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Secondary Frequency Control of Microgrids: An Online
Reinforcement Learning Approach

Mahya Adibi and Jacob van der Woude

Abstract—In this article, we present a reinforcement learning-
based scheme for secondary frequency control of lossy inverter-
based microgrids. Compared with the existing methods in
the literature, we relax the common restrictions on the system,
i.e., being lossless, and the transmission lines and loads to have
known constant impedances. The proposed secondary frequency
control scheme does not require a priori information about system
parameters and can achieve frequency synchronization within an
ultimate bound in the presence of dominantly resistive and/or in-
ductive line and load impedances, model parameter uncertainties,
and time varying loads and disturbances. First, using Lyapunov
theory, a feedback control is formulated based on the unknown
dynamics of the microgrid. Next, a performance function is defined
based on cumulative costs toward achieving convergence to the
nominal frequency. The performance function is approximated by
a critic neural network in real-time. An actor network is then simul-
taneously learning a parameterized approximation of the nonlinear
dynamics and optimizing the approximated performance function
obtained from the critic network. Furthermore, using the Lyapunov
approach, the uniformly ultimate boundedness of the closed-loop
frequency error dynamics and the networks’ weight estimation
errors are shown.

Index Terms—Microgrids, neural network, reinforcement learn-
ing, secondary frequency control.

I. INTRODUCTION

The microgrid concept has been identified as a solution to facilitate
the integration of large shares of renewable distributed generation
(DG) units to the power networks [1], [2]. Most renewable units are
connected to low- and medium-voltage distribution networks via invert-
ers. The physical characteristics of these inverters significantly differ
from the characteristics of synchronous generators. Hence, different
control techniques are required to guarantee the stability of the system
frequency in case of an imbalance between the generated power and the
demand in the network [3]. To stabilize the system, primary droop con-
trollers are widely employed. However, steady-state deviations from the
nominal frequency are observed. Therefore, a secondary control layer
must be implemented to achieve the ultimate frequency synchronization
and power sharing; see [4].

A conventional approach to deal with the frequency synchronization
problem consists of using a primary droop controller and a secondary
proportional-integral control scheme. However, the performance and
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robustness of secondary microgrid controllers, when the system is
driven by measurement noise and disturbances, is an open concern.
In [5], a secure secondary controller for inverter-based distributed
energy resources in ac microgrids is proposed. However, the existing
work is limited to constant impedance loads. Secondary frequency
controllers for steady-state network frequency restoration and power
sharing in the presence of uncertainties (clock drifts) are derived in [6].
In [7], a modified adaptive droop controller is proposed in which
the frequency restoration controller works tightly with the primary
controller with short time constants. However, both works [6] and [7]
are limited to lossless network scenarios. In [8], semidecentralized
frequency synchronization schemes are presented without taking the
transmission losses into account. Moreover, to achieve frequency and
voltage regulation, microgrid controllers are designed in [9] based on
network-reduced models of microgrids. However, such networks do not
provide an explicit characterization of the loads. Hence, the controllers
are not robust to load variations and model parametric uncertainties. A
convex optimization scheme is proposed in [10] for smooth control of
microgrids in the transitions between the grid-connected and islanded
modes, with load curtailment as the key tuning knob. In [11], a sliding-
mode controller is developed for the case of lossless microgrids and with
the assumption of constant disturbances. In [12], an integral frequency
control scheme, robust to disturbances, is proposed. However, similar
to [11], the power network is assumed to be purely inductive (lossless).
While this assumption is reasonable on the transmission level, it does
not hold in general for a microgrid on the medium or low voltage levels.

In this article, we propose an actor-critic-based reinforcement learn-
ing approach for secondary frequency control of microgrids. Our
adaptive secondary frequency controller acts on top of the local droop
control level and handles lossy microgrids and does not rely on a priori
known dynamics of the system. The adaptive actor-critic control scheme
presented here compensates for the uncertain dynamics of DG units,
parameter changes (for example, due to aging or thermal effects), distur-
bances and time-varying loads, as well as eliminating the steady-state
error caused by the individual and isolated droop controllers.

The proposed reinforcement learning approach appropriately re-
sponds to changes in the system operating conditions and adjusts the
control parameters in real-time. For the frequency regulation problem,
a long-term performance function is defined based on instantaneous
costs, but since the dynamics are unknown, we define a critic network
to learn this performance function in real-time. Furthermore, an actor
network aims at deriving an optimal control policy by approximating the
unknown nonlinear dynamics and minimizing the learned performance
function obtained from the critic network. We presented our preliminary
results in [13]. Compared with [13], here, we further provide the proof
of convergence of the learning algorithms and the sufficient conditions
to guarantee the uniformly ultimately boundedness of the closed-loop
frequency error system. Details of our proposed control design are
provided in the following sections.

