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Preface 
 

With this thesis, my journey at the TU Delft will be finished. I started this journey as the first cohort of the 

bachelor program Clinical Technology, without having any idea where it would bring me. During my bridging 

program to Medicine after completing my bachelor, I realized that it was not only the clinical practice that 

excited me, but it was especially the combination of technology and medicine. I started the Technical Medicine 

master track Sensing & Stimulation, together with 9 enthusiastic students. After the first year with inspiring 

teachers and interesting topics, I performed my second-year internships at the department of Transplantation 

Surgery, the Intensive Care Unit and the Neonatal Intensive Care Unit. I was immediately triggered by the 

intensive care environment and its complex patient population, multidisciplinary team and advanced monitoring 

and technology offers many opportunities and challenges for a technical physician to be. During my industry 

internship at Philips Research, I had the opportunity to improve my skills and increase my interest in signal 

processing and patient monitoring. It was therefore that this present thesis project, in which I could combine 

my passion for the ICU, patient monitoring and signal processing, sparked my interest. The subject of sleep and 

circadian rhythms was very appealing, perhaps also because I conducted my high school research project on the 

effects of circadian disturbances on expression of brown fat in mice. Without having in depth knowledge of 

machine learning, I kicked off this internship by following a TU Delft machine learning course. Whereas I thought 

I had already finished my last exam by ending my first master’s year, there was one more to go: this machine 

learning exam, topped off by the experience of digital home exams during the COVID-19 pandemic. During this 

thesis project, I learned a lot regarding clinical, technical and scientific aspects, as I performed an explorative 

study and developed machine learning models on physiological data sets. I really enjoyed working at the PICU 

environment, where I learned so much about the fascinating congenital disorders, technical challenges 

encountered in the PICU and relevance of sleep and its disturbances in PICU patients.  

 

I am really excited to work in multidisciplinary environments and combine my enthusiasm for the human body 

and technology in clinical practice. Therefore, I am looking forward to start my career as a technical physician 

and to discover what the future has in store!   
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Summary 
 

Sleep deprivation is commonly encountered in critically ill children admitted to the pediatric intensive care unit 

(PICU) and is associated with poor clinical outcome. Automated electroencephalography (EEG)-based 

monitoring of sleep enables the study of sleep without the need for visual assessment of the EEG signals, the 

golden standard. The real-time and continuous assessment of a patient’s sleep state that could be established 

by automated EEG-based sleep monitoring is a prerequisite for individual optimization of sleep.  

 

This thesis aimed to explore the potentials and pitfalls of automated sleep monitoring in PICU patients, that 

has – to our knowledge – not been developed yet. First, a literature study was performed to summarize the 

effects of various PICU factors on the sleep EEG and discuss proposed sleep monitoring methods in adult ICU 

and neonatal ICU patients. It was concluded that many medical conditions, sedatives and analgesics cause 

slowing of the EEG that challenge PICU sleep monitoring. In healthy adults, many classification methods have 

been proposed, varying from simple threshold-based methods to complex neural networks. The study of 

automated sleep monitoring in adult ICU patients has been limited, although more studies have investigated 

automated sleep monitoring in NICU patients. Next, an explorative study was performed in which various 

classification methods for automated EEG-based sleep monitoring in both non-critically as well as critically ill 

children were developed and evaluated. It was concluded that a simple index measure is a promising method to 

monitor sleep in PICU patients. Machine learning models developed in non-critically ill patients cannot easily be 

applied to PICU patients in whom the sleep EEG is frequently deviant. Future efforts should focus on further 

tuning, training and validating the classification models with more PICU data. In Part I of this thesis, the 

literature study can be found. Part II consists of the research report of the explorative study. Supplementary 

materials are provided at the end of this thesis report.  

 

Although the results do not encourage immediate implementation in clinical practice, they do warrant further 

development and testing. With this thesis, a first step towards automated sleep monitoring in the PICU has 

been made. 
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The potential and challenges of automated EEG-based sleep 

monitoring in critically ill children: a literature review  
 

F.W. (Floor) Hiemstra, MSc student Technical Medicine 

 

Abstract 
Sleep deprivation is commonly encountered in critically ill children admitted to the paediatric 

intensive care unit (PICU) and is associated with poor clinical outcome. Automated 

electroencephalography (EEG)-based depth of sleep monitoring enables real-time continuous study 

of sleep in PICU patients without the need for visual assessment of the EEG signals, the gold 

standard. Real-time and continuous knowledge of a patient's sleep state is an essential prerequisite 

for individual optimization of sleep. A variety of PICU factors interfere with the EEG, including 

the patient’s age and developmental state, underlying illness and medication. The heterogeneous 

PICU population challenges the development of an automated sleep monitoring method, which 

has, to our knowledge, not been developed yet. This review aids in this development by providing 

an overview of the potential and barriers of an automated EEG-based sleep monitoring method 

in critically ill children by summarizing the effects of various PICU factors on the sleep EEG and 

discussing proposed sleep monitoring methods in adult ICU and neonatal ICU patients. 

 

 

1. Introduction 
 

Sleep is a vital state of the human body that is 

essential to life. Although its function is not fully 

understood, sleep is thought to have a restorative and 

memory consolidative function1. Children admitted 

to the pediatric intensive care unit (PICU) are 

exposed to various risk factors for sleep deprivation 

including environmental factors, medication, 

morbidity and discomfort2. Sleep studies in PICU 

patients demonstrated frequent occurrence of sleep 

deprivation, characterized by fragmentation of sleep, 

reduced total sleep time, disrupted sleep architecture 

and a disproportional amount of sleep occurring 

during daytime3–7. Sleep deprivation affects the 

homeostatic processes of the body8 and is associated 

with immune dysfunction9,10 and development of 

delirium11, all potentially leading to poor outcomes 

and prolonged PICU stay. Besides, in children, sleep 

also has an important role in brain maturation12. It 

must be clear that the importance of sleep during 

(recovery from) critical illness deserves attention, 

particularly for children who are undergoing active 

neurologic maturation. Monitoring of sleep enables 

the revelation of links between negative outcomes 

and sleep deprivation, and optimization of sleep.  

 

Sleep can be measured using a combination of 

electroencephalography (EEG), electromyography 

(EMG) and electrooculography (EOG). Based on the 

spectral composition and features in the EEG, EMG 

and EOG signals, sleep can be divided into four 

different stages that indicate the depth of sleep: rapid 

eye movement (REM) sleep and non-REM (NREM) 

sleep, subdivided into NREM stage 1 (N1), NREM 

stage 2 (N2) and NREM stage 3 (N3). In healthy 

adults, N1, N2, N3 and REM alternate in a cyclical 

fashion defining the normal sleep architecture. Sleep 

staging is traditionally done by visual analysis of 

these signals according to the American Association 

of Sleep Medicine (AASM) criteria13. However, the 

use of the AASM criteria in characterizing sleep of 

critically ill patients is often debated due to 

confounding of the EEG signals by effects of the 

underlying illness and medication14–17. This 

confounding and the subjective nature of visual sleep 

scoring leads to a high inter-observer variability. 

Ambrogio et al. showed that interobserver variability 

of visually scored sleep EEGs from sedated and 

mechanically ventilated critically ill adult patients (κ 

= 0.52 ± 0.23) is high compared to that for the 

healthy control patients (κ = 0.89 ± 0.13; p = 

0.03)18. Furthermore, visual scoring of the EEG 

signals is time-consuming and requires skilled 

personnel. Automated monitoring of sleep has the 

potential to continuously and in real time indicate 

depth of sleep, which could be used to directly detect 

disturbed sleep patterns and optimize sleep.  
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Sleep staging could be automated by computerized 

processing of EEG signals. Next to the EEG signals, 

other physiological signals could also provide 

information about a patient’s sleep stage, including 

ECG, EMG, EOG and respiratory signals, or a 

combination of multiple physiological signals. 

However, the intensive support of heart and lung 

function and administration of muscle relaxants 

limits the use of ECG, EMG and respiratory signals 

in sleep staging. Actigraphy has also been suggested 

to assess sleep by measuring motion with an 

accelerometer, typically placed on the wrist or 

ankle19,20. By counting the movements within an 

epoch, the device can determine if the patients is 

probably asleep or awake. Clearly, this method could 

not provide any information related to the stage of 

patient’s sleep. The primary weakness of actigraphy 

in the assessment of sleep is that it is solely based 

on the quantification of movements, while most ICU 

patients have reduced movement due to sedation, 

muscle relaxants and critical illness. Therefore, EEG 

remains the golden standard in the assessment of 

sleep. 

 

Several attempts have been made to develop an 

automated sleep staging algorithm to monitor sleep 

of patients admitted to the adult ICU or neonatal 

intensive care unit (NICU), using EEG signals. These 

algorithms determine features in the EEG signal that 

correlate with the depth of sleep, which is related to 

the previously described sleep stages, in critically ill 

patients. Since maturation of the brain during 

childhood is associated with changes in the sleep 

EEG21, these algorithms developed for ICU or NICU 

may not be suitable for depth of sleep monitoring in 

all critically ill children admitted to the PICU. To 

our knowledge, an algorithm that is specifically 

suitable for depth of sleep monitoring in critically ill 

children has not been developed yet.  

 

The heterogeneity in age and critical illness 

encountered in the PICU introduces several 

challenges in the development of an automated sleep 

monitoring method. The objective of this literature 

review is to a) summarize the effects of PICU factors 

on the sleep EEG that might interfere with the sleep 

staging process, and b) discuss the methods used to  

automatically monitor depth of sleep based on EEG 

signals in critically ill adults and neonates. This  

Table 1. EEG frequencies 

Frequency band Frequency range 

Gamma 30 – 48 Hz 

Beta 13 – 30 Hz 

Alpha 8 – 13 Hz 

Theta 4 – 8 Hz 

Delta 0.5 – 4 Hz 

 

review could aid in the development of an 

automated sleep monitoring method in the PICU by 

summarizing the potentials and challenges of sleep 

EEG assessment. In section 2, background 

information on the normal sleep EEG is provided. 

Section 3 discusses the changes in the sleep EEG 

occurring with the progression of age. The effects of 

critical illness on the EEG, including underlying 

illness and medication, are discussed in section 4. In 

section 5, methods used for automated sleep 

monitoring in healthy adults, critically ill adults and 

neonates are discussed. The review ends with a 

discussion and conclusion in section 6 and 7.  

 

2. Normal sleep EEG 
 

The EEG measures the electrical activity of the brain 

with multiple electrodes placed along the scalp. The 

measured voltage fluctuations over time are a result 

of the ionic current within the neurons of the brain. 

Oscillations in the EEG represent synchronized 

activity over a network of neurons. Sleep is 

characterized by slowing of the neuronal firing 

patterns, which could be observed as the low-

frequency waves in the EEG during sleep22. Together 

with EMG on the chin, which measures the 

submental muscle tone by measuring the electric 

potential of the muscle cells, and EOG, which 

detects the eye movements by measuring the retinal 

potential, EEG is used to distinguish the four 

different sleep stages by their spectral composition 

and specific features. This staging is traditionally 

conducted by visual analysis of the EEG, EMG and 

EOG signals on a 30 second epoch basis according 

to the AASM criteria13. Sleep stages were originally 

defined by Rechtschaffen and Kales (R&K) in 1968 

based on polysomnographic (EEG, EOG, EMG) 

riteria23. These criteria were used from 1968 to 2007 

until the AASM updated the criteria and introduced 

the current international guidelines for the 

assessment of sleep. The definition of the various 
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sleep stages is originally based on the EEG 

observations rather than physiological observations. 

In the EEG, the background activity and transients 

are important characteristics for each stage. To 

describe the background activity, the following EEG 

frequency bands are defined: gamma activity as 30 

to 48 Hz, beta activity is 13 to 30 Hz, alpha is 8 and 

13 Hz, theta is 4 and 8 Hz, and delta is the slowest 

activity, 0.5 of 4 Hz (Table 1). The EEG frequencies 

are thought to represent oscillatory communications 

between systemic interconnections of neurons24. An 

important rhythm in the assessment of the EEG is 

the dominant posterior rhythm (DPR). In healthy 

adults, this rhythm has a frequency in the alpha 

range (8.5 – 12 Hz) and is seen in the posterior head 

regions during relaxed wakefulness with the eyes 

closed. The DPR typically attenuates with opening 

of the eyes as a result of the activation of the visual 

cortex. Another characteristic to describe the EEG 

are transients, i.e., short-lasting EEG features, like 

typical waves or burst patterns. The muscle tone is 

assessed by the amplitude of the chin EMG. In the 

EOG, the speed of eye movements and eye blinks 

can be observed.  

 

The wake stage is characterized by high frequency 

EEG activity (> 50% of the epoch is alpha activity) 

and high muscle tone that decreases when the eyes 

are closed13. After falling asleep, stage N1 is 

typically first entered. N1 is the transitional stage 

and lightest stage of sleep with a very short duration 

in the sleep cycle. N1 is characterized by low 

voltage, fast EEG activity. Stage N1 sleep is scored 

when more than 15 seconds (≥50%) of the epoch is 

made up of theta activity, sometimes intermixed 

with low-amplitude beta activity. Toward the end of 

stage N1, vertex sharp waves may occur. Vertex 

sharp waves are sharply contoured, negative-going 

bursts that stand out from the background activity. 

In N1, muscle tone decreases and only slow eye 

movements are present. In stage N2, the EEG 

activity slows down and amplitudes are increased. 

Muscle tone further decreases and eye movements 

disappear. N2 is marked by predominant theta 

activity with bursts of faster activity. In this stage, 

K-complexes and sleep spindles occur for the first 

time. K-complexes are represented by a sharp 

negative wave followed by a slower positive 

component. Sleep spindles are phasic bursts of 11 to 

16 Hz activity of short duration. N1 and N2 are 

together referred to as “non-slow wave sleep” 

Figure 1. EEG for different stages of sleep: awake, N1, N2, N3 and REM sleep. The background 

frequencies (mixed frequency, alpha and delta), K-complexes, sleep spindles and sawtooth waves are 

shown in the figure. Retrieved from: Fraiwan et al. (2012)135 
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(NSWS). Stage N3 is the deepest stage of sleep with 

a high arousal threshold. Characterized by its high 

amplitude and low frequency EEG waves, this stage 

is referred to as “slow wave sleep” (SWS). K-

complexes and sleep spindles may be seen in N3. If 

>20% of the epoch is delta activity, the epoch is 

scored as N3. The time spent in N3 decreases with 

age. REM sleep is a paradoxical sleep stage in which 

the EEG resembles wakefulness and physiological 

activity is high, while muscle tone is very low. 

Dreaming most often occurs during this stage. The 

EEG of REM sleep is characterized by relatively low-

amplitude, mixed frequency EEG theta waves, 

intermixed with some alpha waves. In this stage, 

sawtooth waves can be present. These are 2-6 Hz, 

sharply contoured triangular EEG patterns that 

occur in series for a few seconds. As the name 

suggests, REM sleep is marked by its rapid eye 

movements13.  

 

3. Sleep EEG in children 
 

Age is a crucial factor to take into account when 

evaluating sleep. Where neonates typically spend 16 

to 18 hours per day sleeping, sleep time in adults is 

decreased to one-third of the day. Also, significant 

changes in sleep architecture occur with age. These 

changes are most significant in the first months of 

life and correspond well with critical periods of brain 

maturation25. For example, the amount of REM 

sleep decreases considerably. A term infant spends 

50% of sleep time in REM sleep, falling to 30% by 

6 months of age and to 20-25% by 5 year of age, 

equal to adult levels26. Beside these developmental 

changes in sleep architecture, the sleep EEG also 

varies considerably as children mature. Remarkable 

development in continuity of EEG activity, dominant 

frequency, presence of typical patterns and 

waveforms and differentiation in sleep stages are 

observed in the sleep EEG. The EEG sleep patterns 

mature as the child matures. A delay in the 

development of the sleep EEG is associated with a 

global developmental delay27. As the sleep EEG has 

reached its adult-like version after 6 months, the 

DPR keeps increasing in frequency with age until 

adolescence28. Due to these changes, the AASM 

provided separate criteria for scoring sleep/wake 

states for infants aged 0 to 2 months and children 

aged between 2 months and 18 years13. In this 

section, the most significant developmental changes 

in the sleep EEG are described for different age 

categories. Since the PICU admits critically ill 

infants and children aged 0 – 18 years with the 

exception of preterm neonates, developmental 

changes in the sleep EEG are discussed for term 

neonates to 18-year adolescents. Term neonates are 

defined as neonates born > 37 weeks gestational age 

(GA). The GA is defined as the time elapsed 

between the first day of the mother’s last menstrual 

period and the day of birth.  

 

As the sleep EEG develops most significantly in the 

neonatal period, understanding of the exact age of 

the infant is essential in this period to correctly 

interpret the sleep EEG. It is important to note that 

the sleep EEG of the neonate does not reflect the 

postnatal age of the brain (i.e. the number of days 

following birth), but rather the postmenstrual age 

(PMA), which refers to the time from the last 

menstrual period to the date of assessment29. Under 

low-risk conditions, the brain, and thereby the EEG, 

develops independent of whether the infant is in 

utero or post-delivery. This implies that the EEG of 

a 3-week-old term neonate born at gestational age 

(GA) 40 weeks, is comparable to that of a 11-week-

old low-risk premature infant born at GA 32 weeks. 

Up to the postnatal age of 3 months, the age 

expressed in PMA best reflects the EEG30. In 

preterm neonates born prior to 32 weeks GA, sleep 

and wake could not be identified 

electrographically31. The EEG is asynchronous 

between both hemispheres and discontinuous with 

periods of suppression alternated by intermittent 

bursts of activity characterized by sharply contoured 

EEG waves. With progression of the GA, the EEG 

becomes more continuous and the duration of 

periods of suppression and bursts diminishes32. 

 

0 – 2 months 
In the first weeks, sleep onset is typically REM sleep, 

which changes to N1 sleep onset after 3 months. A 

neonate typically has a sleep-wake cycle of 2 to 4 

hours, independent from day or night. This sleeping 

pattern gradually changes during the weeks 

following birth. Sleep continuity increases and sleep 

becomes more dominant during the night and 

wakefulness during the daytime. By the age of 2 

months, this circadian rhythm is established25. In 
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term infants aged 0 to 2 months, three sleep stages 

are distinguished: active (or REM) sleep, quiet (or 

NREM) sleep or transitional sleep. EEG patterns 

during active sleep are continuous. Similar to adult 

sleep, rapid eye movement and low muscle tone are 

seen. Two types of active sleep could be observed in 

neonates: AS1 and AS2/LVI. AS1 typically occurs 

following wake and contains intermixed high 

amplitude delta activity with lower voltage theta 

activity. This pattern is termed ‘mixed’ (Figure 2D). 

AS2/LVI typically occurs following a period of quiet 

sleep and consists of primarily continuous irregular 

low voltage mixed frequency with low voltage theta 

activity intermixed with occasional low voltage delta 

activity, referred to as “low voltage irregular” (LVI) 

(Figure 2B). The same EEG patterns could be 

observed during wakefulness, making them hard to 

distinguish. During quiet sleep, the EEG is 

characterized by an alternating background pattern 

with high voltage bursts of delta activity alternating 

with periods of lower voltage theta activity. This 

pattern is referred to as “tracé alternant” (TA) 

(Figure 2C). Another typically seen pattern during 

quiet sleep is continuous high voltage delta activity, 

referred to as “high voltage slow” (HVS) (Figure 

2B).  In normal brain maturation, the proportion of 

HVS increases while the proportion of TA decreases 

during quiet sleep with progression of age33. By 4 

weeks of age, TA usually disappears, fully replaced 

by HVS. Muscle tone during quiet sleep is higher 

than muscle tone during active sleep. The wake 

stage is therefore most reliably scored by behavioural 

observation because many of the distinctive EEG 

features of the wake stage are not seen at this age. 

Sleep spindles may be seen as early as 6 weeks age. 

If present, the epoch is scored as quiet sleep (and 

not N2 at this age). In contrary to adult sleep 

spindles, the waveforms may occur asynchronously 

over the brain. Sleep spindles could therefore only 

be seen in some of the EEG leads, typically over in 

the central brain region. With progression of age, 

the spindles become more synchronized. Vertex 

waves and K-complexes are not present yet. An 

epoch is scored as transitional sleep if both active 

and quiet sleep characteristics are present. As the 

name suggest, this stage most often occurs in 

transitions from wake to active or from active of 

quiet sleep. The addition of this stage in infants of 

this age was needed because it is commonly present 

in infants and is seen as a marker of development 

and maturation30.  Neonatal transients that are 

often seen in drowsiness and all sleep stages are 

short-lasting runs of sharply contoured triangular 

theta or delta waves over the frontal regions. These 

so-called “encoches frontales” typically disappear 

after 2 months28. 

Figure 2. EEG patterns seen in infants 0 – 2 months. A) Active sleep with a mixed pattern and low 

EMG chin tone, B) Quiet sleep with high voltage slow (HVS) pattern and higher chin EMG tone, C) Quiet 

sleep with tracé alternant (TA) and higher chin EMG tone, D) Active sleep with low voltage irregular (LVI) 

pattern and low chin EMG tone. Retrieved from: Grigg-Damberger et al. (2007)28. 
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2 - 12 months  
From the age of 2 months, the sleep EEG 

increasingly reaches its adult differentiation as part 

of the transition from neonatal to infantile sleep. 

The neonatal transients (encoches frontales) 

disappear and the neonatal EEG background 

patterns (LVI, TA, HVS) are gradually replaced by 

more rhythmical theta waves. At 3 to 4 months, the 

DPR is first seen. In contrast to the alpha frequency 

range in adults, this DPR is in the 3-4 frequency 

range at 3 months, increasing to 5 Hz at 5 months 

and 6-7 Hz at 12 months28. From the age of 6 – 8 

months on, high voltage bursts of 4 Hz, increasing 

to 5-6 Hz over the following months, are seen during 

drowsiness, in the transition from wake to sleep. 

This pattern is known as “hypnagogic 

hypersynchrony”28. With the progression of age, the 

sleep stage differentiation becomes clearer by the 

appearance of the adult sleep EEG transients. K-

complexes and rare broad vertex waves are first seen 

5-6 months post term and gradually acquire adult 

appearance with progression of age. The presence of 

these transients enables the differentiation of NREM 

into N1, N2 and N3. At 5 months age, the sawtooth 

waves, characteristic for REM sleep, appear for the 

first time28.  

 

1 - 18 years  
In early childhood, the DPR increases with age, from 

6-7 Hz in 2-year-olds to 7-9 Hz in 3-year-olds.  

Hypnagogic hypersynchrony progressively diminishes 

and vertex waves become very prominent. The sleep 

spindles become more synchronous between both 

hemispheres. By the age of 1 year, 70% of the sleep 

spindles is synchronous, 100% by the age of 2 

years34. The REM sleep is characterized by medium-

voltage theta waves. During SWS, diffuse waves can 

be observed. In older children, the DPR keeps 

gradually increasing in amplitude and frequency to 

those in adults.  The REM sleep EEG now shows 

low-voltage theta activity. During SWS, the delta 

activity increases in amplitude. The hypnagogic 

hypersynchrony disappears and is rarely seen in 

children after age 6 years. Vertex waves are usually 

of high amplitude and occur in bursts. K-complexes 

are often seen with spindle activity. During 

adolescence, the sleep EEG reaches its adult 

differentiation. The DPR is in the alpha range, equal 

to adults, with a lower amplitude compared to 

younger children28.   

 

4. Sleep EEG of critically ill 
patients 

 

The sleep EEG of critically ill patients is often 

confounded by derangements induced by the 

underlying critical illness and by the central effect of 

various medications that are typically used for 

sedation or analgesia. Furthermore, the EEG is 

prone to artifacts arising from the noisy ICU 

environment and 50-Hz electrical inference with 

electrical equipment simultaneously used in the ICU. 

These effects on the EEG signal challenge the 

application of the AASM criteria to score sleep in 

critically ill patients admitted to the ICU and 

introduce high interobserver variability in scoring 

sleep of critically ill patients18. This highlights the 

need to identify the atypical EEG findings in 

critically ill patients. 

 

Unfortunately, studies characterizing the sleep EEG 

in critically ill children in the PICU are scarce. One 

study of Kudchadkar et al. was found, in which they 

studied the sleep EEG power spectrum during sleep 

in mechanically ventilated critically ill children who 

were admitted to the PICU with respiratory failure35. 

At the time of monitoring, each patient received a 

continuous infusion of opioids and benzodiazepines. 

When comparing to healthy age- and gender-

matched children, they found that the average 

power over the night in all frequency bands (beta, 

alpha, theta and delta) was lower in the critically ill 

children. Furthermore, unlike the healthy children, 

PICU patients did not demonstrate expected 

temporal variability in delta and theta power during 

the night, in which the power declines gradually over 

the night. Also, no day-night organization was 

observed in the PICU patients.  

 

More is known about sleep in critically ill adults. In 

ICU studies, both a disrupted sleep architecture 

characterized by increased N1 and N2 sleep and 

decreased N3 and REM sleep as well as atypical 

sleep EEG findings were observed14,15,36. Drouot et 

al. reported that 28% of the non-sedated ICU 

patients showed atypical sleep EEG findings16, 
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compared to 85% in sedated ICU patients, as 

reported by Watson et al.14. Therefore, the addition 

of new sleep stages as various subcategories of 

atypical sleep, for scoring sleep in critically ill adults 

was proposed by these authors. Atypical sleep was 

characterized by high amplitude, polymorphic delta 

activity without superimposed fast frequencies and 

rapid eye movements with a low chin muscle tone. 

Concordant to this, Ambrogio et al. showed that the 

delta/alpha and delta/beta power ratio is 

significantly higher in a 24-hour period in sedated 

and ventilated critically ill adult patients compared 

to healthy controls18. Beside the polymorphic and 

increased delta activity, other atypical EEG findings, 

reported by Watson et al., are presence of burst 

suppression or isoelectric EEG14. Burst suppression 

is an EEG pattern characterized by periods of high 

voltage activity alternating by periods of suppression 

(activity < 10 mV). Typically, the episodes of 

suppression are longer (usually 5-10 seconds) than 

the periods of high voltage activity (usually 1-3 

seconds). Isoelectric EEG could be observed as a flat 

line EEG. Both patterns are typically found in 

patients with inactivated brain states, such as in 

coma or deep sedation37. Furthermore, K-complexes 

and sleep spindles were observed to be absent in 

critically ill adults. The absence of these N2 markers  

was present in 20-44% of the ICU patients14–16,18, 

challenging the scoring of N2. In line with this, 

Ambrogio et al. reported a poor interobserver 

reliability for scoring N1 and N2 (κ = 0.19)18. Also, 

dissociation of EEG findings and behaviour was 

observed in critically ill adults.  Drouot et al. 

observed that relative powers of delta and theta 

were significantly higher in some non-sedated 

patients than one would expect during normal 

wakefulness16. On the opposite, alpha and beta 

relative powers in these patients were significantly 

lower. This observation was referred to as 

“pathological wakefulness”. Pathological 

wakefulness is defined as EEG epochs in which 

behavioural characteristics of wakefulness (opening 

eyes to verbal stimuli, making eye contact, following 

simple commands) occur with EEG features of N3 

(high-amplitude, low-frequency waves), which are 

not seen in normal wakefulness. Remarkably, the 

same shift in EEG frequency is observed in ICU 

patients with delirium38,39, implicating that 

pathological wakefulness is a potential marker for 

subclinical or hypoactive delirium. Concordant to 

this, Drouot et al. found a significantly higher 

occurrence of delirium in the days following the EEG 

recording in patients experiencing atypical sleep with 

pathological wakefulness than in patients with usual 

sleep16. Conversely to the EEG dissociation in 

pathological wakefulness, unresponsive comatose 

patients were noted to have alpha or beta activity14.  

 

These studies show that atypical EEG findings like 

polymorphic delta activity, absence of sleep spindles 

and K-complexes, burst suppression, isoelectric 

activity and EEG dissociation are often encountered 

in critically ill patients. However, these studies do 

not take into account the independent effect of the 

patient-related comorbidities and risk factors for 

atypical EEG findings, such as sedatives and 

analgesics. Atypical sleep is more often observed in 

sedated patients compared to non-sedated 

patients14,16. Furthermore, as mentioned before, the 

shift in EEG frequency observed in pathological 

wakefulness is also observed in ICU patients with 

delirium38,39. Cooper et al. mentioned that patients 

identified as experiencing atypical sleep had a lower 

Glasgow coma scale (GCS), indicating a lower 

consciousness level. This is concordant with the 

burst suppression and isoelectric activity that is 

typically seen in patients with an inactivated brain 

state37. Thus, the EEG abnormalities observed in 

these studies could therefore be drug-induced or an 

effect of the underlying illness. Interestingly, the 

changes in background EEG activity during 

wakefulness reported in atypical sleep is similar to 

those reported in healthy individuals subjected to 

sleep deprivation for 24 hours40,41. Likewise, a 

decreased density of sleep spindles and K-complexes 

was observed during recovery sleep after sleep 

deprivation42,43. Since ICU patients are exposed to 

sleep deprivation with sleep fragmentation and 

decreased REM and SWS sleep, this suggests that 

the observed atypical sleep EEG could also be a 

result of the experienced sleep deprivation. 

