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SUMMARY

In recent years, only 32% of reported crimes in the Netherlands resulted in the ap-
prehension of a suspect (Moolenaar et al., 2023). Similarly, in the US, this figure
is 37% for violent crimes and only 12% for property crimes (Federal Bureau of In-
vestigation, 2022). Furthermore, 85% of arrests are red-handed, while the remain-
ing 15% of arrests involve costly and time-intensive investigations (van Dijk et al.,
2013). Increasing the number of red-handed arrests allows for more effective use
of critical resources. A red-handed arrest (heterdaad) can happen in three ways:
the arrest is made at the crime scene, during an immediate pursuit, or through a
planned interception, where officers arrest the suspect while they are attempting
to flee (Wetboek van Strafvordering, artikel 128, 1926). This dissertation addresses
the latter: police interception. Understanding the movement patterns of fleeing
suspects and suggesting proper intervention positions for police units can limit
the use of police resources and increase the chance of red-handed arrests.

Search and interception of fugitives by the police on a road network is a chal-
lenging task due to the complexity of the network, the unknown whereabouts of the
fugitive and uncertainty about the routes that the fugitive takes, and time pressure
(Skinner & Parrey, 2019). The police control room centralists have, at most, a few
minutes to decide where to position intercepting police units. Time pressure has
an adverse effect on the amount of information that can be processed and, there-
fore, on the quality of the decision-making process (Phillips-Wren & Adya, 2020).
Additionally, survivorship bias (there is only information on successful cases where
the suspect was caught) and historical bias (the knowledge and intuition of officers
may no longer reflect the current modi operandi) threaten the effectiveness of po-
lice interception.

Information technology, supported by modeling and simulation to depict the
complex and stochastic decision space, can mitigate these effects by suggesting
interception positions for police units. This dissertation explores simulation-
optimization methods for fugitive interception, aiming to overcome barriers to
using models for decision support in this context. This dissertation addresses
four barriers to using models for decision support in fugitive interception: timely
simulation-optimization, effective representation of the search space, simulation
of fugitive behavior, and adaptation to information updates.

First, Chapter 2 proposes models and solution approaches that can encode
complex behavior while optimizing the solution in real time. Simulation-
optimization models are well-suited for real-time decision-support to the control
room for search and interception of fugitives by Police on a road network, due
to their ability to encode complex behavior while still optimizing the intercep-
tion. The typical simulation-optimization configuration is simulation model
optimization, where the simulation model describes the system to be optimized,

xi



xii SUMMARY

and the optimizer attempts to find the combination of decision variables that
maximizes the interception probability. However, the repeated evaluation of
the simulation model leads to high computation time, thus rendering it inad-
equate for time-constrained decision contexts. To support police interception
operations in real-time, timely calculation of the solution is essential. Sequential
simulation-optimization, where the simulation model, with its rich behavior,
constructs (part of) the constraints of an optimization problem, could decrease
the computation time. We compare the computation time for two configura-
tions of simulation-optimization (typical simulation model optimization and
sequential simulation-optimization) for various problem instances of the fugitive
interception problem. We show that sequential simulation-optimization reduces
the computation time of large instances of the fugitive interception case study
ten-fold. This result illustrates the potential of sequential simulation-optimization
to mitigate the expensive optimization of simulation models.

Second, Chapter 3 compares graph coarsening approaches to improve the
timeliness and scalability of the simulation-optimization models without com-
promising the quality of the police interception. The number of nodes in the
network, each being a crossing where routes of the fleeing suspect can split,
greatly contributes to the computation time. Graph coarsening is a promising
approach to reduce the complexity of the network, and therefore the computation
time. We compare four graph coarsening algorithms on five road networks and
assess their impact on computation time and solution quality for the fugitive in-
terception problem. Based on the comparison, we propose and test a new method
specifically for fugitive interception. This method, Search Space Representation,
improves the quality of the best solutions obtained by the optimization algorithm
with up to 12%, improves the reliability of the optimization to find high-quality
solutions, and decreases the number of function evaluations required to obtain
high-quality solutions to 5 000 - 10 000 depending on the size and complexity
of the road network, which is feasible for real-time decision-making. Search
Space Representation can be applied to reduce the computation time of other
network-based optimization problems.

Third, this dissertation leverages psychological theory to develop behaviorally
explicit models. Various conceptualizations of route choice decision-making of
fleeing suspects exist. We operationalize two models of route choice and imple-
ment these in a simulation. Chapter 4 explores these different models of fugitive
behavior lead to vastly different routes and, therefore, calculated interception posi-
tions. The experiments show that the different route-choice models result in differ-
ent escape routes and, therefore, different calculated police interception positions.
The differences are larger when the road network is complex and contains non-
uniform obstacles (for example, cameras and traffic lights). In other words, the
robustness of the calculated police interception positions for each model largely
depends on the network topology.

Fourth, Chapter 5 compares solution approaches to handle the continuously
changing decision environment, where police units and the fugitive are on the
move, and new information becomes available. The police can access traffic cam-
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eras with automatic number plate recognition (ANPR) software. Additionally, they
may receive calls from concerned citizens regarding abnormal or dangerous be-
havior. These information sources can help to narrow the search for a fleeing fugi-
tive and, therefore, increase the probability of interception. Using the information
to increase the probability of interception is not straightforward due to the un-
predictability of the fleeing suspect and not knowing if, where, and when a traffic
camera detects the fugitive introduce uncertainty to the problem. Moreover, there
is clear path dependency: sending police units in a certain direction constrains
their possible rerouting in the future. In other words, there is a trade-off between
the flexibility to react to new information and the timeliness of decisions. Tradi-
tional stochastic online optimization methods, such as Periodic Re-Optimization,
do not account for uncertainty or path dependency. Two promising adaptive solu-
tion approaches are Policy Tree Optimization and Direct Policy Search. However,
these solution approaches have not been applied to fugitive interception, which
has a rugged fitness landscape and requires the solution to be calculated in real
time to be relevant to decision-makers. We examine the solution quality obtained
for the fugitive interception problem with information updates within a limited
number of function evaluations for four solution approaches: One-shot Optimiza-
tion (the static optimization models used throughout the dissertation), Periodic
Re-Optimization, Direct Policy Search, and Policy Tree Optimization. Based on the
experiments, we advise using Direct Policy Search for problems that are vulnera-
ble to lock-ins. If the interpretability of the results is critical, Direct Policy Search
should be supplemented with an interpretable interface. Otherwise, we advice us-
ing Periodic Re-optimization for its flexibility and ease of implementation.

Finally, Chapter 6 evaluates the models and solution approaches developed in
the previous chapters by comparing their outputs to the actual locations where
police units were positioned by the control room. To apply models in the police
control room to advise on interception strategies, the models need to be thor-
oughly validated and tested. The evaluation discussed in Chapter 6 is the first step
in this process. The evaluation helps to identify strengths and limitations in the
simulation-optimization approach and leads to recommendations for improve-
ments and further research.

We highlight three main contributions of this dissertation. First, we demon-
strate how sequential simulation-optimization reduces computation time com-
pared to classical simulation model optimization. Additionally, we present a meta-
heuristic solution approach that identifies near-optimal solutions in a fraction of
the time required for exact optimization, with the computation time increasing at
a slower rate as the network size grows. Second, we identify a method for incorpo-
rating information updates — both observations and the absence of observations
of the fugitive — into the interception strategy while maintaining consistency in
the interception positions. Third, we show how behavioral assumptions impact
the effectiveness of interception strategies. More detailed models of behavior can
easily be incorporated into the proposed simulation-optimization method.

To summarize, this research provides the foundation for effective decision sup-
port to police control rooms to increase the chance of red-handed arrests.





SAMENVATTING

In de afgelopen jaren resulteerde slechts 32% van de geregistreerde misdrijven in
Nederland in de aanhouding van een verdachte (Moolenaar e.a., 2023). Dit per-
centage ligt in de VS op 37% voor geweldsmisdrijven en slechts 12% voor vermo-
gensdelicten (Federal Bureau of Investigation, 2022). Bovendien wordt 85% van de
aanhoudingen op heterdaad verricht — de overige 15% van de aanhoudingen gaat
gepaard met kostbare en tijdrovende onderzoeken (van Dijk e.a., 2013). Het verho-
gen van het aantal heterdaadaanhoudingen maakt een effectievere inzet van kri-
tieke middelen mogelijk. Een heterdaadaanhouding kan op drie manieren plaats-
vinden: de aanhouding wordt verricht op de plaats delict, tijdens een directe ach-
tervolging, of via een geplande interceptie, waarbij de politie de verdachte aan-
houdt terwijl deze probeert te vluchten (Wetboek van Strafvordering, artikel 128,
1926). Dit proefschrift richt zich op het laatste: politie-interceptie. Inzicht in de
bewegingspatronen van vluchtende daders en het voorstellen van kansrijke op-
stelposities voor politie-eenheden kan het gebruik van politiemiddelen beperken
en de kans op heterdaadaanhoudingen vergroten.

Het opsporen en onderscheppen van vluchtende daders door de politie op een
wegennet is een uitdagende taak vanwege de complexiteit van het netwerk, de on-
zekerheid over de route die de vluchtende dader neemt, en de tijdsdruk (Skinner
& Parrey, 2019). De centralisten in de meldkamer van de politie hebben hooguit
enkele minuten om te beslissen waar de onderscheppende politie-eenheden moe-
ten worden gepositioneerd. Tijdsdruk heeft een negatief effect op de hoeveelheid
informatie die kan worden verwerkt en daarmee op de kwaliteit van het besluitvor-
mingsproces (Phillips-Wren & Adya, 2020). Daarnaast bedreigen survivor bias (er
is alleen informatie beschikbaar over succesvolle gevallen waarin de verdachte is
aangehouden) en historische bias (de kennis en intuïtie van agenten weerspiege-
len mogelijk niet langer de huidige modi operandi) de effectiviteit van interceptie-
strategieën.

Informatietechnologie, ondersteund door modellering en simulatie om com-
plexe en onvoorspelbare situatie in kaart te brengen, kan deze effecten vermin-
deren door opstelposities voor politie-eenheden voor te stellen. Dit proefschrift
onderzoekt simulatie-optimalisatiemethoden voor het onderscheppen van vluch-
tende daders, met als doel de inzet van modellen voor besluitvorming in deze con-
text te verbeteren.

Dit proefschrift richt zich op vier barrières bij het gebruik van modellen ter on-
dersteuning van besluitvorming bij het onderscheppen van vluchtende daders: tij-
dige simulatie-optimalisatie, effectieve representatie van de zoekruimte, simulatie
van het gedrag van vluchtende daders, en het aanpassen van de opstelposities op
basis van informatie-updates.

xv
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Ten eerste stelt Hoofdstuk 2 modellen en oplossingsmethoden voor die het ge-
drag van de vluchter beschrijven en de opstelposities in realtime optimaliseren.
Simulatie-optimalisatiemodellen zijn bijzonder geschikt om de meldkamer in re-
altime te ondersteunen bij het zoeken naar en onderscheppen van voortvluch-
tigen op een wegennet. Deze modellen kunnen complex gedrag representeren
en tegelijkertijd de onderschepping optimaliseren. De typische configuratie van
simulatie-optimalisatie is simulatiemodeloptimalisatie, waarbij het simulatiemo-
del het te optimaliseren systeem beschrijft en de optimizer probeert de combinatie
van beslissingsvariabelen te vinden die de kans op onderschepping maximaliseert.
Het herhaaldelijk uitvoeren van het simulatiemodel leidt echter tot een hoge re-
kentijd, wat het ongeschikt maakt voor besluitvorming met beperkte tijd. Om de
meldkamer van de politie in realtime te ondersteunen bij het onderscheppen van
vluchtende daders, is een snelle berekening van de oplossing essentieel. Sequenti-
ële simulatie-optimalisatie, waarbij het simulatiemodel, met rijk gedrag, (een deel
van) de randvoorwaarden van een optimalisatieprobleem opstelt, kan de de re-
kentijd aanzienlijk verkorten. We vergelijken de rekentijd voor twee configuraties
van simulatieoptimalisatie (typische simulatiemodeloptimalisatie en sequentiële
simulatieoptimalisatie) voor verschillende probleeminstanties van het optimalisa-
tieprobleem. We laten zien dat sequentiële simulatieoptimalisatie de rekentijd van
grote instanties van het optimalisatieprobleem met een factor tien vermindert. Dit
resultaat illustreert het potentieel van sequentiële simulatieoptimalisatie om de
hoge optimalisatiekosten van simulatiemodellen te beperken.

Ten tweede vergelijkt Hoofdstuk 3 graph coarsening algoritmen (die netwer-
ken verkleinen door het verlagen van de granulariteit) van het weggennetwerk om
de tijdigheid en schaalbaarheid van de simulatie-optimalisatie te verbeteren zon-
der de kwaliteit van de politie-interceptie te verlagen. Het aantal knopen in het
netwerk, elk een kruising waar routes van de vluchtende verdachte zich kunnen
splitsen, draagt sterk bij aan de rekentijd. Graph coarsening is een veelbelovende
aanpak om de complexiteit van het netwerk, en daarmee de rekentijd, te verminde-
ren. We vergelijken vier graph coarsening algoritmes voor vijf wegennetwerken en
evalueren hun invloed op de rekentijd en oplossingskwaliteit voor het optimalisa-
tieprobleem van het onderscheppen van vluchtende daders. Op basis van de ver-
gelijking stellen we een nieuwe methode voor specifiek voor het onderscheppen
van vluchtelingen. Deze methode, waarbij onbelangrijke delen van het weggen-
netwerk weg worden gelaten in de representatie van de zoekruimte, verbetert de
kwaliteit van de oplossingen die door het optimalisatiealgoritme worden verkregen
met maximaal 12%, verbetert de betrouwbaarheid van de optimalisatie om oplos-
singen van hoge kwaliteit te vinden, en vermindert het aantal functie-evaluaties
dat nodig is om oplossingen van hoge kwaliteit te verkrijgen tot 5000 - 10.000 (af-
hankelijk van de grootte en complexiteit van het wegennetwerk), wat bruikbaar is
voor real-time besluitvorming. Deze methode kan breder worden toegepast om de
rekentijd van andere netwerkgebaseerde optimalisatieproblemen te verminderen.

Ten derde, maakt dit proefschrift gebruik van psychologische theorie om ex-
pliciete gedragsmodellen te ontwikkelen. Er bestaan verschillende conceptualisa-
ties van routekeuze van vluchtende verdachten. We operationaliseren twee mo-
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dellen van routekeuze en implementeren deze in een simulatiemodel. Hoofdstuk
4 onderzoekt of deze verschillende modellen van vluchtgedrag leiden tot zeer ver-
schillende routes en dus berekende opstelposities voor de politie. De experimen-
ten laten zien dat de verschillende routekeuzemodellen resulteren in verschillende
vluchtroutes en dus verschillende opstelposities. De verschillen zijn groter als het
wegennetwerk complex is en niet-uniforme obstakels (bijvoorbeeld camera’s en
verkeerslichten) bevat. Met andere woorden, de robuustheid van de berekende
onderscheppingsposities voor elk model hangt deels af van de netwerktopologie.

Ten vierde vergelijkt Hoofdstuk 5 oplossingsmethoden om om te gaan met de
continu veranderende context, waar politie-eenheden en de vluchtende verdachte
in beweging zijn en nieuwe informatie beschikbaar komt. De politie heeft toe-
gang tot verkeerscamera’s met automatische nummerplaatherkenningssoftware
(ANPR). Daarnaast kunnen ze telefoontjes ontvangen van bezorgde burgers over
abnormaal of gevaarlijk gedrag. Deze informatiebronnen kunnen helpen om de
zoektocht naar een vluchtende dader te vernauwen en zo de kans op onderschep-
ping te vergroten. Het gebruik van de informatie om de waarschijnlijkheid van
onderschepping te vergroten is niet eenvoudig omdat de vluchtende verdachte
onvoorspelbaar is en omdat niet bekend is of, waar en wanneer een verkeersca-
mera de vluchtende verdachte detecteert. Bovendien is er padafhankelijkheid:
het sturen van politie-eenheden in een bepaalde richting beperkt hun mogelijke
veranderingen in opstelpositie in de toekomst. Met andere woorden, er is een
afweging tussen de flexibiliteit om te reageren op nieuwe informatie en de tijdig-
heid van beslissingen. Traditionele stochastische online optimalisatiemethoden,
zoals periodieke heroptimalisatie, houden geen rekening met onzekerheid of
padafhankelijkheid. Twee veelbelovende adaptieve optimalisatietechnieken zijn
Direct Policy Search en Policy Tree Optimization. Deze oplossingsmethoden zijn
echter nog niet toegepast op het onderscheppen van vluchtende daders, met
een onregelmatig fitnesslandschap, en waarbij de oplossing in realtime moet
worden berekend om relevant te zijn voor de meldkamer. We onderzoeken de
oplossingskwaliteit voor het interceptieprobleem met informatie-updates binnen
een beperkt aantal functie-evaluaties voor vier optimalisatietechnieken: statische
optimalisatie (die in de rest van het proefschrift worden gebruikt), periodieke
heroptimalisatie, Direct Policy Search en Policy Tree Optimization. Op basis van de
experimenten adviseren we om Direct Policy Search te gebruiken voor problemen
die kwetsbaar zijn voor lock-ins. Als de interpreteerbaarheid van de resultaten
kritisch is, moet Direct Policy Search worden aangevuld met een interpreteer-
bare interface. In andere gevallen adviseren we om Periodic Re-optimization te
gebruiken vanwege de flexibiliteit en het gemakkelijke implementatieproces.

