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Abstract: A periodical solution on the out-of-plane vibration response of curved track, modelled 
periodically suppo~ted curved ~imoshenko bea~, subjected to moving load is determined here. Firs; 
the general dynam1c response mduced by movmg load along curved path on an elastic semi-infini~· 
space is obtained on the basis of Duhamel Integral and Dynamic Reciprocity Theorem. Then, in the 
case ?f per.iodi~ cur~ed track structure, .the g.eneral dynamic response ~qu~tion in the frequency 
domam 1s sunphfied m a form of summatiOn w1thm the track sleeper spacmg mstead of integral. The 
transfer function of curved track is settled using transfer matrix approach. To verify the validity of the 
analytical model, the vibration of simple supported curved beam under moving load is obtained and 
compared with existing reference. Besides, the vibration of curved track of different radii is obtained 
and compared, indicating that: the response of curved track decreases with the increase of the track 
radius; the vibration spectrum is abundant and closely related to the load speed. 
Keywords: analytical solution, vibration response, curved track, moving load, transfer function 

1 Introduction 

The planar curved beams, arches and rings 
have been widely used in machines and 
structures, such as bridges, aircraft structures 
and turbo machinery blades, because of their 
potential applications. The curved track is 
simplified as periodically supported uniform 
curved beam here to analysis the vibration of 
curved track, with the super elevation neglected. 

Both the analytical method and the Finite 
Element Method have been employed in the 
pioneering study on the out-of-plane vibration 
of curved beam (Love A. E. H., 1927; Bickford 
W. B., 1975; Kawakami M., 1995; Yang Y. B., 
2001); however, few works have been 
conducted for the vibration response of curved 
track subjected to moving load. 

A periodical solution on the out-of-plane 
response of curved track, modeled as periodically 
supported curved Timoshenko beam, subjected 
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to moving load is considered here. Firstly, the 
general dynamic response induced by moving 
load along curved path on an elastic semi­
infinite space is obtained on the basis of 
Duhamel Integral and Dynamic Reciprocity 
Theorem. In the case of periodic track structure, 
the general dynamic response equation in the 
frequency domain is simplified in a form of 
summation within the track sleeper period 
instead of integral. The transfer function of 
curved beam is solved using the transfer matrix 
approach. 

2 Moving Load on the 
Semi-Infinite Space 

Consider the elastic semi-infinite space, 
shown in Figure 1, subjocted to vertical load 
g(t) moving along a curved path with the 

radius of R, the initial position of 80, the angular 
speed of c . The vertical time-domain dynamic 

displacement of receiver.; can be obtained on 

the basis of Duhamel integral (Jia Y. X., 2009): 

11(,;,1) = C; g('r)hz(e;,B(r),t- r)dr (I) 

Herein: u(,;, t) IS vertical vibration 

displacement of receiver c;, and right hand side 
ofEquation (I) represents a convolution integral of 
the time history of the moving load g(t) and the 

vertical transfer function hz(e;,B(r),t- r) between 

the time-dependent load position B(,) and receiver 

(.Besides, t- T < O,h,(e;,B(r),t- r) = 0. 

Figure 1 Semi-infinite space subjected to 
moving load 

0 

With the Dynamic Reciprocal Theorem and 
the Forward Fourier Transform of the time t 
to the circular frequency w, the response 
displacement in the frequency domain can be 
expressed as: 

ti(q, w) = r g(r )/;z(IJo + cr , q , w)exp(-im)dr (2) 

Herein: 

h,(B, +cr,¢,w) = [ h, (B0 +cr,¢,1-r)exp(- iw(t- r))dl 

is the transfer function in the frequency domain. 
And """ is defined to be the expression in the 
frequency domain, similarly hereinafter. 

3 Moving Load on Track 
Structure 

Consider the periodically supported curved 
track, half of which is only taken into account, 
shown in Figure 2, subdivided into an infinite 
nu~ber of track cells with the length of Bccll. 

whtch is the sleeper spacing. The track structure 
is traversed by a vertical load g(t), with the 

angle speed of c. C: is the receiver on the rail. 
According to the relativity of motion, the load 

moving forward passing over one cell 
equivalents to that the load does not move' 
while the observation point moves in th~ 
opposite direction passing over a cell. Then the 
d7namic response in frequency domain can be 
Simplified in a form of summation within the 

track sleeper spacing instead of integral, by 
transferring the moving of the load on the rail to 
the moving of pick-up point moving within a 
specific sleeper spacing, which has been proved 
by the Floquet Transformation (Jia Y. X., 2009). 

