of Technology, Netherlands

1 Introduction

The planar curved beams, arches and rings
have been widely used in machines and
structures, such as bridges, aircraft structures
and turbo machinery blades, because of their
potential applications. The curved track is
simplified as periodically supported uniform
curved beam here to analysis the vibration of
curved track, with the super elevation neglected.

Both the analytical method and the Finite
Element Method have been employed in the
pioneering study on the out-of-plane vibration
of curved beam (Love A. E. H., 1927; Bickford
W. B., 1975; Kawakami M., 1995; Yang Y. B.,
2001); however, few works have been
conducted for the vibration response of curved
track subjected to moving load.

A periodical solution on the out-of-plane
response of curved track, modeled as periodically
supported curved Timoshenko beam, subjected
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Abstract: A periodical solution on the out-of-plane vibration response of curved track, modelled
periodically supported curved Timoshenko beam, subjected to moving load is determined here, Fj;
the general dynamic response induced by moving load along curved path on an elastic semi-i
space is obtained on the basis of Duhamel Integral and Dynamic Reciprocity Theorem. Then, in l
case of periodic curved track structure, the general dynamic response equation in the freque
domain is simplified in a form of summation within the track sleeper spacing instead of integral, T
transfer function of curved track is settled using transfer matrix approach. To verify the validity o
analytical model, the vibration of simple supported curved beam under moving load is obtained
compared with existing reference. Besides, the vibration of curved track of different radii is obtain
and compared, indicating that: the response of curved track decreases with the increase of the trae
radius; the vibration spectrum is abundant and closely related to the load speed.
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to moving load is considered here. Firstly, th

general dynamic response induced by mo
load along curved path on an elastic sem
infinite space is obtained on the basis of
Duhamel Integral and Dynamic Reciprocity .
Theorem. In the case of periodic track structure,
the general dynamic response equation in the *
frequency domain is simplified in a form of
summation within the track sleeper period
instead of integral. The transfer function of
curved beam is solved using the transfer matrix

approach. i

2 Moving Load on the
Semi-Infinite Space

Consider the elastic semi-infinite space,l |

shown in Figure 1, subjected to vertical load

g(#) moving along a curved path with the ==

radius of R, the initial position of 8y, the anguli.!!'
speed of c. The vertical time-domain dynamic

displacement of receiver & can be obtained on==

the basis of Duhamel integral (Jia Y. X., 2009):
L uEn =10 g(@h(&,6(r),t-1)dr (1)
Herein:  u(&,1) s vibration
;displacement of receiver &, and right }.1and side
of Equation (1) represents a convolution integral of
e time history of the moving load g(¢) and the
- yertical transfer function /4, (&,6(z),t — ) between
he time-dependent load position §(r) and receiver
L Besides, 1—7<0,h,(£,0(r),t—7)=0.

vertical

Figure 1 ~ Semi-infinite space subjected to
moving load

With the Dynamic Reciprocal Theorem and
the Forward Fourier Transform of the time ¢
fo the circular frequency w, the response
displacement in the frequency domain can be
expressed as:

i2,0) = [ g, @y +cr,&, ) exp-ionyar  (2)
Herein:
(6 + cr.£,0) = [ h(6, +cr,£,1~ T exp(—ieo(t — 1))t
is the transfer function in the frequency domain.

And “*” is defined to be the expression in the
frequency domain, similarly hereinafter.

3 Moving Load on Track
Structure

Consider the periodically supported curved
track, half of which is only taken into account,
shown in Figure 2, subdivided into an infinite
mumber of track cells with the length of 6.,
which is the sleeper spacing. The track structure
is traversed by a vertical load g(1), with the
angle speed of c. & is the receiver on the rail.