Tot slot worden in Hoofdstuk 6 de modellen en oplossingsmethoden die in de
voorgaande hoofdstukken zijn ontwikkeld, geëvalueerd door hun output te verge-
lijken met de werkelijke locaties waar politie-eenheden door de meldkamer zijn
gepositioneerd. Om de modellen toe te passen in de politiemeldkamer om advies
te geven over onderscheppingsstrategieën, moeten de modellen grondig worden
gevalideerd en getest. De evaluatie die in Hoofdstuk 6 wordt besproken, is de eer-
ste stap in dit proces. De evaluatie helpt bij het identificeren van sterke en zwakke
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punten in de simulatie-optimalisatieaanpak en leidt tot aanbevelingen voor ver-
beteringen en verder onderzoek.

We onderstrepen drie bijdragen van dit proefschrift. Ten eerste laten we zien
hoe sequentiële simulatie-optimalisatie de rekentijd vermindert in vergelijking
met klassieke simulatiemodeloptimalisatie. Daarnaast presenteren we een meta-
heuristic optimalisatiealgoritme die bijna-optimale oplossingen identificeert in
een fractie van de tijd die nodig is voor exacte optimalisatie, waarbij de rekentijd
relatief langzamer toeneemt naarmate het netwerk groter wordt. Ten tweede
identificeren we een methode om informatie-updates — zowel waarnemingen
als de afwezigheid van waarnemingen van de vluchtende dader — op te ne-
men in de interceptiestrategie met behoud van zo veel mogelijk consistentie
in de opstelposities. Ten derde laten we zien hoe modellen van vluchtgedrag
de effectiviteit van onderscheppingsstrategieën beïnvloeden. Gedetailleerdere
gedragsmodellen kunnen eenvoudig worden opgenomen in de voorgestelde
simulatie-optimalisatiemethode.

Samengevat biedt dit onderzoek de basis voor effectieve ondersteuning voor
de besluitvorming van de meldkamer van de politie om de kans op heterdaadaan-
houdingen te vergroten.



1
INTRODUCTION

1.1. MOTIVATION

In recent years, only 32% of reported crimes in the Netherlands resulted in the ap-
prehension of a suspect (Moolenaar et al., 2023). Similarly, in the US, this figure
is 37% for violent crimes and only 12% for property crimes (Federal Bureau of In-
vestigation, 2022). Furthermore, 85% of arrests are red-handed, while the remain-
ing 15% of arrests involve costly and time-intensive investigations (van Dijk et al.,
2013). Increasing the number of red-handed arrests allows for more effective use
of critical resources. A red-handed arrest (heterdaad) can happen in three ways:
the arrest is made at the crime scene, during an immediate pursuit, or through a
planned interception, where officers arrest the suspect while they are attempting
to flee (Wetboek van Strafvordering, artikel 128, 1926). This dissertation addresses
the latter: police interception. Understanding the movement patterns of fleeing
suspects and suggesting proper intervention positions for police units can limit
the use of police resources and increase the chance of red-handed arrests.

Search and interception of fugitives by the police on a road network is a chal-
lenging task due to the complexity of the network, the unknown whereabouts of the
fugitive and uncertainty about the routes that the fugitive takes, and time pressure
(Skinner & Parrey, 2019). The police control room centralists have, at most, a few
minutes to decide where to position intercepting police units. Time pressure has
an adverse effect on the amount of information that can be processed and, there-
fore, on the quality of the decision-making process (Phillips-Wren & Adya, 2020).
Additionally, survivorship bias (there is only information on successful cases where
the suspect was caught) and historical bias (the knowledge and intuition of officers
may no longer reflect the current modi operandi) threaten the effectiveness of po-
lice interception.

Information technology, supported by modeling and simulation to depict the
complex and stochastic decision space, can mitigate these effects by suggesting
interception positions for police units. This dissertation explores simulation-

1
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optimization methods for fugitive interception, aiming to overcome barriers to
using models for decision support in this context.

1.2. BACKGROUND

This dissertation addresses four barriers to using models for decision support in
fugitive interception: timely simulation-optimization, effective representation of
the search space, simulation of fugitive behavior, and adapting to information up-
dates.

1.2.1. SEARCH AND INTERCEPTION OPTIMIZATION

Though, to our knowledge, no models exist of the interception of fleeing suspects,
we can draw from two fields: search problems and facility location problems.

SEARCH PROBLEMS

Search problems, or pursuit-evasion problems are problems that describe strate-
gies to locate an evader by controlling one or multiple pursuers (Chung et al.,
2011). In the most basic version of the problem, introduced by Parsons (1978), k
searchers and j evaders are distributed over the vertices of a graph G. All players
have complete information of all other players’ locations. Alternately, any subset
of searchers and any subset of evaders moves to an adjacent vertex or stays at its
current location. The evaders are captured when a searcher and an evader occupy
the same vertex at the same time. This variant, where players take alternating
turns is appropriately named the "Cops and Robbers game". Other variants,
where all players move at the same time also exist. While these more accurately
correspond to the real-world situation, they are much harder to solve (Fomin &
Thilikos, 2008).

Search problems either aim to find the cop number: the number of searchers
required to guarantee capture of the fugitive regardless of the fugitive’s strategy
(Alspach, 2004), or aim to find search strategies that guarantee capture.

The computational complexity of the problem, especially when scaling to road
networks with thousands of nodes where multiple paths can be taken at each in-
tersection, means that applying search problems for real-time decision support in
the control room is, for now, infeasible.

NETWORK INTERDICTION PROBLEMS

Network Interdiction Problems are a family of optimization problems that aim to
remove or monitor the nodes (or links) of a network to minimize an adversary’s
ability to operate or navigate efficiently. One type of network interdiction model
is Maximum Flow Interdiction, minimizing the expected maximum flow that an
adversary can achieve (Smith et al., 2013). Network interdiction is typically mod-
eled as a bilevel optimization problem, where the interdictor’s decisions influence
the attacker’s response: the interdictor decides which nodes or links to interdict
(within resource constraints), and the adversary reacts by choosing the best re-
maining path or flow after interdiction (Cormican et al., 1998). Relevant extensions



1.2. BACKGROUND

1

3

introduce incomplete information, meaning the interdictor and adversary do not
know each other’s preferred strategy (Smith & Song, 2020), and stochastic inter-
diction, accounting for multiple escape scenarios or stochastic success of interdic-
tions (Cormican et al., 1998). Network interdiction problems have been applied to
smuggling (David P. Morton & Saeger, 2007), drug trafficking (Washburn & Wood,
1995), and infrastructure protection (Murray et al., 2007).

Network interdiction problems, and bilevel optimization problems more gen-
erally (Sinha et al., 2018), are NP-hard (Hansen et al., 1992), meaning that applying
network interdiction problems for real-time decision support is difficult, especially
when scaling to real-world road networks with thousands of nodes and links.

FLOW INTERCEPTION PROBLEM

The Flow Interception Problem (FIP) is a special type of Facility Location Prob-
lem. Developed by Hodgson (1990) and Berman et al. (1992), the original model
aims to maximize the flow intercepted by a certain number of facilities, for exam-
ple, consumers who encounter at least one facility along their predetermined jour-
neys. Applications include refueling infrastructure for alternative fuels (Shukla et
al., 2011) and inspection station location problems (Li et al., 2007). Gendreau et al.
(2000) extended the FIP to include a gain coefficient api for each vertex i belong-
ing to route r instead of implicitly relating the gain to the flow values. Tanaka and
Kurita (2020) adapt the FIP to handle probabilistic interception and reward early
interception of travelers.

The generalized formalization of this class of problems (Zeng et al., 2010) can
be extended to fit the police chase case, where police units are placed to maximize
the fraction of intercepted escape routes. Escape routes are preexisting routes or
generated routes from a starting point to various destinations. However, general-
ized FIPs lack an important element of the police interception case: the travel con-
straint of the police units, meaning that police units have to arrive at their target
node before the fugitive to intercept the fugitive.

SOLUTION APPROACHES

Good or optimal solutions to optimization problems can be obtained using exact
methods, heuristics and metaheuristics. Exact optimization methods guarantee
finding an optimal solution. However, many optimization problems are classi-
fied as NP-hard problems – including the Flow Interception Problem – (Borie et
al., 2011), meaning they cannot be solved in polynomial time. Only small-scale
instances can be solved using exact methods.

Heuristics do not guarantee an optimal solution. Heuristics are problem-
specific solution methods that exploit properties of the problem to reach a
solution efficiently. Therefore, they are efficient for the problem they were
designed for, while being inefficient for others (Rothlauf, 2011).

A metaheuristic, on the other hand, is a generic algorithm framework that
can be applied to any optimization problem. While convergence metrics can be
used to track the progress of the algorithms, optimality cannot be guaranteed.
Abdel-Basset et al. (2018) distinguish metaphor-based metaheuristics (for exam-
ple, based on biology (evolutionary algorithms) or physics (simulated annealing))
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and non-metaphor-based metaheuristics (for example, Tabu Search and Variable
Neighborhood Search). State-of-the-art examples of evolutionary algorithms for
multi-objective optimization problems are ϵ-NSGA-II (Deb et al., 2002) and BORG
(Hadka & Reed, 2013).

1.2.2. REPRESENTATION OF THE SEARCH SPACE

The large problem size of real-world cases further threatens timely optimization.
Given the large number of possibilities of escape behavior and police routing, the
size of the network quickly becomes infeasibly large for real-time decision sup-
port. Graph coarsening, a technique to reduce the size of a graph while preserving
essential structural properties, offers a promising approach to reducing computa-
tion time (Geisberger et al., 2008). Graph coarsening algorithms have successfully
been applied to various graph-based optimization problems where reducing the
number of nodes significantly improves computation time, such as routing opti-
mization (Sanders & Schultes, 2012), the Traveling Salesman Problem (Walshaw,
2004) and graph partitioning (Chevalier & Safro, 2009).

The effectiveness of graph coarsening algorithms varies depending on the ap-
plication, as the importance of the nodes and links is very case-specific. For ex-
ample, coarsening for transport modeling often focuses on preserving the shortest
paths (Sanders & Schultes, 2012), while coarsening for graph partitioning aims to
minimize the number of edges (Chevalier & Safro, 2009; Safro et al., 2015). Pung et
al. (2022) propose an algorithm that coarsens road networks using characteristics
most prominent in the United States – grids and cul-de-sacs.

For fugitive interception, coarsening risks removing nodes of high importance
to the fugitive interception problem, decreasing the solution quality.

1.2.3. SIMULATION OF FUGITIVE BEHAVIOR

Mathematical optimization of the interception position relies on generating es-
cape routes for the suspect. The set of routes, and the probability distribution
over the paths, determine the optimal combination of interception positions. The
generated set of routes has to be complete in terms of network coverage for the
mathematical optimization model will not identify the most interesting intercep-
tion points.

There are various ways to conceptualize the route choices of fleeing suspects
to generate a set of escape routes (Sava et al., 2016; van Gelder, 2013). Without
knowledge of their underlying decision-making process, the routes may resemble
a random walk through the road network. In contrast, if we had complete informa-
tion on the suspect’s characteristics and decisions, there would be a single deter-
ministic route. In practice, we have incomplete information, where we have some
understanding of route choices but not all, leading to a heuristic implementation
of the route choice model of a fugitive.

Many theoretical studies implement a random motion for the fleeing suspect
(Borie et al., 2013; Sava et al., 2016). Explicitly encoding behavior through decision
rules could lead to more effective interception strategies (Simard et al., 2021). How-
ever, very little is known about the decision-making of suspects fleeing a crime.
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1.2.4. ADAPTATION TO INFORMATION UPDATES

The police can access traffic cameras with automatic number plate recognition
(ANPR) software. Additionally, they may receive calls from concerned citizens re-
garding abnormal or dangerous behavior. These information sources can help to
narrow the search for a fleeing fugitive and, therefore, increase the probability of
interception. Using this information to increase the probability of interception
is not straightforward due to the unpredictability of the behavior of the fugitive
and not knowing if, where, and when a sensor might detect the fugitive. Given the
known positions of sensors that might detect the fugitive, both detections and lack
of detection rule out possible escape routes. Moreover, there is clear path depen-
dency: sending police units in a certain direction constrains their possible rerout-
ing in the future. In other words, there is a trade-off between the flexibility to react
to new information and the timeliness of decisions.

The literature presents various methods for dealing with incoming information
in simulation-optimization (Henrichs et al., 2022). Yet, it is unknown which ap-
proach is most effective for fugitive interception problems. Traditional stochastic
online optimization methods, such as Periodic Re-Optimization (Psaraftis, 1980),
do not account for uncertainty or path dependency. On the other hand, most tech-
niques developed for adaptive decision-making under uncertainty are developed
for long-term planning problems and require ample time for analysis and interme-
diate input from decision-makers. Direct Policy Search (Giuliani et al., 2016; Kout-
soyiannis & Economou, 2003) and Policy Tree Optimization (Herman & Giuliani,
2018) are developed for optimal control under uncertainty and may be suitable for
real-time decision-making. However, timely calculation of the solution is essential
to support police interception operations in real time. Direct Policy Search opti-
mizes a policy, described by the parametrization of Radial Basis Functions, that
maps the system’s state (in our case, ANPR input) to control actions (Giuliani et
al., 2016; Rosenstein & Barto, 2001). Policy tree optimization optimizes a binary
decision tree that delineates what actions should be taken under what conditions
(i.e., ANPR input) (Herman & Giuliani, 2018). In water resource management, Pol-
icy Tree Optimization yields a more interpretable output, which makes it an in-
teresting algorithm to evaluate for fugitive interception. Interpretably presenting
interception strategies to control room centralists could be valuable for supporting
timely and transparent decisions in fugitive interception.

1.3. RESEARCH QUESTIONS

This research aims to identify, develop, and evaluate methods to identify effec-
tive fugitive interceptions. Four sub-research questions address the challenges in
reaching this goal. Each research question aims to improve the effectiveness of
the interception while preserving the timeliness of the calculated solutions. Fig-
ure 1.1 presents a graphical overview of the research challenges addressed by each
research question.
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1. How to formalize fugitive interception? Models of fugitive interception are
not of sufficient maturity to apply in a control room. The networks that mod-
els are applied to are simple (not a road network, but instead lines and circles
and trees) and they cannot easily be extended due to the constrained com-
putation time for real-time decision support. This research question aims to
develop models and solution approaches that can encode complex behavior
while optimizing the solution in real time.

2. How to leverage graph coarsening to improve the timeliness of simulation-
optimization for fugitive interception? This research question aims to de-
velop graph coarsening approaches for fugitive interception to improve the
timeliness and scalability of the aforementioned approaches without com-
promising the quality of the police interception.

3. How to generate an ensemble of realistic fugitive escape routes? Escape routes
are often generated using random walk models. Instead, this research ques-
tion aims to leverage psychological theory to develop behaviorally explicit
models. This research question explores whether these models lead to vastly
different routes and, therefore, calculated interception positions.

4. How to use incoming information to increase the probability of interception?
This question aims to find a solution approach to handle the continuously
changing decision environment, where police units and the fugitive are on
the move, and new information becomes available, while the effectiveness
of the implementation of a solution is dependent on its timeliness.

Figure 1.1: Schematic overview of the simulation-optimization framework used in this thesis. The com-
ponents addressed by each research question are indicated in green.



1.4. OUTLINE

1

7

1.4. OUTLINE

Each research question is addressed in a separate chapter. Each chapter consists
of a self-contained journal or conference paper, causing some overlap in the intro-
duction and method sections.

Chapter 2 introduces the simulation-optimization framework used throughout
this dissertation. The method is supported by a literature review of simulation-
optimization configurations and computational experiments comparing various
approaches to optimizing fugitive interception. Chapter 3 presents a comparison
of four graph coarsening algorithms to improve the tractability of the simulation-
optimization problem, and proposes a graph coarsening approach for fugitive in-
terception. Chapter 4 dives into the simulation of the escape routes of the fleeing
fugitive. While the previous chapter uses a random walk model to generate escape
routes, this chapter compares these to simulation models informed by criminolog-
ical and route-choice literature. Chapter 5 presents a quantitative comparison of
adaptive and online optimization approaches for fugitive interception. Chapter 6
evaluates the approaches presented in this dissertation for three case studies. The
final chapters reflect on the research and address the research questions based on
the content discussed in Chapters 2-6.





2
SIMULATION-OPTIMIZATION

CONFIGURATIONS FOR

REAL-TIME DECISION-MAKING IN

FUGITIVE INTERCEPTION

This chapter lays the foundation for the rest of this dissertation by developing and
demonstrating the feasibility of simulation-optimization for real-time decision sup-
port for fugitive interception. The remaining chapters will utilize the simulation-
optimization framework presented and tested in this chapter.

This chapter is published as: Van Droffelaar, I.S., Kwakkel, J.H., Mense, J. P. & Verbraeck, A. (2024). Sim-
ulation–optimization configurations for real-time decision-making in fugitive interception. Simulation
Modelling Practice and Theory, 133, 102923.

The code and data associated with this chapter are available at: doi:10.4121/5f3a6a70-377b-42eb-9f46-
5fd1141bed78
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ABSTRACT

Simulation-optimization models are well-suited for real-time decision-support to
the control room for search and interception of fugitives by Police on a road net-
work, due to their ability to encode complex behavior while still optimizing the
interception.

The typical simulation-optimization configuration is simulation model op-
timization, where the simulation model describes the system to be optimized,
and the optimizer attempts to find the combination of decision variables that
maximizes the interception probability. However, the repeated evaluation of the
simulation model leads to high computation time, thus rendering it inadequate
for time-constrained decision contexts. To support police interception operations
in real-time, timely calculation of the solution is essential.Sequential simulation-
optimization, where the simulation model, with its rich behavior, constructs (part
of) the constraints of an optimization problem, could decrease the computation
time.