Figure 2 Curved track subjected to moving 
load 

At t, B is the load position in the global 
coordinate system: B=B0+ct, herein, 80 is the 
initial position of the load. 

z 

Figure 3 Local coordinate system 

The local coordinate system (j is set up in 
track basic cell, shown in Figure 3. The 
relationship between the global coordinate 
system and the local coordinate system can be 
expressed as follows: 

B=B-nB ,e =B -nB e =B -nB 
O cdl ~ ~ ~cdl' o o O ccl! 

Herein: "- " is defined to be the expression in 
the local coordinate system, similarly 
hereinafter. n9, n~, n0 are respectively the 
numbers of basic track cells Bcell between the 
origin and the load position B, between the 
origin and the pick-up point c;, between the 
origin and the initial load position 80 in the 
global coordinates. Then: 

t =(B-80 ) 1 c =f+(n0 - n0 )B,,11 I c (3) 

f = (B -B, ) I c (4) 

According to Equation (4), when the load 
moving in one sleeper spacing on the track, the 
vibration response at receiver ( can be expressed 
as: 
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(5) 
In fact, ne changes once when a sleeper 

spacing is passed over, and ne changes time and 
time again when the load keeps moving on the 
rail. However, the curve is not infinite long, 
the angle of the curve is n~> ne would change 

fr e. om no to no + e . 
cell 

With the help of Equation ( 4), the expression 
of the time can be transformation for the 
expression of space, and then one can get: 
u(q,w) 

= "o:~·" ~ lo+B.u g[ (B-Bo)+ ~9 -no)Booll ]h,(B+ 

[ (
(B-Bo)+(n -n )B )] -n9B,o~pq,w)exp -iw c 8 0 " 11 dB 

(6) 
Equation (6) is the dynamic response of the 

track structure under vertical moving load in the 
frequency domain. 

4 Transfer Function of Curved 
Track 

As referred in reference (Jia Y. X., 2009), the 
transfer function h (B ij + (n - n )B w) can 

z ' ~ 0( 0 cell ' 

be solved as the product of the state variables 
S(B, m) of the load excitation point and the 

transfer function of the periodically supported 
beam, which can be divided into several basic 
track cells Bcell Besides, the transfer function of 
basic track cell Bcell can be solved as the product 
of the transfer function of the curved beam and 
the support under the curved beam, using 
transfer matrix approach (Sun J. P., 2009) as 
follows. 

4.1 The transfer matrix of the curved beam 

The curved track is simulated as periodically 
supported planar curved Timoshenko beam; the 
support under rail is modeled as mass-spring­
damper element. For an infinitesimal element of 
curved beam, shown in Figure 4, with the length 
measured along the neutral axis of the curved 
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beam denoted by s, the x, y and z axes are tak 
in tangential directions, radial and tran en 
d. . . sverae 

1rectwns respectively. The origin of th 
coordinates moves along the neutral axis f the 
beam. u is tr~nsverse deflection, the slope~ du: 
to pure bendmg an d the angle of torsion rp th 
radius is R , B is the central angle correspond' e 
h I . s to t e curve e ement. The cross-sectton prop rt' 

d 'I . e~ an matena properties are constant along the 
beam. The sheanng force Qz, bending mom 
M dh . ent 

y an t e torsiOn moment M, are all shown · 
the Figure 4. Ill 

y 

Figure 4 The coordinates of the curved beam 
element 

For the analysis of an infinitesimal element 
ds in the curved beam, the shear deformation is 
taken into account, one can get: 

au rpx 
a=v+ ax -R 

Herein: vis the transverse shear angle. 
Twisting angle Y : 

Brp 1 .au 
r=-+-­

ax R ax 

{7) 

(8) 

The force-displacement relationship of the 
curve beam can be obtained as follows: 

Qx =KGAv (9) 

M = -El (aa _!!__) = EJ (!!__-aa) (10) 
Y Y oxR Y Rox 

clr (arp a) M =-EJ -+Gl -+-
x s a2x d ox R {II) 

B. = EI By 
' s OX 

(12) 

Herein: E is the Young's modulus; G is the 
shear modulus; K is the shear correction factor; 
~. is the vertical bending moment of inertia; 1d is 
free torsion moment of inertia; 1, is polar 
moment of the cross-section; A is the sectional 
area. 

