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We investigate the capabilities of neural inverse procedural modeling to infer high-quality procedural yarn
models with fiber-level details from single images of depicted yarn samples. While directly inferring all
parameters of the underlying yarn model based on a single neural network may seem an intuitive choice, we
show that the complexity of yarn structures in terms of twisting and migration characteristics of the involved
fibers can be better encountered in terms of ensembles of networks that focus on individual characteristics.
We analyze the effect of different loss functions including a parameter loss to penalize the deviation of
inferred parameters to ground truth annotations, a reconstruction loss to enforce similar statistics of the image
generated for the estimated parameters in comparison to training images as well as an additional regularization
term to explicitly penalize deviations between latent codes of synthetic images and the average latent code
of real images in the encoder’s latent space. We demonstrate that the combination of a carefully designed
parametric, procedural yarn model with respective network ensembles as well as loss functions even allows
robust parameter inference when solely trained on synthetic data. Since our approach relies on the availability
of a yarn database with parameter annotations and we are not aware of such a respectively available dataset,
we additionally provide, to the best of our knowledge, the first dataset of yarn images with annotations
regarding the respective yarn parameters. For this purpose, we use a novel yarn generator that improves
the realism of the produced results over previous approaches.

1. Introduction small changes in the fiber and yarn arrangement may result in signif-

icant appearance variations — as well as due to the numerous partial

Due to their ubiquitous presence, fabrics have a great importance
in domains like entertainment, advertisement, fashion and design. In
the era of digitization, numerous applications rely on virtual design
and modeling of fabrics and cloth. Besides the use of fabrics in games
and movies, further examples include online retail with its focus on
more accurately depicting the appearance of the respective clothes
in images, videos or even virtual try-on solutions, as well as virtual
prototyping and advertisement applications to provide previews on
respective product designs.

The accurate digital reproduction of the appearance of fabrics and
cloth relies on a fiber-level-based modeling to allow the accurate repre-
sentation of light exchange in the fiber and yarn levels. However, due
to the structural and optical complexity imposed by the arrangement
of fibers with diverse characteristics within yarns and the interaction
between yarns in the scope of weave and knitting patterns — where

™ This article was recommended for publication by Professor M Daoudi.

occlusions of the involved fibers and yarns, capturing and modeling
the appearance of yarns, fabrics and cloth remains a challenge. In
the context of reconstructing yarns, Zhao et al. [1] addressed the
difficulty of scanning the self-occluding fiber arrangements based on
computer-tomography (CT) scans to get accurate 3D reconstructions
of the individual yarns. However, this imposes the need for special
hardware. Instead, in this paper, we aim at the capture and modeling of
the appearance of yarns by inferring individual yarn parameters from
a single photograph depicting a small part of a yarn.

To address this goal, we investigate the capabilities of neural inverse
procedural modeling. Whereas directly optimizing all the parameters
that determine a yarn’s geometry (including flyaways, i.e. fibers that
migrate from the yarn, thereby contributing to the fuzziness of the
yarn) with a single neural network may seem an intuitive choice, the
complexity of the depictions of yarns, where twisting characteristics
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dominate the appearance in the yarn center and flyaway statistics
dominate the appearance in the yarn’s border regions, imposes that
the network has the capacity to understand where which parameters
can be predominantly inferred from. This observation might indicate
that other strategies such as training separate networks for inferring
the structural parameters for the main yarn and the characteristics of
flyaways or even using an ensemble of networks, where each of these
networks is only responsible for estimating a single parameter of the
underlying yarn model, could be reasonable alternatives. Therefore, we
investigate the potential of these approaches for the task of inverse
yarn modeling from a single image. Furthermore, we investigate the
effect of different loss functions including a parameter loss to penalize
the deviation of inferred parameters to ground truth annotations, a
reconstruction loss to enforce similar statistics of the image generated
for the estimated parameters in comparison to training images as well
as an additional regularization term to explicitly penalize deviations
between latent codes of synthetic images and the average latent code
of real images in the encoder’s latent space. Thereby, we also analyze
to what extent such models can be trained from solely using synthetic
training data.

All of these models are trained based on synthetic training data
generated using our high-quality yarn simulator that improves upon
the generator by Zhao et al. [1] in terms of a more realistic modeling of
hair flyaways, fiber cross-section characteristics and the orientation of
the fibers’ twisting axis. As our approach relies on the availability of a
dataset of yarn images with respective annotations regarding character-
istic yarn parameters, such as the number of plies, the twisting length,
etc., we introduce - to the best of our knowledge - the first dataset of
synthetic yarns with respective yarn parameter annotations. Both the
dataset and the yarn generator used for the automatic generation of this
dataset will be released upon acceptance of the paper. Our approach
for neural inverse procedural modeling of yarns exhibits robustness
to variations in appearance induced by varying capture conditions
such as different exposure times as long as strong over-exposure and
under-exposure are avoided during capture.

In summary, the key contributions of our work are:

» We present a novel neural inverse modeling approach that allows
the inference of accurate yarn parameters including flyaways
from a single image of a small part of a yarn.

We investigate the effect of different loss formulations on the
performance based on different configurations of a parameter loss
to penalize deviations in the inferred parameters with respect to
the ground truth, a reconstruction loss to enforce the statistics of
a rendering with the estimated parameters to match the statistics
of given images, and a regularization term to explicitly penalize
deviations between latent codes of synthetic images and the
average latent code of real images in the encoder’s latent space.
We provide, to the best of our knowledge, the first dataset of
realistic synthetic yarn images with annotations regarding the
respective yarn parameters.

We present a yarn generator that supports a large range of input
parameters as well as a yarn sampler that guides the selection of
parameter configurations for the automatic generation of realistic
yarns.

