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Summary

The design of 2D rectangular steel trusses demands a critical balance between structural performance
and constructability, a core challenge in civil engineering. Using distinct cross-sectional profiles mini-
mizes material use but elevates structural complexity, whereas standardized profiles facilitate construc-
tion simplicity at the cost of efficiency. This thesis develops a multi-objective optimization framework
to navigate these trade-offs, targeting four essential objectives: mass minimization to reduce material
requirements, connection degree to simplify joint configurations, symmetry to enhance aesthetics and
standardization, and beam continuity to streamline assembly processes. By controlling the number of
unique HEA profiles, the study delivers tailored solutions for preliminary structural design, aligning with
engineering priorities and stakeholder preferences to optimize truss performance and practicality.

A computational framework employs the Tree-structured Parzen Estimator (TPE), a sample-efficient
Bayesian optimization method, to efficiently explore the complex, discrete design space of truss config-
urations. TPE performance is rigorously validated against exhaustive search (EXS) to ensure accuracy
in identifying optimal designs. Stakeholder-defined weights, implemented through weighted scalar-
ization, enable customized trade-off analyses, though without direct stakeholder engagement. This
approach supports the exploration of diverse configurations, effectively balancing performance and
standardization while addressing the computational demands of large search spaces, thus providing a
robust tool for 2D truss optimization.

The findings indicate that intermediate profile grouping often produces designs that balance structural
performance and constructability. The multi-parallel plot, a dynamic visualization tool, potentially em-
powers stakeholders, including engineers and project managers to transparently explore trade-offs,
pending practical validation. Despite limitations, such as untuned TPE hyperparameters and a focus
on 2D trusses, this promising framework enhances transparency and adaptability in preliminary struc-
tural design. By integrating efficient optimization with intuitive visualization, the study establishes a
foundation for future advancements in steel truss optimization, offering a versatile methodology with
potential to inform broader structural engineering applications.
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1
Introduction

Steel trusses are critical in civil engineering for their load-bearing efficiency in structures such as bridges
and buildings, nevertheless their design demands a balance between constructability and performance.
The construction of steel truss buildings poses a persistent challenge for engineers, requiring the mini-
mization of design complexity while ensuring structural performance.

Following the principle of commonality [49], assigning unique cross-sectional profiles to each truss
member minimizes material use but increases fabrication and construction costs. This principle as-
serts that fewer distinct profiles reduce costs through bulk discounts, simplified fabrication, and fewer
unique connections, although overdesign may increase material use [49]. In contrast, grouping ele-
ments to share profiles improves buildability by reducing profile diversity [5]. Figure 1.1 illustrates this
trade-off, comparing a standardized truss where every members sharing a standard HEA profile with
a unique configuration where almost every member has different profiles for a structurally determinate
2D rectangular steel truss.

(a) Standardization - Example design: every member has a
standard profile.

(b) Uniqueness - Example design: almost every member has
a different profile.

Figure 1.1: Comparison between examples of Standardized VS Unique Truss Configuration

Traditionally, grouping of truss members is done manually based on expert judgment, where engineers
select a limited number of profile types to reduce diversity. However, this manual approach often
leaves many alternatives unevaluated due to time constraints. Recent advancements in algorithmic
design and computational tools have enabled structural engineers to explore complex trade-offs more
rigorously, facilitating the identification of optimal solutions for individual truss members. In this line,
research has demonstrated how automated search procedures and grouping strategies can reduce
structural diversity while retaining standardization performance [27] [48]. However, these approaches
may depend on thorough analyses or heuristics, which might not be able to scale effectively or apply
generally across design challenges, because thorough analyses can be computationally intensive for
large-scale structures, while heuristics may not generalize well across diverse design scenarios.

This thesis explores the function of grouping in truss optimization employing a multi-objective method
in order to address the existing gap [38]. The study investigates how various grouping layouts, each
characterized by a set number of allowed profile types (n), affect structural behavior over numerous
performance objectives. It also takes into account how the solution space changes when the priority of
these goals varies, which resembles the case when structural complexity objectives such as symmetry

1
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or connection degree comes first rather than structural mass [6]. To tackle these challenges, this thesis
focuses on balancing conflicting goals of minimizing structural complexity and maximizing standard-
ization while seeking efficiency through customized truss configurations, with the specific optimization
methodology to be detailed in later chapters.

To support this goal, the research is highly relevant to stakeholders, including structural engineers,
constructors, and clients, whose influence critically shapes construction project outcomes by balancing
design efficiency with practical constraints such as cost, constructability, and safety [33]. It provides
a systematic framework for truss design optimization, empowering stakeholders to make informed de-
cisions that enhance structural performance and economic viability. By leveraging advanced compu-
tational tools for multi-objective optimization, this work enables stakeholders to collaboratively explore
diverse design alternatives, addressing their unique priorities and fostering effective decision-making
in complex construction environments.

1.1. Research questions
This thesis primarily investigates the optimization of grouping strategies using a 9-element, structurally
determinate 2D rectangular steel truss as the benchmark model, with results for three additional truss
topologies (Typology 1,2,3) detailed in Appendix A. The analysis optimizes grouping strategies bal-
ancing conflicting objectives: mass, symmetry, connection degree, and beam continuity via different
optimization algorithms. The research is guided by the following main research question:

Towhat extent can grouping strategies in steel truss structures be optimized to balancemultiple,
often conflicting objectives, there by enabling stakeholders to make informed and transparent
design decisions?

This question drives the development of a multi-objective optimization framework that integrates stake-
holder preferences to balance performance objectives. The focus is on creating transparent solutions
for the steel truss, enabling stakeholders to evaluate trade-offs between constructability and efficiency.
To address this main research question, the following sub-questions are investigated:

RQ1: How do grouping configurations with a fixed number of allowed HEA profiles (n) affect
structural mass, symmetry, connection complexity, and beam continuity?

This sub-question explores how varying the number of allowed HEA profiles (n) impacts key perfor-
mance objectives in the operated steel truss. By analyzing grouping configurations, the study aims
to quantify their effects on structural metrics, balancing standardization with reduced complexity, as
inspired by the principle of commonality [49].

RQ2: What trade-offs emerge between standardization (e.g. symmetry) and uniqueness (e.g.
mass) when different objectives are prioritized?

This sub-question investigates how prioritizing objectives, for instance symmetry over mass, shapes de-
sign trade-offs in the operated steel truss. The goal is to provide insights into balancing standardization
for constructability, while informing stakeholder decision-making.

RQ3: In which core aspects of steel truss optimization does the Tree-structured Parzen Estima-
tor (TPE) offer advantages over simple heuristics, metaheuristics like NSGA-II, and exhaustive
search for identifying high-quality groupings in single and multi-objective scenarios?

This sub-question examines the core aspects where the Tree-structured Parzen Estimator (TPE) offers
advantages over simple heuristics like RandomSampler, metaheuristics like NSGA-II, and Exhaustive
Search (EXS) for operated steel truss optimization. The focus is on assessing TPE computational
efficiency, scalability, and suitability for discrete single and multi-objective optimization, compared to
the inefficiencies of simple heuristics, the limitations of other metaheuristics, and the reliability but
computational infeasibility of exhaustive search [35].

RQ4: In what ways can stakeholder-defined weights, reflecting their objectives or design pref-
erences, influence the resulting optimal truss layouts?

This sub-question investigates the influence of stakeholder-defined weights on the optimization of de-
signs for the operated steel truss in various scenarios. It examines whether stakeholders own specific
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design preferences or necessitate adaptable solutions, hence strengthening the framework’s adaptabil-
ity.

RQ5: In what ways can visual or computational tools enhance the interpretability of optimized
truss designs and assist in navigating complex trade-off spaces?

This sub-question investigates the effectiveness of parallel coordinates plots for visualizing trade-offs
in optimized designs of the operated steel truss. The aim is to develop intuitive tools that facilitate
stakeholder decision-making, prioritizing parallel coordinates plots for their clarity over alternatives like
spider diagrams.

1.2. Contributions and objectives
This thesis addresses structural optimization by introducing a novel framework for grouping-based de-
sign of a structurally determined 2D rectangular steel truss, addressing trade-offs between standard-
ization and performance, the main contributions are:

• A multi-objective optimization framework leveraging TPE and Exhaustive Search to target mass,
symmetry, connection degree, and beam continuity, ensuring efficient and constructable designs
for rectangular steel truss configurations.

• A grouping-based modeling approach that controls the number of unique HEA profiles, reducing
fabrication complexity while maintaining structural performance.

• A comparative analysis of Exhaustive Search and TPE benchmark trusses designs, demonstrat-
ing their effectiveness in single and multi-objective scenarios,

• A stakeholder-driven weighting system that adapts truss designs to diverse preferences, navigat-
ing complex trade-off spaces.

1.3. Thesis organization
This thesis is structured as follows: Chapter 2 (Preliminaries) provides foundational knowledge on truss
modeling, addressing mass, connectivity degree, symmetry, and beam continuity, thereby delineating
the essential concepts relevant to classification techniques and vital structural objectives. Chapter 3
(Literature Review), presents a critical analysis of prior research on structural optimization by element
grouping. It examines relevant algorithms, multi-objective optimization methodologies, and modern de-
velopments in balancing structural complexity with performance. Chapter 4 (Methodology) explains the
logic of truss generation, parameterization, objective metric definitions, the role of stakeholder-defined
weights and the implementation for the Exhaustive Search (EXS) and Tree-structured Parzen Estima-
tor (TPE). Chapter 5 (Experimental Setup and Validation), outlines the experimental design, detailing
the truss benchmark model, simulation environment, and optimization configurations. The framework
facilitates the comparison of various optimization techniques in both single and multi-objective contexts,
incorporating validation through exhaustive search. Chapter 6 (Results and Discussion) reports find-
ings on grouping impacts and optimization performance, supported by visualizations, and addresses
the research questions listed in Chapter 1. This assesses the impact of grouping level and stakeholder
preference vectors on structural metrics. Chapter 7 (Limitations and Future Work) delineates frame-
work’s limitations and proposes future research, addressing implementation challenges, and prospects
for expanding the work to more extensive design settings. Chapter 8 (Conclusion) is summarizing
the principal contributions and outcomes of the research. It examines the practical ramifications of
grouping-based truss optimization and the function of multi-objective techniques in facilitating informed
stakeholder-driven truss design choices.



2
Preliminaries

2.1. Introduction to steel truss systems
Steel truss systems are fundamental structural components in civil engineering, known for their high
strength-to-weight ratio, ease of prefabrication, and material efficiency [12]. These systems consist of
interconnected triangles, typically made of steel, which distribute loads efficiently across the structure.
Widely utilized in bridges, buildings, and load-bearing structures, steel trusses are regulated by stan-
dards such as Eurocode [21]. Thus, their geometric precision and mechanical consistency could make
them particularly suitable for analyzing and testing optimization and parametric modeling, especially in
computational design processes.

This study focuses on rectangular steel trusses, chosen for their significance in wide-reange applica-
tions and adaptability to computational optimization techniques. The rectangular configuration provides
balanced load distribution and usually is representative of modular pedestrian and light vehicle bridges.
The relevance of steel truss systems lies in their ability to span large distances with minimal material,
perhaps making them cost-effective and environmentally friendly [30]. Their modular nature facilitates
standardization and industrialization in construction, aligning with modern engineering practices em-
phasizing sustainability and efficiency [6] [19].

2.1.1. Characteristics of rectangular steel trusses
Rectangular steel trusses are widely used in applications such as construction projects due to their
simplicity and efficient load distribution. Their consistent geometry makes them ideal for benchmark
comparisons in optimization studies. This study employs a 9-element reference truss as the benchmark
problem, consisting of vertical, diagonal, and horizontal members, as illustrated in Subfigure 2.1a. Each
member is made of S355 structural steel, a widely used grade in Europe due to its balance of strength
and ductility, as specified in Eurocode [21].

To isolate axial behavior and simplify modeling, the trusses are idealized as planar and braced out-
of-plane, with all joints considered pinned, forming a statically determinate structure. Under these
assumptions, the structural response is driven solely by axial forces (tension or compression) without
internal moments [4]. A uniformly distributed load applied over the top section of the truss is assumed
to act directly at the nodes for computational simplicity, ensuring only axial forces are considered [23].
Additionally, three truss topologies (Topology 1,2,3) are modeled to verify optimization findings under
different configurations and loading conditions, as depicted in Figure G.5. Neverhteless, the 9-element
benchmark truss remains the primary framework for all visualizations and optimization results in this
thesis.
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2.2. Element grouping in structural design 5

(a) Benchmark truss: 9-elements truss (b) Typology 2: 9-elements truss

(c) Typology 1: 17-elements truss (d) Typology 3: 17-elements truss

Figure 2.1: Overview of the four truss typologies opeated in this study, illustrating variations in the number of elements (k).

2.1.2. Selection of HEA profiles for optimization
Throughout this study the HEA profiles are selected due to their symmetry, moderate flange width,
and standardized dimensions, which are particularly advantageous for truss grouping methodologies.
These attributes may facilitate easier connection and standardization in truss design, reducing the com-
plexity and cost associated with using a variety of profile types [38]. The symmetrical shape ensures
uniform load distribution, while moderate flange widths allow for efficient bolted or welded connec-
tions, and standardized dimensions align with common manufacturing processes [19]. HEA profiles
are widely used in Europe and comply with Eurocode [21] standards, ensuring their suitability for struc-
tural optimization in steel trusses.

For the primary testing in this thesis, the 9-element benchmark truss employs a set of five distinct HEA
sections: HEA100, HEA120, HEA140, HEA180, and HEA220, while other examples within the study
engage different profiles. This profile range is chosen for the benchmark to maintain compatibility
with design software and production processes while ensuring computational manageability. While
larger HEA profiles (e.g., HEA300 and above) are typically used for longer spans or heavier loads in
practical applications, such as large bridges or industrial structures, the selection of smaller profiles
for the benchmark truss is intentional. The 9-element rectangular truss benchmark is designed to
allow comprehensive exploration of optimization techniques without the computational burden of larger
structures. This choice enables the focus to remain on the optimization methodology and the trade-offs
between different objectives, rather than on absolute structural dimensions.

In truss design, where axial forces dominate, the axial stiffness and cross-sectional area of the profiles
are critical performance metrics [29]. These properties directly influence the structural mass and the
Unity Check (UC), ensuring that the design is both efficient and safe [2]. The use of HEA profiles
allows for a balance between material efficiency and structural performance, making them ideal for
this optimization study. While prior research has explored the dynamic properties of trusses with HEA
profiles, such as modal behavior [15], this thesis narrows its scope by excluding these aspects, instead
concentrating on objectives potentially most commonly prioritized by typical stakeholder groups, with
a focus on structural efficiency.

2.2. Element grouping in structural design
Element grouping is a critical strategy in optimizing steel trusses, balancing structural simplicity with
performance. Grouping involves assigning identical cross-sections to sets of truss elements, reducing
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the number of unique profiles used. This approach lowers fabrication and assembly costs, enhances
constructability, and improves design efficiency [49].

In practice, structural engineers often manually group truss members based on their functional roles
or load conditions. For instance, top chord members, typically under compression, may share one
cross-section, while bottom chord members, usually in tension, use another. Web members, such as
verticals and diagonals, may be grouped separately, with diagonals sometimes distinguished by ten-
sion or compression states. This manual grouping might have a substantial potential to simplify the
design and fabrication while maintaining reasonable structural efficiency [49]. Nonetheless, identifying
an optimal balance between full standardization and complete member uniqueness poses a non-trivial
challenge, particularly in high-dimensional design spaces. This trade-off underscores the need for a for-
malized optimization framework capable of systematically navigating the design space and evaluating
competing objectives, as addressed in this thesis.

2.2.1. Standardization and uniqueness
As followed from Figure 1.1 standardized truss configurations assign the same cross-section to all truss
elements, minimizing component variety, conversely, unique truss configurations tailor a specific cross-
section to each element, optimizing material use based on individual load and boundary conditions.

Standardized truss configurations often lead to overdesign, where elements are sized for the most
critical member’s forces, resulting in larger sections than necessary for others. This ensures the truss
can handle worst-case loads but may waste materials. In contrast, unique truss configurations allow
precise sizing, achieving utilization ratios (UC) near optimal levels (e.g., UC ≈ 0.85 – 1.0). However,
they increase manufacturing and assembly complexity [23]. Moreover, unique truss configurations with
varied member sections might complicate connection design, raising engineering and fabrication costs
due to custom detailing [45]. In contrast standardized truss configurations may enable standardized
connections, which are more cost-effective to design and produce [42].

2.2.2. Trade-offs in grouped member design
Standardized truss configurations aim to balance performance, manufacturability, and simplicity. Stud-
ies indicate that groupingmembers with similar load demands canmaintain efficiency [49]. For example,
in trusses with symmetric loading, members like bottom chords or diagonals may experience compa-
rable axial forces, allowing effective grouping without significant efficiency losses. However, factors
like truss shape, boundary conditions, and load asymmetry can limit grouping effectiveness. In trusses
with irregular geometries or non-uniform loading, members that appear similar may face different forces,
making efficient grouping challenging without compromising performance [23].

Research shows that structural mass, symmetry, and connection complexity vary with group numbers,
with optimal designs often at intermediate levels, balancing the extremes of fully standardized and fully
unique configurations [49]. Later sections will treat group count as a decision variable, namely the
(n) the allowed number of HEA profiles, influenced by stakeholder preferences (e.g.,constructability,
mass) and optimization constraints such as limits on unique profiles and prioritization of specific design
requirements.



3
Literature review

3.1. Grouping strategies for steel structures
Grouping strategies in steel structures aim to reduce the number of unique cross-sectional profiles,
enhancing constructability while maintaining structural performance. These strategies assign identi-
cal profiles to sets of elements, minimizing fabrication complexity and aligning with practical design
constraints [48]. Recent literature highlights advances in automated grouping methods, driven by com-
putational tools and optimization algorithms, which offer efficient alternatives to manual grouping [16].

3.1.1. Review of grouping literature
Early grouping methods relied on manual assignment based on engineering intuition, often grouping
elements by load type (e.g., tension vs. compression members) or structural role (e.g., chords vs. di-
agonals) [46]. Such approaches, while practical, frequently led to overdesign, increasing material use.
Advances in computational design have introduced automated grouping techniques, such as combina-
torial search algorithms that optimize profile assignments while limiting diversity [49]. For instance, [48]
proposed a fully stressed design approach, iteratively grouping elements to minimize weight and pro-
file variety, achieving results comparable to complex optimization methods with fewer computational
resources.

Recent studies have explored penalty-based grouping to balance structural efficiency and constructabil-
ity. Following [16] damped exponential penalties to limit profile transitions are introduced, demonstrat-
ing improved designs for truss beams. Similarly, [40] developed multi-objective grouping for 3D steel
frames, incorporating column symmetry and bracing configurations to reduce fabrication costs. These
advances highlight the shift toward data-driven, automated grouping, leveraging tools like Grasshopper
and Karamba3D to evaluate thousands of different structural configurations [10].

3.1.2. Practical constraints in grouping
Grouping strategies must account for practical constraints, including manufacturing limitations, cost
implications, and stakeholder preferences [6]. Fabrication facilities often impose restrictions on the
number of unique profiles due to inventory and machining constraints, necessitating fewer profile types
to reduce costs [23]. Complex joints, resulting from high profile diversity, increase welding or bolting
expenses and assembly time, particularly for prefabricated structures [16]. Stakeholder requirements,
such as aesthetic symmetry or modular transportability, further constrain grouping, as seen in designs
prioritizing uniform chords for visual harmony [40]. For example, [31] emphasized the importance of
aligning grouping with industrialized construction workflows to enhance modularity and reduce on-site
adjustments. This discrete nature of profile selection, combined with the need to balance multiple ob-
jectives like mass, symmetry, and connection simplicity, poses significant computational challenges.
Efficient optimization methods are required to navigate large, discrete search spaces while incorporat-
ing stakeholder-driven weights to reflect preferences for constructability or aesthetics [32]. Bayesian
optimization, particularly the Tree-structured Parzen Estimator (TPE), is well-suited for such tasks due
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to its ability to model probabilistic relationships in discrete spaces and adapt to weighted multi-objective
functions, offering a promising approach for truss optimization [37].

3.2. Optimization methods for discrete structural problems
Structural optimization in civil engineering involves selecting optimal designs from a set of alternatives
to meet criteria such as minimizing material use or enhancing constructability [12]. Discrete problems,
such as assigning cross-sectional HEA profiles to steel truss elements, require methods that balance
multiple objectives, including potential balance of parameters like mass, symmetry, connection degree,
and beam continuity [48]. This section reviews five optimization methods implemented in Optuna [35],
a hyperparameter optimization framework: the fundamental approach of exhaustive search (EXS), the
heuristic method of random sampling (Random-Sampler), and three metaheuristic approaches Non-
dominated Sorting Genetic Algorithm II (NSGA-II), Covariance Matrix Adaptation Evolution Strategy
(CMA-ES), and Tree-structured Parzen Estimator (TPE). Heuristics employ simple, problem-specific
rules to find satisfactory solutions, while metaheuristics use iterative, guided strategies to explore com-
plex search spaces [25]. Among these, TPE is a Bayesian metaheuristic that models the probability
distribution of high-performing configurations, offering efficiency in discrete spaces [7]. These methods
are evaluated for the 9-element truss benchmark in this study, emphasizing TPE algorithm effective-
ness for weighted scalarization of objectives in contrast with alternative optimization algorithms.

3.2.1. Exhaustive search: foundational approach
Exhaustive search, implemented as the BruteForceSampler (EXS) [35], systematically evaluates every
possible configuration in a discrete design space to identify the global optimum [20]. In structural
engineering, it is applied to tasks like selecting truss element profiles to minimize objectives such as
mass while meeting structural requirements [49]. Its core strength is guaranteeing the global optimum,
serving as a benchmark to validate scalable methods like TPE in this thesis [24].

The computational complexity of EXS grows exponentially with the number of elements (k) and profiles
(n), yielding (nk) configurations and resulting in an extremely rapid expansion of the search space that
renders it computationally infeasible for large-scale problems [9]. Nevertheless, exhaustive search is
valuable for smaller problems where resources allow comprehensive exploration, offering transparency
that assures stakeholders of solution optimality [44]. In this thesis,exhaustive search is operated for
verification of the effectiveness of scalable optimization.

3.2.2. Heuristics
In optimization, heuristics represent a category of algorithms designed to tackle complex problems by
prioritizing efficiency over exhaustive computation. Unlike exact methods that systematically explore
the entire search space to guarantee an optimal solution, heuristics employ practical, problem-specific
strategies to quickly identify satisfactory solutions, often at the expense of optimality. This trade-off
makes them particularly valuable in engineering contexts, such as steel structures optimization, where
computational resources and time are constrained [32]. Among heuristic approaches, the Random-
Sampler stands out for its straightforward implementation [9].

Random-Sampler
The Random-Sampler, implemented in Optuna [35], is a heuristic method that randomly selects config-
urations from the discrete design space without employing learning or adaptation mechanisms [7]. In
truss optimization, Random-Sampler assigns HEA profiles to elements, evaluating objectives such as
mass while ensuring structural constraints, such as (UC ≤ 1) [49].

Nevertheless, Random-Sampler lack of guided exploration leads to inefficient sampling, particularly
in high-dimensional spaces. The probability of identifying near-optimal configurations decreases ex-
ponentially with the number of elements (k) and profiles (n), often requiring an unbounded number
of trials to approach optimality. This inefficiency contrasts with TPE model-based approach, which
leverages Bayesian optimization to prioritize promising configurations [7] [35]. In this thesis, Random-
Sampler serves as a baseline to evaluate the effectiveness of more sophisticated methods like TPE for
the 9-element truss benchmark, highlighting the need for guided search strategies in complex discrete
optimization tasks.
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3.2.3. Metaheuristics
Metaheuristics are iterative, guided optimization strategies designed to explore complex search spaces
and find near-optimal solutions without guaranteeing global optimality [20]. Unlike heuristics, which
rely on simple, problem-specific rules, metaheuristics employ structured mechanisms to balance ex-
ploration and exploitation, making them suitable for high-dimensional, discrete problems such as steel
truss optimization [37]. This section evaluates three metaheuristic algorithms implemented in Optuna
[35]: Non-dominated Sorting Genetic Algorithm II (NSGA-II), Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) and Tree-structured Parzen Estimator (TPE). These are assessed for their abil-
ity to optimize problems similar to the 9-element truss benchmark, while balancing mass, symmetry,
connection degree, and beam continuity with TPE emphasized for its Bayesian efficiency[8].

NSGA-II (NSGAIISampler)
The Non-dominated Sorting Genetic Algorithm II (NSGA-II), implemented as NSGAIISampler in Op-
tuna [35], is a population-based metaheuristic inspired by natural selection. It evolves a set of solu-
tions through selection, crossover, and mutation, excelling in multi-objective optimization by generat-
ing Pareto fronts via non-dominated sorting and crowding distance [9]. NSGA-II supports categorical
parameters, such as HEA profile assignments, and typically requires high trial budgets (100 – 10,000)
to converge [35]. In structural engineering, it has been applied to problems like dike geometry optimiza-
tion, balancing cost and stability [24].

However, NSGA-II struggles with topologically driven objectives like symmetry or connection degree,
as genetic encodings may fail to capture spatial dependencies in truss design [48]. Small changes in
encoding can lead to significant structural variations, slowing convergence [11]. Its stochastic nature
demands extensive parameter tuning, and high trial budgets increase computational costs [17]. In this
thesis, NSGA-II’s limitations with discrete, topological objectives make it less suitable than TPE for the
9-element truss benchmark [11].

CMA-ES (CmaEsSampler)
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES), implemented as CmaEsSampler in
Optuna [35], is an evolutionary metaheuristic that adapts a multivariate normal distribution to sample
promising configurations. It excels in continuous optimization but supports categorical parameters
through encoding, making it applicable to truss profile assignments [31]. CMA-ES typically requires
trial budgets of (1,000 – 10,000), reflecting its iterative adaptation of the covariance matrix to focus on
high-performing regions [35].

CMA-ES has been used for enignnering optimization, often balancing conflicting objectives [22], how-
ever, CMA-ES high trial requirements and focus on continuous spaces make it less efficient for discrete,
topological objectives like connection degree or symmetry. Its encoding for categorical variables can in-
troduce complexity, and convergence may be slower for the benchmark model’s discrete search space
[34]. In this thesis, CMA-ES is considered a robust alternative but is outperformed by TPE lower trial
needs and pruning capabilities [35].

