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1. INTRODUCTION 12 
 13 

Automated Driving (AD) is a trend that will evolve over time, both in the market penetration rate of 14 

Automated Vehicles (AVs) and the level of automation. According to SAE International [1], level 5 is the 15 

ultimate automation level with unlimited Operating Design Domain (ODD). However, in the transition 16 

period to full automation, there will be a mix of vehicles with different automation levels and a limited 17 

ODD. We envisage that AD for levels 3-4 AVs will be possible only on certain designated roads. For the 18 

remaining roads, manual driving will be mandatory (although supported by various assisting driving 19 

automation systems such as collision avoidance systems). On this designated roads, AVs will operate on the 20 

same lanes mixed with conventional vehicles (CVs). In order to facilitate safe and efficient AD in the mixed 21 

traffic on these selected roads, investments are required to meet certain design requirements. There will be 22 

trade-offs between these investments and the benefits they provide. This necessitates a network design 23 

approach to decide which roads should be selected to facilitate AD in the transition period. In this paper, 24 

we formulate this problem as a bi-level network design problem (NDP), and pay special attention to possible 25 

solution methods for this problem and their performance. 26 

 27 

2. METHOD  28 
 29 

In this section, we outline our proposed network configuration (which will be referred to as AD subnetwork) 30 

as well as the problem formulation, and we suggest solution methods for the problem. 31 

 32 

2.1. Constructing the AD subnetwork  33 
 34 

We envision a subset of an existing network within which AD is allowed everywhere for all automation 35 

levels and we refer to this as AD subnetwork. This corresponds to ODD of levels 3-4 AVs. First we specify 36 

a set of feasible links in the network that we assume to be safe for AD after some adjustments based on 37 

sustainable safety principles [2]. Next, we assume certain adjustment costs based on road types to meet 38 

design requirements for AD. Since investing on adjusting all the links in large networks can be infeasible 39 

and even unnecessary, the next step is to make an optimal selection (among feasible links) that guarantees 40 

highest possible gain from the investment (i.e., total adjustment cost). 41 

 42 

2.2. Operational concepts and assumptions 43 
 44 

It is assumed in this study that all vehicles are allowed everywhere in the network but AD and forming 45 

Cooperative Adaptive Cruise Control (CACC) platoons is only possible for AVs within the AD 46 

subnetwork in mixed traffic conditions (i.e. on the same lanes with CVs). Outside the AD subnetwork, all 47 

vehicles drive manually.  48 

 49 

2.3. AD subnetwork as a bi-level NDP 50 
 51 

Optimal investment decisions regarding road networks are often considered within the concept of NDP [3] 52 



  2 

 

where the objective is to optimize certain performance indicators for a network (e.g., total travel cost) 1 

considering the travelers’ reactions to the network performance (route choices). This can be modeled as a 2 

bi-level leader-follower Stackelberg game in which the leaders (transport authorities) supply the transport 3 

infrastructure aiming at optimizing their objective function (e.g., total travel cost) and the followers 4 

(travelers) react with their route choice to optimize their own objective functions (e.g., individual travel 5 

costs). We model the optimal AD subnetwork construction problem as a bi-level NDP where the upper level 6 

entails the choice of links to include in AD subnetwork given a certain adjustment cost and the lower level 7 

represents the travelers’ route choice.  8 

 9 

We model the lower level problem as a multi-user class (MUC) stochastic user equilibrium (SUE) based on 10 

path-size logit (PSL). We distinguish two user classes (AVs and CVs) with different generalized travel cost 11 

functions. On links within the AD subnetwork, AVs are assumed to have a lower PCU to account for the 12 

shorter gaps between AVs and their leading vehicles, a lower value of time (VoT) because travel time can 13 

be used for other activities, and a lower value of distance (VoD) due to fuel efficiency of CACC [4], [5]. 14 

The generalized travel cost function is the summation of travel time multiplied by VoT, and distance 15 

multiplied by VoD. Link travel time is based on a modified BPR function where total flow is a weighted 16 

sum of class-specific flows to capture the correlation between link capacity and the proportion of AVs on 17 

the link. 18 

 19 

We model the upper level problem as a goal programming (GP) problem with four objectives and four 20 

corresponding goal values and minimize sum of the normalized differences between each objective and its 21 

goal value weighted by the objective priority. The goal value for total travel cost (summation of individual 22 

generalized travel costs) is the solution of cost-based system optimal traffic assignment where all feasible 23 

links are included in the AD subnetwork. This corresponds to minimizing the price of anarchy. The same 24 

procedure is used for defining the goal value for total travel time based on time-based system optimal 25 

routing and the goal value for total travel distance is based on the shortest path assignment. The last goal is 26 

total adjustment budget for which different goal values are considered in different scenarios. This GP 27 

formulation allows for minimizing four objectives, or any combination of them, simultaneously and solving 28 

the multi-objective problem with solution methods developed for the single objective problem. Moreover, 29 

different priorities and target values for different objectives can be used with this framework. The decision 30 

variables are binary integers representing links to be included in AD subnetwork. The lower level 31 

equilibrium conditions are treated as constraints for the upper level problem.  32 

