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Summary

Sick Building Syndrome is present in 30% of all office buildings and can cause serious health damage over
time. This is an era where sustainability and well-being are becoming dominant aspects of life. As a result,
it is becoming increasingly important to businesses to invest in their employees’ well-being and health. The
VTTI group cares for the well-being of their employees, and is looking for a tool to optimize the utilization of
their building for perceived thermal comfort and indoor air quality.

This report documents the development of Claire, an indoor air quality dashboard that helps to identify
local air quality problems. Using Claire, employees can be rearranged throughout the space, learn about
the characteristics of their office, and for example switch to another meeting room. Claire translates mea-
surements into insights. Claire learns about the behavior of the office, and gives recommendations once she
notices that the indoor air quality can be improved.

Claire is backed by an indoor air quality sensor mesh network, which has been developed as part of this
project. The sensors continuously measure temperature, humidity and carbon dioxide concentrations. The
sensors connect to a cloud infrastructure through a local internet gateway. In the cloud the data gets pro-
cessed. All measurements are displayed real-time in the dashboard.

Claire is different from existing products in several ways. First, the sensors developed measure both dry-
bulb and black globe temperature, which gives it a temperature reading that describes human thermal com-
fort more accurately. This is not done in competing products. Furthermore, the sensors fill the gap for small
and medium-sized enterprises (SMEs): the sensor network is able to get fine-grained results due to its high
sensor density, whilst still being very easy to setup with no adjustments to the building being required. Finally,
the developed data analysis methods translate the measurements from the sensor network to concrete sug-
gestions, sent through a push notification, which enables workers to get involved with improving the indoor
air quality in their office space.
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1
Introduction

People spend 87% of their time indoors [1]. The buildings they spend their time in change continuously,
which unconsciously affects their health. Sick Building Syndrome (SBS), a medical condition identified by
a set of symptoms generally observed among office workers, is estimated to be present in 30% of all office
buildings and can cause serious health damage over time [2]. This is an era where sustainability and well-
being are becoming dominant aspects of life. Currently, 75% of job seekers mind that their potential employer
is engaged in their well-being, and as a result, 57% continues to stay longer with a company if they do [3]. In
response, 73% of companies believe it is their responsibility to guarantee that employee health and wellness
will grow within the next 3 to 5 years [4]. Good indoor air quality also increases sustainability and corporate
social responsibility (CSR) scores for, for example, the Global Reporting Initiative index.

1.1. VTTI
The VTTI group specializes in tank storage, and currently has over 9.2M cubic meters of storage spread over
facilities in 14 countries. VTTI cares for the well-being of its employees and is aware of the impact of air
quality. VTTI has over 5000 employees, 100 of which work from their headquarters in Rotterdam.

1.2. Problem Definition
VTTI is situated in a flexible office space. This means that the building is delivered as a flat floor, and that
office spaces and meeting rooms can be set up flexibly. However, the ventilation systems are usually not
adjusted when such changes are made to the floor plan. In Appendix A.2 it is shown that this can be particu-
larly problematic in modern multi-zone HVAC systems. In particular employees that work in the south-west
wing of the building report heat complaints, believed to be caused by solar radiation throughout the day.
Conversely, employees that work on other sides of the building report cold issues, presumably caused by the
ventilation trying to compensate for the heat in an undirected fashion.

Even though air quality complaints are common in offices, they are usually hard to quantify, and when
indoor air quality is measured and quantified, the direct impact on employees remains vague. Considering
the possibility that there may very well be a structural indoor air quality problem, VTTI would like to gain
insight in the distribution and flow of heat, humidity and CO2 throughout the building, so that they can
optimize utilization of their building.

To obtain this insight and provide an opportunity to formalize new experiments on optimization strate-
gies, a continuous real-time measuring system will be proposed, using a network of indoor air quality sensors
that report to an online available dashboard. This dashboard will display indoor air quality throughout the
building in an intuitive manner (see Section 2.2), and is also intended to give suggestions concerning proper
ventilation design of the building.

1.3. Starting point: preliminary tests
In December 2018 initial air measurements were conducted at VTTI using Netatmo Healthy Home Coach
CO2 sensors. During this period surveys were conducted as well. Additionally, the Building Symptom In-
dex was computed, a pseudo standardized scoring based on reported Sick Building symptoms among em-
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2 1. Introduction

ployees [5]. While the Building Symptom Index showed no worrisome results, there seemed to be room for
improvement regarding improving employee personal air quality and comfort. Although a rapid increase to
levels above common CO2 guidelines was found in occupied meeting rooms, the levels found throughout
the rest of the building did not explain the symptoms reported in the surveys. Therefore, Particulate Matter
(PM) concentrations were measured between January and February 2019, using Alphasense OPC-R1 sensors.
These measurements suggested that PM levels in the VTTI office were floating around the guidelines set by
the World Health Organization (WHO). The PM measurements, however, had a great variance, and within
some intervals the sensors produced completely unreliable data altogether. The accuracy of medium to low
budget sensors seems to be insufficient for classifying PM concentrations or detecting PM incidents in the
office space. Key learning from this test is that PM sensors could potentially be used for detecting anomalies
in variance of indoor PM concentrations. For example, a major decrease in particulate matter concentra-
tions was noticed after the filters of the ventilation system were replaced. This could mean that continuous
measurements of PM could predict ventilation system maintenance needs.

This leads to the idea of collecting data at a larger scale, with greater sensor density and being able to read
(and act on) these results in real time.



2
Project Plan

To address VTTI’s Indoor Air Quality questions, properties of indoor air quality and existing sensor technolo-
gies to measure these properties were researched first. The properties and guidelines for indoor air quality
are outlined in Appendix A. In order to measure these properties a network of sensors will be deployed at the
VTTI office. These sensors will connect to a cloud infrastructure, where the data is collected and processed
into periodic digests as well as real-time status reports available through an online dashboard.

The sensor devices will be equipped with temperature, humidity, and CO2 sensors, because (a) com-
plaints are mostly centered around thermal discomfort (Section 1.2), (b) high CO2 levels are a good indicator
of insufficient ventilation (Appendix A.2), (c) CO2 levels, in particular in small rooms, were found to rise to
levels that are known to affect cognitive performance (Section 1.3 and Appendix A.2), and (d) low-cost tem-
perature, humidity and CO2 sensors have been proven to be sufficiently accurate (Appendix C),

As (a) pollutants such as Volatile Organic Compounds (VOCs) and Particulate Matter (PM) have proven to
be difficult to measure (Appendix C), (b) their contribution to perceived air quality is less known (Appendix
A.3 and A.4), and (c) complaints from VTTI employees concentrated around thermal discomfort, the decision
was made in consultation with VTTI to not take these pollutants into account for this project. Sensors for
these properties will however be considered a nice-to-have inclusion.

The dashboard will display indoor air quality values reported from the sensor network on a map, possibly
a heat map, although projecting simple values on the map will suffice. This map should show the distribu-
tion of air quality throughout the building and display indoor air quality hot-spots, which will allow VTTI to
intervene, for example through the means of re-positioning desks or employees, turning on ventilation in cer-
tain rooms or opening a window. The dashboard should allow VTTI employees to obtain insight into historic
trends in indoor air quality, and as such provide a means of indoor air quality experimentation. This historic
trend will allow VTTI to find a systematic basis for incidental complaints, i.e. address whether or not there is
a general indoor air quality problem or whether these problems are very specific.

VTTI has indicated that the tool must be intuitive and thoughtful. Rather than displaying the actual sen-
sor values, these values should be compared to existing norms and guidelines or indoor air quality indexes.
One possibility of a more interactive system is the ability to predict significant changes in indoor air quality
and proactively sending employees actionable notifications to ventilate the room or suggest an alternative
meeting room with fresher air.

2.1. Project requirements
At the start of the project, requirements were defined to establish clear goals for the software itself. These
requirements describe the functionality the system should offer. The requirements also allow for the progress
of the project to be verified. The requirements set for this project are as follows:

1. Develop a wireless sensor hardware/software combination that reports CO2, temperature and relative
air humidity (RH) levels through a local gateway interface to a central, cloud, infrastructure. A wireless
setup eases the installation of the sensors.

2. Setup a back-end infrastructure that will collect and store measurements. This must comprise the fol-
lowing components:

3



4 2. Project Plan

• Setup a message broker to which the gateway can deliver its messages over internet;

• Setup a time series optimized database that will store and provide the measurements;

• Develop a time series data processing layer;

• Develop a data processing layer that will normalize sensor values, compute possible air quality
indexes and classify values within general guidelines;

• Develop an eventing layer that will notify employees when values go beyond certain thresholds.

3. Develop the dashboard front-end application. This must comprise the following components:

• Show real-time sensor values and derived attributes;

• Show historic sensor value trends;

• Ability to select a particular sensor and show its values real-time;

• User authentication;

• Ability to submit complaints about thermal comfort or perceived air quality / take part in the
survey.

Next, the dashboard should comprise:

• Ability to select a certain wing of the building;

• Basic alerts based on thresholds set by guidelines;

• Better thermal comfort prediction by measuring the air velocity and the mean radiant tempera-
ture.

Finally, the dashboard could comprise:

• Ability to select a certain facility or floor of the building;

• Advanced alerts and recommendation based on predictive analysis;

• Ability to send notifications as a push notification to a smartphone;

• Inclusion of actual Particulate Matter (PM) and total volatile organic compound (TVOC) concen-
trations.

2.2. Representative qualities
In this section the representative quality goals for this project will be introduced. These quantities will be
referred to throughout the design section (Section 6).

2.2.1. User Friendliness
The system should be easy to use. This is twofold. First, the dashboard should be efficient, and any disruption
should be minimized. A user of the system should be able to easily navigate through the pages and identify
potential problems. Second, the system should be intuitive to use. No prior knowledge about indoor air
quality or building ventilation is to be expected from the users. In order to accommodate for this, the system
should translate the actual measurements to more indicative indicators (i.e. color scales, index numbers, or
the - prediction of - percentage people dissatisfied). No training besides a brief introductory presentation
should be required. Consecutively, the system should be performant, in order to minimize disruption caused
by delays of the system.

2.2.2. Correctness
The proposed system should provide correct and reliable results. This means that the measurements should
be accurate and timely, alerts should be legitimate, and recommendations to improve the indoor air quality
should be justified. The accuracy of the system is important for the tool to be as little obtrusive as possible,
and only disrupt the user when a significant improvement w.r.t. the indoor air quality can be achieved. The
correctness is one of the primary qualities that will be taken into consideration for the selection of sensor
hardware and statistical methods used for data analysis.
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Figure 2.1: Mock-up of envisioned dashboard, demonstrating the suggestions in order to improve local air quality

2.2.3. Evolvability, reusability and interoperability
With relative ease, it should be possible to deploy additional sensors at the current office or extend the system
to other building facilities of VTTI. Furthermore, it should be possible to introduce sensors to the network
with different hardware or firmware, and as a result return a different type of data.

2.2.4. Privacy and ethical implications
Because indoor air quality perception can be affected by health issues such as sleep deprivation, personal
user data on air quality perception is considered to be highly sensitive. The questions posed to employees
in surveys must be composed with privacy in mind. For example: no questions will be asked about specific
symptoms experienced that are believed to be caused by poor indoor air quality, rather questions will be
asked whether the indoor air quality is considered to be comfortable. Furthermore, all survey data will be
fully anonymized, and only data derived from the surveys in an aggregated fashion will be displayed.

2.2.5. Security
Continuously measuring indoor air quality may expose some actual ventilation issues at VTTI. Obviously, it
can be damaging if this information is leaked to the public, in particular without context. The system should
therefore be developed with security in mind. Only authorized employees should have access to the dash-
board. Defensive programming, a development methodology where security is considered in every step of the
development process, will be used to enforce that also the back-end systems are built with security in mind.
Furthermore, introducing embedded devices to a company network poses security challenges. Therefore the
sensor network should not be reliant on existing company network infrastructure.

2.3. Development Methodology
The project comprises five individual subprojects: indoor air quality research, sensor comparison and de-
velopment, embedded software development, back-end software development, data analysis and front-end
development. Some of these projects are interdependent: without the knowledge about indoor air quality
a deliberate decision on sensor hardware cannot be made, and without the sensors being assembled and
deployed there will be no data to analyze or display in the dashboard.

The project was divided into sprints of two weeks. Roughly speaking, every sprint worked towards the
completion of one of the five subprojects (see also the planning in Section 2.4). At the beginning of each
sprint, the component would be broken into several tasks which would be distributed evenly over the group



6 2. Project Plan

members during the sprint planning. The progress of each sprint was tracked in a KANBAN board.
During this project pair programming was used extensively. This helped familiarizing team members with

the used technologies and developed components. For the components developed individually, a pull-based
development methodology was used. Here the team member first makes a formal request to merge the code
branch into the main code base, which is then reviewed by other team members. After several rounds of
feedback and changes the pull request is eventually accepted and merged into the code base.

2.4. Planning
December 2018 Initial CO2 measurements, research IAQ properties
Januari - Februari 2019 Initial PM measurements, continue research IAQ properties
April 2019 Research sensor hardware and communication protocols
March 7th Project Plan meeting with VTTI

Week 1 (21 - 28 April) Research IAQ properties, establish the project plan and draft litera-
ture study

April 26th Project Progress meeting at VTTI
Week 2 (29 April - 5 May) Approval of project plan, finalize decision on hardware selection

based on project plan and literature study, finish research report, sen-
sor delivery

Week 3 (6 - 12 May) Sensor assembly and deployment at VTTI, development of basic data
collection system in order to start data collection, draft design docu-
ment

Week 4 (13 - 19 May) Development of data analysis layer and dashboard frontend
May 16th Sensor deployment and project update meeting at VTTI
Week 5 (20 - 26 May) Development of data analysis layer and dashboard frontend
May 20th Sensor network updates at VTTI
May 23th Sensor network updates at VTTI
Week 6 (27 May - 2 June) Development of data analysis layer, initial code release for VTTI, ini-

tial SIG code submission
May 29th Project Progress meeting at VTTI
Week 7 (3 - 9 June) First user feedback, development of data analysis layer, development

of virtual assistant, labeling of measurement data at VTTI
June 5th Project Progress meeting at VTTI
Week 8 (10 - 16 June) More development, processing SIG feedback, data analysis, labeling

of measurement data at VTTI
Week 9 (17 - 23 June) More development, second SIG code submission, data analysis, final

report writing
Week 10 (24 - 30 June) Working on final report
June 25th Submit final report
Week 11 (1 - 7 July) Prepare final presentation at TU Delft, present findings at VTTI
2 - 5 July Presentations



3
Research question

Ultimately, VTTI is looking for answers regarding their indoor air quality and thermal comfort questions.
The research question is as follows: is there an indoor air quality problem at the VTTI headquarters, and
if structural discomfort is found, is it possible to identify what is causing this discomfort? To answer the
research question, the following sub-questions are considered:

• What are means of measuring indoor air quality and thermal comfort?