According to the relativity of motion, the load
moving forward passing over one cell,
tquivalents to that the load does not move,
While the observation point moves in the
Opposite direction passing over a cell. Then the
d_ynamic response in frequency domain can be
Simplified in a form of summation within the

track sleeper spacing instead of integral, by
transferring the moving of the load on the rail to
the moving of pick-up point moving within a
specific sleeper spacing, which has been proved
by the Floquet Transformation (Jia Y. X., 2009).

Figure 2 Curved track subjected to moving
load

At £, 6 is the load position in the global
coordinate system: @=Oy+ct, herein, 0, is the
initial position of the load.

iﬁﬁﬁom N

Figure 3 Local coordinate system

The local coordinate systemd is set up in
track basic cell, shown in Figure 3. The
relationship between the global coordinate
system and the local coordinate system can be
expressed as follows:

6=0-n0,0=0-n0_,0 =0-n6

el £ g & cell 0 0 0 cell
Herein: “~” is defined to be the expression in

the local coordinate system, similarly

hereinafter. n, ng, ng are respectively the
numbers of basic track cells 6, between the
origin and the load position 6, between the
origin and the pick-up point & between the
origin and the initial load position 6, in the
global coordinates. Then:
t=0-6))/c=7+(n,—ny)b,,/c 3)

cell
t=(F-8)/c @
According to Equation (4), when the load
moving in one sleeper spacing on the track, the

vibration response at receiver & can be expressed
as:




u(&, @),

cell

= Eg(r)izz(ﬂo +c1,é,m)exp(—iwr)dr

el

22
- [ ¢ glif_'_ (ng —no)gcell:'hz(go +cf+(n9 ___no)
c

0155, @) EXP l:—ia)(f 4 Mj]df
c

©)

In fact, ny changes once when a sleeper
spacing is passed over, and ny changes time and
time again when the load keeps moving on the
rail. However, the curve is not infinite long,
the angle of the curve is n, ny would change

from ng to n, +

4
gcell

With the help of Equation (4), the expression
of the time can be transformation for the
expression of space, and then one can get:

(S, )

ot Qe G0 +0,0 6-0 — Ao ow
=YL e g[%th(g+
my=ny = c
negcell > é:, 0)) eXp’:—ia{ (0 — 60) 2L (Cng = no)ecell J:' dé
(6)

Equation (6) is the dynamic response of the
track structure under vertical moving load in the
frequency domain.

4 Transfer Function of Curved
Track

As referred in reference (Jia Y. X., 2009), the
transfer function (4, 6, +(n, —n,)8.,, ) can

be solved as the product of the state variables
S(4,w) of the load excitation point and the

transfer function of the periodically supported
beam, which can be divided into several basic
track cells 6. Besides, the transfer function of
basic track cell O, can be solved as the product
of the transfer function of the curved beam and
the support under the curved beam, using
transfer matrix approach (Sun J. P., 2009) as
follows.

4.1  The transfer matrix of the curved beam

The curved track is simulated as periodically
supported planar curved Timoshenko beam; the
support under rail is modeled as mass-spring-
damper element. For an infinitesimal element of
curved beam, shown in Figure 4, with the length
measured along the neutral axis of the curved

v 558 =

beam denoted by s, the x, y and z axeg are ts

in tangential directions, radial and trap
directions respectively. The origin of
coordinates moves along the neutral axig op
beam. u is transverse deflection, the slope ¢
to pure bending an d the angle of torsion ¢ e
radius is R , 6 is the central angle COIrespom,l %
the curve element. The cross-section Properti
and material properties are constant along
beam. The shearing force Q., bending Moment
M, and the torsion moment M, are al shown i
the Figure 4. 1

Figure 4 The coordinates of the curved beam
element

For the analysis of an infinitesimal elemem‘;f

ds in the curved beam, the shear deformation 15

taken into account, one can get:

YR .

