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Should We Use the First- or Second-order
Formulation with Spectral Elements for Seismic
Modelling?
R. Shamasundar* (Delft University of Technology) & W.A. Mulder (Shell
GSI BV & Delft University of Technology)

SUMMARY
The second-order formulation of the wave equation is often used for spectral-element discretizations. For
some applications, however, a first-order formulation may be desirable. It can, in theory, provide much
better accuracy in terms of numerical dispersion if the consistent mass matrix is used and the degree of the
polynomial basis functions is odd. However, we find in the 1-D case that the eigenvector errors for
elements of degree higher than one are larger for the first-order than for the second-order formulation.
These errors measure the unwanted cross talk between the different eigenmodes. Since they are absent for
the lowest degree, that linear element may perform better in the first-order formulation if the consistent
mass matrix is inverted. The latter may be avoided by using one or two defect-correction iterations.
Numerical experiments on triangles confirm the superior accuracy of the first-order formulation. However,
with a delta-function point source, a large amount of numerical noise is generated. Although this can be
avoided by a smoother source representation, its higher cost and the increased susceptibility to numerical
noise make the second-order formulation more attractive.
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 Introduction

Spectralmethods for modelling seismic wave propagation are usually based on the second-order for-
mulation of the wave equation, both for box-like elements on quadrilaterals and hexahedra (Komatitsch
et al., 1999, e.g.) as well as for simplex-based elements on triangles (Mulder, 1996, 2013) or tetrahedra
(Zhebel et al., 2014). For some applications, however, a first-order formulation may be desirable. Also,
it can in theory provide much better accuracy in terms of numerical dispersion if the consistent mass
matrix is used and the degree of the polynomial basis functions is odd (Ainsworth, 2014). Since inver-
sion of this large sparse matrix is costly, mass lumping can be applied, but then the superior dispersion
behaviour is lost. For that reason, Shamasundar et al. (2015) proposed the use of defect correction as an
efficient alternative. In 1D, we found that one iteration with the consistent mass matrix, preconditioned
by the mass-lumped mass matrix, reduced the numerical dispersion error. For the lowest-degree poly-
nomial basis, the linear element, this enabled us to recover fourth-order super-convergence, two orders
higher than with the second-order formulation of lowest degree. Lacking from that discussion was an
analysis of the eigenvector error, describing the crosstalk between different element modes for degrees
larger than one (Mulder, 1999). We will amend that here. Also lacking was the step to 2D and beyond.
Below, we will present a simple Fourier error analysis for bilinear and triangular elements of lowest
degree, to see if we can recover the fourth-order error behaviour observed in 1D on a highly regular
mesh. Some numerical experiments are included.

Governing equations

We will consider the first-order formulation of the constant-density acoustic wave equation,

c−2∂t p= ∂xu+∂zv+ f , ∂tu= ∂xp, ∂tv= ∂zp,

as well as the second-order formulation,c−2∂tt p= ∂xxp+∂zzp+ f ′. These are equivalent, but may differ
after the spatial discretization. In the 1-D case, a finite-element discretization with spectral elements on
Legendre-Gauss-Lobatto nodes produces first-derivative matrices, mass matrices, and, for the second-
order formulation, a stiffness matrix. The first-order formulation involves three global mass matrices,
which may or may not be lumped, the second-order formulation only one. In the 2-D case, we can
discretize the equations with spectral elements on quadrilaterals, using the cartesian product of the 1-D
basis functions, or on triangles, with tailor-made mass-lumped finite elements, for instance.

1-D eigenvalue and eigenvector errors

In 1D and on an equidistant mesh, the eigenvalues of the spatial operator describe the numerical disper-
sion. A discrete approximation of the spatial derivative, required in the first-order formulation, should
provide an approximation iκ to the exact operator iξ , whereξ = kh/M∈ [−π,π] is a scaled version of
the wavenumberk, h is the element size, andM ≥ 1 the polynomial degree of the basis functions. The
relative dispersion error is measured byκ/ξ −1 and we can estimate its asymptotic behaviour of the
form κ/ξ −1 ∝ hq for smallh, whereq is the exponent of the leading error term. In the second-order
formulation, the eigenvalueκ2 should approximateξ 2 and we can define the relative dispersion error in
the same way.

Apart from the eigenvalues of the spatial operator, we can determine its eigenvectors. One of those
should correspond to the Fourier mode described byξ or k. The others are ‘spurious’. We can describe
the cross talk between the mode by means of a matrixS, defined per element and of sizeM×M. This
matrix describes the amplitudes of the spurious modes relative to the unit size of the proper ‘physical’
mode — the Fourier mode we try to approximate. The entries ofSalso behave ash to some power for
smallh. Table 1 summarizes the exponents of the leading errors in the eigenvalues and eigenvectors of
the 1D problem. The last column contains the suggested trends for interpolating degreeM > 1, where it
should be noted that exponents for the dispersion error in the second-order case were derived by Mulder
(1999). Ainsworth (2014) gave a proof for the first-order case with a consistent mass matrix. The
effect of the eigenvector errors dominates the results for degrees larger than one. Details are provided
by Shamasundar and Mulder (2016). Numerical tests show that the overall error is dominated by the
smaller of the two powers in Table 1.