TPE (TPESampler)
The Tree-structured Parzen Estimator (TPE), implemented as TPESampler in Optuna [35], is a Bayesian
metaheuristic that models the probability distribution of high-performing configurations using kernel den-
sity estimators [7]. Follwoing [36], TPE splits past trials into good and poor performing groups, sampling
new configurations to maximize expected improvement as represented in Equation 4.8. It supports cat-
egorical parameters, pruning of unpromising trials, and low trial budgets (100 – 1,000), making it highly
efficient for discrete spaces [35]. In truss optimization, TPE handles mixed objectives (e.g., mass, sym-
metry, connection degree) by modeling hierarchical constraints, such as profile assignments dependent
on spatial constraints [8].

Compared to NSGA-II and CMA-ES, TPE converges faster due to its probabilistic sampling and pruning,
requiring fewer evaluations for the 9-element truss 1.95million configurations [47]. Its implementation in
Optuna, with settings like 100 startup trials and seed=42, ensures reproducibility and efficiency (Section
4.5.2). TPE ability to handle weighted scalarization aligns with stakeholder preferences, making it the
primary optimizer in this research, validated against EXS for superior performance in discrete, non-
smooth landscapes [49].
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3.2.4. Comparison of optimization methods and selection
This section evaluates five optimization algorithms: Exhaustive Search (EXS), Random-Sampler, Non-
dominated Sorting Genetic Algorithm II (NSGA-II), Covariance Matrix Adaptation Evolution Strategy
(CMA-ES), and Tree-structured Parzen Estimator (TPE), implemented within the Optuna framework
[35]. The evaluation examines their suitability for optimizing a benchmark 9-element steel truss, which
involves assigning HEA profiles to minimize objectives, including structural mass, symmetry, connec-
tion degree, and beam continuity, while satisfying constraints such as unity check threshold (UC ≤ 1).

To facilitate a systematic comparison, Table 3.2 consolidates the characteristics of the methods dis-
cussed in Sections 3.2.1 to 3.2.3, focusing on support for categorical parameters, pruning capabilities,
multi-objective optimization potential, constraint handling mechanisms, and recommended trial bud-
gets.

Table 3.1: Qualitative Comparison of Optimization Methods

Method Categorical Parameters Pruning Multi-Objective Constraint Handling Recommended Ntrials

Exhaustive Search Yes No No Direct All possible
Random-Sampler Yes No No Via objective function High (>10,000)
NSGA-II Yes No Yes Via genetic mechanisms 100–10,000
CMA-ES Via encoding No No Via penalty functions 1,000–10,000
TPE Yes Yes Via scalarization Via objective function 100–1,000

Table 3.2: Qualitative Comparison of Optimization Methods. Note: “Categorical Parameters” indicates direct support for
discrete HEA profile assignments. “Pruning” denotes the ability to terminate unpromising trials early. “Multi-Objective” reflects

support for multiple objectives, though the study employs weighted scalarization. “Constraint Handling” specifies the
mechanism for enforcing UC ≤ 1. “Recommended Ntrials” indicates the trial budgets suggested by Optuna’s sampler

documentation [35].

The following analysis details eachmethod’s performance, highlighting their strengths and limitations for
the truss optimization problem. EXS ensures global optimality but is computationally infeasible for large
search spaces [9]. Random-Sampler provides simplicity but lacks efficiency due to unguided sampling
[20]. NSGA-II excels in multi-objective optimization but faces challenges with topological objectives,
such as symmetry [11] [49]. CMA-ES, designed for continuous optimization, is less effective for discrete
problems [31]. TPE offers superior efficiency through categorical parameter support, pruning, and
reduced trial requirements, making it well-suited for the scalarized objective function used in this study
[7] [47].

Exhaustive Search (EXS):

EXS, implemented as BruteForceSampler, evaluates all possible configurations , guaranteeing global
optimality with exponential time complexity proportional to (nk) [9]. It supports categorical parameters
and directly enforces constraints but lacks pruning capabilities, rendering it suitable only as a validation
benchmark rather than a practical optimization tool [48].

Random-Sampler

Random-Sampler employs random configuration sampling, supporting categorical parameters and
managing constraints through objective function penalties [8]. Its lack of guided exploration necessi-
tates high trial budgets (>10,000), reducing efficiency in high-dimensional search spaces [35]. It serves
as a baseline for comparison.

NSGA-II (NSGAIISampler):

NSGA-II, implemented as NSGAIISampler, excels in multi-objective optimization by generating Pareto
fronts, supporting categorical parameters, and handling constraints via genetic mechanisms [11] [17].
Its requirement for 100 – 10,000 trials and difficulties with topological objectives, such as symmetry,
limit its efficiency for the scalarized objective function used in this study [35].

CMA-ES (CmaEsSampler):

CMA-ES, implemented as CmaEsSampler, is optimized for continuous spaces, supporting categorical
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parameters through encoding and constraints via penalty functions [34]. Its demand for (1,000 – 10,000)
trials and the complexity introduced by encoding reduce its suitability for discrete truss optimization [35].

TPE (TPESampler):

TPE, implemented as TPESampler, leverages Bayesian optimization with kernel density estimators,
supporting categorical parameters, pruning unpromising trials, and handling constraints through objec-
tive function penalties [7] [36]. It converges efficiently within (100 – 1,000) trials (Section 5.3) , aligning
with the scalarized objective function and stakeholder preferences [47].

The Tree-structured Parzen Estimator (TPE) is designated as the primary optimization algorithm for
this study based on its superior performance in addressing the requirements of discrete, constrained
structural optimization for the benchmark 9-element truss. This selection is justified by the following
attributes:

• Direct support for categorical parameters, enabling efficient HEA profile assignments.
• Pruning capability, which minimizes computational costs for expensive structural evaluations.
• Low trial budget requirement, enhancing efficiency compared to NSGA-II and CMA-ES.
• Compatibility with weighted scalarization, facilitating alignment with stakeholder requirments.

3.3. Benchmarking and validation in optimization studies
Structural engineers typically evaluate optimization algorithms using a range of performance metrics
that extend beyond the quality of the final solution. These include convergence speed, the accuracy
of achieved objective values, diversity across solution sets, and computational efficiency. Collectively,
these indicators help assess whether an algorithm is practically viable and reliable for solving real-
world design problems. Such metrics are standard in the evaluation of multi-objective optimization
frameworks and frequently used in comparative studies [47]. An often endorsed method for algorithm
validation is to use an exhaustive search on small-scale problems as a benchmark for accuracy. Such
an approach allows researchers to measure how closely heuristic or surrogate-based methods ap-
proximate known optima. Studies by [15] have found that using exhaustive enumeration is useful for
assessing how effectively algorithms like genetic algorithms and Bayesian methods perform in specific
design areas. The transition from brute-force techniques to probabilistic optimizers, such as the Tree-
structured Parzen Estimator (TPE), necessitates benchmarking due to randomness and conditional
sampling in stochastic algorithms. In the absence of ground truth validation or performance curves,
algorithm TPE outputs might show an absence of interpretability or statistical robustness [9].

Several studies [17] [28] were operating benchmarking with tools like convergence plots, averaging
results from several runs, and comparing performance indicators. These practices improve the credi-
bility of findings and provide insights into solution stability and algorithm sensitivity to hyperparameter
settings. Performance plots showing the best objective value over trials, for instance, are a standard
approach to evaluating convergence behavior.

This research uses an exhaustive search for small-scale, single-objective instances to evaluate the
advanced algorithm. A complete enumeration of all viable design variants was generated utilizing a
9-element steel truss benchmark structure featuring a set of five distinct HEA profile types. The optimal
solution identified by exhaustive search served as the baseline for evaluating the TPE performance re-
garding convergence rate, optimization of objectives, and similarity of truss configurations. This base-
line technique prioritizes repeatability, interpretability, and method-specific performance diagnostics
while complying with the highest standards in structural optimization.

3.4. Research gap
The literature reviewed in the previous sections reveals several unresolved challenges and blind spots
in the application of optimization algorithms to structural engineering problems, particularly in the do-
main of steel truss design. These can be broadly categorized into academic research gaps andmethod-
ological shortcomings.

Despite the growing prominence of Bayesian optimization techniques, their application in civil engi-
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neering contexts - especially in steel frame or truss design - remains limited. While studies such as [7]
[47] have shown the robustness of the Tree-structured Parzen Estimator (TPE) in complex objective
landscapes, its adoption in engineering community has lagged behind more conventional heuristics
[20]. Similarly, the multi-objective frameworks used in most prior works tend to group objectives of
similar structural nature typically continuous, scalarized metrics like weight or deflection. Few studies
engage with structurally diverse objectives that span both quantitative and topological concerns, such
as symmetry or connection degree [27].

While grouping strategies have been explored in automated design tools [46], these often exclude prac-
tical constraints such as connection complexity or continuity in beam layouts. Additionally, most litera-
ture does not incorporate stakeholder-informed weighting schemes when balancing design objectives.
Instead, uniform weights or a posteriori Pareto ranking are often assumed, limiting the interpretability
and real-world applicability of results [48].

Multi-objective optimisation has substantially benefited from genetic algorithms, particularly NSGA-II.
Their performance decreases when addressing goals reliant on layout or logical grouping: symmetry,
connection quantity, or member continuity. Research by [28] and [49] emphasizes that while effective
for continuous problems, these algorithms show insensitivity to topologically structured objectives due
to encoding constraints and stochastic search mechanisms. Moreover, benchmarking is frequently
conducted on the basis of single performance metrics or convergence speed alone. The use of ex-
haustive search as a validation tool in civil engineering is limited to only a few papers, as noted by
[50], despite its importance in verifying the optimality of results in tractable problem instances. Further-
more, statistical robustness, such as averaging over multiple runs to ensure reliable performance, is
rarely emphasized, as highlighted by [31] which undermines the trustworthiness of results in stochastic
approaches like Bayesian optimization or genetic algorithms.

Building on these identified gaps, this study proposes a tailored optimization framework based on the
Tree-structured Parzen Estimator (TPE) to address the challenges inherent in grouping-based truss de-
sign. It introduces a method that accounts for both structural performance and constructability, guided
by stakeholder informed weighting.



4
Methodology

4.1. General workflow
This thesis utilizes a systematic methodology, starting with the creation and structural analysis of 2D
truss models in Grasshopper software [41], proceeding through the quantification of performance ob-
jectives, and concluding with the implementation of optimization algorithms to determine optimal truss
configurations. This methodology focuses primarily on a parametric model developed in the Grasshop-
per environment, utilizing the Karamba3D structural analysis plugin. This model simulates the structural
behavior of steel trusses subjected to uniform loading conditions and provides element-specific perfor-
mance indicators, including the Unity Check (UC) values, which are essential for evaluating structural
safety.

For more detailed analysis and optimization, outputs from Grasshopper are converted into structured
Excel spreadsheets, which function as inputs for a Python-based parametric model. This secondary
model manages the definition and equilibrium of multiple design objectives and employs both exhaus-
tive search and Tree-structured Parzen Estimator (TPE) techniques for optimization. A detailed work-
flow is illustrated in Figure 4.1, indicating the progression from structural modeling to optimization and
result validation.

Figure 4.1: General workflow illustrating the methodology employed in optimizing steel truss grouping
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4.2. Truss model generation and parameterization
The structural system analyzed is a two-dimensional rectangular steel truss, consisting of nine mem-
bers and subjected to a uniformly distributed load 24 kN/m, as specified in the Grasshopper setup
(Figure B.1). The truss was modeled using Grasshopper, a visual programming plugin for Rhino [41],
enabling the allocation of HEA steel profiles to each element. The structural boundary conditions were
established to inhibit global translational and rotational movements at the supports, with pinned joints
assumed for all connections, ensuring a statically determinate structure. While lateral bracing was pre-
sumed to prevent buckling from being the governing factor, hence allowing to focus primarily under
axial force circumstances (tension and compression) without considering bending moments.

The internal force of each element was estimated using Karamba3D [14], a finite element analysis (FEA)
plugin integrated into Grasshopper, which computes axial forces and evaluates structural performance.
Unity Check (UC) values were determined as the ratio of internal normal force to design resistance of
each element, ensuring compliance (UC ≤ 1) threshold. The (UC) assessment presumes a consistent
profile assignment across all elements in each iteration, hence streamlining computation and facilitating
scalability analysis across various profile combinations.

The structural behavior is influenced by the distribution of profile sizes, however, the optimization model
permits mixed-profile configurations by using (UC) values initially derived from single-profile assess-
ments. This introduces a key assumption: although changes in individual element profiles would affect
internal force distribution, in reality the optimization phase treats (UC) values as fixed inputs to ensure
low computational effort. This simplification was essential to accommodate the computing requirements
of assessing a relative extensive design space, with a minimum of (n = 5) allowed HEA profiles across
(k = 9) elements, resulting in 59 turning approximately 1.95 million possible combinations.

The Grasshopper model, as shown in Figure B.1, allows for parametric adjustment of the truss geome-
try, including the truss length (12.00 m), number of bays (4 bays), pattern type (#4), truss depth (0.250
m), and applied load (uniformly distributed load of 24 kN/m). These parameters enable the exploration
of different rectangular truss typologies while maintaining a consistent structural framework. The geom-
etry setup feeds into the Karamba3D plugin, which defines the structural components - posts (columns),
chords (beams), diagonals, and support points, for finite element analysis (FEA) (Appendix B.1).

Figure 4.2: Grasshopper setup defining geometry and load input for parametric truss analysis, input into Karamba for
structural analysis.

Parallel to the geometry and load inputs, the Grasshopper model incorporates material and profile
definitions, as illustrated in Appendix B.2. The material is specified as S355 structural steel with a yield
stress of 355 MPa, commonly used in European structural applications due to its balance of strength
and ductility. Following from Appendix B.2, a set of five HEA profiles (HEA140, HEA160, HEA200,
HEA220, HEA240) are iterated (n = 5), allowing for a controlled exploration of profile assignments
across the truss elements. However, these profiles are not the main ones used for the benchmark
problem, which instead uses a different set of HEA profiles as defined in the experimental setup Chapter
5. These profiles are selected for their symmetry and standardized dimensions, facilitating bolted or
welded connections in practical applications [21].

The analysis results are visualized using the Colibri plugin within Grasshopper [43], as shown in Ap-
pendix B.3. Colibri enables the aggregation and iteration of design data across multiple configurations,
exporting results such as element IDs, node coordinates, (UC) values, and structural mass into CSV
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files, which are later converted into Excel sheets for further processing. This setup allows for the vi-
sualization of axial force distribution and deflection under various loading conditions, as followed from
Appendix A.1, which illustrates different trusses typologies’ deflection under uniformly distributed loads
with different magnitudes varying from 20 to 40 kN/m.

Subsequently, the data generated from Grasshopper was transferred into Excel sheets via the Colibri
plugin, specifying each element’s ID, associated nodes, node coordinates, (UC) values, and self-weight
(structural mass) represented in Chapter 5. This structured data format facilitated seamless integration
with the Python-based parametric optimization model, which uses the Tree-structured Parzen Estimator
(TPE) for multi-objective optimization.

4.3. Definition of optimization objectives
This thesis’s optimization approach is determined by four basic design objectives that combine struc-
tural performance and structural complexity — mass, degree of connection, symmetry, and beam con-
tinuity. The objectives were chosen based on literature review findings on structural optimization and
the practical aspects of modular construction, transportability, and assembly [42].

Each objective is calculated for a given truss configuration, conditional on the element grouping strategy
and profile assignments. The mass target is primarily established in engineering design, however the
complexity related objectives — connection degree, symmetry, and beam continuity — underscore the
requirement for more constructible and standardized solutions.

• Mass represents the aggregate self-weight of the structure and has a significant correlation with
environmental impact and material expenditure. Lightweight constructions are favored for their
sustainability and cost-effectiveness against heavyweight structures.

• Connection Degree measures the complexity of joints by measuring the number of unique pro-
files that intersect at each node. An increased degree of diversity within a node contributes to
greater complexity in both fabrication and assembly processes.

• Symmetry describes the degree to which the truss configuration is evenly mirrored along its
vertical axis. A symmetric layout is typically more straightforward to manufacture, visualize, and
assemble.

• Beam Continuity applies to the consistency of horizontal members. Configurations utilizing the
identical profile across successive horizontal segments are structurally and logistically advanta-
geous.

The following sub-sections provide a detailed discussion of each objective, including their quantification,
relevance, and balance through optimization [10].

4.3.1. Mass
Decreasing structural mass is a fundamental goal in most structural design challenges, as it directly
relates to material efficiency, environmental impact, and construction costs. In the context of steel truss
design, the total mass is the sum of the masses of all individual elements, determined by their length,
cross-sectional area, and material density.

From a sustainability perspective, mass minimization aligns with two key priorities in contemporary con-
struction: reducing embodied carbon and transportation costs [42]. Additionally, a lower self-weight re-
duces stress on supporting systems and foundations [21]. Despite its advantages, prioritizing volume
alone can lead to highly customized profile designs, which in turn complicate manufacturing and logis-
tics. Mass minimization is therefore considered one of several goals within a broader multi-objective
optimization framework.

In this study, the total structural mass is treated as a primary objective in the optimization process.
The parametric model uses predefined HEA steel profiles, each with a known weight per meter. The
mass of each structural member is determined by multiplying its length by the cross-sectional area and
material density. Lighter HEA profiles are typically favored during optimization, assuming they comply
with the structural constraints established by (UC).



4.3. Definition of optimization objectives 16

The mass objective function fM is defined as:

fM =

k∑
i=1

ρAiLi (4.1)

where:

• fM denotes the total structural mass [kg].
• k is the number of truss elements (in this study, k = 9).
• ρ is the material density of S355 structural steel kg/m³.
• Ai is the cross-sectional area [m2] of the HEA profile assigned to element i.
• Li is the length [m] of element i, extracted from the geometric definition of the truss.

This objective is minimized under the structural constraint:

UCi ≤ 1 ∀i ∈ {1, 2, . . . , k} (4.2)

where UCi is the unity check of element i, ensuring that all members remain within allowable stress
limits under loading conditions. Lighter profiles are generally favored during optimization, as long as
they satisfy this constraint.

To investigate the influence of design standardization, a parameter (n) is introduced to limit the number
of unique HEA profile types allowed in a given solution:

• For n = 1, all elements are constrained to share the same profile type (e.g., HEA180).
• For n = 5, up to five distinct profiles (e.g., HEA100 to HEA220) can be assigned, enabling more
refined sizing.

The impact of this design freedom on structural mass is illustrated in Figure 4.3, which presents a
step-by-step representation of the mass calculation procedure:

• Subfigures 4.3a and 4.3b depict a simplified single-element case for n = 1 and n = 5, respectively.
• Subfigures 4.3c and 4.3d extend the evaluation to the full truss, showing the cumulative mass
difference between uniform and diverse profile assignments.

(a) Mass calculation for a simplified single-element example
using one allowed HEA profile type (n = 1).

(b) Mass calculation for a simplified single-element example
using five allowed HEA profile types (n = 5).

(c) Mass calculation for the full truss using one allowed HEA
profile type (n = 1).

(d) Mass calculation for the full truss using five allowed HEA
profile types (n = 5).

Figure 4.3: Step-by-step representation of the Mass calculation procedure for n = 1 and n = 5, first applied to a simplified
single-element case and then to the full truss.

As evident in Figure 4.3, increasing number of allowed HEA profiles (n) generally leads to a more
mass-efficient layout. This formalized calculation process serves as a reference throughout the thesis,
with a more detailed elaboration on the mass calculation procedure provided in Appendix F. Next Mass
optimization results are analyzed in detail in Chapter 6.
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4.3.2. Connection Degree
Connection Degree quantifies the complexity of joint design bymeasuring the number of distinct profiles
converging at each node. In structural and fabrication terms, highly standardized joints where identical
or similar elements converge are easier and more cost-effective to assemble [45]. In contrast, joints
connecting a large number of dissimilar members tend to increase fabrication difficulty and introduce
geometric constraints. Specifically, varying HEA profile dimensions necessitate customized connection
details, such as tailored plates or adjusted weld configurations, which elevate fabrication costs and
complexity [1]. Besides, aligning dissimilar profiles to minimize nodding eccentricity is challenging,
often requiring reinforcement to ensure stable load transfer, further complicating joint design [16].

This structural complexity objective is computed using undirected graph theory [26], where each node
represents a connection and edges represent truss elements. This follows the classic vertex degree
formulation, where complexity increases with profile heterogeneity at a given node. The increased
manufacturing effort and detailed complexity result in penalties for nodes connecting truss components
of various profiles.

The truss is represented as an undirected graph G = (V,E), where the set of nodes V corresponds to
joints in the truss and the set of edges E corresponds to structural elements. Each edge connects two
vertices (nodes) and represents a single truss member.

Let d(vj) denote the degree of node vj , defined as the number of unique elements connected to node
vj . The Connection Degree objective function fCN is defined as:

fCN =

m∑
j=1

d(vj) (4.3)

where:

• fCN represents the total connection complexity.
• m is the number of nodes in the truss (here, m = 6).
• d(vj) is the number of edges (i.e., truss elements) incident to node vj .

This formulation captures the joint complexity rather than individual element characteristics. Higher
values of fCN indicate more connections across nodes, which may correspond to structurally denser
regions and more intricate fabrication challenges.

To evaluate the role of profile assignment on connection complexity, the parameter (n) is once again
introduced to control the number of distinct HEA profiles allowed in the design:

• For n = 1, profile types are consistent, and joints typically merge identical elements.
• For n = 5, element diversity increases, leading to more irregular node connectivity patterns.

The impact of this design freedom on connection complexity is illustrated in Figure 4.4, which presents
a step-by-step calculation of the Connection Degree objective:

• Subfigures 4.4a and 4.4b apply the procedure to a simplified single-element case with n = 1 and
n = 5, respectively.

• Subfigures 4.4d and 4.4d extend the procedure to the full truss. The total connection degree
rises from 6 (standardized configuration case) to 14 (unique configuration case), highlighting how
allowing more distinct profiles can increase node complexity.
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(a) Connection Degree calculation for a simplified
single-element example using one allowed HEA profile type

(n = 1).

(b) Connection Degree calculation for a simplified
single-element example using five allowed HEA profile types

(n = 5).

(c) Connection Degree calculation for the full truss using one
allowed HEA profile type (n = 1).

(d) Connection Degree calculation for the full truss using five
allowed HEA profile types (n = 5).

Figure 4.4: Step-by-step representation of the Connection Degree calculation procedure for n = 1 and n = 5, first applied to a
simplified single-element case and then to the full truss.

This objective reflects constructability, fabrication clarity, and standardization. The calculation logic is
consistently implemented across all design variants and serves as a reference for the evaluation and
trade-off analysis in Chapters 6. A more detailed breakdown of the graph formulation and node-edge
mapping is provided in Appendix F.

This process is supported by the underlying get_connection_degree() implemented in the Python
code, which incorporates node positions V and edge attributes. Additionally, the calculation of the con-
nection degree metric is handled using the create_graph() program function, presented in Appendix F.
This representation is foundational to all structural complexity objectives, including connection degree,
symmetry, and beam continuity.

4.3.3. Symmetry
Symmetry is a design preference that improves both visual clarity and structural viability. Symmetri-
cal structures are frequently preferred in civil engineering because of their aesthetic equilibrium, the
potential for modular repetition in construction, and the simplicity of design communication.

The symmetry metric is calculated in this thesis by first identifying a central vertical axis, which is re-
ferred to as the mirror axis, and subsequently evaluating the quantity of geometrically mirrored element
pairs along this axis. The symmetry score is reduced by deviations from this ideal, whereas a perfectly
symmetric truss configuration would have all corresponding members mirrored along the centerline.

From a construction perspective, symmetry simplifies fabrication, as emphasized in [48] [49]. This
thesis advocates for symmetric configurations due to their simplicity in modular truss assembly and
manufacturing efficiency, which enables mirrored elements to utilise shared detailing and production
methods. In addition, the on-site installation of symmetric trusses is advantageous because of their
generally more predictable load paths and much simpler orientation [19]. Mass efficiency is essential
for the optimisation of building processes and the promotion of standardisation, despite the fact that it
may not always be in alignment with symmetry.

In the context of truss design, the symmetry objective penalizes deviations from an ideal mirrored
geometry relative to a central vertical axis. This axis of symmetry is defined explicitly, and corresponding
pairs of mirrored elements are identified. Asymmetry is introduced when a mirrored pair is assigned
different profiles, indicating a deviation from the intended symmetric configuration.

Let fSYM denote the symmetry score. For each mirrored pair (ei, ej), a mismatch in profile assignment
increases fSYM by 1. Perfect symmetry yields a score of 0[-]. Thus, the symmetry objective is given
by:

fSYM =
∑

(ei,ej)∈P

δ(ei, ej) (4.4)
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where:

• P is the set of all mirrored element pairs;
• δ(ei, ej) = 1 if the profiles assigned to ei and ej differ, and 0 otherwise.

The effect of increasing profile diversity on symmetry is controlled by the parameter (n):

• For n = 1, all elements use the same profile and perfect symmetry is achieved.
• For n = 5, greater profile diversity allows for more tailored configurations but typically results in a
higher number of mismatches.

The impact of this design freedom on symmetry is illustrated in Figure 4.5, which presents the symmetry
calculation procedure:

• Subfigures 4.5a and 4.5b present a simplified case showing the logic behind profile matching for
n = 1 and n = 5, respectively.

• Subfigures 4.5c and 4.5d show the symmetry results for the full truss: a perfect match (fSYM = 0)
for the uniform profile case and a penalty (fSYM = 1) when mirrored elements differ.

(a) Symmetry calculation for a simplified single-element
example using one allowed HEA profile type (n = 1).

(b) Symmetry calculation for a simplified single-element
example using five allowed HEA profile types (n = 5).

(c) Symmetry calculation for the full truss using one allowed
HEA profile type (n = 1).

(d) Symmetry calculation for the full truss using five allowed
HEA profile types (n = 5).

Figure 4.5: Step-by-step representation of the Symmetry calculation procedure for n = 1 and n = 5, first applied to a
simplified single-element case and then to the full truss.