Identification of the cause of atypical EEG 

characteristics remains challenging in the 

heterogeneous population of the critically-ill. In the 

following sections, evidenced influences on the sleep 

EEG of frequently used medications and commonly 

encountered morbidities at the PICU are identified.  
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4.1. Influence of medication on the sleep EEG  
Numerous types of medication are routinely 

administered at the PICU for therapeutic purposes 

or to provide comfort to the patient. Some of them 

interact with the brain and could thereby alter EEG 

characteristics or disrupt sleep architecture. 

Analgesics and sedatives relieve pain and reduce the 

level of consciousness, respectively, by interacting 

with the central nervous system. The effects on the 

EEG of commonly used sedatives, analgesics and 

some other drugs in the PICU are identified in this 

section. An overview of the EEG effects of the 

discussed agents is provided in Table 2. 

 

Sedatives 

Sedatives might promote quality of sleep in critically 

ill patients by their anxiolytic and calming 

properties. However, many frequently used sedatives 

have been shown to disrupt sleep architecture, 

leading to sleep deprivation. The effects of this 

disruption could be observed after withdrawal of 

sedative medication. Similar to in natural sleep 

deprivation, the characteristics of recovery sleep 

after withdrawal of medication are dependent on the 

characteristics of the lost sleep. If, for example, a 

patient is withdrawn of a REM-suppressive sedative, 

its recovery sleep is characterized by a 

disproportionally high percentage of REM sleep44. 

Thus, sedation in critically ill patients is paradoxical, 

because it is both a potential treatment and cause 

for sleep disruption. When a patient is sedated, they 

look comfortable and even asleep. Although 

sedatives intersect with the same neural pathways 

involved in the process of sleep, the sedative state is 

not thought to have the same restorative effect that 

natural sleep has45. Whereas natural sleep is a 

biological process with a cyclic behaviour, influenced 

by circadian rhythmicity and reversed by external 

stimuli, sedative sleep is rather continuous and 

dependent on the type of sedative agent and dose 

administered. Also, the EEG findings that define the 

sleep stages in natural sleep are atypical in sedative 

sleep.  

 

The depth of sedation has been correlated with the 

number of burst suppressions seen on the EEG46. 

This pattern is typically seen in inactivated brain 

states, in this case induced by deep sedation. The 

presence of burst suppression patterns indicates that 

the cerebral metabolic rate is reduced47 and could 

be used to titrate sedation individually. With 

deepening sedation, the number of burst suppression 

patterns increases until eventually the EEG becomes 

completely isoelectric46. Commonly used sedative 

medication at the PICU include benzodiazepines, 

propofol, ketamine, and clonidine. Where most of 

them could be leading to burst suppression patterns 

and isoelectric EEG in high dosages, their effects on 

the EEG in lower dosages are variable.  

 

Many sedative agents work by activation of the 

gamma-aminobutyric acid type A (GABAA) 

receptor. The same receptor is involved in the 

initiation and maintenance of physiological NREM 

sleep and the generation of sleep spindles. One of 

the most commonly used sedative agents in the 

PICU are the GABA-agonistic benzodiazepines (e.g. 

midazolam, lorazepam, diazepam). Benzodiazepines 

are shown to increase total sleep time and N2, while 

decreasing REM and N3 in adults48. Veselis et al. 

showed that in a critically ill patient population the 

EEG power spectrum varied consistently with the 

depth of sedation induced by the benzodiazepine 

midazolam with a significant decrease in median 

frequency, spectral edge (i.e., the frequency below 

which 95% of the spectral power is located) and log 

absolute power in the beta bandwidth was found in 

the EEG of deeper sedated patients49. Jennekens et 

al. found contrasting EEG changes in full-term 

neonates with ischemic stroke after administration 

of midazolam50. In contrast to to EEG changes in 

adults, an increase in theta power was observed 

while alpha and beta powers remained constant. A 

decrease in total power and delta power was 

observed, in accordance with findings in adult 

studies. This discrepancy is hypothesized to be the 

result of immaturity of the neonatal brain, 

influencing neuronal signal transmission. Propofol is 

also believed to bind to the GABA-receptor at a site 

different from the benzodiazepine binding site, 

thereby activating the receptor51. Similar to 

benzodiazepines, propofol suppresses N3 and REM 

sleep52. Propofol affects the EEG by diffuse slowing 

of the EEG frequency and depression of 

amplitudes53. Blood concentration of propofol is 

negatively correlated with EEG frequency and 

amplitude. Also in children, increases in total EEG 

power and slow waves during sedation with propofol 
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could be observed from 0 to 6 years old54. A next 

GABA-agonist is the short-acting sedative 

etomidate. In low dosage, used during induction of 

anaesthesia, epileptic activity on the EEG causing 

involuntary myoclonic movements is common55. 

This epileptic activity disappears in higher dosages 

at which burst suppression could be observed. 

Barbiturates also work on the GABA-receptor. They 

typically reduce REM sleep56. In dosages used for 

general anaesthesia, the EEG slows down and 

irregular theta and delta activity is present57. The 

effect on the EEG for dosages used for 

anticonvulsive purposes is discussed later in this 

section.  

 

Another class of sedative agents are the α-2-

receptor agonists, that bind to the α-2-receptor in 

the locus coeruleus in the brainstem to decrease 

activity of noradrenergic innervation and include 

clonidine and dexmedetomidine58. Sedation under α-

2-receptor agonists resembles natural sleep more 

closely than sedation under GABA agonists, 

clinically observed by easy arousals by external 

stimuli and better cognitive functioning when 

aroused59. This observation could be explained by 

the fact that the α-2-receptor agonists interact with 

the natural sleep pathway at a site farther upstream 

than the GABA agonists do. However, sleep 

architecture is still disturbed as marked by a 

decrease in REM sleep and increase in N3 and N2 

sleep60. The increase in N2 sleep under α-2-receptor 

agonists sedation is partly based on an increase in 

sleep spindles. These sleep spindles resemble sleep 

spindles present during natural sleep in density, 

amplitude and frequency content, although a 

significant increase in spindle duration was found in 

spindles during dexmedetodine (1.11 ± 0.14 

seconds) compared to spindles in normal sleep (0.88 

± 0.14 seconds; p<0.01)61. Another effect of α-2-

receptor agonists on the EEG is a dose-dependent 

slowing. Mason et al. studied the effects of 

dexmedetodine sedation on the EEG in children with 

epilepsy62. They observed that the EEG during 

sedation resembled N2 sleep, although modest 

significant increases in theta, alpha and beta power 

were found, suggesting that dexmedetodine does not 

hinder EEG interpretation for sleep assessment. 

Similar to during natural sleep, a significant increase  

 

Table 2. Overview of the EEG effects of 

medication.  

Drug class or 

individual drug  

EEG effect 

Sedatives 

All  Burst suppression, isoelectric  

Benzodiazepines Low dosage (anticonvulsive): ↑ 

Beta 

High dosage (sedative): Slowing 

Propofol Slowing, amplitude depression 

Etomidate Low dosage (induction): 

Epileptic activity 

High dosage (sedation): Burst 

suppression 

Barbiturates Low dosage (anticonvulsive): ↑ 

Beta 

High dosage (sedative): EEG 

slowing  

α-2-receptor 

agonists 

↑ Sleep spindles, slowing  

Ketamine ↑ Beta + theta  

Analgesics 

Opioids Slowing  

 

Acetylsalicylic acid 

and azapropazone 

Slowing 

Other 

Antipsychotics  Slowing 

 

Muscle relaxants 

 

Absence of muscle artifacts 

 

Cocaine, 

amphetamines, 

methylphenidate’ 

↑ Beta (low voltage) 

 

in spike activity during dexmedetodine sedation was 

observed (15 vs. 22 per minute; p=0.01). 

 

Ketamine is a fast-acting sedative agent that also 

has analgesic effects. Its action relies on blockage of 

the N-methyl-D-aspartate (NMDA) receptor, 

although its exact mechanism appears to be more 

complex63. Ketamine is known to increase total sleep 

time with increases of N3 and REM sleep64. In the 

EEG, effects of ketamine administration could be 

observed as increased beta activity and dominant 

high amplitude theta activity65.  

 

Analgesics 

Pain is a common cause of sleep disruption in 

critically ill patients66. Poor sleep may also increase 
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a patient’s perception of pain67. Analgesics are 

therefore often used in the PICU to provide 

adequate pain relief. However, similar to sedatives, 

many analgesics are known to disturb sleep 

architecture56. Opioids are often used with sedatives 

in mechanically ventilated PICU patients and include 

morphine, remifentanil and methadone. They exert 

their analgesic effect by binding to the opioid 

receptor principally found in the central and 

peripheral nervous system and gastrointestinal tract, 

causing constipation as one of the main adverse 

effects. Opioids have a dose-dependent suppressive 

effect on REM-sleep and N3 sleep and increase N2 

sleep68. On the EEG, they cause a dose-dependent 

slowing of the EEG with increased delta activity69. 

In high doses, they decrease not only the median 

frequency, but also the spectral power70. A 

systematic review performed by Malver et al. did not 

identify studies evaluating the effect of paracetamol 

on the EEG71. In the non-steroidal anti-inflammatory 

drugs (NSAIDs) group, no studies were identified 

evaluating the effect of diclofenac, ibuprofen, 

ketoprofen and phenazone. However, the NSAIDs 

acetylsalicylic acid and azapropazone were found to 

cause slowing of the EEG72,73.  

 

Other  

Beside the discussed sedatives and analgesics, 

numerous other medications routinely administered 

to critically ill children affect sleep architecture or 

sleep EEG. Inotropes, vasopressors, steroids, 

bronchodilators and antiarrhythmic agents are all 

known to disrupt sleep by interaction with the 

sympathetic nervous system or hormone secretion19. 

Many of these medications typically do not greatly 

affect the sleep EEG, although some central nervous 

system stimulants such as cocaine, amphetamines 

and methylphenidate could increase beta activity at 

low voltage57. Muscle relaxants, sometimes used in 

mechanically ventilated patients, do not have an 

effect on the brain waves. However, their effect on 

the EEG could be observed as the absence of muscle 

artifacts in the EEG, Thus, from the EEG quality 

perspective, they have a beneficial effect. 

Antipsychotic drugs, such as haloperidol and 

risperidone are used at the PICU in delirious 

patients. A study by Armour et al. in paediatric burn 

patients showed that haloperidol increased total 

sleep time and N2 sleep compared with control 

nights74. Antipsychotics are known to slow down the 

EEG with a decrease in beta activity and increase in 

theta and delta activity75. The alpha activity 

increases in amplitude while decreasing somewhat in 

frequency. In high dosages, they could induce 

epileptic activity. Antiepileptic, or anticonvulsive, 

drugs influence the EEG significantly, beside their 

suppression of epileptic activity. Carbamazepine, 

valproate and phenytoin cause slowing of the EEG 

frequency76. In low dosage, some sedative agents, 

such as benzodiazepines or barbiturates have 

anticonvulsive properties. Contrary to its effect in 

dosages used for sedative purposes, benzodiazepines 

will induce a decrease in alpha activity and a diffuse 

increase in beta activity57. The barbiturate 

phenobarbital affects the EEG by increased beta 

activity correlated to the plasma concentration, 

contrary to its slowing effect seen in higher dosages 

used for sedative purposes76.  

 

4.2. Influence of medical conditions on the 
sleep EEG 

Critical illness in children admitted to the PICU 

includes a broad range of medical and surgical 

diagnoses, such as trauma, multi-organ failure, or 

postoperative care requiring close monitoring and 

life support. Morbidities that affect the brain, 

directly or indirectly, could also influence the EEG. 

In this section, some medical conditions that are 

frequently encountered in the PICU with known 

effects on the EEG are discussed. An overview of the 

EEG effects of the discussed medical conditions is 

provided in Table 3.  

 

Coma 

Coma is the state of prolonged unconsciousness 

from which a person cannot be awakened and fails 

to respond to external stimuli. Also, there is a lack 

of a normal sleep-wake cycle with a complete 

absence of wakefulness. Coma can be caused by a 

variety of problems, either by natural causes or 

medically induced. The EEG in medically-induced 

comas is discussed in section 4.1. Where the 

comatose patients may show the same clinical 

features, the EEG can reveal diagnostic and 

prognostic features. EEG features observed in 

comatose patients include slowing of the EEG, burst 

suppression, epileptiform activity, triphasic waves, 

amplitude suppression, or even isoelectric activity77. 
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Triphasic waves are high-amplitude, positive sharp 

transients that is preceded and followed by negative 

waves of relatively lower amplitude. Isoelectric 

activity is used to determine brain death. A patient 

is declared brain dead if electrical cerebral activity is 

absent in a 30-minute registration78. A normal EEG 

in a comatose-looking patient suggests a locked-in 

syndrome, or pseudo-coma, caused by a brainstem 

lesion77.  

 

Some specific types of coma may be discerned based 

on EEG findings. In some comatose patients, alpha 

or theta activity could be observed. These tracings 

contain frequencies found in normal wakefulness and 

depart from typical EEG findings in comatose 

patients of slowing and suppression. These so-called 

“alpha-coma” and “theta-coma” patterns, or if they 

coexist “alpha-theta-coma” differ from EEG activity 

during wakefulness in its non-reactivity to eye 

opening and more diffuse presence77. The prognostic 

value of these patterns depends on the timing and 

aetiology79. The presence of alpha coma patterns, 

for example, carry an extremely poor prognosis in 

hypoxic encephalopathies, while prognosis is quite 

good in toxic encephalopathies80. In spindle coma, 

the EEG of the comatose patient contains sleep-like 

activity with sleep spindles, vertex waves and K-

complexes. Spindle coma implies the functional 

preservation of the cerebral hemispheres which can 

be associated with a good prognosis81. Alpha, theta, 

alpha-theta and spindle coma have also been 

observed in children82. The youngest reported 

patient with alpha coma is a 2-month old infant with 

phenobarbital intoxication after a period of 

hypoxia83. The alpha activity in the infant, at whose 

age alpha activity is not even present during normal 

wakefulness, was similar to the alpha coma pattern 

observed in adult patients.   

 

The presence and prognostic value of EEG features 

in coma depend on the cause of the coma.  For 

example, triphasic waves are typically present in 

metabolic encephalopathies, while they will rarely be 

seen in hypoxic encephalopathy84. EEG findings in 

various causes of encephalopathies, potentially 

leading to coma, will be pointed out in the following 

sections.  

 

Epilepsy and status epilepticus  

The EEG is routinely used in the evaluation of 

patients with seizures or at risk of developing 

seizures, such as in hypoxic-ischemic 

encephalopathy or patients with status epilepticus. 

Epileptic activity on the EEG could be recognized as 

a pattern that represents a clear change from the 

background frequencies, containing epileptiform 

transients that occur isolated or in bursts. These 

epileptiform transients include spikes and sharp 

waves, that stand out to the background EEG by 

their wave morphology and high amplitude. Spikes 

and sharp waves differ in their duration; spikes 

usually have a duration of 20-70 milliseconds, while 

sharp waves last 70-200 milliseconds. In contrast to 

spikes, sharp waves often have a multiphasic 

behaviour. Most spikes and sharp waves have a 

negative polarity and are often followed by slow 

waves, then referred to as “spike-and-slow-wave 

complex”. The postictal (i.e., after an epileptic 

seizure) EEG often shows slowing with or without 

attenuation of the background activity, usually 

lasting for several minutes85. A large inter- and 

intrasubject variability in the presence, morphology 

and clinical value of the epileptic EEG activity exists 

that is beyond the scope of this review.  

 

In many epileptic syndromes, NREM sleep activates 

epileptic discharges, increasing with depth of sleep 

NREM sleep86, while epileptic activity is relatively 

suppressed during REM sleep87. However, epileptic 

EEG activity could also be present in non-epileptic 

patients during sleep. A study in nine hundred 

otherwise healthy children, found a prevalence of 

epileptiform activity during sleep in 1.45%, most 

prominent during NREM sleep88. The epileptic 

activity might complicate waveform interpretation 

during visual sleep analysis. Marzec et al. studied 

the features in EEGs of patient with epilepsy 

interfering with sleep staging89. 48% of the EEG 

recordings of 43 epileptic patients contained 

epileptic features to the extent that sleep scoring 

was interfered. In some cases, the epileptic activity 

obliterated the sleep waveforms. Besides, spikes and 

sharp waves may resemble vertex waves or K-

complexes, confounding the scoring of N1 and N2. 

The postictal slowing might resemble the delta 

activity during N3. Also, the general slowing of the 

EEG background due to pathologic brain activity 
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and the effects of anticonvulsive drugs (see section 

4.1) could interfere with sleep staging. In some 

patients, abnormally low frequency background 

activity was observed during visually observed 

wakefulness, that might be defined as N1 sleep 

following the sleep staging criteria.  

 

Central nervous system infections  

Central nervous system infections are a frequent 

cause of paediatric encephalopathy. They generally 

result from blood-born spread of bacteria, fungi and 

viruses. Based on the structure involved, central 

nervous system infections are broadly divided into 

three categories: meningitis, encephalitis and 

abscesses. Although their effect on the EEG could 

vary with the pathogen involved and the location of 

the lesion, common EEG findings are discussed here. 

In meningitis, the EEG could be normal or show 

diffuse, irregular delta activity when the infection is 

limited to the meninges84. Remarkable is the rapid 

and parallel decrease in EEG abnormalities with 

clinical improvement90. If the infection penetrates 

the brain parenchyma (encephalitis, meningo-

encephalitis), the EEG is always and more strongly 

abnormal. Encephalitis or meningo-encephalitis also 

produces delta activity as the most dominant EEG 

abnormality, but epileptiform activity may also 

occur84. The same EEG abnormalities were observed 

in children and neonates91,92. On the EEG of patient 

with a brain abscess, focal arrhythmic delta waves 

and epileptic activity could be observed in the EEG 

leads covering the abscess location93. These features 

could be used to localize the abscess. In the EEG 

leads of the affected hemisphere, suppression and 

slowing of the background activity could be 

observed.  

 

Traumatic brain injury  

In traumatic brain injury (TBI), the effects on the 

EEG depend on the exact mechanism and severity 

of the injury. In general, the EEG in TBI shows 

slowing of the background activity, decreasing with 

the severity of the injury94. Sleep architecture is 

commonly disturbed in patients with TBI, 

characterized by increased N3 sleep and disturbed 

order of the sleep cycle95. Cerebral contusion can be 

associated with multiple microhaemorrhages, 

producing focal theta or delta activity with high 

amplitude94. Severe TBI can cause epi- or subdural 

haemorrhages. In the acute phase, these 

haemorrhages could cause increased generalized 

slowing of the background EEG or focal 

abnormalities with high amplitude polymorphic delta 

activity96. Hematoma, contusion or oedema are 

mass lesions that could increase the intracranial 

pressure (ICP). Increased ICP causes slowing of the 

EEG as a result of reduced cerebral blood flow and 

has been negatively correlated with the median 

frequency and power in delta activity97. Changes in 

ICP dynamics are linked to burst activity in the 

EEG98. Interestingly, ICP has been shown to increase 

during REM, N1 and N2 sleep in TBI patients, 

thereby also affecting the EEG by introducing slow 

waves99. In skull defects, either traumatic or 

postoperative, locally increased alpha and beta 

activity with high amplitude could be observed, 

referred to as “activité de brêche” or “breach 

rhythm”100. This activity is caused by changes in the 

conduction of electrical potentials from the brain 

tissue to the EEG electrode by the absence of the 

skull that normally acts as a high frequency and 

amplitude filter.  

 

Hypoxic-ischemic encephalopathy  

In hypoxic-ischemic encephalopathy, brain damage 

is caused by oxygen deprivation and limited blood 

flow. As reviewed by Bauer et al., EEG findings in 

hypoxic-ischemic encephalopathy are epileptic 

activity, background suppression, burst suppression 

patterns, increased theta and delta activity with 

preserved alpha rhythm and alpha or alpha-theta 

coma101. During resuscitation, the EEG could be 

flat, which will persist several hours after circulation 

is restored. In neonates, the EEG rhythm will take 

longer to recover than in older patients102. Similar 

to observations in older children, the EEG in 

neonatal hypoxic-ischemic encephalopathy is 

characterized by epileptic activity, background 

suppression and/or burst suppression103.  

 

Metabolic encephalopathy 

Metabolic encephalopathy is caused by a broad 

range of aetiologies that impair cerebral metabolism, 

either by shortage of nutrients, hormonal or 

electrolyte imbalances or the presence of toxic 

agents. In many metabolic encephalopathies, the 

EEG is characterized by the presence of triphasic 

waves84.. However, triphasic waves are infrequently 
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observed in children104. As reviewed by Kaplan et 

al.105, electrolyte imbalances could produce diffuse 

slowing of the EEG and in more severe cases 

epileptic discharges. Diffuse slowing and epileptic 

discharges are also observed in hypoglycaemia, 

although increased delta activity could also be 

asymmetric. EEG changes in hyperglycaemia are less 

prominent. The hormonal imbalances in 

hyperadrenalism and hyperthyroidism cause 

increases in alpha frequency with prominent beta 

activity or slow background activity with 

superimposed fast frequency activity. On the other 

hand, hypothyroidism and hypoadrenalism both 

cause slowing of the EEG background activity and 

decreased reactivity. Hepatic encephalopathy results 

from the inability of the liver to remove toxins from 

the blood in severe liver disease. In adults, the EEG 

has been shown to demonstrate hepatic 

encephalopathy before clinical presentation106. Most 

common EEG findings in children with acute liver 

failure are diffuse slowing and epileptiform 

discharges104. Whereas triphasic waves are 

frequently seen in adults suffering from liver failure, 

they are rarely present in children. Similar EEG 

findings are observed in uremic encephalopathy in 

renal failure patients. Slowing of the EEG and 

presence of triphasic waves has been correlated to 

blood urea nitrogen levels107. Also, epileptiform 

discharges or bursts of theta activity could be 

observed. In patients with respiratory failure, 

hypercapnia could also induce various abnormalities 

in brain function leading to metabolic 

encephalopathy. In healthy awake adults, 

hypercapnia has been shown to produce slowing of 

the EEG108.  

 

Cerebrovascular accidents   

Ischemic cerebral vascular accidents (CVA) affect 

the EEG in a similar fashion as hypoxic-ischemic 

encephalopathy. The EEG background activity is 

slowed down, either bilaterally or unilaterally in the 

affected hemisphere84. In the region that is supplied 

by the affected cerebral artery, polymorphic theta 

and delta activity could be observed, often mixed 

with sharp waves. Similarly, haemorrhagic CVA 

causes localized polymorphic delta activity in the 

affected brain region or diffuse slowing of the 

background EEG. A study by Hirose et al. showed 

that intracerebral hematoma only shows diffuse  

Table 3. Overview of the EEG effects of medical 

conditions 

Medical 

conditions 

EEG effect 

Coma (general)  Slowing, burst suppression, 

epileptic activity, triphasic 

waves, amplitude suppression, 

isoelectric activity, alpha, theta 

or spindle patterns 

Epilepsy, status 

epilepticus 

Epileptic activity, slowing  

Central nervous 

system infections  

Meningitis: normal, irregular 

delta activity 

Encephatlis: slowing, epileptic 

activity, background suppression 

Abscess: focal polymorphic delta 

activity 

Traumatic brain 

injury 

General: Slowing, burst activity 

Local 

(contusion/haemorrhages): 

polymorphic delta activity 

Local (skull defects): breach 

rhythm  

Hypoxic-ischemic 

encephalopathy  

Slowing, epileptic discharges, 

background suppression, burst 

suppression 

Metabolic 

encephalopathy  

Slowing, epileptic discharges, 

triphasic waves (less frequent in 

children) 

Cerebral vascular 

accident 

General: Slowing  

Local: polymorphic delta activity 

Neonates: rolandic sharp waves 

Delirium Slowing 

 

polymorphic delta activity in patients with 

hematomas larger than 30 mL, that cause a shift of 

the midline structures109. In smaller hematomas, the 

polymorphic activity is restricted more locally to the 

affected region. In subarachnoid haemorrhages, 

increases in delta activity, often mixed with sharp 

waves, could indicate the presence of vasospasm110. 

Neonatal intraventricular haemorrhage is 

characterized by the presence of positive rolandic 

sharp waves, defined as sharp transients or positive 

polarity appearing in the rolandic regions, around 

the central sulcus, in the brain111.  

 

Delirium  

Delirium is an organically caused disturbance in 

attention, cognition and consciousness. While sleep 

deprivation is regarded to be a risk factor for the 
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development of delirium, it is also likely that 

delirium itself contributes to sleep disturbances11. A 

study by Trompeo et al. in adult ICU patients 

demonstrated an association between delirium and 

severe REM sleep disruption112. However, a cause-

and-effect relationship has been hard to establish. 

The EEG of delirious patients shows slowing of the 

peak and median frequency, with a reduction of 

alpha power and an increase of theta and delta 

power38,39. In children with febrile delirium, similar 

spectral changes were observed, with the most 

significant change being the increase in relative delta 

power113. Decrease of the relative delta power was 

associated with clinical improvement. As mentioned 

in section 4, similar spectral changes were found in 

ICU patients experiencing pathological 

wakefulness16, implicating that this finding is a 

marker for subclinical or hypoactive delirium. Van 

der Kooi et al. used the characteristic spectral 

changes in delirious patients to develop an EEG-

based tool for delirium detection114. By using the 

relative delta power in EEG in the frontal-parietal 

electrode derivation, delirium could be detected with 

a sensitivity of 100% and specificity of 96%.  

 

4.3. Other factors influencing the sleep EEG 
Beside the discussed influences of medication and 

medical conditions on the EEG, various 

extracerebral sources could introduce artifacts that 

interfere with the EEG signal115. The electrical field 

caused by eye movements introduces high amplitude 

slow wave artifacts in the frontal EEG leads, that 

could be confused with delta and theta activity. 

Muscle activity of the facial, neck or shoulder 

muscles introduces high frequency (15-35 Hz) 

activity. Furthermore, electrical activity from the 

heart interferes with the EEG, observed as a 

rhythmic pattern corresponding with the heart rate. 

The electrolyte content of sweat drops changes the 

electrical baseline in the EEG electrodes and thereby 

introduce a low frequency artifact (usually <0.5 

Hz). Patient movement is also reflected in the EEG. 

Movement due to respiration could be observed as a 

low frequency artifact in the delta or theta range. 

Pathological conditions such as scalp oedema or a 

caput succedaneum could affect the EEG by 

damping the electrical signal from the brain, causing 

lower EEG amplitudes116.  

On top of these physiological sources, artifacts could 

arise from technical aspects anywhere in the 

recordings system. Electrical interference artifacts at 

50 Hz could be introduced by electromagnetic fields 

from surrounding electrical devices. Changes in 

electrode impedance, for example caused by 

touching the electrodes or loose electrodes, 

introduces abrupt and high amplitude transients. 

During impedance checks, total absence of EEG 

activity is observed. The noisy PICU environment 

introduces additional artifact sources117. Electrical 

interference artifacts are more common due to the 

numerous electrical devices that are simultaneously 

used in the PICU. The frequent nursing activities 

introduce movement artifacts. Interestingly, motion 

artifacts were also observed in patients connected to 

a hemoperfusion machine118. The motion artifacts, 

observed as saw-tooth waveforms, were correlated 

to the rotary pump action of the device.  

 

A last factor that might influence the EEG is gender. 

A recent study by Markovic et al. studied the sleep 

EEG in early adolescence (9-14 years old) and found 

significant differences between males and females119. 

Girls were found to have greater spindle activity and 

more power in the higher frequency bands (16.2-44 

Hz) during all sleep stages. 

 

5. Automated sleep monitoring 
methods  

 

To our knowledge, a method to automatically 

monitor depth of sleep in critically ill children using 

computerized EEG signal processing has not been 

developed yet. Although Kudchadkar et al. used 

power spectral analysis to assess spectral changes in 

the sleep EEG of PICU patients, they did not use 

the obtained power values in the various frequency 

bands to automatically classify sleep or compare it 

to the hypnogram obtained by visual sleep scoring35. 

However, some attempts have been made to develop 

an automated depth of sleep monitoring method in 

critically ill adults or neonates. Meanwhile, methods 

to stage sleep in healthy adults are numerous, 

varying from simple single feature with threshold-

based algorithms to advanced deep learning 

methods. A complete overview of all methods is 
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beyond the scope of this review. A selection of the 

methods will be discussed in this section.  

 

General methods for sleep stage classification 
Literature on automated sleep staging 

methodologies in healthy adults is numerous. 

Currently, a literature search on EEG-based methods 

in healthy adults in the PubMed database yields 

already more than 2000 results, with a rapid increase 

in publications in the past decade. These algorithms 

generally include the following series of steps: signal 

pre-processing, feature extraction and classification. 

The methods used for each of these steps vary 

greatly among the various sleep staging methods, 

with varying degrees of classification accuracy as a 

result. Although some of these methods will achieve 

an acceptable accuracy in a subpopulation of PICU 

patients, many will not due to the different EEG 

patterns in young children and confounding with 

effects of medication and underlying illness. 