The eigenvector errors reveal that the second-error formulation with mass lumping is to be preferred.
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Table 1 Exponents of the leading error in the dispersion curve and in the eigenvectors with LGL points
andpolynomials up to degree 5. The first of each pair corresponds to the relative error in the eigenvalue
iκ for the first-order formulation or in the square root of the eigenvalueκ2 for the second-order formu-
lation. The second of each pair corresponds to the exponent ofξ in the leading error of the matrix S
describing the eigenvector errors. This error is zero for M= 1. The last column shows expressions for
the trend for M> 1, suggested by these results, where p(M) = M if M is even and p(M) = M+1 if M is
odd.

order mass matrix M = 1 2 3 4 5 trend(M > 1)
1 consistent 4, – 4, 2 8, 4 8, 4 12, 6 2p(M), p(M)

lumped 2, – 4, 2 6, 4 8, 4 10, 6 2M, p(M)
2 consistent 2, – 4, 4 6, 5 8, 6 10, 7 2M,M+2

lumped 2, – 4, 4 6, 5 8, 6 10, 7 2M,M+2

An exception is the first-order formulation for the lowest degree,M = 1, with a consistent mass matrix.
As already mentioned, the same fourth-order accuracy can be obtained with one iteration using the
defect-correction principle. In the remainder, we will investigate this scheme more closely in two space
dimensions.

2-D Fourier analysis

We can quickly analyse the performance in 2D by considering Fourier analysis on a periodic grid
with square elements, both for bilinear elements and for linear elements on triangles. We start with
bilinear elements on squares. LetTx denote a shift operator in thex-direction, such thatTxpk,l =
pk+1,l . Here,pk,l denotes the discrete pressure in the point(xk,yl ) with xk = x0+ khx andyl = y0+ lhy

and grid spacingshx and hy. Its Fourier symbol isT̂x = exp(iξ1) with |ξ1| ≤ π, whereξ1 is re-
lated to the wavenumberkx in the x-direction byξ1 = kxhx. Likewise, Typk,l = pk,l+1 with symbol
T̂y = exp(iξ2) with |ξ2| ≤ π. One row of the assembled mass matrix in a single node, relative to
the others, isM = 1

36

[

16+4(T−1
x +Tx+T−1

y +Ty)+T−1
x T−1

y +TxT−1
y +T−1

x Ty+TxTy
]

. Its symbol is
M̂ = 1

36(T̂
−1
x +4+ T̂x)(T̂−1

y +4+ T̂y) =
1
9(2+cosξ1)(2+cosξ2). One row of the derivative matrix inx

is D(1) = 1
12(Tx−T−1

x )(T−1
y +4+Ty), with symbolD(1) = 2

3 i(2+cosξ2)sinξ1. For D(2), we can swap
ξ1 andξ2. Then,

M̂−1D̂(1) =
3isinξ1

2+cosξ1
≃ iξ1(1− 1

180ξ 4
1 ),

showing that we have fourth-order accuracy with bilinear elements and a consistent mass matrix. With
mass lumping, the result has only second-order accuracy:M̂−1

L D̂(1) = 1
3 i(2+ cosξ1)sinξ1 ≃ iξ1

[

1−
1
6(ξ

2
1 +ξ 2

2 )
]

. The expressions can be used to estimate the eigenvalues ofG= I −M1
LM by noting that

Ĝ= 1− 1
9(2+cosξ1)(2+cosξ2) ∈ [0, 8

9].

After one iteration withĜ, the error becomes− 1
180

(

6ξ 4
1 +10ξ 2

1 ξ 2
2 +5ξ 4

2

)

, restoring the fourth-order
accuracy.

We can repeat this analysis for linear elements on triangles and a regular mesh consisting of squares
cut in half across the diagonal, from the left upper to the right lower corner. With unit spacing, the
first triangle has vertices(0,0), (1,0), (0,1) with basis functions{1− x− y,x,y} and the second has
(1,1), (1,0), (0,1) with basis functions{−(1−x−y),1−y,1−x}. For the Fourier analysis, we select
8 triangles contained inside the 4 squares surrounding one node and assemble the matrices. Then, one
row of the mass matrix is given byM = 1

12(6+T−1
x +Tx +T−1

y +Ty +TxT−1
y +T−1

x Ty), with corre-

sponding symbol̂M = 1
6(3+cosξ1+cosξ2+cos(ξ1−ξ2)). A row of thex-derivative matrix isD(1) =

1
6

[

2(Tx−T−1
x )+Ty(1−T−1

x )+T−1
y (1−Tx)

]

, with symbol D̂(1) = 1
3 i(2sinξ1 + sinξ2 + sin(ξ1 − ξ2)).