Considering the homogeneous beam with 
infinite degrees of freedom, the dynamic 
equilibrium equations of the infinitesimal 

nt of curved beam can be 
eteme 'l'b . d' . 

ding to its eqm 1 num con IliOn. accor 
8Q a2

u 
- ' =pA-2 
ax at 

aMY 8
2
a M x 

-=pl -+Q --
ax y at 2 

X R 

aM, a
2

rp My 
- -=pl,-2 + -
ax at R 

obtained, 

(13) 

(14) 

(15) 

aM a
2

rp My 
_x =pf, -2 + - (16) 

ax at R 
Herein: The shearing force is Qz, bending 

moment is Af;, and tors~onal mo~ent is Mx, 
Double warping moment 1s B;, warpmg angle IS 
y, p is the mass per unift volume.. . h 

The state vector o any pomt m t e curve 
beam can be expressed as: 

T 
S = {Q, ,My,Mx,Bi ,u,a,rp,y} 

Equations (7- 16) can be expressed using 
Matrixes: 

Herein: 
0 0 0 

0 
I 
R 

I 
0 0 "R 

0 -I 

I 
0 0 A=--

KGA 

0 
I 

0 
El,. 

I 
0 0 

RKGA 

0 0 0 

as 
- =AS 
ax 

0 -pAm' 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

I 
0 -

EI, 

0 

- pi, m' 

0 

0 

0 

I 

R 

0 

(17) 

0 0 

0 0 

- pl,m2 0 

0 

X 

R 
I 
R 

X 

-R' 

GI, 

0 

0 

0 0 

The general solution of Equation (17) can be 
settled as: 

(18) 

Herein: S0 is a constant matrix in the solution. 
The curved beam can be divided into many 
infinitesimal elements, with the length of l'>x. , 
and then one can get: 

xk = k& (k = 1, 2, 3 ... ) (19) 

xk+l = x k + & (20) 

Then: 

Herein: I; ( & ) = e A6x • 

Based on the precise integration method of 
the exponential matrix (Sun J. P., 2009): 

T,(&)~,~ "[,;' r ~c,"( (22) 

Herein: r =LUI 2N, N=20 . 

4.2 The transfer matrix of the support 

For the periodically supported track structure, 
the periodic support is simulated as double-layer 
mass-spring-damper system, in which rail pad 
and sleeper pad are both modeled as 
spring-damper element, the sleeper is modeled 
as concentrate mass between the rail pad and 
sleeper pad. The double-layer support is 
calculated as a spring-damper element, as 
shown in Figure 5, of which the composite 
stiffness kv can be expressed as: 

2 
ck · (ck b - M w ) 

k = r s s (23) 
v 2) ck, + (ck,b- M ,w 

Herein: lcr, k, kb are respectively the stiffness of 
rail pad, sleeper pad and subgrade; c,, c, cb, are 
respectively the damping of rail pad, sleeper pad, 
and subgrade , M, is the sleeper mass. 

Figure 5 The spring-damper element under 
the curved beam 

Consider an infinitesimal element on the 
support of the curved beam, shown in Figure 5, 
the state vectors of the two sides of the 
infinitesimal element are defined as follows: 

The left side: 
L L L I. L L I. L L }T 

S, = {Q,, , M,,. , M,, ,B, ,u, ,a, , rp, .r, 
The left side: 

R R R R R R R R R }T 
S, = {Q. , M ,,. ,M . ,B, ,u, ,a, , tp, , y, 

Then one can get: 

u1R =u/ ,arR =a/, rp/ = rp/ , r~R =r/ 
R L . M R- M L M R Q;: = Qiz -/csl~v:per (w)ui, iJ' - sy ' ;; (24) 