2. Related work

Respective surveys [2-8] indicate the opportunities of computa-
tional approaches for the cloth and apparel industries as well as
challenges regarding the capture, modeling, representation and analysis
of cloth. Some approaches approximate fabrics as 2D sheets. Wang
et al. [9] and Dong et al. [10] leverage spatially varying BRDFs
(SVBRDFs) based on tabulated normal distributions to represent the
appearance of captured materials including embroidered silk satin,
whereas others focused on appearance modeling in terms of bidirec-
tional texture functions (BTFs) [11-13].
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For scenarios with a focus on efficient simulation and editing or
respective manipulation, yarn-based models [14-16] have been shown
to be more amenable [17], however, at the cost of not offering the ca-
pabilities to accurately capture details of fiber-level structures and the
resulting lack of realism. Drago and Chiba [18] focused on simulating
the macro- and microgeometry of woven painting canvases based on
procedural displacement for modeling the arrangement of the woven
yarns (i.e. a spline-based representation) and surface shading. The
model by Irawan and Marschner [19] also predicts yarn geometry (in
terms of curved cylinders made of spiraling fibers) and yarnwise BRDF
modeling to represent the appearance of different yarn segments within
a weaving pattern. However, this approach does not model shadowing
and masking between different threads. The latter has been addressed
with the appearance model for woven cloth by Sadeghi et al. [20]
that relies on extensive measurements of light scattering from individ-
ual threads, thereby taking into account for shadowing and masking
between neighboring threads. However, these approaches are suitable
for scenarios where cloth is viewed from a larger distance, since re-
producing the appearance characteristics observable under close-up
inspection would additionally require the capability to handle thick
yarns or fuzzy silhouettes as well as the generalization capability to
handle fabrics with strongly varying appearances. To increase the
degree of realism, Guarnera et al. [21] augment the yarns extracted
for woven cloth in terms of micro-cylinders with adjustments regarding
yarn width and misalignments according to the statistics of real cloth
in combination with the simulation of the effect of yarn fibers by
adding 3D Perlin Noise [22] to the micro-cylinder derived normal
map. Several approaches focused on fitting an appearance model like
a BRDF [23,24] or a Bidirectional Curve Scattering Distribution Func-
tion (BCSDF) [25] to inferred micro-cylinder yarn models in order
to simulate the appearance from the fibers within each ply curve
extracted for a pattern without explicitly modeling each individual
fiber or applying a pre-computed fiber simulation [26]. Extracting yarn
paths from image data can be approached by leveraging the prior
of perpendicularly running yarns for woven cloth (e.g., [27]) as well
as based on the detection of knitting primitives inspired by template
matching with a refinement according to an underlying knitting pattern
structure [28] or deep learning based program synthesis [29]. While
such approaches allow the modeling of the underlying yarn arrange-
ments, the detailed yarn structure including characteristics such as yarn
width, yarn composition, yarn twisting, hairiness, etc. is not explicitly
modeled.

Following investigations on the geometric structure of fabrics in
the domain of the textile research community [30-33], several works
focused on a more detailed modeling of the underlying cloth micro-
appearance characteristics to more accurately model the underlying
cloth characteristics such as thickness and fuzziness. This includes
volumetric cloth models [34-38], that describe cloth in terms of 3D
volumes with spatially varying density, as well as fiber-based cloth
models [27,39] that represent the detailed 3D structure of woven cloth
at the yarn level with its fiber arrangement. Zhao et al. [1,36,37]
leveraged a micro-computed tomography (CT) scanner to capture 3D
volumetric data. Such a detailed volumetric scan allows tracing the
individual fibers and, hence, provides an accurate volumetric yarn
model that captures high-resolution volumetric yarn structure. For
instance, Zhao et al. [1] presented an automatic yarn fitting approach
that allows creating high-quality procedural yarn models of fabrics
with fiber-level details by fitting procedural models to CT data that
are additionally augmented by a measurement-based model of flyaway
fibers. Instead of involving expensive hardware setups such as based on
CT scanning, others focused on inferring yarn parameters from images,
thereby representing more practical approaches for a wide range of
users. Voborova et al. [40] focused on estimating yarn properties like
the effective diameter, hairiness and twist based on initially fitting the
yarn’s main axis based on an imaging system consisting of a CCD cam-
era, a microscope, and optical fiber lighting. Others [41,42] focused
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on improving the realism of yarn appearance models by investigating
optical and structural properties of real-world cloth fibers, including
the effect of modeling elliptical fibers instead of fibers with circular
cross-section, and presented respective scattering models. Furthermore,
given a fabric’s macro geometry in terms of a polygonal mesh with per-
vertex UV coordinates and a 2D weave pattern, the yarn appearance
model by Montazeri et al. [43] first fits yarn centerline curves and then
constructs ply curves as helices around the centerline curves. These ply
curves are rendered based on a BSDF model, where fiber-level details
are added in a procedural approach per ply by using precomputed
fiber normals and shadows. Flyaways are simulated at random locations
within the ply. Subsequent work extends this approach to knitted
cloth [44].

With a focus on providing accurate models at less computational
costs and memory requirements than required for volumetric models,
Schroder et al. [27] introduced a procedural yarn model based on
several intuitive parameters as well as an image-based analysis for the
structural patterns of woven cloth. The generalization of this approach
to other types of cloth, such as knitwear, however, has not been
provided but still needs further investigation. Saalfeld et al. [45] used
gradient descent with momentum to predict some of the procedural
yarn parameters used by Zhao et al. [1] from images of synthetically
generated yarns. Although the results were promising for some of
the parameters, the approach still could not be applied to the real
yarn images. Wu et al. [46] estimated yarn-level geometry of cloth
given a single micro-image taken by a consumer digital camera with
a macro lens based on leveraging prior information in terms of a given
yarn database for yarn layout estimation. Large-scale yarn geometry is
estimated based on image shading, whereas fine-scale fiber details are
obtained based on fiber tracing and generation algorithms. However,
the authors mentioned that the use of a single micro-image does not
suffice for the estimation of all relevant yarn parameters of complex
procedural yarn models like the ones by Zhao et al. [1] or Schroder
et al. [27], and, hence, the authors only considered the two param-
eters of fiber twisting and fiber count. Whereas our yarn generator
is conceptually similar to the one by Zhao et al. [1], there is an
important difference in how we model the orientation of the twisting
axis of the fibers. Similar to [47], instead of using the global z-axis,
we align the twisting axis with the relative z-axis of the next hierarchy
level, resulting in a more realistic yarn structure. This relative imple-
mentation allows adding additional hierarchy levels, i.e. especially for
the hand knitting it is common to twist different yarns if they are
too thin, thus creating the next level. Our model’s realism is further
increased by also considering elliptic fiber cross-sections similar to
previous work [41,42] due to their occurrence for natural hair fibers
like wool and by considering a more natural modeling of flyaways.
In addition to considering these characteristics in our model, we also
present an approach to derive the respective model parameters from a
single input image.