However, the knowledge on the accuracy and 

efficiency of the various signal pre-processing 

algorithms, feature extraction methods and 

classification approaches obtained from the studies 

in healthy adults, could aid in the development of a 

PICU method. Based on recent reviews by Zhao et 

al. (2019)120, Faust et al. (2019)121 and Chriskos et 

al. (2021)122, a short overview of these methods is 

provided in this section. An overview of various 

proposed algorithms and their classification results 

can be found in Table 1 in Faust et al.121 and Table 

6 in Zhao et al.120. 

 

Signal pre-processing  

Signal pre-processing is used to remove unwanted 

content from the EEG signal. This unwanted 

content is a result of extracerebral sources that 

interfere with the EEG signal and lead to spurious 

results when processing the EEG data. As reviewed 

by Chriskos et al., most of the works use a signal 

bandpass filter or a combination of high pass and 

low pass filters, with lower cut-off frequencies 

varying from 0.3 to 0.5 Hz and upper cut-off 

frequencies from 30 to 380 Hz to remove unwanted 

frequencies122. Notch filters are often used to filter 

the electrical interference artifacts near 50 or 60 Hz. 

Although frequency filtering removes a major 

portion of unwanted spectral content, the noise 

within the frequency range of interest will not be 

removed. One method that is often used to remove 

this noise is independent component analysis (ICA). 

ICA is based on the assumption that artifacts and 

brain activities in the EEG are generated by 

independent processes and decomposes the signal 

into independent components. The components that 

are likely to arise from noise sources can then be 

rejected and a clean signal could be reconstructed. 

For the general noise in EEG signals, wavelet 

denoising has been shown to be a good way to 

improve the signal to noise ratio120. Wavelet 

denoising is based on decomposition of the signal 

into multiple lower resolution levels by controlling 

scaling and shifting factors of a single wavelet 

function, and shrink or remove the resolution levels 

that most likely contain noise. Other methods of 

artifact reduction in EEG processing include 

principal component analysis (PCA), adaptive 

filtering techniques or artifact identification 

algorithms. The latter one detects artifacts based on 

artifact characteristics and removes the artifact 

segment from the signal. It must be noted that many 

signal pre-processing methods tend to remove a 

portion of the EEG signal that might contain 

valuable information. Furthermore, advanced pre-

processing methods increase the required 

computational power. Therefore, many authors 

choose to not use advanced artifact filters121.  

 

Feature extraction  

After the pre-processing steps, features can be 

extracted from the EEG signal. The variety of used 

features in EEG-based sleep staging algorithms is 

extensive. From the time domain, the following 

statistical features are often used: mean, median, 

interquartile ranges, variance, skewness and 

kurtosis. Also, energy, zero-crossing rate, peak-to-

peak amplitude entropy and the Hjorth parameters 

are frequently extracted from the EEG signal. The 

Hjorth parameters were introduced in 1970 by 

Hjorth as indicators of statistical properties of the 

EEG signal in time domain123. Nowadays, they are 

still commonly used in EEG feature extraction. The 

parameters are Activity, Mobility and Complexity 

(equation 1, 2 and 3).  

 

1) 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟(𝑦(𝑡)) 
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2) 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =  √
𝑣𝑎𝑟(

𝑑𝑦(𝑡)

𝑑𝑡
)

𝑣𝑎𝑟(𝑦(𝑡))
 

3) 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (

𝑑𝑦(𝑡)

𝑑𝑡
) 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑦(𝑡))
 

The Activity parameter is the variance of the signal 

in time domain and represents the signal power. The 

Mobility is defined as the square root of the variance 

of the first derivative of the signal divided by the 

variance of the signal, thereby representing the 

mean frequency or the proportion of standard 

deviation of the power spectrum. From the Mobility 

parameter, the Complexity parameter can be 

calculated. The Complexity represents the change in 

frequency and is derived as the ratio between the 

Mobility of the first derivative and the Mobility of 

the EEG itself. Spectral features that are used 

include the spectral power in the various frequency 

bands (beta, alpha, theta, delta) and ratios between 

them, mean frequency, spectral edge frequencies, 

spectral roll-off and spectral entropy. Also, features 

from wavelet and empirical mode decomposition are 

used. Features based on presence of EEG transients, 

for example the number of sleep spindles per epoch, 

are rarely used, although some have been 

mentioned.  

 

Classification approaches  

Many classification methods are based on the visual 

sleep staging methods, by the AASM criteria or the 

Rechtschaffen and Kales (R&K) criteria, that were 

used until the introduction of the AASM criteria in 

2007. By thresholding spectral power features 

according to the visual sleep staging criteria, an 

epoch can be classified as one of the sleep stages. 

Several other classification methods have been used, 

including decision trees, k-means, support vector 

machines, random forests, bootstrap aggregating 

and neural networks. As reviewed by Chriskos et al., 

methods using the k-nearest neighbour classifier 

achieved accuracies up to 89%, decision trees up to 

97%, support vector machines up to 94%, random 

forests up to 95% and neural networks including 

multilayer perceptron and recurrent neural networks 

up to 91%122. However, one must note that the 

accuracies do not depend on the classification 

method solely, but also on the pre-processing and 

feature extraction methods used.  

 

5.1. Methods for sleep stage classification in 
adult ICU patients 

Fewer methods have been studied for the evaluation 

of sleep in adult ICU patients, although some 

interesting attempts have been made. An overview 

of the discussed methods in adult ICU patients is 

provided in Table S1. In 2014, Reinke et al. 

introduced a novel method for ICU depth of sleep 

analysis, the ICU depth of sleep index (IDOS 

index)124. The IDOS index is defined as the ratio 

between the gamma (30 to 48 Hz) and delta (0.5 to 

4 Hz) band power in each epoch using a single 

channel EEG. By manual selection of thresholds for 

each patient, the IDOS score was used to classify 

the EEG data as wake, NSWS (REM, N1 and N2) 

or SWS (N3). In their proof-of-concept study, the 

IDOS index was compared to visual sleep scoring in 

5 non-sedated ICU patients and 15 healthy subjects. 

Average agreement for the three-stage classification 

defined by Cohen’s kappa was 0.83 (standard 

deviation, SD: ± 0.06) for the healthy subject 

recordings. In the ICU patients, Cohen’s kappa 

statistic had a high variance, ranging from 0.46 to 

0.90. The lowest Cohen’s kappa was found in a 

patient with the highest APACHE (Acute 

Physiology and Chronic Health Evaluation) score 

(APACHE II: 35, APACHE IV: 98) and a severely 

disturbed sleep pattern. Average sensitivity and 

specificity (± SD) in the ICU patients were 

respectively 0.88 (0.10) and 0.87 (0.09) for the wake 

epochs, 0.66 (0.15) and 0.69 (0.14) for non-SWS 

epoch and 0.68 (0.22) and 0.59 (0.27) for SWS 

epochs.   

 

This study by Reinke et al. has, to our knowledge, 

been the only one using an EEG feature score with 

thresholding to classify sleep stages in adult ICU 

patients. However, other studies have studied 

features in the sleep EEG of ICU patients that could 

be used to assess sleep. Although these studies were 

not directly intended to develop an automated sleep 

scoring method, their results could provide valuable 

information in the development of such a method. 

Ambrogio et al. compared spectral features per 

epoch of sleep EEGs recorded in mechanically 

ventilated and sedated ICU patients and age-

matched healthy controls18. Spectral features 

included relative powers in the beta, alpha, theta 

and delta frequency bands and the delta/alpha and 
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delta/beta ratio. Although significant changes were 

found between the critically ill patients and healthy 

controls, unfortunately, no results of the spectral 

feature changes over time were presented. Four 

years later, Gehlbach et al. also studied the spectral 

changes in sleep EEGs of mechanically ventilated 

ICU patients receiving intravenous sedation, and 

visualized the changes over time, although they did 

not use the calculated spectral features to classify 

sleep125. In addition to relative delta power, they also 

calculated the spectral edge frequency 95% (SEF95) 

for each epoch. SEF95 is defined as the frequency 

below which 95% of the spectral power resides and 

is normally higher during wakefulness than during 

sleep126. In line with previously discussed findings, 

SEF95 and delta power profiles generally lacked the 

circadian and ultradian rhythmicity characteristic of 

normal sleep. Unfortunately, the correlation between 

the spectral feature changes and sleep stages was 

not studied. However, effects of changes in 

medication or responsiveness in individual temporal 

profiles of delta power and SEF95 were discussed. 

Furthermore, they showed that SEF95 is more 

robust to high frequency artifacts, suggesting this 

might be a valuable feature to use in an automated 

sleep monitoring method.  

 

A number of processed EEG-based brain function 

measures have been introduced that were originally 

developed to monitor depth of sedation during 

anaesthesia. Some have undergone limited testing as 

potential method to monitor sleep in ICU patients. 

One of these measures is the bispectral index (BIS), 

calculated by a nonlinear function of several EEG-

based subparameters in time and frequency 

domain127. Its exact algorithm is proprietary from 

which only a portion has been identified128. BIS 

values near 100 represent an ‘awake’ clinical state, 

whereas 0 equals EEG silence. Studies of sleep in 

healthy patients demonstrate that the BIS value falls 

during physiological sleep and rises during arousals, 

but that there is a significant overlap of values for a 

given sleep stage63,126. Nicholson et al. used the BIS 

and submental EMG to investigate sleep in ICU 

patients129. They used the following BIS and EMG 

values to classify patients: awake (BIS > 85), non-

SWS (BIS 60-85), SWS (BIS < 60) or REM (BIS 

> 60 or decrease in EMG power > 30% or the 

presence of REM-like waves on the frontal EEG). 

These thresholds were based on a pilot study, from 

which no results were presented. They confirmed the 

clinical observation and results of previous studies 

that almost no ICU patient shows normal sleep and 

aimed to highlight the fact that the traditional 

classification criteria of EEG sleep staging are 

deficient to use in critical care patients. They did 

not correlate the BIS-based sleep stages to the 

visually scored sleep stages. Vacas et al. tested the 

sleep staging performance in critically ill adults by 

an EEG-based brain monitor, the SedLine® Brain 

Function Monitor (Masimo Corp., Irvine, CA)130. 

The SedLine calculates the patient state index (PSI) 

by using a proprietary algorithm incorporating the 

EEG power, frequency and phase information from 

anterior-posterior relationships of the brain as well 

as coherence between bilateral brain regions131. In 

the ICU patients, the observation of disturbed sleep 

architectures was confirmed. Although not in ICU 

patients but in three healthy subjects, the sleep 

stages defined by the SedLine monitor were 

compared to visually scored hypnograms. The 

percentage agreements were 67% for the wake 

stage, 77% for the non-REM (N1 = 29%, N2 = 

88%, and N3 = 6%), and 89% for the REM stage, 

with an overall agreement of 75%. 

 

5.2. Methods for sleep stage classification in 
NICU patients 

Clearly, the previously discussed methods for ICU 

depth of sleep monitoring are not suitable for 

neonatal sleep monitoring due to the significant 

differences in sleep EEG in neonates, as discussed in 

section 3. Sleep state analysis in neonates is 

challenging during this period of rapid brain 

development, introducing a large variation in EEG 

patterns. Yet, automated sleep staging algorithms 

have gained much attention in NICU research when 

compared to PICU and adult ICU research. The 

important role of neonatal sleep in the brain 

maturation makes the assessment of sleep a valuable 

measure that provides crucial insight into brain 

function integrity33. In contrast to adults, sleep 

staging in neonates is generally considered as a 

three-class problem: wake, active (REM) sleep, and 

quiet (NREM) sleep. Various EEG characteristics 

have been used to develop an automated sleep 

staging algorithm, specifically for preterm or term 

neonates, or both. The NICU patient population 
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mainly consists of preterm neonates. Since 

intrauterine brain development is similar to 

extrauterine brain development, methods evaluated 

on neonates > 38 PMA could be interesting for 

PICU patients. A selection of the methods developed 

for neonatal sleep monitoring, that have potential to 

be applied in the neonatal patients admitted to the 

PICU, is discussed in this section. An overview of 

the discussed methods in NICU sleep staging is 

provided in Table S2.  

 

Koolen et al. developed an EEG-based sleep state 

classifier that performed consistently well over a 

wide range of ages (24-45 weeks PMA)132. They 

extracted 57 features from the time and frequency 

domains and features representing spatial 

connectivity for each epoch and used a forward 

feature selection algorithm to define a reduced 

feature subset. The features that were most 

distinctive for quiet and active sleep classification 

were relative delta power and the 5th percentile of 

the peak-to-peak EEG amplitude. The reduced 

feature subset, consisting of 7 features, was used to 

train a nonlinear support vector machine classifier 

with radial basis kernel function. Performance tests 

showed that the algorithm was able to classify quiet 

and active sleep epochs with 85% accuracy, 87% 

specificity and 83% sensitivity. The classifier 

performance was slightly better in neonates > 32 

weeks PMA compared to the more premature 

neonates (<32 weeks), although these differences 

were not statistically significant. Piryatinska et al. 

used the frequency content of the EEG as input for 

a classification method in preterm and term infants 

with the same PMA of 40 weeks27. The following 

features were significantly different between active 

and quiet sleep: logarithm (log) of alpha power, log 

of beta power, log of theta power, log of spectral 

moment (i.e., a measure of how the power spectrum 

is distributed), spectral entropy (i.e., measure of the 

peakiness of the power spectrum), log of SEF90 

(i.e., the frequency under which 90% of total power 

is accumulated) and finally the loglog of fractional 

dimension (i.e., a measure of smoothness of the 

power spectrum surface). A change point detection 

algorithm was used for each of the features and the 

created clusters where classified using a k-means 

clustering algorithm. Rates of agreement were 

evaluated for 4 combinations of features in the full-

term cohort and 5 combinations of features for the 

preterm cohort. Agreement rates varied significantly 

among EEG recordings and per run, but were in the 

80-90% range when averaged over 100 runs.  EEG 

spectral features were also used by Scher et al.27. In 

addition, cardiorespiratory, EMG and EOG 

parameters were used. 13 features were used in a 

linear discriminant model, obtaining an overall 

accuracy of 93.8% in term and preterm neonates 

measured at term age (38 – 43 weeks).  

 

Beside the spectral characteristics, continuity of the 

EEG background could be used to assess neonatal 

sleep patterns. Palmu et al. developed an EEG index 

based on the presence of activity bouts, referred to 

as “spontaneous activity transients” (SAT), to 

detect sleep wake cycles in early preterm infants 

(<34 weeks GA)133. The proportion of the EEG 

covered by SATs fluctuates with the sleep cycle, 

with more SATs during wakefulness. SATs were 

detected using an automated SAT detection 

algorithm that was presented in an earlier study and 

is based on classification by thresholding the output 

of a nonlinear energy operator reflecting both the 

amplitude and frequency of the EEG signal134. The 

percentage of time covered by SATs (SAT%) was 

found to show temporal behaviour that compared 

well with the hypnogram obtained by visual sleep 

scoring, with significant differences in SAT% 

between deep and REM sleep.  

 

Recent studies used more advanced machine 

learning algorithms for neonatal sleep stage 

classification. Fraiwan et al. used time-frequency 

analysis for automated sleep stage identification135. 

Wigner–Ville distribution (WVD), Hilbert–Hough 

spectrum (HHS) and continuous wavelet transform 

(CWT) time frequency distributions were used to 

represent the EEG signal in time-frequency domain. 

Features were extracted from WVD, HHS and CWT 

by entropy values. Classification was done by an 

artificial neural network (ANN). The system was 

trained and tested using data taken from neonates 

of 40 weeks PMA for both preterm and full-term 

neonates. The data set was the same as was used 

by Piryatinska et al.27. Classification based on WVD 

outperformed the approaches based on CWT and 

HHS and achieved a kappa coefficient of 0.84 and 

0.65 in full-term neonate recordings and 0.74 and 
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0.50 in preterm neonate recordings. In their later 

study, Fraiwan et al. used a long short-term memory 

(LSTM) neural network136. A LSTM is used in 

sequence learning that has the ability to learn long-

term dependencies between data. The method 

achieved high accuracy levels (96.81%) in three-

class sleep staging on the same dataset as used in 

their previous study135 and by Piryatinska et al.27. 

 

An active research group in the field of machine 

learning based neonatal sleep state analysis methods 

from the University of Leuven introduced various 

methods137–140. In 2017, they presented the class-

based adaptive sleep staging (CLASS) algorithm to 

detect quiet sleep139. The CLASS algorithm relies on 

the more discontinuous background pattern 

observed during quiet sleep. High power artifacts 

could be easily confused with periods of 

discontinuity. Therefore, a nonstationary artifact 

reduction method that applies principal component 

analysis over a sliding window to separate the 

artifact from the EEG signal was used. Next, an 

adaptive segmentation method was used that 

defines segment boundaries where large changes in 

amplitude and frequency behaviour occur. This 

allows the application in a larger range of PMA since 

it is based on the relative discontinuity at each PMA 

between quiet sleep and other states. The CLASS 

performance proved optimal across recordings from 

neonates at 31-38 weeks PMA, compared to 

neonates <31 weeks or > 38 weeks, with a median 

sensitivity and specificity of 94% and 83%, 

respectively. After 38 weeks, the EEG becomes more 

continuous and relative changes in discontinuity 

become less distinguishable, resulting in a lower 

CLASS performance. In a study published in 2018 

by Pillay et al., they trained both a Hidden Markov 

Model (HMM) as well as a Gaussian Mixture Model 

(GMM) for sleep state classification in neonates 27-

41 weeks PMA admitted to the NICU without 

sedative or anticonvulsive medication or cerebral 

lesions137. They evaluated their method both for two 

state (quiet and active sleep) as well as four state 

classification. In four state classification, active sleep 

was subdivided into active sleep I and LVI, and quiet 

sleep is subdivided into tracé alternant and HVS. 

The use of an HMM enables the incorporation of 

prior knowledge of the sleep state transition 

probabilities. 112 features were extracted from time 

and frequency domain and wavelet and empirical 

mode decompositions from which the best features 

were selected for each method by minimum 

redundancy maximum relevance. This paper also 

suggests a patient-wise rescaling of the features 

before feeding them into the classifier. For both two-

state as well as four state classification, the HMM 

performed better than the GMM model (two state: 

accuracy is 95%, in HMM and 92% in GMM, four-

state: accuracy Is 86% in HMM and 82% in GMM), 

suggesting that the introduction of the transition 

probability is favourable. Feature scaling improved 

the classification performance. Ansari et al. have 

used a convolutional neural network for sleep stage 

classification in preterm and term neonates138. The 

neural network has been directly trained on a 

multichannel EEG after downsampling the EEG 

signal to 30 Hz. For two-state classification, this 

method achieved a mean Cohen’s kappa of 0.76. For 

the four-state classification, this Cohen’s kappa was 

0.66. In the most recent study of this Belgian 

research group, published by Ghimatgar et al. in 

2020, they used a multichannel approach based on 

a LSTM network and HMM140. Sequential forward 

feature selection was used for feature and channel 

selection to identify the features in the various brain 

areas that are most relevant for sleep staging in 

neonates. A LSTM then classifies the epoch as sleep 

stages. Finally, an HMM-based postprocessing stage 

was used to reduce false positives by incorporating 

the knowledge of transition probabilities between 

stages into the classification process. The final 

classifier achieved an overall accuracy 78.9-82.4% on 

a dataset with 16 neonates PMA 38-42 weeks with 

six-bipolar EEG channels.   

 

6. Discussion  
 

This review provides a broad overview of the 

potential factors that influence the sleep EEG in 

critically ill children and discusses the available 

methods for automated sleep monitoring. The 

presented overview of the most important findings 

could contribute to the required knowledge for the 

development of an EEG-based sleep monitoring 

method for PICU patients.  The findings 

demonstrate that sleep monitoring in the PICU is 

challenged by a variety of PICU factors that 

interfere with the sleep EEG. It is important to take 
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these factors into account during the development 

of a PICU sleep monitoring method and during the 

assessment of sleep.  

 

First, the significant changes in the sleep EEG with 

age must be taken into account, with the most rapid 

development in EEG patterns during the first 2 

months of life. The sleep EEG patterns observed in 

neonates differ greatly from those observed in older 

children and adults, thereby challenging the use of a 

single sleep monitoring algorithm for all PICU 

patients. In the first months of life, the 

discontinuous and asynchronous EEG during sleep 

becomes more continuous and synchronous. 

Neonatal EEG patterns disappear and adult sleep 

transients (sleep spindles, K-complexes, vertex 

waves) appear, enabling the differentiation into N1, 

N2 and N3 sleep. In later childhood, the EEG 

changes are less drastic. With progression of age, 

the frequency and amplitude of the DPR keeps 

gradually increasing until it reaches its adult 

characteristics during adolescence. Although the 

sleep EEG changes with age have been extensively 

studied, it must be realized that the developmental 

status of a child determines the EEG, rather than 

the age. On top of the age-dependent changes, the 

critical illness introduces additional changes in the 

EEG. Unfortunately, sleep EEG studies in PICU 

patients are limited. Adult ICU studies show that 

the atypical sleep EEG is characterized by 

polymorphic delta activity, the absence of N2 

markers, burst suppression and isoelectric activity. 

In general, all medical conditions in which the brain 

is involved, either directly or indirectly, could affect 

the EEG. Whereas most cerebral pathologies cause 

diffuse slowing of the EEG, focal changes could be 

observed in pathologies with local lesions such as 

brain abscesses, local contusion or CVA. Epileptic 

discharges could be present in various neurological 

conditions, including status epilepticus, central 

nervous infections or hypoxic-ischemic, renal, 

hepatic or other metabolic encephalopathies. 

Furthermore, many sedatives and analgesics are 

known to cause slowing of the EEG. The effect of 

medication on the sleep EEG in critically ill children 

is especially complex due to various factors. The 

critical illness introduces unpredictable 

pharmacodynamics and pharmacokinetics caused by 

hemodynamic instability, altered protein binding and 

impaired organ function. On top of that, the age 

and physiological characteristics of the child 

influence the drug interaction. The effect of drugs 

on the brain, and thereby the EEG, is dependent on 

the brain maturation state. Another challenge in the 

prediction of EEG effects caused by medication is 

the drug-drug interaction. Medication is often used 

in combination with other classes of medication that 

both interact with the EEG and could introduce 

complex drug-drug interactions. For some 

medications, a temporal discrepancy between EEG 

changes and blood concentration of the drug is 

known, which could be altered by the unpredictable 

pharmacodynamics and pharmacokinetics present in 

PICU patients. Although for many medications its 

dose-dependent effect on the sleep EEG is widely 

studied in healthy individuals, less is known about 

their effects in critically ill children. Lastly, it is 

important to mention that for many drugs and 

medical conditions the influence on the wake EEG 

has been widely studied, while its influence in the 

various sleep stages remains unclear. During normal 

sleep, slowing of the EEG is physiological. The EEG 

deviations introduced by drugs and medical 

conditions that have a slowing effect could be less 

clear during sleep. Finally, the EEG is – often 

unavoidably - confounded with artifacts from various 

physiological or non-physiological sources. The noisy 

PICU environment introduces additional artifact 

sources, such as from surrounding electrical devices 

or frequent nursing activities. During the 

development of a sleep monitoring method, 

attention must be paid to these artifacts and efforts 

should be made to remove the artifacts from the 

EEG signal and to evaluate the effect of artifact 

removal.  

 

The discussed automated sleep monitoring methods 

used in adult ICU patients, NICU patient and 

healthy patients provide knowledge on potential 

methods and EEG features to use in a PICU specific 

method. Some of the methods used and validated in 

adult patients will perform quite well in older 

children in the PICU, while its performance will 

heavily decrease when applied to the neonates in the 

PICU. The same goes the other way; a neonatal 

sleep staging algorithm will probably not perform 

well in the older PICU population. During evaluation 

of these algorithms, the patient-related factors 
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should be taken into account, including age, 

medication and medical condition. From studies in 

healthy adults, knowledge on the accuracy and 

efficiency of the various signal pre-processing 

algorithms, feature extraction methods and 

classification is obtained. Signal pre-processing is 

often minimal, with only the use of a single 

bandpass, low-pass or high-pass filter to remove 

unwanted frequencies. Most often used features are 

derived from the frequency domain, although time, 

wavelet and empirical mode domain features have 

also been shown to achieve good results. Several 

classification methods have been used in sleep stage 

classification. Complex classifiers, for example using 

neural networks, do not always achieve better 

performance results than simpler classifiers such as 

decision trees or support vector machines do.   

 

The IDOS index introduced by Reinke et al. has to 

our knowledge been the only method to 

automatically asses sleep in critically ill adult 

patients124. This simple and intuitive method, based 

on the gamma/delta ratio, seems to be a promising 

method for sleep assessment in the critically ill and 

is therefore more discussed in depth here. However, 

the use of the gamma frequency band in the analysis 

of sleep is controversial. The electrical activity in the 

gamma range is contaminated with muscle activity 

as a result of its overlap with the EMG frequency 

band. Although increased muscle activity, and thus 

an increased gamma power, is a useful marker in 

sleep state analysis, its use in patients receiving 

muscle relaxants and sedatives is therefore 

debatable. Furthermore, noise and artifacts often 

introduce high frequency activity, thereby increasing 

the gamma power, and thus interfering with the 

IDOS index. Also, the general slower EEG activity 

observed in children might reduce its usefulness for 

the application in PICU patients. Further efforts on 

improving the index score and validation in a 

heterogeneous ICU, and finally PICU, population are 

needed before clinical implementation. Other EEG 

features that are shown to reflect sleep in critically 

ill patients should be evaluated for their 

implementation as a variable in an EEG-based index 

score. These EEG features include the relative band 

powers, ratios of other band powers and SEF95. 

Next, processed EEG-based brain function measures, 

such as the BIS value or PSI, have potential as 

measures of sleep in ICU, but additional validation 

studies in ICU patients are needed to correlate the 

processed EEG measure with the various sleep 

stages defined by visual sleep scoring. One 

disadvantage of using these measures is the 

nondisclosure of their calculation algorithms. This 

complicates the interpretation of unexpected values 

and the identification of factors influencing the 

measure. Besides, it eliminates the ability to 

calculate the measure from raw EEG data retrieved 

from brain monitors other than the proprietary ones. 

Also, it must be highlighted that the development 

of the BIS and PSI values have primarily been based 

on depth of sedation, which is a different process 

than natural sleep.  

 

In neonatal sleep staging methods, additional EEG 

characteristics are used, such as measures to define 

the EEG discontinuity. Clearly, methods based on 

EEG discontinuity are only beneficial in neonates up 

to several weeks postnatal age, thereby limiting the 

application in a broader PICU population. However, 

used features in time, frequency or time-scale 

domain are similar to those used in adult sleep state 

analysis. Most discriminating features for active and 

quiet sleep discrimination appeared to be in the 

frequency domain, similar to observations in adult 

ICU and healthy adult sleep. However, amplitude-

based features, for example using the range EEG, 

were also frequently selected by feature selection 

algorithms. In contrast to the discussed adult ICU 

methods, many neonatal methods rely on more 

complex algorithms. The use of the complex 

machine learning methods potentially enables the 

extraction of patterns in the complex EEG signal 

that are not easily observed by eye or simple 

computerized methods. Koolen et al. introduced an 

intuitive method with the best performance in 

neonates > 32 weeks PMA132. The use of multiple 

EEG channels enabled the incorporation of 

asynchrony measures, typically observed in 

neonates. Discontinuity of the EEG was quantified 

by burst intervals, as a valuable feature in neonatal 

sleep stage classification. Adaptive approaches, as 

the one proposed by Dereymaeker et al., have the 

advantage to detect relative changes and adjust to 

the individual EEG139. Palmu et al. studied a simple 

index based on the presence of SATs in the sleep 

EEG as a marker for neonatal sleep stages133. SATs 
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are typically present in preterm neonates. A method 

solely based on the presence of SATs presence might 

therefore be of limited value in the PICU. Scher et 

al. introduced a simple method with a high accuracy 

using EOG, EMG, ECG and respiratory channels in 

addition to the EEG that is worth considering during 

the development of a PICU method141. The 

incorporation of knowledge on the temporal 

structure of the sleep cycle, used in the methods of 

Ghimatgar et al.140 and Pillay et al.137, both using 

HMM, could efficiently increase the algorithm 

accuracy. The sleep transition rules embedded in the 

models incorporate the information from 

neighbouring segments and use this information 

mainly to rule out infrequent stage transitions, such 

as from wake to deep sleep. Ghimatgar et al. showed 

that postprocessing with HMM could improve the 

overall accuracy up to 3% by reduction of false 

positive sleep stages140. Thus, the use of an HMM 

seems a promising method for sleep stage 

classification. 

 

Some NICU methods choose a four-state 

classification approach (AS1, LVI, HVI, TA) since 

the proportion of the various neonatal EEG patterns 

observed during quiet and active sleep has 

prognostic value on developmental and clinical 

outcomes in the NICU. However, this four-state 

classification approach is not advised by the AASM 

criteria and might therefore not be beneficial for the 

assessment of sleep in the PICU. Also, it must be 

noted that in the discussed NICU studies little or no 

attention was paid to the neurophysiological 

changes caused by medication and neurological 

conditions that influence the EEG. Most studies did 

not include neonates receiving sedative or analgesic 

medication or with neurological disorders. 