The symmetry objective contributes to design regularity and aesthetic harmony. It is particularly rele-
vant when prefabrication or modularity is desirable. A more detailed implementation of the symmetry
evaluation is available in Appendix F. Similarly to the connection degree, symmetry relies on the graph
representation of the truss, created via the create_graph() presented in Appendix F. The scoring logic
itself is computed using the get_symmetric_metric() presented in Appendix F.

4.3.4. Beam Continuity
Beam continuity refers to the uninterrupted use of identical profile types along aligned horizontal mem-
bers within the truss structure. It is introduced as a practical measure of modularity and construction
simplicity, with a particular focus on the fabrication and transportation of horizontal beams. By encour-
aging profile uniformity along key structural directions, beam continuity supports both the mechanical
performance and the efficiency of downstream construction processes.

This objective is especially relevant for structural assemblies that benefit from prefabrication, as con-
tinuous horizontal beams can be produced, transported, and installed as single components. This
reduces the need for on-site splicing, shortens installation time, and may reduce costs related to mate-
rial handling [42]. Conversely, fragmented beam continuity due to frequent profile changes introduces
logistical challenges and diminishes constructability.

The beam continuity metric is evaluated by analyzing the horizontal elements in each row of the truss
and identifying whether the same profile type is used consecutively. When a continuous beam is formed
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using the same profile across two or more horizontal elements, it is considered a continuity gain. Dis-
ruptions in continuity, such as changes in profile type reduce the continuity score.

Let fBCN denote the beam continuity score. The objective is defined such that each segment of contin-
uous horizontal alignment contributes positively to the total:

fBCN =

R∑
r=1

γr (4.5)

where:

• R is the number of horizontal rows evaluated in the truss,
• γr is the number of uninterrupted profile matches found along row r.

The influence of profile diversity on continuity is again governed by the parameter (n):

• For n = 1, profile types are consistent along horizontal members, enabling the formation of con-
tinuous beams.

• For n = 5, element diversity increases, and continuity is frequently disrupted by changes in profile
assignment.

The impact of this design freedom on continuity is illustrated in Figure 4.6, which presents a step-by-
step calculation procedure:

• Subfigures 4.6a and 4.6b apply the logic to a simplified truss segment under uniform and varied
profile conditions.

• Subfigures 4.6c and 4.6d extend the assessment to the full truss, demonstrating how the conti-
nuity score improves or deteriorates based on profile assignment.

(a) Beam Continuity calculation for a simplified
single-element example using one allowed HEA profile type

(n = 1).

(b) Beam Continuity calculation for a simplified
single-element example using five allowed HEA profile types

(n = 5).

(c) Beam Continuity calculation for the full truss using one
allowed HEA profile type (n = 1).

(d) Beam Continuity calculation for the full truss using five
allowed HEA profile types (n = 5).

Figure 4.6: Step-by-step representation of the Beam Continuity calculation procedure for n = 1 and n = 5, first applied to a
simplified single-element case and then to the full truss.

This objective reflects constructability, fabrication clarity, and standardisation. The calculation logic
is consistently implemented across all design variants and serves as a reference for the evaluation
and trade-off analysis in Chapters 6. A more detailed implementation of the continuity metric is avail-
able in Appendix F. This process is directly supported by the underlying create_graph() function,
which incorporates node positions and edge attributes. The continuity score is computed using the
get_beam_continuity_metric() function presented in Appendix F.
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4.4. Stakeholder weight input and objective balancing
In structural design, stakeholder preferences are critical for resolving conflicting objectives, including
structural efficiency, constructability, and aesthetic clarity [33]. Stakeholders, such as structural engi-
neers, manufacturers, architects, and clients, frequently emphasize varying criteria: reducing material
consumption (mass), simplifying assembly (connection degree), amplifying aesthetic value (symmetry),
or improving modularity (beam continuity). To integrate these diverse priorities into the multi-objective
optimization framework, this thesis employs a weighted scalarization method, facilitating a systematic
examination of trade-offs in rectangular steel truss design.

4.4.1. Weighted scalarization framework
Stakeholder preferences are formalized through aweight vectorW = {wM , wCN , wSYM , wBCN}, where
each component corresponds to one of the four objectives: mass fM , connection degree fCN , symme-
try fSYM , and beam continuity fBCN . The weights are normalized to satisfy:

wM + wCN + wSYM + wBCN = 1 (4.6)

A composite performance weighted score is computed as:

score = wM · fM + wCN · fCN + wSYM · fSYM + wBCN · fBCN (4.7)

where each objective function f : S → R is normalized to the range [0, 1] to ensure comparability. This
scalarization is implemented in the multi-objective Tree-structured Parzen Estimator (TPE) algorithms
(Algorithms 3 and 4), enabling the ranking of candidate truss configurations based on stakeholder-
defined priorities. In contrast, the exhaustive search (EXS) algorithms (Algorithms 1 and 2) evaluate
objectives individually, rendering scalarization unnecessary. While scalarization unifies the objective
values into a single score, the TPE algorithm explores the trade-offs between all objectives concurrently
[47], whereas EXS would require separate iterations per objective, effectively treating them in isolation
[20].

4.4.2. Flexibility in weight distributions
The optimization framework supports the evaluation of multiple weight distributions W, ranging from
small sets (e.g., 4-6 weights distributions) to extensive grids (e.g., 35 or 177 weights distributions for
comprehensive trade-off analysis). This flexibility accommodates diverse stakeholder scenarios, from
cost-driven designs to those prioritizing visual or modular clarity. Weight vectors are generated from
predefined grids, such as:

• Coarse grid: {0.0, 0.25, 0.5, 0.75, 1.0}, yielding 35 valid combinations.
• Fine grid: {0.0, 0.1, 0.2, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 1.0}, yielding 177 combinations.
• Custom grids: Potentially thousands of combinations for granular exploration.

For the analysed results presented in Chapter 6, three specific weight distributions are evaluated:

• TPE(W1): with distributionW1 = {0.25, 0.25, 0.25, 0.25}, prioritizing all four objectives equally.
• TPE(W2): with distribution W2 = {0.4, 0.1, 0.4, 0.1}, moderately prioritizing mass and symmetry
over connection degree and beam continuity.

• TPE(W3): with distributionW3 = {0.1, 0.4, 0.1, 0.4}, moderately prioritizing connection degree and
beam continuity over mass and symmetry.

• TPE(W4): with distribution W4 = {0.4, 0.05, 0.5, 0.05}, heavily prioritizing mass and symmetry
over connection degree and beam continuity.

These distributions, summarized in Table 6.5, guide the TPE optimization to produce designs aligned
with specific stakeholder priorities, as visualized in multi-parallel plots (e.g., Figure 6.14).

The ability to evaluate multiple weight distributions enhances the framework’s versatility but introduces
significant computational challenges. For a 9-element truss with (n = 5) allowed HEA profiles, combin-
ing with 177 weight vectors results in a design space exceeding 345 million combinations. Chapter 6
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emphasizes computational burden for varying numbers of weight vectors, where Table 6.10b highlight-
ing the infeasibility of exhaustive search for large grids.

4.5. Optimization algorithm implementation
This section outlines the methodologies for Exhaustive Search (EXS) and Tree-structured Parzen Esti-
mator (TPE) used to optimize steel truss configurations. Algorithms address single and multi-objective
problem involving mass, connection degree, symmetry, and beam continuity, with EXS serving as a
baseline for validation and TPE providing an efficient solution for complex search spaces [35].

4.5.1. Exhaustive search optimization implementation
Exhaustive Search systematically evaluates all possible configurations to identify the global optimum
for a given objective. In this study, it is applied to a truss with (k = 9) elements, each assignable one
of (n = 5) allowed HEA profiles, yielding 59 turning approximatelly 1.95 million configurations. This
method optimizes each objective independently to establish baseline results. For the mass objective,
we seek the configuration with the lowest total mass that satisfies the structural constraints (UC ≤
1). For the structural complexity objectives connection degree, symmetry, and beam continuity all
configurations achieving the best possible score for the respective objective are considered, subject to
the feasibility condition that no element exceeds the (UC ≤ 1) threshold. Given the discrete nature of
these metrics, multiple configurations may exhibit identical optimal scores. In such cases, a secondary
selection criterion is applied: among the feasible and score optimal configurations, the one with the
lowest total mass is selected. For example, consider two configurations with identical symmetry scores:
one operating (k = 9) elements with HEA180 profile (lighter) and another operating (k = 9) elements
with HEA220 profiles (heavier). The HEA180 configuration is preferred due to its lower mass, ensuring
material efficiency when designs perform equally on complexity metrics.

However, due to the exhaustive nature of this method, which requires evaluating all possible config-
urations, it is computationally intensive and not scalable to larger problems or real-time applications.
Therefore, while Exhaustive Search provides a valuable benchmark for validation, it is impractical for
more complex scenarios, necessitating the use of more efficient optimization algorithms like TPE for
larger-scale or multi-objective optimization tasks.

The optimization process proceeds through the following steps:

1. Evaluate the four objective functions for a given configuration.
2. Check the feasibility of the configuration by ensuring no element exceeds the (UC ≤ 1) threshold.
3. Record the best configuration based on the objective score.
4. Repeat for all configurations in the search space.

Exhaustive Search has been implemented in two algorithmic variants:

• Algorithm 1: EXS Search for Mass Optimization
• Algorithm 2: EXS Search for Structural Complexity Objectives Optimization
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Algorithm 1 Exhaustive Search for Mass Optimization
Require: P, k, UCmax, fM

1: Input: Profile setP = {HEA100,HEA120,HEA140,HEA180,HEA220}, number of elements k = 9,
maximum Unity Check UCmax = 1, mass objective function fM : S → R

2: Initialize S ← {s | s : {1, . . . , k} → P} ▷ Search space of all configurations
3: Initialize results← ∅ ▷ Store results for each n
4: for n ∈ {1, 2, 3, 4, 5} do ▷ Iterate over number of unique HEA profile types
5: Sn ← {s ∈ S | |unique(s)| = n} ▷ Filter configurations with exactly n profiles
6: Initialize best_confign ← ∅, best_valuen ←∞ ▷ Track best configurations for batch n
7: for each s ∈ Sn do ▷ Iterate over configurations in batch
8: if UC(s) ≤ UCmax then ▷ Check feasibility
9: value← fM(s) ▷ Compute Objective score M [kg]
10: if value < best_valuen then ▷ Update if lighter
11: best_confign ← s
12: best_valuen ← value
13: end if
14: end if
15: end for
16: results← results ∪ {n, best_confign, best_valuen} ▷ Store batch result
17: end for
18: return results ▷ Return DataFrame with n, configuration, and objective result

Algorithm 2 Exhaustive Search for Structural Complexity Objectives Optimization
Require: P, k, UCmax, f , fM

1: Input: Profile setP = {HEA100,HEA120,HEA140,HEA180,HEA220}, number of elements k = 9,
maximum Unity Check UCmax = 1, objective function f : S → R (e.g., CN, SYM, BCN), mass
objective function fM : S → R

2: Initialize S ← {s | s : {1, . . . , k} → P} ▷ Search space of all configurations
3: Initialize results← ∅ ▷ Store results for each n
4: for n ∈ {1, 2, 3, 4, 5} do ▷ Iterate over number of unique HEA profile types
5: Sn ← {s ∈ S | |unique(s)| = n} ▷ Filter configurations with exactly n profiles
6: Initialize best_configsn ← ∅, best_valuen ←∞ ▷ Track best configurations for batch n
7: for each s ∈ Sn do ▷ Iterate over configurations in batch
8: if UC(s) ≤ UCmax then ▷ Check feasibility
9: value← f(s) ▷ Compute objective score(e.g., SYM [-])
10: if value < best_valuen then ▷ New best found
11: best_valuen ← value
12: best_configsn ← {s} ▷ Reset list with new best
13: else if value = best_valuen then ▷ Equal score, add to list
14: best_configsn ← best_configsn ∪ {s}
15: end if
16: end if
17: end for
18: best_confign ← argmins∈best_configsn fM(s) ▷ Secondary filtering by mass
19: results← results ∪ {n, best_confign, best_valuen} ▷ Store batch result
20: end for
21: return results ▷ Return DataFrame with n, configuration, and objective result

4.5.2. TPE optimization implementation
The Tree-structured Parzen Estimator (TPE) is a Bayesian optimization algorithm that efficiently ex-
plores large and complex search spaces by modeling the distribution of promising solutions [7]. Unlike
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Gaussian Process-based methods, TPE estimates the density of configurations with high and low per-
formance using non-parametric kernel density estimators (KDEs), which makes it particularly suited for
discrete and categorical design variables like HEA profile types in steel trusses [8].

TPE operates by splitting past observations into two groups: a good-performing group and a poor-
performing group, based on a quantile threshold (e.g., top 20% of previous trials) [36]. It constructs
probability density p(x | D(l)) and p(x | D(g)) from these groups and then samples new candidates by
maximizing the acquisition score, as shown in Equation 4.8:

acquisition score =
p(x | D(l))

p(x | D(g))
(4.8)

This process favors exploring regions of the search space with a high likelihood of improvement.

In this thesis, TPE is applied to optimize a scalar performance score composed of four normalized ob-
jectives: mass, connection degree, symmetry, and beam continuity. TPE efficiently explores the design
space by dynamically adapting to the structure of the objective landscape [47]. This TPE algorithmic
configuration enables to capture and leverage interdependencies when learning from previous design
evaluations.

The TPE optimization process begins with an initial phase of 100 randomly sampled trials, followed by
a transition to probabilistic sampling guided by the expected improvement criterion. The Optuna library
is used as the implementation framework [35].

The specific sampler configuration includes:

• multivariate=True: models interdependencies between variables
• group=True: groups variables by logical association
• n_startup_trials=100: initial exploration phase
• n_ei_candidates=100: number of candidate configurations evaluated per trial
• seed=42: fixed seed for reproducibility

The optimization process proceeds through the following steps:

1. Evaluate the four objective functions for a given configuration.
2. Check the feasibility of the configuration by ensuring no element exceeds the (UC ≤ 1) threshold.
3. Normalize and scalarize the results using the stakeholder-defined weight vector.
4. Record the best configuration based on the objective score.
5. Repeat for all configurations in the search space for a fixed number of trials (e.g., Ntrials from 50

to 2000).

TPE has been implemented in two algorithmic variants:

• Algorithm 3: TPE Search for Mass Optimization
• Algorithm 4: TPE Search for Structural Complexity Objectives Optimization

These variants reflect whether the objective is purely scalarized or relates to one of the structural com-
plexity metrics. When multiple configurations yield the same score - for example, in symmetry or beam
continuity, a secondary filtering step based on mass is applied to select the lighter solution.
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Algorithm 3 TPE Search for Mass Optimization
Require: P, k, UCmax, fM, Ntrials,W

1: Input: Profile setP = {HEA100,HEA120,HEA140,HEA180,HEA220}, number of elements k = 9,
maximum Unity Check UCmax = 1, mass objective function fM : S → R (total mass in [kg]), number
of trials Ntrials, weight distributionsW = {wM , wCN , wSYM , wBCN}

2: Initialize S ← {s | s : {1, . . . , k} → P} ▷ Search space of all configurations
3: Initialize results← ∅ ▷ Store results for each n and w
4: for n ∈ {1, 2, 3, 4, 5} do ▷ Iterate over number of unique HEA profile types
5: Sn ← {s ∈ S | |unique(s)| = n} ▷ Filter configurations with exactly n profiles
6: for each w ∈ W do ▷ Iterate over weight distributions
7: Initialize study ← TPESampler(nstartup = 100, seed = 42)
8: Initialize best_confign ← ∅, best_Mn ←∞ ▷ Track best configurations for batch n
9: for t = 1 to Ntrials do ▷ Perform TPE trials
10: s← sample_config(study,Sn)
11: if UC(s) ≤ UCmax then ▷ Check feasibility
12: M,CN,SYM,BCN ← fall(s)
13: score ← wM · normalize(M) + wCN · normalize(CN) + wSYM · normalize(SYM) +

wBCN · normalize(BCN) ▷ Weighted score
14: if wM = 1 and wCN = wSYM = wBCN = 0 then ▷ Prioritize M
15: if M < best_valuen then ▷ Update if lighter
16: best_confign ← s
17: best_valuen ←M
18: end if
19: end if
20: update(study, s, (M,CN,SYM,BCN)) ▷ Update TPE model
21: end if
22: end for
23: results← results ∪ {n,W , best_confign, best_valuen} ▷ Store batch result
24: end for
25: end for
26: return results ▷ Return DataFrame with n, weights, configuration, and objective result
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Algorithm 4 TPE Search for Structural Complexity Objectives Optimization
Require: P, k, UCmax, f , fM, Ntrials,W

1: Input: Profile setP = {HEA100,HEA120,HEA140,HEA180,HEA220}, number of elements k = 9,
maximum Unity Check UCmax = 1, objective function f : S → R (e.g., CN, SYM, BCN), mass objec-
tive function fM : S → R, number of trialsNtrials, weight distributionsW = {wM , wCN , wSYM , wBCN}

2: Initialize S ← {s | s : {1, . . . , k} → P} ▷ Search space of all configurations
3: Initialize results← ∅ ▷ Store results for each n and w
4: for n ∈ {1, 2, 3, 4, 5} do ▷ Iterate over number of unique HEA profile types
5: Sn ← {s ∈ S | |unique(s)| = n} ▷ Filter configurations with exactly n profiles
6: for each w ∈ W do ▷ Iterate over weight distributions
7: Initialize study ← TPESampler(nstartup = 100, seed = 42)
8: Initialize best_configsn ← ∅, best_valuen ←∞ ▷ Track best configurations for batch n
9: for t = 1 to Ntrials do ▷ Perform TPE trials
10: s← sample_config(study,Sn)
11: if UC(s) ≤ UCmax then ▷ Check feasibility
12: M,CN,SYM,BCN ← fall(s)
13: score ← wM · normalize(M) + wCN · normalize(CN) + wSYM · normalize(SYM) +

wBCN · normalize(BCN) ▷ Weighted score
14: if f = CN and wCN = 1 and wM = wSYM = wBCN = 0 then ▷ Prioritize CN
15: if CN < best_valuen then ▷ New best found
16: best_valuen ← CN
17: best_configsn ← {s} ▷ Reset list with new best
18: else if CN = best_valuen then ▷ Equal score, add to list
19: best_configsn ← best_configsn ∪ {s}
20: end if
21: else if f = SYM and wSYM = 1 and wM = wCN = wBCN = 0 then ▷ Prioritize SYM
22: if SYM < best_valuen then ▷ New best found
23: best_valuen ← SYM
24: best_configsn ← {s} ▷ Reset list with new best
25: else if SYM = best_valuen then ▷ Equal score, add to list
26: best_configsn ← best_configsn ∪ {s}
27: end if
28: else if f = BCN and wBCN = 1 and wM = wCN = wSYM = 0 then ▷ Prioritize BCN
29: if BCN < best_valuen then ▷ New best found
30: best_valuen ← BCN
31: best_configsn ← {s} ▷ Reset list with new best
32: else if BCN = best_valuen then ▷ Equal score, add to list
33: best_configsn ← best_configsn ∪ {s}
34: end if
35: end if
36: update(study, s, (M,CN,SYM,BCN)) ▷ Update TPE model
37: end if
38: end for
39: best_confign ← argmins∈best_configsn fM(s) ▷ Secondary filtering by mass
40: results← results ∪ {n,W , best_confign, best_valuen} ▷ Store batch result
41: end for
42: end for
43: return results ▷ Return DataFrame with n, weights, configuration, and objective result

A key strength of the TPE algorithm lies in its capacity to handle diverse objective types, including
continuous (e.g., mass) and discrete or topological metrics (e.g., connection degree, symmetry, beam
continuity). It scales effectively to large design spaces and adapts to trade-off shifts driven by vary-
ing weight distributions. This adaptability makes TPE the preferred algorithm for the multi-objective
optimization phase of the study.



5
Experimental setup and Validation

5.1. Introduction to experimental setup
This chapter presents computational experiments designed to evaluate best methods for standardised
truss grouping within acceptable technological constraints. This paper primarily focusses on the perfor-
mance of the model-based optimisation method, Tree-structured Parzen Estimator (TPE), compared to
a standard exhaustive search baseline. The benchmark parameters are selected as a test case from
a simplified rectangular truss including nine parts (see Figure A.5). This geometry demonstrates a bal-
ance between representativeness and computational efficiency by embodying typical configurations
utilised in modular pedestrian and light vehicle bridges. In the Dutch context, it is occasionally termed
a ”square truss” (vierkant vakwerk).

(a) Grasshopper - generated spatial view perspective of the
9-element truss.

(b) Grasshopper - generated spatial view perspective of the
9-element truss, deflection under an applied load of 20 kN.

(c) Grasshopper - generated front view perspective of the
9-element truss under a 20kN load, illustrating structural

deflection.

(d) Grasshopper - generated front view perspective of the
9-element truss under a 20kN load, illustrating axial force

distribution.

Figure 5.1: Benchmark problem Typology 1: Grasshopper - generated parametric truss with 9 elements, shown under a 20kN
load with visualizations of deflection and axial force distribution from multiple perspectives.

Each optimisation algorithm is assessed based on its ability to identify appropriate truss configurations

27
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under various constraints. More precisely, where (n) is the number of distinct HEA profiles permitted
in the design, TPE and exhaustive search are evaluated over five profile grouping constraints (n from
1 to 5). Four performance parameters are evaluated for optimisation performance: mass, connection
degree, symmetry, and beam continuity.

The benchmark model, optimisation objectives, exhaustive search methodology, TPE application, val-
idation results, and stakeholder-focused visualisation tools are elaborated upon in the following sub-
chapters.

5.2. Benchmark model definition
The benchmark model employed in this study is a two-dimensional rectangular truss consisting of (k =
9) elements. It was preferred for its equilibrium between geometric clarity, realistic loading behavior,
and traceable optimization search space, providing it appropriate for both exhaustive and TPE-based
search.

The geometry and structural simulation were generated using Rhino and Grasshopper combined, with
structural performance analyzed with the Karamba3D plugin. The model is conceptualized as statically
deterministic and planar, featuring pinned joints and adequate lateral bracing to negate bending effects.
Consequently, the structure is evaluated based on the assumption of pure axial force, as permitted by
[21] which allows for the exclusion of moment effects in trusses exhibiting optimal joint behavior and
bracing.

Material and Load Assumptions:

• Material: Frequently utilized in European practice, S355 structural steel has a Young’s modulus
of approximately 210 GPa.

• Profiles Set: HEA100, HEA120, HEA140, HEA180, HEA220 – selected based on structural rele-
vance, fabrication availability, and prior relevance in research on modular systems.

• Loading: The truss is subjected to a uniformly distributed load of 20 kN/m, simulating service
loads for pedestrian or cyclist bridges. This load level is a realistic abstraction, enabling consistent
performance comparisons across profile types and grouping configurations.

Following the simulation phase, performance data including unity check (UC) values, mass, and nodal
coordinates were extracted from Karamba3D and exported from Grasshopper into structured Excel
files. These spreadsheets form the foundational dataset for the optimization framework.

The dataset supports four key information tables:

• Subfigure A.1a presents the mass values computed for each design configuration.
• Subfigure A.1b displays the (UC) values, highlighting the structural feasibility of each configura-
tion.

• Subfigures A.1c and A.1d contain the coordinates of the first and second nodes of each truss
element, respectively, defining the structural topology.

This structured data was essential for pre-processing and allowed the following key operations to be
performed as a coherent preparatory step, rather than as disjointed processing tasks. Feasibility filter-
ing was first applied to eliminate all design combinations where (UC > 1.0) for any element. This step
significantly reduced the profile assignment space from 59 turning approximatelly 1.95 million configura-
tions to a tractable subset of 200,000 valid solutions. Next, the cleaned dataset was used to construct
the complete design space of all feasible combinations, where each of the (k = 9) truss elements could
be assigned one of five HEA profiles. The number of allowed distinct profiles (n) ranged from 1 (fully
standardized) to 5 (fully unique), and each combination had to satisfy feasibility constraints based on
the (UC).
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(a) Mass distribution of the 9-elements truss across n = 5
allowed unique HEA profile types.

(b) Unity Check (UC) values for the 9-elements truss across
n = 5 allowed unique HEA profile types.

(c) Coordinates of the first node for each element of the
9-elements truss.

(d) Coordinates of the second node for each element of the
9-elements truss.

Figure 5.2: Excel tables for a parametric truss with 9-elements and n = 5 allowed unique HEA profile types.

5.3. Objective functions and metrics
Targeting the optimisation procedure in this thesis reflects four key objective functions, each indicat-
ing a core engineering trade-off between material efficiency, constructability, and structural simplicity.
Formulated for minimisation, the four metrics discussed in this thesis, namely — mass, connection
degree, symmetry, and beam continuity — are evaluated across different truss typologies presented
with all required data in Appendix A. These performance objectives were selected not only for their
quantifiability but also for their alignment with the most common stakeholder requirements, particularly
regarding structural performance and fabrication feasibility.

In the context of this study, these objectives form the basis of both the single and multi-objective opti-
mization tasks described in subsequent sections. Their mathematical formulation reflects a recurring
trade-off between standardization (low values for (n) implying reduced complexity, simpler joints) and
uniqueness (high values for (n) implying tailored structural performance, better calibrated (UC) ratios).
The challenge of balancing these metrics becomes especially evident in the multi-objective TPE dis-
cussed in Chapter 6.

5.4. Exhaustive search baseline
An exhaustive search strategy was built to serve as a baseline reference for evaluating the performance
of the TPE optimisation method. This method systematically assesses all potential profile assignment
combinations throughout the truss elements.

For each value of (n) (i.e., the number of unique profiles allowed (n from 1 to 5), the best-performing
configuration was selected for each objective individually. The optimal configuration was defined as the
one that minimized the target metric, such as mass, connection degree, symmetry, or beam continuity.
In scenarios when multiple configurations achieved the same scores for the target objective, an addi-
tional filter based on mass was used, resulting in a selection of the lightest feasible configuration. It is
essential to understand that secondary filtering is unfeasible in the TPE configuration due to its proba-
bilistic characteristics and sampling-based framework, underscoring a critical differentiation examined
in the next section.

