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Understanding properties of quantum matter is an outstanding challenge in science. In this paper, we
demonstrate how machine-learning methods can be successfully applied for the classification of various regimes
in single-particle and many-body systems. We realize neural network algorithms that perform a classification
between regular and chaotic behavior in quantum billiard models with remarkably high accuracy. We use
the variational autoencoder for autosupervised classification of regular/chaotic wave functions, as well as
demonstrating that autoencoders could be used as a tool for detection of anomalous quantum states, such as
quantum scars. By taking this method further, we show that machine-learning techniques allow us to pin down
the transition from integrability to many-body quantum chaos in Heisenberg XXZ spin chains. For both cases,
we confirm the existence of universal W shapes that characterize the transition. Our results pave the way for
exploring the power of machine-learning tools for revealing exotic phenomena in quantum many-body systems.

DOI: 10.1103/PhysRevB.101.064406

I. INTRODUCTION

The idea of combining machin- learning methods [1] with
quantum physics has stimulated intensive research activity
[2]. The scope so far includes identification of quantum phases
of matter and detecting phase transitions [3–15], represen-
tation of states of quantum many-body systems [16–19],
and machine-learning-based analysis of experimental data
[19–22].

Remarkable progress on building large-scale quantum sim-
ulators [23–26] has opened fascinating prospects for studying
traditionally challenging problems of complex quantum
systems, such as investigation of quantum critical dynamics
and quantum chaos [27]. Quantum systems with chaotic
behavior are of great interest, particularly in the view of the
possibility to explore many-body quantum scars [28,29],
which can be compatible with long-lived states. A standard
criterion for the separation between regular and chaotic
regimes uses nearest-neighbor (NN) energy-level statistics
[30,31]: Poisson and Wigner-Dyson distributions correspond
to integrable and chaotic systems, respectively. However, the
energy-level statistics of highly excited states is not always
accessible in experiments with well-controlled quantum
systems.

From the machine-learning perspective, an interesting
problem is to understand whether it is possible to distinguish
between regular and chaotic behavior based on experimentally
accessible quantities such as data from projective measure-
ments. This question can be further extended to a possibility to
detect anomalies in experimental data, such as quantum scars.

In this paper, we realize machine-learning algorithms to
perform a classification between regular and chaotic states
in single-particle and many-body systems. The input data
contains a probability density function (PDF) representing
configurations of excited states and the output is provided
by two neurons, which distinguish between integrable and
chaotic classes, see Fig. 1. In the single-particle case, we
consider paradigmatically important models of quantum bil-
liards. We apply an extension of a semisupervised “learning
by confusion” scheme [9] to detect the integrability/chaos
transition and to evaluate a critical region. We also use a
clusterization technique based on a variational autoencoder
(VAE) for machine learning of the transition to quantum chaos
and for detection of quantum scars. The supervised approach
is then extended to study the transition in Heisenberg XXZ
spin-1/2 chains in the presence of additional interactions that
break integrability. In our work, regular/chaos transitions are
identified with the classification accuracy up to 99%. We
show that our results based on the machine-learning approach
are in good agreement with the analysis of level spacing
distributions.

The confusion scheme is based on the assumption that the
critical point λc exists within a given parameter range (a, b),
so the data could be classified into two classes. Further, a trial
critical point λc is proposed and all the data with parameters
below λc are labeled as 0, and above λc as 1. The neural
network is then trained on the entire data set for all values
of λc, chosen from the range (a, b) with a predefined step.
This method results in a universal W-like performance curve
[9]. The learning by confusion scheme has been used for
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the study of many-body localization–delocalization transition
[32], 2D percolation and Ising models, critical behavior of the
two-color Ashkin-Teller model, the XY model, the eight-state
clock model [33], and exploring topological states [34].

To address the problem of revealing the transition between
regular and chaotic behavior, we realized an extension of the
learning by confusion scheme. At the first stage, we train the
network to distinguish states belonging to the extreme cases
of regular (λ = 0) and chaotic (λ ∼ 1) regimes, where λ is the
chaoticity parameter. By analyzing neural network outputs,
we determine the critical domain where the neural network
predicts a transition between the two regimes. At the second
stage, we perform the standard learning by confusion protocol
and we refer to the middle peak on W-like performance curves
of the neural network as the transition point [9].