The rest of this article is organized as follows. Section II describes
the model of the lossy microgrid and formulates the frequency control
problem alongwith the closed-loop stability of the frequency error
dynamics. Next, we present our proposed learning algorithm based on
coupled critic and actor networks in Section III. We further provide the
sufficient conditions on the critic and actor learning rates to guarantee
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the convergence of the learning update rules (the proof is presented in
the Appendix). Simulation results are discussed in Section IV. Finally
Section V concludes this article.

II. PROBLEM STATEMENT AND THEORETICAL FOUNDATIONS

We consider an inverter-based microgrid modeled as a graph G =
(N,E) withN = {1, 2, . . ., n} the set of nodes (generation buses with
inverters as their grid interface) and E ⊆ N ×N the set of undirected
edges (network lines). We consider a model of a lossy microgrid in
which two nodes {i, j} ∈ E are connected by a complex nonzero
admittance Yij = Gij − iBij ∈ C with conductance Gij ∈ R+ and
susceptance Bij ∈ R+ [14], [15]. Let Ni = {j ∈ N | j �= i, {i, j} ∈
E} denote the neighbor set of node i. We assign a time-dependent volt-
age phase angle δi ∈ T := [0, 2π) and a voltage amplitude Vi ∈ R≥0

to each node i. The relative voltage phase angles are denoted by
δij := δi − δj , {i, j} ∈ E.

A. Microgrid Nonlinear Dynamical Model

We consider a microgrid model with discrete-time dynamics con-
sisting of inverter-interfaced sources. The inverters are enhanced by
standard primary voltage and frequency droop controllers as in [16].
We can formulate the system dynamics in the following form:

x1(k + 1) = f1(x(k)) (1)

x2(k + 1) = f2(x(k)) + u(k) (2)

x3(k + 1) = f3(x(k)) (3)

where

x1(k) := [δ1(k), δ2(k), . . . , δn(k)]
T ∈ Tn (4)

x2(k) := [ω1(k), ω2(k), . . . , ωn(k)]
T ∈ Rn (5)

x3(k) := [V1(k), V2(k), . . . , Vn(k)]
T ∈ Rn (6)

u(k) := [u1(k), u2(k), . . . , un(k)]
T ∈ Rn (7)

x(k) := [xT
1(k), x

T
2(k), x

T
3(k)]

T ∈ R3n. (8)

Here, ωi ∈ R is the inverter frequency corresponding to node i
and u is the secondary frequency control input to be designed later
in Section II-B. Note that the functions f2 and f3 include the local
primary frequency and voltage droop control dynamics. Furthermore,
f1 = mod2π{δ(k) + kω(k)}. We assume that the nonlinear dynamics
of the DG units with their local primary droop controllers, i.e., functions
f2(x(k)) and f3(x(k)) are unknown. The goal is to design a secondary
frequency control scheme to compensate for frequency deviations while
being robust against parametric uncertainties caused by the unknown
dynamics and disturbances affecting the network.

Remark 1: Note that the aim of this article is to design a secondary
frequency control scheme to guarantee frequency regulation and this
is later on proved. However, although the overall system is equipped
with primary voltage droop controllers and we will demonstrate that
the voltage is stabilized under our secondary control scheme, this needs
to be explicitly proved (for a lossy network) and/or a similar secondary
voltage control algorithm needs to be designed. This is included in our
future work.

Before starting with the control design procedure, we present the fol-
lowing definition that is required for stability analysis of the frequency
error system which will be defined in Section II-B.

Definition 1: Consider the general nonlinear system x(k + 1) =
f(x(k), k) + d(k) with d(k) an unknown but bounded disturbance. If
there exists a functionV(x, k)with continuous partial differences, such
that for x in a compact set S ⊂ Rn

1) V(x(k), k) is positive definite, V(x(k), k) > 0.
2) V̇(x(k), k) < 0 for ‖x‖ > β

for some β > 0 such that the ball of radius β is contained in S, and
then the system is uniformly ultimately bounded and the norm of the
state is bounded within a neighborhood of β ([17], [18] ch. 2.3.1).

Based on this definition, the stability of the dynamical frequency
error system can be investigated by choosing an appropriate function
V . We will use Definition 1 to prove the stability of the closed-loop
frequency regulation dynamics and the boundedness of the parameter
estimation errors. In the next section, the regulation error dynamics and
the structure of the control input are defined which are the bases for our
adaptive learning-based control design in Section III.

B. Regulation Error Dynamics and Control Policy

Consider system dynamics (1)–(3) with unknown nonlinear func-
tions f2(x(k)) and f3(x(k)), and the control inputu(k) to be designed.
Let us define the nominal frequency of the system as ω� ∈ R+ and
the vector of the desired frequency signals as x�2 := ω�1n ∈ Rn. It is
assumed that for the (lossy) system (1)–(3) with integrated local droop
controllers, there exists an isolated frequency-synchronized solution
(see [19, Assumption 2] and [20, Assumption 4.3]), which can be
different from the nominal frequency. It has been shown that there is a
steady-state error and deviation from the nominal frequency even for
a lossless network. The secondary control objective is to compensate
the deviation of frequency signals (5) from their nominal value ω� and
make frequencies converge to the desired signal x�2.