This approach allows the exhaustive search to serve as a reliable performance baseline, especially
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in the single-objective setting. The mass objective, for example, yielded an optimal value of 730.27
kg when (n = 3), demonstrating that the use of exactly three distinct profile types provided the best
trade-off between structural adequacy (UC ≤ 1) and material efficiency. Detailed numerical results of
this analysis are presented in the corresponding Excel tables in Appendix A and plots in Chapter 6.

Despite its simplicity and completeness, the scalability of exhaustive search is significantly constrained,
as evidenced in this study. As the quantity of elements (k) with available profiles (n) increases, the po-
tential configurations grow exponentially, following the exponential relation (nk). With (n = 5) and
(k = 9), this results in approximately 1.95 million combinations. The quick expansion makes exhaus-
tive search enumeration computationally unfeasible for bigger truss models, as further examined in
Chapter 6. With an increase in the number of elements to (k = 17), the design space rises to 517, or 7.6
billion configurations as shown in Figure 6.10b. Although with the sorting, such a space would need
days or even weeks of computation, leaving the approach impractical for applications beyond bench-
mark problems. This necessitates the implementation of alternative approaches such as TPE, which
can attain near-optimal solutions with significantly fewer iterations. Detailed computationl framework
outputs validating TPE convergence against the exhaustive search baseline for these objectives are
provided in Appendix D.

5.5. Validation results: TPE vs Exhaustive Search
This section presents a comparative analysis between the Tree-structured Parzen Estimator (TPE) and
exhaustive search, focusing on convergence behavior, computational efficiency, and solution quality
for the 9-element truss benchmark. The validation was conducted for each of the four objectives:
mass, connection degree, symmetry, and beam continuity, with TPE configured for single-objective
optimization in each case.

Exhaustive search served as the ground-truth baseline, identifying the optimal solution out of approx-
imately 1.95 million configurations. However, this space was pre-filtered by eliminating all designs
where any member’s (UC) exceeded threshold, reducing the valid design set to approximately 200,000
combinations. For each value of n (i.e., number of unique profiles, with (n) equal from 1 to 5), the best-
scoring design was selected per objective. When multiple configurations scored equally, a secondary
filtering process was applied to minimize mass. This second-level filtering was only possible under
exhaustive search and is not feasible in the TPE framework (as follows from Algorithms 1 & 2 from Sec-
tion 4.5.1 and Algorithms 3 & 4 from Section 4.5.2), highlighting a methodological contrast between the
two approaches In terms of post-processing flexibility, which may significantly affect stakeholder usabil-
ity and fairness in algorithmic comparison particularly in scenarios involving symmetry, modularity, or
practical constructability concerns.

Mass Objective: convergence comparison
Figure 5.3 presents the convergence behavior for the mass objective, plotting the objective value
against the number of trials (Ntrials). The TPE method demonstrates reliable convergence toward the
exhaustive optimum as the number of trials increases. Early trials (50 – 200) exhibit high variance,
however convergence becomes stable and near optimal from 500 trials. Notably, the most complex
cases specifically for (n = 3) and (n = 4) required approximately 350 trials to fully converge to results
comparable with the exhaustive search, indicating a higher combinatorial difficulty at these intermediate
values of (n). This behavior establishes TPE as a computationally viable alternative when exhaustive
search is infeasible, though convergence speed is strongly influenced by problem dimensionality.
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(a) Mass Validation for n = 1
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(b) Mass Validation for n = 2
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(c) Mass Validation for n = 3
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(d) Mass Validation for n = 4
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(e) Mass Validation for n = 5
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(f) TPE and EXS convergence for Ntrials = 500

Figure 5.3: Validation of the Tree-structured Parzen Estimator (TPE) through convergence of Mass to Exhaustive Search
(EXS) results for varying Ntrials with allowed unique HEA profile types (n).

Connection Degree: convergence comparison
Figure 5.4 illustrate the convergence patterns for the connection degree and beam continuity objec-
tives, both of which exhibit significant variability at lower trial counts. These objectives are particularly
sensitive to topological regularity, making early convergence challenging for the probabilistic TPE ap-
proach. While some configurations achieved near-optimal results with as few as 50 trials, especially
for lower values of (n) , the final and most difficult converging case (n = 5) required up to 500 trials to
align with the exhaustive search results. This underscores the uneven convergence behavior across
different profile counts and reinforces the necessity of adequate trial budgets to ensure robustness in
TPE-based optimization, particularly for structurally intricate objectives.
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(a) Connection Degree Validation for n = 1
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(b) Connection Degree Validation for n = 2
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(c) Connection Degree Validation for n = 3
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(d) Connection Degree Validation for n = 4
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(e) Connection Degree Validation for n = 5
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(f) TPE and EXS convergence for Ntrials = 1000

Figure 5.4: Validation of the Tree-structured Parzen Estimator (TPE) through convergence of Connection Degree to
Exhaustive Search (EXS) results for varying Ntrials with allowed unique HEA profile types (n).

Symmetry: convergence comparison
Figure 5.5 focuses on the symmetry objective, which exhibited the most extended convergence hori-
zon among all four objectives. While values of (n = 1) through (n = 4) converged relatively early in
the optimization process, the most challenging case (n = 5) required the full 2000 trials to achieve
convergence comparable to the exhaustive search. This marks the highest number of trials needed
across all objectives, highlighting both the complexity of preserving symmetry in the design space and
the sensitivity of this objective to probabilistic search dynamics. The findings emphasize that conver-
gence for symmetry is not only objective-dependent but also highly influenced by the dimensionality
and structural constraints associated with higher values of (n).
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(a) Symmetry Validation for n = 1
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(b) Symmetry Validation for n = 2
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(c) Symmetry Validation for n = 3
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(d) Symmetry Validation for n = 4
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(e) Symmetry Validation for n = 5
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(f) TPE and EXS convergence for Ntrials = 2000

Figure 5.5: Validation of the Tree-structured Parzen Estimator (TPE) through convergence of Symmetry to Exhaustive Search
(EXS) results for varying Ntrials with allowed unique HEA profile types (n).

Beam continuity: convergence comparison
Figure 5.6 presents the convergence pattern for the beam continuity objective, which demonstrated the
fastest and most consistent convergence across all evaluated cases. Remarkably, all values of (n from
1 to 5) reached convergence within the first 50 trials, making this the least demanding objective in terms
of computational effort. This result suggests that the solution space for beam continuity is either less
complex or more readily navigable by the TPE algorithm, allowing optimal configurations to be identified
rapidly. The robustness and low variance observed at early stages further underscore the efficiency of
TPE when applied to objectives with more localized or less ambiguous structural constraints.
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(a) Beam Continuity for n = 1
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(b) Beam Continuity for n = 2

50 200 350 500 1000 2000
1

2 TP
E:
2

TP
E:
2

TP
E:
2

TP
E:
2

TP
E:
2

TP
E:
2

EX
S:
2

EX
S:
2

EX
S:
2

EX
S:
2

EX
S:
2

EX
S:
2

Ntrials

Be
am

C
on
tin
ui
ty
[-]

(c) Beam Continuity for n = 3
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(d) Beam Continuity for n = 4
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(e) Beam Continuity for n = 5
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(f) TPE and EXS convergence for Ntrials = 50

Figure 5.6: Validation of the Tree-structured Parzen Estimator (TPE) through convergence of Beam Continuity to Exhaustive
Search (EXS) results for varying Ntrials with allowed unique HEA profile types (n).

Convergence behavior across objectives
The convergence analysis highlights distinct optimization challenges and trial needs across four ob-
jectives. BCN proved most tractable, with all (n) converging consistently at just 50 trials, indicating
a relatively simple or well-behaved solution space. CN, with most (n) converging early, but (n = 5)
needing up to 500 trials to match the exhaustive baseline. M displayed moderate complexity, with
convergence typically stabilizing between 1000 and 2000 trials, though (n = 3) and (n = 4) extended
this to around 350 trials. The most demanding was the SYM objective, where with (n = 5) requiring
2000 trials, the highest observed. These differences underscore the importance of objective-specific
and dimension-aware trial budgeting in probabilistic optimization like TPE, as convergence behavior is
heavily depends on both the nature of the objective and the structural complexity from increasing (n).



6
Results and discussion

This chapter presents and discusses the experimental results of the proposed optimization algorithms,
starting with Exhaustive Search (EXS) and continuing with the Tree-structured Parzen Estimator (TPE),
based on the benchmark problem of a 9-element, structurally determinate 2D rectangular steel truss
as detailed in Chapter 5. The evaluation focuses on balancing four performance objectives: struc-
tural mass, symmetry, connection degree, and beam continuity, as defined in Chapter 4. Section
6.1 highlights the performance of the TPE optimization algorithm compared to Exhaustive Search for
the optimization of a single objective. The chapter then explores TPE performance in single versus
multi-objective weight distribution scenarios: TPE(W1) with uniformly distributed weights among all
four objectives (6.2.1), TPE(W2) prioritizing mass and symmetry (6.2.2), TPE(W3) prioritizing connec-
tion degree and beam continuity (6.2.3), and TPE(W4) heavily prioritizing symmetry and mass (6.2.3).
Further analysis investigates the impact of the number of trials, the number of allowed HEA profiles
(n), and weight distributions on the computational time and the accuracy of the findings (6.3). Next, the
chapter emphasizes the application of multi-parallel plots to identify and visualize different truss config-
urations based on specific requirements (6.4). Finally, the chapter assesses the structural outcomes
and their implications for stakeholder-driven design (6.5).

6.1. Comparison: TPE vs Exhaustive search single objective
Building on the experimental framework outlined in Chapter 5, this section evaluates the performance
of the Tree-structured Parzen Estimator (TPE) and Exhaustive Search (EXS) algorithms in optimizing a
single objective, mass (M), symmetry (SYM), connection degree (CN), or beam continuity (BCN) for a
9-element steel truss benchmark. Result illustrated in Figure 6.1, demonstrate convergence behavior
and configuration differences across the objectives. As established in Chapter 5, TPE achieves conver-
gence at (Ntrials = 2000) for all (n from 1 to 5), aligning with EXS on primary objective values. Despite
this alignment, the algorithms’ distinct mechanisms yield variations in truss configurations, particularly
in secondary objectives, which are analyzed in the subsections below.
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Figure 6.1: Comparison of TPE and EXS single Optimization across Objectives.

6.1.1. Comparison: TPE(M) vs EXS(M)
For mass optimization, TPE(M) and EXS(M) achieve identical minimal mass values, as reported in
Table 6.1. However, with optimization focused solely on mass (secondary objectives assigned zero
weight), the resulting truss configurations diverge, impacting metrics such as symmetry. For (n = 4),
TPE(M) yields a symmetry score of 0[-] (fully symmetric), while EXS(M) produces a score of 1[-]. Sim-
ilarly, at (n = 5), TPE(M) achieves a symmetry score of 1[-], compared to EXS(M) symmetry score of
2[-]. These differences, illustrated in Figiure 6.2 stem from the algorithms’ selection strategies. EXS(M)
evaluates all configurations systematically, selecting the first with minimal mass, often overlooking sec-
ondary objectives. Conversely, TPE(M) Bayesian approach, utilizing stochastic sampling guided by
expected improvement, explores the design space more extensively, occasionally identifying configu-
rations with enhanced secondary performance [7].

Table 6.1: Evaluation of Exhaustive Search EXS(M) vs Tree-structured Parzen Estimator TPE(M) for Mass Optimization
across grouping levels n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective W EXS(M) TPE(M) ∆ EXS(M) TPE(M) ∆ EXS(M) TPE(M) ∆ EXS(M) TPE(M) ∆ EXS(M) TPE(M) ∆

Mass 1 1169.86 1169.86 = 780.15 780.15 = 730.27 730.27 = 750.25 750.25 = 810.19 810.19 =
Connection Degree 0 6 6 = 9 9 = 12 12 = 13 13 = 14 14 =
Symmetry 0 0 0 = 0 0 = 0 0 = 1 0 ↓ 2 1 ↓
Beam Continuity 0 2 2 = 2 2 = 2 2 = 2 2 = 3 3 =

The divergence arises from EXS(M) streamlined process, which terminates upon identifying the min-
imal mass, as detailed in its pseudo-code (Chapter 4). For mass optimization, EXS(M) employs a
straightforward iterative process, stopping at the first configuration achieving the optimal mass. In con-
trast, for structural complexity objectives like symmetry, EXS(SYM) incorporates an additional iterative
step. For example, when multiple configurations share the same symmetry score but differ in mass
(e.g., using light versus heavy HEA profiles), a secondary iteration selects the lightest configuration.
This additional layer is absent in EXS(M), limiting its exploration and causing it to miss symmetric con-
figurations that TPE(M) captures, a limitation evident in the results. This suggests TPE(M) potential to
balance primary and secondary objectives, even in single-objective scenarios.
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(d) TPE-Based Optimization of Mass with corresponding Truss Configurations

Figure 6.2: Comparison of Exhaustive Search (EXS) and Tree-structured Parzen Estimator (TPE) based optimization of mass
versus the number of allowed unique HEA profile types (n) for Ntrials = 2000.

6.1.2. Comparison: TPE(CN) vs EXS(CN)
Connection degree optimization reveals a notable case where TPE(CN) and EXS(CN) converge on
the primary objective and achieve identical secondary objective values (Table 6.2). This consistency,
initially surprising, results from the constrained search space of the connection degree objective, partic-
ularly at higher (n), as detailed in Chapter 4. Defined by the number of distinct element types connected
at a node, this objective significantly limits configuration variability [9] [47]. For (n = 1), where a single
HEA profile is assigned to all nine elements, both TPE(CN) and EXS(CN) achieve a connection de-
gree score of 6[-] (assuming a single profile type across nodes). Theoretically, TPE(CN) could select
heavier profiles (e.g., HEA220 instead of HEA180) for all elements, maintaining the same connection
degree score while increasingmass, sincemass has zero weight in the weighted sum objective function.
However, TPE(CN) consistently aligns with EXS(CN), producing identical mass and other secondary
objective values.

This alignment is attributed to two key factors. First, the connection degree metric, being arrangement-
driven, significantly reduces the number of feasible configurations, especially at higher (n) values. For
(n = 1), where a single profile type is used, all elements must share the same HEA profile (e.g.,
HEA180), inherently fixing the mass and other secondary objectives, forcing TPE(CN) and EXS(CN)
to select identical configurations. Second, TPE(CN) sampling strategy, as a Bayesian optimization
method, models the probability distribution of high-performing configurations using a tree-structured
Parzen estimator [8]. When (wM = 0), TPE(CN) may still favor configurations that align with the initial
or most frequently sampled solutions, which, in this case, resemble EXS(CN) outcomes due to the
constrained search space. For higher values of (n), the search space remains limited, further enforc-
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ing consistency. Figure 6.3 illustrates these configurations, showing no differences in configurations
identified by TPE(CN) and EXS(CN). This highlights the influence of objective-specific constraints on
optimization, suggesting that connection degree’s limited search space minimizes secondary objective
divergence, even when weights permit flexibility.

Table 6.2: Evaluation of Exhaustive Search EXS(CN) vs Tree-structured Parzen Estimator TPE(CN) for Connection Degree
Optimization across grouping levels n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective W EXS(CN) TPE(CN) ∆ EXS(CN) TPE(CN) ∆ EXS(CN) TPE(CN) ∆ EXS(CN) TPE(CN) ∆ EXS(CN) TPE(CN) ∆

Mass 0 1169.86 1169.86 = 1094.46 1094.46 = 772.11 772.11 = 784.04 784.04 = 843.98 843.98 =
Connection Degree 1 6 6 = 8 8 = 10 10 = 11 11 = 12 12 =
Symmetry 0 0 0 = 1 1 = 1 1 = 1 1 = 2 2 =
Beam Continuity 0 2 2 = 3 3 = 2 2 = 2 2 = 3 3 =

For higher values of (n), the search space remains limited, further enforcing consistency. Figure 6.3
illustrates these configurations, showing no differences in configurations identified by TPE(CN) and
EXS(CN). This highlights the influence of objective-specific constraints on optimization, suggesting
that connection degree’s limited search space minimizes secondary objective divergence, even when
weights permit flexibility.
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Figure 6.3: Comparison of Exhaustive Search (EXS) and Tree-structured Parzen Estimator (TPE) based optimization of
connection degree versus the number of allowed unique HEA profile types (n) for Ntrials = 2000.
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6.1.3. Comparison: TPE(SYM) vs EXS(SYM)
In symmetry optimization, TPE(SYM) converges with EXS(SYM) on the primary objective (Table 6.3),
yet disparities emerge in secondary objectives such as mass and connection degree. For (n = 2),
TPE(SYM) yields configurations with higher mass and connection degree than EXS(SYM), due to
its exclusive focus on symmetry (other objectives weighted at zero). This prioritization stems from
TPE(SYM) weighted sum approach, where zero-weighted objectives are disregarded, leading to con-
figurations optimized solely for symmetry. Slightly increasing weights for secondary objectives could
align TPE(SYM) outcomes with EXS(SYM), suggesting a potential for multi-objective optimization, as
explored in later sections. Figure 6.4 illustrates these differences for (n = 2), (n = 3), and (n = 5),
confirming convergence on symmetry but highlighting varied secondary performance. These findings
underscore TPE(SYM) flexibility in single-objective optimization, potentially enhancing secondary met-
rics when weights are adjusted, unlike EXS(SYM) deterministic selection.

Table 6.3: Evaluation of Exhaustive Search EXS(SYM) vs Tree-structured Parzen Estimator TPE(SYM) for Symmetry
Optimization across grouping levels n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective W EXS(SYM) TPE(SYM) ∆ EXS(SYM) TPE(SYM) ∆ EXS(SYM) TPE(SYM) ∆ EXS(SYM) TPE(SYM) ∆ EXS(SYM) TPE(SYM) ∆

Mass 0 1169.86 1169.86 = 780.2 877.71 ↑ 730.3 764.06 ↑ 750.25 750.25 = 854.8 919.41 ↑
Connection Degree 0 6 6 = 9 11 ↑ 12 11 ↓ 13 13 = 15 15 =
Symmetry 1 0 0 = 0 0 = 0 0 = 0 0 = 0 0 =
Beam Continuity 0 2 2 = 2 2 = 2 2 = 2 2 = 2 2 =

1 2 3 4 5

−1

0

1

2

3

n = 1
0 [-]
9xHEA180

n = 2
0 [-]
5xHEA100,
4xHEA180

n = 3
0 [-]
2xHEA100,
5xHEA120,
2xHEA180

n = 4
0 [-]
4xHEA100,
2xHEA120,
1xHEA140,
2xHEA180

n = 5
0 [-]
2xHEA100,
2xHEA120,
1xHEA140,
2xHEA180,
2xHEA220

Number of allowed unique HEA profile types (n)

Sy
m
m
et
ry
[-]

(a) EXS-Based Optimization of Symmetry
vs n

1 2 3 4 5

−1

0

1

2

3

Number of allowed unique HEA profile types (n)

Sy
m
m
et
ry
[-]

(b) EXS-Based Optimization of Symmetry with corresponding Truss
Configurations

1 2 3 4 5

−1

0

1

2

3

n = 1
0 [-]
9xHEA180

n = 2
0 [-]
5xHEA100,
4xHEA180

n = 3
0 [-]
2xHEA100,
5xHEA120,
2xHEA180

n = 4
0 [-]
4xHEA100,
2xHEA120,
1xHEA140,
2xHEA180

n = 5
0 [-]
2xHEA100,
2xHEA120,
1xHEA140,
2xHEA180,
2xHEA220

Number of allowed unique HEA profile types (n)

Sy
m
m
et
ry
[-]

(c) TPE-Based Optimization of Symmetry
vs n

1 2 3 4 5

−1

0

1

2

3

Number of allowed unique HEA profile types (n)

Sy
m
m
et
ry
[-]

(d) TPE-Based Optimization of Symmetry with corresponding Truss
Configurations

Figure 6.4: Comparison of Exhaustive Search (EXS) and Tree-structured Parzen Estimator (TPE) based optimization of
symmetry versus the number of allowed unique HEA profile types (n) for Ntrials = 2000.
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6.1.4. Comparison: TPE(BCN) vs EXS(BCN)
For beam continuity, TPE(BCN) converges with EXS(BCN) on the primary objective (Table 6.4), yet
identifies distinct truss configurations with varying secondary objective values. For (n = 2), (n = 3), and
(n = 5), TPE(BCN) configurations exhibit slight improvements or deteriorations in secondary metrics
compared to EXS(BCN), driven by its stochastic sampling strategy [7] [8]. This exploratory diversity
enables TPE(BCN) to sample configurations probabilistically, unlike EXS(BCN) deterministic selection.
Figure 6.5 visualizes these distinctions, highlighting TPE(BCN) ability to uncover varied secondary
performance while maintaining primary objective convergence.

Table 6.4: Evaluation of Exhaustive Search EXS(BCN) vs Tree-structured Parzen Estimator TPE(BCN) for Beam Continuity
Optimization across grouping levels n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective W EXS(BCN) TPE(BCN) ∆ EXS(BCN) TPE(BCN) ∆ EXS(BCN) TPE(BCN) ∆ EXS(BCN) TPE(BCN) ∆ EXS(BCN) TPE(BCN) ∆

Mass 0 1169.86 1169.86 = 780.2 924.83 ↑ 730.3 764.06 ↑ 750.25 750.25 = 854.8 943 ↑
Connection Degree 0 6 6 = 9 10 ↑ 12 11 ↓ 13 13 = 15 13 ↓
Symmetry 0 0 0 = 0 1 ↑ 0 0 = 0 0 = 0 1 ↑
Beam Continuity 1 2 2 = 2 2 = 2 2 = 2 2 = 2 2 =
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Figure 6.5: Comparison of Exhaustive Search (EXS) and Tree-structured Parzen Estimator (TPE) based optimization of beam
continuity versus the number of allowed unique HEA profile types (n) for Ntrials = 2000.

6.2. TPE performance in single vs multi-objective scenarios
As described in the previous subchapter, one of the notable characteristics and inherent limitations
of the TPE algorithm is its stochastic nature. When applied to single-objective optimization using
the weighted sum approach, the TPE algorithm tends to overlook evident improvements, such as



6.2. TPE performance in single vs multi-objective scenarios 41

mass reductions while maintaining equivalent symmetry results, as demonstrated in the comparison
of EXS(SYM) with TPE(SYM) in Section . This limitation stems from TPE stochastic sampling, which,
under a weighted sum with zero weights for secondary objectives, neglects their optimization, poten-
tially missing configurations that balance multiple objectives, as noted in Chapter 4. Consequently, this
section evaluates the performance of single-objective TPE optimization against multi-objective TPE
optimization, employing four distinct weight distributions, as presented in Table 6.5.

Table 6.5: Comparison of different weights combination for TPE distributions in parametric truss optimization.

wM wCN wSY M wBCN

TPE(W1) 0.25 0.25 0.25 0.25
TPE(W2) 0.4 0.1 0.4 0.1
TPE(W3) 0.1 0.4 0.1 0.4
TPE(W4) 0.4 0.05 0.5 0.05

To determine themost appropriate single-objective TPE optimizations for comparisonwithmulti-objective
TPE configurations, a strategic approach was adopted. Rather than posing this as a question, the analy-
sis leverages a systematic methodology to select single-objective counterparts that maximize observed
differences, thereby highlighting the impact of multi-objective weighting. A comprehensive comparative
analysis was conducted for TPE(W1), TPE(W2), TPE(W3), and TPE(W4) against all single-objective
TPE optimizations. Appendix E.1 encompasses detailed sections comparing each multi-objective TPE
configuration with single-objective TPE for mass, connection degree, symmetry, and beam continuity,
quantifying differences in objective values across (n from 1 to 5) with (Ntrials = 2000) to identify the
single-objective TPE yielding the most significant deviations. These comparisons, including visualiza-
tions of the respective truss configurations, are fully documented in Appendix E.1, providing a robust
foundation for the analysis. This ensures a thorough evaluation of how weight distributions influence
truss design outcomes.

As a result, Table 6.12 reveals the greatest number of differences between single-objective and multi-
objective TPE configurations. It was observed that TPE(W1), which equally prioritizes all objectives, ex-
hibited the most differences with single-objective TPE for connection degree, recording 12 differences.
Similarly, TPE(W2), emphasizing mass and symmetry, showed the highest number of differences with
single-objective TPE for connection degree. For analytical precision, TPE(W2) was compared with the
second-highest difference, beam continuity TPE, which recorded 6 differences, representing the sec-
ond single-objective TPEwith significant deviations. TPE(W3), prioritizing connection degree and beam
continuity, unsurprisingly exhibited the most differences with mass optimization. Finally, TPE(W4), a
unique case heavily prioritizing symmetry, recorded the most differences with connection degree but
was compared with symmetry single-objective TPE to underscore the limitation of single-objective TPE,
which omits logical solutions by disregarding objectives with zero weight. This selection strategy high-
lights the impact of multi-objective weighting on search space exploration, particularly for connection
degree, which significantly constrains the design space due to its sensitivity.

Table 6.6: Number of Differences (Increases or Decreases) between Single-Objective TPEs and TPE(W1), TPE(W2),
TPE(W3), TPE(W4) Configurations Across n = 1 to 5, Ntrials = 2000.

TPE (Single Objective) W1 ∆TPE(W1) W2 ∆TPE(W2) W3 ∆TPE(W3) W4 ∆TPE(W4)

Mass 0.25 7 0.4 4 0.1 11 0.4 0
Connection Degree 0.25 12 0.1 12 0.4 7 0.05 13
Symmetry 0.25 8 0.4 5 0.1 9 0.5 8
Beam Continuity 0.25 8 0.1 6 0.4 9 0.05 8

All TPE results in this section were generated with (Ntrials = 2000), ensuring robust convergence for
both single and multi-objective optimizations, as validated in Chapter 5. The subsections below (6.2.1
to 6.2.4) systematically analyze each multi-objective TPE configuration against its selected single-
objective counterpart, elucidating trade-offs and the influence of weight distributions on truss config-
urations.
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6.2.1. TPE(W1) performance vs single objective TPE optimization scenarios
TPE(W1), which uniformly distributes weights across all four objectives, is comparedwith single-objective
TPE for connection degree TPE(CN). Given TPE probabilistic nature, TPE(W1) is expected to achieve
a more balanced performance across objectives. However, an initial examination of TPE(W1) versus
TPE(CN) for connection degree, as depicted in Subfigure 6.6b, reveals nuanced differences. Specifi-
cally, for connection degree, TPE(CN) outperforms TPE(W1) slightly at (n = 2), (n = 3), and (n = 5),
while performing equivalently at other n values. This marginal inferiority in connection degree suggests
that TPE(W1) sacrifices some performance in this objective. However, a broader analysis of TPE(W1)
performance across the secondary objectives of TPE(CN) — mass, symmetry, and beam continuity
demonstrates its superior overall balance, rendering the connection degree difference negligible.