We compare the computation time for two configurations of simulation-
optimization (typical simulation model optimization and sequential simulation-
optimization) for various problem instances of the fugitive interception problem.
We show that sequential simulation-optimization reduces the computation time
of large instances of the fugitive interception case study ten-fold. This result
illustrates the potential of sequential simulation-optimization to mitigate the
expensive optimization of simulation models.

2.1. INTRODUCTION

Search and interception of fugitives by the police on a road network is a challenging
task due to the complexity of the network, the unknown whereabouts of the fugi-
tive and uncertainty about the routes that the fugitive takes, the stressful decision-
making context (Phillips-Wren & Adya, 2020), and time pressure (Skinner & Par-
rey, 2019). Both stress and time pressure have an adverse effect on the amount of
information that can be processed and, therefore, on the quality of the decision-
making process (Skinner & Parrey, 2019). Information technology, supported by
modeling and simulation to depict the complex and stochastic decision space, can
mitigate these effects by suggesting interception positions for police units. Related
search and interception routing problems are solved using a variety of approaches.
For example: general graph search (Alspach, 2004), continuous space search using
mobile robotics (Chung et al., 2011), missile interception (Raap et al., 2019), and
search and rescue (Sava et al., 2016), or more specifically, finding the lost MH370
(Ivić et al., 2020). Simulation-optimization models, in particular, seem suitable to
solve the fugitive interception problem due to their ability to encode complex be-
havior and solve for good interception routes.
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To support police interception operations in real-time, timely calculation of
the solution is essential (van Dijk et al., 2013). Given the complexity of the prob-
lem, caused by a large number of edges in a road network, the uncertainty in the
behavior of the fugitive, and the degrees of freedom of the police units, solving a
typical simulation-optimization configuration in real-time is infeasible. Typically,
the computation time of simulation-optimization is improved by increasing com-
putation power and algorithm efficiency. For larger networks, however, the com-
putation time of the fugitive interception problem would still be too large for using
simulation-optimization in a real-world context where a solution is needed in less
than a minute. A promising alternative is to combine simulation and optimiza-
tion differently than in classical simulation-optimization, such that the number of
times the simulation model has to run is drastically reduced (Figueira & Almada-
Lobo, 2014).

A different way of combining simulation and optimization is sequential
simulation-optimization, where the simulation constructs (part of) the con-
straints of an optimization problem. This paper provides an extension to the
taxonomy of simulation-optimization configurations, presents and researches
sequential simulation-optimization, and provides a quantitative analysis of the
real-time performance of classical simulation-optimization compared to sequen-
tial simulation-optimization. We apply the comparison to a fugitive interception
problem to two case studies: a 2D grid and a city road network. Thus, we show
the potential of sequential simulation-optimization to mitigate the expensive
optimization of simulation models.

Section 2.2 outlines the background literature on simulation-optimization.
Section 2.3 describes the methods used in the paper, including a description of
the case study, the models, and the optimization algorithms. The subsequent
sections detail the obtained results, specifically on a grid network (Section 2.4.1)
and a real-world road network (Section 2.4.2). Possible threats to the validity of
the results are discussed in Section 5, and we share our conclusions in Section 6.

2.2. SIMULATION-OPTIMIZATION

Two paradigms of prescriptive analytics are simulation and optimization. Simu-
lation answers ‘what-if’ questions about a system: what is the system response
given a set of values for the decision variables? In contrast, optimization aims to
answer ‘how-to’ questions: how to maximize or minimize the system response
by choosing the optimal values for the decision variables? (Fu, 2015; Shannon,
1998) Simulation-optimization combines the two. Despite broad applicability,
simulation-optimization is still less popular than pure simulation or optimization
studies (Tordecilla et al., 2021).

The terms ‘optimization via simulation’ (Fu, 1994; Hong et al., 2015), or ‘sim-
ulation for optimization’ (Fu, 2002) are often conflated with the term simulation-
optimization. They describe the application of simulation methods for solving op-
timization problems - not the combination of simulation and optimization mod-
els. Well-known examples are simulated annealing and ant colony optimization.
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This section describes the related literature in real-time simulation-
optimization and simulation-optimization configurations. In the latter subsection,
we dive deeper into the configurations and provide a synthesis of concepts that
add to the broader understanding of simulation-optimization.

2.2.1. REAL-TIME SIMULATION-OPTIMIZATION

To be useful for real-time decision making, the timely calculation of the optimal
solution is essential. In classical simulation model optimization, the simulation
model is evaluated for each set of input parameter values that constitute a candi-
date solution determined by the optimizer. In this setup, two factors determine
the computation time: (1) the number of function evaluations (i.e., a single run of
the simulation model) needed by the optimizer to find the optimal solution and (2)
the computation time per function evaluation. The first is dependent on the effi-
ciency of the optimizer. Since discrete simulation (DEVS) typically yields a rugged
fitness landscape, the computation time of the optimization is high (Maier et al.,
2019). Improvement of optimization algorithms for simulation-optimization is an
active field of research with extensive literature (Amaran et al., 2016). Review ar-
ticles over time are provided by, among others, (Amaran et al., 2016; Andradóttir,
1998; Carson & Maria, 1997; Fu et al., 2005; Garrison & Petty, 2019). The pop-
ularity of Digital Twins to support decision-making is increasing the need for ap-
proaches for timely simulation-optimization, and, consequently, for research done
in the field (Sharma et al., 2022). Recently, the focus has shifted towards finite
time performance rather than asymptotic performance, where the optimizer has
reached convergence, as exemplified in (Dong et al., 2017; Ghadimi & Lan, 2015;
Henderson, 2021). This development is relevant for real-time decision making,
because the focus shifts to obtaining timely ‘as-good-as-feasible’ solutions rather
than ‘as-good-as-possible’ solutions in as much time as the computation budget
allows. For example, De Armas et al. (de Armas et al., 2017) solve the uncapaci-
tated facility location problem for telecommunications in real time using a tailor-
made simulation-based metaheuristic. However, even with improving and tailor-
ing the optimization approach, thousands of simulation runs must be completed
in the optimization search for larger problems. For complex simulation models,
this leads to infeasibly high computation times for real-time simulation. The sec-
ond factor, computation time per function evaluation - running the simulation
model - is often not reducible due to the complexity inherent to the problem. In
some cases, a solution is to develop surrogate models - or metamodels - that de-
scribe the input-output relations of the simulation model and are computationally
cheaper to evaluate (Kleijnen & Sargent, 2000). However, this method requires an
initial time investment to fit the surrogate model to the complex and stochastic
fitness landscape of the simulation model, and information is lost in the process.

2.2.2. SIMULATION-OPTIMIZATION CONFIGURATIONS

The term ‘simulation-optimization’ is ambiguous, with most articles describing
the optimization of a simulation model (the top configuration in Table 2.1). Yet,
simulation and optimization can be coupled in various configurations. Figueira
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and Almada-Lobo (2014) attempt to reduce the ambiguity by presenting a taxon-
omy for simulation-optimization. They distinguish four dimensions: simulation
purpose, hierarchical structure, search method, and search scheme. Table 2.1 sum-
marizes the hierarchical structure dimension, which this paper examines further.

Table 2.1: A tabular overview of the four simulation-optimization configurations

Configuration Goal Type of output Iterations

(a)
Optimize a simulation
model

Optimal solution
Optimization: > 1
Simulation: > 1

(b)
Implement part(s) of
a simulation model
as optimization

Model output
Optimization: ≥ 1
Simulation: 1

(c)
Implement part(s) of
an optimization model
as simulation

Optimal solution
Optimization: 1
Simulation: ≥ 1

(d)
Construct constraints
of an optimization mo-
del through simulation

Optimal solution
Optimization: 1
Simulation: 1

We examine the connections between simulation and optimization in each of
the configurations. An optimization model consists of constraints, an objective
function, and an optimizer (Nocedal & Wright, 2006). The objective function is a
function of model variables that should be maximized or minimized; constraints
define feasibility by imposing limitations on model variables and parameters; the
optimizer, or solver, is the algorithm that finds the optimal solution. Likewise, fol-
lowing the Discrete Event System Specification modeling framework (Zeigler et al.,
2000), a simulation model consists of an experimental frame, a model, and a sim-
ulator. The experimental frame provides the input arguments: the conditions un-
der which the system is experimented with; the model describes the logic of the
simulation; the simulator executes the model. In Figure 2.1, we use these frame-
works (Nocedal & Wright, 2006; Zeigler et al., 2000) to specify the simulation and
optimization components in the simulation optimization taxonomy (Figueira &
Almada-Lobo, 2014). In each configuration, the model is assumed to be fixed.
Changes to the model are passed through the experimental frame as changes to
parameters or decision variables. Changes to the model itself would introduce
structural uncertainty, which is outside the scope of this paper.

The following paragraphs describe the four configurations in more detail
and provide examples. For each configuration, we discuss the purpose of the
simulation and optimization components, which components are endoge-
nous/exogenous, how stochasticity in the simulation model is managed, and an
illustrative example from the literature.
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(a) Simulation model optimization (b) Optimization model as part of a simulation

(c) Simulation model as part of an optimization (d) Sequential simulation-optimization

Figure 2.1: Configurations of combining simulation and optimization, specified using terminology from
the Discrete Event System Specification modeling framework (Zeigler et al., 2000). The blue dashed
arrow indicates the entity that delivers the final output to the model user.

Configuration (a): Simulation Model Optimization The simulation model de-
scribes the system to be optimized, and the optimizer attempts to find
the combination of decision variables X that minimizes or maximizes the
objective value f (X ) where f is the transformation of input to output by the
simulation model and Y = f (X ) are the model output variables (Fu, 1994).
In each iteration, the optimization and the simulation are both executed
(Figueira & Almada-Lobo, 2014). For the simulation, this means that the
model is run to completion. If the simulation model is stochastic, the
simulation model’s output is a summary statistic over multiple replications.
For optimization, the optimizer receives the simulation model’s output for
the previous set of decision variables and determines a new set of decision
variables to evaluate. The decision variables are passed to the simulator
through the experimental frame.

Xi et al. (2013) describe a real-world example using an extensive simulation
model of transportation behavior in the central Ohio region. The optimal lo-
cations of electric vehicle charging stations are determined to maximize the
service rate. Many more examples are described in the literature, with ap-
plications in, among others, transport, logistics, and health care (Amaran et
al., 2016). Extensions of simulation model optimization are, for example, ro-
bust optimization and model calibration, where additional functions are ap-
plied to the outcomes of the simulation model (van Schilt et al., 2022; Wigan,
1972). In robust optimization, the objective function is based on the robust-
ness of the output given a set of values for the decision variables. Robustness
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is often defined as the variance of the output for a set of simulation runs with
different input parameter values, but there is a broader array of robustness
metrics available (see McPhail et al. (2018)). Simulation model calibration
minimizes the distance between the output of the simulation model and the
associated observed value (Wigan, 1972).

Configuration (b): Optimization Model as Part of a Simulation The optimiza-
tion model describes a process within the simulation model, representing
something that is also optimized in the system under study. In each iteration
of the simulation, one or more complete optimization runs are performed
(Figueira & Almada-Lobo, 2014). The simulator calls the optimization
model, which calculates the optimal solution given the current states of
the simulation, the constraints, and the objective function. The optimizer’s
output is endogenous and used in the remainder of the simulation run.
Compared to configuration A, the objective function becomes endogenous.
The experimental frame is exogenous and is determined by the model user.
If the simulation model is stochastic, this entire process should be executed
for multiple replications.

An illustrative example is described by van Barneveld et al. (2016), where
ambulance operations are examined. An optimization model dynamically
determines the re-locations of ambulances to anticipate demand each time
step of the simulation model. Many agent-based models also fall into this
category: each agent optimizes its own behavior, and we observe the emer-
gent behavior on the model level.

Configuration (c): Simulation Model as Part of an Optimization The simulation
model describes a process within an optimization model, which cannot
or should not be characterized by constraints in the optimization model
(Azadivar, 1999). Similar to configuration B, the objective function is
endogenous. In contrast, the simulation output is endogenous, and the
simulation-optimization output is the optimizer’s solution. The optimizer
provides the input for the simulation model. The simulation output
contributes to a part of the objective function. The simulation typically
introduces stochasticity in the optimization. Many replications should
be run to obtain output with a small confidence interval since classical
optimization methods cannot handle stochasticity. In each iteration of
the optimization model, one or multiple simulation runs are completed
(Figueira & Almada-Lobo, 2014).

An example is using a simulation model as a more realistic representation
of a queue, in contrast to a simple but unrealistic, first-in-first-out (or other
simple optimization-based) queuing system. Azadivar (1999) provides the
example of a resource allocation model, where a simulation model of the
inventory represents the stochasticity in lead time and inventory.

Configuration (d): Sequential Simulation-Optimization The simulation and
optimization modules run sequentially, where the simulation experiment
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runs only once (Figueira & Almada-Lobo, 2014). If the simulation model
is stochastic, this simulation experiment should consist of multiple repli-
cations to obtain the simulation output. Table 2.1 and Figure 2.1d depict
simulation −→, but the simulation and optimization components could be
connected in either order. In simulation −→ optimization, the simulation
output forms (a part of) the constraint set of the optimization model.
The constraints to the optimization problem are endogenous. Similar to
configurations a) and c), the final output is the optimal solution. In contrast,
both the simulation and optimization components are only run once,
suggesting a major potential improvement in efficiency. In optimization −→
simulation, the optimization model provides a configuration or schedule to
be used in the simulation. The final output is the simulation output, similar
to configuration b).1

An illustrative example of sequential simulation-optimization is provided by
Gülpınar et al. (2004), where simulation is used to construct scenario trees
that are subsequently used in a financial portfolio optimization problem.

2.3. METHOD

In this section, we first describe the case study, independent of the specific
implementations. Second, we explain the implementation of simulation model
optimization (Configuration (a) from Table 2.1). Next, we present the sequential
simulation-optimization formalization (Configuration (d) from Table 2.1). Finally,
we discuss the solution approaches and methods for comparison.

2.3.1. CASE STUDY: FUGITIVE INTERCEPTION

We use the positioning of police units to maximize the probability of intercepting
a fleeing fugitive on a road network as a case to examine the effect of simulation-
optimization configurations on the computation time. The problem is modeled
from the time of the incident until the fugitive is either intercepted or has escaped.
Police units have no knowledge of the fugitive’s whereabouts, so they have to move
to a vertex in the network where the probability of intercepting is highest, e.g., a
chokepoint in the network where many routes pass through.

RELATED OPTIMIZATION PROBLEMS

Search problems, and more specifically, interception problems, describe related
problems. A search problem related to the case study addressed in this paper op-
timizes the routes of searchers to maximize the probability of finding a target or
to minimize the time to detect a target (Alspach, 2004). However, optimizing an

1A related optimization approach is sample average approximation (SAA), which was developed to
solve large-scale stochastic programming problems. Stochastic programming problems maximize the
expected value of the objective function, considering different possible realizations of uncertain pa-
rameters. SAA approximates the expected value of the objective function using a finite sample of sce-
narios, which allows for the transformation of a stochastic problem into a deterministic one by consid-
ering a representative subset of all possible scenarios. Monte Carlo simulation is a common technique
within SAA to generate a set of scenarios (Kim et al., 2015; Shapiro, 2003).
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action for each time step quickly becomes untractable with larger networks and
longer time horizons.

Primarily applied in the field of robotics, these problems are often modeled in
continuous spaces or on grids (Chung et al., 2011). In theoretical mathematical
exploration, problems are solved for different graph topologies, such as grids, cir-
cular graphs, trees, and random graphs. On various graph topologies, these prob-
lems are proven to be pseudo-P to strongly NP-complete, depending on the spe-
cific problem formulation and properties of the graph (Borie et al., 2011). Due
to the complexity of these optimization problems, the problem instances that are
studied are typically very small. To our knowledge, there are no applications in
real-world street graphs.

Problems with both stationary and moving targets have been addressed. Sta-
tionary targets may be placed randomly or adversarially to evade capture. Simi-
larly, moving targets may be adversarial or non-reactive. Non-reactive moving tar-
gets are generally modeled as random walks (Chung et al., 2011). Extensive efforts
have been made to analyze and model the behavior of lost persons (Hashimoto et
al., 2022; Koester, 2008; Sava et al., 2016). However, these behaviorally rich mod-
els have not been integrated with search optimization problems, and models of
criminal routing behavior have not been published.

Another related area of research describes flow interception problems, a special
type of Facility Location Problem. Developed by Hodgson (1990) and Berman et
al. (1992), the original model aims to maximize the flow intercepted by a certain
number of facilities. For example, these models are used to maximize the num-
ber of consumers who encounter at least one facility on their path. Gendreau et
al. (2000) extended the FIP to include a gain coefficient ar v for each vertex v be-
longing to route r instead of implicitly relating the gain to the flow values. Tanaka
and Kurita (2020) adapt the FIP to handle probabilistic interception and reward
early interception of travelers. The generic Flow Interception Problem is NP-hard,
meaning it cannot be solved in polynomial time (Berman et al., 1992).

MODELING CHOICES

We choose to model the problem as a variation on the Flow Interception Problem,
since it is expected to be a more tractable problem to solve in real time. Instead
of optimizing a position for each police unit for each time step, we optimize the
target position for each police unit.

We simulate the routing behavior of the fugitive on a graph as a random walk
starting at the location of the incident. At each intersection, the fugitive chooses
the next vertex to travel to, which is a stochastic process where each neighboring
vertex has equal probability. The fugitive does not turn around unless the vertex
only has one neighboring vertex (i.e., a dead end). Each instance of this simulation
generates an element r in R, consisting of |R| fugitive routes. Table 2.2 specifies the
model variables and parameters.