The paper is organized as follows. In Sect. II, we
describe our machine-learning approach for classifications
of chaotic/integrable wave functions in quantum billiards.
We describe our supervised learning methodology and
present results of neural-network-based classification of
chaotic/integrable wave functions as a function of chaotic-
ity parameter λ for three types of quantum billiards: Sinai,
Bunimovich stadium, and Pascal billiards. In Sec. III, we
apply an autosupervised machine-learning techinique using a
VAE for clusterization analysis of quantum states in billiards.
In addition, we explore applications of VAEs for anomaly
detection of quantum scars and the potential of VAEs for
generative modeling of regular/chaotic wave functions in
quantum billiards. In Sec. IV, we apply supervised learn-
ing for detection of transition from integrability to quantum
chaos in XXZ spin chains in the presence of integrability
breaking interactions: next-nearest neighbor (NNN) spin-spin
interaction and a local magnetic field. We draw conclusions in
Sec. V. Technical details on machine-learning approaches and
data set preparation are presented in the Appendixes.

II. QUANTUM BILLIARDS

Quantum billiards are among the simplest models exhibit-
ing quantum chaos. The transition from regular to chaotic
behavior in quantum billiards, which is controlled by the
shape of the billiard boundary, has been intensively studied for
decades [35]. Quantum billiards have been realized in various
experimental setups including microwave cavities [36], ultra-
cold atoms [37], and graphene quantum dots [38]. Quantum
scars [39], which are regions with enhanced amplitude of the
wave function in the vicinity of unstable classical periodic
trajectories, is the hallmark of quantum chaos. Quantum scars
are of a great interest in quantum billiards [39,40] and their
many-body analogs have recently been studied [28,29].

We consider three standard types of two-dimensional quan-
tum billiards: Sinai billiard, Bunimovich stadium, and Pas-
cal’s limaçon (Robnik) billiard. We define a dimensionless
parameter of chaoticity λ for each billiard type, where it
determines the billiard shape. In Sinai billiards, the chaoticity
parameter is controlled by the ratio of the inner circle radius
to the width/height of the external rectangle, so λ = r/a. In
the case of Bunimovich stadium, the parameter is λ = l/r
and in the Pascal’s limaçon, billiard shape is defined via the
conformal map on the complex plane D(w) : {w = z + λz2},
where |z| � 1. At the limit of λ → 0, these billiards have

FIG. 1. Neural network approach for identifying a transition be-
tween chaotic and regular states in quantum billiards and Heisenberg
spin chains. The input data contains probability distribution in the
configuration space, the two neuron activation functions are used for
the identification of the two regimes.

regular shapes and therefore are integrable. Varying the pa-
rameter λ allows one to trace out a continuous transition from
integrability to quantum chaos.

We use a supervised learning approach for revealing
chaotic/regular transitions in quantum billiard models. We
train a binary classifier based on a convolutional neural net-
work (CNN) using real-space images of the PDF |ψn(x, y)|2.
The training data set consists of randomly sampled snapshots
of the PDF in fragments excluding the billiard’s bound-
ary in the regions of interest. The wave functions ψn(x, y)
are obtained from the numerical solution of the stationary
Schrödinger equation for the corresponding billiard type (for
details see Appendixes A and B). Since the information about
the transition from the regular to chaotic regimes is mostly
represented in the properties of highly excited states, we
use wave functions with sufficiently large values of n in our
data set.

The snapshots corresponding to λ = 0 we label as regular
(class 1), and snapshots corresponding to λ ∼ 1 we label as
chaotic (class 2). The activation function of the two neurons
in the last layer allows classifying between chaotic/regular
snapshots in the test data set with a high accuracy. CNN
performance curves for each of the three billiard types for
different values of λ show that the CNN algorithm is able
to learn the difference between regular and chaotic wave
functions and reveals the existence of the transition region
(see Fig. 2). The CNN confidence for the binary classification

FIG. 2. Convolutional neural network outputs for (a) Sinai bil-
liard, (b) Bunimovich stadium, and (c) Pascal’s limaçon as functions
of the chaoticity parameter λ characterizing the billiard’s boundary
shape. The highlighted critical region corresponds to the regions of
“uncertainty” in neuron network output activation curves.
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>95% for λ away from the critical region. The critical region
determined by the CNN is highlighted in red in Fig. 2. In Sinai
and Bunimovich billiards, the critical region detected by the
CNN algorithm is 0 < λc < 0.2. The detected critical region
for the Pascal billiard is 0.05 < λ < 0.5. The boundaries of
the critical regions provided by the CNN classifier are in good
agreement with the ones obtained from the analysis of the
energy-level spacing statistics, see Appendix C.