In the context of inferring physical yarn properties from visual infor-
mation, Bouman et al. [48] estimated cloth density and stiffness from
the video-based dynamics information of wind-blown cloth. Others fo-
cused on a neural-network-based classification of cloths according how
stretching and bending stiffness influence their dynamics. Furthermore,
Rasheed et al. [49] focused on the estimation of the friction coefficient
between cloth and other objects. Based on the combination of neural
networks with physically-based cloth simulation, Runia et al. [50]
trained a network to fit the parameters used for simulation to make
the simulated cloth match to the one observed in video data. Liang
et al. [51] and Li et al. [52] presented approaches for cloth parame-
ter estimation based on sheet-level differentiable cloth models. Gong
et al. [53] introduced a differentiable physics model at a more fine-
grained level, where yarns are modeled individually, thereby allowing
to model cloth with mixed yarns. Their model leverages differentiable
forces on or between yarns, including contact, friction and shear.

Computers & Graphics 118 (2024) 161-172

Fig. 1. Hierarchical twisting process. (a) Level 1 corresponds to a straight polygonal
line. (b) Twisted fibers from the first level form a ply on the second level. (c)
Before twisting plies into a yarn, the x-axis of each ply is downscaled to create an
elliptical cross-section. (d) Multiple initial positions (blue) are sampled, and a helix
curve with the specified properties is created at each. These curves, denoted as center
lines, represent the paths of the different plies. (e) Deformed copies of the initial input
follow each helix curve, resulting in the yarn on the third level and forming the input
for the next step.

3. Generation of synthetic training data

Our learning-based approach to infer yarn parameters from im-
ages relies on the availability of a database of images of yarns with
respective annotations. However, to the best of our knowledge, such
a database has not been presented so far. Whereas performing exact
measurements of the parameters of a real yarn is a complex and time-
consuming task that requires experts as well as additional hardware
such as a CT scanner, we overcome this problem by leveraging model-
ing and rendering tools from the field of computer graphics to create
images of synthetic yarns with known parameters that can be directly
used for learning applications.

To enable robust parameter inference from photographs of real
yarns, the synthetic yarn images used for training the underlying neural
model have to be highly realistic, i.e. they have to accurately model the
yarn structure with its underlying arrangement of individual fibers. We
utilize a fiber-based model rather than a volumetric one to gain more
control over the generation and achieve a higher quality.

We mimic the actual manufacturing process by introducing a hierar-
chical approach. Multiple fibers are twisted together to form a ply, and,
in turn, multiple plies are twisted together to form a yarn. If necessary,
multiple thinner yarns can be twisted into a thicker yarn, denoted
as cord, which is sometimes the case in knitwear manufacturing. We
denote the yarn resulting from this hierarchical procedure as raw
yarn. This specific terminology is widely accepted within the graphics
community [1,54,55]. However, it is worth noting that within the field
of textile research, the terms may have different interpretations. Here,
fibers, ply, and yarn respectively refer to fibers (or filaments), single yarn,
and doubled/plied yarn (or folded yarn) [56].

In addition to capturing the characteristics of the fiber arrangement
of the yarn structure, we also have to consider that some of the fibers,
referred to as flyaways, may deviate from their intended arrangement
within yarns and run outside the thread. These deviations are caused
by friction, aging or errors in the manufacturing process and play an
essential role in the overall appearance of yarns and the fabrics made
from them.

Therefore, our yarn model is controlled by a number of parameters,
which belong to two types: raw yarn parameters and flyaway param-
eters. During generation, these parameters are stored along with the
respectively resulting images, and later serve as training labels for the
network training.

The raw yarn is recursively built from multiple hierarchical levels
(see Fig. 1 and Algorithm 1). In the next step, flyaways are added
(Algorithm 2) and detailed fiber parameters such as material and cross-
section are defined. Then the yarn can be rendered accordingly. We
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generate and render the synthetic yarn images using Blender, which
offers advanced modeling capabilities that can be fully controlled by
Python scripts, making it suitable for procedural modeling. Especially,
the high-level mesh modifiers allow for relatively compact scripts.
Additionally, it also contains a path tracer capable of rendering photo-
realistic images, which allows us to build an all-in-one pipeline.

3.1. Hierarchical yarn model

During the first step, yarns, plies and fibers are represented as
polygonal lines, i.e. a tuple (V, E) that stores the vertex positions V =
{v; eR3|i e N} and their edges E {(i,j) |i,j € N}. Note that our
generation process allows for an arbitrary number of levels. However,
in the rest of the paper, we will demonstrate the concept using the three
levels given in terms of fibers, plies, and yarns. Algorithm 1 presents
an overview of our recursive hierarchical generation of the raw yarn.

Algorithm 1 Recursive hierarchical generation of raw yarn

Require: level of raw yarn level
1: procedure BUILDLEVEL(/evel)

2: if level = 0 then

3: create straight polygonal line /ine

4: return line

5: else

6: template < BUILDLEVEL(/evel — 1)

7: end if

8: P < create N instance positions using Eq. (2) or Eq. (3)

9: output —

10: for all p € P do

11: I < copy(template)

12: I < scale x coordinate of I with e for elliptical cross-section
13: I « rotate I using Eq. (4)

14: center [ at position p

15: generate helix at position p using Egs. (5), (6) and (7) and

let I follow the helix

16: output < output U I
17: end for
18: return output

19: end procedure

The input of the first level, the fiber level, is a simple straight
polygonal line that has to be chosen sufficiently large to allow for the
required resolution. The vertices v; of the line are given by

ia, )’ ey

Here, a, denotes the distance between two consecutive vertices of
a fiber.

In each of the higher levels, we start by creating a set of N 2D
instance start positions p;. We define two variations of this procedure,
one for small amounts of instances (~ 7), and one for larger numbers
of instances (in practice up to 200). Both are illustrated in Fig. 2. In
both cases, we add some jitter j,, to the sample positions. For small
numbers N of instances, we generate a regular pattern on a circle with

radius r:
R, i
+j , 0, =21~
> jxy( R, ) Y

Pi=r<

Here and in the following, R, and R, as well as the later used R are
zero-mean, unit-variance normally distributed random variables that
are redrawn for each occurrence.