φr,t+1 = Uniform(Neighbors(φr,t )) ∀r ∈ R ∀t ∈ T (2.1)
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Table 2.2: Notation of parameters and decision variables. Simulation model optimization and sequen-
tial simulation-optimization require different forms of πu(,v) and φr (,v),t . For completeness, both are
included in this table.

Decision variables
zr ∈ {0,1} binary variable for the interception of route r
πu ∈V target vertex of police unit u
πu,v ∈ {0,1} binary parameter for the target vertex v of police unit u

Parameters
V = {v} set of vertices
R = {r } set of fugitive routes
U = {u} set of police units
T = {t } ordered index set of time steps
φr,t ∈V vertex of fugitive route r at time t
φr,v,t = {0,1} binary parameter for the presence of fugitive route r at vertex v at time step t
τu,t ∈V vertex of police unit u at time t
τu,v,t = {0,1} binary parameter for the reachability of vertex v by police unit u at time t

The travel time between two vertices i and j is determined by the length of the
edge (lengthi , j ) and the maximum allowed speed on that edge (Vmaxi , j ) (eq 2.2).

travel timei , j =
lengthi , j

Vmaxi , j
(2.2)

We optimize the positioning of the police units (πu,v ) to jointly maximize the
number of intercepted fugitive routes (zr ). The police units drive the shortest route
from their position at the time of the incident to their respective target vertex. The
police intercept a fugitive route r if a police unit has arrived at its target vertex (πu),
and the fugitive and the police unit are at the same vertex at the same time. The
police units stay at their target vertex. Therefore, if a fugitive’s route crosses that
vertex at a later time step, it also results in an interception.

MODEL DESCRIPTION: SIMULATION MODEL OPTIMIZATION

The implementation of simulation model optimization consists of a simulation
model ( f (πu ;φr,t ,τu,t )) that describes the movement of the fugitive, the movement
of the police units, and the interception process given the starting and target nodes
of the police units (τu,t , πu) and the fugitive routes (φr,t ). The simulation model
outputs the number of intercepted fugitive routes (zr ). To account for stochastic-
ity in the behavior of the fugitive, the model contains 500 instances of the fugitive
model entity. These escape routes are the same for each function evaluation. The
target vertices of the police units are optimized to maximize the number of inter-
cepted fugitive routes (eq 2.4).

Maximize: Z = ∑
r∈R

zr (2.3)

Subject to: zr = f (πu ;φr,t ,τu,t ) (2.4)
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The simulation model is implemented in pyDSOL, a Python implementation
of the Distributed Simulation Object Library (DSOL) simulation library (Jacobs,
2005). 2,3

MODEL DESCRIPTION: SEQUENTIAL SIMULATION-OPTIMIZATION

The implementation of sequential simulation model optimization consists of a
simulation model that describes the movement of the fugitive and a separate op-
timization model that determines the routing of the police units. The simulation
model is run 500 times to generate an ensemble of plausible fugitive routes and
to construct φr,v,t . The optimization problem is formulated as a Flow Interception
Problem (Berman et al., 1992; Hodgson, 1990) with a time constraint on intercep-
tion, determined by the initial position and speed of the police units.

Analogous to the simulation model formalization in the previous section, the
decision variables of the optimization problem are the police unit positions πu,v

and the intercepted routes zr . Given the decision variables and parameters out-
lined in Table 2.2, the optimization problem is defined as follows:

Maximize: Z = ∑
r∈R

zr (2.5)

Subject to:
∑

v∈V
πu,v == 1 ∀u ∈U (2.6)

zr = min
(
1,

∑
u∈U

∑
t∈T

∑
v∈V

φr,v,t ·πu,v ·τu,v,t

)
∀r ∈ R (2.7)

The objective function of the optimization (2.5) describes the maximization of
the number of intercepted routes at vertices πu,v . Furthermore, τu,v,t is a given for
any starting point of a police unit and can be pre-loaded. Constraint 2.6 ensures
that only one position is chosen for each police unit. Constraint 2.7 ensures that
a route is intercepted if a police unit is placed at any vertex on a route r and the
police unit can reach vertex v at time t . If a route contains more than one police
unit, it will be counted in the objective function once since zr is a binary variable.
If no vertex in route r contains a police unit, the variable zr equals 0 (i.e., not in-
tercepted). zr equals 1 (i.e., is intercepted) if a police unit is present on at least one
vertex in route r , (Boccia et al., 2009).

2.3.2. SOLUTION APPROACHES

EXACT OPTIMIZATION

Exact optimization methods guarantee to find an optimal solution. However, the
Flow Interception Problem is NP-complete (Borie et al., 2011), meaning they can-
not be solved in polynomial time. Only small-scale instances can be solved using
exact methods, threatening the real-time applicability of exact optimization meth-
ods. Regardless, many different commercial and open-source exact solvers apply
(a mixture of) approaches that exploit common characteristics of these classes of

2pyDSOL core: https://github.com/averbraeck/pydsol-core
3pyDSOL model: https://github.com/imvs95/pydsol-model

https://github.com/averbraeck/pydsol-core
https://github.com/imvs95/pydsol-model
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problems to find the optimal solution efficiently. We choose the Coin-OR branch-
and-cut open-source solver (Ralphs, 2022) for its applicability to Mixed-Integer
Problems and open-source availability.

We use the true optimum found by the exact solver to assess the convergence
of the metaheuristic optimization algorithm.

METAHEURISTIC OPTIMIZATION

Heuristics are problem-specific solution methods that exploit the properties of the
problem to reach a solution efficiently but do not guarantee an optimal solution.
Therefore, they are effective for the problem they were designed for while being
inefficient for others (Rothlauf, 2011). Conversely, a metaheuristic is a generic al-
gorithm that can be applied to any optimization problem. While convergence met-
rics can be used to track the algorithm’s progress, optimality cannot be guaranteed.
Abdel-Basset et al. (2018) distinguish metaphor-based metaheuristics (for exam-
ple, based on biology (e.g., evolutionary algorithms) or physics (e.g., simulated an-
nealing)) and non-metaphor-based metaheuristics (e.g., Tabu Search and Variable
Neighborhood Search). Genetic algorithms - a subset of evolutionary algorithms
- generally perform well on combinatorial optimization problems with complex
interactions between decision variables (Mühlenbein et al., 1988; Tolk, 2022; Tor-
res & Khuri, 2001). State-of-the-art examples of evolutionary algorithms for multi-
objective optimization problems are ϵ-NSGA-II (Deb et al., 2002) and Borg (Hadka
& Reed, 2013).

We choose a simple genetic algorithm supplemented with the auto-adaptive
framework from Borg, which co-evolves the probabilities of the evolutionary oper-
ators used for population adaptation based on their relative success in finding fitter
offspring. This means that the algorithm optimizes the probability of each oper-
ator being used during the optimization, speeding up convergence by leveraging
each operator when performing best. The operators used are 1) Simulated Binary
Crossover (SBX), 2) Differential Evolution (DE), 3) Parent-Centric Crossover (PCX),
4) Simplex Crossover (SPX), 5) Unimodal Normal Distribution Crossover (UNDX),
and 6) Uniform Mutation (UM) applied with probability (Hadka & Reed, 2013). At
the initialization of the algorithm, each operator has equal probability. We use the
default settings for Borg, as presented in Table 2.3. Further research should sys-
tematically compare various suitable optimization algorithms, for example, using
a testbed like Eckman et al. (2023).

The solutions of the metaheuristic are scaled to the solution found by the exact
optimization approach. Therefore, a scaled score of 1 means that the metaheuristic
has found the best possible solution, not that the solution intercepts all fugitive
routes.

2.3.3. SEARCH SPACE REPRESENTATION

Following Bode et al. (2019), three search space representation measures are im-
plemented to speed up convergence: a linear index representation of the search
space and consecutive filtering and sorting of the possible values for the decision
variables.



2.3. METHOD

2

21

Table 2.3: Default Settings of the Borg MOEA (Hadka & Reed, 2013). For the PM rate and UM rate, L is
the number of decision variables.

Parameter Value Parameter Value
PM rate 1/L PCX nr. of parents 10
PM distribution index 20 PCX nr. of offspring 2
SBX rate 1 PCX eta 0.1
SBX distribution index 15 PCX Zeta 0.1
DE crossover rate 0.1 UNDX nr. of parents 10
DE step size 0.5 UNDX nr. of offspring 2
UM rate 1/L UNDX eta 0.1
SPX nr. of parents 10 UNDX zeta 0.1
SPX nr. of offspring 2 Population size 100
SPX epsilon 0.3 Offspring size 200

Logging frequency 200 nfe

The standard way to represent the set of possible target vertices for the police
units is the binary representation, where each combination of police unit u and
vertex v is a binary variable πu,v . Bode et al. (2019) signal that evolutionary algo-
rithms have difficulty traversing the search space due to the large set of possible
combinations and strong interdependency of decision variables. Therefore, Bode
et al. (2019) propose the linear index representation, where the decision variables
are linear indices that point to the target vertex for each of the police units. There-
fore, the number of decision variables only depends on the number of police units
to be positioned and not also on the number of possible target vertices.

Secondly, Bode et al. (2019) suggest sorting the indices of the linear index rep-
resentation so that proximity in the search space is more related to proximity in the
objective space. Therefore, we sort the possible target vertices for the police units
on their proximity to the starting vertex of the fugitive.

Lastly, we reduce the search space size by filtering the vertices that cannot be
reached within the planning horizon by the fugitive or the respective police unit.
These vertices do not contribute to increasing the objective value and do not need
to be considered. This filtering considerably decreases the set of possible values
for each decision variable and, therefore, the number of permutations, especially
for instances with a high number of police units (Table 2.4).

2.3.4. DESIGN OF EXPERIMENTS

We examine the effect of simulation-optimization configurations on the computa-
tion time for varying problem sizes. Specifically, we vary two parameters: the num-
ber of vertices in the graph and the number of police units to be positioned and
record the computation time. The number of police units determines the number
of decision variables and is, therefore, expected to have an effect on the compu-
tation time. Preliminary experiments demonstrated that the computation time is
especially sensitive to the number of vertices in the network (van Droffelaar et al.,
2022).
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Table 2.4: Effect of search space reduction on the possible values for the decision variables (DVs) and
the number of permutations, averaged over 50 seeds. Without applying the search space reduction
techniques, the number of permutations is |V ||U |, where |V | is the number of vertices in the network
and |U | is the number of police units.

Problem size
Avg. reduction per DV Nr. of permutations (% of unfiltered)|U | |V |

1 900 86.3% 1.23e2 (13.7%)

5 900 81.1% 1.52e11 (0.026%)

10 900 85.6% 9.37e20 (2.69e-7%)

5 100 36.5% 1.08e9 (10.8%)

5 2500 90.0% 2.56e12 (0.0026%)

In each experiment, one fugitive and |U | police units are placed on random
vertices. We sample 500 fugitive routes. The fugitive is intercepted if it occupies
the same vertex at the same time as a police unit, as defined in equations 2.4 and
2.7. We optimize the target vertex of each of the police units to maximize the num-
ber of intercepted fugitive routes. We evaluate the performance for 10 different
combinations of starting locations of police units and the fugitive.

Table 2.5 details the parameter ranges used in the experiments. The number of
vertices in the network and the number of police units to be positioned are chosen
to be realistic for the application. The network size determines the length of the
planning horizon, meaning the maximum time in the model. It is chosen so that it
is possible to just traverse the network within L minutes. Specifically, L is 5 + (0.5
∗p|V |) for the 2D grid and the radius of the road network in meters, divided by 5 for
the city road network. The number of fugitive routes simulated in the model is cho-
sen to be sufficient to cover the network. We optimize 10 different combinations of
starting locations of police units and the fugitive to account for the varying com-
plexity between combinations of starting locations. Some instances of the problem
may be much easier to solve due to a convenient starting location. By sampling 10
different combinations, we control for this variance. To control for the stochastic
processes in the optimization algorithm, we run each experiment for 5 seeds. All
experiments are conducted on the same machine, the DelftBlue supercomputer
(Delft High Performance Computing Centre, 2022) on a dedicated node to prevent
interference. This cluster offers an Intel XEON E5-6248R 24C 3.0GHz CPU with 48
cores and 192 GB memory.

2.3.5. ROAD NETWORKS

The topology of the road network dictates the patterns in the fugitive routes and
the relative reachability of parts of the network. To account for the effect of the
topology, the experiments are performed on two networks: a 2D ‘Manhattan’ grid
with an edge travel time of 1 minute and an extract of the road network of Rotter-
dam, a typical European city. A grid network is suggested by Rydzewski and Czar-
nul (2020) to improve cross-study comparison of methods and algorithms. The
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Table 2.5: Parameter ranges for the experiments. The length of the planning horizon (L) depends on the
network type.

Parameter Range Default value

Number of units to be positioned (|U |) 1-10 5

Number of vertices in network (|V |) 100-2500 900

Length of planning horizon (L) n.a. 5 + (0.5 ∗p|V |); radius (m) / 5

Number of routes (|R|) n.a. 500

Number of starting positions 10 n.a.

Number of random seeds for metaheuristic 5 n.a.

city road network is extracted from OpenStreetMap4 using Boeing’s Python library
OSMnx (Boeing, 2017). We vary the radius (in meters) from a central point in the
city, resulting in varying-sized networks. For the 2D grid, we vary the diameter,
yielding networks of varying sizes.

Examples of each network and a combination of starting locations are pre-
sented in Figure 2.2.

(a) A 100-vertices Manhattan grid (b) A 689-vertices Rotterdam road network

Figure 2.2: Test networks, where the starting position and sampled routes of the fugitive are indicated
in orange, and the starting positions of the police units are indicated in blue.

We use the best possible solution obtained by the exact optimization algorithm
to assess the convergence of the metaheuristic optimization algorithm for the
equidistant grid case. The MIP optimization problem is indexed on time, which
works nicely for an equidistant graph such as the 2D grid in the first set of exper-
iments. Since the vertices in a real-world road network are not equidistant, time
discretization has implications for the accuracy of the optimization model. For a
city road network, a very small time step of 1 second is needed to avoid discretiza-
tion errors and obtain accurate results to assess the quality of the metaheuristic.
This leads to high computation times that exceed the time constraint for real-time
decision making. Therefore, the best-found solution across seeds is used as the
reference set for the city road network.

4OpenStreetMap: https://www.openstreetmap.org

https://www.openstreetmap.org
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2.4. RESULTS AND DISCUSSION

2.4.1. CASUS 1: GRID TEST GRAPH

We perform the first set of experiments on a 2D ’Manhattan-like grid. The fol-
lowing paragraphs describe the results for simulation model optimization and se-
quential simulation-optimization individually, followed by a comparison of the ap-
proaches.

SIMULATION MODEL OPTIMIZATION

We examine the effect of increasing problem size on the convergence of the Borg
algorithm using the simulation model optimization configuration. We see that the
convergence speed decreases with increasing problem size (Figure 2.3). With an
increasing number of police units and number of vertices, the density of the im-
provements shifts downwards (to lower quality of results) and to the right (to longer
computation time). The inset histograms demonstrate that the time to 95% of the
maximum attainable solution quality increases with increasing problem complex-
ity. The majority of optimization instances reach this quality within 100 seconds,
with outliers for large networks up to 200 seconds and outliers for a large number
of police units up to 320 seconds.

(a) Varied number of vertices (b) Varied number of police units

Figure 2.3: Convergence of the metaheuristic on simulation model optimization for varying problem
size. Each dot indicates an improvement found by the algorithm. The insets portray a histogram of the
time to 95% solution quality.

SEQUENTIAL SIMULATION-OPTIMIZATION

Exact solution approach Using the exact algorithm COIN-OR Branch-and-Cut
(CBC), the time to solution increases with increasing problem size (Figure 2.4).
Given a fixed network size of 900 vertices, the computation time appears to in-
crease linearly with an increasing number of police units (Figure 2.4b). This is be-
cause the model treats each police unit independently: adding another police unit
adds another decision variable with the same number of options. The interaction
effects between police unit interceptions are not explicitly modeled but rather are
reflected by the expected number of intercepted routes. With an increasing net-
work size, the computation time increases faster than linearly (Figure 2.4a). This
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can be explained by the number of possible combinations between police units
and target vertices increasing factorially. With 5 police units, the time to find the
optimal solution increases from less than a minute for small network instances
with 100 vertices to over 13 minutes for larger network instances with 2500 ver-
tices. A typical city road network in the Netherlands consists of 2000-4000 vertices.
A computation time of over 10 minutes is unacceptable for real-world application.
Moreover, the variance of the computation time increases with increasing prob-
lem size, though the predictability of the computation time is crucial for real-time
decision-support.

(a) Varied number of vertices (b) Varied number of police units

Figure 2.4: Computation time of exact solver CBC on sequential simulation–optimization for varying
problem size.

Metaheuristic solution approach We examine the effect of increasing problem
size on the convergence of the metaheuristic algorithm using the sequential
simulation-optimization configuration. The solution quality is scaled to the
optimal solution found by the exact solver CBC.

Using the metaheuristic algorithm Borg, we see that the convergence speed
decreases with increasing problem instance size (Figure 2.5). With an increas-
ing number of police units, the density of the improvements shifts downwards (to
lower quality of results) and to the right (to longer computation time). This effect
is also visible, though to a lesser extent, with an increasing number of vertices. The
inset histograms demonstrate that the time to 95% of the maximum attainable so-
lution quality increases with increasing problem complexity. The majority of cases
reach this quality within 10 seconds, with outliers for large networks up to 16 sec-
onds and outliers for a large number of police units up to 25 seconds.