The critical region can be analyzed in more detail within
the learning by confusion scheme [9] by performing a dynam-
ical reassignment of the class labels with respect to a given
value of λ. We note that a precise definition of the transition
point λc is somewhat ambiguous and depends on selected
criteria because all observables have a smooth dependence on
the parameter λ. Therefore, in our approach, we only estimate
the location of a characteristic critical point λc, separating
regular and chaotic regimes. The estimated position of the
critical point is λc ≈ 0.1 in Sinai billiards and λc ≈ 0.2 in
Pascal limaçon billiards. The location of the critical point λc

in Pascal’s billiard agrees with Ref. [41]. We note that the
analysis of the chaotic/regular transition for the Bunimovich
stadium is challenging due to its extreme sensitivity to the
variation of the chaoticity parameter λ (see Ref. [40]).

One of the key features that allows us to perform ma-
chine learning of the regular-to-chaos transition is the differ-
ence in statistical properties of |ψn|2 in these two regimes.
While in the chaotic case the wave functions have Gaussian
statistics, in the regular case the probability distribution is
nonuniversal and has a power-law singularity at small values
of ψn [42].

The standard approach to identify a transition from an
integrability to a quantum chaos is based on the compari-
son of the energy-level spacing statistics with the Poisson
distribution and the Wigner-Dyson distributions. To char-
acterize a “degree of chaoticity” of the system, one can
use the average ratio of consecutive level spacings 〈r〉,
where r = min(�En+1,�En)/ max(�En+1,�En) and �En =
En − En−1 [43]. Here we introduce a different measure
based on the Kullback-Leibler (KL) divergence, defined as
follows:

DKL(Pλ||P′) =
∫ ∞

0
Pλ(s) log

Pλ(s)

P′(s)
ds, (1)

where Pλ(s) is the level spacing distribution for a given value
of λ and P′(s) is the Wigner-Dyson or Poisson distribution:
P′

Pois = e−s, P′
WD = π

2 s exp (−π
4 s2). Here s is the unfolded

NN energy-level spacing.
In the critical region between regular and chaotic regimes,

the energy spacing distribution is neither Poisson nor Wigner-
Dyson. There exists a point λc when Pλc is equidistant from
both Poisson and Wigner-Dyson distributions within the KL
metric, D(Pλc ||P′

Pois) = D(Pλc ||P′
WD), which we refer to as a

critical point. The critical points predicted by the confusion
scheme and KL divergence curves are in good agreement. We
note that the confusion scheme uses experimentally accessible
quantities, whether energy-level statistics from experimental
data is hardly accessible in condensed matter and atomic
simulator experiments.
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FIG. 3. Autosupervised learning of regular and chaotic states in
quantum billiards with variational autoencoder (VAE). Latent space
representation of the wave functions in (a) Bunimovich stadium,
(b) Sinai billiard; z1,2 are coordinates in the two-dimensional latent
space. (c) Anomaly detection: Latent space representation of wave
functions corresponding to regular (red dots, λ = 0) and chaotic
(blue dots, λ = 0.4) wave functions as well as scarred chaotic
wave functions (green dots) in Bunimovich billiard. (d) VAE as
a generative model: Images of wave functions |ψ |2 generated by
VAE corresponding to different positions in the latent space vari-
ables (z1, z2) (Pascal billiard). By continuously scanning across
two-dimensional latent space, the VAE performs a smooth inter-
polation between wave functions from chaotic and regular wave
functions.

III. VAE AND ANOMALY DETECTION IN
QUANTUM BILLIARDS

An alternative approach to differentiate between regular
and chaotic regimes is to use autosupervised machine-learning
techniques, such as VAEs. VAEs are generative NN models
that are able to directly learn statistical distributions in raw
data and can be efficiently used for solving clustering prob-
lems [44,45]. VAEs consist of encoding NN, latent space and
decoding NNs, Fig. 3(a). During the training, VAE “learns”
to reproduce initial data by optimizing the weight in the
encoder and decoder NNs and parameters in the latent layer.
Training VAEs on the images with |ψn(x, y)|2 corresponding
to regular (λ = 0) and chaotic (λ ∼ 1) cases and by taking
samples from the latent space with the dimension 2 results
in two clearly separated clusters representing regular and
chaotic wave functions. For details on VAE architecture and
optimization, see Appendix D.