Table 6.7: Comparison of Tree-structured Parzen Estimator of Connection Degree TPE(CN) vs TPE(W1) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(CN)) W1 TPE(CN) TPE(W1) ∆ TPE(CN) TPE(W1) ∆ TPE(CN) TPE(W1) ∆ TPE(CN) TPE(W1) ∆ TPE(CN) TPE(W1) ∆

Mass 0 0.25 1169.86 1169.86 = 1094.46 780.15 ↓ 772.11 764.06 ↓ 784.04 784.04 = 843.98 834.83 ↓
Connection Degree 1 0.25 6 6 = 8 9 ↑ 10 11 ↑ 11 11 = 12 14 ↑
Symmetry 0 0.25 0 0 = 1 0 ↓ 1 0 ↓ 2 1 ↓ 2 1 ↓
Beam Continuity 0 0.25 2 2 = 3 2 ↓ 2 2 = 2 2 = 3 2 ↓

For instance, at (n = 2), as shown in Subfigure 6.6a, TPE(W1) achieves a mass of 780 kg, approx-
imately 300 kg lighter than TPE(CN) 1094 kg. Similarly, Subfigures 6.6c and 6.6d for (n = 2) show
TPE(W1) outperforming TPE(CN) in symmetry and beam continuity. These subfigures, part of Figure
6.6, depict TPE(W1) objective function represented with black line consistently below TPE(CN) objec-
tive function represented with bluish line, signifying enhanced secondary objective performance. While
not unexpected, this improvement in mass, symmetry, and beam continuity for TPE(W1) comes at the
cost of a minor increase in connection degree (e.g., 9[-] for TPE(W1) vs. 8[-] for TPE(CN) at (n = 2)),
which is relatively insignificant in the context of overall truss performance.
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Figure 6.6: Comparison of TPE(W1) and TPE(CN) Optimization across Objectives for Ntrials = 2000.

This analysis highlights TPE(W1) capacity to leverage non-zero weights for a broader search space ex-
ploration, unlike TPE(CN) constrained focus on connection degree. A structured evaluation approach,
first comparing primary objectives and then assessing secondary objectives reveals TPE(W1) consis-
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tent superiority, as its performance curves typically lie below those of TPE(CN) for secondary objectives.
This comparative logic is applied in the following subsections.

6.2.2. TPE(W2) performance vs single objective TPE optimization scenarios
TPE(W2), which prioritizes mass and symmetry as indicated in Table E.8 is evaluated against single-
objective TPE for beam continuity (TPE(BCN)). Applying the analytical framework from the previous
subsection, TPE(W2) matches TPE(BCN) beam continuity performance for most (n) values, except
at (n = 5), where TPE(W2) records a slightly higher score (3[-] vs. 2[-] for TPE(BCN)). Concurrently,
TPE(W2) significantly reducesmass at (n = 5), achieving 810 kg compared to 943 kg for TPE(BCN). No-
tably, at (n = 2), TPE(W2) equals TPE(BCN) in beam continuity while improving secondary objectives—
mass, symmetry, and connection degree. Another compelling observation occurs at (n = 3) and
(n = 4), where TPE(W2) and TPE(BCN) yield identical results, underscoring the influence of weight
distributions in aligning multi-objective and single-objective outcomes.

Table 6.8: Comparison of Tree-structured Parzen Estimator of Beam Continuity TPE(BCN) vs TPE(W2) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(BCN)) W2 TPE(BCN) TPE(W2) ∆ TPE(BCN) TPE(W2) ∆ TPE(BCN) TPE(W2) ∆ TPE(BCN) TPE(W2) ∆ TPE(BCN) TPE(W2) ∆

Mass 0 0.4 1169.86 1169.86 = 924.83 780.15 ↓ 764.06 764.06 = 750.25 750.25 = 943 810.19 ↓
Connection Degree 0 0.1 6 6 = 10 8 ↓ 11 11 = 13 13 = 13 14 ↑
Symmetry 0 0.4 0 0 = 1 0 ↓ 0 0 = 0 0 = 1 1 =
Beam Continuity 1 0.1 2 2 = 2 2 = 2 2 = 2 2 = 2 3 ↑

This equivalence at (n = 3) and (n = 4) suggests that TPE(W2) emphasis on mass and symmetry con-
verges with TPE(BCN) optimal profiles within the 9-element truss (Figure 6.7).These findings highlight
the value of varied weight distributions in expanding the optimization search space, a topic explored fur-
ther in following subsections. TPE(W2) ability to maintain or enhance beam continuity while improving
secondary objectives exemplifies the advantages of multi-objective optimization, as non-zero weights
facilitate exploration of configurations overlooked by TPE(BCN).
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Figure 6.7: Comparison of TPE(W2) and TPE(BCN) Optimization across Objectives for Ntrials = 2000.

6.2.3. TPE(W3) performance vs single objective TPE optimization scenarios
This comparison examines TPE(W3), which assigns weights of 0.4 to connection degree and beam
continuity and 0.1 tomass and symmetry, against single-objective TPE for mass (TPE(M)). As expected,
TPE(M) outperforms TPE(W3) in mass optimization due to TPE(W3) low mass weight. However, for all
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(n) values except (n = 2), TPE(W3) mass results are remarkably close to those of TPE(M). In contrast,
connection degree and beam continuity, TPE(W3) prioritized objectives, consistently surpass TPE(M)
performance. Yet, for mass and symmetry, TPE(W3) yields inferior results compared to TPE(M).

Table 6.9: Comparison of Tree-structured Parzen Estimator of Mass TPE(M) vs TPE(W3) for parametric truss optimization
across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(M)) W3 TPE(M) TPE(W3) ∆ TPE(M) TPE(W3) ∆ TPE(M) TPE(W3) ∆ TPE(M) TPE(W3) ∆ TPE(M) TPE(W3) ∆

Mass 1 0.1 1169.86 1169.86 = 780.15 1122.74 ↑ 730.27 772.11 ↑ 750.25 784.04 ↑ 810.19 943 ↑
Connection Degree 0 0.4 6 6 = 9 8 ↓ 12 10 ↓ 13 11 ↓ 14 13 ↓
Symmetry 0 0.1 0 0 = 0 0 = 0 1 ↑ 0 1 ↑ 1 1 =
Beam Continuity 0 0.4 2 2 = 2 2 = 2 2 = 2 2 = 3 2 ↓

A particularly intriguing finding is TPE(M) symmetry performance, where, at (n = 3) and (n = 4), it
surpasses TPE(W3), despite symmetry being a secondary objective for TPE(M) and a less prioritized
one for TPE(W3). This suggests that prioritizing connection degree exerts significant influence on other
objectives, reflecting its sensitivity in constricting the search space. This aligns with Chapter 4, which
notes connection degree’s arrangement-driven nature reduces configuration variability. Consequently,
TPE(W3) achieves superior connection degree results at (n = 3) and (n = 4) compared to TPE(M), but
at the expense of increased symmetry. Similarly, beam continuity, a prioritized objective for TPE(W3),
outperforms TPE(M), though TPE(M) beam continuity score deviates only slightly at (n = 5).

These results indicate that prioritizing connection degree in weight distributions may be suboptimal, as
it imposes substantial constraints on the computational space, adversely affecting other objectives. No-
tably, TPE(M), focused solely on mass, remains competitive in connection degree and beam continuity
compared to TPE(W3), despite the emphasis on these objectives.
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Figure 6.8: Comparison of TPE(W3) and TPE(M) Optimization across Objectives for Ntrials = 2000.

6.2.4. TPE(W4) performance vs single objective TPE optimization scenarios
This subsection evaluates the performance of TPE(W4), characterized by a weight distribution heavily
favoring symmetry (wSYM = 0.5) alongside weights for mass (wM = 0.4), connection degree (wCN

= 0.05), and beam continuity (wBCN = 0.05), respectively, within the multi-objective optimization
framework. A notable preliminary finding warrants consideration: comprehensive analysis reveals that
TPE(W4) converges entirely with single-objective TPE for mass (TPE(M)) across all objectives and n
values, yielding identical truss configurations. This convergence, observed in Appendix E.4 in Table
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E.13, implies a meaningful comparison between TPE(W4) and TPE(M), as their outcomes are indistin-
guishable, likely due to the significant mass weight in TPE(W4) aligning with TPE(M) optimization focus.
Consequently, to elucidate the implications of TPE(W4) symmetry prioritization, this analysis shifts to
a comparison with single-objective TPE for symmetry (TPE(SYM)), selected due to symmetry’s domi-
nant weight in TPE(W4) and its substantial differences relative to single-objective TPE, second only to
connection degree, as evidenced in Table 6.12.

Following Table 6.12, TPE(W4) is thus compared against TPE(SYM) to explore the nuanced effects
of multi-objective optimization when symmetry is heavily prioritized. This comparison reveals that
TPE(SYM) consistently achieves an optimal symmetry score of 0[-] across all (n) values, reflecting
its singular focus on symmetry. In contrast, TPE(W4) matches this performance for (n from 1 to 4) but
records a symmetry score of 1[-] at (n = 5), influenced by the competing priorities of other objectives.
Nevertheless, at (n = 5), TPE(W4) significantly enhances mass performance, reducing it by approx-
imately 120 kg from 919 kg for TPE(SYM) to 810 kg, as indicated in Table E.15. This improvement,
however, is accompanied by minor increases in symmetry and beam continuity for TPE(W4).

Table 6.10: Comparison of Tree-structured Parzen Estimator of Symmetry TPE(SYM) vs TPE(W4) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(SYM)) W4 TPE(SYM) TPE(W4) ∆ TPE(SYM) TPE(W4) ∆ TPE(SYM) TPE(W4) ∆ TPE(SYM) TPE(W4) ∆ TPE(SYM) TPE(W4) ∆

Mass 0 0.4 1169.86 1169.86 = 877.71 780.15 ↓ 764.06 730.27 ↓ 750.25 750.25 = 919.41 810.19 ↓
Connection Degree 0 0.05 6 6 = 11 9 ↓ 11 12 ↑ 13 13 = 15 14 ↓
Symmetry 1 0.5 0 0 = 0 0 = 0 0 = 0 0 = 0 1 ↑
Beam Continuity 0 0.05 2 2 = 2 2 = 2 2 = 2 2 = 2 3 ↑

The non-zero weights assigned to secondary objectives in TPE(W4) facilitate a broader exploration
of the design space, enabling configurations that optimize mass while incurring only marginal sym-
metry degradation, unlike TPE(SYM) exclusive emphasis on symmetry, which constrains its scope.
This underscores the dependency of TPE performance on weight distributions, as TPE(W4) balanced
weighting mitigates the limitations inherent in single-objective optimization.
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Figure 6.9: Comparison of TPE(W4) and TPE(SYM) Optimization across Objectives for Ntrials = 2000.

6.3. Influence of optimization parameters
This section evaluates the impact of key parameters on the computational efficiency and solution qual-
ity of the Tree-structured Parzen Estimator (TPE) algorithm applied to steel truss optimization. These
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parameters include the number of truss elements (k) the number of allowed HEA profiles (n), the num-
ber of trials (Ntrials = 2000), and the number of weight distributions in multi-objective optimization. The
analysis integrates theoretical insights from optimization literature with empirical observations from the
benchmark problem, as detailed in Chapter 3, to provide a comprehensive understanding of parameter
influences.

6.3.1. Search space complexity
The dimensionality of the search space in truss optimization is determined by the number of truss ele-
ments (k) and the number of allowed HEA profiles (n), resulting in a total of (nk) possible configurations.
For the benchmark problem, characterized by (k = 9) and (n = 5), the search space encompasses
approximately 1.95 million configurations (59). In contrast, larger typologies, such as Typology 3 with
(k = 17) and (n = 8), exhibit an exponentially larger search space of 817 ≈ 2.25 × 1015 configurations.
Notably, a comparative analysis between the benchmark problem and Typology 2 reveals that, despite
their identical number of truss elements (k = 9), the two scenarios differ solely in the number of HEA
different profiles analyzed ((n = 5) for the benchmark versus (n = 6) for Typology 2). This minor
increment of one additional HEA profile significantly alters the search space, as evidenced in Table
6.10. Specifically, the search space expands approximately five times from 1.95 million configurations
in the benchmark problem to 10.08 million in Typology 2, underscoring the exponential sensitivity to
changes in (n). These values are comprehensively detailed in Table 6.10, which quantifies the search
space sizes across the benchmark problem and Typologies 1–3, accompanied by their logarithmic
scales log10(n

k) to effectively illustrate the exponential growth. Complementing this, the contour plot
in Figure 6.10 provides a visual representation of this growth as a function of (n) and (k), delineating
regions where the search space magnitude renders exhaustive search methods computationally in-
feasible. Consequently, this exponential expansion precludes the practicality of exhaustive search for
larger truss configurations, necessitating the adoption of efficient optimization algorithms such as the
Tree-structured Parzen Estimator (TPE). TPE leverages Bayesian optimization to strategically priori-
tize high-performing configurations, thereby mitigating the computational burden [9]. The heightened
complexity associated with larger truss configurations amplifies computational demands, necessitating
meticulous parameter tuning to achieve an optimal balance between exploration and resource con-
straints, as highlighted by [47].

(a) Contour plot illustrating the logarithmic search space size
(log10(nk)) as a function of the number of HEA profiles (n)

and truss elements (k).

Problem n k Search Space Size (nk) log10(n
k)

Benchmark 5 9 1,953,125 6.29
Typology 1 5 17 762,939,453,125 11.88
Typology 2 6 9 10,077,696 7.00
Typology 3 8 17 2,251,799,813,685,248 15.35

(b) Search space sizes for truss optimization problems,
detailing the number of HEA profiles (n), truss elements (k),
total configurations (nk), and logarithmic search space size

(log10(nk)).

Figure 6.10: Visualization of Search Space Complexity in Truss Optimization Problems. The contour plot (a) shows the
exponential growth of the search space with respect to the number of HEA profiles (n) and truss elements (k), while the table

(b) provides exact values for the benchmark and typologies.

6.3.2. Amount of trials Ntrials
The extent of search space exploration in the Tree-structured Parzen Estimator (TPE) is governed
by the number of trials (Ntrials), a parameter that directly influences both the quality of solutions and
the computational expenditure. Higher values of (Ntrials) increase the probability of identifying optimal
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or near-optimal solutions by facilitating more extensive sampling of the search space, however this
comes at the cost of a linear increase in computational time. Validation experiments conducted on
the benchmark problem, defined by (k = 9) truss elements and (n = 5) HEA profiles, demonstrated
that (Ntrials = 2000) was sufficient to achieve convergence comparable to that of Exhaustive Search
(EXS), as detailed in Chapter 5. In contrast, for larger search spaces, such as those encountered in
Typology 3 with (k = 17) and (n = 8), the determination of an appropriate (Ntrials) poses a significant
challenge due to the expansive configuration space, which comprises 817 ≈ 2.25× 1015 configurations
as noted in the Section 6.3.1. To address this, heuristic strategies, such as monitoring convergence
through iterative plotting of the best objective value against trial number, provide a pragmatic approach
for selecting (Ntrials), with optimization terminated when incremental improvements reach a plateau
[7]. In practical applications, adjustments to (Ntrials) were made for larger problems, capitalizing on
enhanced computational resources, such as the Blue Delft computing cluster, to ensure run times
remained feasible within a 24-hour limit [18]. This adaptive approach aligns with best practices in
Bayesian optimization, where trial counts must balance solution quality with computational efficiency,
particularly in high-dimensional structural optimization problems [36].

6.3.3. Amount of weight distributions
In multi-objective optimization, the granularity of the approximated Pareto front is dictated by the num-
ber of weight distributions, with each distribution necessitating an independent Tree-structured Parzen
Estimator (TPE) optimization run. Consequently, the computational time exhibits a linear relationship
with the number of distributions, as each additional run proportionally increases the overall processing
duration. This study evaluated configurations comprising 4, 35, and 177 weight distributions to sys-
tematically investigate the trade-offs among objectives, as outlined in Chapter 4. A greater number of
distributions yields a more refined representation of the Pareto front, thereby enhancing the resolution
of trade-off analyses, however, this refinement substantially elevates the computational demand. The
selection of the number of distributions is profoundly influenced by stakeholder preferences, clearly de-
lineated requirements may permit a reduced number of distributions, whereas scenarios characterized
by uncertainty necessitate a larger set to comprehensively capture a diverse spectrum of trade-offs.
This linear scaling underscores the imperative for judicious allocation of computational resources to
effectively balance the depth of trade-off analysis with practical time constraints.

6.3.4. Computational constraints and practical considerations
Practical limitations, including available computational power and time, critically shape parameter selec-
tion. To ensure feasibility, analyses were designed to complete within 8 hours on a personal computer,
aligning with typical overnight processing, or up to 24 hours on the Blue Delft computing cluster for
larger problems (e.g., Typology 3) [18]. For instance, in the benchmark problem, (Ntrials) and 4 distribu-
tions were manageable within 8 hours. For larger trusses with increased (k), (n), (Ntrials) (Table 6.11),
and distributions (e.g., 177 distributions), the Blue Delft cluster enabled extended runs while adhering
to the 24-hour limit [18].

Table 6.11: Impact of Optimization Parameters on TPE Performance

Parameter Impact on Search Space Impact on Computational Time Impact on Solution Quality

Number of Elements (k) Exponential (nk) Increases with evaluation
complexity

Larger k requires more
exploration

Number of Profiles (n) Exponential (nk) Increases with search space size More profiles increase diversity
Number of Trials (Ntrials) None Linear increase Higher Ntrials improves quality

Number of Distributions None Linear increase More distributions enhance
Pareto resolution

This strategic use of computational resources underscores the need to balance parameter settings with
stakeholder-driven design requirements, where clarity in preferences can reduce the number of distribu-
tions, thereby optimizing computational efficiency [47]. The interplay of truss elements, HEA profiles,
trials, and weight distributions profoundly affects the computational efficiency and solution quality of
TPE-based optimization. The exponential growth of the search space with (m) and (n) necessitates
efficient sampling, while (Ntrials) and distributions linearly impact computational time, requiring careful



6.4. Multi-Plot visualization analysis 48

calibration to achieve robust solutions within practical constraints. By leveraging heuristic convergence
monitoring and high-performance computing resources, such as the Blue Delft cluster, this study bal-
anced precision and feasibility, aligning with the stakeholder-driven design objectives.

6.4. Multi-Plot visualization analysis
As established in Chapter 5, multi-parallel plots are a highly effective tool for dynamically visualizing
the trade-offs in multi-objective optimization of steel truss configurations. This section elaborates on
their utility in representing the optimization results for the 9-element benchmark truss, focusing on
four objectives, mass, connection degree, symmetry, and beam continuity alongside their stakeholder-
defined weights and the number of allowed HEA profiles (n).

The multi-parallel plot consists of multiple axes to capture the optimization landscape comprehensively.
It includes four axes for the objective values (mass, connection degree, symmetry, and beam continuity),
four axes for their corresponding weights {wM , wCN , wSYM , wBCN }, and one axis for (n from 1 to 5).
Each line in the plot represents a unique truss configuration, connecting values across these axes to
illustrate how a specific combination of objectives, weights, and n corresponds to a feasible design.
The plot covers the entire search space defined by the weight distributions considered, with more
distributions resulting in a denser plot that includes additional lines representing diverse configurations.
This scalability enhances the granularity of trade-off analysis, as demonstrated in Figure 6.11 and Figure
6.12, where Figure 6.11 shows the plot for 35 weight distributions, providing a coarse representation of
the trade-off space, while Figure 6.12shows the plot for 177 weight distributions, offers a finer resolution,
capturing a broader range of truss configurations.

Figure 6.11: Multiparallel plot benchmark problme, Ntrials = 2000 , 35 distributions.

Figure 6.12: Multiparallel plot benchmark problme, Ntrials = 20 , 177 distributions.
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A notable feature of the multi-parallel plot is the geometric pattern observed in the weight axes, which
may seem counterintuitive given the probabilistic nature of the Tree-structured Parzen Estimator (TPE)
optimization. This pattern arises from the predefined weight distributions used in the optimization, as
detailed in Chapter 4. The study employs two sets of distributions: a coarse grid with 35 combina-
tions derived from weight values {0.0, 0.25, 0.5, 0.75, 1.0}, and a finer grid with 177 combinations from
{0.0, 0.1, 0.2, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 1.0}. These discrete values, constrained by the normaliza-
tion condition (wM + wCN + wSYM + wBCN = 1), produce a regular geometric arrangement. For
example, when (wM = 1) , the other weights are zero, resulting in lines connecting the maximum value
on the (wM ) axis to zero on the other weight axes, creating a structured visual pattern.

The dynamic interactivity of the multi-parallel plot is a key advantage, enabling stakeholders to retrieve
specific truss configurations from the optimization database by defining boundary intervals on the axes.
By selecting ranges for objectives, weights, or nmber of allowed HEA profiles (n), stakeholders can
filter the plot to highlight configurations that meet these criteria, instantly visualizing the corresponding
truss designs. This functionality, implemented using interactive visualization tools such as Plotly [39],
allows real-time exploration of the trade-off space. For instance, binding the mass axis to a specific
interval and restricting n to a particular value retrieves all configurations satisfying these constraints,
displaying their detailed parameters, such as HEA profile assignments and objective values. This
interactivity enhances stakeholder engagement by providing an intuitive interface to navigate complex
design spaces, aligning with the thesis’s objective of facilitating informed decision-making.

To illustrate, consider a scenario where stakeholders prioritize a mass range of [730.27, 850] kg, a
symmetry score of [0, 1], (n = 3), and specify weights of (wM = 0.4) and (wSYM = 0.2) for mass and
symmetry, respectively. By binding these axes in the multi-parallel plot, the tool filters and highlights
all truss configurations meeting these constraints, displaying their connections across other axes (e.g.,
connection degree, beam continuity, and weights). This process, visualized in Figure 6.13.

Figure 6.13: Multiparallel plot benchmark problme, Ntrials = 2000 , 35 distributions - boundary conditions

Retrieving one or multiple configurations from the database, presenting their structural parameters
and visual representations of the found truss configuration based on the imposed boundaries on the
obejctive’s axes (Figure 6.14). This example demonstrates the plot’s ability to translate stakeholder
preferences into actionable design solutions, enhancing transparency and decision-making efficiency.
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Figure 6.14: Multiparallel plot benchmark problme, Ntrials = 2000 , 35 distributions - determining a potential suitable truss
configuration

6.5. Interpretation of structural outcomes
Throughout this thesis, the focus was on optimizing two conflicting objectives: mass, which becomes
more optimal with greater uniqueness in the model since each element can be precisely tailored to the
applied load, thus featuring less overdesign, versus structural complexity objectives, including connec-
tion degree, symmetry, and beam continuity, which become more optimal with standardization of the
truss elements since the more standard elements are used in the truss configuration, the simpler the
structural implementation becomes [7]. An interesting observation arose during the analysis, given that
the trusses analyzed were structurally determinate, rectangular, and symmetric in topology (not to be
confused with symmetry in element profiles), they have the feature of distributing loads equivalently
through all symmetric elements, causing repetition in some elements [49]. This can be seen in Figure
6.15, where, while optimizing for mass and expecting that the best mass truss configuration would oc-
cur at the highest value of (n) (in this case, (n = 5)), the most optimal mass for the truss configuration
was actually achieved at (n = 3). It can be observed that the minimum of the function is located at
(n = 3) and corresponds to the lowest mass identified for this truss, 730.27 kg, . This unexpected
result indicates that the symmetric topology naturally groups elements under similar loading conditions,
reducing the need for excessive profile diversity. For a detailed representation of the groupings and
corresponding configurations for (n = 1) and (n = 2), derived following the same procedure, refer to
Appendix C.

As can be followed from Subfigure 6.15b, examination of the (UC) values for each element reveals
a distinct formation of three groups of elements. In this case, the most logical selection to determine
the lowest mass is to select the first valid (UC) values after those that are invalid. This approach
identifies suitable HEA profiles with the best-balanced (UC) values available overall (which, in other
words, means minimizing overdesign). For the optimization of the mass objective, elements 1 and 2
are assigned the profile HEA180, elements 3 to 7 are assigned the profile HEA100, and elements 8
and 9 are assigned the profile HEA120, thus forming three distinct groups of elements. This grouping
strategy leverages the truss’s load distribution to minimize material use while ensuring structural safety
with (UC ≤ 1) [21]. The number of groups indicates the value of (n) for which the minimal mass occurs.
When the most optimal truss configuration from the perspective of the mass objective for higher values
of (n), such as (n = 4) and (n = 5), is examined, an immediate increase in mass is observed. This
is explained by the fact that the system is forced to select four or five groups of HEA profiles, which
exceeds the optimal number of groups (three), and thus forces the truss to incorporate less optimal
elements from the perspective of (UC) values (still feasible but with a higher rate of overdesign). This
highlights a trade-off between profile diversity and efficiency, as excessive groups lead to suboptimal
material use.
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Figure 6.15: Comparison of TPE-based mass optimization and constrained mass with UC values for a 9-element truss. (n = 3)

This principle is crucial for understanding how to balance different objectives. Following mass optimiza-
tion, the structural complexity objectives behave differently. As previously noted, structural objectives
such as connection degree are influenced by both the position of the different element profiles with
respect to each other and their overall mass. Consequently, for structural complexity objectives, the
grouping strategy applied in mass optimization does not entirely hold. All objectives related to structural
complexity tend to worsen as the allowed number of HEA profiles increases, however, as a baseline,
adopting the optimal number of HEA groups for mass (n = 3) provides a beneficial starting point to
balance these with the remaining structural objectives.