• What are known effects of working in an environment with poor indoor air quality?

• What are guidelines for indoor air quality metrics?

• Are these guidelines met at the VTTI office?

• If so, is discomfort reported through surveys even though the models would not indicate that discomfort
should occur?

• Does the data provide any insight that can lead to concrete recommendations which will improve the
well-being among employees?

7





4
Research method

After the sensors were assembled and the software was developed, the sensor network was deployed at the
VTTI office. Measurements were conducted for an entire month. During this period survey data was also
collected. Employees were asked to fill in the survey 3 times a day. In this survey, employees were asked to
score the thermal comfort and indoor air quality on a Likert scale. The location of the employee was registered
as well in the survey. During the measurement period, the data was also labeled. Although air velocity is not
measured with the deployed sensors, air velocity measurements were conducted at the VTTI office during the
labeling of the data. Hourly weather data published by the KNMI was also correlated with the measurements.
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5
Technology Research

First, it is important to establish which air quality properties exist, how these may affect employee health and
well-being and whether these are subject to industrial guidelines. In Appendix A various indoor air quality
properties and their effects are outlined. Secondly, it is important to research which of these properties can
be adequately measured with accessible sensor technologies. In Appendix C several air quality sensors using
different sensing technologies are compared. The insights obtained from these surveys were used for the
selection of hardware in the sensors for this project. In Section 5.1 the requirements for the sensor hardware
are further developed. Section 5.1.1 compares the various means of communication between sensor devices.
Consecutively, Section 5.2.1 describes how the measurements from the sensors can be sent over the network
and propagated as an event stream through the systems. Finally, 5.2.2 looks into various means of storing the
time series data from the measurements.

5.1. Sensors
Indoor air quality sensors are becoming cheaper and more accurate, making it a viable solution to actively
and accurately monitor indoor air quality and control ventilation systems [6, 7]. There is a variety of indoor
air quality sensors commercially available, such as the Air Mentor, Netatmo, and Uhoo (shown in Figure 5.1).
However, these sensors are (a) limited in their connectivity (e.g. use only Wi-Fi or Bluetooth), (b) make use
of a closed system (e.g. the sensor data is only available through the manufacturer’s app or API), (c) often do
not measure the combination of properties defined in the project requirements (Section 2.1), and (d) do not
have the flexibility to expand the system with additional sensors. Therefore, a system needs to be developed
comprising a choice of sensors that meet the requirements established in this project.

5.1.1. Communication
Commercially available sensors can be paired to a mobile device through Bluetooth and then added to a local
Wi-Fi network, which they utilize to connect to a cloud platform. However, this approach is not very suitable
for VTTI. First of all, the sensors cannot use VTTI’s existing wireless network due to security concerns. Sec-
ondly, due to the relatively low range of Wi-Fi, having to set up a dedicated wireless network for the sensors
with sufficient coverage would require the installation of several access points throughout the building. Due
to the low range and client-server architecture of Bluetooth only a small number of sensors can be connected
to a single device, which is insufficient for the purpose of this project. Both Wi-Fi and Bluetooth also require
significant energy, which makes it infeasible to power the sensors using batteries. While battery-powered sen-
sors are not a requirement set by VTTI and there are plenty of wall sockets available in their office, having the
option for sensors to run on batteries for a prolonged amount of time will allow for more flexible deployment
of sensors throughout the office.

In addition to Wi-Fi and Bluetooth, there is a wide variety of other network technologies available for wire-
less sensor networks. Usually, these networks communicate to a nearby gateway over radio frequency, and
the gateway is then responsible for relaying those messages to the internet. These technologies originate from
various industries. For example Z-Wave and ZigBee are often used in home automation as well as industrial
sensor networks. In particular the ZigBee network is used a lot in similar Air Quality sensor networks [8, 9, 10,
11, 12]. With the rise of Internet of Things, new network standards have emerged rapidly [13]. The new Blue-

11



12 5. Technology Research

Figure 5.1: The commercially available Netatmo Healthy HomeCoach and Air Mentor indoor air quality monitors

tooth LE standard uses significantly less power. The new Bluetooth standard as the option to operate using
a mesh topology, similar to Z-Wave and ZigBee. This remedies its short range and limited number of clients
problems, since sensors in a mesh topology connect to each other in a non-hierarchical manner, enabling all
sensors in the network to act as a repeater. For example the commercially available bGrid sensor network uses
the new Bluetooth Mesh standard. Another new development is LoRaWAN, a low power telecommunication
network suitable for long distance communication. LoRaWAN cannot only be used with private gateways,
but also on public national networks. LoRaWAN is unique for its very low power draw, which allows sensors
to operate on a single battery for months. However, LoRaWAN devices are only allowed to send a relatively
short message every once and a while, which restricts the sensor sample rate. All communication technolo-
gies mentioned above have a security mechanism built in for encrypted communication between devices. A
full comparison between available network technologies is made in Elhadi et al. [14].

For almost all wireless sensor networks there are modules and extension shields available to easily con-
nect them to prototype development boards such as the Arduino. Some development boards even come
with communication functionality built in, such as the Particle Xenon BLE+MESH for Bluetooth LE Mesh
networks, Arduino MKR WAN 1300 for LoRa or LoRaWAN networks or the Z-Uno for Z-Wave networks.

For this project Bluetooth LE Mesh networks will be used using Particle.io development boards because
the additional bandwidth that BLE provides over other technologies such as LoRaWAN allows for a higher
sample frequency, which in turn will provide greater flexibility in terms of data analysis options.
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Figure 5.2: A common flow of measurements from sensors through parts of a system

5.2. Component Technologies
The system will contain a variety of aspects: the data flow, the database, and the data analysis. The following
sections describe the existing technologies that are considered to be used as a basis for the developed system.

5.2.1. Measurements propagation
Sensors produce a stream of data which has to be propagated through several layers of the system, including
the gateway, the network, the database, streaming analytics, notification systems and eventually the dash-
board front-end. In essence this stream of data can be sent over a plain network socket connection. However,
dealing with a stream of data on this level introduces a variety of problems with regard to durability, scalabil-
ity (load balancing of messages), availability (failover on disconnect) and the ability to use a more dynamic
topology with for example multiple procedures or systems receiving the same message. To address these
issues it is common to utilize a message broker that implements the publish-subscribe pattern. The publish-
subscribe pattern uses a message queue to which producers can send messages, agnostic of which exact and
how many receivers are subscribed to that queue. A common flow of messages through parts of a system is
shown in Figure 5.2.

A common publish-subscribe based messaging protocol used in Internet of Things applications is MQTT,
which is for example implemented in the freely available and open source message brokers Eclipse Mosquitto,
Apache ActiveMQ and RabbitMQ [15]. MQTT is also one of the available protocols for many Infrastructure as
a Service (IaaS) providers such as Amazon Web Services IOT, Google Cloud IOT and Microsoft Azure IoT Hub.

The Particle.io Cloud Platform that the sensors connect to (Section 5.1.1) lacks the ability to forward pub-
lished messages to a MQTT message broker directly. However, one can listen to a stream of events through
their API (returned as W3C Server-Sent events), which can then be propagated through the system - pos-
sibly by first publishing it to an MQTT message broker. Whilst also lacking support for connecting to an
online available (MQTT) message broker, the Particle.io Cloud Platform does have integrations for the afore-
mentioned IaaS platforms from Amazon, Google and Microsoft [16]. Furthermore, there are open source
implementations available that allow a Particle.io gateway device to publish messages to a MQTT client [17].

5.2.2. Database
The measurements received from the sensors will have to be stored in a database. Sensor measurements are
intrinsically temporal, with data sizes growing fast over time, in particular when sample frequencies increase.
Time series databases utilize the temporal nature of the data: by maintaining a temporal order of values, they
are able to partition the data by certain intervals, and as a result are able to find data within a certain interval
or at the tail of data entries very quickly. Although this can be emulated in relational databases as well (for
example PostgreSQL supports timestamp partitioning of tables [18]), performance is often much worse than
in a time series optimized database (for example PostgreSQL has to lock all partitions of a table while inserting
data, drastically affecting throughput on large datasets [19]). Time series databases also include various time-
related functions in their query language, that simplify working with time series. There are many time series
database systems available. Currently, InfluxDB, Graphite and Prometheus are popular, open source, time
series database implementations [20]. A comparison between these database implementations is made in
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Bader, Kopp, and Falkenthal [21].
Time series databases can be connected to a general purpose dashboard and graph composer. A popular

tool for this is Grafana, which connects to - amongst others - InfluxDB and Graphite. Using Grafana, one
can explore datasets by running queries and plotting the results. These plots can then be combined in a
dashboard. For example, Uber is a notable user of Graphite in conjunction with Grafana [22].

The amount of data that will be produced on a daily basis can be approximated by the simple multiplica-
tion of (a) the number of sensors, (b) the number of measurement dimensions, (c) length of each dimension
in bytes, and (d) the sample rate. As the intention is to deploy 10 sensors each measuring 10 dimensions rep-
resented in 4 byte floating point values every 10 seconds, this yields 24 ·60 ·10 ·10 ·4 ·6 = 3.5MB per day. From
the obviously small amount of data that is produced, it can be concluded that there is no need for a database
specialized in dealing with high volumes of data. An increase in the number of deployed sensors, measure-
ment dimensions, or the sample rate will linearly increase the amount of data produced on a daily basis. This
must be taken into consideration for future research and development. However, for now it suffices to focus
the on ease of use and functionality that a database might provide.

Even though the team members are more familiar with relational database technologies, the better suit-
ability of time series databases is found to be of greater importance. Therefore, time series database InfluxDB
will be used in combination with Grafana, where Grafana will be used for data exploration only. Queries will
be run on InfluxDB to provide the dashboard with data.
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Design

This section describes individual components and how they interact with other systems in the system archi-
tecture.

6.1. Architecture
The proposed system comprises three main components: the embedded sensor firmware, the back-end sys-
tem and the dashboard front-end. Each of the components requires software to be developed. The software
needed for each component is outlined in the sections below.

6.1.1. Device firmware
The device firmware will be programmed onto the device’s microcontroller. The firmware will be respon-
sible for controlling the sensors, taking measurements and offloading these to the cloud platform. Each of
the sensors exposes a programmable interface over an I2C wire or UART serial that allows for example con-
trol (initiate measurement), calibration (baseline correction), specifying parameters used for normalization
(correct the error introduced for elevated temperatures or atmospheric pressure), retrieving diagnostics and
taking measurements. The firmware will use this programmable interface to interact with the sensor. For
each measurement the firmware will enable the sensors, take measurements and transmit the results to the
cloud. The firmware also implements remote procedure calls (RPC) for remote calibration of sensors (useful
for cross-calibration).

The firmware is built on top of Particle.io’s Device OS operating system. This operating system handles
the mesh network connectivity (such as device registration, security and network topology) and connects this
network to the Particle.io Device Cloud. This Device Cloud provides the possibility to (a) call a function (RPC),
(b) publish or subscribe to events, (c) read or write variables, and (d) perform over-the-air (OTA) firmware
updates.

6.1.2. Dashboard front-end
The measurements taken from the sensor network will be displayed in a dashboard. The dashboard will
be accessible online. The dashboard will facilitate several basic use cases: (a) view historic trends, (b) view
real-time data and suggestions, and (c) alert notifications. The dashboard will also allow employees to report
discomfort or submit feedback through a survey. This survey data is continuously analyzed and reported to
the manager in the form of regular digests. The use cases are depicted in Figure 6.1.

The dashboard is designed to be user-friendly and productive. Therefore, as much information is visible
as possible in the primary screen and not hidden behind menus. The interface comprises four main com-
ponents: (a) the actual indoor air quality measurements, (b) a heat map showing the sensor locations and
predicted thermal comfort and perceived air quality, (c) a line chart showing historic trends, and (d) a form
for the thermal comfort survey. A wireframe of the dashboard is depicted in Figure 6.2.

The actual indoor air quality measurements will display the actual temperature, CO2 concentration, rel-
ative air humidity (RH) and Predicted Percentage Dissatisfied (PPD) (see Appendix B). The floor plan allows
employees to easily identify the closest sensor node. By clicking one of the sensors on the floor plan, this
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Figure 6.1: Use Case Diagram
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sensor will become selected and its values will be presented. If no sensor is selected, the average values
throughout the building will be shown.

The section dedicated to historical trends is not intended as a full fetched data analysis tool. Instead, it
should allow employees to verify elementary indoor air quality hypotheses such as simple trend comparisons
between different hours, or days of weeks. More detailed data analysis will be provided in the form of regular
digests.

The thermal comfort survey is a simple tool to collect soft data on the perceived air quality. The sur-
vey consists of two simple questions: one score for the thermal comfort (based on the Predicted Mean Vote
(PMV) Likert scale) and one score for the perceived air quality (another Likert scale). Both scores are pro-
vided through setting a slider. When the survey is submitted on a desktop device, the employee also has to
select the closest sensor device. For mobile devices where the application has access to the Bluetooth API,
this device will be derived from the signal strength to the surrounding devices. This simplifies taking part in
the survey because it eliminates the step of selecting the nearest sensor node.

Figure 6.2: Claire Dashboard wireframe. Top: Actual measurements, bottom left: historical trends, bottom right: thermal comfort survey.

6.1.3. Back-end system
The back-end provides access to the measurement data stored in the database to the front-end. The back-
end is also responsible for checking whether a user is authorized to see particular data and ensuring the user
is presented the right data, in case there are multiple buildings connected to the system. The communication
between the front-end and back-end follows the request-response model: the back-end exposes a REST API.
Communication through this API will be in the JSON content type.