=M L B R= B L 
i::;' I I 

/,c is the composite stiffness of the sleeper, sleeper 

which is simplified as spring-damper element. 
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Equation (24) can be expressed as: 

s' = T s' 
I 5Up p I 

(25) 

Herein: 
1 0 0 0 -k,I"P"(W) 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 

T = 
0 0 0 0 0 0 0 

supp 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 

4.3 Initial state vector of the curved beam 
under unit load 

(1) Unit load between two sleepers 
The state vectors of the double sides of the 

curve beam element are defined to be SL, SR for 

t~e left side and for the right side, as shown in 
Ftgure6. 

t P, =IN 

Figure 6 Mechanical analysis of the beam 
element 

According to the transfer matrix, one can get: 

s" = T,(!3.x)S' (26) 

SR -SL = p 

(2) Unit load on the sleeper 

I P. =IN 

S ' ~ !I I I r ~ s• 

X rS"T1 K,.,_f p 
~ Jl«pu 

Figure 7 Mechanical analysis of the beam 
element with support 

(27) 

Q
L R - , + Q. + 1 = P = X •k (w) (28) 

v sleeper sleeper 

S' = T,(illc)S1
• (29) 

Herein: T,(illc) = T(illc I 2) ' T T(!!.x I 2)• 

T~en the state ve~tor can bew~e~led . 
WI.th the initial state variables· and the transfer 

functto? of the curved beam settled, the 
dynamic response of the periodically supported 
curved track structure under the moving load 
could be solved. 
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5 Calculation Examples 

According to the theori II ' esabov ca cu atwn program is formed. e, 

5.1 Model validation 

As a special case of the anal f 
prese~ted ~bove, Yang Y. B. (2001) ha~cal 
the .v1bratwn of simple supported curv 
subjected to moving load as show . e~ beaJn 
To verify the validity of the mod 1~ m Figure B. 
th · e Ill this p 

e example IS recalculated here Th aper, 
beam was simply supported th · . e curved 
a=S m b=I 8 m - -3oo , e giVen data ia· 

, . , a- =nl6, R=-t5.84 ' 
length L=24m, £=32.3 x l09N/m2 v=Qrn, 
G=E/[2(l+v)], k' = 0.833 I =ab3/l2 , 2 .2, 

, x == .43 rn4 
Iy=baJ/12=18.75 m4, Jo=Ix+Iy==2l.l8 rn4. 

A= ab =9m2 V - 40 ml p 9 , ' P- s, = .8x29.9xl!YN 

,and damping sd = 0 . 

Figure 8 Simple supported curved beam 

. The mid-span vibration displacement of the 
Slmp~e sup?orted curved beam under movin 
load ts obtamed, shown in Figure 9. g 

4.0x10"'y-----,------.-----,--

2.0x10-4 

0.0 
g 
.§ · 2.0x10"' 

B 
~ .-4 .0x10-e 

l -6.0x10 ... 

~ ..S.Ox10 ... 

} -1 .0x10..:~ 
" -1 .2x10..:~ 

-1 .4x10-3 

0.0 0.4 0.8 1.2 1.8 2.0 

limc(s) 

Figure 9 Displacement response of the simple 
supported beam 

!h~ calculated displacement response here 
comcldes well with the example given by Yang 
Y. B. (2001), which confirms the reliability of 
the presented theories. 

5·2 Vibration response of curved track 

Consider the curved track structure, subjected 

010
ving force g(t) =IN , with constant 

10 d of v "" 300 km/h, the vibration receiver <! 
~pe~ocated at 9.3m away from the initial 
15 'tion of the moving load, shown in Figure 2. 
~~ vibration of curved track of different radii 
.R"'300 m, 400 m, 500 m, 600 m, oo) under 
( oving load is obtained and compared, as 
~own in Figure 10, and the vibration in 
~50 Hz is only taken into account. 

The parameters are as follows: Rail mass per 
unit length: m,=60 ~g/m, Elastic Modulus: 
£"'210 GPa, Cross Section Area: A=7.60x10·

3 
m

2
, 

Cross section inertia moments : I=3.04 x 1o·
5 

m
4
, 

va
01

ping Ratio: <!,=0.01, sleeper mass per unit 
length: m, "'50 kg/m, sleeper spacing Lcell= 
0.60 m, bed mass per unit length: mb=260 kg/m, 
and the mass of sleeper and bed are taken into 
account together. The fastener employed here is 
oTVh fastener, of which the stiffness and 
damping parameters are ler=78 MN/m, c,=S.O x 
104 N·s/m respectively. The stiffness and 
damping parameters of the sleeper pad are 
k,b= 100 MN/m, Csb=S. Ox 1 04 N · s/m respectively. 