Herein: v is the transverse shear angle,
Twisting angle  :

_09 1 0u

" TR @

The force-displacement relationship of the
curve beam can be obtained as follows:

0, = KGdv 0)
-_gr (%2 2\ _p (2 02
M, -1, (28 0) gy (2-2) qg

o’ )
M, =-E1, % a1, (-"’ﬁ) (11
*o°x ox R

x

oy

B=Xl o
Herein: E is the Young’s modulus; G is the

shear modulus; X is the shear correction factor;
1, is the vertical bending moment of inertia; [y i§
free torsion moment of inertia; /, is polar
moment of the cross-section; A4 is the sectional

area.

Considering the homogeneous beam with
infinite degrees of freedom, the dynamic
equilibrium equations of the infinitesimal

R U

A .

a

i

4

of curved beam can be obtained,

P ent R 3
A lect(])]rding to its equilibrium condition.
ac )
0 0
Zem s (13)
o
M 5 M
3 J',:pI _?_‘,QX___ X (14)
Ox o R
2
M
e TP PR (15)
ox ot R
oM 8
~ = pl_ —(20 Fom b (16)
ox - o

Herein: The shearing force is O, bgnding
moment is A4, and torsional moment is M:"
Double warping moment is B;, warping angle is

p is the mass per unit volume.

’The state vector of any point in the curve
peam can be expressed as:

T
S= {QZ,M),,MX,B’.,U,(Z,(D,}/}

Equations (7~16) can be expressed using
Matrixes:

oS
—=AS 17)
Ox
Herein: i
[0 0 0 0 -pde® 0 0 0
1 i - 8 0 -—pl@ 0 0
R )
)
0 % 0 0 0 0 -plo® O
0 0 -1 0 0 0 0 Gl
1 B
B 6 0 0 0 1 = 0
A=~ XG4 R
1 1
0 — 0 0 0 0 - 0
EI, R
1 1 b
0 0 — = 1
maa °° R R
0 o o0 2 0 0 0
EI,

The general solution of Equation (17) can be
settled as:
8(x)=¢e"8§, (18)
Herein: S is a constant matrix in the solution.
The curved beam can be divided into many
infinitesimal elements, with the length of Ax,
and then one can get:

x, =kAx (k=1,2,3..) (19)
Xy =X + 1A% (20)

Then:
S(r) =T(ADS(x) (1)

Herein: T, (Ax) = e’

Based on the precise integration method of
the exponential matrix (Sun J. P., 2009):

T,-<Ax>:e“‘=[eﬂ =y @

Herein: 7 = Ax/2", N=20.
4.2 The transfer matrix of the support

For the periodically supported track structure,
the periodic support is simulated as double-layer
mass-spring-damper system, in which rail pad
and sleeper pad are both modeled as
spring-damper element, the sleeper is modeled
as concentrate mass between the rail pad and
sleeper pad. The double-layer support is
calculated as a spring-damper element, as
shown in Figure 5, of which the composite
stiffness &, can be expressed as:

ck - (ck, — M)
Y ek +(ck, - M)
Herein: k, ks, k, are respectively the stiffness of
rail pad, sleeper pad and subgrade; c,, ¢, ¢, are
respectively the damping of rail pad, sleeper pad,
and subgrade , M/ is the sleeper mass.
Z

k

(23)

Figure 5 The spring-damper element under
the curved beam

Consider an infinitesimal element on the
support of the curved beam, shown in Figure 5,
the state vectors of the two sides of the
infinitesimal element are defined as follows:

The left side:

S,_L _ {Q,_:L 3 M).L , M"l. , Blz. ) UiL ' ail' ) ¢iL ’ 7]L }T
The left side:
S'=0 M " M" B ' a0y}

Then one can get:

R L

u'=u'a' =a' 0" =p' 1" =7,
. & L R
Q.-:R = Q;L _kslwp':r(w)ui’Miy - M\ M, @24
L L
= Mizl ’BvR = Bi

Kieeper i the composite stiffness of the sleeper,
which is simplified as spring-damper element.
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Equation (24) can be expressed as:

R
S'=T1 S (25)
Herein:
100 0 —kyp (@ 0 0 0]
0100 0 000
0010 0 000
r o _|0001 0 000
P10 0 0 0 1 000
0000 0 100
0000 0 010
10 0 00 0 001

4.3 Initial state vector of the curved beam
under unit load

(1) Unit load between two sleepers
The state vectors of the double sides of the
curve beam element are defined to be §Z, §* for

the left side and for the right side, as shown in
Figure6.