The back-end also exposes a WebSockets endpoint. Clients may subscribe to this WebSocket to be notified
about new measurements immediately and update the dashboard accordingly in real-time.

Information that may be retrieved from the back-end includes:

1. Floorplan geometry;

2. Actual sensor locations;

3. Actual sensor measurements;

4. Query historical sensor measurement data.

Clients may also submit survey and feedback data. The back-end will make sure this data gets persisted into
the database. Besides communicating with the front-end, the back-end also performs any required post-
processing for incoming measurements.
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Figure 6.3: Data Flow Overview

6.2. Choice of programming language and frameworks
Several programming languages were considered for this project: Java, C++, JavaScript and Python. For the
embedded software code programming in C++ is the most practical option, because all example code from
the hardware is provided in C++ and the Particle.io development boards only support firmware written in
C++.

As the front-end dashboard is developed as a web application, where JavaScript is the standard, which all
team members have experience with, there was no reason to consider any other programming language for
the front-end. The dashboard will be developed as a responsive single page application. For the data process-
ing and back-end technology, however, there were many options. For this decision personal experience with
the programming language was taken into consideration, as well as the availability of open source frame-
works and libraries to connect to the technologies that will be used. It was also preferred to use the same
programming language throughout the entire stack as much as possible, and the team members were open
towards learning a new programming language if this could reduce the total number of languages involved in
the project. Because of the large portion of data analysis in this project, and the popularity of Python among
data scientists, the decision was made to use Python as the programming language for all other software
developed.
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Implementation

This section describes how the designed system is implemented. In Section 7.1 the implementation of the in-
dividual sub-systems is described, Section 7.2 outlines the implementation of the predictive analysis, Section
7.3 describes how servers and development systems are managed and provisioned, and Section 7.4 describes
how the implementation was changed based on the feedback received on the code submission to the Soft-
ware Improvement Group (SIG).

7.1. Components
This section describes the implementation for each of the individual sub-systems. Section 7.1.1 describes
the specifics of the sensor firmware, Section 7.1.2 describes the implemented cross-calibration mechanism,
Section 7.1.3 describes the front-end implementation, Section 7.1.4 describes the back-end implementation,
and finally, Section 7.1.5 and 7.1.6 describe how the measurement data is processed and stored in the system.

7.1.1. Device firmware
Embedded microcontroller firmware usually comprises fairly simple programming routines. Microcontrollers
usually only have a single core and no multi-threading capabilities, so one can only do a single operation at a
time. This usually boils down to a single procedure that gets invoked in a continuous, looping manner. It is,
however, possible to suspend the main program using a system interrupt. Such an interrupt can, for example,
be triggered by a timer or an input signal change. The main program will be halted, the appropriate interrupt
service routine (ISR) will be invoked, and after returning from the ISR the main program will resume. Be-
cause ISRs will temporary disable any further interrupts, ISRs should be fast and are not intended to perform
blocking operations or operations that are dependent on other ISRs (asynchronous operations).

The sensors connect to the microcontroller over I2C wire and UART serial communication buses. Mes-
sages received on these buses (in this case the measurements) are also handled by ISRs. The ISRs write the
messages to a buffer for later use. Publishing a message to the cloud platform is an operation that intrinsically
requires communication (IO), as such is reliant on system interrupts being enabled, and therefore cannot be
performed within another ISR. Therefore, after the measurements have been collected through their respec-
tive ISRs, it is the main loop / program that is responsible for publishing the aggregated data to the device
cloud. After all measurements have been taken, the device will turn off the sensors and wait a certain amount
of time in order to save power while still accomplishing the desired sample frequency. As a result, the same
frequency is used for all measurement dimensions. The process of taking measurements is visualized in Fig-
ure 7.1.

7.1.2. Cross-calibration
The CO2 sensors use an internal automatic baseline correction, where the lowest point within a certain mea-
surement period is expected to be equivalent to a concentration of 400 ppm, as this is the Earth’s current
atmospheric concentration. This automatic baseline correction can lead to unexpected calibration events
and will also lead to various sensors using a different baseline. Having multiple sensors installed within the
same room allows for manual cross-calibration to be performed. After people gradually leave the office be-
tween 17:00 and 18:00, the CO2 concentration drops gradually until it finds an equilibrium throughout the
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Figure 7.1: A sequence diagram that shows how the various measurements are taken and then published to the cloud

building, with the lowest concentration being reached around 19:00 after which it remains stable until the
ventilation system turns back on at 6:00 (see Figure 7.2). The measurements within this time window are
used to detect whether sensors have drifted (i.e. whether they report higher values than expected). If this
is the case the drifted sensor is re-calibrated: the back-end system will trigger a remote calibration with a
specified concentration offset.
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Figure 7.2: Average CO2 concentration per hour of day
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7.1.3. Dashboard front-end
The dashboard front-end is built on top of the JavaScript templating library React. This has the potential ben-
efit that some of the developed code can be reused when potentially using React Native for building smart-
phone applications in the future - React Native being React’s counterpart for smartphone app development.
The dashboard fetches data from the back-end both through the means of making REST API requests to the
back-end and being continuously updated through messages received over a WebSocket connection. The
state of these actual sensor data has to be managed locally in the frontend. Redux is used to manage this
and ensures that all UI components referencing this state will consistently show the updated data. There are
various JavaScript libraries available for rendering charts in the browser. Most notably are D3, Chart.js, and
Highcharts. Chart.js was chosen as chart library for the dashboard because there exists a specific Chart.js
wrapper library for React, which alleviates integration between the two frameworks.

To overlay sensor values on an image of the floor plan of VTTI, OpenLayers was used, a map rendering
library, with a custom made map that represents the floor plan. The map can then be enhanced with mark-
ers representing the sensors, or for example, a heat map overlay showing the temperature throughout the
building (see Figure 7.3).

(a) Plain map (b) Floor plan geometry overlay (c) Predicted thermal comfort overlay

(d) Removal of the map background (e) Removal of the map controls

Figure 7.3: Construction of the heatmap.

One of the challenges was to generate a GeoJSON file with the geometry of the floor plan. The approach
used was to draw the geometry based on a picture of the emergency evacuation floor plan. However, this
drawing was not perfectly square and the walls of the rooms did not align with the walls of the building.
To solve this, a grid of coordinates was made to which each of the coordinates was then snapped. Another
challenge was that the coordinates produced by the drawing tool were in a different coordinate system (WGS)
than the map (EPSG:4326). The coordinates were transformed to the proper coordinate system using the
popular library Proj4.

7.1.4. Back-end API
The back-end API is implemented using the Flask Python library. Flask makes building request-response
APIs very easy in Python. Flask is also capable of WebSocket communication through the Flask-Socket.io
extension.

For authentication JSON Web Tokens (JWT) are used. These are self-contained authentication tokens,
which are signed using a private key stored on the server. As a result, these authentication tokens can only
be produced by the server itself. It is a safe mechanism for authentication that requires practically no session
state to be stored at the server. JWT tokens have a built-in mechanism of session invalidation: upon creation
of the token, an expiration date can be set. The Flask-JWT is used as the implementation of JWT on top of the
back-end API. Flask-JWT implements a request interceptor: through means of adding a simple annotation to
a resource method, authentication will be mandatory and the implementation will look for a valid JWT token
to be provided with the request.
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7.1.5. Data ingest
Data enters the system as a stream of Server-Sent events. This stream is consumed by the data collection
service. This service is responsible for computing derived properties, persisting the measurement in the
database, and propagating the measurement through the system. This propagation includes broadcasting
the measurement in a specific WebSocket room topic. Rooms are a group of WebSocket listeners that sub-
scribe to a set of specific messages. In this case, every tenant can subscribe to their own room. By broadcast-
ing the measurement to this room, it is ensured that all active dashboards are updated, whilst still isolating
measurement data from different tenants. The process of collecting messages is shown in Figure 7.4.

Figure 7.4: Sequence diagram of measurement collection

7.1.6. Database data model
The data is stored in InfluxDB. The data model comprises five entities: measurements, data collected through
user surveys, feedback, the KNMI weather data and an entity that contains the data labels. The entity diagram
is depicted in Figure 7.5.

Figure 7.5: Entity diagram

7.2. Prediction models
7.2.1. Smoothing and derivative
One of the goals of this project is to notify employees when CO2 concentrations are rising. However, when
waiting until the threshold is already reached, the notification is already too late and it will be difficult to
ventilate the CO2 away. Computing the derivative of the CO2 concentration provides an idea of how fast the
CO2 concentrations are rising, which is a good predictor for how many people are in the room. The second
derivative can then be thought of as an indicator of how many people enter the room. Given a certain rise
of CO2 concentration over a particular amount of time, a likelihood that the concentration will approach the
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threshold can be computed. The exact value for the second derivative needs to be optimized for the size of
the room, the amount of ventilation in that room and the measurement interval. After this derivative is found
for a particular room, it will be configured in the database. Furthermore, the data needs to be smoothed,
for example using a moving average, to prevent false alerts for outliers (for example, people blowing into
the sensor). The moving average and second derivative are computed as one of the streaming analytics.
Therefore this data can be used in real-time to automatically generate alerts which CO2 levels are rising.
Figure 7.6 shows the CO2 concentration of a meeting room during the day together with the computed second
derivative.

Figure 7.6: CO2 and its second derivative for a meeting room. The spikes in the chart clearly correspond to larger meetings, and larger
spikes are seen when higher concentrations are reached in the room consecutively.

7.3. DevOps and containerization
The back-end software runs in a Python application servers and is dependent on the availability of an In-
fluxDB database instance and a (RabbitMQ) MQTT server. The front-end software needs to be hosted from a
web server such as NGINX or Apache Httpd. These are quite a few services to roll out and deploy. To make de-
ployment easier and to make software behave the same way on a developer’s machine as well as a production
machine, the vitalization software Docker will be used. Docker virtualizes virtual machines with a shared ker-
nel, eliminating much of the virtualization overhead. Furthermore, Docker has the ability to build containers
from a simple setup script. Container snapshots can also be exchanged through Docker repositories. Docker
containers run isolated from the host system, meaning that if a container gets corrupted, this can easily be
cleaned up and won’t necessarily affect the host system or any other containers running on the host system.

7.4. Software Improvement Group Feedback
During the project the code was submitted for evaluation by the Software Improvement Group (SIG). The
findings of SIG are included as Appendix G. The scores for the development were found to be around the
market average. SIG identified Unit Interfacing and Unit Size as areas for improvement. The code responsible
for the low score on unit interfacing was the implementation for the PMV computation (full equation listed
in Appendix B), which takes a lot of parameters. Both JavaScript and Python have the possibility to define
default values for unset parameters. These parameter defaults were used to provide constant values to the
computation. The PMV implementation was later swapped out for an existing open source implementation
that was available through the package manager. This improves the maintainability of the code: there is
less code that has to be maintained, and any potential bugs with regard to this specific computation can
now be addressed and resolved within the open source community. The unit size was reduced by breaking
out some logic into separate utility methods. The unit size in the Python code however was not addressed:
the code was merely formatted in a sparse way to improve readability (and increase maintainability) while
the fragment only contained a couple of actual code statements. SIG also addressed the lack of tests to be
an issue. Because the SIG submission was at a very early stage of development, most of the code actually
concerned little code snippets to integrate with a particular sensor or data service. In essence, these were all
small tests. It was also quite hard to test some of these components in an automated fashion because they
were written in C++ and dependent on Particle OS system calls. The more fundamental components of the
systems (such as the back-end and dashboard front-end) are more suitable for testing, however, these were
not developed at the time. As the project progressed, more tests for all the individual subsystems were added
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to the project gradually.

7.5. Final product

Figure 7.7: Final dashboard
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Prediction model

Although the derivative method works well, it requires tweaking for a specific sensor location and the time
window used. This makes the method difficult to apply to other sensors within the network or even at dif-
ferent locations. Therefore, a more generic approach is required. A neural network might be able to learn
the characteristics of an irregular raise of CO2 concentrations. A neural network can learn to predict the pro-
gression of a time series. When the neural network predicts a concentration above the threshold, this would
mean that an alert has to be generated.

8.1. Neural networks
One of the advantages of neural networks over the derivative method is that they might be able to learn pat-
terns unrelated to the derivative of the measurements, and use this additional information to make better
predictions. Another advantage is that a neural network does not require any specific domain knowledge or
manual tweaking for individual sensors or locations, as the network is able to extract the relevant features
automatically [23]. Neural networks do have a couple of disadvantages. First of all, neural networks require a
large amount of data to train on, or otherwise risk overfitting on the data. When a network overfits it learns
the specific mappings in the training data set, but performs poorly on validation data and unseen data, as
the model is unable to generalize well [24]. Furthermore, the hyperparameters (e.g. the number of epochs to
train, the number of layers, and the number of neurons) of a network have a significant effect on its perfor-
mance [25], and can require a lot of tweaking to get satisfactory results.

Recurrent neural networks (RNNs), and in particular long short-term memory networks (LSTMs) are of-
ten used in time-series forecasting, due to their ability to capture temporal dependencies [26, 27, 28, 29,
30, 31]. RNNs contain recurrent connections that propagate previous information, enabling the network to
base its decisions on the current data as well as past data [27]. However, RNNs have no way to control how
(long) the past states’ information is propagated, and as such suffer from exploding and vanishing gradient
problems. When suffering from the exploding or vanishing gradient problem, the updates to the network’s
weights respectively become very large or infinitesimal, making the network very unstable [32]. As a result of
this instability, RNNs are inhibited in their ability to learn long-term dependencies [26].

LSTMs are RNNs that deal with this problem by introducing input, output, and forget gates to the cells
that control the cell’s state and the propagation of previous states’ information, enabling the LSTM to control
which past states to forget [26]. As a result, LSTMs are able to capture both short- and long-term dependen-
cies, which makes them capable of forecasting time-series data [27].

Other neural networks, such as multilayer perceptrons, are not able to capture these temporal dependen-
cies at all, and are as such outperformed by RNNs when it comes to time-series prediction [31]. Convolutional
neural networks, on the other hand, are able to identify short-term dependencies [29].