COMPARISON

To compare the computation time of the two configurations and two solution ap-
proaches, we calculate the elapsed time at which each problem instance reached a
scaled score of at least 0.95. The scaled score is the quality of each solution divided
by the best-found solution for the problem instance by the exact MIP solver.
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(a) Varied number of vertices (b) Varied number of police units

Figure 2.5: Convergence of the metaheuristic on sequential simulation–optimization for varying prob-
lem size. Each dot indicates an improvement found by the algorithm. The insets portray a histogram of
the time to 95% solution quality.

Figures 2.6a and 2.6b show that sequential simulation optimization, especially
when solved using a metaheuristic approach, outperforms simulation model opti-
mization. The computation time of simulation model optimization is spread out:
for example, for |V | = 2500, the time to 95% solution quality varies from 15 sec-
onds to 140 seconds. For application in a real-world control room, a near ten-fold
variance in the time to solution is unacceptable.

The difference in (variance of) computation time between simulation model
optimization and sequential simulation-optimization, both solved using a meta-
heuristic, is mainly caused by the different computation time per function eval-
uation. The number of function evaluations to convergence is similar for both
simulation-optimization configurations. Each function evaluation, a full-fletched
simulation model containing both fugitive and police entities is run to completion.
This is obviously more time-consuming than sequential simulation- optimization,
where, after preprocessing, each function evaluation involves comparing matrices
to count interceptions.

Some problem instances with |U | = 9 or |U | = 10 pose difficulty for the CBC MIP
solver. Most likely, the corresponding starting configurations do not allow for easy
exploitation of the problem structure by CBC and force the algorithm to evaluate
many candidate solutions. These problem instances do not cause a similar effect
on the convergence speed of the metaheuristic.

2.4.2. CASUS 2: REAL-WORLD ROAD NETWORK

The same set of experiments on the road network of Rotterdam, the Netherlands,
demonstrate the generalizability of the results to different graph topologies. Due to
the discretization error in the optimization on city road networks, we do not con-
sider the exact optimization approach. Figure 2.7 shows that the computation time
of simulation model optimization further increases compared to the experiments
on a simple grid due to additional computational overhead. The reliability of both
solution approaches is lower due to the larger influence of the starting positions of
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the fugitive and police units on the number of feasible permutations.
With an increasing number of police units to be positioned, the median com-

putation time increases gradually until |U | = 7, after which it decreases. Evidently,
it is relatively easy to find high-quality interception strategies using many police
units on a real-world road network compared to a grid. There are relatively fewer
good interception positions, which decreases the solution space, leading to faster
convergence.

2.4.3. DISCUSSION

The experiments show that sequential simulation-optimization significantly de-
creases the computation time compared to simulation model optimization of the
same problem. Sequential simulation-optimization lends itself well to problems
where the external, uncontrollable factors can be separated from the controllable
factors. Simulation-optimization is often approached as the ‘bolting on’ of an op-
timization engine on an existing simulation model (Henderson, 2021). This ap-
proach is not easily transformed into a sequential simulation-optimization model.
Firstly, the problem at hand should be suitable for implementation in the particu-
lar configuration. Modeling complexity in the controllable factors is more difficult
compared to a simulation model optimization approach, as this complexity has to
be described by constraints. In the considered fugitive interception problem, the
external factor is the fugitive’s behavior, and the controllable factor is the behavior
of the police units. Hence, introducing more complex behavior of the police units
is more difficult when using sequential simulation-optimization compared to sim-
ulation model optimization. Second, sequential simulation-optimization requires
a specific formulation of the simulation model that yields the constraints for the
optimization. This model formulation differs from the typical simulation model
used to answer ‘what-if’-type questions about the system under study.

The interception problem described in this paper is an example of a class of
problems where an optimal intervention has to be determined independent of the
uncertainty in the system. Therefore, controllable and uncontrollable components
are separable into optimization and simulation, respectively. Another example of
this class of problems is the control of an autonomous vehicle. The best control
action has to be determined, meaning that the car follows its intended route and
avoids crashes, while the behavior of the vehicles around it is unknown. Similar
to the fugitive interception problem discussed in this paper, the control action
must be available quickly - within a second or even less. To accomplish this using
sequential simulation-optimization, the possible trajectories of the nearby road
users are simulated. A robust optimization yields the control action (Zanon et al.,
2014). Sequential simulation-optimization is a promising way to quickly generate
a large ensemble of plausible routes, incorporate these in an optimization prob-
lem, and find the optimal control action for the autonomous vehicle.
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(a) Varied number of vertices

(b) Varied number of police units

Figure 2.6: Comparison of the computation time for a varying problem size for three approaches: sim-
ulation model optimization (solved using a metaheuristic) and sequential simulation–optimization
(solved with an exact optimization algorithm and a metaheuristic). The lines indicate the median time
to 95% solution quality for each approach.
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(a) Varied number of vertices

(b) Varied number of police units

Figure 2.7: Comparison of the computation time for a varying problem size for simulation model opti-
mization and sequential simulation–optimization. The lines indicate the median time to 95% solution
quality for each approach.
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2.5. THREATS TO VALIDITY

The first threat to validity concerns the experimental setup. The computational ex-
periments are based on a default configuration with 900 vertices (a 30x30 square
grid or an 8km2 patch of the Rotterdam road network) and 500 predicted escape
routes for the fugitive. In a typical fugitive route-choice simulation, approximately
500 routes are adequate to describe the plausible escape routes of the fugitives if
only considering highways. If minor roads are included, the additional intersec-
tions cause this number to increase. A network size of approximately 1000 vertices
is required to adequately describe the main network around a typical urban inci-
dent location. If the network is extended to minor roads, this number increases
rapidly, analogous to the number of predicted escape routes required. In practice,
the road network grows with the desired length of the planning horizon. The num-
ber of vertices that describe the road network can be reduced through graph coars-
ening (Krishnakumari et al., 2020). However, the extent to which graph coarsening
can be applied is limited: interception loses its real-world meaning if the network
used in the model is too coarse. Therefore, the rapid increase in computation time
with increasing vertices is troublesome, as the timely calculation of relevant solu-
tions is threatened.

Secondly, the tested approaches may be more or less suitable for further
reduction of the computation time. There are two main approaches to reduc-
ing the computation time of both simulation-optimization configurations: (1)
increasing the computation power, for example, through further parallelization
with High-Performance Computing; (2) improving the optimization algorithm.
The former reduces the computation time per function evaluation. Increasing
the computation power improves the absolute computation time, but the com-
putation time scales the same way with increasing problem size as presented in
this paper. The same holds for replacing Python with a computationally more
efficient language, such as C. Furthermore, the improvement from parallelization
is dependent on the specific optimization algorithm used. For many algorithms,
for example, those based on hill-climbing, the optimization algorithm depends on
the simulation model’s output for its next proposed set of values for the decision
variables. In this case, the improvement from parallelization is limited. In this
paper, the applied algorithm, the input space, and the solution space are the same
for both compared simulation-optimization approaches. Therefore, each of the
discussed approaches to further reduce the computation time is expected to affect
the computation time of both approaches similarly.

2.6. CONCLUSION

Simulation-optimization can be used to support real-time decision making for
fugitive interception. To be useful for real-time decision making, timely calcula-
tion of the optimal solution is essential. Besides increasing computation power
and algorithm efficiency, the configuration in which simulation and optimization
are combined can reduce the computation time of simulation-optimization of
large problems.
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This paper examined the scaling of computation time with increasing problem
size for two configurations of simulation-optimization: (1) sequential simulation-
optimization: the output of a simulation model describes (part of) the constraints
of an optimization model; (2) (common) simulation model optimization: a simula-
tion model evaluates values for the decision variables proposed by an optimization
algorithm to find the values that maximize or minimize the outcome(s) of interest,
which are calculated through the simulation model. Our analysis using the fugitive
interception example showed that

1. Sequential simulation-optimization vastly outperforms simulation model
optimization in terms of computation time, especially for large problem
instances.

2. Metaheuristic solution approaches reach a high quality of solutions in a frac-
tion of the computation time of exact optimization algorithms.

3. Experiments on a real-world city road network demonstrate that these find-
ings hold for various graph topologies.

These results are generalizable to a class of problems where an optimal inter-
vention has to be determined independent of the uncertainty in the system. In
other words, separating controllable and uncontrollable components into opti-
mization and simulation, respectively, leads to a significant reduction in the com-
putation time.





3
GRAPH COARSENING

The timeliness of the calculated police interception positions has been a challenge
in the previous chapter, especially when testing approaches on full-scale city road
networks. Therefore, this chapter proposes a graph coarsening approach for fugi-
tive interception to improve the timeliness without compromising the quality of the
police interception.

This chapter is published as: Van Droffelaar, I.S., Kwakkel, J.H., Mense, J. P. & Verbraeck, A. (2025).
Graph coarsening for fugitive interception. Applied Network Science, 10, 2.

The code and data associated with this chapter are available at: doi:10.4121/07643762-6038-4ccc-bf94-
4bf56b5abeae
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ABSTRACT

The police control room determines where to send available police units to inter-
cept a fleeing fugitive. Models can support the police with decision-making for
fugitive interception. The police have, at most, a few minutes to determine an in-
terception strategy. Therefore, a timely calculation of the interception positions
is essential to support police interception operations. The number of nodes in
the network, each being a crossing where routes of the fleeing suspect can split,
greatly contributes to the computation time. Graph coarsening is a promising ap-
proach to reduce the complexity of the network, and therefore the computation
time. We compare four graph coarsening algorithms on five road networks and
assess their impact on computation time and solution quality for the fugitive in-
terception problem. Based on the comparison, we propose and test a new method
specifically for fugitive interception. This method, Search Space Representation,
improves the quality of the best solutions obtained by the optimization algorithm
by up to 12%, improves the reliability of the optimization to find high-quality solu-
tions, and decreases the number of function evaluations required to obtain high-
quality solutions to 5 000 - 10 000 depending on the size and complexity of the road
network, which is feasible for real-time decision-making. Search Space Represen-
tation can be applied to reduce the computation time of other network-based op-
timization problems.

3.1. INTRODUCTION

Fugitive interception is a challenging task, requiring police to decide in at most
a few minutes on the optimal positions of police units to intercept a fleeing sus-
pect. The fleeing fugitive moves from the incident location to escape interception,
e.g., by crossing the border or reaching the highway. Police units do not know the
fugitive’s whereabouts, so they have to move to a vertex in the network where the
probability of interception is highest, e.g., a chokepoint in the network where many
routes pass through. The goal of the so-called ‘fugitive interception problem’ is
to position the police units in such a way that they maximize the number of in-
tercepted escape routes. Possible escape routes are simulated using a generative
model of escape behavior (van Droffelaar et al., 2024a). Note that the fugitive inter-
ception problem is not about chasing a fleeing fugitive; it concerns intercepting a
fleeing fugitive, who is taking an unknown escape route from a known crime loca-
tion. Models can support police decision-making for this problem, but the timely
calculation of optimal interception positions is challenging due to the complexity
of the problem. A major contributor to the overall computation time is the size
of the underlying road network, particularly the number of nodes in the network
(van Droffelaar et al., 2024b).
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Graph coarsening, a technique to reduce the size of a graph while preserv-
ing essential structural properties, offers a promising approach to reducing the
computation time of the fugitive interception problem. Graph coarsening is also
referred to as contraction hierarchies (Geisberger et al., 2008), graph reduction
(Loukas, 2019), edge contraction (Asano & Hirata, 1983), and graph sparsification
(Peleg & Schäffer, 1989). Graph coarsening algorithms have successfully been ap-
plied to various graph-based optimization problems where reducing the number
of nodes significantly improves computation time, such as routing optimization
(Sanders & Schultes, 2012), the Traveling Salesman Problem (Walshaw, 2004) and
graph partitioning (Chevalier & Safro, 2009).

Graph coarsening algorithms vary depending on the application, as the im-
portance of the nodes and links is very case-specific. For example, coarsening
for transport modeling often focuses on preserving the shortest paths (Sanders
& Schultes, 2012), while coarsening for graph partitioning aims to minimize the
number of edges (Chevalier & Safro, 2009; Safro et al., 2015). Pung et al. (2022) pro-
pose an algorithm that coarsens road networks using characteristics most promi-
nent in the United States – grids and cul-de-sacs.

We distinguish two approaches to graph coarsening with different trade-offs
between solution quality and computation time for fugitive interception: pre-
processing and on-the-fly coarsening. The first approach coarsens networks in
advance and saves them for later application. Hence, the computation time of the
coarsening algorithm does not affect the computation time of any subsequent op-
timizations. However, the coarsening algorithms cannot take any incident-specific
information into account, like the starting positions of police units, the starting
position of the fugitive, or their plausible escape routes. Therefore, pre-processed
coarsening risks removing nodes of high importance to any specific fugitive
interception problem and, therefore, decreasing the solution quality. In contrast,
on-the-fly coarsening approaches can take all relevant incident characteristics
into account, likely leading to a higher solution quality. However, the computa-
tion time of the coarsening is critical in this case and might offset any gains in
computation time for the optimization.

This paper compares four graph coarsening techniques on both computation
time and solution quality for fugitive interception. We measure the solution qual-
ity by running the optimization algorithm for 100 000 function evaluations across
10 seeds and take the best-found solution. To measure the computation time, we
consider (1) the number of function evaluations (NFE) required by the optimiza-
tion algorithm to find a solution, and (2) the computation time per function evalu-
ation. We evaluate these methods across five different types of road networks. The
evaluation studies both pre-processing and incorporating on-the-fly graph recon-
struction into the optimization process.

The contribution of this research is two-fold: (1) we compare the effectiveness
of existing graph coarsening algorithms for a new application, and (2) we propose
an approach incorporating on-the-fly graph reconstruction into the Search Space
Representation in the optimization process. This allows for more flexibility, capa-
ble of handling different fugitive profiles and network structures.
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Section 3.2 describes the case study used throughout the paper, fugitive inter-
ception optimization. Section 3.3 describes the experimental setup. Section 3.4
details each of the chosen algorithms, their implementation for fugitive intercep-
tion, and the results of the experiments. Based on the results, Section 3.5 proposes
and tests an on-the-fly coarsening approach for fugitive interception. Section 3.6
discusses the possible threats to the validity and implications of the research, and,
lastly, we share our conclusions in Section 3.7.

3.2. OPTIMIZATION PROBLEM

3.2.1. BACKGROUND

The fugitive interception problem aims to find the best positions for police units to
maximize the probability of intercepting a fleeing fugitive on a road network. The
problem is modeled from the start of the escape from the incident until the fugitive
is either intercepted or escaped. Since the police do not know the fugitive’s exact
location, they have to position themselves at points in the network where there
is a high chance of interception, such as chokepoints where many escape routes
intersect.

Related optimization problems in literature are search, and, more specifically,
interception problems. Alspach (2004) optimizes the routes of searchers to either
maximize the probability or minimize the time to find a target. However, deter-
mining an optimal action for each time step becomes computationally infeasible
when the size of the network and the length of the time horizon increase.

Pursuit-evasion games, where both the routing of the searcher (or pursuer) and
the target (or evader) are optimized, are primarily used in robotics (Chung et al.,
2011). Pursuit-evasion problems are solved for different graph topologies, such as
grids, circular graphs, trees, and random graphs. Depending on the network topol-
ogy, these problems are proven to be pseudo-P to strongly NP-complete (Borie et
al., 2011). Due to the computational complexity, the problem instances that are
studied are typically very small.

3.2.2. FORMALIZATION OF THE OPTIMIZATION PROBLEM

We formulate the optimization problem as a variant of the Flow Interception Prob-
lem (Berman et al., 1992; Hodgson, 1990), meaning the objective is to position each
police unit to maximize the number of intercepted escape routes. A route is con-
sidered intercepted if (1) it passes a police unit’s target position and (2) the police
unit can reach that position before the fugitive does.

The decision variables of the optimization problem are the target nodes of the
police units (πu,v ) and the intercepted routes (zr ) (Table 3.1). The optimization
problem is formalized in Equations 3.1-3.3. A route is considered intercepted (zr =
1) if, for a given route (r ), the fugitive is at the same place (v) at the same time (t ) as
the position of a police unit (πu,v ), and that position is within reach at that time for
that particular police unit (τu,v,t ). The positions of the police units are optimized
to maximize the number of intercepted escape routes. Routes are only intercepted
at target positions, not at intermediate points along the route. The minimization



3.2. OPTIMIZATION PROBLEM

3

37

Table 3.1: Notation of parameters and decision variables.

Decision variables

zr ∈ {0,1} route r is intercepted

πu,v ∈ {0,1} node v is the target node of police unit u

Parameters

V = {v} set of nodes

R = {r } set of fugitive routes

U = {u} set of police units

S = {s} set of sensors

T = {t } ordered index set of time steps

tmax maximum time step; length of planning horizon

φr,v,t = {0,1} fugitive route r is present at node v at time step t

τu,v,t = {0,1} node v is reachable by police unit u at time t

function in Equation 3.3 ensures that each route can only be intercepted once and
contribute to the objective function.