 

The broad subject of this review and extensive 

literature on each subtopic limited the completeness 

of this review. For most subtopics, no systematic 

search was performed, thereby risking 

incompleteness of the provided information. 

However, systematic searches were used for the 

automated sleep methods in adult ICU and NICU. 

To stay within the scope of this review, the results 

of these studies were only briefly discussed and not 

systematically analysed. They serve as basic 

knowledge on classification approaches for ICU 

sleep. To bound this review’s scope, a selection of 

commonly used medication and frequently 

administered medical conditions in the PICU was 

made. EEG effects were described in general, 

without specifying frequency and amplitude 

changes. However, for most factors, EEG effects are 

highly variable per individual and are therefore 

irrelevant to quantify. Also, for many factors, only 

EEG effects on healthy adults were identified, not 

taken into account the potentially different effects 

during sleep, critical illness or in children.  

Not discussed in this review is the EEG data 

acquisition, which still has to be evaluated for the 

development of a PICU sleep monitoring method. 

Next to the technical aspects of the EEG data 

acquisition, this implies the channel selection, or the 

EEG electrodes. The use of fewer channels, or even 

a single one, would be patient-friendlier, quicker to 

apply, easier to interpret and require less 

computational power. However, a single channel is 

less robust to disconnection of the electrode due to 

patient movement. Reinke et al. used the C3/C4 

electrodes, placed centrally on the left and right 

hemisphere, to calculate the IDOS index124.  This 

channel has been shown to be most representative 

for the classification of sleep stages in healthy 

individuals with minimal EMG interference142. 

However, the frontal channel (F3/F4) are known to 

better measure K-complexes and delta waves than 

other channels do143. When selecting a channel, the 

asynchronous behaviour and topographical 

differentiation of electrical activity in children should 

be taken into account.  

 

It must be emphasized that the EEG is just a 

biomarker of the underlying sleep state that might 

not always reflect the sleep. The EEG resembles 

electrical activity arising from various processes in 

the brain, influenced by underlying factors present 

in PICU patients that also interact with each other. 

Unfortunately, neurosciences have not progressed to 

the point where it is possible to exactly understand 

the neurophysiological activity that causes the 

observed EEG pattern. The neurophysiology of sleep 

is a complex process that has not fully been 

elucidated. Although the AASM criteria form a good 

support in the assessment of sleep, it must be 

realized that these criteria, and thus definitions of 

sleep stages, were originally defined based on visual 
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analysis of the EEG signal rather than physiological 

substrates that reflect the true underlying sleep 

stage. This is especially relevant in sedated patients 

or patient with significant  neurological disorders, 

where features observed in the EEG signal are not 

always related to the physiological process of sleep. 

The slowing of the EEG activity observed in 

encephalopathy or under sedatives, could potentially 

lead to the, perhaps incorrect, classification into 

deeper sleep stages following the AASM criteria. 

The same applies to the increase in N2 features 

induced by α-2-receptor agonists leading to 

increased N2 staging. However, it should be 

questioned whether the increase in N2 markers really 

means that there is an increase in N2 sleep, and thus 

whether the EEG findings reflect the physiological 

processes that occur during N2 sleep. The 

effectiveness of EEG-based sleep staging based on 

the AASM criteria should therefore be discussed in 

the critically ill patient population. 

 

Despite these challenges introduced by various 

interfering factors, EEG remains the golden standard 

in the assessment of sleep, especially in ICU patients 

where heart rate, respiratory rate and EMG are 

artificially influenced. However, it must be noted 

that sleep is multi-dimensional and is more than 

sleep staging only. Other dimensions of sleep include 

total sleep time, movement, awakenings, perception 

of sleep, tiredness upon awakening, daytime energy 

and functioning. Various methods measure various 

dimensions of sleep. Bourne et al.19 and Richards et 

al.20 both reviewed various methods to assess sleep 

in critically ill patients. Next to objective methods 

based on EEG or actigraphy, they discussed 

subjective method including patient and clinical 

assessment. In patient assessment, a patient’s 

perceptions of sleep quality and tiredness could be 

evaluated via questionnaires. However, this method 

requires patients that are alert, orientated and able 

to respond and provide feedback, which limits its use 

in PICU patients. Clinician assessment is useful in 

patients who are unable to self-report. However, this 

method is time-consuming, introduces interrater 

variability and is intermittent.  

 

This review can aid in the development of an EEG-

based automated sleep monitoring method in the 

PICU by summarizing the barriers and EEG 

deviations in the PICU. Despite the challenges 

introduced by the various PICU factors, the 

detrimental effects on clinical outcome of sleep 

deprivation in critically ill children emphasize the 

need for the development of a PICU sleep 

monitoring method. An automated method 

eliminates the need for human intervention in the 

sleep scoring process, resulting in a cost-effective, 

objective method that could be applied in real-time 

and continuously. The first step in this development 

is the study of the sleep EEG in PICU patients. The 

addition of the EOG signal in the algorithm might 

be beneficial in the detection of REM sleep. Future 

efforts in the development are the optimization of 

signal pre-processing, feature selection and 

classification approaches. The challenge remains to 

develop a method that is suitable for patients over 

the whole PICU age range, from 0 to 18 years. Due 

to the significant EEG difference in this age range, 

an easily adjustable method could be a solution. The 

method could be adjusted to the patient age by 

predefined and validated settings for various age 

subclasses. These settings could include the 

selection of a different feature subset, or classifier 

parameters. For example, in an EEG index-based 

method, the threshold value could be adjusted for 

various age categories. Besides, the three-stage 

classification in neonates (wake, quiet and active 

sleep) versus the four (or more)-stage classification 

in older children (wake, REM, non-SWS (N1, N2), 

SWS (N3)) should be taken into account during the 

development of a PICU depth of sleep monitoring 

method. Finally, the developed sleep monitoring 

method should be simple, intuitive and robust to 

artifacts, and able to assess sleep real-time. Large 

scale validation in critically ill patients is required 

before clinical implementation is justified. The 

algorithm performance should be correlated to 

sedation scores and illness severity. Identification of 

patients in which sleep is difficult and ineffective to 

assess could be useful. In addition to the comparison 

with visually scored sleep stages, the monitoring 

outcomes could be compared to other automated 

sleep staging methods and patient and nurse 

perception of sleep. Finally, the sleep assessment 

should be correlated to clinical outcomes.  
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7. Conclusion  
 

In conclusion, the PICU environment provides 

unique challenges in the development of an 

automated sleep monitoring methods. The broad 

ranges of age, critical illness and medication 

encountered in the PICU introduce a variety of 

factors that affect the sleep EEG. The sleep EEG 

patterns observed in neonates differ greatly from 

those observed in older children and adults, as they 

are discontinuous, asynchronous and lack adult sleep 

transients. This challenges the use of a single sleep 

monitoring algorithm for all PICU patients. Many 

medical conditions, sedatives and analgesics cause 

slowing of the EEG. These EEG influences should be 

taken into account when evaluating the performance 

of the sleep monitoring algorithm and during 

assessment of sleep. The discussed sleep monitoring 

methods provide knowledge on the pre-processing, 

feature extraction and classification methods. The 

most discriminating features lie in the frequency 

domain, where the simple band powers appear to be 

discriminative between sleep stages. Also, time 

domain features indicating amplitude ranges seem 

to be valuable measures. Classification methods vary 

from simple threshold-based methods to complex 

neural networks. Methods incorporating the 

sequential characteristics of the sleep data seems to 

be promising, but also simple threshold-based 

methods have potential. To conclude, based on 

these literature findings, the development of an 

EEG-based sleep monitoring method for PICU 

patients is challenging but seems to be achievable.   
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Abstract 
Introduction: Sleep deprivation is commonly encountered in critically ill children admitted to the pediatric 

intensive care unit (PICU) and is associated with poor clinical outcome. Automated electroencephalography 

(EEG)-based depth of sleep monitoring enables real-time continuous study of sleep in PICU patients without 

the need for visual assessment of the EEG signals, the gold standard. This study aims to evaluate the 

classification performance of various index measures and machine learning models for sleep monitoring in 

critically ill children.  

 

Method: Two EEG-index-based approaches, calculated as the ratio gamma/delta and of 

gamma/(theta+delta) spectral powers, as well as three machine learning models - decision tree (DT), support 

vector machine (SVM) and extreme gradient boosting (XGBoost) - were trained and evaluated. The 

classification into three as well as four sleep states was evaluated. Polysomnography (PSG) recordings of 120 

non-critically ill patients were used for model optimization, training and internal validation. As a proof-of-

concept, the models were tested on the PSG data of 10 PICU patients.  

                                                                               

Results: Whereas the machine learning models outperformed the index-measures in both three- as well as 

four-state classification in PSG recordings of non-critically ill children, the opposite was true for the PICU 

PSG data. Best results for PSG data of non-critically ill patients were obtained with the XGBoost model, with 

a 5-fold cross-validation accuracy of 0.79 (± 0.01) for three-state classification. Performances for PICU PSG 

data were remarkably worse for all models. The best results for PICU data were obtained with the index-

based approach (accuracy = 0.60) and the gamma/delta and gamma/(theta+delta) performed equally. The 

individual assessment of model performances per PICU patient revealed large variation between them.  

 

Conclusion: A simple index measure is a promising method to monitor sleep in PICU patients. Machine 

learning models developed in non-critically ill patients cannot easily be applied to PICU patients in whom the 

sleep EEG is frequently deviant. Future efforts should focus on further tuning, training and validating the 

classification models with more PICU data. 

 

 

1. Introduction 
 

Sleep is a vital state of the human body that is 

essential to life. Although its function is not fully 

understood, sleep is thought to have a restorative 

and memory consolidative function1. Children 

admitted to the pediatric intensive care unit (PICU) 

are exposed to various risk factors for sleep 

deprivation including the noisy intensive care unit 

(ICU) environment, medication, morbidity and 

discomfort2. Sleep studies in PICU patients 

demonstrated frequent occurrence of sleep 

deprivation, characterized by fragmentation of sleep, 

reduced total sleep time, disrupted sleep 

architecture and a disproportional amount of sleep 

occurring during daytime3–6. Deprivation of sleep is 

associated with various physiological and 

psychological disturbances and might lead to 

prolonged ICU stay, increased mortality and the 

development of delirium7,8.  

 
Monitoring of sleep has the potential to reveal links 

between negative outcomes and sleep deprivation 

and may ultimately aid clinicians to optimize sleep. 

Sleep can be measured using polysomnography 

(PSG), which is a multi-parametric sleep 

measurement used to diagnose sleep disorders. PSG 

records physiological changes during sleep using the 

electroencephalography (EEG), electromyography 

(EMG), electrooculography (EOG), 

electrocardiography (ECG) and pulse oximetry. 
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Based on the spectral composition and features in 

the EEG, EMG and EOG signals, sleep is divided 

into rapid eye movement (REM) and non-REM sleep 

(NREM). In normal human sleep, NREM and REM 

alternate in a cyclical fashion, defining the normal 

sleep architecture. During REM sleep, the EEG 

resembles wakefulness but muscle activity is 

typically greatly reduced. NREM sleep is divided into 

N1, N2 and N3. N1 is the lightest stage of sleep, 

followed by N2. N1 and N2 are characterized by 

slowing of the EEG frequency. N3 is a deeper, more 

restful stage of sleep with a high arousal threshold. 

Characterized by its high amplitude and low 

frequency EEG waves, this stage is referred to as 

“slow wave sleep” (SWS). N1 and N2 are together 

referred to as “non slow wave sleep” (NSWS).  

 

Sleep staging is traditionally done by visual analysis 

of these signals according to the American 

Association of Sleep Medicine (AASM) criteria. 

However, the use of the AASM criteria in 

characterizing sleep of critically ill patients is often 

debated due to confounding of the EEG signals by 

effects of the underlying illness and medication9–11. 

Furthermore, visual scoring of the EEG signals is 

time-consuming, requires skilled personnel and the 

subjective nature leads to considerable inter-

observer variability12. Several attempts have been 

made to develop an automated sleep staging 

algorithm to monitor sleep of adult or neonatal 

patients admitted to the ICU or neonatal intensive 

care unit (NICU), respectively13–19. These algorithms 

use PSG signals to determine features that correlate 

with the depth of sleep, which is related to the 

previously described sleep stages, in critically ill 

patients. On top of the elimination of the human 

effort in the sleep staging process, the potential of 

these algorithms lies in their ability to continuously 

and real-time indicate depth of sleep, which is an 

essential prerequisite for individual optimization of 

sleep. Machine learning models are frequently used 

in sleep staging algorithms and could enable the 

extraction of patterns in the EEG signal that are not 

easily observed by eye20. However, they are often 

complex to interpret and their added value in sleep 

staging in critically ill patients has not been 

validated. A simpler method is the use of index 

measures that correlate with the depth of sleep. 

Index measures could be used for sleep stage 

classification by determining thresholds for the index  

value to distinguish the various sleep stages. The use 

of a simple EEG-based index based on the ratio of 

the gamma (30-48 Hz) to delta (0.5-4 Hz) spectral 

power in a single channel EEG signal to assess depth 

of sleep in adult ICU patients was proposed by 

Reinke et al.: the ICU depth of sleep (IDOS) index15. 

The dynamic properties of spectral powers in the 

EEG frequency ranges (Table 1) during sleep are 

well-known: low frequency activity (theta, delta) 

increases as sleep deepens, while high frequency 

activity (gamma, beta, alpha) increases during 

wakefulness21. Therefore, using spectral power ratio 

in a sleep index introduces an interpretable and 

simple sleep measure.  

 

To our knowledge, automated EEG-based sleep 

monitoring methods to assess the sleep quantity and 

quality in critically ill children has not been 

investigated in the PICU setting. In the 

heterogenous population of PICU patients, not only 

the influences of sedative and analgesic medication 

and critical illness on the sleep EEG22, but also the 

changes in the sleep EEG that are associated with 

the maturation of the brain during childhood, should 

be taken into account23. The overall aim of this 

study was to develop a single channel EEG-based 

sleep monitoring method that is able to detect the 

changes of depth of sleep over time in critically ill 

children. To achieve this, we aimed to gain insight 

in the potential and pitfalls of various sleep stage 

classification models for PICU sleep monitoring by 

developing and evaluating both index-measures as 

well as various machine learning models. Therefore, 

we developed and tested the various classification 

models on PSG data obtained from non-critically ill 

children, and further tested the validity of these 

models in PSG data from PICU patients. Although 

the index-based approach to classify sleep by the use 

of thresholds does not really meet de definition of a 

Table 1. EEG frequencies. 

Frequency band Frequency 

range 

Gamma 30-48 Hz 

Beta 13-30 Hz 

Alpha 8-13 Hz 

Theta 4-8 Hz 

Delta 0.5-4 Hz 
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‘model’, they are for the sake of the consistency 

further referred to as ‘index-based models’. 

 

 

2. Methods  
 

Patients 
PSG recordings of non-critically ill children were 

obtained from the outpatient clinical database in the 

period between January 2017 to June 2021. These 

patients were referred to the Erasmus Medical 

Center (MC), Sophia Children’s Hospital, 

Rotterdam, the Netherlands, to receive a PSG for 

suspected or follow-up of sleep problems. Due to its 

retrospective nature, formal informed consent of 

subjects was not required. This was confirmed by 

the Medical Research Ethics Committee (MREC) of 

the Erasmus MC after review of the study protocol. 

To take into account the developmental changes in 

the sleep EEG, eight age categories were defined 

that globally correspond with the EEG changes 

during maturation24: 0-2 months, 2-6 months, 6-12 

months, 1-3 years, 3-5 years, 5-9 years, 9-13 years, 

13-18 years. For patients born preterm (<37 weeks 

gestational age), age was corrected until the 

postnatal age of 2 years. Fifteen recordings were 

collected for each age category, resulting in a total 

of 120 recordings. PSG recordings were included if 

the PSG showed normal physiological sleep with 

presence of all sleep stages and without atypical 

EEG findings. PSG recordings obtained from 

patients with severe neurological illness or who 

received sedative or analgesic medication were 

excluded. Also, PSG recordings were excluded if the 

hypnogram or PSG recording was incomplete or the 

data quality was low due to the presence of many 

artifacts. The PSG data obtained from the 

recordings of non-critically ill patients are further 

referred to as ‘reference PSG data’.  

 

PSG recordings of critically ill children were obtained 

prospectively from patients admitted to the PICU of 

the Erasmus MC, Sophia Children’s Hospital, 

Rotterdam, The Netherlands. These patients 

participated in an ongoing trial in which the effect 

of continuous versus intermittent nutrition in PICU 

patients is investigated (ContInNuPIC trial, 

approved by the Erasmus MC MREC). As a part of 

this study, PSG recordings were done to investigate 

the effects of nutrition on circadian rhythm. 

Informed consent was obtained from each patient. 

Patients were randomized to receive either 

continuous or intermittent nutrition. Besides the 

nutrition protocol, they received normal care 

according to the standardized hospital protocols. All 

available PSG recordings were used. From all 

patients, age, gender, PSG or PICU indication, 

medical history and sedative or analgesic medication 

that was administered during the PSG were 

collected.  

 

Data acquisition 
The PSGs were performed with a standard device 

(Brain RT, OSG, Rumst, Belgium or Morpheus, 

Micromed Sp.A., Treviso, Italy) using an eight-

channel EEG, two-channel EOG and EMG. EEG 

electrodes included the frontal (F3, F4), central (C3, 

C4), occipital (O1, O2) and auricular (A1, A2) 

electrodes and were placed according to the 

international 10-20 system with Ag/AgCl electrodes, 

sharing the same grounded electrode as reference 

(Fz), resulting in 8 unipolar EEG signals. 

Classification performance was assessed across 

various EEG channels to obtain the best performing 

EEG channel for final model development. 

Therefore, the following bipolar EEG channels were 

derived by subtraction of the unipolar electrode 

pairs: F3-C3, F3-C4, F3-O2, F3-A2, C3-C4, C3-O2, 

C3-A2, O1-O2, O1-A2. These EEG channels were 

chosen based on recommendations of the AASM25 

and good classification results in previous sleep 

staging studies in adults and neonates22. It was 

assumed that brain activity during sleep was 

synchronous between both hemispheres and 

therefore, only one of the bilaterally paired 

electrodes was used. The EMG electrode was placed 

on the submental muscle and the EOG electrodes 

were placed on the right and left outer canthus 

(ROC and LOC) of the eye, with the ROC electrode 

one centimeter superior and LOC one centimeter 

inferior of the outer canthus. The ROC-LOC channel 

was derived from the two EOG signals. EEG, EOG 

and EMG signals were sampled at 250 Hz or 256 

Hz, dependent on the PSG device used. All 

recordings were visually scored by PSG technicians 

on a 30-second epoch basis according to the AASM 

criteria26. The reference PSG recordings were scored 

by different PSG technicians, the PICU recordings 

were scored by a single PSG technician. The 
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recordings containing the raw PSG signals together 

with the visually scored hypnogram were manually 

exported from the PSG software environment 

BrainRT (OSG, Rumst, Belgium) in European Data 

Format (EDF). Further signal analysis was 

performed in Python (3.9.1) using EEGlib (0.4), 

XGBoost (1.4.2), PyEDFlib (0.1.20), Skicit-learn 

(0.24.0), Scipy packages (1.6.1). 

 

Three- and four-state classification 
All models were developed for both three- as well as 

four-state classification (wake/NSWS/SWS or 

wake/REM/NSWS/SWS, respectively). Three-state 

classification labels were obtained from the visually 

scored hypnogram by combining N1, N2 and REM 

sleep to form NSWS, while SWS consists of N3. In 

four-state classification, REM is considered as 

separate sleep stage. For neonatal sleep, in which 

only two sleep stages (REM and NREM) are 

distinguished, NREM sleep is defined as SWS and 

REM as NSWS. Due to this absence of stage N1 

and N2 in neonates and young infants, four-state 

labels were not retrieved from patients < 6 months 

of age. The N stage was used by the PSG 

technicians in PICU patients for epochs that have 

characteristics of NREM sleep, but could not be 

classified as either N1, N2 or N3 due to atypical or 

absent EEG characteristics. This stage is considered 

as SWS.  

 

Preprocessing  
All PSG signals were divided into 30-second epochs. 

A simple artifact detection algorithm was used to 

identify and label epochs than contain significant 

artifacts in the PSG signals. Epochs with signal 

amplitude exceeding a predefined threshold (most 

often movement or 50-Hz electrical interference 

artifacts) or zero activity (impedance measurement 

artifact) were detected and removed from the 

dataset (see Supplementary Methods 1 for more 

details). Next, a 16th order Butterworth band-pass 

filter was used for each PSG signal for additional 

artifact reduction by removing irrelevant 

frequencies. All EEG signals were filtered between 

0.5-48 Hz, the EOG signal between 0-30 Hz and the 

EMG signal between 5-40 Hz20.   

 

Feature extraction 
For each PSG signal, the signal’s characteristics per 

epoch were mathematically described by the 

calculation of various features. A set of features 

widely used in sleep studies in adults and neonates 

was extracted from each epoch as potential 

candidates for the classification algorithm. An 

overview of the features used is presented in Table 

2, including references to existing applications and 

definitions. Details and formulas of the feature 

calculation are provided in the Supplementary 

Methods 2. Fifty-one EEG features were calculated 

per channel for all unipolar channels of the left 

hemisphere (n=4) and derived bipolar channels 

(n=9). Time-domain features consisted of statistical 

features, as well as measures of signal complexity 

and self-similarity, such as the Hjorth parameters, 

fractal dimension and detrended fluctuation 

analysis. Twenty-five features were extracted from 

the frequency domain after discrete short-term 

Fourier transform by using a 2-second Hanning 

window with 50% overlap. Spectral descriptors, 

bandpowers and ratio of bandpowers were extracted 

from each epoch using the five EEG frequency bands 

(Table 1). To characterize non-stationary properties 

of EEG signals, a 5-level discrete wavelet transform 

(DWT) was used using a fourth-order Daubechies 

wavelet (see Supplementary Methods 3 for more 

details). Before DWT, the signals were down-

sampled to 100 Hz to obtain frequency bands that 

are associated with the sleep EEG frequency bands. 

Statistical features were calculated for each of the 

level coefficients. EOG features were based on the 

presence of rapid eye movements (REMs) or slow 

eye movements (SEMs) in the ROC-LOC channel. 

Spectral bandpowers were determined from the 

power spectral density estimated by discrete short-

term Fourier transform using a 10-second Hanning 

window with 50% overlap, to obtain a frequency 

resolution of 0.1 Hz. The characteristic changes in 

muscle power, and thus EMG signal amplitude, in 

the various sleep stages were used as EMG features. 

All features were standard scaled by removing the 

mean and scaling to unit-variance. Patient age was 

used as feature by using one-hot encoding for the 

age categories.  

 

Data sampling and splitting strategy  
Clear definitions and splitting of the data into 

optimization, training, validation and test sets are 

necessary to ensure unbiased validation and test 

results and correct interpretation of the results. The 

methods for model development and computational  
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Table 2. Overview of the calculated features for each epoch. EEG = electroencephalogram, EMG = electromyogram, EOG = 

electrooculogram, REM = rapid eye movements, SEM = slow eye movements. 

Feature category  Feature description Reference 

EEG features (p=51)   

• Time domain (p=14) Statistical features: Mean of absolute amplitude, variance, zero-

crossing-rate, interquartile range (25th-75th), signal sum, energy, 

kurtosis, skewness, Shannon entropy 

20,27,28 

 

Hjorth parameters: Activity, Mobility, Complexity 29 

Higuchi fractal dimension 18,30–32 

Detrended fluctuation analysis  32–34 

• Frequency domain (p=25) Spectral bandpowers: total signal power, delta, theta, alpha, beta, 

gamma (relative and absolute) 

20,27,28 

 

Spectral bandpower ratio: gamma/delta, gamma/theta, 

beta/delta, beta/theta, alpha/delta, alpha/theta 

20,27,28 

 

Sleep spindles: spectral bandpower 11-15 Hz (sigma) 35 

Spectral descriptors: spectral edge 95%, median and mean 

frequency, spectral kurtosis, spectral skewness, spectral entropy 

20,27,28 

 

• Time-frequency domain 

(p=12) 

Mean absolute value and standard deviation of coefficient 

amplitudes in D1, D2, D3, D4, D5 and A5 bands 

30,36–38 

EOG features (p=4) Absolute spectral bandpower 0.35-0.5 Hz (REMs), 0.35-2 Hz 

(REMs) and 0.1-0.35 Hz (SEMs) 

39, 40 

 

Variance 41 

EMG features (p=2) Mean absolute amplitude and energy 39 

Age (p=8) Age categories: 0-2 months, 2-6 months, 6-12 months, 1-3 years, 

3-5 years, 5-9 years, 9-13 years, 13-18 years (one-hot encoding) 

 

 

 

costs differ between the index-based and machine 

learning models. Therefore, different data sampling 

and splitting strategies that were used are described 

separately below. For both, the reference PSG data 

was used for model optimization, training and 

internal validation. The test score on the PICU PSG 

data set is referred to as ‘external validation’, for 

which all available PICU data was used. During each 

cross-validation (CV), folds were made on a patient-

level, meaning that the PSG data obtained from one 

patient will not appear in two different folds. 

Sampling of the data to create subsets was done via 

random selection of epochs. For model development 

and evaluation in four-state classification, subjects 

< 6 months of age were removed from the data. 

The data sampling and splitting strategies are 

visualized in Figure 1 for index-based models and in 

Figure 2 for machine learning models. 

 

Index-based models  

An exploration data set was created for exploration 

of potential index measures by sampling 10,000 

epochs from the reference PSG data. The whole 

reference PSG dataset was used for channel 

evaluation, final model training and internal 

validation. Channel evaluation and internal 

validation was done via 5-fold CV.  

 

Machine learning models 

Model exploration was done by creating learning 

curves using the whole reference PSG data. A 

learning curve is a plot of the model’s classification 

performance for the training and validation set 

against the number of training samples. Next, for 

development of the machine learning models, the 

reference PSG data was split into an optimization 

set (two-third) and a training set (one-third). Model 

optimization, which comprises forward feature 

selection and hyperparameter tuning, was done via 

3-fold CV. Within this CV, another 3-fold CV was  
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Figure 1. Method flowchart and data sampling and splitting strategy for development and evaluation of index-

based models. J(θ) represents the trained model (i.e., the determined thresholds). The number in the boxes are the 

number of epochs in each data subset. The data splitting into various sets was done by randomly selecting epochs. CV 

was used during channel evaluation and internal validation. In each CV, folds were made on a patient-level. EEG = 

electroencephalogram, PICU = pediatric intensive care unit, PSG = polysomnography 

 

used for forward feature selection. Channel 

evaluation and internal validation was done via 5-

fold CV. Due to high computational costs, it was 

not feasible to use all data in each step in the model 

development. For channel evaluation, 10,000 epochs 

were randomly selected from the optimization set 

and from the training set. During final model 

development, optimization and training set sizes 

consisted of 50,000 epochs. Model optimization of 

the SVM and XGBoost models required significantly 

more run time than for the other models. In order 

to stay within feasible run times, 50% of the 

optimization sets was used during channel 

evaluation and final model development of SVM and 

XGBoost. The training set sizes were equal for all 

models.    

 

Model development  

Index-based models  

Spectral power features in the EEG frequency ranges 

were used to develop the index measure. To assess 

which spectral power ratios have potential to be 

used in an index measure, Spearman correlations of 

the absolute spectral powers with the ordinal sleep 

stage labels were obtained using the C3-C4 channel 

from the exploration data set. Multiple combinations 

of positively correlated frequency bands and 

negatively correlated frequency bands were used as 

ratio and its classification performances for across 

all EEG channels were evaluated on the exploration 

data set. Optimal thresholds for sleep stage 

classification were determined by maximizing the 

classification accuracy over a threshold range. The 

best performing indices were selected for further 

development. For this, training and 5-fold CV scores 

were obtained across all EEG channels for channel 

evaluation. This was done for three- and four state 

classification on the training data set, which 

comprises all reference PSG data. The thresholds 

obtained from the best performing channel were 

selected as the final model.  

 

Machine learning models  

Learning curves for various machine learning models 

were created for model exploration. This graphical 

representation of the model’s learning behavior gives 

insight into the model performance, computational  
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Figure 2. Method flowchart and data sampling and splitting strategy for development and evaluation of 

machine learning models. θ represents the hyperparameters, J(θ) represents the trained model.  The number in the 

boxes are the number of epochs in each data subset. During model optimization (hyperparameter tuning + feature 

selection), 5,000 and 25,000 epochs were used for channel evaluation and final model development, respectively, for 

SVM and XGBoost. For DT, 10,000 and 50,000 epochs were used. The data splitting into various sets was done by 

randomly selecting epochs. CV was used during model optimization (hyperparameter tuning + feature selection), channel 

evaluation and internal validation. In each CV, folds were made on a patient-level. Not visualized in this figure is the 3-

fold CV that was used for forward feature selection during model optimization. CV = cross-validation, DT = decision tree, EEG 

= electroencephalogram, PICU = pediatric intensive care unit, PSG = polysomnography, SVM = support vector machine, XGBoost = extreme 

gradient boosting  

 

costs and convergence point, where the model will 

not benefit from any more training samples. 

