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Mode choice behaviour is often modelled by discrete choice models, in which the utility of each mode is characterized by mode-
specifc parameters refecting how strongly the utility of that mode depends on attributes such as travel speed and cost, and a
mode-specifc constant value. For new modes, the mode-specifc parameters and the constant in the utility function of discrete
choice models are not known and are difcult to estimate on the basis of stated preferences data/choice experiments and cannot be
estimated on the basis of revealed preference data.Tis paper demonstrates how revealed preference data can be used to estimate a
discrete mode choice model without using mode-specifc constants and mode-specifc parameters. Tis establishes a method that
can be used to analyze any new mode using revealed preference data and discrete choice models and is demonstrated using the
OViN 2017 dataset with trips throughout the Netherlands using a multinomial and nested logit model. Tis results in a utility
function without any alternative specifc constants or parameters, with a rho-squared of 0.828 and an accuracy of 0.758. Te
parameters from this model are used to calculate the future modal split of shared autonomous vehicles and electric steps, leading
to a potential modal split range of 24–30% and 37–44% when using a multinomial logit model, and 15–20% and 33–40% when
using a nested logit model. An overestimation of the future modal split occurs due to the partial similarities between diferent
transport modes when using a multinomial logit model. It can therefore be concluded that a nested logit model is better suited for
estimating the potential modal split of a future mode than a multinomial logit model. To the authors’ knowledge, this is the frst
time that the future modal split of shared autonomous vehicles and electric steps has been calculated using revealed preference
data from existing modes using an unlabelled mode modelling approach.

1. Introduction

In the last decade, numerous mobility systems, such as shared
bicycles and scooters, automated cars, ride-hailing services,
electric bicycles, and other personal light electric vehicles have
been developed. Such new mobility systems could potentially
change the way our urban areas look substantially in terms of
spatial use, sustainability, health, equity, safety, and economic
opportunities [1–4]. For instance, it is estimated that the yearly
impact of automated vehicles (AV) alone could approach 4,000
generalizedUS dollars per person per year, including economic
benefts, crash cost savings, travel time reductions (due to a
reduction in congestion), and lower parking costs [1].

A commonly accepted defnition of new mobility sys-
tems does not exist in the literature. To defne new mobility

systems, it is important to consider what a mobility system
entails and when such a system can be considered new. In
our research, we defne a mobility system as a set of com-
ponents that, as such and as a whole, provide a means of
transport for people and/or goods. Mobility systems are
highly integrated into society and, therefore, challenging to
analyze and describe due to their complex, large-scale,
interconnected, open, and sociotechnical nature [5]. Systems
can be diferentiated and categorized on the basis of a
multitude of attributes [6]. A mobility system can be con-
sidered a new mobility system in a specifc area, if it sub-
stantially difers from already implemented mobility
systems, such that mode choice changes can be expected
when introduced. Te novelty of a system is, therefore,
relative and depends on the context: a system can already
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exist somewhere in the world but can be new for a specifc
area if its implementation difers from the implementation
in other areas. For example, a metro system can be con-
sidered a new mobility system in one city, encouraging
people to start using the metro instead of cars, whereas
increasing the metro frequency of an already existing metro
system in another city leads to a stronger competitive po-
sition and a (further) modal shift to the metro system in that
city and is not considered a new mobility system. Another
example is introducing shared bikes in an area where there is
no local public transportation, allowing for last-mile trips,
and enabling new public transport trips and tours. In this
paper, a new mobility system is defned as follows: new
mobility systems add value, such that mode choice changes
signifcantly compared to already existing, implemented
mobility systems in the researched area.

Introducing newmobility systemsmight lead to a change
in accessibility (e.g., changing travel times and congestion),
and this, in turn, can lead to a change in land use and
activities. A conceptual model to describe this development
has been proposed (see Figure 1). Te model structures the
dominant relationships found in the literature and is an
adaptation of the LUT feedback cycle from Wegener [8].
New mobility systems are placed in the centre of the con-
ceptual framework to represent the main source of efects on
mode choice. When a new mobility system is deployed, the
available transport options change, which can change mode
choice behaviour (e.g., people use shared AVs instead of
buses, trams, and metros) and thus modal split. A change in
mode choice indicates improved accessibility (e.g., due to the
high use of shared AVs, the average travel time decreases). If
accessibility improves, urban areas might become more
attractive (e.g., more people might move there) and be used
more intensively in the long term as well, which will again
put pressure on the transport systems and might evoke the
need for new improvements. Note that this study focuses on
the orange part of the conceptual framework and that the
grey part is outside the scope.