To accomplish this, we define the regulation error e(k) ∈ Rn as

e(k) = x�2 − x2(k) (9)

which results in the error dynamics

e(k + 1) = x�2 − x2(k + 1)

= x�2 − f2(x(k))− u(k). (10)

To design u(k) such that (10) is stabilized, we define the candidate
Lyapunov function as

Ve(k) = eT(k)e(k). (11)

Taking the difference ΔVe(k) results in

ΔVe(k) = eT(k + 1)e(k + 1)− eT(k)e(k). (12)

Substituting the error dynamics (10) in (12), we obtain

ΔVe(k) = (x�2 − f2(x(k))− u(k))T

× (x�2 − f2(x(k))− u(k))− eT(k)e(k). (13)

In order to have ΔVe(k) < 0, we select the control input as

u(k) = x�2 − f2(x(k)) + Ce(k) (14)

where C ∈ Rn×n is a constant diagonal positive definite matrix. If we
assume f2(x(k)) is known, substituting (14) in (13) yields

ΔVe(k) =
n∑

i=1

(c2i − 1)e2i (15)

where ei is the ith element of e(k) and ci is the ith eigenvalue of the
diagonal matrixC for i ∈ N . Hence, ΔVe(k) < 0 and the error system
(10) is asymptotically stable if

0 ≤ cmax < 1 (16)

where cmax ∈ R is the maximum eigenvalue of C.
However, the dynamics f2(x(k)) is not known. Instead, we use the

estimation of the function f2(x(k)), i.e., f̂2(x(k)) (f̂2(x(k)) is approx-
imated using the actor network and will be discussed in Section III-B).
We design the control input (14) as follows:

u(k) = x�2 − f̂2(x(k)) + Ce(k) (17)

which results in

ΔVe(k) =
(
f̃2(x(k))− Ce(k)

)T (
f̃2(x(k))− Ce(k)

)
− eT(k)e(k) (18)
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where f̃2(x(k)) = f̂2(x(k))− f2(x(k)) is the function estimation
error. Therefore, ΔVe(k) < 0 if∥∥∥f̃2(x(k))− Ce(k)

∥∥∥ < ‖e(k)‖ . (19)

Let the known value fmax
2 ∈ R+ be the upper bound of the function

estimation error f̃2(x(k)), such that ‖f̃2(x(k))‖ ≤ fmax
2 . Then∥∥∥f̃2(x(k))− Ce(k)

∥∥∥ ≤
∥∥∥f̃2(x(k))∥∥∥+ ‖Ce(k)‖

≤ fmax
2 + cmax ‖e(k)‖ . (20)

Considering (19) and (20), the error dynamics is stable if

fmax
2 + cmax ‖e(k)‖ < ‖e(k)‖ . (21)

Defining emax :=
fmax
2

1−cmax , it follows that

ΔVe(k) < 0 ∀ ‖e(k)‖ > emax. (22)

In other words, ΔVe(k) is negative outside of the compact set Se :=
{‖e(k)‖ ≤ emax}, or equivalently, all the solutions that start outside of
Se will enter this set within a finite time and will remain inside the set
forever. This means that

‖e(k)‖ < fmax
2

1− cmax
. (23)

Based on Definition 1, the estimation errors are bounded from above
with the ultimate bound emax.

III. ACTOR-CRITIC LEARNING ALGORITHM

We consider a neural network with one hidden layer for both actor
and critic networks. In order to measure the long-term performance of
the system, the cost function J(k) ∈ Rn is defined using the instanta-
neous cost [18] as

J(k) =
∞∑

m=k

γm−kr(m+ 1)

= r(k + 1) + γr(k + 2) + γ2r(k + 3) + · · · (24)

where 0 < γ < 1 is the discount factor and r(k) =
[r1(k), r2(k), . . . , rn(k)]

T ∈ Rn is the vector of instantaneous
costs (reinforcement learning signals) as follows (see [21]):

ri(k) =

{
0 if |ei(k)| ≤ μ
1 if |ei(k)| > μ

(25)

for i ∈ N andμ ∈ R+ is a fixed threshold. The instantaneous cost ri(k)
is a measure of the current performance of the ith DG. To be more
precise, it quantifies how the control input has performed; ri(k) = 0
indicates a success in the frequency regulation and ri(k) = 1 shows a
performance degradation.

Since the dynamics is unknown, we define a critic network to learn
the cost function J(k) in real-time in Section III-A.