Learning curves were determined for 7 machine 

learning models: decision trees (DT), logistic 

regression (LR), linear discriminant analysis (LDA), 

k-nearest neighbors (KNN), support vector machine 

(SVM), random forest (RF) and XGBoost. Age, 

EOG, EMG and EEG features from the C3-C4 

channel were used. With a large set of features, high 

correlations between some features are inevitable. 

This results in unnecessarily large feature data sets, 

thereby risking the ‘curse of dimensionality’. 

Therefore, the minimum redundancy maximum 

relevance (mRMR) method was used42. This feature 

selection approach tends to select features that have 

a high correlation with the sleep stage labels and a 

low correlation between themselves by using the 

mutual information between them. 20 features were 

selected from the 57 PSG features. Since age 

features will not likely to be selected by the mRMR 

method as they are not correlated with the sleep 

stage labels, they were added to the feature data set 

after mRMR feature selection. The models were 

trained using empirically chosen hyperparameter 

settings, i.e., the internal settings of the machine 

learning model whose value can control the learning 

process of the model (Table S2). The validation 

score was determined using 10-fold CV. Training 

and validation scores were expressed in accuracy. 

Model selection was done based on a trade-off 

between model performance, computational costs 

and convergence point.  

 

We then compared the performance across EEG 

channels for channel evaluation of the three best-

performing machine learning models. First, the 

models were optimized when using features 

extracted from one EEG channel at a time in 

combination with the EOG, EMG and age features. 

Again, mRMR was used to reduce the number of 
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features by selecting 20 from the 57 features, after 

which the age features were added to the data set. 

Next, the reduced feature subset was fed into a 

pipeline to find the optimal feature subset in 

combination with the optimal set of 

hyperparameters. Sequential forward feature 

selection (SFS) with 3-fold CV was used to further 

reduce the feature subset. In this feature selection 

method, features are sequentially added to an empty 

feature set until the addition of further features does 

not further improve classification performance, in 

this study expressed as accuracy. A hyperparameter 

space for hyperparameter tuning was defined by 

specifying the range and step size for each 

hyperparameter to be tuned (Table S3). To reduce 

the computational costs, only 10% of the total 

hyperparameter space was selected by a randomized 

grid search algorithm for evaluation. Each 

combination of hyperparameters and feature subset 

was trained and tested during 3-fold CV with 

classification accuracy as scoring metric to select the 

best combination. The optimal hyperparameters and 

feature subsets were used to train the models per 

channel and obtain training and 5-fold CV scores. 

The model was retuned on the best performing 

channel on a larger optimization and retrained on 

another training data set to develop the final model. 

Overviews of the methods for index-based and 

machine learning model development and evaluation 

is provided in Figure 1 and 2, respectively.  

 

Model evaluation  
Area under the receiver operating characteristic 

(ROC) curve (AUC), accuracy and Cohen’s kappa 

were used as final model performance metrics for 

training scores and internal and external validation. 

In this multiclass classification problem, the AUCs 

were computed as the unweighted average AUCs of 

each class versus the rest. For the index-based 

models, class probabilities for AUC calculation were 

estimated by multiplication of the kernel density 

estimate for the index-value with the prior 

probability, for which class proportions were used. 

In the kernel density estimate, a Gaussian kernel was 

used with a bandwidth equal to 10% of the 5-95th 

percentile range of index values. Class probabilities 

from the machine learning models were retrieved 

using standard methods (Skicit-learn package43).  

 

Additional internal validation was done by 

evaluation of the classification performance across 

different age categories for assessment of differences 

between age groups. In contrast to the machine 

learning models, the index-based models did not 

have age as input feature. Therefore, it was also 

tested whether the index-based models would 

provide a better fit when trained per age category 

separately. The same was tested with the PICU PSG 

data for individually trained index-based models. 

Next to external validation on the whole PICU data 

set, performance scores were also obtained per PICU 

patient, to be able to study the differences in 

performance scores between PICU patients.  

 

3. Results  
 

Polysomnography data and patient 
characteristics 
From the 120 non-critically ill patients, a total of 

1293.3 hours of recording was obtained, yielding 

155,199 epochs (Table 3). The non-critically ill 

patients had a median age of 3.1 years and most of 

them were referred to the sleep laboratory for 

suspected or follow-up of airway obstruction (N = 

61) or neuromuscular diseases (N = 32) (Table 4). 

Mean recording time per patient was 10.8 hours 

(standard deviation (SD): ± 1.3). 0.3% of the 

epochs was labelled as impedance artifact and high 

amplitude artifacts were present in 13.8% of all 

unipolar signals (Table 3). The presence of high 

amplitude artifacts varied across the channels, but 

were most frequent in the occipital and auricular 

electrodes (Table S7).  

 

Ten critically ill patients admitted to our PICU 

between May 2020 to May 2021 were enrolled in 

this study. The PICU patients had a median age of 

0.6 years and were admitted to the PICU for 

postoperative care (N = 3), cardiac failure (N = 3), 

sepsis (N=2), or exacerbation of neurological (N=1) 

or oncological disease (N = 1) (Table 4). Patient 

characteristics per patient are summarized in Table 

5. The PSG recordings of the ten PICU patients 

yielded a total of 225.9 hours of PSG data (27,115 

epochs), with a mean recording time of 22.6 hours 

(± 4.4) per patient. Impedance artifacts were 

present in 0.04% of the epochs and high amplitude 

artifacts in 31.7% (Table 3). Due to this large  
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Table 3. PSG data characteristics from non-critically ill (reference) and PICU patients, obtained from the 

visually scored hypnogram. Total sleep time is the time spent in any of the sleep stages during the PSG recording. 
PICU = pediatric intensive care unit, PSG = polysomnography, N1/N2/N3/N = non rapid eye movement sleep stage 1, 2, 3 or quiet sleep, respectively, 

REM = rapid eye movement sleep, SD = standard deviation 

 Non-critically ill patients (N=120) PICU patients (N=10) 

Average length of PSG recording, hours 

(± SD) 

10.8 (± 1.2) 22.6 (± 4.4) 

Total sleep time, hours (± SD) 8.2 (± 1.4) 13.9 (± 4.2) 

Impedance artifacts, % of total number 

of epochs (number of epochs) 

0.3 (n=403) 0.04 (n=12) 

High amplitude artifacts, % of total 

number of all unipolar epochs (number 

of epochs) 

13.8 (n=236,463) 31.7 (n=94,482) 

Mean time spent in each stage, % of 

total sleep time (± SD) (number of 

epochs) 

  

• REM 24.5 (± 9.0) (n=29,478) 9.9 (± 10.7) (n=1,674) 

• N1 9.8 (± 7.8) n=11,308) 11.1 (± 14.8) (n=1,665) 

• N2 25.3 (± 15.2) (n=29,439) 22.1 (± 23.4) (n=3,367) 

• N3 30.5 (± 16.3) n=35,591) 23.5 (± 23.6) (n=3,325) 

• N 9.9 (± 22.5) (n=11,851) 33.4 (± 37.9) (n=6,706) 

amount of high amplitude artifacts and limited 

amount of PICU data, the PICU PSG data was 

manually checked to review the artifact labels. 50-

Hz electrical interference was the main cause of the 

artifacts and was frequently present in one channel 

for the entire recording. In one of the PICU 

recordings (patient D), a baseline drift in some of 

the EEG signals (F3, F4, A1, A2 and O1) was 

observed. This baseline drift resulted in falsely 

detected artifacts, as a consequence of the increased 

mean absolute amplitude. However, it was observed 

that the baseline drift was filtered out after applying 

the 0.5-48 Hz bandpass filter and the remaining EEG 

signals were of high quality. Therefore, the artifact 

labels from the drifted EEG signals were removed. 

Detailed patient, PSG and artifact characteristic per 

age category for the reference group and per patient 

for the PICU patients are provided in Table S4-S8.  

 

Model exploration and selection 
During exploration of potential index-measures, 

Spearman correlations between the spectral powers 

and the sleep stages were highest for relative gamma 

(ρ=0.61), beta (ρ=0.43) and delta power (ρ=-0.43) 

or absolute delta (ρ=-0.53) and theta (ρ=-0.44) 

power (Table S9). Therefore, these spectral powers 

were used in various combinations to construct an 

index measure and their classification performance 

was tested on the exploration data set for three-

state classification. Best results were obtained with 

the gamma to delta ratio (CV accuracy = 0.71) and 

gamma to theta+delta ratio (CV accuracy = 0.72) 

(Table S10). These ratios were therefore selected for 

further model development. For the machine 

learning models, the learning curves showed similar 

classification performances for the RF, LDA and LR 

model and superior classification performances of 

the XGBoost, SVM, KNN and DT models (Figure 

S3). Although the convergence points of the 

XGBoost and DT models did not seem to be fully 

reached, a training set size of 50,000 samples was 

considered to be both reasonable and feasible. The 

KNN and SVM models both have high 

computational costs, and therefore only the SVM 

model was selected for further model development, 

together with XGBoost and DT.  

  

Channel evaluation 
Across the EEG channels, the variation in 

classification performances of the index-based 

models was within a range of 0.05 accuracy for 

three-state classification (Table S11). Performance  
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Table 4. Patient characteristics of the non-critically ill (reference) and PICU patients. PSG = polysomnography, PICU = pediatric intensive care unit, SD = standard deviation 

Patient characteristic Non-critically ill patients (N = 120) PICU patients (N=10) 

Median age (years) 3.1 0.6 

Males/females (number of patients) 62/58 6/4 

PSG/PICU indication, % of total patients (number 

of patients) 

Airway obstruction: 50.8 (N=61) 

Neuromuscular disease: 26.7 (N=32)  

Pulmonary disease: 7.5 (N=9) 

Central sleep apnea: 7.5 (N=9) 

Unknown: 7.5 (N=9) 

Cardiac failure: 30 (N=3) 

Cardiothoracic surgery: 20 (N=2) 

Sepsis: 20 (N=2) 

Abdominal surgery: 10 (N=1) 

Exacerbation of neurological disease (N=1) or oncological disease (N=1) 

Intubated during PSG, % of total patients (number 

of patients) 

n/a 80 (N=8) 

Days prior on PICU at time of PSG (mean (± SD)) n/a 6.4 (± 4.1) 

Medication during PSG (number of patients) None  Paracetamol (N=6), benzodiazepines (N=7), remifentanil (N=2), levetiracetam (N=1), 

morphine (N=6), (es)ketamine (N=4) 

 

Table 5. Detailed patient characteristics of the PICU patients, per patient. PICU = pediatric intensive care unit, PSG = polysomnography 

 Patient A Patient B Patient C Patient D Patient E Patient F Patient G Patient H Patient I Patient J 

Age category 13-18 years 6-12 months 2-6 months 2-6 months 2-6 months 0-2 months 6-12 months 13-18 years 5-9 years 13-18 years 

Gender f f f f m f m m f m 

PICU 

indication 

Neuromuscu-

lar disease 

Post-

resuscitation 

Cardiothoracic 

surgery 

Cardiothoracic 

surgery 

Heart failure Abdominal 

surgery 

Heart failure Sepsis Respiratory 

obstruction 

Sepsis 

Intubated, 

during PSG 

Yes No Yes Yes Yes No Yes Yes Yes Yes 

Days prior on 

PICU, at 

time of PSG  

3 6 7 7 14 2 1 3 10 11 

Medication 

during PSG 

Remifentanil Lorazepam, 

levetiracetam 

Morphine, 

midazolam, 

ketamine 

Morphine, 

midazolam, 

ketamine, 

paracetamol 

Midazolam, 

paracetamol, 

remifentanil 

Paracetamol Morphine, 

midazolam, 

paracetamol 

Morphine, 

midazolam 

Morphine, 

midazolam, 

ketamine, 

paracetamol 

Morphine, 

ketamine, 

paracetamol 
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Figure 3a. Classification performances for three-state classification. 

 

Figure 3b. Classification performances for four-state classification. 

Internal validation scores were determined on the training data set (reference PSG data sets) with 5-fold CV. External 

validation scores were determined on the PICU PSG data set. The black bars represent the standard deviation around 

the mean of the CV scores. AUC = area under the receiver operating characteristics (ROC) curve, CV = cross-validation, DT = decision tree, 

PICU = pediatric intensive care unit, SVM = support vector machine, XGBoost = extreme gradient boosting  

 

variation between all EEG channels of the DT and 

XGBoost models was even smaller and stayed within 

a range of 0.04 and 0.02, respectively (Table S12). In 

all, the frontal and central channels and their 

derivations performed slightly better than the 

occipital and auricular channels. Interestingly, the 

classification performance of the SVM model showed 

more variation between the channels and varied from 

an accuracy of 0.52 to 0.75 for three-state 

classification. The lowest performances with the SVM 

model were obtained in the F3-O2 and A1, C3 

channels. For all models, the variation in 

performances between channels slightly increased in 

the four-state classification models. However, the 

overall link between individual EEG channels and 

performance did not differ between classification into 

three or four states. The F3-C3 channel was chosen 

as EEG channel for final model development, as this 

channel performed consistently superior to other 

channels in all models.  

 

Internal validation on reference PSG data 
Classification performance of the gamma/delta and 

gamma/(theta+delta) final models was very close for 

both three- as well as four-state classification (Figure 

3, Table S13). With internal validation, the final 

gamma/delta model achieved an accuracy of 0.69 (± 

0.03) for three-state classification. Performance of 

the final gamma/(theta+delta) model was marginally 

better (0.70 (± 0.03)). Four-state classification index
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-based models performed significantly worse (0.52 (± 

0.03) for both index-based models). Interestingly, 

training and CV scores were very close. With internal 

validation, all machine learning models outperformed 

the index-based models, most significant in four-state 

classification. The final XGBoost model performed 

best for both three-state and four-state classification, 

followed by the SVM model. Three-state 

classification accuracies for DT, SVM and XGBoost 

were 0.74 (± 0.00), 0.76 (± 0.00) and 0.79 (± 0.00), 

respectively. Four-state classification performances 

were slightly worse, although its difference with three-

state classification performance was significantly 

smaller than for the index-based models (for DT, 

SVM and XGBoost respectively: 0.68, 0.73 and 0.75). 

While training and CV scores of the SVM model were 

very close, the gap between them was larger for the 

DT and XGBoost models, characterizing their 

overfitting risk. For all models, Accuracy, AUCs and 

Cohen’s kappa scores for internal validation are 

provided in Table S13. 

 

External validation on PICU data 
From the 10 PICU PSG recordings, two contained 50-

Hz electrical interference artifacts in 100% of the 

EEG signal in either the F3 or C3 channel, rendering 

them unusable for analysis (Patient G and I, Table 

S8). Therefore, the F4-C4 channel was used in these 

recordings, based on the assumption that brain 

activity is synchronous, and thus the EEG signal in 

the F3-C3 channel is similar to the EEG signal in the 

F4-C4 channel. Patient C, D, E and F were aged 

under 6 months, and therefore, four-state 

classification might not be applicable in these 

patients. However, in patient C and E, more than 

three sleep stages were distinguished. Hence, patient 

C and E were considered to be applicable for four-

state classification.  

 

In all models, classification accuracy for the pooled 

PICU data decreased relative to the internal 

validation scores (Figure 3, Table 13). In contrast to 

during internal validation, the index-based models 

now outperformed the machine learning models in 

both three- as well as four-state classification. 

Gamma/delta and gamma/(theta+delta) models 

performed similar (0.60 for three-state classification 

and 0.55 for four-state classification). The DT models 

performed worse of all models with an accuracy of 

0.49 in three-state and 0.40 in four-state 

classification. Whereas the XGBoost model had 

outperformed the SVM model during internal 

validation, performances in external validation are 

comparable (0.54 and 0.55 for XGBoost and SVM 

respectively in three-state and 0.45 for both in four-

state classification).  

 

With individual model assessment, it was observed 

that the classification performance had a strong 

variation between PICU patients (Figure 4, Table S14 

& S15). The DT model performed consistently worse 

across all patients, concordant to the pooled results. 

Between the index-based, SVM and XGBoost models, 

the best performing models varied per PICU patient 

and per three- or four-state classification task. 

Whereas the accuracy, AUC and Cohen’s kappa 

provide inside into the overall model performance, 

visual assessment of the agreement between the 

predicted hypnogram and visually scored hypnogram 

is essential to gain insight into the performance per 

sleep stage and stability of the models. In Figure 5, 

the agreement of gamma/delta ratio and the 

XGBoost predicted hypnogram with the visually 

scored hypnograms for three-state classification in 

PICU patient A are provided. This figure shows good 

agreement of the gamma/delta ratio and XGBoost 

model for all stages, although both show instability 

of the model, observed as the noisy index signal and 

frequent state transitions in the predicted hypnogram. 

The importance of visual assessment of the model 

results is emphasized when assessing the agreement 

of gamma/delta with the hypnogram in patient B 

(Figure 6). The wake stage was never predicted by 

the gamma/delta model as the index signal never 

exceeds the wake-NSWS thresholds. This finding 

could not have been noticed when only looking into 

the accuracy, AUC and Cohen’s kappa. In 6 patients, 

the thresholds – especially the wake-NSWS 

thresholds - were too high relative to the index signal 

amplitudes (patient A, B, D, E, F, J), suggesting 

decreased gamma/delta and gamma/(theta+delta) 

ratios in these patients (Figure S5, S6, S10, S11, S20, 

S21, S25, S26, S30, S31, S50, S51). In patient H, 

only wake and N (or undefined/atypical) sleep was 

distinguished. The agreement of the index measures 

and predicted hypnograms with the visually scored 

sleep labels were extremely poor is this patient 

(Figure S40-S44).  
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Figure 4. Classification performance (AUC) per PICU patient. AUC = area under the receiver operating characteristic (ROC) 

curve, DT = decision tree, PICU = pediatric intensive care unit, SVM = support vector machine, XGBoost = extreme gradient boosting. 

  

Individualizing the thresholds per PICU patient 

improved the classification performance (Figure S4, 

Table S16), although its effects were minor. The 

mean accuracy improved from 0.59 to 0.62 (min-max 

range: 0.30 - 0.87)) for both indices when using 

individualized thresholds instead of the final model 

thresholds, the AUC’s improved from 0.76 to 0.79 

(0.70 – 0.96) for gamma/delta and to 0.80 (0.69 – 

0.92) for gamma/(theta+delta) for three-state 

classification. However, the improvement in 

performance when using individualized thresholds 

differed per patient. Plots of the agreement between 

the visually scored hypnogram and the index-

measures with final model thresholds and with 

individualized thresholds, and the by the machine 

learning models predicted hypnograms are provided 

in Figure S5-S54.  

 

Validation per age category  
Between age categories, the classification 

performance in the training data set showed strong 

variation (Table S17 and S18). This variation was 

most stand out in the index-based models, where 

accuracy ranged from 0.58 to 0.74 (gamma/delta, 

three-state classification). Performance was 

consistently worse in the recordings obtained from the 

youngest patients, 0 – 2 months and 2-6 months. 

Remarkably, the DT model seemed to handle the 

variation between ages better than the other machine 

learning models, with only a 0.02 range in accuracy. 

Model fits of the index-based models were trained per 

age category separately for three-state classification. 

However, accuracies did not remarkably improve 

when using the thresholds determined per age 

category separately compared to when using the final 

model thresholds. The finding that the per age 

category determined thresholds did not improve 

performance was concordant with the nonlinear 

relation and small variation in thresholds between age 

categories (Figure S55), although the thresholds for 

patients < 6 months seemed to be slightly deviating 

from the other thresholds. Also, the high inter-subject 

variation could have contributed to the insensitivity 

to the per age category determined thresholds. 

Variation between absolute gamma, theta and delta 

power between age categories across sleep stages is 

visualized in Figure S56. 

 

Feature evaluation  
High correlations between features were found, 

thereby highlighting the importance of the feature 

selection (Figure S57). The features that were 

selected by the mRMR and sequential forward feature 

selection and used in the final models did not show 

high variation between the models (Figure 7, Table 

6). DWT features from all decomposition levels were 

frequently selected in all models. Also, several age 

features were always used in the final models, with  



Research report | Results  

 

 54 

 

 

 

Figure 5a. Agreement of the visually scored hypnogram with the gamma/delta ratio (with the final model 

thresholds) for three-state classification in PICU patient A. 

 

Figure 5b. Agreement of with the visually scored hypnogram with the hypnogram predicted by the XGBoost 

model for three-state classification in PICU patient A.  

Visual assessment of the agreement of the predicted hypnogram and visually scored hypnogram provides information on 

the performance per sleep stage and stability of the model. The gamma/delta shows good agreement with the hypnogram 

for all stages. It could be observed that the index variation is high, resulting in a noisy signal. The agreement of the 

XGBoost predicted hypnogram with the visually scored hypnogram is reasonable. The instability and inaccuracy of the 

model could be observed by the frequent transition between stages that are not concordant with the visually scored 

hypnogram. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave 

sleep, PICU = pediatric intensive care unit, REM = rapid eye movement sleep, SWS = slow wave sleep 
 

  



Research report | Results  

 

 55 

 

 

 

Figure 6. Agreement of the visually scored hypnogram with the gamma/delta ratio (with the final model, or 

general, and individualized thresholds) for three-state classification in PICU patient D. This figure shows the 

importance of visual assessment and evaluation of performance per sleep stage. Although the accuracy of classification 

by the general thresholds is still reasonable, it could be observed that the wake stage is seldom predicted as the index 

signal seldom exceeds the above threshold. The AUC and Cohen’s kappa might therefore provide a better impression of 

the model performance. Individualizing the thresholds significantly improves the classification performance. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, PICU = pediatric intensive 

care unit, REM = rapid eye movement sleep, SWS = slow wave sleep 

 

 

 

 
Table 6. Selected features for the SVM model. abs. = absolute, DWT = discrete wavelet transform, EMG = 

electromyogram, rel. = relative, SD = standard deviation, SVM = support vector machine 

Three-state classification Four-state classification 

Abs. mean amplitude 
Age 0-2 months 

Age 1-3 years 

Age 13-18 years 

Age 2-6 months 

Age 3-5 years 

Age 5-9 years 

Age 6-12 months 

Age 9-13 years 

DWT cA mean 

DWT cA SD 

DWT cD4 mean 

DWT cD4 SD 

DWT cD5 mean 

DWT cD5 SD 

Gamma/delta ratio 

Gamma/theta ratio 

Interquartile range 

Rel. Gamma power 

Signal sum 

Age 1-3 years 

Age 13-18 years 

Age 6-12 months 

Age 9-13 years 

Abs. Delta power  

Abs. mean amplitude 

Abs. Sigma power 

DWT cA mean 

DWT cA SD 

DWT cD1 mean  

DWT cD1 SD 

DWT cD4 mean 

DWT cD5 mean 

EMG Chin: Abs. mean amplitude 

Hjorth mobility 

Interquartile range 

Rel. Gamma power 

Spectral edge 

Spectral entropy 

Zero crossing rate 
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the whole range of age categories being selected. 

Interquartile range and absolute mean amplitude were 

popular features in the time-domain and gamma, 

theta and delta powers in the frequency domain. 

Measures of complexity or EOG features were never 

selected. In all four-state classification models, the 

beta or sigma power and EMG absolute mean 

amplitude were selected, which were seldom selected 

in the three-state classification models. Feature 

importance scores for the DT and XGBoost model are 

provided in Figure 7. 

 

 

 

4. Discussion  
 

This study demonstrated the potentials and 

challenges of automated sleep monitoring methods in 

the PICU by proposing various classification methods 

and evaluating them on both non-critically ill as well 

critically ill children. Although the results are 

explorative, they seem to be promising and should 

stimulate further investigation in classification 

methods to study PICU sleep. Automated monitoring 

of sleep in the PICU eliminates the need for human 

intervention in the sleep scoring process, resulting in 

a cost-effective, objective method. Next to facilitating 

future large scale PICU sleep research, the real-time 

and continuous application opens up possibilities to 

individually monitor and optimize sleep in clinical 

 

Figure 7a. Feature importances for DT models. 

 

 

Figure 7b. Feature importances for XGBoost models. 

Feature importance scores were calculated as the total reduction of the Gini criterion brought by that feature, weighted by 

the number of samples the node is responsible for. For the XGBoost model, the feature importances are averaged across 

all of the trees within in the model. Feature importances for SVM models with radial basis function kernels are more 

complicated to extract due to the transformation to an infinite-dimensional feature space and are therefore not provided. 

The corresponding frequency ranges for each DWT level (cD1-cD5, cA) is provided in Table S1. abs. = absolute, DWT = discrete 

wavelet transform, EMG = electromyogram, rel. = relative, SD = standard deviation, SVM = support vector machine, XGBoost = extreme gradient 

boosting  
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practice. Despite the challenges introduced by the 

complexity of sleep in PICU patients, the detrimental 

effects on clinical outcome of sleep deprivation 

emphasize the need for future developments in PICU 

sleep monitoring to enable individual optimization of 

sleep.  

 

Our classification results are in line with the reported 

inter-rater variability for the visual assessment of 

sleep for sleep classification in critically ill adults, with 

Cohen’s kappa statistics ranging from 0.5214 to as low 

as 0.1944. To our knowledge, this was the first 

attempt to develop an automated sleep monitoring 

method for PICU patients. Therefore, results of this 

study could not be compared with results on similar 

datasets. In general, classification results reported in 

automated sleep staging studies have a very large 

variation as they strongly depend on the data set, the 

classification task (i.e., number of stages to 

distinguish) and validation methods and measures 

used. Previous studies reported classification accuracy 

of sleep staging algorithms in healthy adults up 89% 

with DT and 94% with SVM models17,4520,28. Our 

classification results are inferior to the ones reported 

in neonatal sleep staging studies, that obtained 

classification accuracies of 7517,45 up to 93%46,47. 

Attempts to study the automated monitoring of sleep 

in adult ICU patients have been limited. As far as we 

know, no studies were published that mention the 

results of machine learning methods to classify sleep 

in critically ill adult patients. The use of index-based 

models for ICU sleep staging was proposed by Reinke 

et al15. Their IDOS method, based on the gamma to 

delta spectral power, achieved average agreement, 

expressed as Cohen’s kappa, in non-critically ill 

outpatient recordings of 0.82. In ICU patients, 

Cohen’s kappa’s ranged from 0.46 to 0.90. Although 

our gamma/delta model was based on the same 

spectral power ratio as the IDOS index, there are 

some import differences that might declare our 

inferior results. First, the IDOS method uses 

individually determined thresholds. As our results 

show, the use of individually determined threshold 

remarkably improved the classification performances 

of the index-based models. Another importances 

difference between our gamma/delta model and the 

IDOS method are the additional smoothing filter that 

was used to smooth the IDOS signal before 

classification. Although the influence of the 

smoothing is hypothesized to be minor, the noisy 

gamma/delta ratio (Figure 5a, 6, S5-S55), that was 

calculated on a 30-second epoch basis might have 

contributed to the inferior results.  

 

Whereas in this study the machine learning models 

outperformed the index-based models in both three- 

as well as four-state classification in PSG recordings 

of non-critically ill children, the opposite was true for 

the PICU PSG data. This implicates that the machine 

learning models generalize not well to the PICU data 

as they have a higher risk of overfitting on the 

training data. The higher risk of overfitting was also 

observed when comparing the gap between the 

training and internal CV scores of the index-based 

and machine learning models. This was most 

dominant in the DT models, which had consistently 

worse external validation performances. The SVM 

and XGBoost models had similar performances on the 

PICU data. A practical disadvantage of the SVM is 

the high computational power that is required to train 

the models. The XGBoost models is very fast to train, 

but requires extensive hyperparameter tuning as there 

are many hyperparameters to tune. In this study, only 

a few of them were tuned. In the exploration phase 

of this study, several combinations of index-measures 

were tested with superior results of the gamma/delta 

and gamma/(theta+delta) ratios. It was 

hypothesized that the addition of theta power might 

increase the classification performance in children due 

to the increased theta powers in the pediatric EEG48. 

However, the classification results of the 

gamma/delta and gamma/(theta+delta) were very 

similar. Also, when looking to the index over time 

(Figure S5-S54), the signals are almost perfectly 

correlated. Figure S56 shows that the theta power is 

relatively small relative to the delta power, which 

might declare its limited contribution. Further 

finetuning of the bandpower ranges and smoothing 

could improve the classification performance of the 

index measures. 

 

The physiology of sleep in ICU patients is complex 

which challenges the measurement of ICU sleep. The 

EEG is just a biomarker of the underlying sleep state 

that might not always reflect the underlying sleep 

state. The EEG resembles electrical activity arising 

from various processes in the brain. Whereas the 

analgesic and sedative medication often cause slowing 
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of the EEG, the critical illness itself might also 

interfere with the EEG and introduces confounding 

derangements22. This results in frequent atypical 

findings in the EEG of critically ill patients, including 

polymorphic and increased delta activity, burst 

suppression, isoelectric EEG and absence of K-

complexes and sleep spindles11,14,49. Clearly, these 

EEG atypical findings complicate the sleep staging 

process. Despite these challenges, PSG remains the 

golden standard in the assessment of sleep. However, 

the high reported inter-rater variability – and thus low 

Cohen’s kappas – could question whether the 

comparison of our proposed classification models with 

the visually scored hypnogram is reliable.  