Due to the nature of the measurement data, it is deemed necessary to be able to learn long-term depen-
dencies as well as short-term dependencies. Therefore, due to the LSTM’s ability to capture both long- and
short-term temporal dependencies in contrast to other neural networks, the decision has been made to use
an LSTM for predicting measurement data.
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8.2. Model design
This section describes how the prediction model will be designed in terms of what the training process will
look like and how the model will be applied in the final system.

8.2.1. Training the model
Training the prediction models consists of several steps: acquiring the data set, preprocessing the data set
such that it can be used by the model, constructing the model, and then training the model. Each of these
steps is discussed below.

1. The data set to use for the model will be retrieved from the database and stored in a suitable format
that can be loaded by the data processing framework.

2. The data set will be preprocessed such that it adheres to the format expected by the Tensorflow model.
The data will be preprocessed according to the following steps:

(a) The data is resampled in order to limit the number of redundant data points. The current sam-
pling frequency (10s) is rather high, and using all data points will slow down the model’s training
process and performance, while not adding anything meaningful to the predictions.

(b) The data is split into separate data sets for training, validation, and testing. The test data should
be kept entirely separate during the training to ensure that no training occurs on any test data.

(c) Each resulting data set is split into several fragments using a sliding window approach in order
ensure there is sufficient data for the model to train on. The fragments are made after the data is
split to avoid any overlap between training, validation, and test data. The size of the windows is
determined by the time span used for training data and the time span that should be predicted.

(d) The data is normalized. Normalization takes place after splitting the data sets, as the data may
only be normalized based on training data characteristics. This is to make sure that the test data
is completely separated from the training process. The normalization ensures that the values are
small and within a limited range, which is necessary to make converging easier for the model.
Using the original (large) values may result in large network updates that make it difficult for the
model to converge. Additionally, normalization may also result in faster model training since it is
easier to converge.

(e) Missing data is handled appropriately, either by imputing missing data points or not using frag-
ments with missing data points at all.

(f) For each data set (i.e. training, validation, and test data set), the data fragments will be split into
input and target data fragments. The model will train on the input data to predict the target data.

3. The prediction model is constructed by specifying the layers, input and output data shape, and other
remaining parameters (such as the loss function to be used, and for how many epochs the model should
be trained). The optimal model layout and parameters need to be established by comparing a number
of different models.

4. The model is trained by providing it with the training and validation data sets.

5. The test data set is used to assess the model’s performance on data it has never seen yet.

6. Finally, the model is saved in its entirety, including the training and validation losses and test results for
future use and comparison between models.

8.2.2. Applying the model
Applying the trained models to real-world data in the application will happen as follows:

1. The data to use for the prediction is retrieved from the database directly.

2. The data will be preprocessed as follows, similar to the process during training:

(a) The data is resampled.

(b) The data is normalized.
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(c) Missing data is imputed or discarded.

3. The model is provided with the preprocessed data and outputs a prediction.

4. The predicted data is denormalized to convert the values back to the original measurement unit.

5. The predicted data is then propagated for further use (e.g. for display in the frontend).

8.3. Neural network design and construction
The RNN model is constructed using Tensorflow’s implementation of the Keras API specification. In order
to accelerate the training process, the decision was made to use the Tensorflow package with GPU support
based on NVIDIA’s CUDA Toolkit. Keras includes a variety of RNN layer implementations, including RNN,
simpleRNN, LSTM, and CuDNNLSTM. The CuDNNLSTM is an LSTM implementation optimized for GPU
use, resulting in significantly shorter training times compared to the normal LSTM implementation. There-
fore, the model was constructed using CuDNNLSTM layers.

A number of models were constructed in order to find a model with sufficient prediction performance,
using the CO2 data to train the models. To be able to determine whether the performance is sufficient, and
whether using an LSTM has added value over some simpler models, a very simple prediction method was
implemented to use as a baseline. This method uses the input window’s mean as the predictions, and the
resulting mean absolute error (MAE) of these predictions is used to compare with the MAE of the trained
LSTMs.

Using the CuDNNLSTM layer as a basis, models were created with varying numbers of layers with vary-
ing numbers of neurons, resulting in everything from simple single layer LSTMs to complex multilayer LSTM
Autoencoders. For further comparison, variations were made for other parameters as well, such as loss func-
tions, window sizes, and resampling intervals. All models with their corresponding parameters, training his-
tory, evaluation results, and layer diagrams can be found in Table H.2, Figure H.1, Table H.3, and Figure H.2
respectively. Model 19 was found to have the lowest mean absolute error in all cases, with an MAE of ∼4.4
ppm on the test data set. As such it is deemed to be the best model to use for the prediction of CO2 levels. As
can be seen in its training history in Figure H.1s, after about 125 epochs the model seems to start overfitting,
so training was stopped at that point for the final model, a technique sometimes referred to as early stopping.

The search for the best model was done using the CO2 measurement data, as predicting the CO2 values
had the highest priority due to CO2’s large variability. Due to time constraints the individual models were not
each tested on the remaining measurement data. Instead, models were trained using the same parameters
and layout as model 19 on the data for humidity, air temperature, and globe temperature, to create prediction
models for those measurements. This unfortunately means that suboptimal models might be used for the
predictions of those measurements. However, all trained final models beat their baseline in terms of MAE, as
can be seen in Table 8.1, and as such they are deemed to be performant enough.

The final models and their evaluation results and training history can be seen in Table 8.1 and Figure 8.2,
and a diagram of the model layers in Figure 8.1.

Although a large variety of models was constructed, it has to be noted that the chosen final model is likely
not the optimal model for the predictions of measurement data. The search space for the hyperparameters
is simply too large to be able to do an exhaustive search for the optimal set of parameters. However, with
some more time and more hyperparameter tweaking it should be possible to find a model that performs even
better than the current one, even though it might not be an optimal model either. Another aspect that can
be improved is the amount of data used to train the neural networks. The models were trained on a relatively
small data set, comprising of measurement data spanning about three to four weeks. This is very little data for
a model to generalize on, and as such better performance is to be expected when training the models again
at some point in the future when more data has been gathered.
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Figure 8.1: Diagram of the final LSTM

Table 8.1: Final evaluation results for each model

Model Loss Normalized
MAE

MAE Normalized
MSE

Baseline
normalized MAE

Baseline
MAE

CO2 0.0362 0.0362 4.6155 0.0050 0.5602 71.5220
Humidity 0.0598 0.0598 0.3512 0.0084 0.6399 3.7586
Air temperature 0.1241 0.1241 0.1103 0.0460 0.6038 0.5365
Globe temperature 0.1297 0.1297 0.1200 0.0475 0.6054 0.5601

(a) CO2 model (b) Humidity model

(c) Air temperature model (d) Globe temperature model

Figure 8.2: Training and validation losses for the final models
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8.4. Model implementation
This section describes the implementation details of the model’s data preprocessing and the implementation
in the final system.

8.4.1. Data preprocessing
The data preprocessing was done using the widely used pandas data analysis library for Python. Pandas
DataFrames simplify time series data analysis and manipulation as they provide a large variety of operations
on time-indexed data, such as sample frequency conversion, filtering, joining data sets, and calculating mov-
ing averages based on time windows.

The data processing is implemented as follows:

1. All available measurement data is retrieved from the InfluxDB database and saved to a comma-separated
values (csv) file, as this is the file format supported by pandas to read data into DataFrames.

2. The saved data is loaded into a pandas DataFrame (using the measurements’ timestamp as an index
for easy resampling) for further processing.

3. The data is then preprocessed separately for each device:

(a) The data is resampled to a frequency of 5 to 15 minutes (varying resampling frequencies were used
between models for comparison) using the mean of that time window. Resampling to larger time
spans might result in too much information loss, while using smaller time spans might result in
too much noise in the data.

(b) The data is split into training, validation, and test data sets using a ratio of 70:20:10. The data is
split in place, meaning that the first 70% of the data will be used for training, the following 20% for
validation, and the final 10% for testing. Given that the data is time series data, no shuffling of the
data occurs in order to prevent the model from learning on data in the future.

(c) The data is split in windows using a sliding window that slides over the dataset and creates a data
set consisting of windows containing (in case of most models) 25 hours of data.

(d) All training, validation, and test data sets are accumulated into larger data sets comprising all
devices’ data.

4. The data is normalized based on the training data set’s characteristics only, since the test data may not
be involved in the training process in any way. The data sets are normalized using the training data set’s
z-score, such that the resulting data set’s mean is equal to 0 and its standard deviation equal to 1. (Al-
though in practice the validation and test data sets’ mean and standard deviation will be approximately
those values, since they do not contain the same exact data as the training data set).

5. Windows with too many missing data points are discarded (i.e. windows where more than 30% of data
is missing), including windows with missing data in the last section of the data (the data to be used
as target data). Not all windows with missing data are discarded as the model should learn to deal
with missing data [33], given the expectation of missing data when using the model in the real-world
application due to the occasional sensor failure or lost measurements. Otherwise, when faced with
missing data in the application, the model will not know what to do with the missing data [33]. The
remaining missing data points are imputed by replacing the data points with 0, which corresponds to
the mean of the data set. Other approaches suggest filling in the missing data points by using a neural
network to predict the missing data. However, with the relatively little data that has been gathered at
this point, and the occasional large gaps in the data, this approach was deemed to be unsuitable at this
point in time. Training a neural network to fill in the missing data point does not only take extra time,
but with the little data currently collected also might do more harm than good to the data set and thus
the subsequent training of the prediction model.

6. Finally, each window is split into input data and target data to create an input data set and a target data
set (for the training, validation and test data sets each).
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8.4.2. Model application
The models consist of CuDNNLSTM layers, which are only GPU compatible and are therefore not suitable
to use on the current back-end server directly. In order to solve this, the models are first converted back to
CPU-compatible models by constructing a model with the same layers and parameters, only replacing the
CuDNNLSTM layers with normal LSTM layers, and subsequently transferring the CuDNN model’s weights to
the new CPU-compatible LSTM model. These models are then saved and used in the back-end. This conver-
sion process does not affect the performance of the models, as the CuDNNLSTM is simply a GPU-optimized
LSTM implementation and works fundamentally the same as a normal LSTM layer, the only difference being
the accelerated training on GPUs.

The trained LSTMs are then applied as follows:

1. The trained model and the training data characteristics are loaded.

2. Data from the last 24 hours is retrieved from the InfluxDB database and loaded into a pandas DataFrame
directly.

3. The data is preprocessed as follows, similar to the process during training:

(a) The data is resampled to a sampling frequency of every 5 minutes, taking the mean of each 5-
minute window.

(b) The data is normalized using the mean and standard deviation of the original training data set.

(c) Missing data is imputed.

4. The model is provided with the preprocessed data and outputs the predictions for the next hour as 12
data points.

5. The predicted data points are denormalized to convert the values back to the original measurement
unit.

6. The predicted data is then pushed over the WebSocket for further use (e.g. for display in the frontend).
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Results

9.1. Thermal comfort
Based on the measurements the computed PMV lies well within the comfortable zone ([−0.5,0.5]) for the vast
majority of the time. The reported thermal comfort based on the surveys is found to also average around this
comfortable zone (see Figure 9.1a). However, the deviation is quite larger than anticipated. Whilst on average
the temperature is perceived comfortable, there are still occupants that complain about cold or heat. No
explanation for this local discomfort was found. The discomfort is reported on all sides of the building, even
though the temperature has been fairly constant throughout the entire measurement period. Both heat and
cold complaints occur on the same side of the building under the same circumstances. A common thought is
that the airflow from the ventilation system is responsible. However, air velocities measured at the ventilation
exhausts did not substantiate this. Note that temperature is a combination of not only air temperature and
air velocity, but also absorbed radiant heat on the body. Throughout the measurement period there had
been relatively neutral, cloudy weather. Even though cloudy, not all blinds were opened on all sides of the
building. The absence of direct sunlight and a bit of the radiant heat emitted with that might play a role in
the perceived cold. A recommendation is to actively control the blinds and open them as soon as they are not
required anymore. The temperature was noticed to be the lowest and also most constant on the east side of
the building (see Figure 9.2). This can be explained by the fact that the thermostat is not controlled on that
side of the building (in fact, it is fixed with tape). Based on the survey, employees on the east side perceive the
most cold, and it is recommended reconsidering whether this thermostat could use readjustment.

Finally, it is obvious from the temperature readings throughout the day that in the early morning the sys-
tem actively ventilates and cools the building. This concerns the west side of the building in particular, which
then consecutively has to be heated up when the employees arrive in a reportedly rather cold building. It is
possible that the temperature sensor that controls the thermostat on this side of the building has drifted over
time, leading to unwanted cooling on this side of the building. It can be worthwhile to leave the thermostat
at a slight offset for a while and see whether unnecessary cooling can be prevented in order to save energy as
well as improve thermal comfort. It is however also possible that the west side of the building is subject to
more cooling because it is simply better ventilated.