Analyzing how mode choice behaviour could change
when new mobility systems become available is challenging
since potential users are not familiar with such systems yet.
Mode choice is determined by numerous attributes that can
roughly be separated into three categories: mobility system
(e.g., costs), personal (e.g., age, gender, and income), and trip
(e.g., origin and destination locations, trip purpose, and
precipitation) attributes. Traditionally, attributes such as
transport cost and transport speed are used to describe
mobility systems. Additional attributes, such as type of
ownership (e.g., buying, leasing), protection against weather,
space for luggage, and availability in time, play a role in
describing mobility systems as well [7]. New mobility sys-
tems can change the values of already identifed attributes,
but they can also introduce new attributes and, therefore, be
described by appending and/or replacing attributes (e.g., car
availability instead of car ownership) [9].

A way to avoid introducing implicit preferences towards
existing modes when describing existing (and future) modes
is to not use any mode-specifc constants and parameters
[10, 11]. Quandt and Baumal developed the so-called

unlabelled mode modelling approach, in which mode choice
is assumed to be explained only by attributes such as speed,
frequency of service, comfort, and cost [10]. Teir model
does not include a mode-specifc constant related to the
perceived (partly unexplained) overall utility of a mode. Te
model describes a mode by merely looking at the type of
service that travellers get for an unlabelledmode (e.g., “mode
A” instead of labelling the mode as “a car”, thereby avoiding
the implicit inclusion of unidentifed “car” attributes).
Quandt and Baumal’s exploratory study considers diferent
modes of choice situations, which are characterized by
diferent combinations of attributes such as speed, frequency
of service, comfort, and cost. Teir approach aims to expose
the “true” trade-ofs made by travellers between the attri-
bute’s levels. Te unlabelled mode modelling approach has
been applied in several papers. DeSalvo and Hug imple-
mented Quandt and Baumal’s approach to analyze the mode
choice of existing modes and urban household behaviour by
considering costs, commuting time, speed, and distance [12].
Malalgoda and Lim used a similar approach to research the
use of existing public transit in the U.S. by considering the
variables passenger miles, unlinked passenger trips, vehicle
hours, operating employees, fuel, fare, income, and pop-
ulation [13]. Malalgoda and Lim used this approach because
of its ability to consider continuous modes and, therefore,
fnd mathematical optimums.

Based on the literature review, we expect that unlabelled
mode modelling can be particularly useful to expose
tradeofs based on objectifable attributes to travellers,
allowing them to make choices between existing and non-
existing modes for which the mode-specifc constant cannot
be known, such that the future modal split can be estimated.
An important requirement for leaving out mode-specifc
constants and parameters is the availability of a complete
and coherent set of attributes that can represent both
existing and new mobility modes, and the assumption that
travellers’ valuation of the modes’ attributes will not change
when a new mobility system is introduced.

Tis paper demonstrates how revealed preference data
and discrete choice models without mode-specifc constants

Mode choice

New mobility
systems

Land use

ActivitiesAccessibility

Mobility system
attributes

Personal
attributes

Trip
attributes

Figure 1: Dominant relationships of the efects of new mobility
systems on mode choice. Adaptation from Wegener [7].
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and parameters can be used to give insight into how new
mobility systems could change mode choice. Tis method is
demonstrated by calculating the future modal split of shared
autonomous vehicles and electric steps. To the authors’
knowledge, this is the frst time that the future modal split of
shared autonomous vehicles and electric steps using revealed
preference data of existing modes is calculated. It also
identifes knowledge gaps and possible pathways for future
research on theories and methods to assess the impact of
new mobility systems on mode choice.

2. Literature

A common practice to model the way people choose their
transport mode is to use discrete choice models using a
generalized utility function covering mobility system attri-
butes and personal attributes [14], as shown in the following
equation:

Uij � αij + 􏽘
nk

k�1
βijkχjk + εij, (1)

where α �mobility system and person-specifc constant; β
� estimated parameter; χ �mobility system attributes; i

� persons (or clusters); j �mobility system; k �mobility
system attributes; nk � number of mobility system attri-
butes; and ε � error-term (excluding the mobility system
constant α).

Understanding the generalized utility of new mobility
systems is of vital importance to understanding how new
mobility systems afect mode choice. For instance, a mul-
titude of studies use nested logit models to model mode
choice in the context of automated driving [15, 16], shared
driving [17–21], and multimodal trips [22, 23]. Tese studies
all make assumptions about mobility system-specifc pa-
rameters (e.g., time is often valued diferently in an auto-
mated car than in a conventional car) and mobility system-
specifc constants, which are used to capture efects that
cannot be explained by the used mobility system attributes
(e.g., a car has a higher level of status compared to taking the
bus). Tese mode-specifc constants can only be calibrated
when using data for modes in which choice data is available,
so they cannot be used when aiming to predict the modal
share of new mobility systems. Te multinomial logit model
assumes that the attributes of all alternatives are orthogonal
(no correlation between attributes). If this does not hold,
then the so-called “red/blue box paradox” occurs when two
alternatives are too similar, which leads to an overestimation
of those alternatives. To overcome this overestimation, other
types of discrete choice models, such as a nested logit model,
can be used [24]. Tis introduces other model-specifc
scaling parameters that need to be estimated and (manually)
estimated when adding a new mobility system. For a nested
logit model, one scaling parameter to defne to what extent
the alternatives within a nest have independence from ir-
relevant alternatives (IIA) outside of the said nest needs to be
defned [24]. Tis parameter is based on the similarity be-
tween the attributes of two alternatives and defnes to what
extent the nest behaves as a nest or as two alternatives (as in a

multinomial logit model). Te similarity between all attri-
butes of the two alternatives can be defned by taking the
normalized multidimensional distance between the two
alternatives [25]. Te similarity is defned as 1 minus the
multidimensional distance. Subsequently, the mode with the
highest similarity to the future mode and the future mode
are put in one nest in a nested logit model. Te following
formula is given as follows:

Dist �
􏽐

nk
k�1 χnorm,1 − χnorm,2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

nk
, (2)

where Dist � normalized multidimensional distance; k

�mobility system attributes; nk � number of mobility
system attributes; and χnorm,i � normalized mobility system
attribute.

To create overlapping nests when alternatives do not ft
in one nest in the nested logit model, a cross-nestedmodel or
a paired combinatorial logit model can be used. For a cross-
nested logit, between two and the number of alternative
scaling parameters that need to be estimated [24, 26, 27],
which becomes complex quickly. When using a paired
combinatorial logit model, 1 + 2∗number of alternatives
(including future alternatives) and their scaling parameters
need to be estimated, which comes down to 13 scaling
parameters in the case of fve existing alternatives and is
computationally extremely difcult without preference data
about the future mobility system [27]. Te mobility system-
specifc parameters and constants and model-specifc scaling
parameters are ideally estimated using stated or revealed
preference data. Tis is, however, challenging for new
mobility systems, as explained in the next section.

Empirical research uses large-scale stated and revealed
preference surveys to estimate the relevant parameters for
modelling mode choice. Stated preference research can help
to understand mode choice, but it can be challenging to
determine how results from stated preference studies
translate to the real world. Tis is because stated preference
research is, by defnition, based on a representation of re-
ality, where certain (unknown) attributes are not taken into
account in the research [28, 29]. Instead, revealed preference
research helps to understand how people make choices in
the real world, but it can only test how existing mobility
systems are used. Revealed preference research helps to fnd
out how and when people start to use new mobility systems,
such that the change in mode choice and travel behaviour
that can be analyzed is limited [28]. Although studies often
try to analyze mode choice using pilots with sometimes
limited implementations, they already give insight into how
a new mobility system might be used in the real world
[30, 31].

Stated and revealed preference research can be combined
to analyze how new mobility systems might be used. Ex-
trapolating revealed preferences (read: values of mobility
system-specifc constants and parameters) to a new set of
mobility systems with a new (unused) alternative and,
subsequently, normalizing these results using stated pref-
erence research is a way to combine stated and revealed
preference research [29, 32]. Tis approach, however,
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includes implicit preferences by including values of mobility
system-specifc constants and parameters of the analyzed
mobility systems to model mode choice, so when extrapo-
lating this to new mobility systems, assumptions about
implicit preferences are also carried over and infuence the
predicted modal split of the newly added mobility system.

3. Methodology

Tis paper frst describes the way a utility function of a
discrete choice model without mode-specifc constants and
parameters can be estimated on the basis of revealed pref-
erence data from OViN 2017 [33]. Te paper then dem-
onstrates that the modal split of a subset of current systems
can be estimated on the basis of that function. Te paper
subsequently demonstrates how this approach can be used to
estimate the modal share of additional (also new) modes,
insofar as the main choice-determining characteristics of
such a mode can already be experienced in current transport
systems.

For the revealed preference dataset, it is assumed that all
attributes are orthogonal (no correlation between attri-
butes). Furthermore, since generalized utility functions are
used without mobility system-specifc parameters or con-
stants, it must be assumed that people are familiar with all
mobility systems and that initial familiarization and adop-
tion have occurred. Terefore, we assume that, if a future
new transport system can be described as a combination of
already known transport system characteristics, we can
calculate its mode choice and modal share.

Two studies demonstrating the method are performed to
estimate the potential modal split of new mobility systems
with (1) synthetic data and (2) revealed preference data. Te
algorithm below describes all the steps involved in using
revealed preference data. Te algorithm is the same for
synthetic data, except for the frst step of importing the
dataset, which has been generated (Algorithm 1).