 

The variation in classification performance among 

different PICU patients highlights the importance of 

individual model assessment in PICU sleep studies 

rather than combining PSG data of all PICU patients 

together. The heterogenous PICU population 

introduces a large variation in sleep EEGs that are 

affected by various factors. In this study, the severity 

of illness and dose of administered drugs were not 

taken into account. Future studies should link 

classification performance on patient characteristics 

to ultimately be able to identify patients for who sleep 

monitoring might be effective. PICU patients whose 

EEGs exhibit normal sleep EEG characteristics might 

benefit more from machine learning models, while for 

other PICU patients the use of a coarser approach as 

the index-measure is more sufficient to measure sleep. 

An individually trained model would provide optimal 

performance results, which was observed when using 

the individualized thresholds for the index measures. 

However, this approach might not be realistic for 

implementation in clinical practice. Next to the 

identification of patients for who sleep monitoring 

might not be effective, the exploration of calibration 

tools to initialise the monitoring method and evaluate 

its effectiveness is worth considering.  

 

The effectiveness of classification of sleep in ICU 

patients with severe critical illness or high doses of 

sedative or analgesic medication into discrete classes 

has often been discussed11,14,15,49. The use of an 

additional sleep stage, ‘atypical sleep’, has therefore 

been proposed by various authors11,14,49. This atypical 

sleep stage could be compared with the ‘N’ label that 

was used in our study, although this ‘N’ label lacked 

clear definitions. This label was used in sleep of PICU 

patients for epochs that have characteristics of 

NREM sleep, but could not be classified as either N1, 

N2 or N3 due to atypical or absent EEG 

characteristics. The decision to combine the ‘N’ label 

with N3 to form SWS in our three-state and four-

state classification approach is debatable. Therefore, 

future effort should focus on clear definitions of the 

‘N’ label and the efficiency to use the conventional 

sleep stage definitions for sleep monitoring in PICU 

patients. As discussed before, in some of the PICU 

patients, the visual assessment of the index-measure 

over time might be more suitable to indicate depth of 

sleep. In previous studies, the bispectral index (BSI) 

and patient state index (PSI) have been proposed to 

assess depth of sleep over time in critically ill 

adults13,50. Both indices are calculated by 

commercially available algorithm based on several 

EEG features51,52. Although their correlation with 

depth of sleep in critically ill adults seems promising, 

the nondisclosure of their calculating algorithm is a 

big drawback as it complicates the interpretation of 

unexpected values or trends and identification of 

factors influencing the measure. The added value of 

the index-measures proposed by Reinke et al.15 and 

in this study lies in its easy interpretability and 

computational simplicity.  

 

In this study, multiple performance metrics were used 

to enable more insight in the classification model 

performances. Accuracy was used during channel 

evaluation and model development, where threshold 

optimization, feature selection and hyperparameter 

tuning was performed by maximizing the accuracy. 

However, accuracy is sensitive to imbalanced classes 

and the possibility of agreement occurring by chance. 

The pitfalls of using the accuracy for model 

assessment could be observed in patient D (Figure 6). 

The wake-NSWS threshold of the final model was too 

low for the specific patient. However, accuracy was 

still relatively high as the presence of wake epochs 

was high (Figure S15). This example also shows the 

effect of maximizing the thresholds on the accuracy 

with imbalanced classes. Since the NSWS stage are 

seldom present, the wake-NSWS and NSWS-SWS 

thresholds are very close. The use of Cohen’s kappa 

as performance metric to maximize during model 

optimization and development could have resulted in 

different models. Cohen’s kappa corrects for the 
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possibility of agreement by chance and is thus more 

suitable for class-imbalanced problems. Also, 

obtaining the AUC has additional value next to the 

accuracy and Cohen’s kappa as it is a measure of the 

overall performance of the classifier rather than the 

performance at a fixed threshold. The AUC represents 

the trade-off between sensitivity and specificity for 

different thresholds on class probabilities that are 

predicted by the classifier and is insensitive to 

imbalanced classes. The AUC is more suitable for 

imbalanced classes as it is the unweighted average of 

the AUC of each class versus the rest. Although the 

contingency table and performance per sleep stage 

separately per patient provides valuable information, 

this approach is undesirable as it results in overloads 

of result data. Therefore, during classification model 

development, it is important to carefully choose and 

interpret the model performance metrics and take 

into account how the metric is influenced by 

imbalances in predicted labels. 

 

The goal of this study was to use a single channel 

EEG for sleep stage classification. Single channel EEG 

has the benefit to have low complexity for both 

practical as well as computational considerations. The 

PSG recordings that were performed using a 

multichannel EEG setup enabled the extensive 

channel evaluation. In general, the variation in 

classification performance of all models between the 

various EEG channels was very small. The frontal and 

central channels and their derivations performed 

consistently well, while the auricular and occipital 

channels lagged behind. Whereas across all channels, 

performance in three-state classification was better 

than with four-state classification, the overall link 

between individual EEG channels and performance 

did not differ between classification into three or four 

states. This suggests that the discriminative 

performance of features that are characteristic for 

REM sleep did not differ among EEG channels, and 

similar channels could be used for three- and four-

state classification problems. Next to the 

classification performance of the EEG channels, the 

position of the EEG electrodes and their relative risk 

to introduce artifacts should be considered. Most 

artifacts were present in the occipital and auricular 

electrodes, which is not surprising as their location 

increases the risk of loosening of the EEG electrodes 

or movement artifacts. The all or nothing 

functionality that comes with the single channel 

approach highlights the importance of this practical 

consideration.  

 

The results of this study show that age does not seem 

to influence the model performance remarkably. In 

the machine learning models, the age feature was 

frequently selected. This suggests that age has a 

significant influence, although this was not consistent 

with the findings in performance variation between 

age categories in the index-based models. The 

influence of age should be further investigated, as the 

sleep EEG varies considerably as children mature with 

a remarkable development in continuity of EEG 

activity, dominant frequency, presence of typical 

patterns and waveforms and differentiation in sleep 

stages occur, most dominant in the first months of 

life24.  

 

EEG recordings in ICU patients are more prone to 

artifacts arising from the noisy ICU environment and 

50-Hz electrical interference with electrical equipment 

simultaneously used in the ICU53. This was also 

observed in our PICU data, which contained 

significantly more artifacts than the reference PSG 

signals. Most of these artifacts were caused by 50-Hz 

electrical interference. This is in contrast to the 

artifacts in reference PSG signals, which are mostly 

caused by movements. Also, ECG artifacts were often 

present. Both ECG and 50-Hz artifacts are associated 

with increased electrode impedances. In our study, 

the PSG electrodes were – in order to reduce patient 

discomfort - often not attached to the skin with clay 

in the PICU patients, which was standard practice in 

the reference PSG recordings. This might have 

contributed to increased impedances, and thus 

artifacts, in combination with the long duration of the 

recordings. It was also observed that impedance 

artifacts were less frequently present in the PICU PSG 

recordings compared to the reference PSG recordings, 

suggesting that impedances were less frequently 

checked. In future studies, attention should be paid 

to the execution of the PSG recordings in the PICU 

in order to increase the quality of the data. A 

limitation in the artifact handling was the simplicity 

of the artifact detection algorithm that was used. 

This could have led to – potentially avoidable – 

missed artifacts or removal of lots of data, as was the 

case in PICU patient D. The use of more 
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sophisticated artifact removal methods could have 

improved the accuracy of the artifact removal20,28. 

Another important note on the artifact handling 

method is that the presence of artifacts per sleep 

stage was not taken into account. Since movement 

artifact are typically present during wakefulness, this 

might have introduced a bias.  

 

A strong limitation of this study is the limited number 

of PSG recordings obtained from PICU patients to 

study the external validity of the classification 

models. The heterogenous PICU population requires 

a large amount of PICU patients to validate the 

models in wide ranges of patient characteristics. On 

top of that, the tuning range and amount of reference 

PSG data for model optimization and training was 

suboptimal due to computational limitations. A 

remarkable variation was found in optimal 

hyperparameter settings and feature subsets after 

repeated optimization on different optimization sets. 

This implies that further attention should be paid to 

the effect of extending the optimization data set, 

hyperparameter space and grid search on the final 

model performances. However, classification 

performances obtained during exploration and 

channel evaluation, for which smaller subsets of the 

optimization and training data sets were used, were 

comparable with the final model performances. This 

suggests that adding more data for model 

optimization and training would not drastically 

change the obtained classification performances.  

 

This explorative study shows many possibilities for 

future efforts to improve methods for monitoring of 

sleep in critically ill children. In future studies, the 

identification of patients for who sleep monitoring is 

both effective as well as clinically relevant is an 

essential step. This could aid in specifying the 

requirements and focus of the monitoring methods, 

such as the number of states to classify and sensitivity 

versus specificity trade-offs. Also, the choice to 

discriminate into discrete stages or rather to focus on 

a continuous indicator of depth of sleep is important 

to make. Next, future efforts should focus on 

improving the tuning, optimization and training of 

the models. Increasing the computational resources to 

reduce run time could enable the extending of the 

optimization and training process. Whereas the 

models strongly rely on the quality of features that 

are calculated, attention should be paid to extend and 

improve the feature engineering. In addition to EEG, 

EOG and EMG, the use of vital parameters should be 

explored. The heart rate variability, for example, has 

been shown to reveal significant differences between 

NREM and REM sleep54,55. Furthermore, the use of 

other machine learning models should be studied. 

Models that take into account the sequential nature 

of sleep stages, such as convolutional neural networks 

and Hidden Markov models, could increase accuracy. 

However, the added value of the incorporation of 

knowledge on sleep stage transition for its application 

in PICU patients, whose sleep is known to have 

disturbed temporal structures, should be discussed. 

Finally, the availability of more data obtained from 

critically ill children could increase the external 

validity of the models. A larger amount of data could 

also enable a PICU sleep approach for the 

development of a monitoring method. Whereas in this 

study, we started with data obtained from non-

critically ill patients to develop a model and evaluate 

the model on the PICU population, it might also be 

interesting to develop a model on the PICU data, 

either with supervised or unsupervised methods, such 

as clustering. In all future approaches, it is essential 

to also take into account the practical consideration 

of the proposed methods, such as the computational 

power and the artifact robustness. Altogether, it 

might be clear that considerable efforts in further 

investigation are required before clinical 

implementation. However, with this study, a first step 

towards automated sleep monitoring in the PICU has 

been made. 

 

5. Conclusion  
 

This study shows the potentials and pitfalls of various 

classification methods for automated EEG-based 

sleep monitoring in both non-critically as well as 

critically ill children. Whereas the machine learning 

models outperformed the index-measures in both 

three- as well as four-state classification in PSG 

recordings of non-critically ill children, the opposite 

was true for the PICU PSG data. A simple index 

measure seems to be a promising method to monitor 

sleep in PICU patients. However, machine learning 

models developed in non-critically ill patients cannot 

easily be applied to PICU patients in whom the sleep 
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EEG is frequently deviant. The variation of 

classification performance between PICU patients 

emphasizes the importance of individual assessment 

and identification of patient characteristics that 

challenge the measurement of sleep. Although the 

results do not encourage immediate implementation 

in clinical practice, they do warrant further 

development and testing. Future efforts should focus 

on further tuning, training and validating the 

classification models with more PICU data.  
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scored hypnogram with the gamma/delta ratio (with the 
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final model, or general, and individualized thresholds) for 

three-state classification.  

▪ Figure S21: PICU patient D - Agreement of the visually 

scored hypnogram with the gamma/(theta + delta) ratio 

(with the final model, or general, and individualized 

thresholds) for three-state classification.  

▪ Figure S22: PICU patient D - Agreement of visually scored 

hypnogram and predicted hypnogram by DT model for 

three-state classification.  

▪ Figure S23: PICU patient D - Agreement of visually scored 

hypnogram and predicted hypnogram by SVM model for 

three-state classification.  

▪ Figure S24: PICU patient D - Agreement of visually scored 

hypnogram and predicted hypnogram by XGBoost model for 

three-state classification.  

▪ Figure S25: PICU patient E - Agreement of the visually 

scored hypnogram with the gamma/delta ratio (with the 

final model, or general, and individualized thresholds) for 

three-state classification.  

▪ Figure S26: PICU patient E - Agreement of the visually 

scored hypnogram with the gamma/(theta + delta) ratio 

(with the final model, or general, and individualized 

thresholds) for three-state classification.  

▪ Figure S27: PICU patient E - Agreement of visually scored 

hypnogram and predicted hypnogram by DT model for 

three-state classification.  

▪ Figure S28: PICU patient E - Agreement of visually scored 

hypnogram and predicted hypnogram by SVM model for 

three-state classification.  

▪ Figure S29: PICU patient E - Agreement of visually scored 

hypnogram and predicted hypnogram by XGBoost model for 

three-state classification.  

▪ Figure S30: PICU patient F - Agreement of the visually 

scored hypnogram with the gamma/delta ratio (with the 

final model, or general, and individualized thresholds) for 

three-state classification.  

▪ Figure S31: PICU patient F - Agreement of the visually 

scored hypnogram with the gamma/(theta + delta) ratio 

(with the final model, or general, and individualized 

thresholds) for three-state classification.  

▪ Figure S32: PICU patient F - Agreement of visually scored 

hypnogram and predicted hypnogram by DT model for 

three-state classification.  

▪ Figure S33: PICU patient F - Agreement of visually scored 

hypnogram and predicted hypnogram by SVM model for 

three-state classification.  

▪ Figure S34: PICU patient F - Agreement of visually scored 

hypnogram and predicted hypnogram by XGBoost model for 

three-state classification.  

▪ Figure S35: PICU patient G - Agreement of the visually 

scored hypnogram with the gamma/delta ratio (with the 

final model, or general, and individualized thresholds) for 

three-state classification.  

▪ Figure S36: PICU patient G - Agreement of the visually 

scored hypnogram with the gamma/(theta + delta) ratio 

(with the final model, or general, and individualized 

thresholds) for three-state classification.  

▪ Figure S37: PICU patient G - Agreement of visually scored 

hypnogram and predicted hypnogram by DT model for 

three-state classification.  

▪ Figure S38: PICU patient G - Agreement of visually scored 

hypnogram and predicted hypnogram by SVM model for 

three-state classification.  

▪ Figure S39: PICU patient G - Agreement of visually scored 

hypnogram and predicted hypnogram by XGBoost model for 

three-state classification.  

▪ Figure S40: PICU patient H - Agreement of the visually 

scored hypnogram with the gamma/delta ratio (with the 

final model, or general, and individualized thresholds) for 

three-state classification.  

▪ Figure S41: PICU patient H - Agreement of the visually 

scored hypnogram with the gamma/(theta + delta) ratio 

(with the final model, or general, and individualized 

thresholds) for three-state classification.  

▪ Figure S42: PICU patient H - Agreement of visually scored 

hypnogram and predicted hypnogram by DT model for 

three-state classification.  

▪ Figure S43: PICU patient H - Agreement of visually scored 

hypnogram and predicted hypnogram by SVM model for 

three-state classification.  

▪ Figure S44: PICU patient H - Agreement of visually scored 

hypnogram and predicted hypnogram by XGBoost model for 

three-state classification.  

▪ Figure S45: PICU patient I - Agreement of the visually scored 

hypnogram with the gamma/delta ratio (with the final 

model, or general, and individualized thresholds) for three-

state classification.  

▪ Figure S46: PICU patient I - Agreement of the visually scored 

hypnogram with the gamma/(theta + delta) ratio (with the 

final model, or general, and individualized thresholds) for 

three-state classification.  

▪ Figure S47: PICU patient I - Agreement of visually scored 

hypnogram and predicted hypnogram by DT model for 

three-state classification.  

▪ Figure S48: PICU patient I - Agreement of visually scored 

hypnogram and predicted hypnogram by SVM model for 

three-state classification.  

▪ Figure S49: PICU patient I - Agreement of visually scored 

hypnogram and predicted hypnogram by XGBoost model for 

three-state classification.  

▪ Figure S50: PICU patient J - Agreement of the visually 

scored hypnogram with the gamma/delta ratio (with the 

final model, or general, and individualized thresholds) for 

three-state classification.  

▪ Figure S51: PICU patient J - Agreement of the visually 

scored hypnogram with the gamma/(theta + delta) ratio 

(with the final model, or general, and individualized 

thresholds) for three-state classification.  

▪ Figure S52: PICU patient J - Agreement of visually scored 

hypnogram and predicted hypnogram by DT model for 

three-state classification.  

▪ Figure S53: PICU patient J - Agreement of visually scored 

hypnogram and predicted hypnogram by SVM model for 

three-state classification.  

▪ Figure S54: PICU patient J - Agreement of visually scored 

hypnogram and predicted hypnogram by XGBoost model for 

three-state classification.  

▪ Table S17: Classification performance (training subgroup 

scores, accuracy) of the final index-based models per age 

category. 
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▪ Table S18: Classification performance (training subgroup 

scores, accuracy) of the final machine learning models per 

age category. 

▪ Table S19: Classification performance (accuracy) of the final 

index-based models versus the per age category trained 

models, three-state classification. 

▪ Figure S55: Variation in thresholds between age categories 

for the index-based models, three-state classification. 

▪ Figure S56: Absolute spectral powers across sleep stages per 

age category. 

▪ Figure S57: EEG feature correlation heatmap (F3-C3 

channel). 
 

 

List of abbreviations  
 
A1/A2  - Auricular electrodes 

AUC - Area under the receiver operating 

characteristic (ROC) curve (AUC), 

AASM   - American Academy of Sleep Medicine 

C3/C4   - Central electrodes 

CV   - Cross-validation 

DT    - Decision tree 

EEG   - Electroencephalogram 

ECG   - Electrocardiogram 

EMG   - Electromyogram 

EOG   - Electrooculogram 

F3/F4   - Frontal electrodes 

ICU   - Intensive care unit 

IDOS  - Intensive care unit depth of sleep 

KNN   - k-nearest neighbours 

LDA   - Linear discriminant analysis  

LOC   - Left outher canthus 

LR   - Logistic regression 

MREC   - Medical Research Ethics Committee 

mRMR   - Minimum redundancy maximum relevance 

N1/N2/N3/N - Non rapid eye movement sleep stages 

NICU  - Neonatal intensive care unit  

NREM   - Non rapid eye movement sleep 

NSWS  - Non slow wave sleep 

O1/O2   - Occipital electrodes 

PICU  - Pediatric intensive care unit 

PSG   - Polysomnography 

REM   - Rapid eye movement sleep 

ROC   - Right outer canthus 

RF   - Random forest 

SD   - Standard deviation 

SFS  - Sequential forward feature selection 

SVM   - Support vector machine 

SWS  - Slow wave sleep 

XGBoost  - Extreme gradient boosting  
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Table S1. Overview of methods used in adult ICU for automated sleep monitoring. BIS = bispectral index, EMG = electromyogram, ICU = Intensive Care Unit, MV = mechanically 

ventilated, N1 = non rapid eye movement stage 1, N2 = non rapid eye movement stage 2, N3 = non rapid eye movement stage 3, non-sed. = non-sedated, NSWS = non slow wave sleep, PSI = patient state index, sed. = 

sedated, REM = rapid eye movement, SEF95 = spectral edge frequency 95%, SWS = slow wave sleep, W = wake.  

Study  Patients Classifica- 

tion into 

EEG channels  Features  Classification 

method  

Results  

Reinke et al. (2014)124 Adult ICU, MV, non-sed. 

(n=5) 

Healthy controls (n=15) 

W, SWS, 

NSWS 

C3-C4 IDOS (=gamma/delta 

power ratio) 

Thresholding 

(manually 

selected) 

ICU patients: κ=0.46-0.90 

Healthy controls: κ=0.82 

Ambrogio et al. (2008)18 Adult ICU, MV, sed. 

(n=17) 

Healthy controls (n=17) 

n/a C3-C4 Delta, theta, alpha and 

beta power, delta/alpha 

power ratio, delta/beta 

power ratio 

n/a -No classification or comparison 

with golden standard, only feature 

evaluation-    

Gehlbach et al. (2012)125 Adult ICU, MV, sed. 

(n=12)  

n/a C3-A1/A2, C4-

A1/A2, O1-

A1/A2, O2-

A1/A2 

Absolute delta power + 

SEF95 

n/a -No classification or comparison 

with golden standard, only feature 

evaluation-   

Nicholson et al. (2001)129 Adult ICU, in recovery 

phase, minimally sed. 

(n=29) 

W, REM, 

SWS, NSWS 

F7-Fpz, F8-Fpz BIS + chin EMG power Thresholding  -Not compared with golden 

standard-    

Vacas et al. (2016)130 Adult ICU (n=23) 

Healthy controls (n=3) 

W, REM, N1, 

N2, N3 

Fp1-F8, Fp2-F7 PSI Unknown 

(SedLine 

monitor)  

Healthy controls: κ=0.61, 

accuracy=75%  
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Table S2. Overview of methods used in NICU for automated sleep monitoring. a: Similar datasets, b: Similar datasets. Abbreviations: ANN = artificial neural network, 

AS = active sleep, AS1 = active sleep 1, ASI = activation synchrony index, CNN = convolutional neural network, CWT = continuous wavelet transform, DWT = discrete wavelet transform, ECG = 

electrocardiogram, EMG = electromyogram, EMD = empirical mode decomposition, EOG = electrooculogram, GMM = Gaussian Mixture Model, HHS = Hilbert-Hough spectrum, HI = histogram index, HMM 

= Hidden Markov Model, HR = heart rate, HVS = high voltage slow wave, IBI = inter-burst interval, LDA = linear discriminant analysis, LSTM = long short term memory, LVI = low voltage irregular, max. 

= maximum, min.= minimum, NICU = neonatal intensive care unit, PMA = postmenstrual age, prc. = percentile, QS = quiet sleep, RBF = radial basis function, rEEG = range electroencephalogram, ref. = 

reference electrode, REM = rapid eye movement, RR = respiratory rate, SAT% = spontaneous activity transient index, SVM = support vector machine, sqrt = square root, TA = tracé alternant, W = wake, 

WVD = Wigner-Ville distribution.  

Study  Patients Classifica- 

tion into 

EEG channels  Features  Classification 

method  

Results  

Koolen et al. 

(2017)132 

NICU, PMA 24 

– 45 weeks, 

preterm (n=67) 

W, AS, QS FP1, FP2, C3, 

C4, T3, T4, O1, 

O2, to ref. G2 

p=7 (from p=57); delta1 power, 5th 

prc. rEEG, ASI C3O1-C4O2, ASI 

Fp1C3-Fp2C4, HI median, rEEG 

median, IBI median  

SVM + RBF 

kernel 

 

Accuracy=85% (best 

performance PMA>32 

weeks) 

Piryatinska et 

al. (2009)27 

NICU, PMA 40 

weeks, preterm 

(n=21) + term 

(n=16)a 

 

W, AS, QS Fp1-C3 Preterm: p=4 (from p=8); delta power, 

spectral entropy, log log of fractional 

dimension 

Term: p=4 (from p=8); delta power, 

spectral entropy, log log of fractional 

dimension, spectral moment 

Change point 

detection + k-

means clustering 

Accuracy=80-90% 

Palmu et al. 

(2013)133 

NICU, PMA < 

34 weeks, 

preterm (n=15) 

W, AS, QS C3-O2, O2-A1 SAT%  n/a -No classification or 

comparison with golden 

standard, only feature 

evaluation-   

Scher et al. 

(1996)141 

NICU, PMA 29-

43 weeks, 

preterm (n=26) 

+ term (n=28) 

W, AS, QS FP1, FP2, C3, 

C4, T3, T4, 01, 

O2, Fz, Cz, Pz 

+ EMG, EOG, 

ECG and 3 

respiratory 

channels  

p=13 (from p=32); EEG: delta, beta, 

alpha, theta and total power, EOG: 

REMs, EMG: energy, respiratory 

channels: RR, RR ratio, RR variance, 

ECG: HR, HR ratio, HR variance 

 

Linear discriminant 

analysis 

Accuracy=93% 

Fraiwan et al. 

(2012)135 

NICU, PMA 40 

weeks, preterm 

(n=14) + term 

(n=15)a 

W, AS, QS Fp1-C3 Entropy in delta, theta, alpha, beta1, 

beta2, sleep spindle and K-complex 

frequency bands in WVD, CWT and 

HHS. 

ANN WVD term: accuracy=84%, 

κ=0.65, WVD preterm: 

accuracy=74%, κ=0.51 

HHS term: accuracy=72%, 

κ=0.41, HHS preterm: 

accuracy=68%, κ=0.39 
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CWT term: accuracy=75%, 

κ=0.39, CWT preterm: 

accuracy=64%, κ=0.28 

 

Fraiwan et al. 

(2020)136 

NICU, PMA 40 

weeks, preterm 

(n=21) + term 

(n=16)a 

 

W, AS, QS Fp1-C3 -By LSTM- LSTM network Accuracy=96.81%, κ=0.91 

Dereymaeker 

et al. (2017)139 

NICU, PMA 27-

42 weeks, 

preterm (n=26) 

 

QS or non-QS Fp1, Fp2, C3, 

C4, T3, T4, O1, 

O2, to ref. Cz 

p=9; amplitude std., amplitude min.-

max., max. of 1st derivative, max. of 2nd 

derivative, mean frequency, sqrt delta 

power, sqrt theta power, sqrt alpha 

power, sqrt beta power  

Adaptive 

segmentation + k-

means clustering 

Sensitivity=93%, 

specificity=80% (optimal 

performance PMA 31-38 

weeks) 

Pillay et al. 

(2018)137 

NICU, PMA 27-

41 weeks, n=16b 

QS or non QS 

or AS1, HVS, 

TA, LVI 

Fp1, Fp2, C3, 

C4, T3, T4, O1, 

O2, to ref. Cz 

p=17 (from p=112); 6 from EMD, 5 

from time domain, 3 from frequency 

domain, 3 from DWT (for more details, 

see Table 3 in Pillay et al.137) 

HMM or GMM Four-state performance:  

HMM: accuracy=86%, 

κ=0.62, GMM: 

accuracy=82%, κ=0.55 

Two-state performance:  

HMM: accuracy=95%, 

κ=0.89, GMM: 

accuracy=92%, κ=0.85  

Ghimatgar et 

al. (2020)140  

NICU, PMA 38-

42 weeks, n=16 

b 

QS or non QS 

or AS1, HVS, 

TA, LVI 

Fp1-C3, T3-O1, 

C4-T4, O1-O2, 

Fp2-T4, T3-T4 

p=57 (from p=160); 15 from time 

domain, 18 from frequency domain, 15 

from DWT, 1 from cepstral domain, 11 

from nonlinear domain (for more detail, 

see Table 2 in Ghitmatgar et al.140) 

LSTM + HMM Two-state performance:  

Accuracy=94%, κ=0.88 

Four-state performance:  

Accuracy=80%, κ=0.76 

Ansari et al. 

(2020)138 

NICU, PMA 38-

42 weeks, 

preterm 

(n=16b), term 

(n=16) 

QS or non QS 

or AS1, HVS, 

TA, LVI 

Fp1, Fp2, C3, 

C4, Cz, T3, T4, 

O1, O2, to ref. 

Cz. 

-By CNN-  CNN  Two-state performance: 

κ=0.76 

Four-state performance: 

κ=0.64 (better performance 

in preterm) 
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Supplementary methods 
 

1. Artifact detection algorithm  
 

Polysomnography (PSG) signals are known to contain a lot of artifacts that might influence the algorithm’s 

training and test performance1. Therefore, a simple artifact detection algorithm was used to identify and label 

epochs containing significant artifacts. The most common artifacts observed in the electroencephalogram (EEG) 

include impedance measurement artifacts (Figure S1a), movement artifacts (Figure S1b), 50-Hz electrical 

interference (Figure S1c) or low-frequency artifacts from other physiological sources such as breathing or 

sweating. During impedance measurements, the impedance of all PSG signals is checked at the same time, 

resulting in a flat line with zero amplitude. Impedance measurement artifacts were therefore detected if one of 

the PSG signals sampled at 2 Hz is equal to zero for more than 4 subsequent samples. Many other artifacts, 

such as from movements or 50-Hz interference, are characterized by high amplitudes. These artifacts were 

therefore detected when the mean of the absolute signal amplitude in the epoch exceeds a predefined threshold, 

which were empirically chosen and optimized for EEG, electrooculogram (EOG) and electromyogram (EMG) 

separately. The following thresholds used for the EEG, EOG and EMG signals, respectively: 68, 152 and 152 

uV. The artifact detection algorithm was applied to all unipolar PSG signals (EEG F3, F4, C3, C4, O1, O2, A1 

and A2, EOG ROC, EOG LOC and EMG chin) and labelled for each signal separately. Epochs from the unipolar 

PSG signal that were labelled as ‘artifact’, or from the bipolar PSG signal derived from the unipolar PSG signal 

in question, were removed from the dataset. After the artifact detection algorithm, additional artifacts were 

reduced by bandpass filtering the signals to remove irrelevant frequencies. These irrelevant frequencies often 

consist of 50-Hz electrical interference noise or low-frequency artifacts from movement, sweating or breathing, 

that did not exceed the amplitude thresholds and were therefore not removed by the simple artifact detection 

algorithm.  

 

 

 
Figure S1a. 50-Hz electrical interference artifact (A2, EMG). 
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Figure S1b. Impedance measurement artifact. 