In Figs. 3(a) and 3(b), we demonstrate latent space repre-
sentation of wave functions in Bunimovich and Sinai billiards.
The separation in the two clusters shows that VAE is able
to learn the difference in the statistical properties of |ψn|2 in
regular and chaotic billiards. A similar approach was used for
unsupervised learning of phase transitions [4].
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In addition to the autosupervised learning of
regular/chaotic quantum states, VAEs could be used as a
tool for anomaly detection in quantum data, in particular,
identification of scarred wave functions. In this context, we
use the term anomalous to describe a subset of samples
with statistical properties drastically different from the
statistical properties of the entire data set. Data-driven
anomaly detection with VAEs arises in machine learning, data
mining, and cybersecurity applications [46–49]. Applications
of VAE-based anomaly-detection methods were recently
studied in the context of classical phase transitions [50] and
detection of elementary particles [51]. However, the potential
of anomaly-detection methods in quantum systems has been
mostly unexplored. Anomalous samples could be detected
using latent space representation z1,2 as a set—a cloud of
points falling outside of the chaotic cluster (for additional
details, see Appendix E). Using a pretrained VAE, we generate
a set of points in the latent space corresponding to the scarred
chaotic wave functions, see Fig. 3(c). The anomalous cluster
representing scarred wave functions falls outside of the
chaotic cluster and has a large overlap with a regular cluster.
This unusual behavior indicates similarity between scarred
wave functions and wave functions in integrable billiards. An
interesting extension of this approach could be VAE-based
anomaly detection method for identification of quantum
many-body scars.

Another additional feature of VAEs is the ability to
smoothly interpolate between data sets corresponding to the
two classes. In Fig. 3(d), we show wave functions gen-
erated by VAE in Pascal billiard via scanning across the
two-dimensional latent space z1,2. This procedure allows us
to perform continuous interpolation between chaotic (center
region) and regular wave functions (outer region). VAE-based
generative modeling of quantum states could give rise to new
approaches in simulations of quantum systems [52] as well
as for new applications in the context of quantum chaos.
Exploring a full potential of unsupervised machine-learning
methods for clustering quantum states is beyond the scope of
the present paper.

IV. DETECTION OF QUANTUM CHAOS IN
XXZ SPIN CHAINS

While quantum billiards is an instructive example of
a single-particle quantum chaos, quantum chaotic regimes
in many-body systems are more interesting. Developing
machine-learning approaches to characterize/classify many-
body states in chaotic and integrable regimes using only
limited information from measurements is a nontrivial task.
For example, such techniques can benefit from the analysis
of experimental data from quantum simulators [23–26]. As
a prototypical example of a quantum many-body integrable
system, we consider 1D Heisenberg XXZ spin chain, which is
of great interest for realizing models of quantum magnetism
using quantum simulators [53]. Recent experimental advances
have opened exciting prospects for exploiting a rich variety
of tunable interactions in Rydberg atoms [25,54–57] and cold
polar molecules [58–60] for engineering of spin Hamiltonians
including the XXZ model.

The Hamiltonian of the Heisenberg XXZ model reads

HXXZ =
N−1∑
i=1

[
J
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + JzzS
z
i Sz

i+1

]
, (2)

where N is the number of spins, J and Jzz are the Heisenberg
exchange constants, and Sx,y,z

i are Pauli spin-1/2 operators.
For simplicity, we only consider an antiferromagnetic XXZ
model, J, Jzz > 0. Hereafter, we set J = 1. The XXZ model
is integrable and exactly solvable by Bethe ansatz [58], how-
ever, it can be nonintegrable in the presence of additional
interactions.