3.1. Synthetic Data. To demonstrate the method, synthetic
data with a utility function with two main attributes is
created. First, a utility function (see equation (3)) is defned
to create a training (80%) and test (20%) dataset with 5
modes. All permutations of age, income, and distance are
used to create the datasets and defne the cost and time of
each mode (see Tables 1 and 2), with 147,460 entries. After
the training dataset is inserted into Biogeme [34], Biogeme
estimates the two parameters ((βtime, βcost)) using a logit
model where the probability of a certain mode choice is
calculated (see equation (4), [34]). Subsequently, the pa-
rameters can be flled in the utility function to calculate the
modal split using the test dataset. Tis calculated modal split
with 5 modes can be compared to the training dataset. Tis
comparison can be conducted by looking at how well the
mode choices of the original synthetic dataset match the
mode choices in the test set using rho-squared (see equation
(5), [34]) and modal split, where it is expected that the
performance of both indicators is (almost) perfect due to the
synthetic nature of the data. Now, the attributes of a future

mode can be added when calculating the modal split using
the test dataset because the utility function is the same for
each mode and the parameters are already estimated. When
flling in the utility function for a future mode, the modal
split including this future mode can be calculated. To verify
this method and check if the code is behaving as expected,
the calculated modal split based on the test dataset with 6
modes can be compared with the modal split of the syn-
thetically generated test dataset with 6 modes.

Uij � βtime ∗ agei ∗ timej + βcost ∗
200.000
incomei

∗ costj, (3)

where β � parameters; i � persons; and j �mobility system.

3.2. Revealed Data. A study demonstrating the method is
performed to estimate the potential modal split of new
mobility systems with revealed preference data, enriched
with precipitation by TNO from OViN [33]. Tis labelled
dataset was restructured to add 9 more mode attributes (see
Table 3). Te labelled dataset contains 75,043 entries with 11
personal attributes, 9 trip attributes, and 11 mode attributes,
including 5 modes (car, carpool, transit (BTM), bicycle, and
walk) and the mode choice for each entry. Tis dataset is
shufed and separated into a training (80% of entries) and a
test (20% of entries) dataset. It was decided that a minimum
acceptable performance (e.g., minimum rho-squared or
accuracy) for the discrete choice model was to be defned by
inserting the dataset into a latent class analysis (so without
alternative specifc constants or parameters). Tis was car-
ried out to benchmark the minimum (and added) accuracy
of a discrete choicemodel compared to a latent class analysis.
Any performance lower than a latent class analysis was
assumed to indicate that more “information was still em-
bedded in the dataset that could predict mode choice.”

Next, a k-means cluster analysis is performed to take into
account personal and trip attributes by grouping similar
entries into one cluster [35]. Tis dataset is fed to a mul-
tinomial logit model where the probability of a certain mode
choice is calculated (see equation (3)) in Biogeme [34] using
a predefned utility function with mode attributes from the
dataset (see equation (1), where the mobility and person-
specifc constants are equal to 0) with randomized initial
values of the parameters between −0.5 and 0.5. Note that this
is performed for each cluster. In this way, personal and trip
attributes (read: dummy variables) do not need to be in-
cluded in the generalized utility function since similar at-
tributes are already clustered [36].

Subsequently, the modal split of the 5 modes can be
calculated by flling in the parameters of the utility function
to calculate the modal split of the test dataset. Rho-squared
(see equation (4)), precision (see equation (5)), recall (see
equation 6), f1-score (see equation (7)), and accuracy (see
equation (8)) were used to analyze the performance of the
estimation.

Eij �
e

Uij

􏽐
nk
k�1e

Uik
, (4)
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where U � generalized utility; i � persons; and j �mobility
system; nk � number of mobility system; k �mobility
system.

ρ2 � 1 −
L
∗

L
i
, (5)

where L∗ � fnal log-likelihood; and Li � initial log-
likelihood.

Precision �
TP

TP + FP
, (6)

where TP �True positive; and FP � False positive.

Recall �
TP

TP + FN
, (7)

where TP �True positive; and FN � False negative.

f1 score � 2∗
precision∗ recall
precision + recall

, (8)

Accuracy �
TN + TP

TN + FP + TP + FN
, (9)

where; TP �True positive; TN �True negative; FP � False
positive; and FN � False negative.

Te modal split of the 5 modes is also calculated with an
alternative-specifc constant to see whether the performance
changes and whether the approach without an alternative-
specifc constant is appropriate. Note that the rho-squared
and the calculated modal split are based on the log-likeli-
hood of a certain choice (the outcome of equation (3)),

whereas precision, recall, f1-score, and accuracy do not
consider the probability of a choice but merely the choice
with the highest “generalized random utility.”Tis calls for a
thorough analysis and interpretation of eachmetric since the
comparison of metrics is not trivial (e.g., accuracy cannot be
compared with rho-squared).

When using a nested logit, the similarity between each
mode and the future mode is calculated by normalizing the
values of all attributes and calculating the so-called multi-
dimensional distance between each mode (see equation (2),
[25]). Te distance between two modes for cost and time is
calculated by taking the normalized squared diference, and
for all other attributes, the absolute normalized diference is
taken.Ten, this value is divided by the number of attributes
to determine the multidimensional distance. Te similarity
is defned as 1 minus the multidimensional distance. Sub-
sequently, the mode with the highest similarity to the future
mode and the future mode are put in one nest in a nested
logit model.