Now,
M̂−1D̂(1) ≃ iξ1

[

1− 1
360ξ 2

1

{

2ξ 2
1 −5ξ2(ξ1−ξ2)

}]

,

revealing fourth-order behaviour of the error. The results for the derivative in they-direction are the same
after swappingTx andTy or ξ1 andξ2. With mass lumping, the operator becomesM̂−1

L D̂(1) = D̂(1) ≃
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Figure 1 (a) Errors for the first-order formulation with one (red) or two (blue) defect-correction itera-
tions, compared to the second-order formulation (black). The drawn lines correspond to the L2 errors,
the dashed to the maximum errors. (b) Solution at final time.

iξ1
[

1− 1
6(ξ

2
1 +ξ 2

2 −ξ1ξ2)
]

, providing only second-order accuracy. These expressions also provide an
estimate of the eigenvalue range ofG: Ĝ= 1

6 [3−cosξ1−cosξ2−cos(ξ1−ξ2)] ∈ [0, 3
4]. Oneiteration

with Ĝ reduces the relative error to

− 1
360

(

12ξ 4
1 −25ξ 3

1 ξ2+35ξ 2
1 ξ 2

2 −20ξ1ξ 3
2 +10ξ 4

2

)

,

again restoring the fourth-order accuracy.

2-D numerical tests

A test problem is defined byp(t,x,z) =cos(ωt)sin(4x)sin(πz) on the domain[0,T]× [0,2π]× [0,1].
We solve the constant-density acoustic wave equation with constant wave speedc0 andω = c0

√
42+π2.

The error is measured over all degrees of freedom at final timeT = 2π/c0. Figure 1 shows errors for
the first- and second-order formulation, using triangular finite elements of lowest degree. The coarsest
mesh was based on a cartesian grid with 101×17 points. Each small rectangle was divided into two
triangles. The finest mesh had 401× 65 points or degrees of freedom. The first-order approach with
two iterations of defect correction produces more accurate results in this case, although we appear to
have difficulty to recover the fourth-order error behaviour estimated by the Fourier analysis. We should
point out, however, that the error in the first-order formulation has a strong short-wavelength component,
whereas the second-order formulation has a much smoother error in space.

As a second test problem, we took a rectangular domain with a point source and, for simplicity, con-
stant density and sound speed,c0 = 1.5km/s, and zero boundary values for the pressure all around. The
source was located in the centre at a depth of 250m and had a Ricker wavelet with a 3-Hz peak fre-
quency. Note that its time integral has to be used in the first-order formulation. The domain consists of
101×51 points, connected by triangles. Figure 2a shows the pressure wavefield at 0.6s obtained with
the second-order formulation, using a delta-function point source. This leads to a source representation
by adjoint interpolation to nearby vertices using the basis functions. If we repeat this with the first-order
formulation, we get the very noisy image of Figure 2b. Using a gaussian with a standard deviation of
50m instead of a delta function produces the wavefield of Figure 2c. Apparently, the first-order formu-
lation is sensitive to short-wavelength noise. In hindsight, this might have been anticipated, because the
1-D dispersion analysis produces curves that return back to zero at the shortest wavelength, meaning
that this wavelength is not seen by the spatial operator. Once excited, it will not disappear. The gaussian
source does not generate these modes, but will introduce some smearing of the wavelet, which in turn
will increase the numerical error. Clever filter techniques may offer an alternative, but this has not been
pursued.

We conclude that the first-order formulation of lowest order can be more accurate in some cases than the
second-order formulation, but at a cost and with the risk of generating short-wavelength noise.



30 May – 2 June 2016 | Reed Messe Wien

78th EAGE Conference & Exhibition 2016 
Vienna, Austria, 30 May – 2 June 2016 

Pressure at t=0.6 s

0 0.5 1 1.5 2 2.5 3
x (km)

0

0.5

1

1.5

z 
(k

m
)

(a)

Pressure at t=0.6 s

0 0.5 1 1.5 2 2.5 3
x (km)

0

0.5

1

1.5

z 
(k

m
)

(b)

Pressure at t=0.6 s

0 0.5 1 1.5 2 2.5 3
x (km)

0

0.5

1

1.5

z 
(k

m
)

(c)

Figure 2 Pressure field generated by a point source for (a) the second-order formulation with a delta-
function point source, (b) the first-order formulation with a delta-function point source and no defect-
correction iterations, and (c) with a gaussian source and two defect-correction iterations.

Conclusion

We have shown that the eigenvalues of the spatial operator that describe the numerical dispersion alone
do not provide sufficient clarity about the accuracy of numerical schemes. The error in the eigenvectors,
which include the cross talk between different modes, should be taken into account as well. These errors
are larger for the first-order than for the second-order formulation of the wave equation. Only for the
lowest-degree scheme, with linear polynomials, the first-order formulation together with our iterative
scheme is more accurate. Unfortunately, the scheme can be rather noisy, leading us to the conclusion
that it is better to use the second-order formulation for any polynomial degree.
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