9.2. Indoor air quality
CO2 concentrations throughout the office are generally acceptable. On average, the concentrations are well
below guidelines (1000ppm) and the recommendation of 850ppm (see Figure 9.3), at which a cognitive im-
pact becomes significant (see Appendix A.2). This is also confirmed in the survey: very few employees com-
plained about indoor air quality (see Figure 9.1b). In the meeting rooms, however, both the guideline and rec-
ommendation norms are sometimes exceeded. Between 9:00 and 14:00 in particular, concentrations above
the recommendation were measured about 10% of the time. Although the air in the meeting room is not
polluted on average, it can surely be said that productivity in especially longer and crowded meetings will be
affected by this. It is observed that CO2 concentrations are quite local: CO2 has a tendency to stay where it
is produced and the ventilation is only able to remove that to some extent. Obviously, higher CO2 concen-
trations occur with a higher occupancy around the sensor. In particular, when an island of desks is occupied

31



32 9. Results

Side

east south west zarate

-3

-2

-1

0

1

2

3
Pm
v

Cold

Cool

Slightly Cool

Neutral PMV

Slightly Warm

Warm

(a) Reported thermal comfort per side

Side

east south west zarate

0

1

2

3

4

Ia
q Neutral IAQ

Satisfied IAQ

Dissatisfied IAQ

Very Dissatisfied IAQ

(b) Reported IAQ per side

Figure 9.1: IAQ Survey results
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Figure 9.2: Temperature measurements

with over 8 employees, elevated CO2 concentrations were observed. It is recommended to spread out employ-
ees evenly across the office space to some extent. Furthermore, it is observed that the CO2 concentrations on
the east side of the building are generally higher (see Figure 9.3). This can be explained by the fact that the
east side is simply more crowded (see Figure 9.4b). In the afternoon the concentrations sometimes exceed the
recommendation of 850ppm. Concentrations are rarely observed to exceed the guideline of 1000ppm here.
During the labeling, it was noticed that elevated CO2 concentrations in this area mostly come from crowded
stand-ups. During these stand-up meetings, air gets polluted very locally, but the CO2 will stay there for a
while. It is recommended that, if multiple of these stand-ups occur during the day, to move these to different
sides of the wing rather than concentrating these events on the same spot throughout the day.
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Recommendations

Thermal comfort
It is recommended to install thermostats with a clear temperature indicator. The target temperature cannot
be read from the current thermostats, which leads to over-enthusiastic cooling and heating, which then has
to be compensated, and consecutively leads to thermal discomfort and waste of energy. It also contributes
to a sense of loss of control over the temperature, leading to the belief that not using the thermostat at all is
ideal, where this may not be the case due to sensor drift. It is not recommended to fix thermostats in a certain
setting for prolonged amounts of time. From the data can be observed that the thermostats are effective after
all, and allowing employees to control the thermostat can alleviate the cold complaints among employees.
When setting the thermostat, one should not just consider which temperature is right, but realize that thermal
comfort is based on many factors. If the majority agrees that they feel cold, the thermostat should probably
be turned higher. The surveys from the dashboard can be utilized as a means of democratizing the thermostat
setting. Furthermore, it is also recommended to actively control the blinds. The radiance from the sun plays
an important role in thermal comfort. Its recommended to employees to embed opening the blinds in their
workflow: whenever one closes the blinds, one should check every once and a while whether the blinds are
still necessary. In particular, whenever one leaves the office is a good moment to open the blinds again and
reset the thermostat.

Indoor air quality
Elevated CO2 concentrations were measured in the Zarate meeting room and on the east side of the build-
ing. The standard ventilation in Zarate is not sufficient to keep the room within guideline levels for more
crowded and longer meetings. It is therefore recommended to increase the ventilation in Zarate for meetings
with more than two people or that will take longer than 30 minutes. For meetings with more people (approxi-
mately eight or more) or that take very long (two hours or more) CO2 concentrations may still reach levels that
will cause weariness (above 1000 ppm). It is recommended to open a window when this occurs, as this will
drastically decrease the CO2 concentration in the room. For ad hoc meetings it is recommended to quickly
compare the indoor air quality of different rooms in the Claire dashboard in order to decide which room to
use. For the east side, it was observed that quite a few stand-up meetings may happen throughout the day,
which are usually held at the northeast side of the building. This leads to moderately high CO2 concentra-
tions on that side of the building, which may lead to loss of productivity well after the stand-up meeting. It
is recommended that if multiple of these stand-up meetings occur throughout a single day, to organize these
meetings at varying sides of the east wing. In general it is also recommended to spread out employees evenly
across the office space as much as possible, but with the aforementioned recommendations in place, it is not
deemed required to actively spread out workplaces.

Measurement continuation
The findings and recommendations of this report are limited by the data that is available. It is therefore
recommended to keep using the sensor network, in particular throughout the summer and winter season,
where it is anticipated to measure some more extreme temperatures. Although ventilation exhausts were
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not conclusively found to be a cause of thermal discomfort, it is recommended to keep using the surveys to
collect employee satisfaction data, in particular when there are heat or cold complaints. Perhaps additional
data will provide new insight into the role of the ventilation system in the thermal comfort among employees.

Increasing employee engagement
In the busy day-to-day work, the presence of an indoor air quality platform can be easily forgotten, even
though employees still want to stay engaged in realizing a better indoor air quality. It is therefore recom-
mended creating a place for the Claire dashboard on a tablet on the wall, so that employees have a quick
reminder of the existence of Claire on their way to the coffee corner.

Key user interaction
Due to time constraints, it has not been possible to crystallize out the user notification feature fully. Even
though the framework is there, it has still to become clear whether it is productive, for example, to notify
employees to increase the ventilation when they enter a meeting room with a certain amount of people. If
this method turns out to be too disruptive, an alternative could be to notify the office manager instead. The
same applies to notifications regarding overcrowded office areas or changing the thermostat setting based on
survey complaints. It is recommended to test each of the implemented notification on a small group of test
users, to collect the required insight on how to roll this out effectively.

Inclusion of PM and VOC sensors
Although not considered in this project, Particulate Matter (PM) and Volatile Organic Compounds (VOCs)
play a significant role in perceived indoor air quality. High PM concentrations and certain VOCs are also
known to cause serious health issues. Therefore, it is recommended to explore the possibility of including
PM and VOC sensors in the existing sensor devices, in particular if complaints about the indoor air quality
remain that cannot be explained by thermal comfort and CO2 concentrations alone.

Installation of additional sensor devices
The experiment was limited to 10 devices only, which were deployed throughout the office. As a result, some
of the desk islands and the majority of the meeting rooms have no sensors installed yet. Installing sensors
in all meeting rooms will allow indoor air quality intervention notifications for these meeting rooms. It also
allows employees to chose a meeting room based on its indoor air quality. Installing additional sensor devices
at the minority of the desk islands that do currently not have a sensor installed might provide more insight
into local discomfort. It will also ensure that every employee always has a sensor within eyesight, which may
contribute to a sense of ownership of the project among employees. Lastly, increasing the sensor network
density, in general, will improve the underlying network structure and therefore, the reliability of the system.
With the current distance between the sensors, the technology is relatively pushed to its limits, which leads
to sensors disconnecting from the network incidentally.
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Conclusion

In this project, the possibilities of utilizing an indoor air quality sensor network to optimize office space
utilization for employee health and well-being were explored. As the first step, the properties of indoor air
quality, their effects on employee health and well-being, and current industry guidelines were studied. This
lead to a selection of properties that were chosen for the measurements for the case study for VTTI. Sensor
hardware and firmware, a cloud back-end infrastructure, a reporting solution, and several data processing
mechanisms have been developed and lead to the final product Claire: a digital assistant and dashboard that
monitors indoor air quality. Claire provides VTTI with continuous, real-time and fine-grained insights regard-
ing their indoor air quality and is even able to detect very local and temporal anomalies. This allows VTTI to
investigate employee complaints or concerns regarding thermal discomfort or indoor air quality.

The system monitors thermal comfort by measuring dry-bulb temperature, globe temperature and rel-
ative air humidity and computing the Predicted Mean Vote. Indoor air quality is determined by measuring
CO2 concentrations. The system can be improved by adding additional air quality sensors to the sensor de-
vices. Predicted Mean Vote and CO2 concentrations are common methods of estimating thermal comfort
and indoor air quality respectively and form the basis of air quality guidelines such as ASHRAE or the Dutch
Arbogids. These guidelines were generally met during the measurement period, however, recommended val-
ues were sometimes exceeded in the meeting rooms and the east side of the building. These findings aligned
with data reported through employee surveys. This lead to a set of concrete recommendations to improve
indoor air quality at VTTI.

The system is not only able to classify the current environment, but is also able to predict the progression
of the indoor air quality in the short future by looking at the change of variable. One method was imple-
mented that uses the second derivative of the smoothed time series data. This approach was shown to be very
effective when the parameters are adjusted correctly for a given room. An alternative method was proposed
to predict the progression of the time series data using a Recurrent Neural Network. The latter approach has
the potential benefit that it is able to learn the specifics of a certain sensor location.

During the course of this project, all design goals and requirements (as defined in Section 2) have been
met. As of the time of writing, Claire is still being used use at VTTI.
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Discussion

Even though very strict planning allowed for the collection of data for as long as four weeks prior to starting
the data analysis, the total amount of data was still restrictive. The indoor climate was very constant through-
out the measurement period. As a result, the Predicted Mean Vote was practically constant as well and a
correlation with the reported thermal comfort could not be found.

The variance in the thermal comfort values reported through the surveys was relatively high. It is pos-
sible that these values are amplified by the fact that relatively friendly icons were used to illustrate the cold
and hot thermal comfort levels, which have a meaning that should be interpreted very seriously. Due to the
friendliness of the icons, people are unaware of the severity of the meaning of the used comfort levels. From
the data cannot be concluded that airflow from ventilation exhausts is responsible for local discomfort. It
is however possible that our method of measuring temperature and air velocity was not accurate enough to
appropriately take the effect of airflow on the thermal comfort into account.

Although the neutral Predicted Mean Vote aligns with the average reported thermal comfort, this finding
alone is not sufficient to conclude whether the Predicted Mean Vote model still holds and whether it is an
appropriate estimator of thermal comfort. In order to further research this, more tests should be conducted,
in particular over a longer time span and in a variety of buildings with different thermal properties. Measuring
for a longer time span is also required for observing the influence of the weather. During the measurement
period there was relatively moderate weather, which means that the HVAC system did not have to work at full
capacity in order to heat or cool the building to the desired temperature and that extreme temperature values
within the office have likely not been reached during this period. Any potential HVAC capacity limitations
could therefore not be derived from the data. For the same reason, it was also not fruitful to isolate the
influence of the local weather on the indoor climate.

The aforementioned have constrained the project in the use of statistical methods such as clustering and
neural networks. Nonetheless, interesting trends have been found that can be further researched. Further-
more, the software developed allows for these measurements to be continued. The recommendations pro-
vided in this report can be followed through the means of several indoor air quality experiments, which can
be benchmarked through the software, with both the hard data from the sensors as well as the soft data from
the employee survey reports.
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Indoor Air Quality

The air quality within buildings and structures is referred to as Indoor Air Quality (IAQ). IAQ can be affected
by the concentration of gasses, such as volatile organic compounds (VOCs), carbon dioxide (CO2), as well as
particulates (PM) in the air. Perceived IAQ (or PAQ) is an umbrella of reported descriptors like temperature,
presence of odor/smell, and experience of stuffy, dry or wet (humid) air [34]. The perception of temperature,
often referred to as thermal comfort, is subject to relative air humidity (RH), air velocity and temperature.
PAQ complaints are common and IAQ concerns are ever so often raised, and as a result the subject is of wide
interest among scholars.

Wyon [35] has shown that (a) poor indoor air quality can reduce the performance of office work by 6-9%,
(b) this measured performance reduction is approximately linearly related with the percentage dissatisfied
with indoor air quality, and (c) that these effects were accompanied by negative effects on general symptoms
such as headache and concentration.

Poor IAQ has been linked to Sick Building Syndrome (SBS) [36, 37], which is a medical condition iden-
tified by a set of symptoms generally observed among office workers, including “(a) eye, nose and throat
irritation; (b) a sensation of dry mucous membranes and skin; (c) erythema (skin redness); (d) mental fa-
tigue; (e) headache; (f) a high frequency of airway infections and cough; (g) hoarseness; (h) wheezing, itching
and non-specific hypersensitivity; and (i) nausea and dizziness" (WHO 1983, cited from [38]).

In the sections below the components of Indoor Air Quality and its perception are described in more
detail.

A.1. Temperature and Humidity
Thermal comfort is the “condition of mind that expresses satisfaction with the thermal environment and
is assessed by subjective evaluation” [39]. The body exchanges heat with immediate surroundings through
several means of heat exchange: sensible heat flow from the skin (through conduction, convection and radia-
tion), latent heat flow from evaporation of sweat and moisture diffused through the skin, and heat flow during
respiration [40]. Task performance is highest when thermal comfort occurs, i.e. when the body temperature
is within a certain range, the skin moisture is low, and the physiological effort of regulation is minimal. Re-
search has shown that performance decreases as temperature deviates above or below a thermal comfort
temperature range. Specifically, at a temperature 8K higher than optimal, average office task performance
decreased with 9% [40]. Conversely, within the thermal comfort temperature range there is a range in which
performance does not increase any further.

Thermal comfort is primarily affected by temperature, air speed, humidity, a person’s metabolism and
clothing insulation [40].

Thermal comfort is frequently modeled using the Predicted Mean Vote (PMV) model. The PMV is a Likert
scale scoring from -3 (cold) to +3 (hot), based on heat-balance equations and empirical studies about skin
temperature. Values between -1 and 1 are considered satisfactory. The PMV value can be computed given a
set of measurements about the temperature, humidity, air velocity, clothing insulation, and type of work. The
method to compute the PMV value is described in Appendix B.

Using the value for PMV, the Predicted Percentage Dissatisfied (PPD) can be derived. This is the predicted
percentage of people with a score lower than -1 or higher than +1. Fanger and Berg-Munch [41] found the
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following distribution for PPD:

PPD = 100−95−(0.03353P MV 4+0.2179P MV 2) (A.1)

The guideline for PMV is any value between -0.5 and 0.5, which corresponds to a PPD of 10%.
Note that there is no optimal temperature and that some temperature complaints will remain even at an

optimal PMV value. There are several explanations for this. One of these explanations is radiant asymmetry,
which is the difference in the radiant temperature of the environment on opposite sides. People are sensi-
tive to this asymmetry, in particular when an overhead surface is significantly warmer or a vertical surface is
significantly colder. If the gradient is sufficiently large, local discomfort can occur at some body parts. Fur-
thermore, thermal comfort is also subject to many secondary factors such as: day-to-day variations, age, sex,
weight, metabolism, adaptation or seasonality [40].

Another complaint that office workers often voice is that an office has ’dry air’. This often shows in symp-
toms of dry eyes or dry throats. However, humans also often confuse a high concentration of dust particles
in the air for low humidity. Raising humidity to higher levels positively alleviates some of these symptoms,
as well as increases the perceived IAQ (PAQ) [34]. On the other hand, high indoor humidity can also result in
discomfort, while also stimulating the growth of fungus in spaces. In regions with especially hot and humid
climates it is shown that in practice, without a desiccant-cooling system, low ventilation rates are used to
combat high humidity, therefore causing a buildup of stale air and high pollutant levels indoors, leading to a
permanent sick building [42].

For the purposes of this research, the PMV-PPD method is used to approximate thermal comfort.