Subsequently, a new mobility system is added, and the
modal split of this mobility system is calculated using the
same utility function and parameters as the estimated dis-
crete choice model without the new mobility system. Te
values of the attributes of the new mobility system are varied
within reasonable ranges (see Table 4) to fnd the ranges of
the modal split when a new mobility system is introduced.
Tis is to account for uncertainties and see which attributes
of new mobility systems will afect the modal split.

4. Results

To defne theminimum acceptable performance as described
in the previous section, a latent class analysis was performed
in R using the mclust package. Te latent class analysis used
the full dataset to estimate mode choice. Te accuracy was
0.41, and the Brier score was 0.53.Tis will serve as a baseline
to compare the accuracy of the discrete choice model. Note
that the accuracy is based on the fnal mode choice without

Initialize
(1) Import full OViN dataset
(2) Perform latent class analysis to defne a “minimum performance benchmark”
(3) Defne clusters based on personal and trip attributes using k-means and elbow function in the full dataset
(4) Retrieve train (80%) and test (20%) dataset
(5) Defne general utility function

Estimate current modal split (with and without alternative-specifc constant)
(6) Estimate parameters of the utility function of a discrete choice model with 5 modes per cluster using the train dataset
(7) Calculate the modal split of 5 modes per cluster in the test dataset
(8) Compare calculated modal split with recorded modal split in the full test dataset

Estimate future modal split
(9) Defne the attributes of future mode, incl. variations of ± 20% for sensitivity analysis (SA)
(10) Calculate the similarity of all modes and the future mode to estimate the scaling parameter in a nest (only for nested logit), see

equation (2)
(11) Calculate modal split ranges (SA) of 6 modes per cluster in the test dataset using results of the modal split of step 6 (without

alternative-specifc constant)
(12) Create a Sankey diagram (excl. variations of ± 20%)

ALGORITHM 1: Estimate future modal split using revealed preference data.

Table 1: Synthetic dataset person and trip attributes.

Attribute Range
Age (year) 18–90, steps of 1
Income (€/year) 10.000–200.000, steps of 10.000
Distance (km) 0.5–100.5, steps of 1

Journal of Advanced Transportation 5



taking into account probabilities (i.e., variations in indi-
vidual choice behaviour), but can serve as a basis to compare
performance.

In mode choice research, a wide range (0.20–1.00) of
rho-squared (see equation (4)) seems to be acceptable as a
result [37–39]. Using the standard in the feld and the
fndings of the latent class analyses, it was decided that in this
research, a rho-squared of 0.60 or higher and an accuracy of
at least 0.45 will serve as the minimum performance
requirements.

Te results of the synthetic data are shown in Table 5.Te
estimation of the parameters in Biogeme resulted in a rho-
squared of 0.998. As can be observed, the calculated modal
split (columns 3 and 4) is the same as the modal split in the
dataset (columns 1 and 2). Te accuracy of the calculated
modal split with 6 modes is 1.000. Terefore, it can be
concluded that estimating future modal splits can work with
a synthetic dataset.

Te estimation of the parameters with a utility function
without alternative specifc constants and two parameters
scaling the utility of cost and time in Biogeme using Python
resulted in a rho-squared of 0.265. Since this rho-squared is
considered too low, all mode attributes and the personal
information of having a driving license in the dataset have
been added as input as well, increasing the total number of
parameters to 12.Tis resulted in a rho-squared of 0.540 and
an accuracy of 0.663. To account for socioeconomic and trip-
specifc attributes without complicating the utility function
by adding dummy variables and enhancing accuracy [36], 6
clusters were identifed based on personal and trip attributes.
Tis was carried out using a k-means clustering algorithm
and the elbow method to determine the optimal number of
clusters [40]. Tree out of 6 clusters were based on trip
purpose (business, home, and work).Te three other clusters
had a trip purpose of “other,” where one cluster only

contained trips with people that do not own a car and the
other two clusters contained trips with people that own a car.
Tese two fnal clusters were diferentiated by the infor-
mation that people are or are not the main car users.

Estimating the parameters of the utility function for each
cluster resulted in a rho-squared of 0.828 and an overall
accuracy of 0.758 (see Table 6). It can be observed that the
performance metrics in Table 6 for modes with a larger
modal split (i.e., car, cycle, and walk) are higher compared to
modes with a smaller modal split (i.e., carpool and transit).
Moreover, it can be observed that the total macro average f1-
score is lower than the total weighted average f1-score,
indicating the discrete choice model is optimized more for
modes that have a larger modal split in the dataset. Note that
the modal split in Table 7 is based on probabilities that a
mode was chosen, and that the metrics in Table 6 are based
on the fnal mode choice with the highest utility.

Table 2: Synthetic dataset mobility system attributes.

Attribute Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Future∗

Average speed (km/hour) 60 50 40 30 20 25
Cost (€) Distance/2 Distance/4 Distance/8 Distance/16 0 Distance/32
Time (hour) Distance/average speed

Table 3: Mode attributes based on OViN [33] and assumptions.