-7 .o..to" +-----,-~-.--~-.-~-.,..---___.j 
0.5 1.5 2.0 2.5 

0.0 
Time(s) 

(a) Time history 

(b) Frequency spectrum 

Figure 10 The vibration displacement of the 
receiver 

With the comparison above, we can see that: 
Under the same moving load, the vibration of 

curved track is bigger than that of straight track; 
the vibration spectrum of curved track is more 
abundant. The response of curved track 
decreases with the increase of the track radius. 

The peak values of the vibration spectrum 
appear around 14Hz, 28Hz and 42Hz. And the 
time of the load traveling in the sleeper spacing 
is t = 0.072 s, and f = !It = 13.9 Hz, which 
·coincides with the frequency point of the peak 
spectrum. The vibration spectrum is closely 
related to the load speed. 

6 Conclusions 

A periodical solution on the out-of-plane 
vibration response of curved track, modelled as 
periodically supported curved Timoshenko 
beam, subjected to moving load is determined 

here. 
The vibration of simple supported curved 

beam under moving load was obtained and 
compared with existing results to verify the 
validity of the presented theories. 

Under the same moving load, the response of 
the track decreases with the increase of the track 
radius. The vibration spectrum is closely related 
to the load speeds, besides the response 
spectrum of curved track is more abundant. 
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APPLICATION OF EXPERT SYSTEM OF KARST HAZARD EVALUATION 
pREDICTION ON MOUNTAIN TUNNEL CONSTRUCTION 
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Abstract: This paper analyzed the acquisition of hazard evaluation prediction knowledge in the 
expert system of karst hazard ev~luation prediction as ~ell as the _conditions and computation in 
obtaining rule parameters, and earned out a hazard evaluation pred1ctwn to a tunnel karst hazard case 
in Yiwan Railway by applying the expert system, concluding the advantages and disadvantages of the 
expert system in predicting karst hazard evaluation, which can provide reference for other similar 
engineering hazard evaluation. 
Keywords: tunnel, karst hazard, hazard evaluation, expert system 

1 Introduction to the Expert 
System of Karst Hazard Evaluation 
Prediction 

Expert system refers to an intelligent 
programming system equipped with specialized 
knowledge and experience, which can simulate the 
thinking process of experts with the experiences and 
specialized knowledge accumulated by experts for 
many years to solve complicated problems within 
the field that can only be solved by experts. The 
expert system of karst hazard evaluation 
prediction consists of five parts, including the 
inference machine for karst hazard evaluation 
prediction (consulting device, interpreter), knowledge 
base of karst hazard evaluation prediction, integrated 
database of the system, back -stage management of 
the expe1t system as well as the user interface of 
hazard evaluation prediction. Figure 1 is the 
structure of the expert system. 

1.1 Knowledge acquisition of karst hazard 
evaluation prediction 

The knowledge acquisition of karst hazard 
evaluation prediction includes the following 
aspects: 

Email: 11115313@bjtu.edu.cn 

Figure I Structure of the expert system of 
karst hazard evaluation prediction 

(1) Single stratum 
Based on the lithology, it is divided into 

strong karstified limestone of pure nature, 
middle karstified dolomite, weak karstified mud 
dolomite and marlstone, and petrofabric composed 
of dissolubility rock and non-dissolubility rock 
(based on the circumstances). 

(2) Geologic structure 
According to the fold morphology, it is 

divided into syncline composed of single 
lithostrome, anticline composed of single 
lithostrome, syncline composed of petrofabric, 
and anticline composed of petrofabric; 
longitudinal fault, cross fault and oblique fault 
are divided according to the relationship 
between fault strike and fold-axis as well as 
topographical divide. 

(3) Topography and geomorphology 
In view of the combination amount of calcipit, 

trough valley and ponor and funnel on the 
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