A. Adaptation of Critic Network

The critic neural network, with output Ĵ(k) ∈ Rn, learns to ap-
proximate the cost function J(k) ∈ Rn. The output of the critic neural
network can be described in the form

Ĵ(k) = ψ̂c
T
(k)φc

(
vT
1x2(k)

)
(26)

such that ψ̂c
T
(k) ∈ Rn×n1 represents the matrix of weights between

the hidden and output layer and vT
1 ∈ Rn1×n represents the matrix of

weights between the input and hidden layer. We assume that the matrix
of the weights v1 is fixed and only the weights ψ̂c are being adapted.
This assumption is common in practice and is a technique to accelerate
the neural network training and reduce the training time [22]. In case

of a poor approximation of the cost function, the parameters of the
first layer can also be modified in the optimization process to have a
more precise estimation. Moreover, φc(v

T
1x2(k)) ∈ Rn1 is the basis

function vector in the hidden layer and n1 is the number of the nodes
in the hidden layer. In order to compress the notation, we introduce
the shorthand notation φc(k) = φc(v

T
1x2(k)) for the value of the basis

function at time instant k.
Let ec(k) ∈ Rn be the prediction error (temporal-difference error;

see [23]) of the critic network as

ec(k) = r(k) + γĴ(k)− Ĵ(k − 1)

= r(k) + γψ̂c
T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1) (27)

and the objective function to be minimized as

Jc(k) =
1

2
eT

c (k)ec(k). (28)

Applying the gradient descent algorithm for minimizing Jc(k), and
hence ec(k), results in

ψ̂c(k + 1) = ψ̂c(k)− αc
∂Jc(k)

∂ec(k)

∂ec(k)

∂Ĵ(k)

∂Ĵ(k)

∂ψ̂c(k)

= ψ̂c(k)− αcγφc(k)e
T
c (k) (29)

which leads to the following weight update rule for the critic network

ψ̂c(k + 1) = ψ̂c(k)− αcγφc(k)×(
r(k) + γψ̂c

T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1)

)T
(30)

where αc ∈ R+ is the critic learning rate.
In Section III-B, the actor network is constructed to minimize both

the function estimation error f̃2(x(k)) and the cost function Ĵ(k).

B. Adaptation of Actor Network

The main goal of the actor network is to generate the approxima-
tion of the unknown nonlinear function f2(x(k)) and then plug the
estimated f̂2(k) into the control policy (17). The estimated function is
parameterized as

f̂2(k) = ψ̂a
T
(k)φa

(
vT
2x2(k)

)
(31)

where ψ̂a
T
(k) ∈ Rn×n2 represents the matrix of weights between

the hidden and output layer and vT
2 ∈ Rn2×n represents the matrix

of weights between the input and hidden layer. We assume that the
matrix of the weight v2 is fixed and only the weights ψ̂a are being
adapted. Moreover, φa(v

T
2x2(k)) ∈ Rn2 is the basis function vector

in the hidden layer and n2 is the number of the nodes in the hidden
layer. Similar to the critic network, we introduce the shorthand notation
φa(k) = φa(v

T
2x2(k)) for the value of the basis function at time instant

k to compress the notation.
We define the function estimation error f̃2(k) ∈ Rn as

f̃2(k) = f̂2(k)− f2(k) (32)

and the error between the desired cost function J�(k) ∈ Rn and the
critic network output Ĵ(k) as

J̃(k) = Ĵ(k)− J�(k). (33)

The training of the actor network is done using f̃2(k) and J̃(k) and
defining the prediction error ea(k) ∈ Rn as

ea(k) = f̃2(k) + J̃(k). (34)

According to (24) and (25), the desired value for the function J�(k)
is 0. Thus, (34) becomes

ea(k) = f̃2(k) + Ĵ(k). (35)
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Fig. 1. Schematic overview of the closed-loop system. The dashed
lines represent the updating mechanism for the critic and actor networks.

We consider the objective function to be minimized by the actor
network in the form

Ja(k) =
1

2
eT

a (k)ea(k). (36)

Using the gradient descent algorithm for minimizing Ja(k), and
subsequently for ea(k), we obtain

ψ̂a(k + 1) = ψ̂a(k)− αa
∂Ja(k)

∂ea(k)

∂ea(k)

∂f̃2(k)

∂f̃2(k)

∂ψ̂a(k)

= ψ̂a(k)− αaφa(k)e
T
a (k) (37)

which results in

ψ̂a(k + 1) = ψ̂a(k)− αaφa(k)(f̃2(k) + Ĵ(k))T (38)

where αa ∈ R+ is the actor learning rate. However, we cannot use
the weight update rule (38) in practice. This is due to the fact that
the function estimation error f̃2(k) defined in (32) consists of the
unknown nonlinear function f2(k). This problem can be addressed by
substituting (17) in (10), which yields

e(k + 1) = −f2(x(k)) + f̂2(x(k))− Ce(k)

= f̃2(x(k))− Ce(k). (39)

Hence, the function estimation error becomes

f̃2(k) = e(k + 1) + Ce(k). (40)

Substituting (40) in (38) yields the following weight update rule for
the actor network

ψ̂a(k + 1) = ψ̂a(k)− αaφa(k)
(
e(k + 1) + Ce(k) + Ĵ(k)

)T
.