For larger numbers of instances, we sample the whole area of a
disc. We distribute fewer samples towards the center, as instances in
the middle are mostly occluded by the outer ones.

. R| i0'3
pi=r; +]xy R2 , = VW,

v;=(0 0

sin 6;
cos 0;

(2)

sin 6;

0, =27 -0.137-i
cos 6; e !

(3)
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Fig. 2. Ply and fiber distribution for the process explained in Fig. 1. For each level,
multiple instances of the previous level are created and placed at initial positions
according to a specified distribution. We use more randomness (middle) and jitter
(right) on the fiber level and more structure on the ply level (left).

The heuristically chosen constants create a slightly pseudo-random
distribution that is enhanced by the added jitter.

Next, for each sample point, we copy the instance template from
the previous level, and then each instance is transformed as follows:
Since the sampling patterns are roughly circular, we downscale the
template along the x-axis, transforming its cross-section into an ellipse
(see Fig. 1, c). The rotation ensures that the smaller radius of the
ellipse is oriented towards the center, which simulates the squeezing
of the individual fibers for dense packing. As a last step, the template
is translated to the position of the sampling point.

To simulate the twisting that occurs during the production of real
yarns, we create a helix in the z-direction at each sample point p =
(p-p,)" and transform the template to follow it accordingly (Fig. 1).
The helix is given by:

6, = %27; + arctan2 (py,px) @
rh=\/Pi Py ©
5= 1+max (0, Ry) - cos (2R, + éZ”Rk) ©
v = ( rys;sin@;  rps;cosb; éah +j,R; )T 7

Here, a,, is the height of each complete turn, denoted as the pitch of
a helix. H is the helix resolution, i.e. the number of vertices per turn.
The number of turns for the helix depends on the desired total length of
the generated yarn. Since the helix is always curved around the center
line, its radius r,, is determined by the position of the sample point p.
The angle 6, has an offset that ensures that the first vertex coincides
with p. The random variables R;, R, R; and R, are drawn once per
vertex and once per helix, respectively. s; is the fiber migration value,
i.e. the modulation of the helix radius that varies along the vertical
axis. It is realized by scaling the radius with a height-dependent cosine
function with random amplitude, offset and phase speed. j, is a zero-
mean, normally distributed random variable with a standard deviation
of 0.02 that represents slight jitter in the z-direction.

Note that each template point is transformed to a local coordinate
frame given by the helix at the corresponding height. We do not
perform an actual physical simulation for the twisting process, as
this would require a complex numerical simulation and thus increase
computation time drastically.

For our recursive hierarchical raw yarn generation, we used generic
variable names, such as N, r and «,. The parameters of each level
for the three-level fiber-ply—yarn model, as used in the following, are
summarized in Table 1.

3.2. Flyaway generation

After creating the raw yarn structure according to the previous
section, we now model the flyaways. Flyaways are fibers that got
displaced from their original position within the yarn. Following pre-
vious work [1,27], we distinguish between two different categories of
flyaways. Hair flyaways are fibers where one side is completely outside
the yarn, whereas loop flyaways are fibers where both ends of the fiber
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Table 1

Parameters of our procedural Blender yarn model that are to be predicted from images.
Top: Fiber parameters, Middle: Ply parameters, Bottom: Flyaway parameters. Although
fiber distribution and migration are technically not among the flyaway parameters, we
consider them as such for our parameter prediction due to their probabilistic nature.

Parameter type Parameter Explained
name
Fiber amount m Number of fibers in each ply
Fiber ellipse oty Radii of fiber ellipse
Fiber twist a Pitch of the ply helix
Number of plies n Number of plies in the yarn
Ply ellipse Fes Ty Radii of ply ellipse
Ply twist [ Pitch and radius of the yarn helix
Fiber migration R, Jitter of fibers in radial direction
Fiber distribution Jxy Jitter of fibers in xy plane direction
Flyaway amount g Number of flyaways
Loop probability P Probability for loop type flyaway
Hair flyaways By Lnairs S Angle, hair length, fuzziness
Loop flyaways Lioops Loop length, Mean and std of
eans dsia distance from ply center
a) b) <) d)

Fig. 3. Generation of flyaways. (a) A random vertex strip is selected and duplicated
to become the new flyaway. (b) The flyaway is scaled along its up-axis to exaggerate
details. (c) Hair flyaway: The flyaway from (b) is rotated along its lowest point. (d)
Loop flyaway: The flyaway from (b), where the vertices are moved radially according
to a sine function, except for the first and last vertices, which remain at their previous
locations, while the middle vertex is offset the most to simulate a loop.

are still inside the yarn, but some of the in-between part is outside the
main yarn. Both types of flyaways and the key steps of their creation
are shown in Fig. 3.

The generation of flyaways is summarized in Algorithm 2. Flyaways
are created by copying and transforming parts of the yarn. First, we
determine whether the new flyaway will be a loop or a hair fly-
away by drawing a uniformly distributed random number in [0, 1] and
determining whether it is greater or less than the loop probability p,.

In both cases, the flyaway length is determined from a given mean
and a fixed standard deviation. Note that typical means are of the same
order of magnitude as the standard deviations used. To find a fiber
segment for the new flyaway, a random vertex is selected and the chain
of connected vertices is followed in a random direction. If this chain
ends before the desired length is reached, the process is repeated with
a different starting vertex (rejection sampling). Once a suitable segment
is found, it is copied and transformed according to its type in the next
step. Copying a segment from the original yarn, rather than creating a
new vertex line, preserves the deformation from the overlapping helixes
from different levels, thereby improving the degree of realism.

Loop flyaways are created by overlaying the segment with a sine
wave by adding an offset to each vertex:
oi=dsin(%>( oy 0y, 0) d=dyeg +dyR ©)

The sine wave moves the vertex in a radial direction, keeping its
vertical coordinate untouched. j is the total number of vertices in the
segment, so exactly half a period of the sine wave is used, ensuring
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Algorithm 2 Flyaway generation

Require: flyaway parameters g, p;, £, lngirs 55 Lioops Dmeans dsta
1: procedure ApDFLYAWAYS(E, Pys B Lnairs S5 Liops Dmeans dsta)

2 for k € [1,g] do

3 fly < loop with probability p;, or fly < hair else

4 if fly = loop then

5: length < I;,,, + 0.01R (R as explained in Section 3.1)

6: else

7 length < I, +0.05R

8 end if

9: find fiber segment S of length lengrh via rejection sampling
10: if fly = loop then
11: create loop flyaway using Eq. (8) on §
12: else
13: scale z-coordinates of .S and rotate by g to create hair

flyaway (Fig. 3)

14: end if
15: end for
16: end procedure

that the first and last vertices remain at their original positions, thus
creating the loop shape. The amplitude d is chosen per flyaway, not
per vertex.