Here we consider two types of perturbations that violate
integrability of the XXZ model: (i) antiferromagnetic NNN
spin-spin interaction and (ii) a local static magnetic field act-
ing on a single spin (impurity). We parametrize perturbations
to the Hamiltonians in the following form:

(i) : H ′ = λ

N−2∑
i=1

Sz
i Sz

i+2, (ii): H ′ = λSz
(N+1)/2. (3)

We consider spin chains with an odd number of spins N , so
in case (ii) the local magnetic field is acting on the spin in the
middle of the chain, i.e., i = (N + 1)/2. The Hamiltonian of
the perturbed XXZ model reads

H = HXXZ + H ′. (4)

We train a multilayer perceptron (MLP) on the data set
containing the probabilities |〈ψn|k〉|2 of the spin configura-
tions in Sz representation (|k〉 refers to basis states in Sz

representation), e.g., | ↑↓ . . . ↓〉. The eigenfunctions |ψn〉 are
obtained by exact diagonalization of spin-chain Hamiltonian
(for details, see Appendix F); here we consider system size
N = 15. Similarly to the case of quantum billiards, we con-
sider only highly excited states with n corresponding to the
levels lying in the middle of the energy spectrum, En ≈ 0.

To pin down the chaos/integrability transition, we use
a MLP NN, see details in Appendix G. We evaluate NN
classification prediction for the test data set as a function of
λ, see Fig. 5(a), the critical region is highlighted with red.
For XXZ + NNN (Fig. 4) and XXZ + impurity (Fig. 5),
detected critical regions are 0.05 � λc � 0.175 and 0.05 �
λc � 0.125, respectively, which turn out to be in agreement
with level spacing distributions represented in Fig. 4(b), see
Appendix C and within the range of values obtained in previ-
ous works [61–63]. Within these critical regions, learning by
confusion resulted in W-like performance curves [see Fig. 4(c)
and Appendix H], and detected transition points λc ≈ 0.1 for
XXZ + NNN and λc ≈ 0.085 for XXZ + impurity. We note
that we have a reasonable agreement with the results based on
the KL divergence calculations.

V. CONCLUSIONS

In summary, we have shown the potential of classical
supervised and unsupervised machine-learning techniques for
classification of regular/chaotic regimes in single-particle and
many-body systems. For quantum billiards and XXZ spin
chains, we demonstrated that neural networks can serve as a
binary classifier to distinguish between the two regimes with
remarkably high accuracy. We revealed the integrability-chaos
critical region purely based on machine-learning techniques
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FIG. 4. Neural network classification accuracy between integrable and chaotic XXZ spin chains with the next-nearest-neighbor interactions
for N = 15 spins (Jzz = 1). (b) Distribution of energy-level spacings and the Poisson/Wigner-Dyson distributions. Plots correspond to XXZ
model. (c) Learning by confusion W-like NN performance curve.

and located the transition point using the learning by confu-
sion approach. The extension of our work opens an avenue
to study chaotic and integrable regimes and detect quantum
anomalies using experimentally accessible data in different
many-body quantum systems, including atomic simulators.
Harnessing machine-learning methods could open up excit-
ing possibilities for studying exotic many-body phenomena
with controlled quantum many-body systems, such as many-
body localization [64], many-body quantum scars [28], and
ergodic/nonergodic phase transitions [65] and near-critical
properties of these systems.
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APPENDIX A: NUMERICAL SOLUTION OF THE
SCHRÖDINGER EQUATION FOR QUANTUM BILLIARDS

We solve a stationary Schrödinger equation describing
a single particle in a quantum billiard with the Dirichlet

FIG. 5. Left panel: NN classification accuracy for chaos-
integrability transition in XXZ model in the presence of a local
magnetic field (a magnetic impurity) for N = 15 spins. Right panel:
Energy-level spacing distributions for different values of λ.

boundary condition,

− h̄2

2m
∇2ψn = Enψn, ψn|∂D = 0, (A1)

where ψn(x, y) is the wave function and En is the energy of a
particle in the billiard with the boundary ∂D; ∇2 = ∂xx + ∂yy

is the two-dimensional Laplace operator. Hereafter, we set
the Plank’s constant and the mass to unity, h̄ = m = 1. To
solve Eqs. (A1) for an arbitrary 2D billiard boundary shape,
we use MATLAB PDE toolbox. The PDE solver is based on
the finite element method with an adaptive triangular mesh
for a given boundary geometry. To reduce computational
complexity and to avoid additional complications due to de-
generacies of eigenstates, we constrain the eigenfunctions to a
specific symmetry (parity) sector. We remove degeneracies by
considering the lowest symmetry segments of billiards. In the
case of the Bunimovich stadium, we consider a quarter of the
billiard [see inset of Fig. 1(b) in the main text]. For the Sinai
billiard, we consider a boundary with the incommensurate
ratio of vertical and horizontal dimensions of the external
rectangle, ax/ay = √

5/2 (we denote a ≡ ax in the main text).
In the case of the Pascal limaçon billiard, the degeneracy is
lifted when considering only the upper part of the billiard
Re(z) � 0.