A.2. Carbon Dioxide
High levels of CO2 concentration are commonly associated with Sick Building Syndrome, which is in turn
associated with symptoms such as fatigue, nausea, loss of concentration and tiredness [38, 43, 44].

Because occupants are the dominant source of indoor CO2, the difference between outdoor and indoor
CO2 concentration (δCO2) is considered an approximate for indoor concentrations of bioeffluents [38]. Erd-
mann, C. Steiner, and Apte [45] have shown elevated lower respiratory SBS symptoms with increasing δCO2,
and suggests that an increase in ventilation rate would reduce SBS prevalence of SBS symptoms. Zhang, War-
gocki, and Lian [46] found that exposure to human bioeffluents in conjunction with high concentrations of
metabolically generated CO2 cause physiological effects expected to reduce cognitive performance.

Myhrvold, Olsen, and Lauridsen [47] identified a 23% improvement in schoolwork due to a reduction in
CO2 concentrations in classrooms (from above 1500 ppm to below 999 ppm) by increasing ventilation in a
field study. Allen et al. [48] have shown that cognitive function scores were 15% lower for the moderate CO2

day (∼ 945 ppm) and 50% lower on the day with CO2 concentrations of ∼ 1,400 ppm than on the two regular
days (∼ 500 ppm) in a Green+ certified building with artificially controlled CO2 concentrations independent
of ventilation. The same research found that on average a 400 ppm increase in CO2 was associated with a 21%
decrease in a participant’s cognitive scores across all domains.

CO2 concentration is included in some industrial guidelines and standards, such as the ANSI/ASHRAE
62-1989, ASTM D 6245-98 and Dutch Arbocatalogus, which recommend a maximum acceptable indoor CO2

concentration of 1000 ppm. This guideline is however not mandatory. In general, the required ventilation
rate is considered to be sufficient for the CO2 concentration to stay within reasonable levels. However, this
relation between CO2 concentration and ventilation rate is complicated by the transient nature of multizone
systems as well as temporal and spatial variations in occupancy (i.e. meeting rooms).

A.3. Volatile Organic Compounds
Volatile Organic Compounds (VOCs) are emitted from (i) biological sources such as humans, molds, bacteria,
indoor plants; (ii) outdoor sources such as: traffic, industry, agriculture; (iii) furniture; (iv) consumer prod-
ucts such as air fresheners; (v) building materials; (vi) office equipment such as printers; and (vii) household
solvents [49]. VOCs have been associated with (a) activation of the immune system (eye, nose and throat irri-
tations); (b) exacerbation of asthma; (c) carcinogenic effects; (d) headaches; (e) loss of coordination; (f) nau-
sea; and (g) damage to organs such as the liver, kidneys or central nervous system [49], however, the effects
with respect to regular indoor VOC concentrations is still unclear.

VOCs can be regulated through source control. In the past decades, there has been a “continued effort
to develop and use low emitting building materials and consumer products during the last decades, e.g. by
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implementation of national labeling schemes for emission testing (Wolkoff, 2003), a change to lower room
concentrations of VOCs by lower material emissions (Tuomainen et al., 2003), and use of less volatile organic
compounds (Weschler, 2009)" (cited from Wolkoff [34]). Indoor plants are also known to reduce VOCs [50].

VOCs are commonly associated with Sick Building Syndrome (SBS), although the role of VOCs in SBS
complaints is far from being fully understood. Normal indoor air concentrations of VOCs cannot explain
indoor air complaints [51]. It should be noted that the diffusion of VOCs is affected by temperature and
humidity [52]. Consecutively, air conditioners and filters also release VOCs and are themselves associated
with SBS complaints [49]. This might offset results from studies.

Many different types of VOCs are present in typical indoor environments, which makes it practically im-
possible to identify and quantify every compound individually. As a result, a uniform procedure to measure
total volatile organic compound (TVOC) was proposed. Whilst there are no TVOC regulations in most coun-
tries, the WHO includes VOCs such as formaldehyde and benzene in their Indoor Air Quality (IAQ) guidelines,
and, for example, Germany has a TVOC guideline of 300µg/m3 [49].

A.4. Particulate Matter
Particulate Matter (PM) is one of the most dangerous air pollutants, and can cause serious health problems
[53]. The effect of particulate matter on health is dependent on the size of the particles [54]. Therefore, a
distinction is made by defining two categories of particulate matter, namely PM2.5 and PM10. PM2.5 and
PM10 are defined as particles with a diameter up to 2.5 µm and 10 µm respectively. PM2.5 is most harmful,
as these particles can penetrate into the lungs and bloodstream, causing asthma attacks or cardiovascular
problems [55].

A.5. Airflow
An important factor in improving the thermal comfort and the gas composition of a building is the (natural)
ventilation and infiltration. Several processes might take place that affect the movement of air in a building.

Stack effect takes place when there is a difference in air density between the indoors and outdoors and
a site with air leakage [56]. A site of air leakage could, for example, be an open window, a porous exterior
material or a ventilation pipe. A difference in air density might naturally occur when air is blowing past a
building or when either inside or outside has a higher air temperature. The difference in air density causes
either exfiltration or infiltration of gases and contaminants, which could be either beneficial or detrimental
to IAQ.

A proper analysis of the thermal comfort of a building requires measuring the airflow. There is various
software available on the market to simulate airflow dynamics and/or do energy analysis on a building. These
might be helpful to calculate the effect that measures such as opening windows and doors may have on the
temperature, humidity and IAQ. Other measures, such as the effect of installing window blinds on tempera-
ture, can also be simulated.

A drawback of simulating the airflow is that a model needs to be built of the building. This model needs
some specifications of the building, such as the materials used in the building exterior or the HVAC, that
might not be obtainable or possible to model.





B
Predicted Mean Vote

Thermal comfort is frequently modeled using the PMV model. The PMV is a Likert scale scoring from -3 (cold)
to +3 (hot). Values between -1 and 1 are considered satisfactory. Its formula is based on heat-balance equa-
tions and empirical studies about skin temperature. In this project the PMV scale is used to measure thermal
comfort through surveys and as a means of predicting the thermal comfort based on the sensor measure-
ments. The PMV cannot be measured directly and is dependent on many variables, some of which cannot
be measured. For other parameters it suffices to derive the value from another known equation, estimator or
constant value.

The PMV value is expressed using the following equations [41]:

P MV = (0.303e−0.036M +0.028)L (B.1)

where M is the metabolic rate and L is the thermal load, which is defined as follows:

L = (M −W )−H −Ec −Cr es −Er es (B.2)

Where Ec is the evaporation through diffusion and sweat, Er es is the heat loss through vapour from res-
piration, Cr es is the heat loss through temperature of respiration, and H is the radiation minus convection,
which can be derived from:

H = εσ Ar

ADu
· fcl

⌊
(tcl +273)4 + (tr +273)4⌋− fcl ·hc · (tcl − ta) (B.3)

H = Kcl =
tsk − tcl

Icl
(B.4)

Combining the above two equations, gives the following equation for the clothing temperature tcl , which
can be solved iteratively:

tcl = tsk − Icl kl fc l
⌊

(tcl +273)4 + (tr +273)4⌋− Icl fcl hc (tcl − ta) (B.5)

With:

k1 = εσ Ar

ADu
= 3.96 ·10−8 (B.6)

hc =
{

2.38(tcl − ta)0.25, 2.38(tcl − ta)0.25 > 12.1 ·pva

12.1
p

va , 2.38(tcl − ta)0.25 ≤ 12.1 ·pva

}
(B.7)

fcl =
{

1.00+1.29 · Icl , Icl < 0.078m2◦C/W
1.05+0.645 · Icl , Icl ≥ 0.078m2◦C/W

}
(B.8)

H can now be written as a function of tcl :
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H = 3.96 ·10−8 · fcl ·
⌊

(tcl +273)4 + (tr +273)4⌋− fcl ·hc · (tcl − ta) (B.9)

Furthermore:

Ec = 3.05 ·10−3 · [5733−6.99 · (M −W )−Pa]+0.42 · [(M −W )−58.15] (B.10)

Er es = 1.72 ·10−5 ·M · (5867−pa) (B.11)

Cr es = 1.4 ·103 ·M · (34− ta) (B.12)

This yields the following final equation for L, that can be solved for metabolic rate M (well known for
common activities), external work W (usually 0), clothing factor Icl (well known for regular seasonal clothing),
air temperature ta , mean radiant temperature tr , air velocity va and relative humidity r h:

L = (M −W )−3.05 ·10−3 · [5733−6.99 · (M −W )−Pa]

−0.42 · [(M −W )−58.15]−1.7 ·10−5 ·M · (5867−Pa)−1.4 ·103 ·M · (34− ta)

−3.96 ·10−8 · fcl ·
⌊

(tcl +273)4 − (tr +273)4⌋− fcl ·hc · (tcl − ta)

(B.13)

The water vapour pressure pa can be approximated as follows:

pa = r h ·10 ·exp(16.6536− 4030.183

ta +235
) (B.14)

The mean radiant temperature tr is the “uniform temperature of an imaginary enclosure in which radi-
ant heat transfer from the human body equals the radiant heat transfer in the actual nonuniform enclosure
[40]”. Measurements of the globe temperature tg , air temperature ta , and air velocity Va can be combined to
estimate the mean radiant temperature using equation B.15:

tr = [(tg +273)4 + 1.10∗108V 0.6
a

εD0.4 · (tg − ta)]1/4 −273 (B.15)

where Va is the air velocity, tg is the globe temperature, ta is the air temperature, D is the globe diameter and
ε is the emissivity (0.95 for a black globe) [40, 41].



C
Sensors

In this section a variety of indoor air quality sensors will be discussed, namely CO2, VOC, Particulate Matter,
temperature, and humidity sensors. For each of these sensors the different types of sensor technologies avail-
able will be outlined, together with their advantages and disadvantages. Furthermore, a list of commercially
available sensors will be provided that are considered as options for the system. Sensors in these lists were
chosen based on presence in research papers comparing the performance of various sensors, and usage in
consumer IAQ monitors, such as the Foobot and Air Mentor.

C.1. CO2 Sensors
There are two types of sensors most commonly used for CO2 detection, namely chemical sensors [57] and
Non-Dispersive Infrared (NDIR) sensors [58].

Chemical sensors are sensors with polymer-based coatings. CO2 reacts with the polymer coating, which
then changes the mass and dielectric properties of the coating [59]. Advantages of polymer-based chemical
sensors are as follows: (a) high sensitivity [59], (b) short response time [59, 60], (c) low cost [59, 60], (d) simple
structure [59, 60], and (e) low power consumption [59]. However, these sensors suffer from (a) long-term
instability [59], (b) poor selectivity [59], and (c) short lifetime of the coating [60].

NDIR sensors are based on molecular absorption spectrometry [59]. The sensors measure CO2 concen-
tration by detecting which wavelengths are absorbed by the gases present in the sensor’s gas chamber, and
whether these correspond to the wavelengths absorbed by CO2 [59]. NDIR sensors have a large number of ad-
vantages, namely: (a) long-term stability [61], (b) high accuracy [61], (c) low power consumption [61], (d) high
selectivity [61], (e) high sensitivity [61], (f) long lifetime [59], and (g) insensitivity to change in environment
[59]. The drawback of NDIRs however, is their high cost [59].

Table C.1 contains the CO2 sensors that were taken into consideration for the system. The selection of
sensors for that was used in tests for this project are depicted in Figure C.1. It comprises of NDIR sensors
exclusively, as these seem to be the most commercially available. CO2 sensors often require some calibration
in order to produce accurate measurements. The MH-Z14A, MH-Z19B, LP8, and K30 do not ship calibrated,
but they all have Automatic Baseline Correction, which means that over a certain calibration period the lowest
detected CO2 concentration will be considered to be 400 ppm (as these sensors are not able to detect anything
lower). However, issues arise when the CO2 concentration in the sensor environment does not drop to 400
ppm or lower because then the sensor will take a much higher concentration as a reference point for 400 ppm,
which will produce very inaccurate results. Furthermore, the MH-Z14A and MH-Z19B require a zero-point
calibration for at least 20 minutes in an environment with a CO2 concentration of 400ppm before first use.

The SCD30, K33 ELG and S8 LP all come readily calibrated and as such need no additional maintenance,
which gives them an advantage over the aforementioned sensors that are not precalibrated. Out of these three
sensors, the SCD30 and K33 ELG are the most accurate (±30 ppm), and the SCD30 is the most affordable.
Therefore, the decision is made to use the Sensirion SCD30.

The ELT T-110 and Alphasense IRC-A1 are not readily available and therefore not an option due to time
constraints.
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Table C.1: CO2 sensors

Manufacturer Model Measurement
range

Accuracy Measurement
method

Power draw Cost

Alphasense IRC-A1 [62] 0-5000 ppm ±50 ppm NDIR 20-60 mA ?
SenseAir K30 [63] 0-5000 ppm ±30 ppm NDIR 40 mA 98e
SenseAir K33 ELG [64] 0-5000 ppm ±30 ppm NDIR 60 mA 144e
SenseAir S8 LP [65] 400-2000 ppm ±40 ppm NDIR 18 mA 98e
SenseAir LP8 [66] 0-2000 ppm ±50 ppm NDIR 31-225 µA 98e
ELT T-110 [67] 400-10000 ppm ±50 ppm NDIR 20 mA ?
Winsen MH-Z14A [68] 0-5000 ppm ±50 ppm NDIR 60-150 mA 36e
Winsen MH-Z19B [69] 0-5000 ppm ±50 ppm NDIR 60-150 mA 33e
Sensirion SCD30 [70] 0-40000 ppm ±30 ppm NDIR 19-75 mA 42e
Telaire 6703 [71] 400-5000 ppm ±75 ppm NDIR 25 mA 116e

Figure C.1: From left to right: SenseAir S8, SenseAir LP8, Sensirion SCD30, Winsen MH-Z19B and the Winsen MH-Z14A CO2 sensors

C.2. VOC Sensors
There is a variety of VOC sensors, including spectrometers, gas chromatographs, photo-ionization detectors,
and metal oxide semiconductors. Spectrometers and gas chromatographs are very accurate and able to dis-
tinguish between different gases [72]. However, these methods are not only costly but are also not portable,
have a high power consumption and low throughput [73], which makes them not suitable for use in embed-
ded devices. Photo-ionization detectors (PIDs) and metal oxide (MOx) sensors, on the other hand, are more
suitable for such use cases. PIDs detect VOCs by ionizing gas molecules and measuring the current produced
by the created ions. By using UV light for the ionization, only molecules with low ionization energy (thus
molecules of VOCs) are ionized, and not other common components in the air, such as oxygen or nitrogen
[72]. According to Spinelle et al. [72], the advantages of PIDs are as follows: (a) portability, (b) sensitivity, and
(c) low power consumption. Spinelle et al. [72] also mention a couple of disadvantages, namely: (a) despite
their sensitivity, PIDs are not able to detect very low levels of VOCs, (b) poor gas selectivity, as everything
below the ionization energy threshold is ionized, and (c) high cost.