Mode attribute Source and determination
Cost (€) Car, transit, cycle, and walk from data; carpool� costs of car/2
Time (min) Car, carpool, transit, cycle, and walk from data
Driving task (−) Car, cycle� 1; carpool, transit, and walk� 0
Skills (−) (i.e., drivers
license) Car� 1; carpool, transit, cycle, and walk� 0

Weather protection (−) Car, carpool, and transit� 1; cycle, walk� 0
Luggage (−) Car, carpool� 1; transit� 0.5; cycle, walk� 0
Shared (−) Car, carpool, transit, cycle, and walk from data

Availability (−) Car� 1; carpool� 0.1; transit� urban density origin (from 1 to 5)∗ urban density destination (from 1 to 5)/25;
cycle� 1, walk� 1

Reservation (−) Car, carpool, cycle, and walk� 1; transit� 0
Active (−) Car, carpool, and transit� 0; cycle, walk� 1
Accessible (−) Carpool, transit� 1; car, cycle, and walk� 0

Table 4: Ranges of mode attributes of new mobility systems.

Mode attribute Range

Cost (€) (0, 4, 8, 12, 16, 20)
(0.05, 0.15, 0.25)∗ distance (km)

Time (min) Distance (km)/(10, 20, 40, 60, 80,
100)/60

Driving task (−) (0, 1)
Skills (−) (i.e., drivers
license) (0, 1)

Weather protection (−) (0, 1)
Luggage (−) (0, 1)
Shared (−) (0, 1)
Availability (−) (0, 0.5, 1)
Reservation (−) (0, 1)
Active (−) (0, 1)
Accessible (−) (0, 1)

6 Journal of Advanced Transportation



Tis study also demonstrates that the exclusion of an
alternative specifc constant in the utility function leads to a
comparable result using the current 5 modes. Using a utility
function with 12 parameters and 1 alternative specifc
constant (with the alternative specifc constant of the car set
to 0) leads to a rho-squared of 0.823 and an overall accuracy
of 0.740; this is similar to the performance without an al-
ternative specifc constant. It should be noted that the values
of the alternative specifc constants vary between −1.57 and
1.27. Because of the similar performance between the dis-
crete choice models with and without alternative specifc
constants, it was concluded that the efect of an alternative
specifc constant in this case, even including the mentioned
outliers, is negligible, and therefore we can use the results
without the alternative specifc constant to calculate the
future modal split.

Before estimating the future modal split with a multi-
nomial logit model, the so-called “red/blue bus paradox” is
tested by adding each mode as a future mode and subse-
quently calculating the total modal split for each mode (see
Table 7). Te largest diference is observed for the mode
“cycling” (7.5 percentage point diference). A nested logit
model is also estimated to overcome the “red/blue bus
paradox.” Te modal shares of each model can be compared
with each other to see whether the attributes of the modes
are orthogonal, and a nested logit is needed to calculate the
future modal split.

Te estimation of these parameters is used to calculate
the future modal split by calculating the modal split of each
permutation of a future mode according to Table 4. Te
modal split of future modes ranges between 4.7% and 88%,
with an average modal split of 45%. Tis means that by
varying all attributes, a wide range of modal splits is found,
which is to be expected since all possible combinations are
included. From these results, one can fnd the modal split for
any future mode by defning the attributes of this mode.

In this paper, two example future modes were defned to
demonstrate the consequences of using a multinomial logit
and a nested logit model. Te frst one is a shared auton-
omous car, and the second one is a rented electric step; their
properties are defned in Table 8. Estimating the mode
choices and modal split in the setting with the additional
modes results in modal shares of 24% for the shared au-
tonomous car and 37% for the electric step when using the
multinomial logit model. When applying a nested logit
model, frst the nests are determined by taking the highest
similarity index of an existing mode compared to both of the
future modes (see Table 9). Tis resulted in putting the
future mode-shared autonomous car in one nest with the
carpool and the electric step in the same nest with the cycle.
Application of the thus defned nested logit model resulted
in an estimated modal share of 15% for the shared auton-
omous car and 33% for the electric step. Sensitivity analyses
are performed to get a better understanding of how robust
the calculated modal splits are. Te sensitivity analysis is
performed by varying all mode attributes that can be varied
by ±20%. Te results can be found in Tables 10 and 11.
Sankey diagrams (see Figure 2) visualize how people’s mode
choice changes from the currently available modes and the

future available modes using the standard values (i.e., not the
varied mode attributes of the sensitivity analysis) for the
nested logit model.

5. Discussion

Tis study presents an approach for calculating the mode
choice and modal split of new transport modes in a future
situation in which such modes are well established using a
discrete choice model without alternative specifc constants,
whose parameters are estimated based on revealed prefer-
ence data. Tis study uses the examples of an electric step
and a shared autonomous car to explore this method. First,
the accuracy of this method is discussed.Ten, it is discussed
if a multinomial logit or nested logit model can better
calculate the modal share of a future mode by taking into
account the so-called “red/blue bus paradox.” Finally, some
assumptions and computational challenges are scrutinized.