 33 

2.4. Solution algorithms 34 
 35 

An iterative optimization-assignment algorithm is used which iteratively solves the upper-level 36 

optimization problem with fixed values for lower-level decision variables (equilibrium flows), and the 37 

lower-level SUE problem with fixed values for upper-level decision variables (choice of links to include in 38 

AD subnetwork). To solve the lower level equilibrium, the MUC MSA algorithm introduced in [6] is used 39 

with moderate modifications. The upper level problem is a none-differentiable NP-Hard problem with no 40 

gradient information available. The value of the objectives measured through the lower level problem 41 

evaluations can be used to estimate gradient information; however, this means the lower level problem 42 

should be solved once per objective function evaluation. Solving the lower level problem also requires 43 

many iterations for convergence. This sets high requirements for the efficiency of the solution algorithm. 44 

Moreover, the problem includes multiple demand scenarios and many possible priority combinations for 45 

objectives that can further increase the computation time for a comprehensive analysis. Therefore, we 46 

compare the performance of three heuristics for solving the upper level problem. Genetic Algorithms (GA) 47 

[7] and Simulated Annealing Algorithms (SAA) [8] are two of the most commonly used heuristics to solve 48 

DNDP [9]. GA is known to find good (near-optimal) solutions for the DNDP but at the cost of many fitness 49 

function evaluations, which requires solving the lower level equilibrium problem once per evaluation. On 50 

the other hand, SAA generally requires less function evaluations but it might get locked in a local minimum. 51 

Although not common for solving DNDP, another viable heuristic algorithm is Simultaneous Perturbation 52 
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Stochastic Approximation (SPSA) introduced in [10] which requires three fitness function evaluations per 1 

iteration. This is lower than the required number for GA and higher than the required number for SAA 2 

making SPSA a good candidate for investigating the trade-offs between computational efficiency and 3 

solution quality. Therefore, we chose the three mentioned heuristics to solve the upper level problem and 4 

to compare their performance.   5 

 6 

3. CASE STUDY, RESULTS AND DISCUSSION 7 
 8 

We use a case study to demonstrate the concept of AD subnetwork and to compare the performance of the 9 

three heuristics. A network similar to the road network of Delft, The Netherlands is used and the network 10 

data and the demand patterns are based on a tutorial project in OmniTRANS transport modeling software 11 

package. It includes 1151 links, 494 nodes and 22 zones. A subset of links (corresponding to motorways, 12 

expressways and main roads) are selected as feasible links for AD subnetwork (Figure 1).  We considered 13 

three demand scenarios with 10%, 50% and 90% penetration rate of AVs. As for objectives, we 14 

experimented with different priority combinations. In practice, the priorities for different objectives should 15 

be defined by transport authorities. For this extended abstract, we chose the 50% penetration rate scenario 16 

with equal priorities for total travel cost and total adjustment cost, and priorities equal to zero for the rest 17 

of the goals. The adjustment cost is discounted over ten years (assumed effective life time for the 18 

infrastructure adjustments) with 4% discount rate.   19 

 20 

Figure 2 demonstrates the convergence of all three algorithms for the chosen scenario. All three heuristics 21 

seem to converge by the end of the run, yet each requires a different number of function evaluations. SPSA 22 

in this case converges after approximately 500 iterations, each requiring 3 objective function evaluations. 23 

The number of iterations for SAA was set to 500, but as evidenced by the figure, it converges in less than 24 

300 iterations. The number of fitness function evaluations per iteration for SAA can vary based on 25 

acceptance threshold for deterioration in objective function. In this case, the number of fitness function 26 

evaluations was 1500. On the other hand, GA converges in about 300 generations each evaluating a 27 

population of size 120. Therefore, the general number of function evaluations for GA is much higher than 28 

the other two. Regarding the trends, the GA graph has the smoothest curve since it reports averages and 29 

best values of a population while SAA has the sharpest decreases due to high temperatures in first iterations 30 

and reannealing processes after the initial iterations. SPSA seems to have a reasonable convergence curve.  31 

