine the raw detections (range and bear-
ing as calculated with the standard pipeline - not ground truth positions). By varying the hyper
parameters, a NN with ReLU activation functions, 3 hidden layers, 512 neurons per layer converged
to determine the range of any detections in the FOV (steps 2 and 3). Note that for this step, the input
are the first 20 FFT data points (40 neurons total, for both real and imaginary values of one antenna),
and the output are 20 neurons that each represent a range bin of 0.375m (for a maximum range of

https://github.com/tudelft/ODA_Dataset
https://github.com/tudelft/ODA_Dataset

49

7.5m), and the network would always predict the correct bins in which detections were present, else
the neuron output would be zero for no detections. Concerning the bearing of detections (steps
4,5 and 6), initially the network was not able to converge. Instead, a NN was created to separately
compute all the 20 angle values from the FFT data points individually instead of simultaneously all
at one. This network has as input 4 neurons (the real and imaginary FFT values of both antennas,
representing only one frequency value of the FFT), 4 hidden layers (ReLU) with 64 neurons each,
and 1 output neuron representing the angle of that point. This network would then be run 20 times
in parallel to determine all the angle values of the corresponding 20 range bins of the previous NN,
with an accuracy of ±0.023 radians.

Once this was established, a NN to learn the ground truth pole locations (of optitrack) from this
output could be created (step 7). For this, the two output representations were used (the histogram
representation and nearest object representation). Initially a standard MLP was implemented, how-
ever after varying the hyper parameters and failing to converge the network, this was discarded.
Furthermore, the nature of the data should also be considered: each frame coming from the pre-
processing of the raw data is temporally correlated. An object is expected to appear near its location
in the previous frame. Therefore LSTM cells were added to the network (Figure 3.2), and the data
was fed in sequentially. For this, again the various hyper parameters were varied, also including the
number of hidden neurons in the LSTM cells and the number of cells stacked (up to 3 cells were
tested). However after extensive testing with various configurations the network would fail to learn,
either converging to random values or all zero output.

One reason for this failed convergence could be due to the representation. By nature, the his-
togram representation is very sparse, only showing a non zero value in the neuron when objects
are in that particular one-degree angle bin, encouraging the NN to simply converge to low values
and not providing sufficient gradient to converge towards the global minimum. The other represen-
tation (where the output is the range and bearing of the nearest object) lacks integrity as it discards
any other objects and potential hazards. Instead, a more probabilistic based representation can be
tested in which each bin contains the probability that it contains an object. Another reason could
be that the radar data is very noisy by nature, and that the neural network struggles to distinguish
the object detections from clutter.

Another solution could be to utilise evolutionary algorithms to better search the optimisation land-
scape and converge to the global minimum. Although more complex and lengthy to train, it might
provide additional insight and better convergence. Alternatively, general regressional neural net-
works (GRNNs) have already been proven to be able to approximate estimators such as Kalman
filters [30, 32, 55], perhaps providing a better architecture for learning. This could aid in creating a
full end-to-end neural network pipeline to integrate with the avoidance algorithm and potentially
convert into a spiking neural network for faster and more efficient computation.

	List of Figures
	Introduction
	I Scientific Paper
	II Preliminary Report
	Introduction
	Sensor Detection of Moving Obstacles
	Sensing using radar
	FMCW radar

	Data representation

	Multi-Target Tracking
	Data Association
	Obstacle state estimation

	Avoidance of Moving Obstacles
	Reactive Controllers
	Behavioural Controllers

	Spiking Neural Networks
	Neuron models
	Encoding Schemes
	Training SNNs

	Evolutionary Optimisation Algorithms
	Encoding and Issues of EAs
	EA applications in robotics

	Analysis
	Conclusion
	Bibliography
	Neural Network Implementation