(41)

The schematic structure of the reinforcement learning frequency
control scheme is shown in Fig. 1. The actor is responsible for estimating
the nonlinear dynamics of the system and generating the control input
(17) such that it minimizes the cost function Ĵ(k) (estimated by the
critic network). The critic adapts the estimation of the cost function,
given x(k), and the frequency regulation error signal. This process is
repeated until we reach our control goal. In the following theorem, we
present the conditions on the learning rates to guarantee the convergence
of the learning algorithms. Under these conditions, the weights ψ̂c and
ψ̂a of the critic and actor networks converge close to their optimal values
ψ�

c and ψ�
a , respectively, for the designed control policy (17). Before

proceeding with the theorem, an assumption is presented that is required
for the proof of theorem.

Assumption 1: It is assumed that the basis functions φc and φa, the
elements of the weight matrix ψc, and the neural network approxima-
tion’s error are bounded from above.

Fig. 2. Benchmark model adapted from [24] with 11 main buses and
several inverter-interfaced DG and storage units.

TABLE I
NETWORK PARAMETERS

Theorem 1: Consider the system (1)–(3) along with the control input
(17), the critic update rule given by (30), and the actor update rule given
by (41). The error between the estimated critic and actor parameter
vectors ψ̂c and ψ̂a and their optimal values ψ�

c and ψ�
a converges to

and stays within a compact set around zero (i.e., uniformly ultimately
bounded stable) as long as the following conditions hold:

αc <
1

γ2(φmax
c )2

(42)

αa <
1

(φmax
a )2

(43)

with φmax
c and φmax

a being the upper bounds of φc(k) and φa(k),
respectively.

Proof: The proof is given in Appendix A. �
In the following section, we validate the performance of the pro-

posed control scheme via simulation on a benchmark microgrid in the
presence of disturbances.

IV. CASE STUDY

The effectiveness of our proposed reinforcement learning-based
scheme is verified on the three-phase islanded Subnetwork 1 of the
CIGRE benchmark medium voltage network as in [16] and [25]. The
benchmark microgrid is shown in Fig. 2. The simulation is performed
by considering n = 6 controllable generation sources at buses 5b
(i = 1), 5c (i = 2), 9b (i = 3), 9c (i = 4), 10b (i = 5), and 10c (i = 6).
All photovoltaic sources together with the wind turbine at bus 8 are
assumed as noncontrollable units and are neglected. It is assumed that
all controllable generation units are equipped with droop controllers.
To each inverter i ∈ N , its power rating SN

i ∈ R+ is assigned and is
given in Table I. The gains and setpoints of the droop controllers are
selected asP ∗

i = 0.6SN
i per unit,kPi

= 0.2/SN
i Hz/per unit, as well as

Q∗
i = 0.25SN

i per unit, kQi
= 0.1/SN

i per unit/per unit. It is assumed
that the batteries at nodes 5b and 10b are operated in charging mode,
hence functioning as loads. Therefore,P ∗

i = −0.6SN
i for i = 1, 5. The

loads at nodes 3–11 are specified in Table I of [25]. The load at node 1 is
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Fig. 3. Lossy microgrid case. Time evolution of (a) frequency and
(b) voltage dynamics using only the primary droop controllers.

neglected. The line parameters are given in Table 3 of [25]. The nominal
frequency and the sampling time are taken as f� = 50 Hz and T = 1
ms, respectively. The frequency signals (x2(k) := [ω1(k), . . . , ωn(k)])
of the units are measured and fed to the secondary control scheme. The
elements of the diagonal gain matrix C is selected as ci = 0.1 for
i ∈ N . The threshold value μ is set to 0.02. We consider one hidden
layer for both critic and actor neural networks, and we assume that
each hidden layer contains 10 nodes, i.e., n1 = n2 = 10. For weight
updating rules, the learning rates are selected asαc = 0.1 andαa = 0.1,
and the discount factor is set as γ = 0.5. All the weight parameters of
the matrices v1 and v2, between the input and hidden layer, are fixed
at 1, as explained in Section III-A. For our case study, this choice
yielded high level of performance and meanwhile reduced the order
of complexity of optimizing the network. Next, the initial values for
the adapting weights ψ̂c and ψ̂a are selected randomly (with uniform
distribution) between 0 and 1. Furthermore, the activation functions are
selected as hyperbolic tangent functions. Hence, the maximum of the
activation functions φc(x) and φa(x) is 1. Consequently, conditions
(42) and (43) imply αc < 4 and αa < 1, in order to have the frequency
error and the neural networks’ weight estimates uniformly ultimately
bounded.

In this case study, we show the effectiveness of our adaptive control
scheme under load variations. The initial voltage amplitude is selected
as 1 per unit for all units. The initial frequency variables are selected as
randomly distributed around 50 Hz with standard deviation of 0.1 Hz.
The initial phase variables are selected at zero degree. The microgrid
is assumed to be in the islanded mode.