€Iy

Figure 6 Mechanical analysis of the beam
element

According to the transfer matrix, one can get:
8" =T(Ax)8"* (26)

St-St=p @27
(2) Unit load on the sleeper

"Gl 9"

X KWT P
s

fesper

Figure 7 Mechanical analysis of the beam
element with support

0" +Q" +1=F,, =Xk

slecper

() (28)
§" =T (A0)S" (29)
Herein: 7,(Ax) = T/(Ax/ 2)" T, T.(Ax/2)"

Then the state vector can be settled.

With the initial state variables and the transfer
function of the curved beam settled, the
dynamic response of the periodically supported
curved track structure under the moving load
could be solved.
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5 Calculation Examples

Accolrding to the theories
calculation program is formed.,

5.1 Model validation

As a special case of the i
presented above, Yang Y. B. (202(‘)?E)llhﬁ;:: " M )
the .vibration of simple supported curvex ;!
subjected to moving load, as shown in ;'
To verify the validity of the model in thi:; a8
the example is recalculated here. The e
beam was simply supported, the given :ata
a=Sm_ b=18m, Z=30°=/6 R=4584m"
length L=24m, E=323x10°N/m? W@
G=E/[2(1+v)], k'=0.833, I, =ab’/12=’2.43 "

IY =b03/12:18.75 m4’ JB =Ix +Iy =21.18 11 "i

above, 1l

A=ab=9m’,V,=40m/s, P=9.8x299x100
,and damping ¢; =0. ;

Figure 8 Simple supported curved beam

‘ The mid-span vibration displacement of the
smp!e supported curved beam under moving
load is obtained, shown in Figure 9.

4.0x10*

2.0x10™

0.0
-2.0x10*4
-4.0x10"4
-6.0x10™" 4

-8.0x10

Midpoint vertical deflection(m)

-1.0x10°
-1.2x10°4

-1.4x10°4

-1.6x10° 4

T T T

0.0 04 08 12 18 20
Time(s)

Figure 9  Displacement response of the simple
supported beam

'.Thf.: calculated displacement response here
coincides well with the example given by Yang
Y. B. (2001), which confirms the reliability of
the presented theories.

5.2 Vibration response of curved track

Consider the curved track structure, subjected

qpeed of
:’.'iaspelocate
jposition 0
The

‘(R=3I0
] movm

' (Cross section 1

ing force &/ )=1N , with constant
y = 300 km/h, the vibration receiver ¢
d at 9.3m away from the initial
£ the moving load, shown in Figure 2.
yibration of curved track of different radii
0 m, 400 m, 500 m, 600 m, o) under
g load is obtained and compared, as

in Figure 10, and the vibration in

50 Hz is only taken into account.

The parameters are as follows: Rail mass per
unit length: m=60 kg/m, Elastic Modulus:
210 GPa, Cross Section Area: 4=7.60x10” n?,

inertia moments: =3.04 % 10° m*,

mov

Damping Ratio: &=0.01, sleeper mass per unit
length: s =50 kg/m, sleeper spacing Lee=
0,60 m, bed mass per unit length: m,=260 kg/m,
and the mass of sleeper and bed are taken into
account together. The fastener employed here is
prTVl, fastener, of which the stiffness and
damping parameters are k=78 MN/m, ¢=5.0%
10 N-s/m respectively. The stiffness and
damping parameters of the sleeper pad are
=100 MN/m, c=5.0x10* N-s/m respectively.