APPENDIX B: DATA-SET PREPARATION AND CNN FOR
QUANTUM BILLIARDS

Wave functions ψn(x, y) obtained from numerical solution
of the Schrödinger equation are converted into images of
PDFs |ψn(x, y)|2. From original images with ∼500 × 500 pix-
els, we randomly select square fragments (region of interest)
which exclude the billiard boundary, ∼300 × 300 pixels. To
reduce the size of the images, we perform a coarse graining
(downsampling) to images with dimensions 36 × 36. The data
set for each billiard type contains wave functions correspond-
ing to high energy states, 470 � n < 500. To increase the
amount of images in the data set, we perform an augmentation
of the data set by adding horizontal and vertical reflections,
discrete rotations by angles α = kπ/2, and rotations by ran-
dom angles from the uniform distribution α ∈ [−25o, 25o].
The total number of images in the resulting data set for each
billiard type and each value of λ is M = 4000. The trial
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FIG. 6. Sample images of |ψ (x, y)|2 in the data set for Bunimovich billiard. Regular case (λ = 0) and chaotic case (λ = l/r = 0.2).

samples from the data set for the Bunimovich billiard are
shown in Fig. 6.

The training data set consists of labeled images from
class 1 (regular, λ = 0) and class 2 (chaotic, λ = λ0). The
value of λ0 we independently choose for each billiard type:
Sinai—λ0 = 0.4, Bunimovich—λ0 = 0.2, Pascal—λ0 = 0.8.
To check that at λ = λ0 the system is in the chaotic regime,
we compare the energy-level spacing distribution with the
Wigner-Dyson distribution. As long as the value of λ0 is much
greater than the critical λ, λ0 � λc, the NN activation curves
remain practically unchanged (see Fig. 1 in the main text).

The training and test data sets are split in the proportion
70%/30%. The test set for each billiard type consists of
images for several values of λ (including values of λ not
present in the training data set), evaluation of the NN output
for the sample images from the test data set for each value of
λ results in the NN prediction curves presented in Fig. 1 in the
main text.

A CNN consists of two convolutional layers followed by
pooling fully connected and final softmax layers. The output
from the second convolutional layer is subject to dropout reg-
ularization and batch normalization. The cost function for the
binary classifier is the cross entropy and the neuron activation
function is ReLU. The scheme of the CNN architecture is
presented in Fig. 7. The weights in the CNN are optimized
with the use of the Adam optimizer. The batch size is 60, the
number of training epochs is of about 500, the learning rate is
α = 5 × 10−4.

APPENDIX C: ENERGY-LEVEL SPACING STATISTICS IN
QUANTUM BILLIARDS

We validate results of NN classification prediction in quan-
tum billiards (Pascal limaçon, Sinai and Bunimovich billiards)
by comparing NN predictions with the energy level spacing
distributions, see Fig. 8. In the regular case the energy-level
spacing distribution P(s) is close to the Poisson distribution
(black dashed line), and in the chaotic case P(s) is approach-
ing the Wigner-Dyson distribution (red dashed dotted line).

APPENDIX D: UNSUPERVISED LEARNING WITH VAE

We perform unsupervised (autosupervised) learning of two
classes (regular and chaotic) using a VAE. The unlabeled
data set was prepared in a similar way as for the supervised
learning. The data set consists of randomly sampled images
of |ψn(x, y)|2 with the dimensions 36 × 36, the number of
samples in the training data set for each billiard type is
6 × 103, number of testing samples is 2 × 103 for each billiard
type. A VAE was trained and tested for the states with n ∼ 500
in Bunimovich and Sinai’s billiards, λ = 0 corresponds to
the regular class, λ = 0.4 corresponds to the chaotic class.
VAE consists of the encoder Qθ (xi ), decoder Pθ ′ (zi), Gaussian
sampler Gμ j ,σ j , and the latent space of dimension 2 (latent
space parameters μ1,2 and σ1,2) representing the two classes,
regular and chaotic, the architecture of VAE is shown in
Fig. 9. Here xi is the vectorized representation of the input data

Pool Fully-connected

layer

Softmax

Input image

(36 x 36)
Conv2d (1, 4)

Conv2d (4, 3)

FIG. 7. CNN used for recognizing chaotic regimes in quantum billiards.
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FIG. 8. Left column: The CNN activation functions (Fig. 1 from the main text). The histograms show the energy-level spacing distributions
(lowest 500 energy levels). To compare NN predictions for the regular-to-chaos critical region, we compare the energy-level spacing
distribution with the standard Poisson/GOE distributions.