The trajectories of the frequencies ωi
2π

in Hz and the voltage ampli-
tudes in per unit form for i = 1, . . . , 6 of the controllable sources in the
local droop control only case are shown in Fig. 3. As can be observed,
using only the primary droop controller results in steady-state error in
the frequency and voltage signals. Moreover, at t = 7.5 s, the values
of the parametersB24 = 178.3177 andG16 = 463.2297 (nominal ad-
mittance and conductance values from [25]) are increased by 50%. The
parameter changes that we impose are representative of cases where the
transmission parameters vary and/or the connected resistive/inductive
load alters. Note that in our simulation model of the microgrid, the load
effect is absorbed in the transmission line model [16]. As a result of this,
the frequency and voltage signals start oscillating and will have large

Fig. 4. Lossy microgrid case. Time evolution of (a) frequency and
(b) voltage dynamics using the primary droop controllers plus the sec-
ondary control scheme from [26].

Fig. 5. Lossy microgrid case. Time evolution of (a) frequency and
(b) voltage dynamics using primary droop controllers plus our proposed
secondary RL-based control scheme.

errors with respect to the desired nominal values. To further provide
evidence that control and stabilizing a lossy network is a big challenge
and hard to be fulfilled without an adaptive and online learning-based
control scheme, we have further simulated the distributed secondary
control scheme from [26]. As can be seen in Fig. 4, the secondary
distributed algorithm is able to stabilize frequency in the first period
(although with a steady-state error that is larger than our proposed
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Fig. 6. Lossy microgrid case. Time evolution of (a) RL secondary
control input and (b) error in estimating f2.

Fig. 7. Time evolution of active power outputs for our proposed
scheme.

scheme and that is due to the lossy nature of network and the fact
that the assumptions made in design of [26] are based on a lossless
network). However, when the parameters of network change, similar to
the primary droop control only case, the closed-loop system becomes
unstable and we observe oscillations and large errors in tracking the
nominal frequency and voltages. The severity is less than the droop
control only case but it is not acceptable from the network operation
and reliability aspects. On the other hand, if we deploy our proposed
RL-based secondary control scheme (on top of the primary local droop
controllers), as shown in Fig. 5, the microgrid will be entirely stable
and even after the change in the dynamics, the secondary controller
adapts the control input fast so that there is a very small jump in the
state variables and after very short time, the frequency signals of the
DG units converge to the nominal value of 50 Hz. The control input u
and the error in estimating the unknown dynamics f2 are illustrated in
Fig. 6. In Fig. 7, active power signals are depicted. The power levels are
below the nominal ratings and the proposed scheme does not require
the generation units to inject unrealistic high instantaneous power to
the grid.

V. CONCLUSION AND FUTURE RESEARCH

A reinforcement learning control scheme has been proposed for
secondary frequency synchronization of lossy microgrids. Our method
is able to efficiently handle general cases of resistive and inductive line
and load impedances, parameter uncertainties, time varying loads, and
disturbances. Using this adaptive control approach, no priori knowledge
about the system dynamics is required. As next steps, we will extend our
approach to address the secondary voltage control and reactive power
sharing problem. Moreover, experimental validations of our proposed
methods will be carried out as well.

APPENDIX A
PROOF OF THEOREM 1

We begin the proof by defining the Lyapunov function candidate

V(k) = 1

αc
tr[ψ̃c

T
(k)ψ̃c(k)]︸ ︷︷ ︸

V1(k)

+
1

ααa
tr[ψ̃a

T
(k)ψ̃a(k)]︸ ︷︷ ︸

V2(k)

(44)

where

ψ̃c(k) = ψ̂c(k)− ψ�
c (45)

ψ̃a(k) = ψ̂a(k)− ψ�
a (46)

and α > 0 is constant. The first difference of V1(k) is expressed by

ΔV1(k) = V1(k + 1)− V1(k)

=
1

αc
tr[ψ̃c

T
(k + 1)ψ̃c(k + 1)− ψ̃c

T
(k)ψ̃c(k)]. (47)

Using (30) and noting that ψ�
c does not depend on k, we obtain

ψ̃c(k + 1) = ψ̂c(k + 1)− ψ�
c = ψ̂c(k)− γαcφc(k)e

T
c (k)− ψ�

c

= ψ̃c(k)− αcγφc(k)×(
r(k) + γψ̂c(k)φc(k)− ψ̂c(k − 1)φc(k − 1)

)T
.