MOx sensors are sensors with metal oxide semiconductors on their surface. Molecules of VOCs react with
the metal oxide, changing the conductivity of the surface, which is measured by the sensor [72, 59]. MOx sen-
sors have the following advantages: (a) high sensitivity to VOCs [73], (b) portability [73], (c) short response
time [73], (d) low cost [73], (e) low power consumption [73], and (f) ability to sense VOCs that are not de-
tectable by PIDs (e.g. some chlorofluorocarbons (CFCs)) [72]. However, MOx sensors also have a couple of
drawbacks: (a) poor gas selectivity (partially due to response to some inorganic gases) [73, 72], and (b) inabil-
ity to detect low levels of VOCs (≤100 ppb) [72].

Both PIDs and MOx sensors are not able to distinguish between individual gases [72].
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Table C.2 contains the VOC sensors taken into consideration for the system in this project. The AMS
iAQ-Core-C is used in the Foobot [6] and Air Mentor [74] monitors. Moreno-Rangel et al. [6] researched the
precision and accuracy of the sensors present in the Foobot, and found the iAQ-Core-C to provide reliable
measurements when compared to scientifically validated instruments. The iAQ-Core-P is the pulsed equiv-
alent of the iAQ-Core-C, with the only difference being power draw, and as such can be expected to perform
similarly. The Figaro TGS 2602 is only able to detect high concentrations of VOCs, making it not very suitable
for measuring IAQ, as the indoor levels are usually much lower.

Although the iAQ-Core-C performed very well according to Moreno-Rangel et al. [6], it turned out to be
calibrated using a proprietary calibration algorithm from Foobot, meaning that out of the box the iAQ-Core-C
will not perform as well. MOx sensors have a poor selectivity for which gases are detected [72]. As a result,
these sensors only provide accurate results when they are specifically calibrated for a composition of gases of
the environment they are placed in. Furthermore, VOC sensors are often calibrated against a specific com-
position of gases, which will skew results in environments with different gas compositions. A solution for this
would be to use a combination of VOC sensors that are all sensitive to different VOCs and to combine the
results, though this is a very involved process [75]. Another issue common in VOC sensors is that their lower
limit of detection is too low to be able to detect the VOC levels for a typical indoor environment. With these
disadvantages of VOC sensors in mind, the decision was made not to measure VOCs for now.

Table C.2: VOC sensors

Manufacturer Model Measurement
range

Measurement
method

Power draw Cost

Figaro TGS 2602 [76] 1-30 ppm MOx 51-61 mA 22e
AMS iAQ-Core-C [77] 125-600 ppb MOx 20 mA 17e
AMS iAQ-Core-P [77] 125-600 ppb MOx 2.7 mA 17e
Sensirion SGP30 [78] 0-60000 ppb MOx 48 mA 23e
Sensirion SGPC3 [79] 0-60000 ppb MOx 1 mA 11e

C.3. PM Sensors
Particulate Matter (PM) is often measured through photometers and optical particle counters (OPCs). Pho-
tometers and OPCs are two types of particulate matter sensors based on light scattering [80]. In light scat-
tering sensors the LED emits light which is scattered by the particles present in the detection volume. The
scattered light is focused by a lens and subsequently measured using a photodetector. The intensity of light
measured by the photodetector is correlated with the concentration of particles present [81].

Photometers are cheaper and more compact than OPCs because they measure all particles present in the
detection volume as a group [81, 53]. However, this also limits their measurement performance, as only the
mass concentration can be determined using this method [80, 81]. Another consequence of measuring all
particles as a group is that the sensors are not size selective, meaning that they are not able to determine the
size of the particles [82]. Additionally, the performance of photometers is affected by particle composition
and size. The refractive index and light absorption of materials influences the light scattering and light in-
tensity respectively, meaning that particles with different properties can produce varying inaccurate results
[81].

OPCs have a detection volume smaller than the ones in photometers, such that only a single particle is
lit each time. This enables OPCs to detect individual particles and their size, as the light intensity measured
by the photodetector now indicates the size of the particle [53]. As a result, OPCs can provide number con-
centrations as well as mass concentrations, where concentrations can also be determined for certain particle
sizes. Furthermore, OPCs can measure particle size distributions as well [54, 80].

Table C.3 contains the Particulate Matter sensors that were taken into consideration for the system. The
selection of sensors used in tests for this project are shown in Figure C.2. All these sensors are based on light
scattering. The SHARP GP2Y1010AU0F and Shinyei PPD42NS are photometers while the others are OPCs.

Moreno-Rangel et al. [6] evaluated the precision of the Sharp GP2Y1010AU0F present in the Foobot. They
found the sensors overestimated PM mass concentrations, yet had good agreement with the scientifically val-
idated instruments. However, the sensors were calibrated using a proprietary Foobot calibration algorithm,
and therefore the sensors will not produce the same results out of the box. Sousan et al. [80] measured the
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Figure C.2: From left to right: Shinyei PPD42NS, Sensirion SPS30 and AlphaSense OPC-R1 PM sensors

precision of the Sharp GP2Y1010AU0F, and found that the output between multiple sensors varied signifi-
cantly, caused by the fact that the sensors are not calibrated in the factory to ensure they produce the same
results. Nevertheless, Sousan et al. [80] stated the SHARP GP2Y1010AU0F would produce reliable mass con-
centrations when calibrated specifically for the site it will be used in to account for the particle composition
present in the environment. Later, Sousan et al. [83] also evaluated the GP2Y1010AU0F present in the Foobot,
however in contrast to Moreno-Rangel et al. [6], came to a similar conclusion as before, namely that it needed
additional site-specific calibration in order to produce reliable results.

The Shinyei PPD42NS is used in the Uhoo [84] and Air Mentor [74] air quality monitors. Prabakar, Mohan,
and Ravisankar [55] found the Shinyei PPD42NS to have a good correlation with the Dylos DC1100 pro, a high-
end laser particle counter that is able to detect individual particles and their size. Qian, Pang, and O’Neill [85]
had the same results when comparing the Shinyei PPD42NS to the Dylos DC1100 pro, also taking the Sharp
GP2Y1010AU0F into consideration and concluding that the PPD42NS significantly outperformed the Sharp
GP2Y1010AU0F.

Both the SHARP GP2Y1010AU0F and Shinyei PPD42NS, being photometers, do not separate particles on
their size, meaning that they only detect the presence of particles and not their size. This lack of size se-
lectivity can be a problem when calculating the mass concentration for different size classes of particulate
matter, such as PM2.5 and PM10 concentrations. The sensors from Alphasense do make this distinction. The
Alphasense sensors however, are both expensive and not easily available as they need to be ordered from the
manufacturer directly, and as such have long delivery times.

Table C.3: PM sensors

Manufacturer Model Particle size
Detectable
concentration Power draw Cost

Sharp GP2Y1010AU0F [86, 87] 0.1-100 µm 0-500 µg/m3 20 mA 10e
Shinyei PPD42NS [88] ≥ 1 µm 0-28000 pcs/L 90 mA 10e

Alphasense OPC-N3 [89] 0.35-40 µm
0.01 µg/m3 -
1500 mg/m3 45-180 mA 327e

Alphasense OPC-R1 [90] 0.35-12.4 µm
0.01 µg/m3 -
1500 mg/m3 5-95 mA 123e

Honeywell HPM [91] 0-10 µm 0-1000 µg/m3 80 mA 35e
Sensirion SPS30 [92] 0.3-10 µm 1-1000 µg/m3 60 mA 42e
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C.4. Temperature and Humidity Sensors
Table C.4 contains the temperature and humidity sensors taken into consideration for this project’s system.
Most sensors are able to measure both temperature and humidity, except for the Bosch BMP180 and Maxim
Integrated DS18B20 that are only able to measure temperature.

The Foobot air quality monitor contains the Sensirion SHT20 for measuring temperature and humidity.
Moreno-Rangel et al. [6] found the sensor to have a very significant agreement with the scientifically validated
instruments used for both temperature and humidity, and as such deemed it to be reliable enough to be rec-
ommended. The SHT31 and SHT35 are the successors of the SHT20 [93]. As the SHT35 is the high-end model
of the SHT3x series with the best accuracy for both temperature and humidity, the decision was made to use
it for the system. Especially for temperature the accuracy is important because of the limited measurement
range (namely room temperature) and small variations in temperature already have a significant effect on
thermal comfort, so it is important to measure that as accurately as possible.

Table C.4: Temperature and humidity sensors

Manufacturer Model Measurement
range

Accuracy Measurement
method

Power
draw

Cost

Sensirion SHT31-DIS-B [93]
0-90 °C,
0-100 %RH

±0.2 °C,
±2%RH

Thermistor,
capacitive
humidity [94]

1.5 mA 17e

Sensirion SHT35-DIS-B [93]
20-60 °C,
0-80 %RH

±0.1 °C,
±1.5%RH

Thermistor,
capacitive
humidity [94]

1.5 mA 12e

Bosch BME280 [95]
0-65 °C,
20-80 %RH

±1.0 °C,
±3%RH

Unknown 3.6µA 24e

Bosch BMP180 [96] 0-65 °C ±1.0 °C Unknown 0.65 mA 5e
Maxim
Integrated

DS18B20 [97] -55-125 °C ±0.5 °C
Digital
thermometer

1.5 mA 10e

Adafruit DHT22 [98]
-40-80 °C,
0-100 %RH

±0.5 °C,
±5%RH

Thermistor,
capacitive
humidity

2.5 mA 10e





D
Open Data

D.1. KNMI
Because of the hypothesis that thermal discomfort may be caused by the radiance from the sun (or absence
thereof) or the difference between the inside and outside temperature, some weather data needs to be col-
lected. Fortunately, KNMI publishes local weather measurements on a daily basis on its website [99]. The
closest KNMI station (Rotterdam) is at a 5 km distance from the VTTI HQ. The KNMI data contains the prop-
erties listed in Table D.1.

Resource Abbreviation Measurement Frequency Measurement size
KNMI WIND.DD Wind Direction (0-360 de-

grees)
1 / hour 2 bytes (small int)

KNMI WIND.FH Hourly Average Wind speed
(m/s)

1 / hour 4 bytes (float)

KNMI WIND.FF Average Wind speed of last
10 minutes (m/s)

1 / hour 4 bytes (float)

KNMI WIND.FX Highest Gust (m/s) 1 / hour 4 bytes (float)
KNMI TEMP.T Outside Temperature in

Celsius
1 / hour 4 bytes (float)

KNMI TEMP.T10N Minimal temperature in
last 6 hours

1 / hour 4 bytes (float)

KNMI TEMP.TD Dew Point Temperature 1 / hour 4 bytes (float)
KNMI SUNR.SQ Sunlight Duration 1 / hour 4 bytes (float)
KNMI SUNR.Q Global Sun Radiation

(J/m2)
1 / hour 4 bytes (float)

KNMI PRCP.DR Duration of Rainfall 1 / hour 4 bytes (float)
KNMI PRCP.RH Hourly Sum of Rainfall 1 / hour 4 bytes (float)
KNMI VICL.VV Vision 1 / hour 1 byte (enum)
KNMI VICL.N Cloudiness 1 / hour 1 byte (enum)
KNMI VICL.U Relative Humidity 1 / hour 4 bytes (float)
KNMI WEER.M Mist 1 / hour 1 byte (boolean)
KNMI WEER.R Rainfall 1 / hour 1 byte (boolean)
KNMI WEER.S Snow 1 / hour 1 byte (boolean)
KNMI WEER.O Thunder 1 / hour 1 byte (boolean)
KNMI WEER.Y Ice Formation 1 / hour 1 byte (boolean)

Table D.1: KNMI data available properties
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General Information
Title of the project: Optimizing office space utilization using an Indoor Air Quality sensor network
Name of the client organization: VTTI
Date of the final presentation: July 2nd, 2019 15:00

Description
Sick Building Syndrome is present in 30% of all office buildings and can cause serious health damage over
time. This is an era where sustainability and well-being are becoming dominant aspects of life. As a result,
it is becoming increasingly important to businesses to invest in their employees’ well-being and health. The
VTTI group cares for the well-being of their employees, and is looking for a tool to optimize the utilization of
their building for perceived thermal comfort and indoor air quality.

This report documents the development of Claire, an indoor air quality dashboard that helps to identify
local air quality problems. Using Claire, employees can be rearranged throughout the space, learn about
the characteristics of their office, and for example switch to another meeting room. Claire translates mea-
surements into insights. Claire learns about the behavior of the office, and gives recommendations once she
notices that the indoor air quality can be improved.

Claire is backed by an indoor air quality sensor mesh network, which has been developed as part of this
project. The sensors continuously measure temperature, humidity and carbon dioxide concentrations. The
sensors connect to a cloud infrastructure through a local internet gateway. In the cloud the data gets pro-
cessed. All measurements are displayed real-time in the dashboard.

Claire is different from existing products in several ways. First, the sensors developed measure both dry-
bulb and black globe temperature, which gives it a temperature reading that describes human thermal com-
fort more accurately. This is not done in competing products. Furthermore, the sensors fill the gap for small
and medium-sized enterprises (SMEs): the sensor network is able to get fine-grained results due to its high
sensor density, whilst still being very easy to setup with no adjustments to the building being required. Finally,
the developed data analysis methods translate the measurements from the sensor network to concrete sug-
gestions, sent through a push notification, which enables workers to get involved with improving the indoor
air quality in their office space.