As expected, the accuracy is higher (0.76) for the fnal
estimation with 12 parameters and 6 user clusters than when
performing the latent class analysis (0.41). For currently
known modes, it is demonstrated that using an alternative
specifc constant in the utility function does not produce
signifcantly diferent results than our approach. Terefore,
it can be concluded that the unlabelled mode choice
modelling approach is valid for this dataset.

When applying the estimated utility logit function to
predict future mode choice, it can be observed that the future
modal shares of the new modes seem to be relatively high
when using a multinomial logit model. Tis could be an
overestimation caused by a violation of the IIA assumption,
i.e., some modes in the model are regarded as being com-
pletely diferent while in fact there are partially overlapping
characteristics. Due to its formulation, the model tends to
overestimate the mode choice of such overlapping modes.

Table 6: Results modal split estimation OViN data for 6 clusters.

Mode Precision Recall f1-score
Car 0.670 0.971 0.792
Carpool 0.492 0.321 0.369
Transit 0.934 0.232 0.358
Cycle 0.857 0.691 0.728
Walk 0.898 0.944 0.917
Total macro average 0.708 0.514 0.533
Total weighted average 0.756 0.758 0.716
Overall accuracy 0.758

Table 5: Results synthetic data.

Mode
Modal split synthetic

dataset Calculated modal split

5 modes (%) 6 modes (%) 5 modes (%) 6 modes (%)
Mode 1 3.6 3.6 5.6 5.6
Mode 2 46 46 43 43
Mode 3 37 37 36 36
Mode 4 8.3 5.6 9.4 9.0
Mode 5 5.2 3.8 5.7 3.2
Future — 4.1 — 3.2
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Table 7: Results modal split double mode (“red/blue bus paradox”).

Original (%) Car 2x (%) Carpool 2x (%) Transit 2x (%) Cycle 2x (%) Walk 2x (%)
Car 33 40 30 32 30 33
Carpool 14 11 20 13 12 13
Transit 4.9 4.0 4.4 7.8 3.9 4.8
Cycle 30 27 28 29 37 29
Walk 18 18 18 18 18 19
Max. diference between
original and 2x 6.7 6.4 2.8 7.5 1.3

Table 8: Attributes shared by autonomous cars and electric steps are listed with sensitivity analysis values between square brackets based on
a 20% variation of all mode attributes.

Mode attribute Shared autonomous car Electric step
Cost (€) 0.05 (0.04 0.045 0.05 0.055 0.06) per km 4 (3.20 3.60 4.00 4.40 4.80)
Time (min) Distance (km)/60 (48 54 60 66 72) (km/hr)/60 Distance (km)/10 (8 9 10 11 12) (km/hr)/60
Driving task (−) 0 1
Skills (−) (i.e., drivers license) 0 0
Weather protection (−) 1 0
Luggage (−) 1 0
Shared (−) 0 0
Availability (−) 0.5 (0.4 0.45 0.5 0.55 0.6) 1 (0.8 0.9 1)
Reservation (−) 1 0
Active (−) 0 1
Accessible (−) 1 0

Table 9: Similarity index for each mode compared to the future mode.

Future Car Carpool Transit Cycle Walk
Shared autonomous car 0.62 0.82 0.66 0.48 0.52
Electric step 0.49 0.22 0.35 0.88 0.75

Table 10: Calculated modal split electric step with sensitivity analysis ranges between brackets based on a 20% variation of all mode
attributes.

Mode Current modal split (%)
Future modal split

MNL (%) NL (in nest with bicycle) (%)
Car 33 20 (17–20) 24 (20–24)
Carpool 14 9.5 (8.8–9.5) 9.7 (8.9–9.7)
Transit 4.9 2.1 (1.8–2.1) 2.4 (2.0–2.4)
Cycle 30 19 (17–19) 18 (16–18)
Walk 18 13 (12–13) 14 (13–14)
Shared electric step — 37 (37–44) 33 (33–40)

Table 11: Calculated modal split for a shared autonomous car with sensitivity analysis ranges between brackets based on a 20% variation of
all mode attributes.

Mode Current modal split (%)
Future modal split

MNL (%) NL (in nest with carpool) (%)
Car 33 25 (22–25) 31 (29–31)
Carpool 14 10 (9.5–10) 9.0 (8.8–9.0)
Transit 4.9 3.6 (3.3–3.6) 4.1 (3.9–4.1)
Cycle 30 23 (21–23) 25 (23–25)
Walk 18 15 (14–15) 16 (15–16)
Shared autonomous car — 24 (24–30) 15 (15–20)
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Te overestimation when using “double modes” is quite
substantial, up to 7.5 percentage points in the multinomial
logit model with this dataset.