 

 
Figure S1c. Movement artifact. 
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2. Additional feature information  
 

The features were calculated using the following formulas, where: 

 𝑓   = frequency 

 𝑖    = sample 

𝜇  = mean  

 𝑛   = number of samples in epoch 

 𝑘   = frequency bin 

 𝑃(𝑓)   = spectral power 

 𝑦  = epoch signal 

 

 
Bandpower 

 ∫ 𝑃(𝑓) 𝑑𝑓
𝑓𝑢𝑝𝑝𝑒𝑟

𝑓𝑙𝑜𝑤𝑒𝑟

 

 

 

Detrended fluctuation analysis First, 𝑦 is integrated into a new series 𝑦 = [𝑦(1), … . , 𝑦(𝑁)] where 𝑦(𝑘) =

 ∑ (𝑥 − 𝜇)𝑘
𝑖=1 . 

The integrated series is then sliced into boxes of equal length 𝑛. In each 

box of length 𝑛, a least-squares line is fit to the data, representing the 

trend in that box. The y-coordinate of the straight-line segments is 

denoted by 𝑦𝑛(𝑘). 

The root-mean-square fluctuation of the integrated series is calculated by: 

𝐹(𝑛) =  √
1

𝑛
∑ (𝑦(𝑘) −  𝑦𝑛(𝑘))2𝑛

𝑘=1 . 

The fluctuation can be defined as the slope of the line relating 𝐹(𝑛) to 

log(𝑛). 
 

Energy 1

𝑛
∑(𝑦𝑖)2

𝑛

𝑖=0

 

 

 

Higuchi fractal dimension First, 𝑘 new series are constructed from 𝑦 by: 

𝑦𝑚, 𝑦𝑚+𝑘, 𝑦𝑚+2𝑘, … , 𝑦
𝑚+(

𝑛−𝑚

𝑘
)𝑘

, where 𝑚 = 1, 2, …, 𝑘.  

For each time series constructed from the previous decomposition, the 

length 𝐿(𝑚, 𝑘) is computed by:  

𝐿(𝑚, 𝑘) =  
∑ |

(𝑛−𝑚)/𝑘
𝑖=2 𝑥𝑚+𝑖𝑘−𝑥

𝑚+(𝑖−1)𝑘
|(𝑛 − 1)

((𝑛 − 𝑚)/𝑘)𝑘
 

 

The average length is computed as 𝐿(𝑘) = (∑ 𝐿(𝑖, 𝑘))/𝑘𝑖=1 ) 

 

This procedure repeats 𝑘𝑚𝑎𝑥times for each 𝑘 from 1 to 𝑘𝑚𝑎𝑥, and then 

uses a least-square method to determine the slope of the line that best 

fits the curve of ln(𝐿(𝑘)) versus ln(1/𝑘). The slope is the Higuchi Fractal 

Dimension.  

 
Hjorth Activity 1

𝑛
∑(𝑦𝑖 −  𝜇)

𝑛

𝑖=0
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Hjorth Mobility 

√
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(

𝑑𝑦𝑖
𝑖

)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦𝑖)
 

 

 

Hjorth Complexity 
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(

𝑑𝑦𝑖
𝑑𝑖

)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖)
 

 

 

Interquartile range (25th-75th) 𝑄3 − 𝑄1 
 

where 𝑄1 = 25th percentile and 𝑄3 

= 75th percentile  

 
Kurtosis ∑ (𝑦𝑖 −  𝜇)4 / 𝑛𝑛

𝑖=0

𝜎4
 

 

where 𝜎 = standard deviation 

Mean frequency ∑ 𝑃(𝑓𝑘) ∗ 𝑓𝑘
𝑛
𝑖

∑ 𝑃(𝑓𝑘)𝑛
𝑖=0

 

 

 

Mean absolute amplitude 1

𝑛
∑ |𝑦𝑖

𝑛

𝑖=0

| 

 

 

Median frequency ∑ 𝑃(𝑓𝑘) ∗ 𝑓𝑘
𝑛
𝑘=0

∑ 𝑃(𝑓𝑘)𝑛
𝑘=0

 

 

 

Shannon entropy 1

𝑛
∑ 𝑝(𝑦𝑖) ∗ log (𝑝(𝑦𝑖))

𝑛

𝑖=0

 

 

where 𝑝(𝑦𝑖) = probability of signal 

value 𝑦𝑖 

 

Signal sum 

∑ |𝑦𝑖

𝑛

𝑖=0

| 

 

 

Skewness ∑ (𝑦𝑖 −  𝜇)3 / 𝑛𝑛
𝑖=0

𝜎3
 

 

where 𝜎 = standard deviation 

Standard deviation 

1

𝑛
√∑(𝑦𝑖 −  𝜇)

𝑛

𝑖=0

 

 

 

Spectral edge 95% 𝑓𝑘 where  ∑ 𝑃(𝑓𝑘
𝑓𝑚𝑎𝑥
𝑘=0 ) > 0.95 ∗

𝑃(𝑓) 
 

 

Spectral entropy − ∑ 𝑃(𝑓𝑘) ∗ log (𝑃(𝑓𝑘))
𝑓𝑚𝑎𝑥
𝑘=0

log (𝑓𝑚𝑎𝑥)
 

 

 

Spectral kurtosis ∑ (𝑓𝑘 − 𝜇𝑓)4 ∗ 𝑃(𝑓𝑘)
𝑓𝑚𝑎𝑥
𝑘=0

𝜎𝑓
4 ∑ 𝑃(𝑓𝑘)

𝑓𝑚𝑎𝑥
𝑘=0

 

 

where 𝜇𝑓 = mean frequency and 𝜎𝑓 

= standard deviation of spectral 

power 
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Spectral skewness ∑ (𝑓𝑘 − 𝜇1)3 ∗ 𝑃(𝑓𝑘)
𝑓𝑚𝑎𝑥
𝑘=0

𝜇2
3 ∑ 𝑃(𝑓𝑘)

𝑓𝑚𝑎𝑥
𝑘=0

 

 

where 𝜇𝑓 = mean frequency and 𝜎𝑓 

= standard deviation of spectral 

power 

Variance 1

𝑛
∑(𝑦𝑖 −  𝜇)

𝑛

𝑖=0

 

 

 

Zero-crossing-rate 1

𝑛
∑ |𝑠𝑖 − 𝑠𝑖−1|

𝑛

𝑖=0

 

 

where 𝑠𝑖 = polarity, 𝑠𝑖 = 1 if 𝑦𝑖 > 0  
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3. Discrete wavelet transform 
 

The discrete wavelet transform is a time-frequency analysis method that is regularly used in EEG signal analysis 

and feature extraction. Because of its flexible way to represent the time-frequency domain of a signal, it has the 

benefit to account for the non-stationarity of the signal. The EEG signal is considered a non-stationary signal 

as its properties change during each sleep stage by transient waves and alternating frequencies. The DWT is 

obtained by convolution with wavelets with varying scales and breaks down the input signal into multiple 

frequency subbands. A wavelet is characterized by its zero mean and finite energy, which enables localization in 

time and thus temporal resolution. In DWT, the time window size varies with the frequency. Lower frequencies 

have larger windows and higher frequencies have smaller windows, resulting in better frequency resolution in 

lower frequencies and better time resolution in higher frequencies. The DWT is calculated by passing it to a 

series of low- and high-pass filters. Each filter output is down-sampled by factor 2 before further processing so 

account for the removed frequencies after filtering. Convolution with the wavelet with varying scale results in 

detail (high-pass filtered signal) and approximation coefficients (lowpass filtered signals). In this study, a 

debauchies-4 (db-4) wavelet was used, as it has previously been shown to perform well in other EEG analyses2. 

A block diagram of a 5-level DWT process with the frequency range per sub-band is shown in Figure S2. The 

frequency ranges of the five levels of decomposition and their associated EEG frequency range are provided in 

Table S1.  

 
Figure S2. Structure of a 5-level discrete wavelet transform with sample frequency 100 Hz. h[n] represents 

high pass filters, g[n] represents low pass filters, ↓ represents the subsampling by factor 2.  

 

Table S1. Frequency ranges of five levels of decomposition in 

discrete wavelet transform with sampling frequency 100 Hz.  

Coefficient 

set  

Frequency range Associated EEG 

frequency band  

D1 25-49 Hz Gamma 

D2 12.5-25 Hz Beta 

D3 6.25-12.5 Hz Alpha 

D4 3.125-6.25 Hz Theta 

D5 1.5625-3.125 Hz Delta 

A5 0-1.5625 Hz Delta 

 

References:  

1. Devuyst, S. et al. Automatic Processing of EEG-EOG-EMG Artifacts in Sleep Stage Classification. IFMBE Proc. 23, 146–150 

(2009). 

2. Pillay, K. et al. Automated EEG sleep staging in the term-age baby using a generative modelling approach. J. Neural Eng. 15, 

(2018). 
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Supplementary tables and figures 
 

Table S2. Hyperparameter settings during learning curve determination. DT = decision tree, LR = logistic 

regression, LDA = linear discriminant analysis, KNN = k-nearest neighbours, SVM = support vector machine, RF = random forest, 

XGBoost = gradient boosting algorithm 

Machine 

learning model 

Hyperparameter settings for learning curve determination 

DT Splitting criterion: Gini impurity, maximum tree depth: 10 

LR  Penalty: L2, regularization term (C): 1.0 

LDA Solver: singular value decomposition, priors: class proportions 

KNN Number of neighbours: 40, distance metric: Minkowski, weights: uniform 

SVM Kernel: radial basis function, regularization term (C): 10, kernel coefficient (gamma): 

scaled (=1 / (n_features * variancefeatures)) 

RF Number of estimators: 100, splitting criterion: Gini impurity, maximum tree depth = 6, 

bootstrapping: on 

XGBoost Booster: decision tree, objective: linear regression, learning rate: 0.1, minimum child 

weight = 1, number of estimators: 100, splitting criterion: Gini impurity, maximum tree 

depth = 6 

 
Table S3. Hyperparameter space and final tuning configuration. Other hyperparameters are equal to the ones used 

to create the learning curves (Table S2). DT = decision tree, SVM = support vector machine, XGBoost = extreme gradient boosting 

Machine 

learning model 

Hyperparameter Hyperparameter space Final 

configuration 

three-state 

classification 

Final 

configuration 

four-state 

classification 

DT  Number of features [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] 20 16 

Max depth [2, 4, 6, 8, 10, 12, 14, 16, 18]  18 12 

SVM Number of features [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] 20 20 

Regularization term, C [0.01, 0.1, 1, 10, 100] 10 1 

Gamma [0.001, 0.01, 0.1, 1, 10] 0.01 0.01 

XGBoost Number of features [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] 20 18 

Learning rate [0.05, 0.1, 0.15, 0.2] 0.05 0.05 

Min. child weight [1, 3, 5, 7] 3 1 

Subsample ratio of 

columns when 

constructing each tree 

[0.5, 0.75, 1] 1 0.5 
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Table S4. Detailed patient characteristics of the non-critically ill (reference) patients, per age category. PSG = polysomnography 

 0-2 months 

(n=15) 

2-6 months 

(n=15) 

6-12 months 

(n=15) 

1-3 years 

(n=15) 

3-5 years 

(n=15) 

5-9 years 

(n=15) 

9-13 years 

(n=15) 

13-18 years 

(n=15) 

Median age (years) 0.1 0.3 0.7 2.3 4.1 6.3 11.4 16.0 

Males/females 7/8 8/7 8/7 8/7 9/6 8/7 7/8 7/8 

PSG indication (% of 

total)         

• Airway obstruction 73.3 33.3 33.3 73.3 73.3 46.7 33.3 40 

• Neuromuscular 

disease 6.7 26.7 26.7 6.7 13.1 40 53.3 40 

• Pulmonary disease  0 13.3 26.7 6.7 0 0 6.7 6.7 

• Central sleep apnea 13.1 13.3 13.3 6.7 0 0 6.7 6.7 

• Unknown 6.7 13.3 0 6.7 13.3 13.1 0 6.7 
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Table S5. Detailed PSG data characteristics from the non-critically ill (reference) patients, obtained from the visually scored hypnogram. Total sleep time is the time 

spent in any of the sleep stages during the PSG recording. PICU = pediatric intensive care unit, PSG = polysomnography, N1/N2/N3/N = non rapid eye movement sleep stage 1, 2, 3 or quiet sleep, respectively, 

REM = rapid eye movement sleep, SD = standard deviation 

 0-2 months 2-6 months 6-12 months 1-3 years 3-5 years 5-9 years 9-13 years 13-18 years 

Total recording length (hours) 175,8 

(n=21,100) 

170.2 

(n=20,428) 

168.4 

(n=20,204) 

163.9 

(n=19,667) 

161.1 163.2 151.1 142.1 

Average length of PSG 

recording, hours (± SD) 

11.7 (± 1.5) 11.3 (± 1.3) 11.2 (± 0.8) 10.9 (± 1.1) 10.7 (± 0.7) 10.9 (± 0.85) 10.1 (± 1.1)  9.5 (± 0.7)  

Total sleep time, hours (± SD) 8.3 (± 1.4) 8.8 (± 0.8) 8.9 (± 1.5) 8.2 (± 1.5) 9.0 (± 0.6) 8.6 (± 0.7) 6.8 (± 1.5) 6.9 (± 1.20 

Mean time spent in each stage, 

% of total sleep time (± SD) 

(number of epochs) 

        

• REM 34.4 (± 9.0) 

(n=5,295) 

32.6 (± 8.1) 

(n=5,120) 

28.02 (± 3.4) 

(n=4,482) 

22.9 (± 5.6) 

(n=3,355) 

21.7 (±4.0) 

(n=3,539) 

22.4 (± 4.4) 

(n=3,458) 

16.2 (± 6.0) 

(n=2,086) 

17.9 (± 9.3) 

(n=2,143) 

• N1 0.5 (± 1.7) 

(n=87) 

5.5 (± 6.6) 

(n=855) 

12.1 (± 4.9) 

(n=1,950) 

15.2 (± 8.4) 

(n=2,294) 

9.4 (± 5.4) 

(n=1,1514) 

8.2 (± 4.3) 

(n=1,279) 

14.9 (± 7.4) 

(n=1,716) 

13.2 (± 8.4) 

(n=1,613) 

• N2 0 14.2 (± 13.7) 

(n=2,203) 

28.1 (± 8.7) 

(n=4,499) 

29.1 (± 10.9) 

(n=4,318) 

27.3 (±10.2) 

(n=4,461) 

32.7 (± 10.2) 

(n=5,135) 

32.7 (± 7.6) 

(n=4,005) 

38.0 (± 11.3) 

(n=4,818)  

• N3 5.6 (±14.3) 

(n=838) 

28.0 (± 16.5) 

(n=4,365) 

31.8 (± 12.5) 

(n=5,070) 

32.9 (±10.5) 

(n=4,743) 

41.5 (±13.7) 

(n=6,671) 

36.8 (± 12.1) 

(n=5,646) 

36.3 (± 10.0) 

(n=4,456) 

30.8 (± 10.2) 

(n=3,802) 

• N 0.006 (± 0.06) 

(n=5) 

20.0 (± 26.5) 

(n=8,736) 

n/a n/a n/a n/a n/a n/a 
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Table S6. Detailed PSG data characteristics from the PICU patients, obtained from the visually scored hypnogram. Total sleep time is the time spent in any of the sleep 

stages during the PSG recording. a: From the PSG of patient H, no sleep stages could be distinguished and all sleep was staged as sleep stage N, b: Sleep was staged as stage N 

when no clear characteristics were present to discriminate between stage N1, N2 or N3. PICU = pediatric intensive care unit, PSG = polysomnography, N1/N2/N3/N = non rapid eye movement sleep 

stage 1, 2, 3 or quiet sleep, respectively, REM = rapid eye movement sleep, SD = standard deviation 

 Patient A Patient B Patient C Patient D Patient E Patient F Patient G Patient Ha Patient I Patient J 

Length of PSG recording, hours  26.3 10.2 24.4 24.1 24.3 24.8 23.6 24.3 20.0 23.9 

Total sleep time, hours 12.2 6.2 10.9 15.6 18.6 16.0 12.8 22.3 13.1 11.9 

Mean time spent in each stage, % 

of total sleep time (number of 

epochs) 

          

• REM 2.2 (n=32) 11.0 

(n=82) 

10.6 

(n=138) 

4.7 (n=87) 13.6 

(n=303) 

39.6 

(n=758) 

4.1 (=63) 0 (n=0) 9.2 

(n=145) 

4.6 (n=66) 

• N1 41.3 

(n=603) 

0 (n=0) 4.8 (n=63) 0 (n=0) 0 (n=0) 0 (n=0) 33.6 

(n=516) 

0 (n=0) 21.5 

(n=338) 

10.2 

(n=145) 

• N2 45.1 

(n=648) 

0 (n=0) 11.3 

(n=147) 

0 (n=0) 10.0 

(n=224) 

0 (n=0) 45.9 

(n=704) 

0 (n=0) 61.1 

(n=958) 

47.3 

(n=676) 

• N3 11.4 

(n=166) 

47.7 

(n=335) 

70.9 

(n=925) 

0 (n=0) 43.9 

(n=980) 

0 (n=0) 15.0 

(n=230) 

0 (n=0) 8.2 

(n=128) 

37.9 

(n=541) 

• Nb 0 (n=0) 41.3 

(n=208) 

2.5 (n=32) 95.3 

(n=1,1779) 

32.6 

(n=728) 

60.5 

(n=1,159) 

1.4 (n=21) 100 

(n=2679) 

0 (n=0) 0 (n=0) 
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Table S7. Results of the artifact detection algorithm in the non-critically ill (reference) patient data per age category. EEG = electroencephalogram, EMG = electromyogram, EOG 

= electrooculogram, LOC = left outer canthus, ROC = right other canthus 

 0-2 months 

(n=15) 

2-6 months 

(n=15) 

6-12 months 

(n=15) 

1-3 years 

(n=15) 

3-5 years 

(n=15) 

5-9 years 

(n=15) 

9-13 years 

(n=15) 

13-18 years 

(n=15) 

Impedance artifacts, % of total 

epochs (number of epochs) 

0.6 (n=119) 0.4 (n=80) 0.2 (n=35) 0.2 (n=34) 0.1 (n=24) 0.2 (n=42) 0.2 (n=44) 0.1 (n=25) 

Total high amplitude artifacts, % of 

total epochs (number of epochs) 

18.6% 

(n=43,361) 

18.6 

(n=41,213) 

10.8 

(n=24,025) 

13.4 

(n=29,092) 

9.5 

(n=20,268) 

13.9 

(n=29,918) 

16.6 

(n=33,208) 

8.2 (n=15,378) 

EOG ROC high amplitude artifacts, 

% of total epochs (number of 

epochs) 

9.4 (n=1,977) 11.2 (n=2,258) 3.4 (n=691) 1.6 (n=318) 1.3 (n=245) 4.2 (n=829) 8.2 (n=1,484) 8.5 (n=1,442) 

EOG LOC high amplitude artifacts, 

% of total epochs (number of 

epochs) 

13.8 (n=2,910) 9.5 (n=1,913) 9.1 (n=1,832) 3.9 (n=775) 3.8 (n=741) 11.8 

(n=2,317) 

13.8 

(n=2,505) 

4.1 (n=695) 

EMG Chin high amplitude artifacts, 

% of total epochs (number of 

epochs) 

15.0 (n=3,161) 17.5 (n=3,525) 8.1 (n=1,639) 21.1 

(n=4,142) 

7.4 (n=1,421) 17.0 

(n=3,332) 

23.8 

(n=4,318) 

24.6 (n=4,200) 

EEG F3 high amplitude artifacts, % 

of total epochs (number of epochs) 

12.7 (n=2,682) 12.3 (n=2,477) 7.6 (n=1,538) 13.3 

(n=2,616) 

2.0 (n=392) 7.1 (n=1,392) 7.8 (n=1,421) 0.9 (n=154) 

EEG F4 high amplitude artifacts, % 

of total epochs (number of epochs) 

17.7 (n=3,732) 15.1 (n=3,043) 13.2 (n=2,665) 9.6 (n=1,882) 5.3 (n=1,034) 10.2 

(n=1,994) 

10.9 

(n=1,980) 

2.0 (n=336) 

EEG C3 high amplitude artifacts, % 

of total epochs (number of epochs) 

18.0 (n=3,795) 17.0 (n=3,411) 7.9 (n=1,593) 9.1 (n=1,784) 5.0 (n=957) 8.1 (n=1,583) 11.7 

(n=2,114) 

2.2 (n=383) 

EEG C4 high amplitude artifacts, % 

of total epochs (number of epochs) 

11.7 (n=2,479) 12.1 (n=2,429) 4.1 (n=829) 4.0 (n=779) 2.9 (n=558) 8.5 (n=1,663) 10.0 

(n=1,813) 

0.8 (n=129) 

EEG O1 high amplitude artifacts, % 

of total epochs (number of epochs) 

28.8 (n=6,071) 29.4 (n=5,922) 22.9 (n=4,619) 22.6 

(n=4,445) 

19.7 

(n=3,802) 

24.3 

(n=4,761) 

25.7 

(n=4,664) 

8.1 (n=1,383) 

EEG O2 high amplitude artifacts, % 

of total epochs (number of epochs) 

26.3 (n=5,548) 28.1 (n=5,663) 18.7 (n=3,787) 28.5 

(n=5,604) 

19.9 

(n=3,850) 

19.1 

(n=3,740) 

25.7 

(n=4,664) 

9.3 (n=1,581) 
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EEG A1 high amplitude artifacts, % 

of total epochs (number of epochs) 

25.9 (n=5,473) 28.7 (n=5,768) 12.1 (n=2,454) 18.9 

(n=3,718) 

19.6 

(n=3,785) 

26,2 

(n=5,124) 

20.5 

(n=3,717) 

13.2 (n=2,247) 

EEG A2 high amplitude artifacts, % 

of total epochs (number of epochs) 

25.7 (n= 

5,414) 

23.5 (n=4,724) 11.6 (n=2,343) 15.2 

(n=2,995) 

17.9 

(n=3,459) 

16.0 

(n=3,141) 

24.8 

(n=4,484) 

16.4 (n=2,803) 
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Table S8. Results of the artifact detection algorithm in the PICU patient data per age category. a: Artifact labels were manually removed since they were detected as 

artifacts due to the baseline drift in the EEG signal. This baseline drift could be removed with the bandpass filter. EEG = electroencephalogram, EMG = electromyogram, EOG = 

electrooculogram, LOC = left outer canthus, ROC = right other canthus 

 Patient 

A 

Patient B Patient C Patient Da Patient E Patient F Patient G Patient H Patient I Patient J 

Impedance artifacts, % of 

total epochs (number of 

epochs) 

0.03 

(n=1) 

0 (n=0) 0.03 (n=1) 0.03 (n=1) 0.2 (n=7) 0.03 (n=1) 0 (n=0) 0 (n=0) 0.04 (=1) 0 (n=0) 

Total high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

2.5 

(n=882) 
23.0 

(n=3,110) 

3.6 

(n=1,175) 

46.2 

(n=14,725) 

33.2 

(n=10,637) 

6.7 

(n=2,187) 

21.5 

(n=6,725) 

30.9 

(n=9.907) 

35.9 

(n=9,468) 

27.1 

(n=8,539) 

EOG ROC high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

8.7 

(n=276) 

16.2 (n=199) 0.1 (n=4) 0.03 (n=1) 0 (n=0) 13.7 

(n=407) 

0.5 (n=14) 0.5 (n=16) 0.3 (n=6) 0.9 (n=26) 

EOG LOC high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

7.7 

(n=243) 

29.6 (n=364) 1.2 (n=35) 7.0 (n=202) 1.6 (n=7) 0.2 (n=7) 0.03 (n=1) 0.4 (n=11) 2.3 (n=54) 0.2 (n=7) 

EMG Chin high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

0.09 

(n=3) 

0 (n=0) 35.1 

(n=1029) 

4.2 (n=121) 12.0 (n=348) 31.5 

(n=936) 

14.3 

(n=406) 

0.4 (n=12) 1.9 (n=45) 0.8 (n=23) 

EEG F3 high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

0.03 

(n=1) 

1.4 (n=17) 0.3 (n=8) 98.0 

(n=2,837) 

0.2 (n=5) 1.2 (n=36) 100 

(n=2,837) 

0.3 (n=8) 100 

(n=2,399) 

0.3 (n=8) 

EEG F4 high amplitude 

artifacts, % of total 

0.06 

(n=2) 

19.9 (n=245) 0.4 (n=13) 98.0 

(n=2,837) 

99.5 

(n=2,896) 

1.2 (n=36) 2.6 (n=73) 100 

(n=2,916) 

0.5 (n=13) 99.0 

(n=2,839) 
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epochs (number of 

epochs) 

EEG C3 high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

1.0 

(n=32) 

15.1 (n=185) 0.2 (n=7) 1.6 (n=45) 0.4 (n=13) 1.2 (n=13) 23.4 

(n=664) 

0.4 (n=12) 100 

(n=2,399) 

0.6 (n=19) 

EEG C4 high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

0.06 

(n=2) 

17.0 (n=209) 0.3 (n=10) 0.1 (n=3) 99.1 

(n=2,883) 

1.0 (n=31) 7.8 (n=221) 100 

(n=2,2916) 

4.0 (n=97) 97.6 

(n=2800) 

EEG O1 high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

4.5 

(n=144) 

74.7 (n=918) 0.4 (n=13) 100 

(n=2,896) 

28.2 (n=820) 5.6 

(n=166) 

23.1 

(n=656) 

1.8 (n=52) 100 

(n=2,399) 

0 (n=0) 

EEG O2 high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

3.8 

(n=120) 

17,3 (n=213) 1.1 (n=31) 0.2 (n=6) 98.6 

(n=2,870) 

4.6 

(n=137) 

33.9 

(n=961) 

100 

(n=2,916) 

60.2 

(n=1,444) 

97.4 

(n=2,794) 

EEG A1 high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

0.5 

(n=15) 

30.2 (n=371) 0.5 (n=15) 99.5 

(n=2,881) 

13.0 (n=377) 3.6 

(n=106) 

15.9 

(n=451) 

6.6 (n=191) 12.3 

(n=296) 

0.3 (n=10) 

EEG A2 high amplitude 

artifacts, % of total 

epochs (number of 

epochs) 

1.4 

(n=44) 

31.7 (n=389) 0.3 (n=10) 100 

(n=2,896) 

13.0 (n=378) 9.8 

(n=290) 

15.5 

(n=441) 

29.4 (n=857) 13.2 

(n=316) 

0.5 (n=13) 
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Table S9. Spearman correlation of spectral powers with sleep stage labels. Correlations were determined for three-

state classification using spectral powers obtained from the C3-C4 channel from the exploration data set (10,000 

samples). The categorical sleep stage labels were converted to linear sleep stage labels as follows: Wake = 2, NSWS = 

1, SWS = 0. NSWS = non slow wave sleep, SWS = slow wave sleep 

 Absolute Relative  

Total power  -0.49 n/a 

Gamma power 0.26 0.61 

Beta power -0.08 0.43 

Alpha power -0.24 0.39 

Theta power -0.44 0.18 

Delta power -0.53 -0.43 

 

 
Table S10. Classification performance (train scores, accuracy) of various potential index-measures constructed 

from the ratio of spectral powers. Performance results were obtained from the exploration data set (10,000 samples) 

for three-state classification. EEG = electroencephalogram 

EEG 

channel 

Gamma/delta Gamma/theta (Gamma+beta) / 

(theta+delta) 

Gamma / 

(theta+delta) 

EEG F3 0.71 0.70 0.66 0.72 

EEG C3 0.70 0.64 0.60 0.69 

EEG O1 0.68 0.60 0.61 0.68 

EEG A1 0.71 0.63 0.64 0.71 

EEG F3-C3 0.70 0.66 0.64 0.70 

EEG F3-C4 0.70 0.68 0.66 0.71 

EEG F3-O2 0.71 0.66 0.66 0.71 

EEG F3-A2 0.71 0.65 0.68 0.71 

EEG C3-C4 0.67 0.63 0.63 0.66 

EEG C3-O2 0.68 0.61 0.63 0.68 

EEG C3-A2 0.70 0.61 0.65 0.69 

EEG O1-O2 0.64 0.59 0.62 0.64 

EEG O1-A2 0.68 0.62 0.65 0.67 
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Figure S3. Learning curve for three-state classification. The learning curves shows the classification performance 

of 7 machine learning models across different training set sizes. The learning curves were created using 20 features, 

selected by the mRMR method, in combination with the age features on the C3-C4 channel, using all reference PSG 

data. Validation scores were obtained via 10-fold CV. The used hyperparameter settings can be found in Table S2. 

The plot shows that best classification results were obtained with the XGBoost, SVM, DT and KNN models. 