Hair flyaways are created by rotating the segment by the angle g
(see Fig. 3). Prior to rotation, they are scaled along the vertical axis by
a value of s to amplify their shape.

Once all levels and flyaways are created, the bevel parameter is set
to control the thickness and ellipticity of each fiber, giving the object a
proper volume. All learnable parameters for the yarn and the flyaways
are summarized in Table 1.

3.3. Further implementation details

To increase the realism of the resulting yarn appearance, we apply
a reflectance model to the individual fibers, which describes their
view- and illumination-dependent appearance. This allow us to obtain
synthetic images of yarns by placing the yarn in a pre-built scene that
resembles our measurement environment in the lab where we took the
photos of real yarns.

We implemented the yarn generation as a Python script inside the
3D modeling suite Blender, since it not only provides many of the
operations needed during the generation, but also has powerful ren-
dering capabilities. For the rendering of the fibers, we apply Blender’s
principled hair BSDF shader (based on Chiang et al. [57]) to represent
their material. While this shader’s underlying assumption of circular
cross-sections slightly violates the scenario encountered for fibers with
elliptical cross-sections, our experiments revealed that different types
of cross-sections are still detected well in both synthetic and real test
cases. Therefore we conclude that the introduced error is small enough
to not strictly require a new BSDF shader for elliptical cross-sections.
The scene is then rendered using the cycles path tracer, which is ca-
pable of rendering photo-realistic images with full global illumination,
to generate images depicting the synthesized yarns according to the
conditions we expect to occur in photographs of real yarns.

3.4. Extensions to state-of-the-art yarn generator

Whereas Zhao et al. [1] focused on woven cloth made of cotton,
silk, rayon and polyester yarns, we observed that in addition to these
fiber types, knitwear is often made of various types of natural wool
(cashmere, virgin wool, etc.) and acrylic a as wool substitute, as they
offer exceptional warming properties and knitwear is mainly worn or
used in the colder months. These and most other fiber types have
longer flyaways, and their fibers exhibit elliptical cross-sections rather
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d)

Fig. 4. Left: Comparison of fiber cross section. (a) Photograph of a wool yarn with
elliptical cross section. (b) Virtual yarn generated with elliptical fiber cross-section. (c)
Virtual yarn generated with circular fiber cross-section. The changes in geometry are
hard to spot when zoomed out, however the shading and in particular the strength of
the specular highlights is clearly affected by the cross-section shape. Right: Effect of
the squeeze parameter s. (d) Reference, (e) With squeeze, (f) Without squeeze.

than circular ones, as assumed by Zhao et al. [1]. These observa-
tions inspired us to make the following extensions to the current
state-of-the-art models [1,27,47]:

+ Hair flyaways: Instead of implementing hair flyaways in terms of
adding hair arcs [1] or using fibers of one migration period [47],
we simulate them similarly to loop flyaways in terms of being
pulled out of the plies. Hence, the twist characteristics are pre-
served (see Fig. 3, (c)). Furthermore, we leverage hair squeezing
to simulate the effect that when flyaways are released from the
twist, they are less stretched and contract slightly (see Fig. 3,
b). These two steps make even the longer flyaways look realistic
(see Fig. 4, d-f), which is extremely important for training with
synthetic data, since these long flyaways highly contribute to the
realism of synthetic images.

Elliptical fiber cross-sections: We implement the ellipticity of the
cross-section of fibers, which is particularly prominent in natural
hair fibers such as wool. Although the geometric changes are too
small to be seen directly, the shape of the cross-section affects
the shading during the rendering (e.g. the prominence of specular
highlights see Fig. 4, a—c), as discussed by Khungurn et al. [42].
Local coordinate frame transformation for helix mapping: In the
approach by Zhao et al. [1], plies were twisted by sliding indi-
vidual vertices orthogonally to the global vertical axis. Instead,
we apply a local coordinate system transformation, which leads
to more plausible results similar to Wu et al.’s approach [47].
We illustrate the difference between both transformations in the
supplemental material.

Hierarchical generation: Sometimes, when multiple thinner
threads are twisted into a thicker thread, yarns with more than
three levels occur. Our hierarchical generator allows for any
number of levels.

Evaluation of performance. Although, in its current implementation,
the yarn generation process is more optimized for clarity and ease
of use rather than efficiency, the time for generating all fiber and
flyaway curves (about 6 to 12 s per image) is significantly less than
the rendering time (about 1 to 4 min). This makes it suitable for our
purpose of generating a database of yarns, but further optimization of
the generation process may be an aspect for future developments.

3.5. Yarn dataset

To represent the variations in color and reflective characteristics
encountered in real yarns in our synthesized yarn dataset, we sam-
ple different of these parameter configurations of the Direct Color-
ing parametrization of Blender Hair BSDF shader uniformly within
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available intervals and then rendering the resulting yarns in different
conditions that we expect to occur when considering photos of real
yarns. Furthermore, we sample different configurations of the param-
eters from Table 1 directly or with the help of auxiliary variables,
in order to get geometric variability of plausible looking yarns. We
provide details of our guided parameter sampling procedure in the
supplementary material. All yarns in our database consist of two to six
plies. Note that our yarn generator allows the generation of yarns with
more plies, but our observations indicate that three, four and five plies
are the most common scenarios in the case of knitting yarns. In the
supplemental we depict some of the yarns from the database. In total,
we sampled 4000 parameter configurations for the synthetic training
set and 345 parameter configurations for the synthetic validation set,
resulting in 4000 images with a resolution of 2000 x 600 pixels for
training and 345 images with a resolution of 2000 x 600 pixels for
validation. Whereas we noticed a significant performance improvement
for training on 4000 examples in comparison to training on 3000
examples, a further increase of the training dataset to 5000 examples
did not lead to further visual improvements. For more information, we
refer to the supplemental material.