To overcome the similarity issue, a nested logit was also
implemented. Using that approach, the future modal shares
seem to be more modest, with up to 9 and 4 percentage
points lower modal splits for shared autonomous cars and
electric steps, respectively.Te nest in this nested logit model
consists of the future mode and the most similar existing
mode, which are determined by calculating the multidi-
mensional distance of each pair of modes [25]. Knowing
from the “red/blue bus paradox” that an overestimation of
the future modal split occurs when using a multinomial logit
model, it can be concluded that the nested logit is the
preferred discrete choice model in this case.

What should be noted as well is that the attributes
(values) that can be derived from empirical data from the
current mobility systems do not necessarily properly rep-
resent the attributes for future systems (e.g., what exactly is
shared) and that new attributes might become signifcant
that are not currently measured (e.g., the fear of autonomous
driving). Moreover, preferences are changing over time; one
example would be the changing trend that people start
leasing more cars instead of owning them. Tis should be
taken into account when interpreting these results, ex-
trapolating them to other modes, or changing traveller
preferences.

Calculating the future modal splits using all of the
presented combinations (41,472) requires a lot of calcula-
tions and can take a lot of computation time (up to 7 days)
on a MacBook Pro with a 2,4 GHz Quad-Core Intel Core i5
and 8GB of RAM. For the presented future modes, fewer
combinations (up to 125) are tested, and the computation
times remain relatively limited (up to 30 minutes). To use
this approach in workshops with policymakers or stake-
holders, it is recommended to implement a Monte Carlo
estimation instead of a test set to reduce the computation
time even more. To achieve this, the distribution of variables
(i.e., personal, trip, and future mode attributes) in the
training set needs to be determined to create the input for the
Monte Carlo simulation.

6. Conclusions and Future Research

Tis study successfully explores an approach for calculating
the mode choice andmodal split of new transport modes in a
future situation when such modes are well established. Tis
is achieved by calculating the modal split of two future
modes (shared autonomous car and electric step). Tis is
carried out by estimating a multinomial logit model and a
nested logit model without alternative specifc constants and
parameters, such that this utility function can be used to
calculate the modal split of a future mode. Note that the
main characteristics determining the choice of future
transport modes are already experienced in current trans-
port systems. Tis study demonstrates that using a utility
function without any alternative specifc constants or pa-
rameters resulted in a rho-squared of 0.828 and an overall
accuracy of 0.758 when using clusters to group similar
people and similar trips. Te approach is applied to a dataset
based on empirical data (OVIN [33]) with 5 existing modes
and 2 future modes, where each future mode is analyzed
separately.

When predicting themodal split of a future mode using a
multinomial logit model, it might be concluded that an
overestimation of the future modal split occurs due to the
partial similarities between diferent transport modes. For
this reason, this study also implemented a nested logit
model, which can solve this challenge and be generalized by
automatically nesting the future mode in a nest with the
“most similar” existing mode. It can be concluded that a
nested logit model is better suited for estimating the po-
tential modal split of a future mode than a multinomial logit
model.

Mixed logit models can overcome the methodological
shortcomings (assumption of IIA, unobserved preferences,
and individual preferences over time) of both MNL and NL.
Te main aim of this study is to demonstrate that revealed
data preferences can be used to calculate the potential modal
share of a future mode using a discrete choice model without
an alternative-specifc constant. Te distributions for each
mode attribute coefcient would need to be assumed in
order to cope with the open-form expression of a mixed
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Figure 2: Sankey diagrams of current mode choice (a) and future mode choice (b) on each diagram for the nested logit model. (a) Electric
step; (b) a shared autonomous car.
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logit. Future studies can extend this approach by comparing
a mixed logit model with the multinomial and nested logit
models.

Further exploration can be carried out with other types
of discrete choice models (e.g., cross-nested logit, paired
combinatorial logit) to get a better grasp on the calculation
of the modal split of future modes. Te main challenge with
modelling these more detailed discrete choice models is that
multiple scaling parameters need to be simultaneously es-
timated for the future mode, for which there is no revealed
preference data available.

As demonstrated in this study, diferent future modes
can be analyzed based on their attributes alone. Tis also
means this approach has a practical application in policy-
making. Specifcally, subsidies and tax reductions can be
analyzed for existing and future modes by reducing, e.g., the
value of the cost attribute for future autonomous cars, in-
creasing the cost for conventional cars, or calculating the
needed capacities for (new) modes and their infrastructure.
Several combinations of policies and available modes can be
analyzed and combined into multiple scenarios to help
policymakers make efective policies.

And lastly, it is recommended to connect this modal split
model to a trafc assignment model to see how the second-
and third-order aspects change (e.g., activities, accessibility,
and land use).

Data Availability

Te used OViN 2017 dataset with trips in the Netherlands
can be requested for free at https://easy.dans.knaw.nl/ui/
datasets/id/easy-dataset:103498.Te data source can be cited
as the Centraal Bureau voor de Statistiek (CBS); Rijkswa-
terstaat (RWS) (2017): Onderzoek Verplaatsingen in
Nederland 2017—OViN 2017. DANS. https://doi.org/10.
17026/dans-xxt-9d28.
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