 32 

 33 
FIGURE 1    AD Subnetwork: feasible links for AD subnetwork are shown with (bright) green and the rest with (dark) 34 
blue.  35 
 36 



  4 

 

 1 
 2 
FIGURE 2    Objective function convergence curve of 50% penetration scenario for: (from left, respectively) GA, SAA, 3 
SPSA  4 
 5 

Table 1 shows the results of 3 stochastically independent runs for each heuristic. GA predominantly 6 

outperforms the other two algorithms in the best objective function values found as well as total travel cost 7 

and total adjustment cost. However, as discussed earlier, this comes at the cost of significantly higher 8 

computation time. Among the other two heuristics, SAA tends to find configurations with slightly lower 9 

total travel cost with higher total adjustment costs while SPSA leads to opposite trade-offs between 10 

adjustment cost and travel cost. An interesting observation is that GA converges to the same results every 11 

time after a certain number of generations while there is some variety in results obtained by SPSA and SAA.   12 

 13 

Parameter tuning for these heuristics is also an important issue. GA only requires a minimum number of 14 

population size (in this case about 120), elite count (about 20), and a minimum number of generations 15 

(about 250) to find plausible results, making the parameter tuning a straight forward procedure. On the 16 

other hand, SPSA has several parameters related to the step size and the gain sequence that can have 17 

different optimal values based on the scenario. This means the value of the optimal parameters depend on 18 

the ratio of changes in the objective function (gain) to the changes in decision variables (step size). This 19 

implies that scenarios with lower values of unary objective space require different parameters than scenarios 20 

with higher values of unary objective space. Thus for each scenario, SPSA parameters must be tuned and 21 

the performance of the algorithm is highly dependent on these parameters. This can be dealt with as a 22 

preprocessing step prior to multiple optimization runs with different settings. As for SAA, its performance 23 

seems to depend more on the energy landscape rather than its parameters. That is, it performs well in energy 24 

landscapes full of hills almost regardless of its parameters’ values and performs poor in rather flat energy 25 

landscapes despite the amount of parameter tuning effort.  26 

 27 
TABLE 1  Comparison of algorithm performances in three independent optimization runs for the 50% penetration rate 28 
scenario  29 

Algorithm Run 

Number 

Objective 

function value 

Total 

Travel Cost 

Total Travel 

Time 

Total Travel 

Distance 

Total 

Adjustment Cost 

Number of 

Links Selected 

GA 1 0.099042 93241 5493 280535 345162 260 

GA 2 0.099042 93241 5493 280535 345162 260 

GA 3 0.099042 93241 5493 280535 345162 260 

SAA 1 0.152708 97388 5501 279457 470160 197 

SAA 2 0.150864 96690 5497 280007 536121 203 

SAA 3 0.156241 97342 5502 279604 517020 207 

SPSA 1 0.157739 98302 5506 279916 286330 161 

SPSA 2 0.150211 97507 5506 279527 385187 184 

SPSA 3 0.155344 97972 5507 279823 372597 197 

Goal 

Value 

- 0.00 84976 4785 268660 100000 - 

 30 
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Figure 3 illustrates the optimal AD subnetworks found by all three heuristics. Several stretches of roads 1 

appear in all three results suggesting there are evident efficiency gains in selecting them for AD subnetwork. 2 

Although the result from GA seems more plausible, all three suffer from the same flaw, namely, inability to 3 

generate connected designs. There are isolated links and stretches within the AD subnetworks produced in 4 

all three cases which is undesirable for practical purposes. A possible remedy for this issue can be analyzing 5 

the results as a post-processing step and making adjustments on resulting designs to cope with it. Another 6 

possibility is penalizing disconnected designs in optimization process. Nonetheless, implementing these 7 

solutions can be cumbersome and time-consuming. This signals a need for solution methods that can 8 

produce connected designs from the onset. Since DNDP traditionally deals with adding new lanes and links 9 

to existing (already connected) networks, connectedness has never been an issue in DNDP. Therefore, 10 

solution methods have not been developed to deal with this problem. However, for the case of AD 11 

subnetwork, this is a requirement and a priority for the future research.  12 

 13 
FIGURE 3    Optimal AD Subnetwork for 50% penetration scenario achieved by: (from left, respectively) GA, SAA, 14 
SPSA 15 
 16 
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