Although our yarn generator can generate many levels of hierarchy,
for proof-of-concept purposes, in this paper, we focused on yarns made
up of plies and did not investigate learning the next level, where
multiple thinner yarns are twisted into a thicker yarn. Therefore, our
database does not include such yarns. Furthermore, by rendering the
yarn in different scenes, including various indoor and outdoor set-
tings, training data for in-the-wild yarn parameter estimation could be
generated.

4. Inference of yarn characteristics from input images

We formulate the prediction of the parameters for our procedural
yarn model from single images as a regression problem. Here an
encoder f maps an input image to a latent code which then becomes
the input to a regression head 4 (Fig. 5) which performs the parameter
regression. This regression path within our model is trained to minimize
an L, loss between the prediction obtained on synthetic yarn images
x® and their ground truth parameter y) used in the generation model.

£regress =E [”h(f(x(i))) - }A’U)Hl]

We will refer to this network simply as Reg.

Although the synthetic training data was carefully generated to
match the appearance of real yarns in photographs as accurately as
possible, a domain gap between the synthetic and real images cannot
be ruled out. To address the domain gap, we investigated the impact
of adding some non-annotated real images to the training and utilized
a semi-supervised training process which alternates synthetic and real
images in the training process to improve the extrapolation from syn-
thetic images with known yarn parameters to real photographs. For
this purpose, we extended our aforementioned regression model into an
autoencoder with an additional regression by adding a decoder model
d. The autoencoder of the path is trained to minimize a simple image
reconstruction loss both on synthetic and real images:

Lrecon = E [ld(f (D)) = xP|I7] .

This unsupervised training process enables our encoder to be trained
to map synthetic and real images into the same latent space from which
the regression head predicts the yarn parameters for synthetic data
points. During inference, only the encoder and regression head are
required to predict inputs for the parametric yarn model. In an ideal
case, the encoder maps the synthetic and real images of similar yarns to
vectors that are within a close proximity in its latent space. However,
such a behavior is not guaranteed by the reconstruction loss. On the
contrary, the encoder might learn to distinguish between the synthetic
and real images so that their latent vectors form two distinctive clusters.
We propose an additional regularization term which explicitly penalizes

©)

(10)
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Fig. 5. The depicted architecture combines all the different networks we investigated:
The networks Reg and Reg,,., consist of the encoder and the regression head, while
the networks and additionally include the decoder.

the distance between latent codes of synthetic images and the average
latent code of real images in the encoder’s latent space:

Ligtent =E [”f(x(i)) - Sg(/‘SMA)”%]

where sg denotes the stop gradient function (i.e. pugys is considered
to be a constant in the backward step) and ugy, is a simple moving
average of latent codes of real images for the last 5 batches. With this
additional regularization term the average latent codes of synthetic and
real images are close to each other, and distinctive clusters become
energetically less optimal However, it is more restrictive by forcing the
latent code to be roughly normal distributed which is not necessary in
this application.

In three different networks Reg;,;0,;» Reg® and Reg®

laten:
gated the following three combinations of those losses:

1D

, we investi-

* Network Reglarent: ﬁreglat = Eregress + }“latentl Elatent'

* Network Reg®: Eregrec = Eregress + Arecon1 Lrecon-

. ae .
Network Regf'e  :
L combined = Eregress + AreconLrecon + Aatent Llatent-

The combination of both previous variants, i.e.:

where Aecons Areconts Alatents Aatent1 ar€ hyper-parameters of the models.
The combined networks are provided in Fig. 5.

Network architecture. The encoder architecture is a pure CNN model
based on ResNet [58] were the average pooling has been moved to the
regression head, i.e. the latent codes are the tensors which result from
the convolution stack. We explore both the ResNet18 and ResNet34
configurations with the standard ResNet block as proposed by He
et al. [58] as well as the more recently proposed convnext blocks which
also replaces the batch normalization with layer normalization [59]. If
the encoder uses a ResNet18 or ResNet34 architecture, the regression
head h is a two-layer MLP with a hidden dimension of 512 and an Expo-
nential Linear Unit activation function after the first layer. Otherwise,
the regression head is a linear projection of the 512-dimensional input
onto the required output dimension.

The decoder g consists of four transposed convolutions with kernel
sizes k; = 2, ky = 2, k3 = 2, k, = 2, the stride s5; = k;/2 and output
kernel sizes 256, 128,64, 3. The first three layers use ReLU activations,
while the last layer uses the Tanh function to ensure that the output
values are within the range of the pixel values.

4.1. Inference of yarn parameters

In the following, we motivate our choice of a suitable training
procedure that is capable of handling the challenging nature of the
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Fig. 6. Saliency maps computed for networks that were trained either to predict raw
yarn or flyaway parameters of the yarn model. The color temperature in a saliency
map indicates an input pixel’s influence on the predicated parameter. Warmer colors
correspond to a stronger influence.
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Fig. 7. Saliency maps for the yarn twist pitch «,,, (top row) and the yarn radius R,
(bottom row), obtained from the individual training of Reg for each parameter (left)
vs. the joint training of Reg (middle) .

underlying problem. We considered the saliency maps [60] of the
network Reg trained twice on the synthetic dataset to predict the set of
the raw yarn’s parameters and the set of the flyaway parameters with
two independent models. An entry m; ; in a saliency map for a model
f that has been trained on a subset of P parameters is the maximum
derivative of the average value of the predicted parameters with respect

to a pixel x; ; . in the input image over the color channels c, i.e.
1
= | 5 (; ; fp<x>> : a2

In contrast to saliency maps that have been proposed within the
context of classification networks, we consider the derivative of the
mean of the predicted parameters because we need to investigate the
effect of a pixel on the entire subset on which the network was trained.

As shown in Fig. 6, the saliency maps for the neural network trained
to extrapolate the raw yarn parameters show an increased sensitivity
to changes in the central region of the yarn image. In contrast, the
saliency maps corresponding to the network trained to predict flyaway
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Hyperparameters for alphaply Hyperparameters for yarn radius

118, Ir 1e-5, MSE loss
—— resnet3, Ir 1e-5, MSE loss.