Members of the project team
Name: Jan-Willem Gmelig Meyling
Interests: Software Engineering, Database Systems, Distributed Computing
Contribution and role: dashboard frontend and backend development, sensor assembly

Name: Sayra Ranjha
Interests: Multimedia, Artificial Intelligence, Computer Vision, Quantum Computing
Contribution and role: embedded firmware programming, data analysis layer, sensor testing and selection

Name: Leon Hoek
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Interests: Data Mining, Pattern Recognition, Software Testing
Contribution and role: data analysis layer, software integrations, databases

Contact Information
Client Supervisor: Margreeth Doornbosch - Management Assistant at VTTI
Client Supervisor: Ruud Timmermans - Global Automation Lead at VTTI
Client Supervisor: Margit Blok - Global Director Health, Safety & Environment (HSE) at VTTI
TU Delft Coach: Hayley Hung - Associate Professor Intelligent Systems Department Delft University of Tech-
nology
TU Delft Coach: Ekin Gedik - Postdoctoral Researcher Socially Perceptive Computing Group Delft University
of Technology

The final report for this project can be found at: http://repository.tudelft.nl

http://repository.tudelft.nl


F
Project description

Time series data analysis for measuring indoor air quality in buildings
Keywords: indoor air quality, data processing, forecasting, time series data

Context
According to the World Health Organization, as many as 30% of all buildings suffer from a phenomenon
known as Sick Building Syndrome (SBS). Bad Indoor Air Quality (IAQ) is known to cause a drop in produc-
tivity up to 50%, for instance caused by fatigue and headaches. Clairify is a start-up company in the indoor
air quality industry. At Clairify we tackle unhealthy indoor air quality with smart software and IoT that opti-
mizes offices and assists employees in taking action to improve the IAQ, resulting in higher productivity and
enhanced cognition. We want buildings to breathe.

Together with VTTI we have put our heads together to measure indoor air quality and comfort within
their offices. VTTI is a company that specializes in tank storage, and currently has over 9.2M cubic meters
of storage spread over facilities in 14 countries. VTTI is very involved with the well-being of their employees
and realizes how important clean air is. Therefore, Clairify has deployed sensor hardware at VTTI and is
conducting measurements as well as consulting VTTI on indoor air quality. During these measurements the
opportunity became apparent of collecting data at a larger scale, with greater sensor density and being able
to read (and act on) these results in real time.

VTTI is looking for a tool that will engage their employees with the air quality within the building. For
example, it would be particularly useful to see actual air quality standards of available meeting rooms, so that
you can pick a meeting room with fresh air. Or to receive a notification that a particular room is polluted
and requires ventilation. Furthermore, employees have indicated thermal discomfort, which is believed to be
caused by the zoning of the HVAC system and positioning of the interior with regard to the ventilation vents,
so VTTI would like to know whether measuring air quality could provide valuable insights how to optimally
use their building.

The project
1. Develop a backend system that collects and processes data from the deployed sensors, based on an

open protocol that will allow for custom extensions (i.e. integrations with building management sys-
tems or HVAC)

2. Post-process the data, for example: normalize sensor values for their deviation, correlate different types
of sensor values, compute derived metrics (human readable scale), predict future sensor data based on
periodic patterns and detection of anomalies

3. Research which indoor air quality metrics should be displayed in the dashboard

4. Develop a dashboard front-end that displays real time data of a building

5. Develop a mechanism of notifying VTTI employees (e.g. Whatsapp, smart watch, dashboard, etc)
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During the project VTTI will take on the role of product owner and stakeholder. There will be regular
project meetings at the VTTI headquarters and the possibility to come by the office any time to either work
on the project, conduct some tests, or obtain user feedback as the project progresses. There also will be
regular meetings with Clairify. We at Clairify will assist the team in connecting to our sensor architecture as
well as provide you with information as to how sensor data should be interpreted.

We are looking for enthusiastic students with a strong interest in time series data processing, databases
and front-end applications who are willing to take the challenge of developing a new platform to improve
indoor air quality within buildings.



G
Software Improvement Group feedback

Initial feedback
De code van het systeem scoort 3.2 sterren op ons onderhoudbaarheidsmodel, wat betekent dat
de code marktgemiddeld onderhoudbaar is. We zien Unit Interfacing en Unit Size vanwege de
lagere deelscores als mogelijke verbeterpunten.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een bovengemid-
deld aantal parameters. Doorgaans duidt een bovengemiddeld aantal parameters op een gebrek
aan abstractie. Daarnaast leidt een groot aantal parameters nogal eens tot verwarring in het aan-
roepen van de methode en in de meeste gevallen ook tot langere en complexere methoden. Dit
kan worden opgelost door parameter-objecten te introduceren, waarbij een aantal logischerwijs
bij elkaar horende parameters in een nieuw object wordt ondergebracht. Dit geldt ook voor con-
structors met een groot aantal parameters, dit kan een reden zijn om de datastructuur op te split-
sen in een aantal datastructuren. Als een constructor bijvoorbeeld acht parameters heeft die lo-
gischerwijs in twee groepen van vier parameters bestaan, is het logisch om twee nieuwe objecten
te introduceren.

Voorbeelden in jullie project:

• PMV.js:PMV

Bij Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Dit kan
verschillende redenen hebben, maar de meest voorkomende is dat een methode te veel func-
tionaliteit bevat. Vaak was de methode oorspronkelijk kleiner, maar is deze in de loop van tijd
steeds verder uitgebreid. De aanwezigheid van commentaar die stukken code van elkaar schei-
den is meestal een indicator dat de methode meerdere verantwoordelijkheden bevat. Het op-
splitsen van dit soort methodes zorgt er voor dat elke methode een duidelijke en specifieke func-
tionele scope heeft. Daarnaast wordt de functionaliteit op deze manier vanzelf gedocumenteerd
via methodenamen.

Voorbeelden in jullie project:

• NetatmoDataResource.getMeasurements(String,String,Property...)
• OAuthCallbackServlet.doGet(HttpServletRequest,HttpServletResponse)
• NetatmoFetchDataTimerBean.fetchAllTheDatas()
• backend.py:getTrendyLine()
• backend.py:submitSurvey()

Als laatste nog de opmerking dat er geen (unit)test-code is gevonden in de code-upload. Het is
sterk aan te raden om in ieder geval voor de belangrijkste delen van de functionaliteit automa-
tische tests gedefinieerd te hebben om ervoor te zorgen dat eventuele aanpassingen niet voor
ongewenst gedrag zorgen. Op lange termijn maakt de aanwezigheid van unit tests je code ook
flexibeler, omdat aanpassingen kunnen worden doorgevoerd zonder de stabiliteit in gevaar te
brengen.
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Final feedback
In de tweede upload zien we dat het codevolume is gegroeid, terwijl de score voor onderhoud-
baarheid is gestegen.

We zien dat de verbeterpunten uit de feedback op de eerste upload zijn aangepast, en op deze
gebieden is dan ook een verbetering in de deelscores te zien. Jullie hebben ook een vrij grote stap
weten te maken op de genoemde gebieden.

Het is goed om te zien dat er naast nieuwe productiecode ook nieuwe testcode is geschreven.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige evaluatie zijn
meegenomen in het ontwikkeltraject.



H
Model parameters and characteristics

Table H.1: Common model parameters

Batch size 128
Train : validation : test ratio 70 : 20 : 10

Table H.2: Parameters per model

Model Loss
function

Epochs Train window Prediction window Resampling
interval

1 MAE 100 96 samples (24 hours) 4 samples (1 hour) 15min
2 MSE 100 96 samples (24 hours) 4 samples (1 hour) 15min
3 MAE 100 288 samples (24 hours) 12 samples (1 hour) 5min
4 MAE 200 12 samples (1 hour) 12 samples (1 hour) 5min
5 MAE 125 24 samples (2 hours) 12 samples (1 hour) 5min
6 MAE 200 36 samples (3 hours) 12 samples (1 hour) 5min
7 MAE 65 84 samples (7 hours) 12 samples (1 hour) 5min
8 MAE 55 132 samples (11 hours) 12 samples (1 hour) 5min
9 MAE 100 288 samples (24 hours) 12 samples (1 hour) 5min
10 MAE 100 288 samples (24 hours) 12 samples (1 hour) 5min
11 MAE 100 288 samples (24 hours) 12 samples (1 hour) 5min
12 MAE 40 288 samples (24 hours) 12 samples (1 hour) 5min
13 MAE 200 672 samples (56 hours) 12 samples (1 hour) 5min
14 MAE 200 288 samples (24 hours) 12 samples (1 hour) 5min
15 MAE 200 288 samples (24 hours) 12 samples (1 hour) 5min
16 MAE 100 288 samples (24 hours) 12 samples (1 hour) 5min
17 MAE 200 288 samples (24 hours) 12 samples (1 hour) 5min
18 MAE 200 288 samples (24 hours) 12 samples (1 hour) 5min
19 MAE 400 288 samples (24 hours) 12 samples (1 hour) 5min
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Table H.3: Evaluation results per model

Model Loss Normalized
MAE

MAE Normalized
MSE

1 0.0373 0.0373 4.5674 0.0038
2 0.0081 0.0615 7.5309 0.0081
3 0.0370 0.0370 4.5100 0.0043
4 0.0410 0.0410 5.2367 0.0044
5 0.0385 0.0385 4.9087 0.0045
6 0.0374 0.0374 4.7765 0.0047
7 0.0400 0.0400 5.1015 0.0043
8 0.0420 0.0420 5.3588 0.0046
9 0.0389 0.0389 4.7454 0.0046
10 0.0372 0.0372 4.5302 0.0053
11 0.0393 0.0393 4.7900 0.0058
12 0.0371 0.0371 4.5255 0.0043
13 0.0583 0.0583 7.4118 0.0126
14 0.0383 0.0383 4.8895 0.0050
15 0.0356 0.0356 4.5419 0.0049
16 0.0524 0.0524 6.6940 0.0079
17 0.0357 0.0357 4.5573 0.0046
18 0.0389 0.0389 4.9721 0.0062
19 0.0345 0.0345 4.4057 0.0049
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5 (f) Model 6

(g) Model 7 (h) Model 8

Figure H.1: Training and validation losses per epoch
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(i) Model 9 (j) Model 10

(k) Model 11 (l) Model 12

(m) Model 13 (n) Model 14

(o) Model 15 (p) Model 16

Figure H.1: Training and validation losses per epoch (cont.)
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(q) Model 17 (r) Model 18

(s) Model 19

Figure H.1: Training and validation losses per epoch (cont.)
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(a) Models 1 and 2

(b) Models 3, 15, and 19

(c) Model 4

(d) Model 5

(e) Model 6

(f) Model 7

Figure H.2: Diagram of each model
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(g) Model 8

(h) Model 9

(i) Model 10

(j) Model 11

(k) Models 12 and 14

(l) Model 13

Figure H.2: Diagram of each model (cont.)
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(m) Model 17

(n) Model 16 (o) Model 18

Figure H.2: Diagram of each model (cont.)



I
Final sensor

Figure I.1: The sensors that were built for this project
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Glossary

Bluetooth A wireless communication technology frequently used in Internet of Things applications. 11, 12
Building Symptom Index A pseudo standardized scoring based on reported Sick Building symptoms among
employees [5]. 1, 2

GeoJSON A JSON based format used for storing geographical features. 21

I2C A serial communication bus used in electronic circuits. 15
InfluxDB A popular time series database system. 13, 14, 29, 30

JSON Web Token A method of authentication through self-contained authentication tokens. 21

Likert scale A psychometric scale commonly used in questionnaires. 17
LoRaWAN A wireless communication technology frequently used in Internet of Things applications. 12

map rendering library a library involved in displaying geographical charts. 21
mesh Devices in a mesh topology connect to each other in a non-hierarchical manner, enabling any device
in the network to act as a repeater. 12
message broker A message broker is an intermediary module that routes messages from senders to receivers.
Message broker is an enterprise integration patterns described in Enterprise Integration Patterns : Designing,
Building, and Deploying Messaging Solutions. 4, 13

neural network A computing system used in machine learning. 25

Particulate Matter an indoor air pollutant. 2–4, 36, 43, 47, 49
PostgreSQL A popular relational database system. 13
Predicted Mean Vote method for estimating the perceived thermal comfort of a group of people. 17, 41
publish-subscribe Publish–subscribe is a messaging pattern where senders of messages to not address spe-
cific receivers, but instead publish messages into topics without prior knowledge of which receivers are listen-
ing to this topic. Publish-subscribe is an enterprise integration patterns described in Enterprise Integration
Patterns : Designing, Building, and Deploying Messaging Solutions. 13

REST Representational State Transfer (REST) is a software architecture style consisting of guidelines and best
practices for creating scalable web services. REST was introduced by Fielding. 17

Sick building syndrome Sick building syndrome is a medical condition identified by a set of symptoms gen-
erally observed among office workers, is estimated to be present in 30% of all office buildings and can cause
serious health damage over time [2]. 1, 41, 43, 57

templating library a library involved in binding data to the user interface at the client side. 21
time series A set of data points with temporal order. 4

UART A serial communication bus used in electronic circuits. 15

Z-Wave A wireless communication technology frequently used in home automation applications. 11, 12
ZigBee A wireless communication technology frequently used in home automation applications. 11, 12
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Acronyms

GPU Graphics processing unit. 27, 30

HVAC Heating, ventilation and air conditioning. 1, 39, 43, 57

IAQ Indoor Air Quality - the air quality within buildings and structures. 31, 41, 43, 47, 49, 57

PAQ Perceived Air Quality - an umbrella of reported descriptors like temperature, presence of odor/smell,
and experience of stuffy, dry or wet (humid) air [34]. 41, 42
PMV Predicted Mean Vote. 17, 31, 37, 39, 41, 42, 45, Glossary: Predicted Mean Vote
PPD Predicted Percentage Dissatisfied, derived from the Predicted Mean Vote. 15, 41, 42

SBS Sick Building Syndrome. 1, 41–43, 57, Glossary: Sick building syndrome

TVOC Total Volatile Organic Compounds - a uniform procedure to measure total volatile organic compounds
(VOCs). 4, 43

VOC Volatile Organic Compounds - an indoor air pollutant. 3, 36, 41–43, 47–49

WHO World Health Organization. 43
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