Maximize: Z = ∑
r∈R

zr (3.1)

Subject to:
∑

v∈V
πu,v = 1 ∀u ∈U (3.2)

zr = min
(
1,

∑
u∈U

∑
t∈T

∑
v∈V

φr,v,t ·πu,v ·τu,v,t

)
∀r ∈ R (3.3)

3.2.3. SIMULATION OF THE FUGITIVE ESCAPE ROUTES

The optimization depends on the simulated escape routes of the fugitive. The
routes are modeled as the shortest paths from the incident location to the escape
nodes of the network. To generate a diverse set of plausible routes, 2% noise is
added to the routes, meaning that the fugitive makes a wrong turn at 2% of the
intersections, after which a new shortest path is recalculated from their current
position (van Droffelaar et al., 2024a). This approach produces a distribution of
routes around the optimal paths. Simulating the fugitive escape routes through
this method takes a few seconds, depending on the road network, the starting po-
sition of the fugitive, and the locations of the escape nodes (Winterswijk: 2.4 s,
Utrecht: 9.9 s, Manhattan: 1.4 s, Main roads: 1.1 s, Rotterdam: 9.2 s). The simula-
tion of fugitive routes should be further optimized and parallelized before imple-
mentation in a control room. In future work, this model could be replaced with a
more detailed behavioral model.
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3.2.4. SOLUTION APPROACH

The optimization problem is NP-hard, meaning that exactly solving real-world
cases could take years (Boccia et al., 2009). Therefore, we use a genetic algorithm
supplemented with the auto-adaptive framework from Borg, which co-evolves the
probabilities of the evolutionary operators used for population adaptation based
on their success in generating better solutions (Hadka & Reed, 2013). van Droffe-
laar et al. (2024b) compare this metaheuristic optimization algorithm to the exact
optimization algorithm CBC (Ralphs, 2022) and show that the metaheuristic finds
near-optimal solutions in a fraction of the computation time. Problem instances
on networks with 2 500 nodes are solved in 5-10% of the computation time, and
the computation time increases less rapidly with increasing network size. To speed
up convergence, the nodes are sorted on their proximity to the starting position of
the fugitive. Thus, the proximity of solutions in the search space is more related
to proximity in the objective space. To further ensure solution quality, the opti-
mization algorithm is run for ten random seeds for 100 000 function evaluations.
All experiments are performed on the Delft Blue supercomputer, with an Intel
XEON E5-6248R 24C 3.0 GHz CPU with 48 cores and 192 GB memory (Delft High
Performance Computing Centre, 2022).

3.3. METHOD

3.3.1. CASE STUDY NETWORKS

To reduce the dependency of the experiments on the topology of the road net-
work, we evaluate the coarsening approaches on five distinct road networks (see
Table 3.2 for an overview). First, Winterswijk, the Netherlands, represents a rural
area. Sparse roads lead from the town to the border with Germany in the north,
east, and south. Second, Manhattan, New York, United States of America, repre-
sents a grid layout city with traffic lights and cameras at most intersections. Third,
Utrecht, the Netherlands, represents a typical European city with a historical cen-
ter surrounded by more modern neighborhoods. Fourth, the main road network
around Amsterdam, the Netherlands, consists of highways, and primary and sec-
ondary roads around the city. This network is vastly different from city road net-
works and represents an application where a fugitive flees at high speeds over a
larger distance. Fifth, Rotterdam, the Netherlands, represents a large modern Eu-
ropean city divided by a large river. The starting position of the fugitive is a central
location in each road network, and the police start locations are the local police
stations in the respective areas.

The networks are obtained from OpenStreetMap via the OSMnx Python library
(Boeing, 2017; Boeing, 2024). We use the built-in simplify_graph functionality
to remove nodes that do not represent intersections, as well as dead ends. The
OpenStreetMap raw data consists of sets of straight-line segments: curved roads
contain intermediate nodes to represent their geometry. For fugitive interception,
these nodes do not add any value but do increase the number of nodes consider-
ably. For example, the unsimplified Winterswijk network consists of 9540 nodes,
whereas simplifying the network reduces the number of nodes to 1926.
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Table 3.2: Case study road networks used in this study. Escape nodes are marked in red. The starting
positions are displayed in blue (police units) and orange (fugitive).

Winterswijk Manhattan Utrecht

Rural area Modern, grid city Typical European city

Incident: city center Incident: Union Square Incident: city center

Escape: cross the border Escape: get off the penin-
sula

Escape: reach the highway

Size: 1926 nodes Size: 2533 nodes Size: 4557 nodes

Main road network Rotterdam

Typical highway network Modern European city

Incident: Amsterdam Incident: city center

Escape: network edges Escape: reach the high-
way

Size: 3241 nodes Size: 7108 nodes
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3.3.2. EVALUATION METHOD

Each coarsening algorithm is evaluated on each of the road networks using the
framework depicted in Figure 3.1. The evaluation method consists of four steps:

1. The fugitive escape routes are simulated on the uncoarsened road network
G using the method described in Section 3.2.3.

2. The road network G is coarsened using the algorithm under evaluation, re-
sulting in the coarsened network Gc . Each coarsening algorithm has its own
tuning parameters, which are varied to obtain different extents of coarsening
for each algorithm.

3. The police interception positions are optimized based on the coarsened net-
work Gc , meaning that only nodes that remain in Gc are considered possible
interception positions. The number of routes intercepted by a combination
of interception positions – the quality of the candidate solution – is calcu-
lated using the set of routes generated in step 1.

4. The police interception positions optimized based on Gc are then evaluated
on the original graph G . Discrepancies in the number of intercepted escape
routes arise when either the path between the police start position and the
calculated interception position is longer in G than in Gc , or when the path
does not exist in Gc or in G . We collect three metrics from each parametriza-
tion of each coarsening algorithm:

• The solution quality, which is the percentage of escape routes inter-
cepted by the calculated police interception positions. Note that the
metaheuristic solution approach does not guarantee finding the ex-
act optimal solution. Therefore, we take the best-found solution af-
ter 100 000 function evaluations across 10 seeds to account for varia-
tions in convergence between seeds. The solution quality is scaled to
the best-found solution quality on the uncoarsened graph G to obtain
the degradation of the solution quality caused by the coarsening of the
graph.

• The convergence, which is the number of function evaluations at which
the optimization algorithm obtains 95% of its solution quality. Effec-
tively, this is the number of function evaluations at which the search
stalls. To account for variation between seeds, we take the minimum
number of function evaluations at which a seed reaches 95% of its best-
found solution quality. This statistic is collected for every seed of each
parametrization of each coarsening algorithm.

• The time per function evaluation, which, combined with convergence,
indicates how much graph coarsening reduces the computation time.
For these experiments, we rerun a subset of the coarsening algorithm
parametrizations on a dedicated node of the supercomputer to prevent
interference with other jobs.
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Figure 3.1: Schematic representation of the evaluation method used in this study.

3.4. COARSENING ALGORITHMS: RESULTS AND DISCUS-
SION

We compare the effectiveness of four graph coarsening algorithms for fugitive
interception: three preprocessing algorithms and one on-the-fly approach. The
three preprocessed graph coarsening algorithms are selected for their diverse
approaches to graph coarsening and the availability of open-source implementa-
tions (preferably in Python). The on-the-fly coarsening method was developed as
part of this research. The algorithms considered are:

1. Pruning: a first step to simplifying the network, by removing dead ends and
cul-de-sacs (Pung et al., 2022).

2. Node consolidation: a generic, application-agnostic graph coarsening ap-
proach that merges nodes that are topologically close together to simplify
complex intersections and clusters in the network (Boeing, 2024).

3. Heuristic coarsening: a transport-specific coarsening algorithm that pre-
serves key properties of the network, such as connectivity and shortest paths
(Krishnakumari et al., 2020).

4. On-the-fly coarsening: a case-specific coarsening algorithm that filters the
network before optimization, retaining only the nodes and edges that are
relevant to the specific interception case.

The following paragraphs outline the four graph coarsening algorithms, first
discussing them in general, second detailing the implementation for the fugitive
interception case used throughout this paper, and third, presenting the results.
Lastly, the computation time and obtained solution quality of the algorithms are
compared.

3.4.1. PRUNING

BACKGROUND

A logical first step to simplify the road network is pruning dead ends and cul-de-
sacs (Pung et al., 2022). Dead ends and cul-de-sacs are not expected to be nodes
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with a high probability of intercepting a fleeing suspect. Therefore, pruning these
nodes should not degrade the solution quality by much.

IMPLEMENTATION

This study uses a simple recursive algorithm that removes nodes with only one
incoming or outgoing edge. Self-loops, which are edges that connect a node to
itself, are also removed. The recursion ensures that any new dead ends or self-
loops created during the pruning process are also removed.

RESULTS AND DISCUSSION

Depending on the road network, the number of nodes in the network is reduced
by 2.7% to 29.1%, depending on the road network (Table 3.3). This is a consider-
able reduction, especially because the removal of these nodes does not affect the
solution quality. Figure 3.2a shows that, relative to the uncoarsened graph, prun-
ing obtains the same best-found solution quality across seeds. Notably, the mean
obtained solution quality increases for all road networks. Note that for some seeds,
the solution quality exceeds 100%, indicating that the metaheuristic solution ap-
proach identifies solutions better than the best-known solutions for the uncoars-
ened network. This occurs because metaheuristics do not guarantee finding the
exact optimal solution. The reduction in the number of nodes available for inter-
ception decreases the size of the solution space, which speeds up convergence and
reduces the likelihood of getting stuck in local optima.

Additionally, the variation between seeds either stays similar or decreases. This
is important for the predictability of computation time for the decision-maker.
A large variation in solution quality across seeds indicates that a decision-maker
should run with many seeds in parallel and aggregate the results.

Figure 3.2b shows that the convergence of the optimization algorithm is largely
dependent on the seed and the initial sample of solutions. On average, pruning
leads to slower convergence in most road networks. This, however, is a distortion
of the plot due to the much higher obtained solution quality (Figure 3.2a). The
earliest NFE at which the optimization algorithm finds a solution with the quality
of the uncoarsened network solution is lower after pruning.

Table 3.3: Node reduction by pruning for the five case study road networks, relative to the uncoarsened
networks.

City Node reduction (%)

Winterswijk 29.1

Manhattan 2.7

Utrecht 15.1

Main roads 5.9

Rotterdam 13.0
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(a) Impact of pruning on the solution quality. The results are scaled to the best-found solution quality
across seeds for the uncoarsened network.

(b) Impact of pruning on the convergence. The NFE to search stall is the NFE at which that seed reached
95% of its best-found solution quality.

Figure 3.2: Results of the pruning experiments with ten seeds per city. Each dot represents the results
of one random seed. The overlaid boxes represent the first quartile, median, and third quartile.

3.4.2. NODE CONSOLIDATION

BACKGROUND

Node consolidation is a graph simplification method that merges nodes that are
topologically close together (Boeing, 2024). Real-world road networks often have
complex intersections that, when converted to a graph, result in a group of nodes.
For instance, a roundabout is represented by four or eight nodes, depending on
its specific layout. For transport planning – and for fugitive interception – we can
consider these multiple nodes as one.

IMPLEMENTATION

This study uses an OSMnx’s node consolidation algorithm (Boeing, 2024). The al-
gorithm’s tuning parameter, ‘tolerance’ (measured in meters), defines the buffer
radius around each node. Overlapping node buffers are merged into a single node
at the center of the buffer area. In this study, we vary the tolerance from 1 to 50
meters. A low tolerance simplifies complex intersections into single nodes (Figure
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3.3a). A higher threshold collapses more of the network, but keeps the main roads
intact (Figure 3.3c). A grid network, like Manhattan, collapses after surpassing a
tolerance threshold of the distance between the blocks (Figure 3.3b).

The node consolidation algorithm retains information about which original
nodes were consolidated into each new node. After consolidation, the starting
positions of the police, the fugitive, and the escape nodes are mapped to the cor-
responding consolidated nodes. By handling this in post-processing, rather than
exempting certain nodes during consolidation, the coarsened network is flexible
to any incident location.

(a) Manhattan (10m). (b) Manhattan (45m). (c) Rotterdam (50m).

Figure 3.3: Road networks after node consolidation with different tolerance settings (in brackets).

RESULTS AND DISCUSSION

Table 3.4 show that varying the ‘tolerance’ parameter produces coarsened net-
works with varying numbers of nodes. The exact impact of tolerance differs across
networks. When the tolerance is set to its maximum of 50 meters, some networks
are reduced to as little as 7% of their original size.

To maintain clarity, Figure 3.4 only shows the best solutions across seeds. The
solution quality varies a lot between seeds, which improves with coarsening but
still makes it difficult to observe clear trends. For all networks except Winterswijk,
there are some outliers due to the optimization algorithm’s sensitivity to the ran-
dom seed, even across 10 seeds.

The impact of network size reduction on solution quality varies between net-
works (Figure 3.4a). For Winterswijk and the main road network, node consolida-
tion has little to no effect on solution quality. The key interception positions and
the paths from the starting positions are preserved. In Manhattan, we see a jump
in node reduction once the tolerance exceeds the spacing between streets, which
results in a large drop in solution quality. For Rotterdam, we see two of these drops:
the first consolidations barely affect the solution quality, which then drops to ap-
proximately 60%, and later to 20%. For Utrecht, we see a more gradual but similarly
dramatic decline in solution quality.

Figure 3.4b shows that reducing the number of nodes considerably decreases
the number of function evaluations to search stall. The results for Winterswijk and
the main road network are particularly interesting as the convergence speed is im-
proved considerably without a loss in solution quality.
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Table 3.4: Node reduction by node consolidation for the five case study road networks, relative to the
uncoarsened networks, for a tolerance value of 5, 25 and 50.

Node reduction (%)

tolerance 5 25 50

Winterswijk 24.1 58.2 89.9

Manhattan 3.4 25.0 93.7

Utrecht 17.5 55.0 90.2

Main roads 14.3 52.7 61.2

Rotterdam 10.0 53.6 89.9

(a) Impact of node consolidation on the solution quality. The results are scaled to the best-found solution
quality across seeds for the uncoarsened network.

(b) Impact of node consolidation on the convergence. The NFE to search stall is the NFE at which that
seed reached 95% of its best-found solution quality.

Figure 3.4: Results of the node consolidation experiments, showing only the best result across seeds for
each setting of the tolerance parameter. The grey crosses indicate the best result for the uncoarsened
graph.
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3.4.3. HEURISTIC COARSENING

BACKGROUND

Krishnakumari et al. (2020) propose a heuristic coarsening algorithm tailored to
applications in transportation. The algorithm preserves key properties such as
graph connectivity, shortest paths, and trip length distribution, making it a promis-
ing coarsening algorithm for fugitive interception.

The algorithm consists of four coarsening steps, repeated until either the max-
imum number of iterations is reached or the network cannot be coarsened further
using the current settings.

1. Assign weights to the links in the graph. The weights can be based on prop-
erties relevant to the application, such as link length, road type, or speed.

2. Rank the nodes for removal. Instead of selecting nodes randomly, as is com-
mon in other coarsening algorithms, nodes are ranked deterministically for
removal. This ensures reproducibility and reduces the computational time
required for coarsening.

3. Contract and prune nodes. To avoid an excessive increase in the average
node degree in the coarsened network (Geisberger et al., 2008), the algorithm
applies a contraction criterion. Only nodes meeting this criterion are con-
tracted. The tuning parameter ‘threshold’ (ρ) determines how strictly the cri-
terion is followed, with higher values resulting in greater node reduction. An-
other parameter, pruning, removes dead ends, self-loops, and disconnected
components.

4. Update the link weights. After contracting and pruning, link weights are re-
calculated for the coarsened graph, and steps 2-4 are repeated until the stop-
ping criterion is reached.

IMPLEMENTATION

This study applies the heuristic coarsening algorithm from Krishnakumari et al.
(2020), originally implemented in Matlab, which we have re-implemented in
Python1.

We conducted two sets of experiments. In the first set, we used the default
settings, contracting nodes based on road type. These road types are crowdsourced
in OpenStreetMap and range from ‘pedestrian path‘ and ‘bus lane’ to ‘motorway’.
Nodes that serve as a connection between different types of roads (e.g., a highway
and a residential street) are not contracted, assuming these nodes are important
for the network’s connectivity (Krishnakumari et al., 2020). In the second set of
experiments, nodes are contracted based on their betweenness centrality. Nodes
with a high betweenness centrality are preserved, assuming that these nodes are
important for network connectivity and for fugitive escape routes.

The coarsening can be pre-processed, so the computation time of the coars-
ening algorithm does not affect the real-time performance of the decision support

1The Python implementation can be found at https://github.com/irene-sophia/HeuristicCoarsening

https://github.com/irene-sophia/HeuristicCoarsening
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system. If the police starting positions, fugitive starting position, or escape nodes
are removed during coarsening, the shortest paths from these positions to the
coarsened network are added back to the network afterward. This post-processing
step makes it possible to handle any incident location.

Both variants of the algorithm are tested with the same parameter settings as
in Krishnakumari et al. (2020). We run the algorithm both for a single iteration
and until completion, with thresholds set to either the minimum (0) or maximum
(1000). We experiment with and without pruning.

RESULTS AND DISCUSSION

When coarsening the network based on road type, the node reduction is relatively
limited (Table 3.5), but the solution quality declines quickly. Even for Winterswijk
and the main road network, we see a large degradation of solution quality, while
other coarsening algorithms had less problems with these networks. Pruning, in
particular, causes a drastic decline in solution quality to 5 - 40 % of the original
quality (Figure 3.5a). Again, the node reduction does considerably speed up the
convergence, while obtaining poor solutions (Figure 3.5b).

Using betweenness centrality improves the heuristic coarsening algorithm for
fugitive interception (Figure 3.6). The solution quality for Utrecht, Rotterdam, and
the main road network is affected little by the coarsening. For Winterswijk, the size
of the road network is only reduced very little without pruning (Table 3.6). How-
ever, enabling pruning causes a sharp decline in solution quality. Similarly, prun-
ing leads to very poor solution quality for Manhattan. Additional analysis shows
that, while the original interception positions are largely preserved, the paths from
the police starting positions to the interception positions are not. The node reduc-
tion does considerably speed up the convergence (Figure 3.6b).