(48)

Based on the last expression, we can expand the multiplication term

ψ̃c
T
(k + 1)ψ̃c(k + 1) in the following way:

ψ̃c
T
(k + 1)ψ̃c(k + 1) = ψ̃c

T
(k)ψ̃c(k) + γ2α2

c ‖φc(k)‖2 ×
(r(k) + γψ̂c

T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1))×

(r(k) + γψ̂c
T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1))T

− 2γαcΨc(k)×(
r(k) + γψ̂c

T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1)

)T
(49)

where

Ψc(k) = ψ̃c
T
(k)φc(k) (50)

is the approximation error of the critic network output. Utilizing the
perfect square trinomial (a− b)2 = a2 − 2ab+ b2, we have

tr

[
−2αcγΨc(k)

(
r(k) + γψ̂c(k)φc(k)− ψ̂c(k − 1)φc(k − 1)

)T
]

= αc

∥∥∥r(k) + γψ̂c
T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1)− γΨc(k)

∥∥∥2
− αc

∥∥∥r(k) + γψ̂c
T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1)

∥∥∥2
− αcγ

2 ‖Ψc(k)‖2 . (51)
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Rewriting the first term in the abovementioned expression as

∥∥∥r(k) + γψ̂c
T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1)− γΨc(k)

∥∥∥2
=
∥∥∥r(k) + γ(ψ̂c(k)− ψ�

c )
Tφc(k) + γψ�

c
Tφc(k)− · · ·

ψ̂c
T
(k − 1)φc(k − 1)− γΨc(k)

2
∥∥∥

=
∥∥∥r(k) + γψ�

c
Tφc(k)− ψ̂c

T
(k − 1)φc(k − 1)

∥∥∥2 . (52)

Considering (47) together with (49), (51), and (52), we obtain

ΔV1(k) = −(1− αcγ
2 ‖φc(k)‖2)×∥∥∥r(k) + γψ̂c

T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1)

∥∥∥2
+
∥∥∥r(k) + γψ�

c
Tφc(k)− ψ̂c

T
(k − 1)φc(k − 1)

∥∥∥2
− γ2 ‖Ψc(k)‖2 . (53)

Moreover, we can formulate ΔV2(k) as

ΔV2(k) = V2(k + 1)− V2(k)

=
1

ααa
tr[ψ̃a

T
(k + 1)ψ̃a(k + 1)− ψ̃a

T
(k)ψ̃a(k)]. (54)

Suppose that the unknown optimal weight of the output layer, for
the actor network, is ψ�

a . Then, we have

f2(k) = ψ�T

a (k)φa(k) + ε2(x(k)) (55)

with ε2(x(k)) ∈ Rn being the neural network approximation error.
Using (31) and (55), we determine the estimation error f̃2(k) ∈ Rn as

f̃2(k) = f̂2(k)− f2(k) = (ψ̂a(k)− ψ�
a )

Tφa(k)− ε2(x(k)). (56)

Using (41) and noting that ψ�
a does not depend on k, we obtain

ψ̃a(k + 1) = ψ̂a(k + 1)− ψ�
a

= ψ̂a(k)− αaφa(k)
(
Ĵ(k) + Ce(k)− e(k + 1)

)T
− ψ�

a

= ψ̂a(k)− ψ�
a − αaφa(k)

(
ψ̂c

T
(k)φc(k) + f̃2(x(k))

)T

= ψ̃a(k)− αaφa(k)×(
ψ̂c

T
(k)φc(k) + Ψa(k)− ε2(x(k))

)T
. (57)

Based on the last expression, we can formulate the multiplication

term ψ̃a
T
(k + 1)ψ̃a(k + 1) as

ψ̃a
T
(k + 1)ψ̃a(k + 1) = ψ̃a

T
(k)ψ̃a(k) + α2

a ‖φa(k)‖2

× (ψ̂c
T
(k)φc(k) + Ψa(k)− ε2(x(k)))

× (ψ̂c
T
(k)φc(k) + Ψa(k)− ε2(x(k)))

T

− 2αaψ̃a
T
(k)φa(k)×(

ψ̂c
T
(k)φc(k) + Ψa(k)− ε2(x(k))

)T
(58)

where

Ψa(k) = ψ̃a
T
(k)φa(k) (59)

is the approximation error of the actor network output. Utilizing the
perfect square trinomial (a− b)2 = a2 − 2ab+ b2 yields

tr
[
−2Ψa(k)

(
ψ̂c

T
(k)φc(k) + ΨT

a (k)− ε2(x(k))
)]

=
∥∥∥ψ̂c

T
(k)φc(k) + Ψa(k)− ε2(x(k))−Ψa(k)

∥∥∥2
−
∥∥∥ψ̂c

T
(k)φc(k) + Ψa(k)− ε2(x(k))

∥∥∥2 − ‖Ψa(k)‖2 . (60)

Considering the fact that

∥∥∥ψ̂c
T
(k)φc(k)− ε2(x(k))

∥∥∥2
=
∥∥∥ψ̂c

T
(k)φc(k)− ψ�

c
Tφc(k) + ψ�

c
Tφc(k)− ε2(x(k))

∥∥∥2
=
∥∥∥ψ̃c

T
(k)φc(k) + ψ�

c
Tφc(k)− ε2(x(k))

∥∥∥2
=
∥∥Ψc(k) + ψ�

c
Tφc(k)− ε2(x(k))

∥∥2 . (61)

Subsequently, it follows that

ΔV2(k) =
1

α

(
− (1− αa ‖φa(k)‖2)

+
∥∥∥ψ̂c

T
(k)φc(k) + Ψa(k)− ε2(x(k))

∥∥∥2
+
∥∥Ψc(k) + ψ�

c
Tφc(k)− ε2(x(k))

∥∥2 − ‖Ψa(k)‖2
)

≤ 1

α

(
− (1− αa

∥∥φT
a (k)

∥∥2)
+
∥∥∥ψ̂c(k)φc(k) + Ψa(k)− ε2(x(k))

∥∥∥2
+ 2

∥∥ψ�
c

Tφc(k)− ε2(x(k))
∥∥2 + 2 ‖Ψc(k)‖2 − ‖Ψa(k)‖2

)
.