Insights from Table 1 are emphasized next, given the applied distributions where all objectives are uni-
formly prioritized in TPE(W1), mass and symmetry are prioritized in TPE(W2), and connection degree
and beam continuity are prioritized in TPE(W3) these three distributions were selected for analysis to
explore a significant aspect. (Note that TPE(W4) was excluded, as its particular bias would make its
inclusion unfair; thus, the analysis focuses on TPE(W1), TPE(W2), and TPE(W3). This selection offers
a balanced perspective: W1 provides a centered approach,W2 emphasizes mass and symmetry with
weights of 0.4, andW3 emphasizes connection degree and beam continuity with weights of 0.4.

Table 6.12: Number of Differences (Increases or Decreases)i between Single-Objective TPEs and TPE(W1), TPE(W2),
TPE(W3) Configurations Across n = 1 to 5, Ntrials = 2000.

TPE (Single Objective) W1 ∆TPE(W1) W2 ∆TPE(W2) W3 ∆TPE(W3) ∆Sum

Mass 0.25 7 0.4 4 0.1 11 22
Connection Degree 0.25 12 0.1 12 0.4 7 31
Symmetry 0.25 8 0.4 5 0.1 9 22
Beam Continuity 0.25 8 0.1 6 0.4 9 23

Following Table 1, the number of differences between single-objective TPE and multi-objective TPE
configurations reveals that the greatest number of differences arises with the objective of connection
degree, as this is one of the most restraining objectives out of all four applied in this study, since it
is strongly related to the location of the elements. This sensitivity arises because connection degree
depends on the arrangement of profiles at nodes, significantly constraining the design space. Con-
sequently, this objective requires careful treatment and should not be assigned a high weight in the
problem, as doing so would strongly restrict the available search space. High weights on connection
degree can limit exploration, potentially overlooking balanced solutions [3].
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Reflection, limitations and future work

This chapter begins with a brief personal reflection on the research process, highlighting key lessons
learned, challenges encountered, and strategic decisions made throughout the thesis trajectory. These
reflections aim to provide insight into the development of themethodology, the reasoning behind specific
design choices, and considerations that would inform a similar study if conducted again. Following
this, the chapter evaluates the limitations of the multi-objective optimization framework applied to a
2D, structurally determinate, rectangular steel truss using the Tree-structured Parzen Estimator (TPE).
Despite promising results, several challenges restrict the framework’s applicability and effectiveness,
which are addressed below, followed by actionable future work to enhance its potential.

7.1. Reflection
Time Management and Project Scope
The thesis comprehensively included four truss topologies, multiple weight distributions (including up to
177 combinations), and two optimization algorithms, placing significant demands on time constraints.
The extensive analysis of multiple topologies required weeks but produced similar outcomes due to
their shared rectangular geometry and uniform loading conditions Appendix A. A more focused scope,
concentrating on the 9-element benchmark truss with a reduced set of weight distributions, could have
facilitated a deeper investigation of results. To address computational demands, the Blue Delft super-
computer was integrated late in the project, accelerating result generation for larger trusses. However,
it provided limited analytical benefits over local computations, which could process the 9-element truss
in under a day. Engaging Blue Delft for simplistic problems was inefficient, as standard computers suf-
fice. Blue Delft is better suited to complex problems, such as 3D trusses with non-uniform loading or
dynamic analysis. Its late implementation coincided with recognizing uniform topology outcomes due
to grouping effects (see Appendix C), but time constraints prevented redirecting efforts toward diverse
typologies. Earlier use of Blue Delft could have identified this limitation sooner, allowing exploration of
varied truss configurations.

Implementation of Grasshopper for a Simple Truss Configuration
The decision to employ Grasshopper with Karamba3D and Colibri (see Section 4.2) plugins for mod-
eling and analyzing a simplistic the 9-element truss benchmrk was based on the initial expectation
that the research would address complex truss configurations requiring advanced computational tools.
However, for a statically determinate 2D truss with straightforward axial force analysis, this approach
proved overly complex, as a Python-based structural analysis would have been more efficient. The
choice arose from early uncertainty regarding the research trajectory, which aimed to develop a model
capable of handling diverse truss typologies. Consequently, the setup and integration of sophisticated
plugins consumed disproportionate time without yielding proportional benefits given the simplicity of
the operated structures, underscoring a mismatch between the tool’s capabilities and the problem’s
simplicity.

Algorithm Selection and the Suitability of TPE

52
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The selection of the Tree-structured Parzen Estimator (TPE) as the primary optimization algorithm
was motivated by its effectiveness in discrete, multi-objective optimization of steel truss configurations,
particularly for categorical HEA profile assignments. TPE Bayesian framework, enhanced by pruning
capabilities, requires (100 – 2,000) trials, significantly fewer than the 1.95 million needed by Exhaus-
tive Search (EXS) (Section 5.5). It efficiently aligns with weighted scalarization of objectives: mass,
symmetry, connection degree, and beam continuity reflecting stakeholder preferences. However, com-
paring TPE to EXS, which ensures global optima for small-scale problems but is impractical for larger
ones, and NSGA-II, which excels in Pareto front generation but struggles with topological objectives
proved challenging. . TPE slower convergence for symmetry at (n = 5), requiring 2,000 trials suggests
limitations compared to alternatives like CMA-ES for specific problem types. While TPE was deemed
suitable given the thesis’s focus on a tailored optimization model rather than algorithm analysis, com-
prehensive investigation of alternative methods is needed, as other algorithms may offer superior per-
formance. TPE optimization potential remains a topic for future research due to resource constraints
on extensive algorithm evaluation.

Multi-Objective Optimization and Scalarization
This study aimed to balance multiple objectives — mass, symmetry, connection degree, and beam
continuity using the Tree-structured Parzen Estimator (TPE) with weighted scalarization. The thesis
framed this as multi-objective optimization to reflect the intent to address diverse stakeholder prior-
ities, as scalarization aggregates objectives into a single score via a weighted sum. However, this
terminology was partially inaccurate, as scalarization simplifies the optimization process by prioritizing
a single composite score, limiting exploration of trade-offs across the Pareto front, where solutions
optimize multiple objectives simultaneously (Section 4.4). For example, configurations optimized with
weight set TPE(W2), prioritizing mass and symmetry (Section 6.2.2) may neglect solutions excelling in
connection degree or beam continuity. While true multi-objective methods, such as those generating
Pareto fronts, could offer greater trade-off diversity, the project’s scope and computational constraints
hindered their adoption. Future research could develop methods to better balance trade-offs while
preserving computational efficiency.

Connection Degree in Constructability Optimization
At the outset of this research, objectives were deliberately selected for their universal applicability
across diverse civil engineering structures, including trusses, frames, and bridges, to ensure the op-
timization framework’s versatility. Among these, the Connection Degree (CN) objective, defined as
the sum of node degrees in the truss graph, emerged as a particularly compelling metric due to its
topological complexity and relevance to constructability (Section 4.3.2). As detailed in Chapter 6, CN
proved the most challenging objective to optimize, necessitating up to 500 trials for convergence with
the Tree-structured Parzen Estimator (TPE) at (n = 5), reflecting its sensitivity to profile diversity.

The feasibility of including CN was scrutinized, given that the framework exclusively employs HEA pro-
files, which, despite varying grades, are compatible and pose minimal connection challenges. Never-
theless, CN was retained for two principal reasons. First, its topological nature provides critical insights
into joint complexity, enhancing the framework’s ability to address constructability concerns. Second,
its universal applicability extends beyond HEA profiles to diverse structural systems, where profile
variability significantly impacts fabrication. For instance, connecting dissimilar profiles necessitates tai-
lored connection details or adjusted welding configurations, elevating fabrication costs, while ensuring
minimal eccentricity often requires additional reinforcement, further complicating joint design (Section
4.3.2). Given potential conflicts arising from high CN values, such as increased fabrication complexity
and cost, a deliberate decision was made to maintain CN at relatively low levels. This choice was partic-
ularly evident in the TPE(W3) distribution that prioritized connection degree and beam continuity. Con-
sequently, configurations with higher CN values, which could have enhanced structural performance
through diverse profile assignments, were deprioritized, resulting in solutions that were not the most
structurally optimal (Appendix E). This trade-off underscores the challenge of balancing constructability
with structural efficiency, highlighting CN critical role in informing stakeholder-driven design decisions.

The digital optimization via TPE systematically navigated these complexities, outperforming human
intuition, whichmight oversimplify joint design by assuming uniform profiles. This underscores CN value
in validating the Python framework’s robustness and its potential for broader structural applications.
Future research could explore non-uniform topologies or varied profile types to further elucidate CN
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impact, enhancing its alignment with stakeholder-driven design priorities.

Absence of Direct Stakeholder Engagement
The optimization framework utilized predefined stakeholder preferences, assigning weights to objec-
tives such as mass and symmetry without direct consultation with industry stakeholders. This approach
risked overlooking critical priorities, such as fabricators’ emphasis on beam continuity for prefabrication
efficiency or architects’ preference for symmetry for aesthetic coherence as well as other stakeholder-
specific considerations not readily apparent to researchers. The absence of engagement with real
stakeholders perspectives, compromised the framework’s alignment with practical engineering require-
ments, potentially omitting key factors that could have refined objective selection and weight assign-
ments. This highlights the challenge of ensuring practical applicability in academic research without
direct stakeholder input, necessitating future collaboration to enhance the framework’s relevance.

Truss Topology Analysis
This thesis investigated four distinct truss topologies: Benchmark, Typology 1, Typology 2, and Typol-
ogy 3 (Figure G.5), all characterized by a rectangular geometry and a uniformly distributed load, as
detailed in Chapter 2. The expectation was that these topologies would yield diverse optimal solutions,
potentially forming a comprehensive Pareto front for multi-objective optimization or an exponential de-
crease in mass for single-objective optimization, as seen in prior literature [9] [32]. However, structural
analysis conducted via Grasshopper and Karamba3D revealed that the outputs across these topologies
were remarkably similar, contrary to initial expectations.

The uniformity in results stemmed from the consistent rectangular geometry and uniformly distributed
load applied at nodes (Appendix A), which limited variability despite differences in the number of ele-
ments (9 or 17) and HEA profiles used (HEA100 to HEA220). or single-objective optimization, such as
minimizing mass, optimal configurations clustered around specific values of (n), with (n = 3) predomi-
nant for the Benchmark and Typology 1, and (n = 2) for Typologies 2 and 3, where diagonal positioning
induced compression in the top chord (Section A.2).This clustering indicates that the chosen parame-
ters constrained the solution space, reducing the diversity of outcomes.

This outcome highlights a critical lesson in research design. While analyzing multiple topologies vali-
dated the adaptability of the Python code implemented for optimization , it did not significantly enhance
the diversity of analytical outcomes. The substantial time invested in evaluating these topologies, while
useful for code verification, was not the most efficient use of resources. Future research could explore
varied truss geometries (e.g., triangular or arched) and diverse load scenarios to generate more varied
results, providing a robust testbed for the computational framework and advancing structural optimiza-
tion insights.

Human versus Digital Optimization Approaches
An insightful observation arises from the TPE optimization results for different values of (n) , as pre-
sented in Section A.1. A human engineer could apply engineering assumptions to determine the exact
HEA profiles for each of the 9 elements in the benchmark truss, achieving an optimal configuration
up to (n = 3), which corresponds to the lowest mass of 730.27 kg. Nevertheless, for (n = 4) and
(n = 5), identifying the optimal truss configuration becomes challenging without calculating the mass
for potential variants, as the complexity of profile assignments increases.

Initially, one might question the need to evaluate configurations with (n = 4) or (n = 5) , since they
exceed the optimal mass achieved at (n = 3) in single-objective optimization for mass. For exam-
ple, prior studies illustrated an exponential decay in mass towards higher values of (n) , as depicted
in Figure A.9. However, due to the uniform rectangular topology and consistently applied uniformly
distributed load, such a decay ws. not observed, as the solution space remained constrained across
all values of (n). In multi-objective optimization, where objectives like symmetry, connection degree,
and beam continuity are considered alongside mass, the application of algorithms like TPE becomes
essential. For instance,following from Figure 6.7 comparing TPE(W2) (prioritizing mass and symmetry)
with TPE(BCN), the optimal configuration for TPE(W2) was found at (n = 4), suggesting that higher
(n) values can yield optimal solutions when balancing multiple objectives. This demonstrates the value
of digital tools in navigating complex trade-offs, where human intuition alone may struggle to identify
optimal configurations for higher (n), thus highlighting the complementary role of computational opti-
mization in multi-objective truss design.
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7.2. Model and computational limitations
Bias in grasshopper Unity Check calculations: The Grasshopper software calculates unity checks
(UC) for each element based on the assumption that the entire truss is composed of a single HEA profile
type. However, the optimization process generates truss configurations incorporating multiple profile
types, which can alter force distributions within the truss. Consequently, the (UC) values used may not
accurately reflect the true structural performance of these configurations, introducing bias in the selec-
tion process. Post-design validation checks could partially mitigate this issue, but they risk excluding
potentially optimal solutions not selected due to biased (UC) values. Calculating (UC) for all possible
profile combinations prior to optimization is computationally infeasible due to the exponential growth of
the search space, as discussed in Chapter 6, where the benchmark problem yields approximately 1.95
million configurations.

Limited scope of objectives: The optimization framework focuses on four objectives—mass, connec-
tion degree, symmetry, and beam continuity. A broader range of objectives could enhance its relevance
to steel truss design, including minimizing construction and material costs, reducing environmental im-
pact through lower embodied carbon optimizing natural frequencies, and maintaining global structural
stability. Additional objectives, such as joint complexity and manufacturability, could further align the
framework with practical design requirements. Incorporating these and potentially other objectives
would create a more comprehensive framework but would increase computational complexity.

Computational costs: The computational efficiency of the TPE algorithm is heavily influenced by
parameters such as the number of trials (Ntrials), amount of operated weight distributions, truss elements
(k), and allowed HEA profiles (n). As detailed in Section 6.6, small increases in these parameters
lead to exponential growth in the search space. For instance, the benchmark problem with (k = 9)
and (n = 5) has approximately 1.95 million configurations, while a larger truss like Typology 3 with
(k = 17) and (n = 8) yields 817 ≈ 2.25 × 1015 configurations. This immense search space poses a
significant computational challenge, highlighting the need for further research into methods that reduce
TPE computational cost or engagemore effectivemulti-objective optimization algorithms to handle such
complexity efficiently.

Applicability to diverse structures: The framework is designed specifically for rectangular, 2D, struc-
turally determinate steel trusses, limiting its applicability to complex structural systems encountered in
civil engineering, such as non-symmetric topologies, three-dimensional trusses, or statically indeter-
minate structures. Extending the framework to these systems would require redefining optimization
functions and recalibrating objectives to account for varied structural behaviors. This restriction con-
strains the framework’s utility in addressing the diverse challenges of modern structural design.

Limited exploration of TPE hyperparameters: The study did not explore tuning TPE hyperparam-
eters, such as the exploration-exploitation balance, number of startup trials, or gamma parameter in
the expected improvement criterion. Further research into optimizing these hyperparameters could
enhance TPE performance for truss design, potentially improving convergence rates and solution qual-
ity [9]. This area, left for future investigation, is critical for maximizing the algorithm’s effectiveness in
structural optimization.

Restriction to HEA profiles: The analysis is confined to HEA profiles, whereas truss designs of-
ten incorporate diverse profile types, such as I-sections, rectangular hollow sections, and many more
[19]. Adapting the Grasshopper model to handle these profiles would require additional recalibration of
parametric calculations, potentially affecting optimization outcomes and necessitating a reevaluation
of objective functions.

Consideration of Diverse Material Options: The optimization framework is tailored specifically for
steel trusses, with its parametric modeling, structural assessments, and grouping approaches centered
on the characteristics of HEA steel profiles. This focus on a single material restricts the framework’s ap-
plicability to other construction materials, such as concrete or timber. Investigating alternative materials
could uncover distinct trade-offs in terms of structural efficiency, ease of construction, environmental
sustainability, and fabrication requirements. For instance, timber may introduce constraints related to
standardized dimensions or joint configurations, while composites could exhibit directional-dependent
properties influencing load paths. Incorporating a wider range of materials would necessitate significant
revisions to the parametric model, including adjustments to structural constraints (e.g., UC calculations)
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and optimization objectives (e.g., mass, structural complexity). Although such an expansion is outside
the current study’s scope, it offers a valuable opportunity to enhance the framework’s versatility and
relevance for a broader spectrum of civil engineering applications.

Limited comparison of optimization methods: The study evaluates only EXS and TPE algorithms,
omitting a thorough comparison with other multi-objective optimization methods, such as genetic al-
gorithms, greedy algorithm optimization, or other suitable algorithms for similar types of problems .
Such a comparison would elucidate TPE relative strengths and trade-offs in solution quality, compu-
tational efficiency, and robustness. This was beyond the scope of the current research due to time
and resource constraints but is recommended for future studies to thoroughly assess TPE efficacy in
structural optimization.

7.3. Future work
This work opens several promising research directions for optimizing steel truss design. A primary
focus should be improving the computational efficiency of the TPE algorithm, as its current performance
creates a bottleneck. Exploring methods to accelerate TPE, or adopting alternative algorithms that are
less computationally intensive without sacrificing result quality, could address this issue, building on
the computational challenges discussed in Section Model and computational limitations. For instance,
evaluating algorithms like CMA-ES, which may offer faster convergence for specific objectives like
symmetry, could enhance performance, as suggested by TPE slower convergence at (n = 5).

To optimize analysis, future research should balance simplicity in the analyzed truss typologies, such
as the 9-element truss benchmark, with the exploration of larger computational spaces and a broader
range of weight distributions. This approach would maintain manageable computational demands while
enabling richer insights into diverse configurations, addressing the time management challenges noted
in Section 7.1. Additionally, leveraging high-performance computing resources like Blue Delft earlier in
the research process could facilitate testing complex configurations, such as 3D trusses or non-uniform
loading, and identify limitations in topology outcomes sooner.

Following this, another direction is improving the handling of multiple objectives. Instead of relying
solely on weighted scalarization, which limits trade-off exploration, developing true multi-objective op-
timization methods, such as those generating Pareto fronts, could better balance objectives like mass,
symmetry, and connection degree. This would provide a broader range of solutions reflecting diverse
stakeholder priorities. A potential solution is to develop a single cost function representing all objec-
tives, though this is challenging due to trade-off complexities, which could streamline the process and
reduce computational demands [3].

To further enhance the framework, its robustness should be improved to accommodate diverse steel
truss topologies, such as statically indeterminate or 3D structures. Exploring varied geometries, such
as triangular or arched trusses, and diverse load scenarios would generate more diverse optimization
outcomes, overcoming the uniformity observed in rectangular topologies. This would require redefining
models and objectives to handle varied structural behaviors.

For simpler truss configurations, such as the 2D statically determinate truss studied, future work should
prioritize efficient tools like Python-based structural analysis over complex platforms like Grasshopper
with Karamba3D. This might reduce setup time and align tool complexity with problem simplicity.

Additionally, tuning TPE hyperparameters, such as the number of trials or gamma parameter, can be
complex. Automating this process would improve adaptability across different truss problems, directly
tackling the limitation in Section 7.2.

Expanding on the comparisons in Chapter 6, a broader evaluation with other multi-objective optimiza-
tion methods, such as genetic algorithms or particle swarm optimization, would provide deeper insights
into TPE strengths and weaknesses. This involves applying various algorithms to similar problems and
analyzing the results.

To enhance practical relevance, future research should involve direct collaboration with industry stake-
holders, such as fabricators and architects, to refine objective selection and weight assignments. This
would address the absence of stakeholder engagement noted in Section 7.1, ensuring the framework
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aligns with real-world engineering priorities, such as prefabrication efficiency or aesthetic coherence.

Finally, applying the framework to real-world examples like the TU Delft CEG building truss, as shown
in Figure 7.1, represents an initial step toward practical implementation. This example highlights the
potential to validate the framework’s utility, but since this truss uses diverse profiles, unlike the HEA
profiles in our study, the framework must first be adapted to handle different profile types.

(a) TU Delft CG building rectangular truss bridge.
(b) Side view schema of the TU Delft CEG building truss

bridge.

Figure 7.1: The TU Delft CEG building truss bridge, depicted in both a color photograph and a side view schematic, serves as
a potential real-world case for applying the proposed optimization framework.
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Conclusion

This research has explored the application of the Tree-structured Parzen Estimator (TPE) algorithm
to optimize grouping strategies in a 9-element, 2D rectangular steel truss, with three additional similar
typologies to validate findings (Figure G.5). The study addressed the challenge of balancing multiple,
often conflicting objectives—structural mass, symmetry, connection complexity, and beam continuity—
to support stakeholders in making informed and transparent design decisions. Through extensive ex-
perimentation, TPE showed promising effectiveness in navigating complex trade-off spaces, though
constrained by weighted scalarization and untuned hyperparameters. The integration of visualization
tools, such as multi-parallel plots, enhanced the interpretability of optimized designs, potentially em-
powering stakeholders to select configurations aligned with their priorities. The findings contribute to
advancing structural engineering optimization, offering a promising framework for 2D truss design, and
opening potential for further development in exploring more diverse truss typologies and advanced
visualization techniques.

In the following section, we provide answers to the research questions:

Towhat extent can grouping strategies in steel truss structures be optimized to balancemultiple,
often conflicting objectives, there by enabling stakeholders to make informed and transparent
design decisions?

The research suggests that TPE effectively optimizes grouping strategies for 2D rectangular truss ty-
pologies by efficiently exploring the design space and balancing conflicting objectives. Leveraging its
Bayesian optimization approach, TPE identified configurations that minimize mass while maintaining
acceptable levels of symmetry, connection complexity, and beam continuity. Multi-parallel plots (Figure
6.11) provided an interactive visualization of trade-offs, potentially enabling stakeholders to filter and
select designs transparently, thus supporting informed decision-making.

RQ1: How do grouping configurations with a fixed number of allowed HEA profiles (n) affect
structural mass, symmetry, connection complexity, and beam continuity?

Grouping configurations with a fixed number of HEA profiles (n) critically influence structural outcomes
for the studied 2D rectangular truss typologies. In each case, there exists an optimal (n) that minimizes
structural mass while balancing other objectives. For the benchmark 9-element truss, this optimal
(n = 3), achieving a minimal mass of approximately 730.27 kg, though unity check (UC) calculation
biases may affect precision, as validated through single-objective TPE and multi-objective TPE with
symmetry prioritization (TPE(W4) (Figure E.13). This configuration effectively grouped elements into
a set of three profile types (HEA180, HEA100, HEA120) based on load distribution, as confirmed by
unity check (UC) analysis, noting potential inaccuracies. Increasing (n) beyond the optimal value led to
higher mass due to suboptimal profile assignments, whereas decreasing (n) enhanced standardization
but resulted in increased mass due to overdesign. Similar patterns were observed in other typologies,
where careful selection of (n) is crucial for mass efficiency. Symmetry and beam continuity generally
improved with lower (n) due to increased standardization, whereas connection complexity, dependent

58



59

on the spatial arrangement of elements and their mass distribution, remained a challenging objective,
particularly for higher (n), due to its sensitivity to positional and mass-related constraints.

RQ2: What trade-offs emerge between standardization (e.g. symmetry) and uniqueness (e.g.
mass) when different objectives are prioritized?

The study confirmed that prioritizing uniqueness, such as mass minimization, results in configurations
with lower standardization, leading to reduced symmetry and increased connection complexity. Con-
versely, emphasizing standardization through objectives like symmetry produces heavier but more con-
structible structures. TPE adequately navigated these trade-offs, generating a set of solutions reflecting
varying priority settings, limited by scalarization’s focus on a single composite score, as visualized in
multi-parallel plots (Figure 6.13). These plots illustrated how different weight distributions influence the
balance between lightweight, unique designs and standardized, constructible configurations.

RQ3: In which core aspects of steel truss optimization does the Tree-structured Parzen Estima-
tor (TPE) offer advantages over simple heuristics, metaheuristics like NSGA-II, and exhaustive
search for identifying high-quality groupings in single and multi-objective scenarios?

In identifying the core aspects of steel truss optimization where TPE offers advantages over simple
heuristics, metaheuristics like NSGA-II, and exhaustive search for high-quality groupings in single and
multi-objective scenarios, TPE excels in computational efficiency, scalability, and suitability for discrete
objectives, particularly due to its sample efficiency, which reduces the number of evaluations needed for
expensive structural simulations. Based on the literature review (Chapter 3) and study findings, TPE
was selected for its strong handling of discrete variables and weighted scalarization, though limited
experimental comparisons with other metaheuristics and untuned hyperparameters constrain claims
of broad superiority. Unlike NSGA-II, which literature suggests struggles with discrete, topologically
driven objectives like connection degree due to complex parameter tuning, TPE efficiently models hier-
archical constraints using Bayesian optimization. Compared to simple heuristics like RandomSampler,
which lack guided exploration and perform poorly in high-dimensional spaces, TPE offers broader ex-
ploration. Exhaustive search (EXS) was used to validate TPE findings, confirming identical minimal
mass at (n = 3), but its computational infeasibility for large problems (e.g., 1.95 million configurations
for the benchmark with search spaces growing exponentially as shown in Figure 6.10) underscores
TPE scalability. Moreover, TPE ease of implementation, facilitated by libraries like Optuna [35], and its
ability to handle complex objectives like connection degree dependent on both positional context and
weight minimization make it a suitable alternative for steel truss optimization, particularly for discrete
multi-objective tasks, though further experimental comparisons with other metaheuristics are needed.

RQ4: In what ways can stakeholder-defined weights, reflecting their objectives or design pref-
erences, influence the resulting optimal truss layouts?

Stakeholder-defined weights significantly shape optimal truss layouts by prioritizing specific objectives.
Higher weights on mass yield lighter structures, while weights on symmetry favor standardized, con-
structible designs. TPE flexibility facilitates alignment with these preferences, producing a range of
solutions, though limited by scalarization’s focus. However, balancing weights is critical, as highly sen-
sitive objectives like connection degree can dominate optimization when overemphasized. Excessive
weighting may constrain the search space, reducing solution diversity and potentially degrading other
objectives, such as mass or symmetry, necessitating careful calibration to maintain a comprehensive
exploration of feasible configurations.

RQ5: In what ways can visual or computational tools enhance the interpretability of optimized
truss designs and assist in navigating complex trade-off spaces?