(image), θ (θ ′) are NN parameters of the encoder (decoder).
The sampler generates random latent space variables z1,2 with
the mean μ1,2 and the dispersion σ 2

1,2. The decoder performs
reconstruction from the latent space representation to the
original data format, the image |ψ (x, y)|2 with dimensions
equal to the input dimension (36 × 36). The final layer of the
decoder has sigmoid activation function to match the input

FIG. 9. Architecture of variational autoencoder (VAE) for unsu-
pervised learning of regular-chaos transition in quantum billiards.

data range (we normalize the input data so max{|ψ (x, y)|2} =
1. The encoder and decoder are represented by a fully con-
nected NN with two hidden layers and Nh = 150 neurons in
each layer. The structure of the decoder network replicates the
structure of the encoder (number of layers, number of neurons,
activation function) and the decoder is a “mirrored” replica
of the encoder. The encoder network is given by two fully
connected layers with ReLU activation function between the
layers.

The objective function is a sum of reconstruction loss
(binary cross entropy) and KL divergence loss [45],

LVAE(x) = Ez∼Qθ (x)[log Pθ ′ (z)]

− 1

2

∑
j=1,2

(
1 + log σ 2

j − μ2
j − σ 2

j

)
, (D1)

where LVAE is the loss function, x is the data sample (dis-
cretized wave function image |ψ |2), and Pθ ′ is the output
of the decoder network. The expectation value Ez∼Qθ (x)[. . .]
is evaluated by averaging over batch z j sampled from the
latent space. The objective function Eq. (D1) is also known
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FIG. 10. Left panel: Examples of scarred wave functions in Bunimovich and Sinai billiards used for quantum anomaly detection. Right
panel: Latent space distribution of VAE for regular (λ = 0) and chaotic (λ = 0.4) wave functions in Sinai billiard. Green dots correspond to
scared wave functions.

as the variational lower bound or evidence lower bound. This
is the bound on the log probability to observe a data point
x, therefore by maximizing the lower bound Eq. (D1) we
maximize the log-likelihood probability of observation x. We
implemented VAE within PYTORCH framework. VAE was
trained over 50 epochs using an Adam optimizer [66], learning
rate is α = 10−4, batch size is 40 samples.

APPENDIX E: ANOMALY DETECTION WITH VAE AND
QUANTUM SCARS

Among the wave functions of Sinai and Bunimovich bil-
liards, we selected states with scarred wave functions. The
total number of scarred wave functions constituted only a
small fraction of the entire data set (<5%). Some typical
examples of scarred wave functions in Bunimovich and Sinai
billiards are shown in the left panel of Fig. 10. We train VAE
on the entire data set containing chaotic and regular wave
functions. At test time, we feed real space images of wave
function snapshots |ψn(x, y)| to VAE and analyze the latent
space representaion z j ∼ Gμ j ,σ j [Qθ (xi )] of the input samples
xi. The portion of “scarred” samples in the test data set is 33%,
such ratio was chosen to make scarred clusters in the latent
space quite visible.

Scarred chaotic wave functions form a cluster in the
“wrong” region that strongly overlaps with the regular cluster,
see Fig. 10, right panel and Fig. 2(c) in the main text. This is
a signature of anomalous properties of scarred wave functions
that we use as a case for demonstration of the anomaly
detection approach. In Fig. 10 (right panel), we show how
regular (λ = 0), chaotic (λ = 0.4), and scarred wave functions
(λ = 0.4) of Sinai billiards are represented in the VAE’s latent
space. Another popular VAE-based approach for anomaly
detection relies on the increase of VAE reconstruction loss
(or reconstruction probability) of anomalous data [49]. This
approach does not pertain to our case, because the reconstruc-
tion loss for scarred wave functions is approximately equal to
the reconstruction loss for regular wave functions.

In addition to anomaly detection, we use VAE latent space
representation to explore possibility of smooth interpolation
between wave functions corresponding to regular and chaotic
billiards. By scanning across coordinates in the latent space
z1, z2 and decoding the latent representation with the decoder
neural network y ∼ Pθ ′ (z) into vectorized form correspond-
ing to the original data dimensions, we obtained “images”
of wave functions |ψ |2 [Fig. 2(d), main text] interpolating
between chaotic (center region) and regular wave functions
(outer region).