Performance of the RF, LDA and LR models was similar after they reached the convergence point. While the RF, 

KNN, LR and LDA models did not seem to benefit from more than, approximately, 10,000 samples used for the training 

set, the DT, SVM and XGBoost models did benefit from more training data. Although the convergence points of the 

XGBoost and DT models did not seem to be fully reached, a training set size of 50,000 samples was considered to 

both reasonable and feasible. No overfitting was observed with increasing training set sizes. Against expectations, the 

performance scores obtained during the determination of the learning curve were higher than the performance scores 

of the final models. It is hypothesized that this is a result of the difference in the CV strategy that is used. Whereas 

during learning curve determination the CV folds were made on an epoch-level, the CV folds during internal validation 

of the final models were made rather on a patient-level. Also, the feature selection that was performed on the same 

data set as was used to obtain the learning curve validation scores could have contributed to the high performances. 
CV = cross-validation, DT = decision tree, KNN = k-nearest neighbour, LDA = linear discriminant analysis, LR = logistic regression, mRMR = 

minimum redundancy maximum relevance, PSG = polysomnography, RF = random forest, SVM = support vector machine, XGBoost = extreme 

gradient boosting  
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Table S11. Classification performance (CV scores, accuracy) of the index-based models across various EEG 

channels for three- and four-state classification. Performance results were obtained from the training data set (i.e. 

all reference PSG data). CV results were obtained using 5-fold CV. CV = cross-validation, EEG = electroencephalogram, PSG = 

polysomnography, SD = standard deviation 

 Gamma/delta Gamma/(theta+delta) 

EEG channel Three-state Four-state Three-state Four-state 

EEG F3 0.70 (± 0.03) 0.54 (± 0.01) 0.70 (± 0.02) 0.53 (± 0.01) 

EEG C3 0.70 (± 0.05) 0.52 (± 0.01) 0.69 (± 0.02) 0.52 (± 0.01) 

EEG O1 0.68 (± 0.03) 0.47 (± 0.01) 0.68 (± 0.04) 0.47 (± 0.02) 

EEG A1 0.69 (± 0.01) 0.51 (± 0.02) 0.68 (± 0.00) 0.50 (± 0.02) 

EEG F3-C3 0.70 (± 0.03) 0.52 (± 0.03) 0.70 (± 0.03)  0.52 (± 0.03) 

EEG F3-C4 0.71 (± 0.03) 0.53 (± 0.03) 0.71 (± 0.03) 0.52 (± 0.03) 

EEG F3-O2 0.71 (± 0.02) 0.51 (± 0.03) 0.71 (± 0.02) 0.51 (± 0.02) 

EEG F3-A2 0.70 (± 0.01) 0.49 (± 0.02) 0.70 (± 0.00) 0.50 (± 0.01) 

EEG C3-C4 0.69 (± 0.03) 0.51 (± 0.02) 0.69 (± 0.03) 0.51 (± 0.02) 

EEG C3-O2 0.68 (± 0.03) 0.47 (± 0.02) 0.69 (± 0.03) 0.47 (± 0.03) 

EEG C3-A2 0.70 (± 0.03) 0.49 (± 0.03) 0.70 (± 0.02) 0.49 (± 0.02) 

EEG O1-O2 0.66 (± 0.01) 0.40 (± 0.01) 0.66 (± 0.01) 0.40 (± 0.01) 

EEG O1-A2 0.66 (± 0.03) 0.44 (± 0.02) 0.67 (± 0.03) 0.46 (± 0.03) 

 

 

Table S12. Classification performance (CV scores, accuracy) of the machine learning models across various 

EEG channels for three- and four-state classification. Performance results were obtained from the training data set 

for channel evaluation (i.e, 10,000 epochs of the reference PSG data). CV results were obtained using 5-fold CV. a: Not 

tested due to run time problems. CV = cross-validation, DT = decision tree, EEG = electroencephalogram, PSG = polysomnography, SD = 

standard deviation. SVM = support vector machine, XGBoost = extreme gradient boosting  

 DT SVM XGBoost 

EEG channel Three-state Four-state Three-state Four-state Three-state Four-state 

EEG F3 0.75 (± 0.00) 0.65 (± 0.01) 0.72 (± 0.01) 0.62 (± 0.01) 0.78 (± 0.01) 0.70 ((± 0.02) 

EEG C3 0.73 (± 0.01) 0.64 (± 0.01) 0.51 (± 0.01) 0.34 (± 0.00) 0.77 (± 0.00) 0.71 (± 0.01) 

EEG O1 0.74 (± 0.01) 0.61 (± 0.00) 0.63 (± 0.01) 0.62 (± 0.02) 0.78 (± 0.01) a 

EEG A1 0.76 (± 0.00) 0.62 (± 0.01) 0.52 (± 0.00) 0.62 (± 0.01) 0.78 (± 0.01) a 

EEG F3-C3 0.73 (± 0.00) 0.66 (± 0.01) 0.75 (± 0.00) 0.69 (± 0.01) 0.79 (± 0.01) 0.70 (± 0.01) 

EEG F3-C4 0.75 (± 0.00) 0.64 (± 0.01) 0.66 (± 0.00) 0.68 (± 0.01) 0.78 (± 0.01) 0.71 (± 0.01) 

EEG F3-O2 0.74 (± 0.00) 0.62 (± 0.00) 0.54 (± 0.00) 0.37 (± 0.00) 0.79 (± 0.01) 0.66 (± 0.01) 

EEG F3-A2 0.77 (± 0.00) 0.67 (± 0.00) 0.66 (± 0.00) 0.49 (± 0.01) 0.79 (± 0.01) 0.70 (± 0.01) 

EEG C3-C4 0.72 (± 0.00) 0.66 (± 0.01) 0.72 (± 0.00) 0.67 (± 0.02) 0.77 (± 0.01) 0.71 (± 0.00) 

EEG C3-O2 0.71 (± 0.01) 0.64 (± 0.01) 0.63 (± 0.01)  0.65 (± 0.02) 0.78 (± 0.01) 0.69 (± 0.01) 

EEG C3-A2 0.72 (± 0.00) 0.67 (± 0.01) 0.62 (± 0.01) 0.51 (± 0.02) 0.79 (± 0.01) 0.70 (± 0.01) 

EEG O1-O2 0.74 (± 0.00) 0.61 (± 0.01) 0.61 (± 0.00) 0.54 (± 0.01) 0.77 (± 0.01) a 

EEG O1-A2 0.72 (± 0.00) 0.64 (± 0.00) 0.67 (± 0.01) 0.65 (± 0.01) 0.79 (± 0.01) a 
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Table S13. Classification performances of the index-based and machine learning models. AUC = area under the 

(receiver operating characteristic) cuve, CV = cross-validation, PICU = pediatric intensive care unit, PSG = polysomnography, XGBoost = extreme 

gradient boosting, DT = decision tree, SVM = support vector machine 

 EEG 

channel 

Performance 

metric 

Training 

scores 

Internal validation 

score (5-fold CV 

score, reference 

data) 

External 

validation scores 

(test score, PICU 

data) 

Three-state classification 

Gamma/delta F3-C3 Accuracy 0.69 0.69 (± 0.03) 0.60 

AUC 0.83 0.82 (± 0.02) 0.78 

Cohen’s kappa 0.50 0.50 (± 0.04) 0.40 

Gamma/(theta+delta) F3-C3 Accuracy 0.70 0.70 (± 0.03) 0.60 

AUC 0.83 0.82 (± 0.02) 0.78 

Cohen’s kappa 0.51 0.51 (± 0.04) 0.40 

DT F3-C3 Accuracy 0.96 0.74 (± 0.00) 0.49 

AUC 0.99 0.78 (± 0.01) 0.62 

Cohen’s kappa 0.92 0.59 (± 0.01) 0.25 

SVM  F3-C3 Accuracy 0.76 0.76 (± 0.00) 0.54 

AUC 0.90 0.90 (± 0.00) 0.74 

Cohen’s kappa 0.60 0.60 (± 0.01) 0.34 

XGBoost F3-C3 Accuracy 0.81 0.79 (± 0.00) 0.55 

AUC 0.94 0.93 (± 0.00) 0.72 

Cohen’s kappa 0.70 0.66 (± 0.01) 0.34 

Four-state classification 

Gamma/delta F3-C3 Accuracy 0.57 0.52 (± 0.03) 0.55 

AUC 0.79 0.79 (± 0.03) 0.76 

Cohen’s kappa 0.40 0.34 (± 0.04) 0.36 

Gamma/(theta+delta) F3-C3 Accuracy 0.57 0.52 (± 0.03) 0.55 

AUC 0.79 0.79 (± 0.03) 0.76 

Cohen’s kappa 0.40 0.34 (± 0.04) 0.35 

DT F3-C3 Accuracy 0.81 0.68 (± 0.01) 0.40 

AUC 0.96 0.83 (± 0.01) 0.60 

Cohen’s kappa 0.75 0.56 (± 0.01) 0.18 

SVM  F3-C3 Accuracy 0.74 0.73 (± 0.01) 0.45 

AUC 0.93 0.92 (± 0.00) 0.70 

Cohen’s kappa 0.65 0.63 (± 0.01) 0.25 

XGBoost F3-C3 Accuracy 0.80 0.75 (± 0.01) 0.45 

AUC 0.95 0.93 (± 0.00) 0.68 

Cohen’s kappa 0.73 0.65 (± 0.01) 0.23 
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Table S14. Three-state classification performances of the index-based and machine learning models per PICU patient. In some patients, only three sleep 

stages were distinguished, thereby hampering the individual assessment of four-state classification performance (marked by ‘-‘). In patient H, only two sleep stages were 

distinguished. Therefore, classification performance could not be individually assessed for this patient. a: Artifact labels were manually removed since they were detected 

as artifacts due to the baseline drift in the EEG signal. This baseline drift could be removed with the bandpass filter. b: The F4-C4 channel was used instead of the F3-

C3 channel. AUC = area under the (receiver operating characteristic) curve, DT = decision tree, SVM = support vector machine, XGBoost = extreme gradient boosting 

 Performance 

metric 

Patient 

A 

Patient 

B 

Patient 

C 

Patient 

Da 

Patient 

E 

Patient 

F 

Patient 

Gb 

Patient 

H 

Patient 

Ib 

Patient 

J 

Three-state classification 

Gamma/delta ratio Accuracy 0.60 0.64 0.72 0.60 0.48 0.56 0.60 - 0.41 0.71 

AUC 0.77 0.71 0.81 0.80 0.75 0.82 0.74 - 0.55 0.90 

Cohen’s kappa 0.28 0.19 0.52 0.30 0.19 0.37 0.28 - -0.12 0.56 

Gamma/(theta+delta) 

ratio 

Accuracy 0.62 0.63 0.71 0.60 0.44 0.54 0.59 - 0.37 0.77 

AUC 0.79 0.72 0.80 0.80 0.75 0.82 0.75 - 0.54 0.91 

Cohen’s kappa 0.32 0.20 0.49 0.32 0.17 0.35 0.26 - -0.14 0.64 

DT Accuracy 0.54 0.41 0.52 0.50 0.47 0.60 0.63 - 0.46 0.55 

AUC 0.67 0.71 0.63 0.59 0.59 0.66 0.63 - 0.61 0.73 

Cohen’s kappa 0.24 0.23 0.26 0.23 0.19 0.37 0.33 - 0.11 0.35 

SVM Accuracy 0.51 0.34 0.63 0.67 0.58 0.68 0.67 - 0.56 0.56 

AUC 0.78 0.75 0.85 0.80 0.80 0.86 0.82 - 0.68 0.84 

Cohen’s kappa 0.21 0.17 0.46 0.45 0.35 0.52 0.42 - 0.23 0.36 

XGBoost  Accuracy 0.54 0.39 0.58 0.66 0.58 0.69 0.68 - 0.53 0.60 

AUC 0.79 0.77 0.82 0.79 0.78 0.87 0.81 - 0.71 0.84 

Cohen’s kappa 0.24 0.22 0.40 0.45 0.36 0.52 0.45 - 0.20 0.41 
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Table S15. Four-state classification performances of the index-based and machine learning models per PICU patient. In some patients, only three sleep stages 

were distinguished, thereby hampering the individual assessment of four-state classification performance (marked by ‘-‘). In patient H, only two sleep stages were 

distinguished. Therefore, classification performance could not be individually assessed for this patient. a: Artifact labels were manually removed since they were detected as 

artifacts due to the baseline drift in the EEG signal. This baseline drift could be removed with the bandpass filter. b: The F4-C4 channel was used instead of the F3-C3 

channel. AUC = area under the (receiver operating characteristic) curve, DT = decision tree, SVM = support vector machine, XGBoost = extreme gradient boosting 

 Performance 

metric 

Patient 

A 

Patient 

B 

Patient 

C 

Patient 

Da 

Patient 

E 

Patient 

F 

Patient 

Gb 

Patient 

H 

Patient 

Ib 

Patient J 

Four-state classification 

Gamma/delta ratio Accuracy 0.59 - 0.71 - 0.38 - 0.59 - 0.37 0.70 

AUC 0.77 - 0.82 - 0.66 - 0.74 - 0.55 0.89 

Cohen’s kappa 0.27 - 0.50 - 0.12 - 0.28 - -0.11 0.54 

Gamma/(theta+delta) 

ratio 

Accuracy 0.62 - 0.70 - 0.35 - 0.57 - 0.34 0.76 

AUC 0.78 - 0.81 - 0.66 - 0.76 - 0.54 0.90 

Cohen’s kappa 0.31 - 0.48 - 0.11 - 0.26 - -0.14 0.62 

DT Accuracy 0.36 - 0.50 - 0.44 - 0.36 - 0.38 0.49 

AUC 0.60 - 0.71 - 0.65 - 0.59 - 0.62 0.75 

Cohen’s kappa 0.08 - 0.32 - 0.20 - 0.12 - 0.10 0.08 

SVM Accuracy 0.46 - 0.60 - 0.48 - 0.32 - 0.42 0.61 

AUC 0.67 - 0.78 - 0.74 - 0.67 - 0.63 0.83 

Cohen’s kappa 0.17 - 0.42 - 0.28 - 0.14 - 0.13 0.43 

XGBoost Accuracy 0.48 - 0.60 - 0.47 - 0.33 - 0.46 0.52 

AUC 0.66 - 0.78 - 0.74 - 0.69 - 0.71 0.82 

Cohen’s kappa 0.19 - 0.40 - 0.25 - 0.11 - 0.17 0.32 
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Table S16. Classification performance (training score, accuracy) per PCIU patient for the individually trained 

models, three-state classification. Individualized thresholds were not determined for patient H since there were only two 

stages distinguished in this patient. a: Artifact labels were manually removed since they were detected as artifacts due to 

the baseline drift in the EEG signal. This baseline drift could be removed with the bandpass filter. b: The F4-C4 channel 

was used instead of the F3-C3 channel. AUC = area under the receiver operating characteristic (ROC) curve, CV = cross-validation 

 Performa

nce 

metric 

Patie

nt A 

Patie

nt B 

Patie

nt C 

Patie

nt Da 

Patie

nt E 

Patie

nt F 

Patie

nt Gb 

Patie

nt H 

Patie

nt Ib 

Patie

nt J 

Gamma/delta 

ratio – individual 

thresholds 

Accuracy 0.67 0.68 0.79 0.87 0.67 0.66 0.63 - 0.30 0.81 

AUC 0.86 0.76 0.94 0.94 0.81 0.85 0.78 - 0.70 0.96 

Cohen’s 

kappa 0.34 0.29 0.62 0.73 0.38 0.49 0.32 - -0.11 0.69 

Gamma/(theta+

delta) ratio – 

individual 

thresholds 

Accuracy 0.67 0.70 0.79 0.86 0.68 0.66 0.65 - 0.30 0.81 

AUC 0.81 0.75 0.83 0.86 0.75 0.83 0.77 - 0.69 0.92 

Cohen’s 

kappa 0.35 0.34 0.62 0.70 0.39 0.50 0.35 - -0.11 0.69 

 

 

 
Figure S4. Classification performance (AUC) with individualized versus general thresholds per PICU patient 

for three-state classification. AUC = area under the receiver operating characteristic (ROC) curve, PICU = pediatric intensive care unit.  
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Patient A 

 
Figure S5. PICU patient A - Agreement of the visually scored hypnogram with the gamma/delta ratio (with 

the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, AUC = area 

under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, SWS = 

slow wave sleep  
 

 
Figure S6. PICU patient A - Agreement of the visually scored hypnogram with the gamma/(theta + delta) 

ratio (with the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, 

SWS = slow wave sleep 
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Figure S7. PICU patient A - Agreement of visually scored hypnogram and predicted hypnogram by DT model 

for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, DT = decision tree, 

PICU = pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep 

 

 
Figure S8. PICU patient A - Agreement of visually scored hypnogram and predicted hypnogram by SVM 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SVM = support vector machine, SWS = slow wave sleep 

 

 
Figure S9. PICU patient A - Agreement of visually scored hypnogram and predicted hypnogram by XGBoost 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep, XGBoost = extreme gradient boosting 
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Patient B 

 
Figure S10. PICU patient B - Agreement of the visually scored hypnogram with the gamma/delta ratio (with 

the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, AUC = area 

under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, SWS = 

slow wave sleep 

 

 
Figure S11. PICU patient B - Agreement of the visually scored hypnogram with the gamma/(theta + delta) 

ratio (with the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, 

SWS = slow wave sleep 
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Figure S12. PICU patient B - Agreement of visually scored hypnogram and predicted hypnogram by DT model 

for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, DT = decision tree, 

PICU = pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep 

 

 
Figure S13. PICU patient B - Agreement of visually scored hypnogram and predicted hypnogram by SVM 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SVM = support vector machine, SWS = slow wave sleep 

 

 
Figure S14. PICU patient C - Agreement of visually scored hypnogram and predicted hypnogram by XGBoost 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep, XGBoost = extreme gradient boosting 
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Patient C 

 
Figure S15. PICU patient C - Agreement of the visually scored hypnogram with the gamma/delta ratio (with 

the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, AUC = area 

under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, SWS = 

slow wave sleep 

 

 
Figure S16. PICU patient C - Agreement of the visually scored hypnogram with the gamma/(theta + delta) 

ratio (with the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, 

SWS = slow wave sleep 
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Figure S17. PICU patient C - Agreement of visually scored hypnogram and predicted hypnogram by DT model 

for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, DT = decision tree, 

PICU = pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep 

 

 
Figure S18. PICU patient C - Agreement of visually scored hypnogram and predicted hypnogram by SVM 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SVM = support vector machine, SWS = slow wave sleep 

 

 
Figure S19. PICU patient C - Agreement of visually scored hypnogram and predicted hypnogram by XGBoost 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep, XGBoost = extreme gradient boosting 
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Patient D 

 
Figure S20. PICU patient D - Agreement of the visually scored hypnogram with the gamma/delta ratio (with 

the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, AUC = area 

under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, SWS = 

slow wave sleep 

 

 

 
Figure S21. PICU patient D - Agreement of the visually scored hypnogram with the gamma/(theta + delta) 

ratio (with the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, 

SWS = slow wave sleep 
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Figure S22. PICU patient D - Agreement of visually scored hypnogram and predicted hypnogram by DT model 

for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, DT = decision tree, 

PICU = pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep 

 

 
Figure S23. PICU patient D - Agreement of visually scored hypnogram and predicted hypnogram by SVM 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SVM = support vector machine, SWS = slow wave sleep 

 

 
Figure S24. PICU patient D - Agreement of visually scored hypnogram and predicted hypnogram by XGBoost 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep, XGBoost = extreme gradient boosting 
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Patient E 

 
Figure S25. PICU patient E - Agreement of the visually scored hypnogram with the gamma/delta ratio (with 

the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, AUC = area 

under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, SWS = 

slow wave sleep 

 

 
Figure S26. PICU patient E - Agreement of the visually scored hypnogram with the gamma/(theta + delta) 

ratio (with the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, 

SWS = slow wave sleep 
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Figure S27. PICU patient E - Agreement of visually scored hypnogram and predicted hypnogram by DT model 

for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, DT = decision tree, 

PICU = pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep 

 

 
Figure S28. PICU patient E - Agreement of visually scored hypnogram and predicted hypnogram by SVM 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SVM = support vector machine, SWS = slow wave sleep 

 

 
Figure S29. PICU patient E - Agreement of visually scored hypnogram and predicted hypnogram by XGBoost 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep, XGBoost = extreme gradient boosting 
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Patient F 

 
Figure S30. PICU patient F - Agreement of the visually scored hypnogram with the gamma/delta ratio (with 

the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, AUC = area 

under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, SWS = 

slow wave sleep 

 

 
Figure S31. PICU patient F - Agreement of the visually scored hypnogram with the gamma/(theta + delta) 

ratio (with the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, 

SWS = slow wave sleep 
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Figure S32. PICU patient F - Agreement of visually scored hypnogram and predicted hypnogram by DT model 

for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, DT = decision tree, 

PICU = pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep 

 
Figure S33. PICU patient F - Agreement of visually scored hypnogram and predicted hypnogram by SVM 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SVM = support vector machine, SWS = slow wave sleep 

 

 
Figure S34. PICU patient F - Agreement of visually scored hypnogram and predicted hypnogram by XGBoost 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep, XGBoost = extreme gradient boosting 
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Patient G 

 
Figure S35. PICU patient G - Agreement of the visually scored hypnogram with the gamma/delta ratio (with 

the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, AUC = area 

under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, SWS = 

slow wave sleep 

 

 
Figure S36. PICU patient G - Agreement of the visually scored hypnogram with the gamma/(theta + delta) 

ratio (with the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, 

SWS = slow wave sleep 
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Figure S37. PICU patient G - Agreement of visually scored hypnogram and predicted hypnogram by DT model 

for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, DT = decision tree, 

PICU = pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep 

 

 
Figure S38. PICU patient G - Agreement of visually scored hypnogram and predicted hypnogram by SVM 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SVM = support vector machine, SWS = slow wave sleep 

 

 
Figure S39. PICU patient G - Agreement of visually scored hypnogram and predicted hypnogram by XGBoost 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep, XGBoost = extreme gradient boosting 
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Patient H 

 
Figure S40. PICU patient H - Agreement of the visually scored hypnogram with the gamma/delta ratio (with 

the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, AUC = area 

under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, SWS = 

slow wave sleep 

 

 

 
Figure S41. PICU patient H - Agreement of the visually scored hypnogram with the gamma/(theta + delta) 

ratio (with the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, 

SWS = slow wave sleep 
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Figure S42. PICU patient H - Agreement of visually scored hypnogram and predicted hypnogram by DT model 

for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, DT = decision tree, 

PICU = pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep 

 

 
Figure S43. PICU patient H - Agreement of visually scored hypnogram and predicted hypnogram by SVM 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SVM = support vector machine, SWS = slow wave sleep 

 

 
Figure S44. PICU patient H - Agreement of visually scored hypnogram and predicted hypnogram by XGBoost 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep, XGBoost = extreme gradient boosting 
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Patient I 

 
Figure S45. PICU patient I - Agreement of the visually scored hypnogram with the gamma/delta ratio (with 

the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, AUC = area 

under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, SWS = 

slow wave sleep 

 

 
Figure S46. PICU patient I - Agreement of the visually scored hypnogram with the gamma/(theta + delta) 

ratio (with the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, 

SWS = slow wave sleep 
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Figure S47. PICU patient I - Agreement of visually scored hypnogram and predicted hypnogram by DT model 

for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, DT = decision tree, 

PICU = pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep 

 

 
Figure S48. PICU patient I - Agreement of visually scored hypnogram and predicted hypnogram by SVM 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SVM = support vector machine, SWS = slow wave sleep 

 

 
Figure S49. PICU patient I - Agreement of visually scored hypnogram and predicted hypnogram by XGBoost 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep, XGBoost = extreme gradient boosting 
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Patient J 

 
Figure S50. PICU patient J - Agreement of the visually scored hypnogram with the gamma/delta ratio (with 

the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, AUC = area 

under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, SWS = 

slow wave sleep 

 

 
Figure S51. PICU patient J - Agreement of the visually scored hypnogram with the gamma/(theta + delta) 

ratio (with the final model, or general, and individualized thresholds) for three-state classification. Acc. = accuracy, 

AUC = area under the receiver operating characteristic (ROC) curve, κ = Cohen’s kappa, NSWS = non slow wave sleep, REM = rapid eye movement, 

SWS = slow wave sleep 
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Figure S52. PICU patient J - Agreement of visually scored hypnogram and predicted hypnogram by DT model 

for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, DT = decision tree, 

PICU = pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep 

 
Figure S53. PICU patient J - Agreement of visually scored hypnogram and predicted hypnogram by SVM 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SVM = support vector machine, SWS = slow wave sleep 

 

 
Figure S54. PICU patient J - Agreement of visually scored hypnogram and predicted hypnogram by XGBoost 

model for three-state classification. Acc. = accuracy, AUC = area under the receiver operating characteristic (ROC) curve, PICU = 

pediatric intensive care unit, NSWS = non slow wave sleep, SWS = slow wave sleep, XGBoost = extreme gradient boosting 
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Table S17. Classification performance (training subgroup scores, accuracy) of the final index-based models 

per age category. Performance results were obtained by selecting age categories from the training data set (i.e., all 

reference PSG data). CV = cross-validation, PSG = polysomnography 

 Gamma/delta Gamma/(theta+delta) 

Age category Three-state Four-state Three-state Four-state 

0-2 months 0.58 n/a 0.59 n/a 

2-6 months 0.66 n/a 0.66 n/a 

6-12 months 0.72 0.51 0.72 0.51 

1-3 years 0.74 0.60 0.73 0.59 

3-5 years 0.72 0.57 0.72 0.57 

5-9 years 0.74 0.57 0.75 0.58 

9-13 years 0.68 0.57 0.69 0.57 

13-18 years 0.71 0.62 0.72 0.63 

0-18 years 0.69 0.57 0.70 0.57 

 

 

Table S18. Classification performance (training subgroup scores, accuracy) of the final machine learning 

models per age category. Performance results were obtained by selecting age categories from the training data set 

(i.e., 50,000 epochs of the reference PSG data). DT = decision tree, PSG = polysomnography, SVM = support vector machine, XGBoost 

= extreme gradient boosting 

 DT SVM XGBoost 

Age 

category 

Three-

state 

Four-state Three-state Four-state Three-state Four-state 

0-2 months 0.94 n/a 0.68 n/a 0.73 n/a 

2-6 months 0.94 n/a 0.73 n/a 0.79 n/a 

6-12 months 0.96 0.82 0.79 0.72 0.81 0.79 

1-3 years 0.94 0.80 0.78 0.76 0.82 0.79 

3-5 years 0.95 0.63 0.79 0.69 0.82 0.69 

5-9 years 0.93 0.80 0.76 0.74 0.83 0.81 

9-13 years 0.95 0.82 0.74 0.74 0.82 0.78 

13-18 years 0.94 0.83 0.79 0.77 0.84 0.82 

0-18 years 0.96 0.81 0.76 0.74 0.81 0.80 
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Table S19. Classification performance (accuracy) of the final index-based models versus the per age category 

trained models, three-state classification. Performance results were obtained by selecting age categories from the 

training data set (i.e., all reference PSG data). CV results were obtained using 5-fold CV. CV = cross-validation, PSG = 

polysomnography 

 Gamma/delta Gamma/(theta+delta) 

Age 

category 

Final model 

thresholds - test 

score 

Thresholds per age 

group – CV score 

Final model 

thresholds - test 

score 

Threshold per age 

group – CV score 

0-2 months 0.58 0.57 (± 0.01) 0.59 0.57 (± 0.01) 

2-6 months 0.66 0.66 (± 0.01) 0.66 0.66 (± 0.01) 

6-12 months 0.72 0.72 (± 0.00) 0.72 0.72 (± 0.01) 

1-3 years 0.74 0.77 (± 0.00) 0.73 0.77 (± 0.00) 

3-5 years 0.72 0.74 (± 0.01) 0.72 0.74 (± 0.01) 

5-9 years 0.74 0.79 (± 0.01) 0.75 0.79 (± 0.01) 

9-13 years 0.68 0.71 (± 0.01) 0.69 0.71 (± 0.01) 

13-18 years 0.71 0.71 (± 0.02) 0.72 0.71 (± 0.01) 

0-18 years 0.69 0.69 (± 0.02) 0.70 0.70 (± 0.02) 

 

 

 

 
 

Figure S55. Variation in thresholds between age categories for the index-based models, three-state 

classification. 
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Figure S56. Absolute spectral powers across sleep stages per age category. The spectral powers were 

obtained from all reference PSG data using the F3-C4 channel. The boxes extend to the 25th and 75 

interquartile range with the central line representing the median value. The whiskers extend to ± 2.7 SD. 

Points outside this range are defined as outliers, marked by the black plusses. The figures show a general 

increase in theta and delta power as sleep deepens, while gamma power decreases as sleep deepens. A large 

variation of spectral powers within age categories but also between age categories can be observed. Theta 

powers peaks across all sleep stages in the age categories 6-12 months and 1-3 years. Delta power during 

SWS increases with age. N1/N2/N3/N = non rapid eye movement sleep, PSG = polysomnography, REM = rapid eye movement 

sleep, SD = standard deviation, SWS = slow wave sleep 
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Figure S57. EEG feature correlation heatmap (F3-C3 channel). abs. = absolute, DWT = discrete wavelet transform, EEG = 

electroencephalogram, freq. = frequency, rel. = relative, SD = standard deviation 

 

 
 

 



 

  

 

  



 

  

 

 

 

  



 

  

 

 

 