The research focused on multi-parallel plots as the primary visualization tool to enhance the inter-
pretability of optimized truss designs. Implemented using tools like Plotly [39], these interactive plots
enabled visualization of trade-offs across mass, symmetry, connection complexity, and beam continu-
ity for various (n) and weight distributions (Figure 6.14). By enabling filtering based on specific criteria,
multi-parallel plots facilitated navigation through complex trade-off spaces, potentially making it easier
to identify configurations that meet stakeholder needs, pending practical validation. While other visual-
ization methods were not explored, the effectiveness of multi-parallel plots underscores their value in
structural optimization contexts.
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Final Remarks:

This research demonstrates the potential of the Tree-structured Parzen Estimator (TPE) as a highly
suitable tool for optimizing 2D rectangular steel truss designs, which are widely used in construction for
their ability to provide robust structural support with efficient material use. TPE, a Bayesian optimiza-
tion algorithm, offers a flexible and sample-efficient approach to this challenge, enabling engineers to
explore a complex design space effectively. Steel trusses, particularly those with a 2D rectangular
configuration, require careful optimization to balance competing objectives such as minimizing weight,
maximizing strength, and simplifying fabrication processes. By applying TPE within this scope, the
study showcases its ability to identify high-performing truss designs with fewer computational evalua-
tions compared to traditional methods like grid or random searches.

The flexibility of TPE lies in its capacity to adapt to various design variables and constraints, such as se-
lecting from standardized steel sections or managing multi-objective trade-offs. Its sample efficiency is
equally critical, as each truss design evaluation often involves time-intensive simulations, such as finite
element analysis. By intelligently modeling the probability of improvement, TPE focuses on promis-
ing configurations, reducing the computational burden and making optimization practical for real-world
applications. The insights gained from this research not only validate TPE effectiveness for 2D rectan-
gular trusses but also establish a foundation for future advancements in structural engineering. These
findings could inspire the application of TPE to more intricate truss geometries or other optimization
challenges in the field, potentially enhancing design processes across diverse construction projects.

A standout feature of this work is the incorporation of the practical visualization tool, the multi-parallel
plot, which significantly enhances the decision-making process. This plot, also known as a parallel co-
ordinates plot, allows stakeholders to visualize high-dimensional data by representing design variables
and objectives on parallel axes. For truss optimization, this means stakeholders can explore trade-offs
such as mass versus structural complexity objectives like symmetry or connection degree across a
range of design options. By interacting with this visualization, they can filter and select configurations
that align with specific priorities, whether that’s minimizing structural mass, enhancing aesthetic sym-
metry, or ensuring compliance with structural standards. This capability potentially empowers stake-
holders, from engineers to project managers, to make well-informed design decisions based on a clear
and comprehensive understanding of the optimization outcomes, pending practical validation.

In essence, this research positions TPE as a powerful, adaptable tool for optimizing 2D rectangular
steel truss designs, delivering a method that is both efficient and versatile. The combination of TPE
optimization prowess and intuitive visualization tools like multi-parallel plots paves the way for more
effective and collaborative design processes in structural engineering.
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A
Supplementary data for truss

configurations

This appendix presents comprehensive numerical and visual data supporting the optimization analyses
of steel truss configurations in the thesis. It includes Excel tables detailing mass, Utilization Check (UC),
and node coordinates (Section A.1). Additionally, Grasshopper-generated visualizations of deflection
and axial force distribution for the benchmark and additional truss topologies are used to test the Python
model (Section A.2). These supplementary problems feature varied element counts (k) and (n) allowed
unique HEA profile configurations to evaluate the model’s robustness. A reference figure from external
literature illustrating optimization trends is also provided (Section A.3).

A.1. Numerical data for truss configurations
A.1.1. Benchmark model (9-elements truss, n =5 HEA profiles)

(a) Mass distribution of the 9-elements truss across n = 5
allowed unique HEA profile types.

(b) Unity Check (UC) values for the 9-elements truss across
n = 5 allowed unique HEA profile types.

(c) Coordinates of the first node for each element of the
9-elements truss.

(d) Coordinates of the second node for each element of the
9-elements truss.

Figure A.1: Excel tables for a parametric truss with 9-elements and n = 5 allowed unique HEA profile types.
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A.1.2. Typology 1 (17-elements truss, n =5 HEA profiles)

(a) Mass distribution of the 17-elements truss across n = 5
allowed unique HEA profile types.

(b) Unity Check (UC) values for the 17-elements truss across
n = 5 allowed unique HEA profile types.

(c) Coordinates of the first node for each element of the
17-elements truss.

(d) Coordinates of the second node for each element of the
17-elements truss.

Figure A.2: Excel tables for a parametric truss with 17-elements and n = 5 allowed unique HEA profile types.

A.1.3. Typology 2 (9-elements truss, n =6 HEA profiles)

(a) Mass distribution of the 9-elements truss across n = 6
allowed unique HEA profile types.

(b) Unity Check (UC) values for the 9-elements truss across
n = 6 allowed unique HEA profile types.

(c) Coordinates of the first node for each element of the
9-elements truss.

(d) Coordinates of the second node for each element of the
9-elements truss.

Figure A.3: Excel tables for a parametric truss with 9-elements and n = 6 allowed unique HEA profile types.
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A.1.4. Typology 3 (17-elements truss, n =8 HEA profiles)

(a) Mass distribution of the 17-elements truss across n = 8
allowed unique HEA profile types.

(b) Utilization Check (UC) values for the 17-elements truss
across n = 8 allowed unique HEA profile types.

(c) Coordinates of the first node for each element of the
17-elements truss.

(d) Coordinates of the second node for each element of the
17-elements truss.

Figure A.4: Excel tables for a parametric truss with 17-elements and n = 8 allowed unique HEA profile types.
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A.2. Grasshopper visualizations of truss configurations
A.2.1. Benchmark model (9-elements truss, n = 5 HEA profiles, 20 kN load)

(a) Grasshopper - generated spatial view perspective of the
9-element truss.

(b) Grasshopper - generated spatial view perspective of the
9-element truss, deflection under an applied load of 20 kN.

(c) Grasshopper - generated front view perspective of the
9-element truss under a 20kN load, illustrating structural

deflection.

(d) Grasshopper - generated front view perspective of the
9-element truss under a 20kN load, illustrating axial force

distribution.

Figure A.5: Benchmark problem Typology 1: Grasshopper - generated parametric truss with 9 elements, shown under a 20kN
load with visualizations of deflection and axial force distribution from multiple perspectives.

A.2.2. Typology 1 (17-elements truss, n =5 HEA profiles, 24 kN load)

(a) Grasshopper - generated spatial view perspective of the
17-element truss.

(b) Grasshopper - generated spatial view perspective of the
17-element truss, deflection under an applied load of 24 kN.

(c) Grasshopper - generated front view perspective of the
17-element truss under a 24kN load, illustrating structural

deflection.

(d) Grasshopper - generated front view perspective of the
17-element truss under a 24kN load, illustrating axial force

distribution.

Figure A.6: Typology 1 problem: Grasshopper - generated parametric truss with 17 elements, shown under a 24kN load with
visualizations of deflection and axial force distribution from multiple perspectives.
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A.2.3. Typology 2 (9-elements truss, n =6 HEA profiles, 24 kN load)

(a) Grasshopper - generated spatial view perspective of the
9-element truss.

(b) Grasshopper - generated spatial view perspective of the
9-element truss, deflection under an applied load of 24 kN.

(c) Grasshopper - generated front view perspective of the
9-element truss under a 24kN load, illustrating structural

deflection.

(d) Grasshopper - generated front view perspective of the
9-element truss under a 24kN load, illustrating axial force

distribution.

Figure A.7: Typology 2 problem: Grasshopper - generated parametric truss with 9 elements, shown under a 24kN load with
visualizations of deflection and axial force distribution from multiple perspectives.

A.2.4. Typology 3 (17-elements truss, n =8 HEA profiles, 40 kN load)

(a) Grasshopper - generated spatial view perspective of the
17-element truss.

(b) Grasshopper - generated spatial view perspective of the
17-element truss, deflection under an applied load of 40 kN.

(c) Grasshopper - generated front view perspective of the
17-element truss under a 40kN load, illustrating structural

deflection.

(d) Grasshopper - generated front view perspective of the
17-element truss under a 40kN load, illustrating axial force

distribution.

Figure A.8: Typology 3 problem: Grasshopper - generated parametric truss with 17 elements, shown under a 40kN load with
visualizations of deflection and axial force distribution from multiple perspectives.
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A.3. Example for reinforcement optimization

Figure A.9: Influence of applied number of alternative reinforcement configurations on matreial use [13].



B
Grasshopper model

This appendix presents a visual summary of the Grasshopper-based parametric model developed for
this research. As described in Chapter 4 (Methodology), the structural behavior of steel trusses was
modeled in the Grasshopper environment using the Karamba3D and Colibi plugins for structural anal-
ysis. This setup allowed for flexible control over geometry, load application, material assignment, and
profile configuration.

The figures below illustrate the various components of the model, including the definition of truss geom-
etry and boundary conditions (Figure B.1), the assignment of HEA steel profiles and material properties
(Figure B.2), and the use of the Colibri plugin for exporting configuration data (Figure B.3). These visu-
alizations support the description in the main text and provide transparency on how the analysis inputs
were structured and automated within the Grasshopper environment.

While only a representative figure was included in the methodology chapter, the full set of Grasshopper
model views is documented here to aid reproducibility and technical clarity.

Figure B.1: Grasshopper setup defining geometry and load input for parametric truss analysis, input into Karamba for
structural analysis.
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Figure B.2: Grasshopper setup defining HEA profiles set (HEA140, HEA160, HEA200, HEA220, HEA240) and steel material
S355 input for parametric truss analysis across n = 1 to n = 5.

Figure B.3: Grasshopper setup using Colibri for iterating and conducting multiple structural analyses.



C
Grouping configurations for truss

optimization

This appendix provides a detailed representation of the element groupings and corresponding truss
configurations for the rest values of (n), derived using the same procedure as outlined for (n = 3) in
Chapter 4. The methodology involves analyzing (UC) values to form optimal groups of HEA profiles,
minimizing overdesign while ensuring structural safety with (UC ≤ 1).
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(a) TPE-Based Optimization of Mass vs n
(b) Mass and UC values for the 9 elements truss across 5
allowed unique HEA profiles (n = 1) (highlighted) grouping

Figure C.1: Comparison of TPE-based mass optimization and constrained mass with UC values for a 9-element truss. (n = 1)
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Figure C.2: Comparison of TPE-based mass optimization and constrained mass with UC values for a 9-element truss. (n = 2)
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Figure C.3: Comparison of TPE-based mass optimization and constrained mass with UC values for a 9-element truss. (n = 4)
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Figure C.4: Comparison of TPE-based mass optimization and constrained mass with UC values for a 9-element truss. (n = 5)



D
Python model validation results

D.1. Python model validation outputs for Mass
This section presents the validation of the Tree-structured Parzen Estimator (TPE) sampler against
Exhaustive Search (EXS) for parametric truss optimization, focusing on the convergence of (n from
1 to 5) allowed HEA profiles with varying (Ntrials). The distributions of TPE and EXS are compared
across Mass objective to evaluate TPE performance. Figures D.1, D.2 and D.3 further illustrate this
validation by showcasing TPE convergence to EXS across Mass, Connection Degree, Symmetry, and
Beam Continuity, with Figure D.3 incorporating objective weight distributions.

D.2. Python model validation outputs for Connection Degree
This section presents the validation of the Tree-structured Parzen Estimator (TPE) sampler against
Exhaustive Search (EXS) for parametric truss optimization, focusing on the convergence of (n from
1 to 5) allowed HEA profiles with varying (Ntrials). The distributions of TPE and EXS are compared
across Connection Degree objective to evaluate TPE’s performance. Figures D.4, D.5 and D.6 further
illustrate this validation by showcasing TPE convergence to EXS across Mass, Connection Degree,
Symmetry, and Beam Continuity, with Figure D.6 incorporating objective weight distributions.

D.3. Python model validation outputs for Symmetry
This section presents the validation of the Tree-structured Parzen Estimator (TPE) sampler against
Exhaustive Search (EXS) for parametric truss optimization, focusing on the convergence of (n from
1 to 5) allowed HEA profiles with varying (Ntrials). The distributions of TPE and EXS are compared
across Symmetry objective to evaluate TPE’s performance. Figures D.7, D.8 and D.9 further illustrate
this validation by showcasing TPE convergence to EXS across Mass, Connection Degree, Symmetry,
and Beam Continuity, with Figure D.9 incorporating objective weight distributions.

D.4. Python model validation outputs for Beam Continuity
This section presents the validation of the Tree-structured Parzen Estimator (TPE) sampler against
Exhaustive Search (EXS) for parametric truss optimization, focusing on the convergence of (n from
1 to 5) allowed HEA profiles with varying (Ntrials). The distributions of TPE and EXS are compared
across Beam Continuity objective to evaluate TPE’s performance. Figures D.10, D.11 and D.12 further
illustrate this validation by showcasing TPE convergence to EXS across Mass, Connection Degree,
Symmetry, and Beam Continuity, with Figure D.12 incorporating objective weight distributions.
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TPE and EXS distributions - Mass validation
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TPE and EXS distributions - highlighted Mass convergences
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TPE and EXS distributions - Mass validation with objective weights
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TPE and EXS distributions - Connection Degree validation
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TPE and EXS distributions - highlighted Connection Degree convergences
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TPE and EXS distributions - Connection Degree validation with objective weights
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TPE and EXS distributions - Symmetry validation
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TPE and EXS distributions - highlighted Symmetry convergences
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TPE and EXS distributions - Symmetry validation with objective weights
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TPE and EXS distributions - Beam Continuity validation
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TPE and EXS distributions - highlighted Beam Continuity convergences
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TPE and EXS distributions - Beam Continuity validation with objective weights
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E
TPE Performance in Single vs

Multi-Objective Scenarios

E.1. TPE(W1) Comaprison with single obejective optimization TPE
Table E.1: Comparison of Tree-structured Parzen Estimator of Mass TPE(M) vs TPE(W1) for parametric truss optimization

across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(M)) W1 TPE(M) TPE(W1) ∆ TPE(M) TPE(W1) ∆ TPE(M) TPE(W1) ∆ TPE(M) TPE(W1) ∆ TPE(M) TPE(W1) ∆

Mass 1 0.25 1169.86 1169.86 = 780.15 780.15 = 730.27 764.06 ↑ 750.25 784.04 ↑ 810.19 834.83 ↑
Connection Degree 0 0.25 6 6 = 9 9 = 12 11 ↓ 13 11 ↓ 14 14 =
Symmetry 0 0.25 0 0 = 0 0 = 0 0 = 0 1 ↑ 1 1 =
Beam Continuity 0 0.25 2 2 = 2 2 = 2 2 = 2 2 = 3 2 ↓

(a) TPE(M) truss configuration (b) TPE(W1) truss configuration

Figure E.1: Comparison between TPE(M) vs TPE(W1) truss configurations.
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Table E.2: Comparison of Tree-structured Parzen Estimator of Connection Degree TPE(CN) vs TPE(W1) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(CN)) W1 TPE(CN) TPE(W1) ∆ TPE(CN) TPE(W1) ∆ TPE(CN) TPE(W1) ∆ TPE(CN) TPE(W1) ∆ TPE(CN) TPE(W1) ∆

Mass 0 0.25 1169.86 1169.86 = 1094.46 780.15 ↓ 772.11 764.06 ↓ 784.04 784.04 = 843.98 834.83 ↓
Connection Degree 1 0.25 6 6 = 8 9 ↑ 10 11 ↑ 11 11 = 12 14 ↑
Symmetry 0 0.25 0 0 = 1 0 ↓ 1 0 ↓ 2 1 ↓ 2 1 ↓
Beam Continuity 0 0.25 2 2 = 3 2 ↓ 2 2 = 2 2 = 3 2 ↓

(a) TPE(CN) truss configuration (b) TPE(W1) truss configuration

Figure E.2: Comparison between TPE(CN) vs TPE(W1) truss configurations.

Table E.3: Comparison of Tree-structured Parzen Estimator of Symmetry TPE(SYM) vs TPE(W1) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(SYM)) W1 TPE(SYM) TPE(W1) ∆ TPE(SYM) TPE(W1) ∆ TPE(SYM) TPE(W1) ∆ TPE(SYM) TPE(W1) ∆ TPE(SYM) TPE(W1) ∆

Mass 0 0.25 1169.86 1169.86 = 877.71 780.15 ↓ 764.06 764.06 = 750.25 784.04 ↑ 919.41 834.83 ↓
Connection Degree 0 0.25 6 6 = 11 9 ↓ 11 11 = 13 11 ↓ 15 14 ↓
Symmetry 1 0.25 0 0 = 0 0 = 0 0 = 0 1 ↑ 0 1 ↑
Beam Continuity 0 0.25 2 2 = 2 2 = 2 2 = 2 2 = 2 2 =

(a) TPE(SYM) truss configuration (b) TPE(W1) truss configuration

Figure E.3: Comparison between TPE(SYM) vs TPE(W1) truss configurations.
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Table E.4: Comparison of Tree-structured Parzen Estimator of Beam Continuity TPE(BCN) vs TPE(W1) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(BCN)) W1 TPE(BCN) TPE(W1) ∆ TPE(BCN) TPE(W1) ∆ TPE(BCN) TPE(W1) ∆ TPE(BCN) TPE(W1) ∆ TPE(BCN) TPE(W1) ∆

Mass 0 0.25 1169.86 1169.86 = 924.83 780.15 ↓ 764.06 764.06 = 750.25 784.04 ↑ 943 834.83 ↓
Connection Degree 0 0.25 6 6 = 10 9 ↓ 11 11 = 13 11 ↓ 13 14 ↑
Symmetry 0 0.25 0 0 = 1 0 ↓ 0 0 = 0 1 ↑ 1 1 =
Beam Continuity 1 0.25 2 2 = 2 2 = 2 2 = 2 2 = 2 2 =

(a) TPE(BCN) truss configuration (b) TPE(W1) truss configuration

Figure E.4: Comparison between TPE(SYM) vs TPE(W1) truss configurations.
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E.2. TPE(W2) Comaprison with single obejective optimization TPE
Table E.5: Comparison of Tree-structured Parzen Estimator of Mass TPE(M) vs TPE(W2) for parametric truss optimization

across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(M)) W2 TPE(M) TPE(W2) ∆ TPE(M) TPE(W2) ∆ TPE(M) TPE(W2) ∆ TPE(M) TPE(W2) ∆ TPE(M) TPE(W2) ∆

Mass 1 0.4 1169.86 1169.86 = 780.15 780.15 = 730.27 764.06 ↑ 750.25 750.25 = 810.19 810.19 =
Connection Degree 0 0.1 6 6 = 9 8 ↓ 12 11 ↓ 13 13 = 14 14 =
Symmetry 0 0.4 0 0 = 0 0 = 0 0 = 1 0 ↓ 1 1 =
Beam Continuity 0 0.1 2 2 = 2 2 = 2 2 = 2 2 = 3 3 =

(a) TPE(M) truss configuration (b) TPE(W2) truss configuration

Figure E.5: Comparison between TPE(M) vs TPE(W2) truss configurations.
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Table E.6: Comparison of Tree-structured Parzen Estimator of Connection Degree TPE(CN) vs TPE(W2) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(CN)) W2 TPE(CN) TPE(W2) ∆ TPE(CN) TPE(W2) ∆ TPE(CN) TPE(W2) ∆ TPE(CN) TPE(W2) ∆ TPE(CN) TPE(W2) ∆

Mass 0 0.4 1169.86 1169.86 = 1094.46 780.15 ↓ 772.11 764.06 ↓ 784.04 750.25 ↓ 843.98 810.19 ↓
Connection Degree 1 0.1 6 6 = 8 8 = 10 11 ↑ 11 13 ↑ 12 14 ↑
Symmetry 0 0.4 0 0 = 1 0 ↓ 1 0 ↓ 1 0 ↓ 2 1 ↓
Beam Continuity 0 0.1 2 2 = 3 2 ↓ 2 2 = 2 2 = 3 3 =

(a) TPE(CN) truss configuration (b) TPE(W2) truss configuration

Figure E.6: Comparison between TPE(CN) vs TPE(W2) truss configurations.

Table E.7: Comparison of Tree-structured Parzen Estimator of Symmetry TPE(SYM) vs TPE(W2) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(SYM)) W2 TPE(SYM) TPE(W2) ∆ TPE(SYM) TPE(W2) ∆ TPE(SYM) TPE(W2) ∆ TPE(SYM) TPE(W2) ∆ TPE(SYM) TPE(W2) ∆

Mass 0 0.4 1169.86 1169.86 = 877.71 780.15 ↓ 764.06 764.06 = 750.25 750.25 = 919.41 810.19 =
Connection Degree 0 0.1 6 6 = 11 8 ↓ 11 11 = 13 13 = 15 14 ↓
Symmetry 1 0.4 0 0 = 0 0 = 0 0 = 0 0 = 0 1 ↑
Beam Continuity 0 0.1 2 2 = 2 2 = 2 2 = 2 2 = 2 3 ↑

(a) TPE(SYM) truss configuration (b) TPE(W2) truss configuration

Figure E.7: Comparison between TPE(SYM) vs TPE(W2) truss configurations.
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Table E.8: Comparison of Tree-structured Parzen Estimator of Beam Continuity TPE(BCN) vs TPE(W2) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(BCN)) W2 TPE(BCN) TPE(W2) ∆ TPE(BCN) TPE(W2) ∆ TPE(BCN) TPE(W2) ∆ TPE(BCN) TPE(W2) ∆ TPE(BCN) TPE(W2) ∆

Mass 0 0.4 1169.86 1169.86 = 924.83 780.15 ↓ 764.06 764.06 = 750.25 750.25 = 943 810.19 ↓
Connection Degree 0 0.1 6 6 = 10 8 ↓ 11 11 = 13 13 = 13 14 ↑
Symmetry 0 0.4 0 0 = 1 0 ↓ 0 0 = 0 0 = 1 1 =
Beam Continuity 1 0.1 2 2 = 2 2 = 2 2 = 2 2 = 2 3 ↑

(a) TPE(BCN) truss configuration (b) TPE(W2) truss configuration

Figure E.8: Comparison between TPE(BCN) vs TPE(W2) truss configurations.
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E.3. TPE(W3) Comaprison with single obejective optimization TPE
Table E.9: Comparison of Tree-structured Parzen Estimator of Mass TPE(M) vs TPE(W3) for parametric truss optimization

across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(M)) W3 TPE(M) TPE(W3) ∆ TPE(M) TPE(W3) ∆ TPE(M) TPE(W3) ∆ TPE(M) TPE(W3) ∆ TPE(M) TPE(W3) ∆

Mass 1 0.1 1169.86 1169.86 = 780.15 1122.74 ↑ 730.27 772.11 ↑ 750.25 784.04 ↑ 810.19 943 ↑
Connection Degree 0 0.4 6 6 = 9 8 ↓ 12 10 ↓ 13 11 ↓ 14 13 ↓
Symmetry 0 0.1 0 0 = 0 0 = 0 1 ↑ 0 1 ↑ 1 1 =
Beam Continuity 0 0.4 2 2 = 2 2 = 2 2 = 2 2 = 3 2 ↓

(a) TPE(M) truss configuration (b) TPE(W3) truss configuration

Figure E.9: Comparison between TPE(M) vs TPE(W3) truss configurations.
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Table E.10: Comparison of Tree-structured Parzen Estimator of Connection Degree TPE(CN) vs TPE(W3) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(CN)) W3 TPE(CN) TPE(W3) ∆ TPE(CN) TPE(W3) ∆ TPE(CN) TPE(W3) ∆ TPE(CN) TPE(W3) ∆ TPE(CN) TPE(W3) ∆

Mass 0 0.1 1169.86 1169.86 = 1094.46 1122.74 ↑ 772.11 772.11 = 784.04 784.04 = 843.98 943 ↑
Connection Degree 1 0.4 6 6 = 8 8 = 10 10 = 11 11 = 12 13 ↑
Symmetry 0 0.1 0 0 = 1 0 ↓ 1 1 = 1 1 = 2 1 ↓
Beam Continuity 0 0.4 2 2 = 3 2 ↓ 2 2 = 2 2 = 3 2 ↓

(a) TPE(CN) truss configuration (b) TPE(W3) truss configuration

Figure E.10: Comparison between TPE(CN) vs TPE(W3) truss configurations.