APPENDIX F: DATA-SET PREPARATION FOR
HEISENBERG XXZ CHAINS (EXACT DIAGONALIZATION)

We find eigenstates of Heisenberg XXZ model for an
arbitrary value of perturbation parameter λ by the exact diag-
onalization method based on the Lancsoz algorithm [67]. We
used Python implementation of the QUSPIN software package
[68]. To avoid extensive computational costs, the size of
the Hamiltonian matrix was reduced by considering only the
eigenstates in certain parity and magnetization sectors of the
XXZ Heisenberg model. Specifically, we find eigenstates in
the even parity sector and the lowest magnetization sector.
The lowest magnetization sector corresponds to the states with
mz = (n↑ − n↓)/2 = 1/2 (for odd spin chains), where n↑ and
n↓ are the number of up and down spins, respectively.

The data set for Heisenberg XXZ chains consists of vectors
of probability densities (PDs) |〈ψn|k〉|2 corresponding to inte-
grable and chaotic Hamiltonians. We take the wave function
|ψn〉 corresponding to a quantum state with the energy lying
in the center of the spectrum. To prepare a diverse data set for
a given value of λ, we randomly select Jzz from the uniform
distribution Jzz ∈ [0.8, 2]. Since the XXZ model is integrable
for any value of Jzz, we build a data set corresponding to a set
of different Hamiltonians by varying Jzz. In the training set, we
include PDs for regular systems (λ = 0) and chaotic systems
(λ0 = 0.3) and label the samples accordingly. The test set
contains PDs corresponding to a discrete set of λ lying in the
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FIG. 11. Multilayer perceptron used for investigation
integrable/chaotic transitions in Heisenberg XXZ chains.

interval λ ∈ [0, 0.3]. The training set contains 400 samples,
the testing set consists of 100 samples.

APPENDIX G: MULTILAYER PERCEPTRON

We use a standard MLP neural network that consists of
an input layer with the size n, which is equal to the size of
vector with PDs in the specified symmetry (parity and total
magnetization) sector of the eigenstates; one hidden layer with
m = 700 neurons and an output softmax layer. Neurons of the
hidden layer receive input xi and a weight wxi (i = 1...n) and
compute output y = f (z), where z = ∑n

i=1 xiwxi. An output
of a neuron is computed with a sigmoid activation function

f (z) = 1/(1 + e−z ). Further, each output y with a correspond-
ing weight wyi (i = 1...m) is passed to two neurons of an out-
put softmax layer, which finally results in a two-component
vector (p1, p2) that obeys the constraint p1 + p2 = 1. The
softmax layer for binary classification task is defined as
pj=1,2 = exp y j∑

i=1,2 exp yi
. The scalar values p1 (p2) are interpreted

as a probability that the input wave function belongs to the
regular (chaotic) class. The objective function is the binary
cross entropy. Neural network weights are optimized using an
Adam optimizer [66] with the learning rate α = 0.001, batch
size of 10 samples, 20 training epochs. The scheme of the
neural network architecture is presented in Fig. 11.

We used a densely connected MLP instead of CNN ar-
chitecture due to the following reason: CNN is designed to
grasp spatial structure of the input data, whereas MLPs are
used for more general tasks. CNN architecture is very natural
for image recognition tasks (in our case, classifying wave
functions in quantum billiards), but generically is not a natural
representation for the case of the spin chains, where the input
data corresponds to the components of the many-body wave
function.

APPENDIX H: DETECTION OF CRITICAL POINTS WITH
A CONFUSION SCHEME WITH CONFUSION

METHOD (W-SHAPE CURVES)

W-like neural network performance curves versus chaotic-
ity parameter λ found by a learning by confusion approach

FIG. 12. Universal W-like NN performance curves in the learning by confusion scheme for the Sinai billiard (a), the Pascal’s limaçon (b),
XXZ + NNN (c), and XXZ + Impurity (d). The predicted transition point λc is highlighted. The estimated position of the transition point
predicted from the KL divergence calculation is shown with a red dot.
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for quantum billiards and XXZ spin chains are shown
in Fig. 12. The central peak of the W-like curve corre-

sponds to the transition point λc predicted by the neural
network.
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