Table 3.5: Node reduction by heuristic coarsening (type) for the five case study road networks, relative
to the uncoarsened networks.

Node reduction (%)

pruning 0 0 1 1

iterations 1 max 1 max

threshold 0 1000 0 1000

Winterswijk 1.1 3.1 30.0 36.2

Manhattan 4.2 20.8 10.9 32.3

Utrecht 5.9 15.3 25.8 42.0

Main roads 38.6 55.7 47.5 74.5

Rotterdam 7.0 18.3 25.2 43.8
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Table 3.6: Node reduction by heuristic coarsening (betweenness) for the five case study road networks,
relative to the uncoarsened networks.

Node reduction (%)

pruning 0 0 1 1

iterations 1 max 1 max

threshold 0 1000 0 1000

Winterswijk 72.9 73.7 79.6 82.7

Manhattan 64.4 71.8 65.5 75.9

Utrecht 35.9 45.7 44.8 62.8

Main roads 54.4 71.6 56.8 83.6

Rotterdam 0.1 18.3 11.5 43.8

(a) Impact of heuristic coarsening on the solution quality. The results are scaled to the best-found solution
quality across seeds for the uncoarsened network.

(b) Impact of heuristic coarsening on the convergence. The NFE to search stall is the NFE at which that
seed reached 95% of its best-found solution quality.

Figure 3.5: Results of the heuristic coarsening (road type) experiments, showing only the best result
across seeds for each parameter setting. The grey crosses indicate the best result for the uncoarsened
graph.
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(a) Impact of heuristic coarsening on the solution quality. The results are scaled to the best-found solution
quality across seeds for the uncoarsened network.

(b) Impact of heuristic coarsening on the convergence. The NFE to search stall is the NFE at which that
seed reached 95% of its best-found solution quality.

Figure 3.6: Results of the heuristic coarsening (betweenness centrality) experiments, showing only the
best result across seeds for each parameter setting. The grey crosses indicate the best result for the
uncoarsened graph.



3

50 3. GRAPH COARSENING

3.4.4. ON-THE-FLY COARSENING

BACKGROUND

Instead of generic coarsening algorithms that allow for pre-processing, it is also
possible to construct the road network on the fly for each optimization run. No
important nodes or paths are lost, only the unimportant parts of the network for
each specific case are removed. The on-the-fly coarsening method was developed
as part of this paper. To our knowledge, no research exists that implements this
network representation, though it could be a promising approach, especially for
Flow Interception Problems.

IMPLEMENTATION

A new network is created from the simulated escape routes and the shortest paths
from the police starting positions to any node on these escape routes. The network
reconstruction takes a few seconds, depending on the number of nodes in the net-
work (Winterswijk: 0.22 s, Utrecht: 3.74 s, Manhattan: 1.12 s, Main roads: 0.84 s,
Rotterdam: 5.89 s).

RESULTS AND DISCUSSION

Table 3.7 shows that removing unimportant parts of the network results in a con-
siderable reduction in the number of nodes, ranging from 45.0 to 70.8%. This re-
duction improves the average solution quality across all networks (Figure 3.7a). By
removing nodes that do not lie on escape routes or police paths, many possible
combinations of police interception positions that do not lie on any fugitive route
(with a solution quality of 0) are removed.

The number of function evaluations to search stall is lower for Winterswijk,
Manhattan, and Rotterdam – networks with a smaller increase in solution qual-
ity from on-the-fly network reconstruction. In these cases, the node reduction
primarily speeds up the search. On the other hand, for Utrecht and Manhattan,
where the network reconstruction leads to a more substantial improvement in so-
lution quality, the optimization requires more function evaluations. However, even
in these cases, the optimization algorithm reaches a solution quality equivalent to
the uncoarsened network earlier in the process. Additionally, the earliest NFE at
which the search stalls (across multiple seeds) is lower, indicating a more efficient
search despite the greater number of evaluations required for significant improve-
ments. However, the minimum NFE at which the optimization algorithm finds a
solution with the same quality as the uncoarsened network is lower. Additionally,
across seeds, the earliest point at which the search stalls is also reached sooner,
indicating that the network reconstruction not only improves solution quality but
also speeds up convergence.
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Table 3.7: Node reduction by on-the-fly network construction for the five case study road networks,
relative to the uncoarsened networks.

City Node reduction (%)

Winterswijk 70.8

Manhattan 45.0

Utrecht 52.3

Main roads 54.2

Rotterdam 52.9

(a) Impact of on-the-fly network construction on the solution quality. The results are scaled to the best-
found solution quality across seeds for the uncoarsened network.

(b) Impact of on-the-fly network construction on the convergence. The NFE to search stall is the NFE at
which that seed reached 95% of its best-found solution quality.

Figure 3.7: Results of the on-the-fly network construction experiments.
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3.4.5. COMPARISON

Figure 3.8 combines the results, grouped by approach and by city. Appendix A
presents a comparison of the results in tabular form. Evidently, pruning and, to
a larger extent, on-the-fly network reconstruction reduce the size of the network
while achieving the same or higher solution quality. The effectiveness of the other
coarsening algorithms varies by network. Node consolidation and heuristic coars-
ening (based on betweenness centrality) perform well for Winterswijk and the
main road network. Node consolidation shows a more gradual decline in solution
quality, whereas heuristic coarsening – particularly when using the road type in
the algorithm – shows a larger degradation, even at low node reduction. This is
surprising since heuristic coarsening was specifically designed for transportation
networks.

(a) Grouped by coarsening algorithm

(b) Grouped by road network

Figure 3.8: Comparison of coarsening algorithms. The solution quality is scaled to the best-found solu-
tion quality across seeds for the uncoarsened network.

Figure 3.9 shows the results of the timing experiments. The relationship be-
tween the number of nodes and the time per function evaluation generally follows
a power-law trend. On-the-fly network reconstruction is an exception since many
low-quality solutions are removed from the set of possible interception positions.
For every function evaluation, the optimizer first checks whether a path exists be-
tween the police starting position and the candidate interception position. If that
path exists, the length of the shortest path is calculated. That second step obvi-
ously adds to the computation time. In other words, a network with many infea-
sible solutions shows a shorter computation time, though the solution quality is
poor. The experiments presented in Figure 3.7 have shown that on-the-fly network
reconstruction significantly reduces the number of function evaluations to conver-
gence.
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Figure 3.9: The computation time per function evaluation across different graph coarsening approaches
and road networks.

3.5. PROPOSED METHOD: SEARCH SPACE REPRESENTATION

The experiments show that pruning and on-the-fly network reconstruction effec-
tively reduce network size while preserving solution quality. This, in turn, reduces
the NFE to search stall and the time per function evaluation. In other words, the
computation time is reduced in two ways.

Drawing inspiration from Bode et al. (2019), we incorporate on-the-fly network
construction in the representation of the search space, filtering out low-quality so-
lutions. The remaining solutions are the combinations of police unit positions that
a) are located on at least one escape route and b) can be reached by the respective
police unit. introduces variability in the number of potential positions for different
police units, depending on their initial locations. Compared to on-the-fly network
reconstruction, the proposed Search Space Representation further reduces the size
of the optimization problem by removing unreachable positions.

Figure 3.10 shows that this approach is generally effective in achieving a higher-
quality solution using fewer function evaluations. For all case study road networks,
the best-found solution quality increased, up to 12%. Especially for Utrecht, the
Main roads and Rotterdam, both the average and best solution quality across seeds
increased dramatically (Figure 3.10a). Increasing the average obtained solution
quality improves the reliability of the optimization for the decision-maker. Since
there are no possible solutions that have a solution quality of 0 (not intercepting
any escape routes), the algorithm gets stuck less often in local optima and there-
fore converges to a solution with a higher quality. For Winterswijk, Manhattan and
Utrecht, these high-quality solutions are also found in fewer function evaluations.
For Rotterdam, the average number of function evaluations until the search stalls
is higher, but the seed with the quickest convergence converges at a lower number
of function evaluations than without the Search Space Representation (SSR). For
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the Main roads, the slower convergence is due to the significantly higher obtained
solution quality: the earliest NFE at which the optimization algorithm finds a solu-
tion with the quality of the solution without the SSR is lower (Figure 3.10b). Across
networks, the number of function evaluations required to obtain high-quality solu-
tions is reduced to 3 000 -10 000 depending on the size and complexity of the road
network. Considering that the time per function evaluation is 2-13 ms depend-
ing on the size of the network, this number of function evaluations is feasible for
real-time decision-making.

Filtering the search space does not add to the overall computation time. In the
optimization, the nodes are sorted on their proximity to the fugitive starting posi-
tions to speed up convergence (also in the uncoarsened case, Section 3.2). While
the filtering step takes time, this is compensated because the number of nodes to
be sorted is shorter. Depending on the network, this means that introducing the
filtering step adds up to 0.3 seconds (Rotterdam) to reducing the computation time
by 0.3 seconds (Utrecht), or does not impact the computation time (Winterswijk,
Manhattan, Main roads).

(a) Impact of the proposed method (SSR) on the solution quality. The results are scaled to the best-found
solution quality across seeds for the uncoarsened network.

(b) Impact of the proposed method (SSR) on the convergence. The NFE to search stall is the NFE at which
that seed reached 95% of its best-found solution quality.

Figure 3.10: Results of the proposed method.
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3.6. DISCUSSION

The effectiveness of graph coarsening algorithms for fugitive interception is de-
pendent on the topology of the road network. Networks with dominant intercep-
tion positions, like a highway network or Winterswijk, are relatively easily coars-
ened without degrading the solution quality. For other networks it proves difficult
to find a general coarsening algorithm that both reduces the size of the network
(and thus the computation time), while preserving the solution quality, i.e., the in-
terception positions with a high probability of interception.

This research used a shortest-path model with noise to generate fugitive es-
cape routes. Alternative models of fugitive behavior, such as avoiding busy roads,
could affect the effectiveness of the coarsening algorithms that use preprocessing.
The choice of escape nodes is also crucial; in this research, they are set at network
boundaries like highway on-ramps or border crossings. If escape nodes were in-
stead located at places like parking garages, the likely interception points would
change, which could affect the effectiveness of the coarsening algorithms to differ-
ent extents. In contrast, on-the-fly network reconstruction maintains the solution
quality regardless of the fugitive escape routes. The solution quality is not affected
by different models of fugitive behavior, but the reduction in computation time
decreases when the number of nodes visited by the fugitive increases.

The data quality of open-source road networks influences experiments with
graph coarsening. Since OpenStreetMap data is crowd-sourced, errors occur in
network topology and attributes, such as road classification or speed limits. For
example, in our research, we found a roundabout where one section was labeled as
‘unclassified’, while the rest was labeled as a ‘residential road’. The heuristic coars-
ening algorithm that relies on the road classification to determine which nodes to
contract, therefore produces incorrect results. Another example we encountered
was a highway on-ramp that was mistakenly not connected to the main highway
in the data. Such an error affects both the generation of escape routes and the sug-
gested police paths to interception positions. In this case, the generated escape
routes falsely suggested that the fugitive would not use the on-ramp. While we
have corrected these mistakes, other errors likely persist in the data.

The Search Space Representation approach in this paper can be applied to
other network-based optimization problems. In cases like search and rescue,
where the location and paths of a lost person are uncertain (Koester, 2008),
filtering out non-essential parts of the network and focusing on likely routes
can significantly reduce computational complexity. For other network-based
optimization problems, such as large-scale route planning, this method can help
speed up computation and improve solution quality. Using the detailed network is
only critical at the beginning (departure from the warehouse) and the end (delivery
point). Preserving the full detailed graph is essential at these locations to ensure
accurate routing, while coarsening the network in between could significantly
speed up the optimization.
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3.7. CONCLUSION

This paper compares four graph coarsening techniques for fugitive interception
across five road networks. Pruning – the removal of dead ends and self-loops –
seems to always be effective: it removes 2.7% to 29.1% of nodes (depending on the
network), but these nodes are likely not relevant for fugitive interception. Other
preprocessed graph coarsening algorithms can significantly reduce the number of
nodes in the networks, but cause the solution quality to deteriorate significantly.
Important interception positions and paths for the police units are often not pre-
served for these algorithms. In contrast, on-the-fly network reconstruction, where
a new network is created from the escape routes and the shortest paths from the
police starting positions to any node on these escape routes, improves the opti-
mization. By removing poor-quality solutions, the optimization algorithm con-
verges more quickly and results in higher-quality solutions.

Based on these results, we propose an approach incorporating on-the-fly graph
reconstruction into the Search Space Representation in the optimization process.
This allows for more flexibility, capable of handling different fugitive profiles and
network structures. Search space representation improves the quality of the best
solutions obtained by the optimization algorithm with up to 12%. Notably, the re-
liability of the optimization to find high-quality solutions is increased: the average
obtained solution quality across seed increases by up to 24%. Meanwhile, the num-
ber of function evaluations required to obtain high-quality solutions is reduced to
5 000 -10 000 depending on the size and complexity of the road network, which is
feasible for real-time decision-making.

The Search Space Representation approach in this paper can be applied to
other network-based optimization problems, specifically search and rescue, and
more generally to large-scale route planning.







4
THE EFFECT OF MODELS OF

CRIMINAL BEHAVIOR ON POLICE

INTERCEPTION

The previous chapters use a random walk model to generate escape routes. Mean-
while, the effectiveness of the police interception positions is dependent on the sim-
ulation model that generates the escape routes. Therefore, in this chapter, we in-
vestigate the effect of substituting the random walk model with models based on
psychological theory.

This chapter is under review as: Van Droffelaar, I.S., Kwakkel, J.H., Mense, J. P. & Verbraeck, A. (2024).
The effect of models of criminal behavior on police interception.

The code and data associated with this chapter are available at: doi:10.4121/6d0f025b-967e-4007-9b6d-
b920366d8f74
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ABSTRACT

One of the tasks of police is catching fleeing suspects, where the police intercep-
tion positions depend on the fleeing suspect’s route choices. Various conceptu-
alizations of route choice decision-making of fleeing suspects exist. However, we
do not know the effects of these different models of fugitive behavior on the cal-
culated police interception strategy. Therefore, we operationalize two models of
route choice and implement these in a simulation. Police interception strategies
are obtained by optimization. The resulting sets of routes and the calculated police
interception positions are subsequently compared and interpreted. The experi-
ments show that the different route-choice models result in different escape routes
and, therefore, different calculated police interception positions. The differences
are larger when the road network is complex and contains non-uniform obstacles.
In other words, the robustness of the calculated police interception positions for
each model largely depends on the network topology.

4.1. INTRODUCTION

In recent years, only 32% of reported crimes in the Netherlands resulted in the
apprehension of a suspect (Moolenaar et al., 2023). In the US, this figure is 37%
for violent crimes and only 12% for property crimes (Federal Bureau of Investiga-
tion, 2022). Furthermore, 85% of arrests are red-handed, meaning the suspects
were caught in the act of committing a crime or immediately after committing a
crime with incriminating evidence. The remaining 15% of arrests involve costly
and time-intensive investigations (van Dijk et al., 2013). Increasing the number of
red-handed arrests allows for more effective use of critical resources. Understand-
ing the movement patterns of fleeing suspects and suggesting proper intervention
positions for police units can limit the use of police resources and increase the
chance of red-handed arrests.

Good interception positions are typically found at chokepoints in the road net-
work, such as bridges and tunnels, where multiple roads converge. Mathematical
optimization of the interception position relies on generating escape routes for the
suspect (van Droffelaar et al., 2024b). The generated set of routes has to be com-
plete in terms of network coverage and has to include the chokepoints. If not, the
mathematical optimization model will not identify the most interesting intercep-
tion points.

There are various ways to conceptualize the route choices of fleeing suspects
to generate a set of escape routes (Sava et al., 2016; van Gelder, 2013). Without
knowledge of their underlying decision-making process, the routes may resemble
a random walk through the road network. In contrast, if we had complete informa-
tion on the suspect’s characteristics and decisions, there would be a single deter-
ministic route. In practice, we have incomplete information, where we have some
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understanding of route choices but not all, leading to a heuristic implementation
of the route choice model of a fugitive.

Many theoretical studies implement a random motion for the fleeing suspect
(Borie et al., 2013; Sava et al., 2016). Explicitly encoding behavior through deci-
sion rules could lead to more effective interception strategies (Simard et al., 2021).
Therefore, the central question in this paper is: what is the effect of different mod-
els of fugitive behavior on the calculated police interception strategy? To answer
this question, we conceptualize and operationalize two modes of fleeing suspect
route choices. We compare the resulting sets of routes and the optimized police
interception positions. Finally, we evaluate the effectiveness of the police inter-
ception positions for different route generation models.

The following section discusses the related literature on modeling behavior in
interception problems and, specifically, modeling fugitive route choice behavior.
Section 4.3 describes the methods used in the paper, including a description of
the case studies, the models, and the optimization algorithms. The subsequent
section details the obtained results. Possible threats to the validity of the results
are discussed in Section 4.4.4, and we share our conclusions in Section 4.5.

4.2. MODELING BEHAVIOR

Different fields use different terminology when talking about interception. Game
theory and mobile robotics refer to pursuit-evasion games, where the terms pur-
suer, evader, or target are used (Chung et al., 2011). Mathematical optimization
refers to similar problems as search problems or interception problems, depend-
ing on the objective function (Alspach, 2004). Game theory, mobile robotics, and
mathematical optimization take a theoretical approach, reflected in the abstract
naming. In contrast, empirical research on police interception refers to police units
and suspects or fugitives (Dewinter et al., 2022). In this paper, we will follow the ter-
minology belonging to each field when discussing related literature and use the
terms police unit and fugitive in the case study.