Table E.11: Comparison of Tree-structured Parzen Estimator of Symmetry TPE(SYM) vs TPE(W3) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(SYM)) W3 TPE(SYM) TPE(W3) ∆ TPE(SYM) TPE(W3) ∆ TPE(SYM) TPE(W3) ∆ TPE(SYM) TPE(W3) ∆ TPE(SYM) TPE(W3) ∆

Mass 0 0.1 1169.86 1169.86 = 877.71 1122.74 ↑ 764.06 772.11 ↑ 750.25 784.04 ↑ 919.41 943 ↑
Connection Degree 0 0.4 6 6 = 11 8 ↓ 11 10 ↓ 13 11 ↓ 15 13 ↓
Symmetry 1 0.1 0 0 = 0 0 = 0 1 ↑ 0 1 ↑ 0 1 ↑
Beam Continuity 0 0.4 2 2 = 2 2 = 2 2 = 2 2 = 2 2 =

(a) TPE(SYM) truss configuration (b) TPE(W3) truss configuration

Figure E.11: Comparison between TPE(SYM) vs TPE(W3) truss configurations.
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Table E.12: Comparison of Tree-structured Parzen Estimator of Beam Continuity TPE(BCN) vs TPE(W3) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(BCN)) W3 TPE(BCN) TPE(W3) ∆ TPE(BCN) TPE(W3) ∆ TPE(BCN) TPE(W3) ∆ TPE(BCN) TPE(W3) ∆ TPE(BCN) TPE(W3) ∆

Mass 0 0.1 1169.86 1169.86 = 924.83 1122.74 ↑ 764.06 772.11 ↑ 750.25 784.04 ↑ 943 943 =
Connection Degree 0 0.4 6 6 = 10 8 ↓ 11 10 ↓ 13 11 ↓ 13 13 =
Symmetry 0 0.1 0 0 = 1 0 ↓ 0 1 ↑ 0 1 ↑ 1 1 =
Beam Continuity 1 0.4 2 2 = 2 2 = 2 2 = 2 2 = 2 2 =

(a) TPE(BCN) truss configuration (b) TPE(W3) truss configuration

Figure E.12: Comparison between TPE(BCN) vs TPE(W3) truss configurations.
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E.4. TPE(W4) Comaprison with single obejective optimization TPE
Table E.13: Comparison of Tree-structured Parzen Estimator of Mass TPE(M) vs TPE(W4) for parametric truss optimization

across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(M)) W4 TPE(M) TPE(W4) ∆ TPE(M) TPE(W4) ∆ TPE(M) TPE(W4) ∆ TPE(M) TPE(W4) ∆ TPE(M) TPE(W4) ∆

Mass 1 0.4 1169.86 1169.86 = 780.15 780.15 = 730.27 730.27 = 750.25 750.25 = 810.19 810.19 =
Connection Degree 0 0.05 6 6 = 9 9 = 12 12 = 13 13 = 14 14 =
Symmetry 0 0.5 0 0 = 0 0 = 0 0 = 0 0 = 1 1 =
Beam Continuity 0 0.05 2 2 = 2 2 = 2 2 = 2 2 = 3 3 =

(a) TPE(M) truss configuration (b) TPE(W4) truss configuration

Figure E.13: Comparison between TPE(M) vs TPE(W4) truss configurations.
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Table E.14: Comparison of Tree-structured Parzen Estimator of Connection Degree TPE(CN) vs TPE(W4) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(CN)) W4 TPE(CN) TPE(W4) ∆ TPE(CN) TPE(W4) ∆ TPE(CN) TPE(W4) ∆ TPE(CN) TPE(W4) ∆ TPE(CN) TPE(W4) ∆

Mass 0 0.4 1169.86 1169.86 = 1094.46 780.15 ↓ 772.11 730.27 ↓ 784.04 750.25 ↓ 843.98 810.19 ↓
Connection Degree 1 0.05 6 6 = 8 9 ↑ 10 12 ↑ 11 13 ↑ 12 14 ↑
Symmetry 0 0.5 0 0 = 1 0 ↓ 1 0 ↓ 1 0 ↓ 2 1 ↓
Beam Continuity 0 0.05 2 2 = 3 2 ↓ 2 2 = 2 2 = 3 3 =

(a) TPE(CN) truss configuration (b) TPE(W4) truss configuration

Figure E.14: Comparison between TPE(CN) vs TPE(W4) truss configurations.

Table E.15: Comparison of Tree-structured Parzen Estimator of Symmetry TPE(SYM) vs TPE(W4) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(SYM)) W4 TPE(SYM) TPE(W4) ∆ TPE(SYM) TPE(W4) ∆ TPE(SYM) TPE(W4) ∆ TPE(SYM) TPE(W4) ∆ TPE(SYM) TPE(W4) ∆

Mass 0 0.4 1169.86 1169.86 = 877.71 780.15 ↓ 764.06 730.27 ↓ 750.25 750.25 = 919.41 810.19 ↓
Connection Degree 0 0.05 6 6 = 11 9 ↓ 11 12 ↑ 13 13 = 15 14 ↓
Symmetry 1 0.5 0 0 = 0 0 = 0 0 = 0 0 = 0 1 ↑
Beam Continuity 0 0.05 2 2 = 2 2 = 2 2 = 2 2 = 2 3 ↑

(a) TPE(SYM) truss configuration (b) TPE(W4) truss configuration

Figure E.15: Comparison between TPE(SYM) vs TPE(W4) truss configurations.
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Table E.16: Comparison of Tree-structured Parzen Estimator of Beam Continuity TPE(BCN) vs TPE(W4) for parametric truss
optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective w(TPE(BCN)) W4 TPE(BCN) TPE(W4) ∆ TPE(BCN) TPE(W4) ∆ TPE(BCN) TPE(W4) ∆ TPE(BCN) TPE(W4) ∆ TPE(BCN) TPE(W4) ∆

Mass 0 0.4 1169.86 1169.86 = 924.83 780.15 ↓ 764.06 730.27 ↓ 750.25 750.25 = 943 810.19 ↓
Connection Degree 0 0.05 6 6 = 10 9 ↓ 11 12 ↑ 13 13 = 13 14 ↑
Symmetry 0 0.5 0 0 = 1 0 ↓ 0 0 = 0 0 = 1 1 =
Beam Continuity 1 0.05 2 2 = 2 2 = 2 2 = 2 2 = 2 3 ↑

(a) TPE(BCN) truss configuration (b) TPE(W4) truss configuration

Figure E.16: Comparison between TPE(BCN) vs TPE(W4) truss configurations.
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Source Code

The full python code repository is available for download at this link.

This appendix provides the source code for the key components of the multi-objective truss optimization
framework presented in Chapter 4.

1 def total_objective(trial, choices_complexity, n_required, nodes_1, nodes_2, nodes_1_coord,
nodes_2_coord, mass):

2 """Computes four structural metrics (mass, connection degree, symmetry, beam continuity)
3 for a truss configuration suggested by an Optuna trial. Applies a penalty if the number
4 of distinct truss types is less than required.
5

6 Args:
7 trial (optuna.trial.Trial): Current optimization trial suggesting truss types.
8 choices_complexity (list): List of valid truss type choices for each parameter.
9 n_required (int): Required number of distinct truss types.
10 nodes_1 (pd.DataFrame): DataFrame with first node identifiers for edges.
11 nodes_2 (pd.DataFrame): DataFrame with second node identifiers for edges.
12 nodes_1_coord (pd.DataFrame): Coordinates for first nodes.
13 nodes_2_coord (pd.DataFrame): Coordinates for second nodes.
14 mass (pd.DataFrame): Mass data for truss types.
15

16 Returns:
17 tuple: (graph_mass, connection_metric, symmetry_metric, beam_continuity_metric)
18 """
19 param_names = mass.iloc[:, 0].values.astype(str).flatten().tolist()
20 truss_types_var = []
21 for param_name, choice in zip(param_names, choices_complexity):
22 filtered_choice = [choice_el for choice_el in choice if choice_el != 999]
23 if len(filtered_choice) > 0:
24 suggested = trial.suggest_categorical(f"s_{param_name}", filtered_choice)
25 truss_types_var.append(suggested)
26

27 truss_types_var_df = pd.DataFrame(truss_types_var, columns=["truss_type"])
28 G, data_nodes = create_graph(nodes_1, nodes_2, nodes_1_coord, nodes_2_coord, mass,

truss_types_var_df)
29

30 connection_metric = get_connection_degree_metric(G)
31 symmetry_metric = get_symmetric_metric(G)
32 beam_continuity_metric = get_beam_continuity_metric(G)
33 graph_mass = sum([data["mass"] for _, _, data in G.edges(data=True)])
34

35 unique_truss_types = set(truss_types_var)
36 n_distinct = len(unique_truss_types)
37 if n_distinct < n_required:
38 PENALTY_MULTIPLIER = 1e9
39 penalty = (n_required - n_distinct) * PENALTY_MULTIPLIER
40 graph_mass += penalty
41 connection_metric += penalty
42 symmetry_metric += penalty
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43 beam_continuity_metric += penalty
44

45 return graph_mass, connection_metric, symmetry_metric, beam_continuity_metric

Listing F.1: Computing Truss Objective Metrics

1 def run_total_tpe_optimizer(n, data_complexity, n_trials=100, nodes_1=None, nodes_2=None,
2 nodes_1_coord=None, nodes_2_coord=None, mass=None):
3 """Runs the Tree-structured Parzen Estimator (TPE) optimization for a given number of
4 unique truss profiles (n), evaluating multiple grouping configurations.
5

6 Args:
7 n (int): Number of unique truss profiles.
8 data_complexity (pd.DataFrame): DataFrame with truss type complexity data.
9 n_trials (int): Number of optimization trials.
10 nodes_1 (pd.DataFrame): DataFrame with first node identifiers for edges.
11 nodes_2 (pd.DataFrame): DataFrame with second node identifiers for edges.
12 nodes_1_coord (pd.DataFrame): Coordinates for first nodes.
13 nodes_2_coord (pd.DataFrame): Coordinates for second nodes.
14 mass (pd.DataFrame): Mass data for truss types.
15

16 Returns:
17 tuple: (best_trial_values, best_trial_params) containing best metric values and

parameters.
18 """
19 choices_list_complexity , _ = select_column_combinations(data_complexity.iloc[:, 1:], n)
20 best_trial_values = []
21 best_trial_params = []
22

23 for i in range(len(choices_list_complexity)):
24 sampler = TPESampler(
25 consider_prior=False, consider_magic_clip=False, multivariate=True,
26 group=True, consider_endpoints=False, constant_liar=False,
27 n_startup_trials=100, n_ei_candidates=100, seed=42
28 )
29 study = optuna.create_study(sampler=sampler, directions=["minimize"] * 4)
30

31 def objective_with_choice(trial):
32 return total_objective(trial, choices_list_complexity[i], n,
33 nodes_1, nodes_2, nodes_1_coord, nodes_2_coord, mass)
34

35 study.optimize(objective_with_choice , n_trials=n_trials)
36 best_trial_values += [trial.values for trial in study.best_trials]
37 best_trial_params += [trial.params for trial in study.best_trials]
38

39 return best_trial_values, best_trial_params

Listing F.2: Running TPE Optimization

1 def compute_post_optimization_score(optimized_data_column , weights):
2 """Computes a weighted score for optimized truss configurations based on stakeholder-

defined
3 weights, ranking solutions by their overall performance.
4

5 Args:
6 optimized_data_column (pd.DataFrame): DataFrame with optimization results (mass,
7 connect_deg, symmetry, beam_cont).
8 weights (list): Weights for each objective (mass, connect_deg, symmetry, beam_cont).
9

10 Returns:
11 pd.DataFrame: DataFrame with the best configuration based on weighted score.
12 """
13 scaled_values = optimized_data_column[["mass", "connect_deg", "symmetry", "beam_cont"]].

apply(minmax_scale)
14 score = (scaled_values * weights).sum(axis=1)
15 optimized_data_column["weighted_score"] = score
16 return optimized_data_column.loc[[score.idxmin()]]

Listing F.3: Computing Weighted Post-Optimization Score
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1 def create_graph(data_nodes_1, data_nodes_2, data_nodes_1_coord, data_nodes_2_coord, mass,
truss_types_data=None):

2 """Constructs a NetworkX graph representing a steel truss, incorporating node positions
3 and edge attributes (element ID, mass, truss type).
4

5 Args:
6 data_nodes_1 (pd.DataFrame): DataFrame with edge and first node identifiers.
7 data_nodes_2 (pd.DataFrame): DataFrame with second node identifiers.
8 data_nodes_1_coord (pd.DataFrame): Coordinates for first nodes.
9 data_nodes_2_coord (pd.DataFrame): Coordinates for second nodes.
10 mass (pd.DataFrame): Mass data for truss types.
11 truss_types_data (pd.DataFrame, optional): Truss type information for edges.
12

13 Returns:
14 tuple: (G, data_nodes) where G is the NetworkX graph and data_nodes is the processed

DataFrame.
15 """
16 G = nx.Graph()
17 data_nodes = pd.concat([
18 data_nodes_1.iloc[:, :2], data_nodes_1_coord.iloc[:, 1],
19 data_nodes_2.iloc[:, 1], data_nodes_2_coord.iloc[:, 1]
20 ], axis=1)
21 data_nodes = pd.concat([data_nodes, truss_types_data], axis=1)
22 data_nodes.columns = ["edge", "node_1", "coord_node_1", "node_2", "coord_node_2", "

truss_type"]
23

24 unique_nodes = pd.concat([data_nodes["node_1"], data_nodes["node_2"]]).drop_duplicates().
values

25 unique_coordinates = pd.concat([data_nodes["coord_node_1"], data_nodes["coord_node_2"]]).
drop_duplicates().values

26 unique_coordinates = [
27 coordinates_tuple.replace(',', '.').replace('{', '').replace('}', '').split("_")
28 for coordinates_tuple in unique_coordinates
29 ]
30 unique_coordinates = [(float(coord[0]), float(coord[2])) for coord in unique_coordinates]
31

32 for node, coordinates in zip(unique_nodes, unique_coordinates):
33 G.add_node(node, pos=coordinates)
34

35 for _, row in data_nodes.iterrows():
36 if pd.notna(row["truss_type"]):
37 G.add_edge(
38 row["node_1"], row["node_2"],
39 element_id=row["edge"],
40 mass=mass.loc[int(row["edge"]) - 1, row["truss_type"]],
41 truss_type=row["truss_type"]
42 )
43 return G, data_nodes

Listing F.4: Constructing Truss Graph

1 def get_connection_degree_metric(G):
2 """Computes the connection degree metric by summing the number of unique truss types
3 connected to each node in the truss graph.
4

5 Args:
6 G (networkx.Graph): Truss graph with edges containing 'truss_type' attributes.
7

8 Returns:
9 int: Total connection degree metric.
10 """
11 connection_degree_dict = defaultdict(int)
12 for node in G.nodes():
13 temp = G.edges(node, data=True)
14 connection_degree_dict[node] = len({edge[2]["truss_type"] for edge in temp if "

truss_type" in edge[2]})
15 return sum(connection_degree_dict.values())

Listing F.5: Computing Connection Degree Metric

1 def get_symmetric_metric(G):
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2 """Computes the symmetry metric by counting edges with different truss types between
3 symmetric node pairs, reflecting structural symmetry.
4

5 Args:
6 G (networkx.Graph): Truss graph with node positions and edge truss types.
7

8 Returns:
9 int: Symmetry metric value.
10 """
11 symmetric_nodes = find_symmetric_nodes(G)
12 symmetric_elements = find_symmetric_elements(G, symmetric_nodes)
13 symmetric_metric = sum([1 if symmetric_element[0] != symmetric_element[1] else 0
14 for symmetric_element in symmetric_elements])
15 return symmetric_metric

Listing F.6: Computing Symmetry Metric

1 def get_beam_continuity_metric(G):
2 """Computes the beam continuity metric by analyzing truss type consistency in
3 horizontal beams at the top and bottom of the truss.
4

5 Args:
6 G (networkx.Graph): Truss graph with node positions and edge truss types.
7

8 Returns:
9 int: Beam continuity metric value.
10 """
11 top_left_node = min(G.nodes(data=True), key=lambda x: (x[1]['pos'][0], -x[1]['pos'][1]))
12 bottom_left_node = min(G.nodes(data=True), key=lambda x: (x[1]['pos'][0], x[1]['pos'][1])

)
13 top_beam = iterate_over_beam(G, top_left_node)
14 bottom_beam = iterate_over_beam(G, bottom_left_node)
15

16 beam_continuity_metric = 2
17 for i in range(1, len(top_beam)):
18 if top_beam[i-1] != top_beam[i]:
19 beam_continuity_metric += 1
20 if bottom_beam[i-1] != bottom_beam[i]:
21 beam_continuity_metric += 1
22 return beam_continuity_metric

Listing F.7: Computing Beam Continuity Metric
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Truss typology 1

This appendix presents the results of TPEt1 optimization for a truss Typology 1, evaluated across (n
from 1 to 5), using four different weight distributions: TPEt1(W1), TPEt1(W2), TPEt1(M) and TPEt1(SYM)
as represented in Table G.1. The analysis investigates the impact of each of the selected weight distri-
bution on the four target objectives mass, connection degree, symmetry, and beam continuity under a
fixed (Ntrials = 2000).

Table G.1: Comparison of different weights combination for TPEt1 distributions in parametric truss optimization

wM wCN wSY M wBCN

TPEt1(W1) 0.25 0.25 0.25 0.25
TPEt1(W2) 0.4 0.1 0.4 0.1
TPEt1(M) 1 0 0 0
TPEt1(SYM) 0 0 1 0

Table G.2: TPEt1(W1) results for parametric truss optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective W1 TPEt1(W1) TPEt1(W1) TPEt1(W1) TPEt1(W1) TPEt1(W1)

Mass 0.25 1287.38 1275.38 1084.89 1054.46 1126.58
Connection Degree 0.25 10 12 17 20 20
Symmetry 0.25 0 0 0 1 2
Beam Continuity 0.25 2 2 2 2 2

Table G.3: TPEt1(W2) results for parametric truss optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective W2 TPEt1(W2) TPEt1(W2) TPEt1(W2) TPEt1(W2) TPEt1(W2)

Mass 0.4 1287.38 1068.89 991.41 1065.66 1098.46
Connection Degree 0.1 10 15 19 19 23
Symmetry 0.4 0 0 0 0 1
Beam Continuity 0.1 2 2 2 4 4

Table G.4: TPEt1(M) results for parametric truss optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective WM TPEt1(M) TPEt1(M) TPEt1(M) TPEt1(M) TPEt1(M)

Mass 1 1287.38 1028.89 962.61 1010.11 1057.75
Connection Degree 0 10 17 19 20 21
Symmetry 0 0 0 0 2 4
Beam Continuity 0 2 2 4 4 5
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Table G.5: TPEt1(SYM) results for parametric truss optimization across n = 1 to 5, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5

Objective WSY M TPEt1(SYM) TPEt1(SYM) TPEt1(SYM) TPEt1(SYM) TPEt1(SYM)

Mass 0 1287.38 1156.89 1018.61 1073.61 1172.71
Connection Degree 0 10 13 17 23 27
Symmetry 1 0 0 0 0 0
Beam Continuity 0 2 4 4 4 4
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Figure G.1: Results of TPEt1(W1) Optimization across Objectives for Ntrials = 2000.
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Figure G.2: Results of TPEt1(W2) Optimization across Objectives for Ntrials = 2000.
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Figure G.3: Results of TPEt1(M) Optimization across Objectives for Ntrials = 2000.
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Figure G.4: Results of TPEt1(SYM) Optimization across Objectives for Ntrials = 2000.
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(a) Graph of TPEt1(W1) optimization results for parametric
truss with n = 17 profiles and Ntrials = 2000.

(b) Graph of TPEt1(W2) optimization results for parametric
truss with n = 17 profiles and Ntrials = 2000.

(c) Graph of TPEt1(M) optimization results for parametric
truss with n = 17 profiles and Ntrials = 2000.

(d) Graph of TPEt1(SYM) optimization results for parametric
truss with n = 17 profiles and Ntrials = 2000.

Figure G.5: Graph of TPEt1(W1)(W2)(M)(SYM) optimization results for parametric truss with n = 17 profiles and
Ntrials = 2000.
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Truss typology 2

This appendix presents the results of TPEt2 optimization for a truss Typology 2, evaluated across (n
from 1 to 6), using four different weight distributions: TPEt2(W1), TPEt2(W2), TPEt2(M) and TPEt2(SYM)
as represented in Table H.1. The analysis investigates the impact of each of the selected weight distri-
bution on the four target objectives mass, connection degree, symmetry, and beam continuity under a
fixed (Ntrials = 2000).

Table H.1: Comparison of different weights combination for TPEt2 distributions in parametric truss optimization

wM wCN wSY M wBCN

TPEt2(W1) 0.25 0.25 0.25 0.25
TPEt2(W2) 0.4 0.1 0.4 0.1
TPEt2(M) 1 0 0 0
TPEt2(SYM) 0 0 1 0

Table H.2: TPEt2(W1) results for parametric truss optimization across n = 1 to 6, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Objective W1 TPEt2(W1) TPEt2(W1) TPEt2(W1) TPEt2(W1) TPEt2(W1) TPEt2(W1)

Mass 0.25 1001.19 966.88 666.98 850.77 751.79 833.45
Connection Degree 0.25 6 8 10 11 13 15
Symmetry 0.25 0 0 0 1 2 2
Beam Continuity 0.25 2 2 2 2 2 2

Table H.3: TPEt2(W2) results for parametric truss optimization across n = 1 to 6, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Objective W2 TPEt2(W2) TPEt2(W2) TPEt2(W2) TPEt2(W2) TPEt2(W2) TPEt2(W2)

Mass 0.4 1001.19 658.93 666.98 704.66 734.08 845.99
Connection Degree 0.1 6 9 10 13 14 16
Symmetry 0.4 0 0 0 0 1 1
Beam Continuity 0.1 2 2 2 2 2 3

Table H.4: TPEt2(M) results for parametric truss optimization across n = 1 to 6, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Objective WM TPEt2(M) TPEt2(M) TPEt2(M) TPEt2(M) TPEt2(M) TPEt2(M)

Mass 1 1001.19 658.93 666.98 686.96 707.44 771.51
Connection Degree 0 6 9 11 12 13 15
Symmetry 0 0 0 1 1 2 2
Beam Continuity 0 2 2 2 2 3 3
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Table H.5: TPEt2(SYM) results for parametric truss optimization across n = 1 to 6, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Objective WSY M TPEt2(SYM) TPEt2(SYM) TPEt2(SYM) TPEt2(SYM) TPEt2(SYM) TPEt2(SYM)

Mass 0 1001.19 966.88 666.98 695 803.02 933.54
Connection Degree 0 6 8 10 14 15 16
Symmetry 1 0 0 0 0 0 1
Beam Continuity 0 2 2 2 2 2 2
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Figure H.1: Results of TPEt2(W1) Optimization across Objectives for Ntrials = 2000.
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Figure H.2: Results of TPEt2(W2) Optimization across Objectives for Ntrials = 2000.
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Figure H.3: Results of TPEt2(M) Optimization across Objectives for Ntrials = 2000.
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Figure H.4: Results of TPEt2(SYM) Optimization across Objectives for Ntrials = 2000.
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(a) Graph of TPEt2(W1) optimization results for
parametric truss with n = 6 profiles and

Ntrials = 2000.

(b) Graph of TPEt2(W2) optimization results for
parametric truss with n = 6 profiles and

Ntrials = 2000.

(c) Graph of TPEt2(M) optimization results for
parametric truss with n = 6 profiles and

Ntrials = 2000.

(d) Graph of TPEt2(SYM) optimization results for
parametric truss with n = 6 profiles and

Ntrials = 2000.

Figure H.5: Graph of TPEt2(W1)(W2)(M)(SYM) optimization results for parametric truss with n = 6 profiles and Ntrials = 2000.
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Truss typology 3

This appendix presents the results of TPEt3 optimization for a truss Typology 3, evaluated across (n
from 1 to 8), using four different weight distributions: TPEt3(W1), TPEt3(W2), TPEt3(M) and TPEt3(SYM)
as represented in Table I.1. The analysis investigates the impact of each of the selected weight distri-
bution on the four target objectives mass, connection degree, symmetry, and beam continuity under a
fixed (Ntrials = 2000).

Table I.1: Comparison of different weights combination for TPEt3 distributions in parametric truss optimization

wM wCN wSY M wBCN

TPEt3(W1) 0.25 0.25 0.25 0.25
TPEt3(W2) 0.4 0.1 0.4 0.1
TPEt3(M) 1 0 0 0
TPEt3(SYM) 0 0 1 0

Table I.2: TPEt3(W1) results for parametric truss optimization across n = 1 to 8, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

Objective W1 TPEt3(W1) TPEt3(W1) TPEt3(W1) TPEt3(W1) TPEt3(W1) TPEt3(W1) TPEt3(W1) TPEt3(W1)

Mass 0.25 1584.46 1550.21 1042.81 1089.86 1328.41 1308.48 1423.19 1800.29
Connection Degree 0.25 10 12 16 18 21 21 23 27
Symmetry 0.25 0 0 0 1 0 3 3 3
Beam Continuity 0.25 2 2 2 2 2 2 3 4

Table I.3: TPEt3(W2) results for parametric truss optimization across n = 1 to 8, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

Objective W2 TPEt3(W2) TPEt3(W3) TPEt3(W2) TPEt3(W2) TPEt3(W2) TPEt3(W2) TPEt3(W2) TPEt3(W2)

Mass 0.4 1584.46 1034.81 1042.81 1184.51 1232.31 1311.79 1423.19 1459.6
Connection Degree 0.1 10 15 16 20 24 23 23 28
Symmetry 0.4 0 0 0 0 0 1 3 4
Beam Continuity 0.1 2 2 2 2 2 4 3 5

Table I.4: TPEt3(M) results for parametric truss optimization across n = 1 to 8, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

Objective WM TPEt3(M) TPEt3(M) TPEt3(M) TPEt3(M) TPEt3(M) TPEt3(M) TPEt3(M) TPEt3(M)

Mass 1 1584.46 1034.81 1042.81 1066.11 1122.25 1195.91 1297.04 1420.01
Connection Degree 0 10 15 16 21 20 23 26 27
Symmetry 0 0 0 0 3 2 4 4 5
Beam Continuity 0 2 2 2 4 3 5 4 6
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Table I.5: TPEt3(SYM) results for parametric truss optimization across n = 1 to 8, Ntrials = 2000.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

Objective WSY M TPEt3(SYM) TPEt3(SYM) TPEt3(SYM) TPEt3(SYM) TPEt3(SYM) TPEt3(SYM) TPEt3(SYM) TPEt3(SYM)

Mass 0 1584.46 1034.81 1042.81 1326.24 1232.31 1785.14 1798.25 1674.46
Connection Degree 0 10 15 16 20 24 28 28 26
Symmetry 1 0 0 0 0 0 0 1 3
Beam Continuity 0 2 2 2 4 2 6 4 6
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Figure I.1: Results of TPEt3(W1) Optimization across Objectives for Ntrials = 2000.
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Figure I.2: Results of TPEt3(W2) Optimization across Objectives for Ntrials = 2000.
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Figure I.3: Results of TPEt3(M) Optimization across Objectives for Ntrials = 2000.
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Figure I.4: Results of TPEt3(SYM) Optimization across Objectives for Ntrials = 2000.
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(a) Graph of TPEt3(W1) optimization results for parametric
truss with n = 8 profiles and Ntrials = 2000.

(b) Graph of TPEt3(W2) optimization results for parametric
truss with n = 8 profiles and Ntrials = 2000.

Figure I.5: Graph of TPEt3(W1)(W2) optimization results for parametric truss with n = 8 profiles and Ntrials = 2000.
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(a) Graph of TPEt3(M) optimization results for parametric
truss with n = 8 profiles and Ntrials = 2000.

(b) Graph of TPEt3(SYM) optimization results for parametric
truss with n = 8 profiles and Ntrials = 2000.

Figure I.6: Graph of TPEt2(M)(SYM) optimization results for parametric truss with n = 8 profiles and Ntrials = 2000.
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