Fig. 8. (a) Our setup for capturing the test yarns. (b)-(d) Examples of validation loss comparisons for hyperparameter determination for parameters a (b), «

(0) and R, (d).

ply

Based on the loss values we chose the model of ResNet18, learning rate = le~* and epoch 850 for «, ResNet34, learning rate = le~* and epoch 850 for a,, and ResNet18, learning

rate = le™ and epoch 1000 for R,.

parameters show an increased sensitivity of this network to the periph-
eral regions within the input images. The insights gained from these
saliency maps led us to conclude that training individual models for
raw yarn parameters and flyaway parameters would be a more effective
approach.

Minor variations in the parameters associated with the flyaway
characteristics do not have a significant effect on the resulting yarn,
since achieving plausible flyaways primarily requires matching the
distribution of these flyaway characteristics. On the contrary, small
changes in the parameters associated with the basic yarn structure,
i.e. the yarn without flyaways, already have a significant visual in-
fluence on the resulting yarn. This is clearly illustrated in Fig. 13,
which shows different yarn results based on small variations in the
a,, parameter. Based on these observations, we conducted a compar-
ative examination of saliency maps generated by models based on the
network Reg that were individually trained on the synthetic dataset
for each raw yarn parameter (e.g., Fig. 7 shows the maps for the
yarn radius and «,, parameters). Our analysis revealed significant
variations in these saliency maps. Guided by the results obtained from
these individual saliency maps, we then explored the potential of using
a set of individual networks for the isolated prediction of each raw
yarn parameter. We will denote these individual parameter networks
as Regp,.qms- The architecture components of Reg,,,q,, correspond to
the components of Reg in Fig. 5. A similar separation of models has
already been used by Nishida et al. [61]. We compared the previously
described approach of using two separate networks to predict the raw
yarn parameters and the flyaway characteristics with the approach of
using Reg,,,,ns to predict each raw yarn parameter separately along
with a network to predict the flyaway characteristics.

In this context, we leveraged further priors for some of the param-
eters to exploit their underlying nature. For the parameter number of
plies, we changed the last layer from the identity function as used for
regression to a softmax function, thereby framing the prediction of this
discrete parameter as a classification problem. The underlying motiva-
tion is that most knitting yarns have 2 to 6 plies and the estimation of
the number of plies based a classification might be easier than based
on a regression. Furthermore, we distinguish fibers according to their
elliptic cross-section characteristics into thin fibers (t,, = 0.01, ¢, = 0.007)
and thick fibers (t, = 0.018, t, = 0.0D, which we also frame as a
classification problem since considering all intermediate states seems
tricky and there seems to be no such significant perceptual difference
for these intermediate states.

5. Experiments

Training, validation and test data. We use 4000 synthetic yarns for
training and 345 synthetic yarns for validation as mentioned in Sec-
tion 3.5. For training of the networks Reg;q,» Reg® and Regfc = we
additionally used 56 real yarns. To get insights on the performance
of our method for parameter inference for real yarns depicted in
photographs, we tested our approach on different knitting yarns, which

Fig. 9. 1st and 3rd rows: images of a real knitted cloth (made with yarns from the
top row of Fig. 10) for the pattern consisting of knit (1st row) and purl (3rd row)
stitches. 2nd and 4th rows: rendering of the same stitch pattern with the inferred yarn
with default material settings.

were not included in the training set and were made either of one type
of fiber such as wool, acrylic, cotton, polyamide, etc. or of a mix of
different types of fibers (Fig. 10, top row, second yarn). We took the
corresponding photos of the yarns under a simple lab setup (see Fig. 8
a) with a Sony «7RIII camera using the makrolens Makro G OSS with
FE 90 mm F2.8. Then we cropped the photos to the size of 600 x 2000
pixels, ensuring that the yarn roughly runs through the center of the
image. These cropped photos served as an input for the parameter
inference.

Details of the training process. To improve the robustness of the trained
models, we increase the variety of the training data by randomly
cropping the 4000 images of a size of 2000 x 600 pixels to the network
input size of 1200 x 584 pixels during each epoch. Other than cropping,
we did not perform any transformation of the inputs. Then we ran the
training for 1000 epochs with a batch size of 32 and a learning rate of
0.0001 based on the Adam optimizer [62]. For this purpose, we used
three Nvidia Titan XP GPUs, each having 12 GB of RAM. Based on this
hardware, the training for the flyaway network and the full regression
network took approx. 11 h each. When training only for one parameter,
the training for the ResNet34 took ca. 4 h, while for the ResNet18 it
was 2.5 h.
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Fig. 10. in = input image, 1 = reconstruction image from Reg,; > 2 = Reg,
randomly cropped from the whole image.

Table 2
Validation loss of different networks. Note that especially the important yarn twist

parameters a, a,, and R,,, are better learned with parameter specific networks Reg,;,q;-

Regyurams Reg Reg® Regjgrent Regjs,..
. 0.0080 0.0082 0.0080 0.0097 0.0087
r 0.0066 0.0066 0.0074 0.0083 0.0079
m 12 12 13 14 14
a 0.0807 0.2493 0.2587 0.3230 0.3026
@y, 0.0614 0.1953 0.2101 0.2400 0.2433
R 0.00444 0.0082 0.0092 0.0092 0.0095

ply

5.1. Parameter inference on real data

Validation of training process. First, we validated how the proposed
networks perform on synthetic data. For this purpose, we compared
the inference of yarn parameters on validation data through Reg,,,s
(a set of different models) against Reg, Regy oy, Reg® and Regfy .
each representing one model for all parameters. For this comparison,
we have chosen the best hyperparameters and the best epoch based
on the validation loss computed on the synthetic validation set. Fig. 8
illustrates the validation losses of Reg, ., for the twisting parameters
a, a,, and yarn radius R,

Table 2 shows the comparison of the best models of every case. We
can see that the loss over each parameter is larger when training one
model for all parameters of the raw yarn instead of training specific
models with different hyperparameters for each parameter separately.

= Regyem» 4 = Reg®, 5 = Regfe . The rectangle region shows the input image, which was

alphaply. different resolutions alphaply. different resolutions
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Fig. 11. Validation loss comparisons for trainings with different resolution of input
images. Left: full loss curves, right: loss curves without the first element.

While this indicates a better capability to infer yarn parameters on
synthetic data, we did not yet analyze the generalization to images
depicting real yarns, which will follow with the experiments regarding
performance analysis on real data.