o -“—‘F_"——‘—_‘ W’_____lj
00+ ¥ f

-1.0x10*

—— Straight track

2.0x10"

‘Vibration displacement(m)
g
=

4.0x10*

-5.0x10" -

6.0x10°

Time(s)
(a) Time history

—— Siraight track
==~ Curved track(R=300m)|
Curved track(R=400m)|
~—— Curved track(R=500m)|
| ——— Curved track(R=600m)

Vibration displacement(m)

Frequency(Hz)
(b) Frequency spectrum

Figure 10 The vibration displacement of the
receiver

With the comparison above, we can see that:

Under the same moving load, the vibration of
curved track is bigger than that of straight track;
the vibration spectrum of curved track is more
abundant. The response of curved track
decreases with the increase of the track radius.

The peak values of the vibration spectrum
appear around 14 Hz, 28 Hz and 42 Hz. And the
time of the load traveling in the sleeper spacing
is t = 0.072s, and f = 1/t = 13.9 Hz, which
coincides with the frequency point of the peak
spectrum. The vibration spectrum is closely
related to the load speed.

6 Conclusions

A periodical solution on the out-of-plane
vibration response of curved track, modelled as
periodically supported curved Timoshenko
beam, subjected to moving load is determined
here.

The vibration of simple supported curved
beam under moving load was obtained and
compared with existing results to verify the
validity of the presented theories.

Under the same moving load, the response of
the track decreases with the increase of the track
radius. The vibration spectrum is closely related
to the load speeds, besides the response
spectrum of curved track is more abundant.
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engineering hazard evaluation.

1 Introduction to the Expert
System of Karst Hazard Evaluation
Prediction

Expert system refers to an intelligent
programming system equipped with specialized
knowledge and experience, which can simulate the
thinking process of experts with the experiences and
specialized knowledge accumulated by experts for
many years to solve complicated problems within
the field that can only be solved by experts. The
expert system of karst hazard evaluation
prediction consists of five parts, including the
inference machine for karst hazard evaluation
prediction (consulting device, interpreter), knowledge
base of karst hazard evaluation prediction, integrated
database of the system, back-stage management of
the expert system as well as the user interface of
hazard evaluation prediction. Figure 1 is the
structure of the expert system.

1.1 Knowledge acquisition of karst hazard
evaluation prediction

The knowledge acquisition of karst hazard
evaluation prediction includes the following
aspects:

Email: 11115313@bjtu.edu.cn
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A PLICATION OF EXPERT SYSTEM OF KARST HAZARD EVALUATION
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Abstract: This paper analyzed the acquisition of hazard evaluation prediction knowledge in the
expert system of karst hazard evaluation prediction as well as the conditions and computation in
obtaining rule parameters, and carried out a hazard evaluation prediction to a tunnel karst hazard case
in Yiwan Railway by applying the expert system, concluding the advantages and disadvantages of the
expert system in predicting karst hazard evaluation, which can provide reference for other similar
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Back-stage management
system

User interface (model of hazarrd
evaluarion prediction)

L

Inference machine

Knowledge
base of
the system

Figure 1~ Structure of the expert system of
karst hazard evaluation prediction

(1) Single stratum

Based on the lithology, it is divided into
strong karstified limestone of pure nature,
middle karstified dolomite, weak karstified mud
dolomite and marlstone, and petrofabric composed
of dissolubility rock and non-dissolubility rock
(based on the circumstances).

(2) Geologic structure

According to the fold morphology, it is
divided into syncline composed of single
lithostrome, anticline composed of single
lithostrome, syncline composed of petrofabric,
and anticline composed of petrofabric;
longitudinal fault, cross fault and oblique fault
are divided according to the relationship
between fault strike and fold-axis as well as
topographical divide.

(3) Topography and geomorphology

In view of the combination amount of calcipit,
trough valley and ponor and funnel on the
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