(62)

Incorporating ΔV1(k) and ΔV2(k), ΔV(k) is bounded by

ΔV(k) = ΔV1(k) + ΔV2(k)

≤ −(1− αcγ
2 ‖φc(k)‖2)

×
∥∥∥r(k) + γψ̂c

T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1)

∥∥∥2
− 1

α
(1− αa ‖φa(k)‖2)

∥∥∥ψ̂c
T
(k)φc(k) + Ψa(k)− ε2(x(k))

∥∥∥2
+

(
2

α
− γ2

)
‖Ψc(k)‖2 − 1

α
‖Ψa(k)‖2

+
2

α

∥∥ψ�
c

Tφc(k)− ε2(x(k))
∥∥2

+
∥∥r(k) + γψ�

c
Tφc(k)− ψT

c (k − 1)φc(k − 1)
∥∥2 . (63)

Utilizing the inequalities

2

α

∥∥ψ�
c

Tφc(k)− ε2(x(k))
∥∥2 ≤ 4

α

∥∥ψ�
c

Tφc(k)
∥∥2 + 4

α
‖ε2(x(k))‖2∥∥r(k) + γψ�

c
Tφc(k)− ψT

c (k − 1)φc(k − 1)
∥∥2 ≤

3 ‖r(k)‖2 + 3γ2
∥∥ψ�

c
Tφc(k)

∥∥2 + 3
∥∥ψT

c (k − 1)φc(k − 1)
∥∥2
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results in

ΔV(k) ≤ −(1− αcγ
2 ‖φc(k)‖2)

×
∥∥∥r(k) + γψ̂c

T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1)

∥∥∥2
− 1

α
(1− αa ‖φa(k)‖2)

∥∥∥ψ̂c
T
(k)φc(k) + Ψa(k)− ε2(x(k))

∥∥∥2
+

(
2

α
− γ2

)
‖Ψc(k)‖2 +

(
4

α
+ 3γ2

)∥∥ψ�
c

Tφc(k)
∥∥2

+

(−1

α

)
‖Ψa(k)‖2 +

(
4

α

)
‖ε2(x(k))‖2

+ 3 ‖r(k)‖2 + 3
∥∥ψT

c (k − 1)φc(k − 1)
∥∥2 . (64)

Assume that rmax, ψmax
c , φmax

c , φmax
a , and εmax

2 are the upper bounds
of r(k), ψ�

c , φc(k), φa(k), and ε2(x(k)), respectively, it yields(
4

α

)
‖ε2(x(k))‖2 +

(
4

α
+ 3γ2

)∥∥ψ�
c

Tφc(k)
∥∥2

+ 3 ‖r(k)‖2 + 3
∥∥ψT

c (k − 1)φc(k − 1)
∥∥2

≤
(
4

α

)
(εmax

2 )2 +

(
4

α
+ 3γ2 + 3

)
(ψmax

c
Tφmax

c )2 + 3(rmax)2︸ ︷︷ ︸
Γ2

.

(65)

Note that based on definition (25), rmax is 1. Using (65), we
obtain

ΔV(k) ≤ −(1− αcγ
2 ‖φc(k)‖2)

×
∥∥∥r(k) + γψ̂c

T
(k)φc(k)− ψ̂c

T
(k − 1)φc(k − 1)

∥∥∥2
− 1

α
(1− αa ‖φa(k)‖2)

∥∥∥ψ̂c
T
(k)φc(k) + Ψa(k)− ε2(x(k))

∥∥∥2
+

(
2

α
− γ2

)
‖Ψc(k)‖2 − 1

α
‖Ψa(k)‖2 + Γ2. (66)

Now by assuming α > 2
γ2 and if the learning rates αa and αc satisfy

αc <
1

γ2(φmax
c )2

and αa <
1

(φmax
a )2

(67)

then, the difference ΔV(k) is less than zero everywhere outside the
compact set defined as

S =

{
(Ψc(k),Ψa(k))

∣∣∣ ‖Ψc(k)‖ ≤ Γ√
γ2 − 2

α

, ‖Ψa(k)‖ ≤ Γ
√
α

}
.

(68)

This implies that if the norm of any of the estimation errors is
outside of the aforementioned set, it will be brought to inside the set
and is guaranteed to stay inside the compact set. Therefore, based on
Definition 1, the weight estimation errors of the critic and actor networks
are uniformly ultimately bounded.
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