Performance evaluation. We now provide an evaluation of the perfor-
mance of the different approaches discussed in the previous paragraph
on real yarns. For the prediction of the flyaway parameters, we use
the same flyaway model for all these approaches. In our experiments,
the flyaway model with the lowest validation loss was the ResNet18
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Fig. 12. Two examples of editing operations for yarns with original inferred parameters and the edited ones together with corresponding renderings of knitted patches. Reflectance
parameters were not part of the inference but chosen arbitrarily for demonstration. 1st column: golden yarn from Fig. 10 in the 3rd row, left. 2nd column: the same yarn but

with both pitch parameters « and «,,, divided by 2. 3rd column: yellow yarn from Fig. 10 in the 3rd row. 4th column: the same yarn but with parameters for flyaway amount

and length multiplied by 2.

model trained with a learning rate of 0.001 and MAE loss, which
we therefore use for the subsequent experiments. Exemplary results
of our experiments including a comparison between the investigated
approaches can be observed in Fig. 10. The corresponding inferred
parameters are presented in the supplemental material. The renderings
of the parameters inferred from parameter-specific networks Reg,qs
for each parameter of the raw yarn look more similar to the input
image, than the renderings from the other approaches. Since we do
not have the ground truth parameters for our real-world yarns, we
can only compare the geometry appearance of the yarns. Based on
the appearance comparison to the input image, we conclude that the
approach of the parameter-specific networks is most suitable for the
given task.

We tested how our inferred yarns will look in renderings of knitting
samples. For this we created in Blender knitting patterns with curves
similar to previous work [17] and followed the curve with the corre-
sponding yarn that was inferred from an image of a straight yarn. In
Fig. 9, we show the renderings of knitting samples, made with the three
yarns of the top row from Fig. 10 with the parameters inferred from the
parameter-specific networks and the flyaway network.

We observe that yarns with different geometry lead to entirely
different appearances of the same pattern. Furthermore, we can see that
if the inferred yarn looks similar to the yarn in the image, the pattern
rendered with the inferred yarn will also look similar to the pattern
knitted with the real yarn.

Once the parameters are inferred, we can use them also for editing
and for the creation of new yarns. Some examples for modification of
the twist parameters « and «,, as well as some flyaways parameters
are depicted in Fig. 12.

Ablation study regarding effect of resolution. To get insights on the effect
of the resolution of the input images, we trained the networks for the
different yarn parameters on images of significantly lower resolution.
We experimented with the reduction to 50% and 25% of the original
resolution of 1200 x 584 pixels. Fig. 11 shows the validation loss
plots for the @, and yarn radius parameters for different resolutions.
Fig. 13 shows some visual comparisons of reconstructed yarns with the
corresponding parameters for a,,. As can be observed, the achieved
accuracy decreases with decreasing image resolution. We expect this
to be a result of the lower quality of the depiction of the individual
fiber arrangements that can be seen in terms of a blurring of the yarn
structure.

In order to demonstrate the robustness of our approach to different
exposure times we made exposure series of the input yarns and tested
images with different exposure times. The results show that as long as
the images are not too dark or over-exposed, the inferred parameters
vary only insignificantly and the reconstructions are very similar.

5.2. Limitations

In addition to the dependence on the quality of the depicted yarns
(as shown in the previous section), our approach depends on having
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Fig. 13. in = input image, 1 = reconstruction image from Reg,,,,, where the a,,
parameter was trained on images with full resolution, 2 = «

1y Parameter was trained
on images with 50% of the full resolution, 3 = «,,, parameter was trained on images
with 25% of the full resolution.

a) e)

Fig. 14. (a) Input image of a yarn made by unusual (non-helical) fiber twisting
procedure. (b) Rendering of a yarn with inferred parameters with default material.
(c) Rendering with color. (d) and (e) Examples of yarns of fourth level, where two
thinner yarns are twisted into one to make it thicker and better suitable for knitting:
(d) Two yarns of the thin gray yarn from Fig. 10, fourth row, (e) Two yarns of the
thick gray yarn from second row of Fig. 10.

d)

the variations to be expected in the test data included in the training
data. Note that our dataset includes only yarns with a normal (helix-
like) fiber twisting. However, other types of fiber twisting could also
occur as shown with the example in Fig. 14. The depiction shows a
reconstruction that exhibits a high similarity to the input yarn. The
thickness on both ply- and yarn-level as well as the number of twists
closely follow the original structure. Since we did not consider this type
of ply-twist in our yarn generator, there is also some deviation. We
expect that such deviations might be handled by further extending the
dataset regarding further types of yarn variations.
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Furthermore, despite the fact that our yarn generator also supports
the fourth hierarchical level (i.e., the level where thinner yarns are
twisted into thicker yarns (cords), see Fig. 14 (d)-(e)), we only included
yarns consisting of the first three levels, which limits our approach to
the prediction of the characteristics up to the third level. However,
the extension to the fourth level is straightforward and we leave it for
future work.

6. Conclusions

We presented an investigation of different neural inverse procedural
modeling methods with different architectures and loss formulations to
infer procedural yarn parameters from a single yarn image. The key
to our approach was the accurate hierarchical parametric modeling of
yarns, enhanced by handling elliptic fiber cross-sections, as occurring in
many types of natural hair fibers, as well as more accurately handling
flyaway characteristics and the twisting axis and the respective gen-
eration of synthetic yarns that are realistic enough so that the trained
model can extrapolate to the real yarn inputs. Our experiments indicate
that the complexity of yarn structures in terms of twisting and migra-
tion characteristics of the involved fibers can be better encountered in
terms of ensembles of networks that focus on individual characteristics
than in terms of a single neural network that estimates all parameters.
In addition, we demonstrated that carefully designed parametric, proce-
dural yarn models in combination with respective neural architectures
and respective loss functions even allow robust parameter inference
based on models trained from synthetic data only. In the scope of this
paper, we focused solely on the geometric fiber arrangement including
migration characteristics (i.e. flyaways) and left the prediction of the
reflectance characteristics of knitting yarns for future work. Further
developments may also consider a further hierarchical level of yarns,
i.e. thinner yarns twisted to thicker yarns. Whereas we did not focus on
inferring parameters for this kind of yarns, our yarn generator would be
able to produce the respective characteristics and might allow enriching
the dataset accordingly in future work.
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