The following subsections discuss how targets are modeled in interception
problems and explore various conceptualizations of criminal behavior. Each
section first outlines the relevant literature and subsequently discusses its relation
to this paper and resulting modeling choices.

4.2.1. MODELING BEHAVIOR IN INTERCEPTION PROBLEMS

Various methods exist to model targets’ behavior in the search, pursuit, and inter-
ception literature. Inspired by the mindmap on search in mobile robotics in Chung
et al. (2011), we use the structure depicted in Figure 4.1. The Figure provides op-
tions for motion, behavior, and availability of information, which are subsequently
discussed.

Motion Pursuit-evasion games and search problems are solved for both station-
ary and mobile targets. For a comprehensive overview of stationary target inter-
ception, see Stone et al. (2016). Most other papers discussed in this section treat
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Figure 4.1: A graphical overview of the dimensions of target modeling in interception problems. The
subset operationalized in this paper is italicized.

mobile targets, as that is the focus of this paper. For a survey of graph-based search
of mobile targets, see Alspach (2004).

Behavior Many studies implement a random motion for the evader. This ap-
proach is usually adopted when there is no understanding of the underlying behav-
ior (Simard et al., 2021) or when the focus is purely on optimizing search strategies
(Borie et al., 2013). In the search and rescue literature, random motion is one of the
modes of behavior found in empirical data (Hashimoto et al., 2022; Koester, 2008).
A lost person trying to find their way may move so erratically that it is close to a ran-
dom walk. On the other hand, various models, often agent-based, encode rules of
behavior of lost persons (Hashimoto et al., 2022) or evaders (Giardini et al., 2023).
These models can be either based on historical data or grounded in psychologi-
cal theories. A small, simple set of decision rules can generate complex emergent
patterns (Epstein et al., 1996).

Depending on the intended application, evaders are either modeled to be non-
reactive, cooperative, or adversarial. Non-reactive evaders move independently of
the moves of the pursuer, either randomly or according to some predetermined
pattern. This behavior occurs, for example, when the evader does not have any in-
formation on the whereabouts of the pursuer. For search and rescue, some modes
of behavior of lost persons are non-reactive. Other lost person modes are coopera-
tive: they move to places in the network where they assume that the searchers are
likely to look or where they can signal their presence to the searchers. Lastly, adver-
sarial evaders actively evade capture by anticipating and reacting to the pursuer’s
moves. Adversarial evaders are, for example, found in hide-and-seek (Baker et al.,
2020) and some pursuit-evasion games.

Information Information about the evader’s whereabouts can help to find more
effective pursuer search strategies and adapt to the evader’s strategy. On the
other hand, information about the pursuer’s location is crucial to optimize an
adversarial evader’s route to escape capture. Information (in either direction) can
either be full (Borie et al., 2013), based on proximity (Kehagias et al., 2014), based
on visibility (Bopardikar et al., 2008) or using a sensor network (Schenato et al.,
2005).
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In fugitive interception, there is very little exchange of information about each
other’s positions: the fleeing suspect does not know the locations of the intercept-
ing police units, and vice versa. Spotters, traffic cameras, or phone calls from
concerned citizens can provide sparse information about the fugitive’s location.
Furthermore, very little historical data is available, meaning that data-driven ap-
proaches are not applicable. Even with more available data, a model based on
historical data would be vulnerable to survivorship bias (as we only have informa-
tion on successful cases where the suspect was caught) and historical bias (as the
data may no longer reflect the current modi operandi). Therefore, we opt to build
generative models grounded in psychological theory for this application.

The next section explores psychological theories that may be leveraged to build
generative models for simulating fugitive escape routes.

4.2.2. MODELING CRIMINAL BEHAVIOR

Little is known about the decision-making of suspects fleeing a crime scene. How-
ever, we can draw from the broader field of criminology to generate insights.

The rational choice theory of crime is a leading framework in criminology to
understand criminal behavior (Cornish & Clarke, 1986). The central thesis is that
individuals make rational decisions to engage in criminal activities after weighing
the potential costs and benefits. van Gelder (2013) goes beyond Rational Choice
Theory, proposing two modi of criminal decision-making. Besides the ‘cool’ ra-
tional mode, calculating costs and benefits, there is a ‘hot’ mode that evaluates
options in a more intuitive way. This concept has a long history and is more gen-
erally referred to as bounded rationality (Simon, 1982), as heuristic versus analyt-
ical (Evans, 1984), as intuitive–experiential and analytical–rational (Epstein et al.,
1996), as system 1 and system 2 (Stanovich & West, 2000), as cognition and emotion
(Kahneman, 2003; Kennedy, 2012), and as sense and sensibility (Vanhée & Borit,
2023). Simon (1982) explains bounded rationality as "agents use simple rules based
on local information - not global information with infinite computing power." Sim-
ilarly, a criminal in van Gelder (2013)’s ‘hot mode’ responds to situational charac-
teristics. Premeditation, i.e., preparing a crime, can result in more ‘cool’ behavior,
compared to street offenders in hedonistic contexts (Shover & Hochstetler, 2005).

In this paper, we operationalize these ‘cool’ and ‘hot’ modes using the relevant
behavioral factors found by Tutuarima (2023). Her work synthesizes general route
choice literature, specifically evacuation literature, and interviews with domain ex-
perts. We implement the following factors:

• Camera avoidance: a prepared suspect avoids passing by cameras that the
Police can access.

• Obstacle avoidance: traffic lights, roundabouts, bridges, and tunnels are —
to a varying extent — less attractive due to unpredictability and becoming
potential choke-points (Moussaïd et al., 2011).
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• Number of lanes and maximum speed: a stressed suspect prefers a higher
number of lanes and maximum speed so they can get away from the crime
location as quickly as possible (Kempenaar, 2022).

• Inertia: a stressed suspect is more likely to continue on the road they are on
(Alós-Ferrer et al., 2016; Meneguzzer, 2023).

Relevant personal attributes (risk aversion and familiarity with the road net-
work) and contextual factors (time of day and crime location) are not considered
in this research. Interaction with other traffic is also not considered. Instead, we
develop simpler, generalized models that generate a wide range of options, mini-
mizing the risk of dual use of the route generation models by bad-faith actors.

4.3. METHOD

4.3.1. MODELS

We implement two models of fleeing suspect route choices (‘cool’ and ‘hot’)1. Both
models aim to reach a predetermined set of escape nodes from the incident loca-
tion, but the road preferences vary. Although unrealistic for fugitive behavior, a
random walk model is used as a benchmark because it is commonly used in litera-
ture, and it is a quick method of generating a broad set of routes.

COOL MODE

The well-prepared, cool model prioritizes avoiding cameras to avoid detection.
Traffic lights are avoided because they may add an unpredictable delay and traf-
fic. Roundabouts are avoided if possible because they are difficult to navigate and
oversee. Tunnels and bridges are avoided because they create a lock-in, they are
difficult to oversee, and they are seen as a likely police position. In practice, all ma-
jor tunnels and bridges are overseen by cameras at their entrance and exit, leading
to a cumulative perceived delay of 35 or 65 seconds.

HOT MODE

The stressed, ad-hoc, hot model prioritizes avoiding traffic lights, which mimics
turning when encountering a red light. Roundabouts and bridges are, analogous
to the cool model, avoided if possible because they are difficult to navigate and
oversee. The hot model avoids tunnels more due to feeling trapped. Additionally,
the hot model prefers roads with more lanes and higher speed limits for easier ma-
neuverability and perceived faster escape.

DIRECTED RANDOM WALK

The ‘hot’ and ‘cool’ models are contrasted with a directed random walk. This
method is commonly used and computationally cheap. Like the other models,
the random walk starts at the location of the incident, as defined in Section 4.3.4.
At each intersection, the fugitive chooses the next node to travel to, following

1All data and code can be found at: https://github.com/irene-sophia/fug_behavior

https://github.com/irene-sophia/fug_behavior


4.3. METHOD

4

65

Table 4.1: Operationalization of the behavioral models; times and factors indicate the perceived delays
by the fugitive

Perceived delay ’Cool’ model ’Hot’ model

Camera +30 s —

Traffic light +10 s +20 s

Roundabout +5 s +5 s

Tunnel +5 s +10 s

Bridge +5 s +5 s

Lanes — 1: ×1.2, 2:×1, ≥3: ×0.8

Speed limit (km/h) — ≤30: ×1.2, ≥30:×1, ≥50: ×0.9, ≥80: ×0.8

a stochastic process where each neighboring node has an equal probability of
being chosen. The fugitive does not turn around unless the node only has one
neighboring node (i.e., a dead end).

Each factor identified as important for fugitive route choices is assigned a
weight representing its ‘added travel time’. In other words, it defines how much
shorter a route must be to be more attractive than a longer route that avoids the
obstacle. The order and approximate values follow from interviews with domain
experts. Table 4.1 presents the perceived delays of each obstacle. Locations of
cameras and obstacles are obtained from open data2 and OpenStreetMap.

After adding the perceived delays to the travel time of the respective links of
the road network, the perceived best routes are generated for each model. Next, a
noise of either 2% or 5% (Cool mode) or 5% or 10% (Hot mode) is added to routes,
meaning that the suspect takes a wrong turn every X% of the intersections. After a
wrong turn, the new best path is determined from their next position. This noise
accounts for three factors: (1) simulating human error, especially in stressful sit-
uations; (2) accommodating adjustments for unexpected obstacles like red lights;
and (3) accounting for factors not explicitly modeled. As a result, we observe a
distribution of routes around the optimal paths.

4.3.2. OPTIMIZATION

We model the optimization problem as a variation on the Flow Interception Prob-
lem (Berman et al., 1992; Hodgson, 1990). The target position for each police unit
is optimized to maximize the number of intercepted routes. A route is intercepted
if (1) the route passes a target position of a police unit and (2) that police unit can
reach its target position before the escape route passes through. The optimization
problem is NP-hard, meaning that solving real-world instances involves computa-
tion times of years. Optimizing the route of each police unit, where they can in-
tercept the fugitive at any intermediate time, or dynamically reacting to incoming

2Camera locations were obtained from (1) Utrecht, the Netherlands: https://data.utrecht.nl/dataset/
cameraregister-utrecht, public security cameras, (2) Manhattan, New York, USA: https://banthescan
.amnesty.org/decode/, traffic cameras, (3) Winterswijk, the Netherlands: https://www.politie.nl/infor
matie/locaties-cameraplan-anpr-126jj-sv.html, traffic cameras.

https://data.utrecht.nl/dataset/cameraregister-utrecht
https://data.utrecht.nl/dataset/cameraregister-utrecht
https://banthescan.amnesty.org/decode/
https://banthescan.amnesty.org/decode/
https://www.politie.nl/informatie/locaties-cameraplan-anpr-126jj-sv.html
https://www.politie.nl/informatie/locaties-cameraplan-anpr-126jj-sv.html
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information about the fugitive’s whereabouts would further increase the complex-
ity and required computation time.

We solve the optimization problem using a genetic algorithm supplemented
with the auto-adaptive framework from Borg, which co-evolves the probabilities
of the evolutionary operators used for population adaptation based on their rel-
ative success in finding fitter offspring (Hadka & Reed, 2013). van Droffelaar et
al. (2024b) show that this optimization approach quickly finds near-optimal solu-
tions. To further ensure the quality of the solutions, the algorithm is run with five
seeds for 20,000 function evaluations, only preserving the best solution.

4.3.3. DESIGN OF EXPERIMENTS

We examine the effect of different fleeing suspect route choice models on the re-
sulting simulated escape routes and the calculated police interception positions.
Finally, we cross-evaluate the calculated interception positions on different sets
of simulated escape routes. For this, we use the following design of experiments,
graphically displayed in Figure 4.2:

1. A set of 1000 routes is generated by looping through all escape nodes and
generating the shortest route (based on the adjusted perceived travel time).

2. These routes form the input to a pyDSOL discrete-event simulation model .
An entity is created for each route. In the pyDSOL model, each entity follows
its predetermined route unless it takes the wrong turn (determined by the
‘noise’ parameter). A wrong turn is a random choice of the neighboring links,
excluding the planned and previous ones. Each combination of model and
noise generates a set of routes constituting the first set of results.

3. These routes are the input of an optimization model that determines the po-
sitions for a set of police units that maximizes the number of intercepted
routes. The calculated interception positions form the second set of results.

4. The positions are evaluated against different models to test their robustness.
In other words, we determine the number of intercepted routes resulting
from a different model using the positions optimized for the original model.

Figure 4.2: Graphical overview of the design of experiments. The green numbers in parentheses refer to
the numbered items in Section 4.3.3.
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Table 4.2: Case study road networks used in this study. Incident locations are marked in orange; escape
nodes in red, and police starting positions in blue.

Utrecht Winterswijk Manhattan

Typical European city Rural area Modern, grid city

Incident: city center Incident: city center Incident: Union Square

Escape: the highway Escape: the border Escape: off the peninsula

4.3.4. ROAD NETWORKS

The experiments are performed for three case studies (Table 4.2). Utrecht, the
Netherlands represents a typical European city with a historical center surrounded
by modern neighborhoods. Winterswijk, the Netherlands represents a rural area
with sparse roads surrounding a town. Escaping by crossing the border to Germany
is possible in the north, east, and south. Manhattan, New York, USA represents a
modern grid layout city with traffic lights and cameras at most intersections. The
police start locations are the local police stations.

4.4. RESULTS & DISCUSSION

The simulation results in Table 4.3 display the escape routes in red and green, indi-
cating whether they are intercepted by the calculated police interception positions
(blue dots). The following sections discuss the results: first, the escape routes, then
the calculated positions, and last, the robustness evaluation.

4.4.1. SIMULATED ESCAPE ROUTES

The escape routes resulting from the various models are presented in Table 4.3.
Below, we discuss the results, first in general and then individually for each city.

In general, the characteristics of the simulated escape routes depend on the un-
derlying road network. However, directed random walks are an exception, as they
tend to stay near the starting point and rarely reach the designated escape nodes.
Additionally, the Cool and Hot models show different road preferences across all
networks. With increasing noise, routes spread out more, visiting more nodes, but
the differences between Cool and Hot persist.
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Table 4.3: Resulting escape routes, with intercepted routes in green, not intercepted routes in red, and calculated interception positions in blue.

Model Utrecht Winterswijk Manhattan

Random walk

Cool, 2% noise
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Cool, 5% noise

Hot, 5% noise

Hot, 10% noise
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Utrecht shows several equivalently attractive roads near the incident in the city
center. A few major arteries fan out from the city center towards the escape nodes,
but the chosen arteries differ between the Hot and Cool models. For instance,
comparing the southwest of Utrecht for the Cool model with 2% noise and the
Hot model with 5% noise shows clear differences. In Winterswijk, only a few roads
lead to the designated escape nodes, resulting in similar Hot and Cool graphs, with
noise being the main distinguishing factor. In Manhattan, low-noise models grav-
itate towards the major riverside roadways due to the relative absence of traffic
lights and cameras. The preferred roads differ between the Hot and Cool models.
The Hot model is relatively less sensitive to noise (comparing Cool and Hot with
5% noise) since there is a traffic light at virtually every intersection, and cameras
are slightly more sparsely distributed. Therefore, when the Hot model takes a non-
optimal turn due to the modeled noise, making a U-turn is more attractive than
taking a detour. At higher noise (10%), the model is pushed out of that equilibrium,
and the routes spread out widely due to the grid layout with nearly euivalent.

In summary, the cool and hot models result in different road preferences. The
specific characteristics are dependent on the network features and topology.

4.4.2. CALCULATED INTERCEPTION POSITIONS

The calculated positions are shown as blue dots in Table 4.3. The positions are
optimized to maximize the number of intercepted routes. Note that a route is only
intercepted if the associated police unit can reach the position before the route
passes it. The initial police positions are shown in Table 4.2.

Since the random walks remain stuck near the incident, the calculated inter-
ception positions are also near the incident, at very different positions than other
models. The calculated positions for Utrecht are along major city roads, further
from the incident. Yet, the specific positions vary across models. One consistently
calculated position, located centrally in the East, proves effective regardless of the
suspect’s model. Similarly, in Winterswijk, a position near the incident remains
constant across all models: one nearby police unit can quickly intercept many
routes towards the north and east of the network, while others disperse across the
network depending on the model used for the suspect. In Manhattan, the calcu-
lated interception positions are consistent across Cool and Hot models and are
concentrated along the major roadways along the river.

In summary, the Cool and Hot models result in different calculated police in-
terception positions. The specific positions are dependent on the road network
features and topology. Some consistently well-performing positions are found.

4.4.3. ROBUSTNESS EVALUATION

We cross-evaluate the effectiveness of calculated police interception positions for
each model (i ) by examining the number of intercepted routes generated by other
models ( j ). The results, shown in Figure 4.3, are scaled to the number of inter-
cepted routes using the same optimization and evaluation model (i = j ). There-
fore, each row indicates the robustness of the calculated positions across different
models of suspect route choices. Negative values (pink) indicate that the inter-
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(a) Utrecht (b) Winterswijk (c) Manhattan

Figure 4.3: Results of the robustness evaluation.

ception positions calculated based on the optimization model perform worse on
the routes generated using the evaluation model compared to the routes gener-
ated using the optimization model (when i = j ). A positive score (blue) means that
relatively more routes are intercepted, suggesting that the routes of the evaluation
model are less spread out than those of the optimization model.

Irrespective of the road network, the random walk model generates distinctly
different routes, so positions based on this model perform poorly on other sets of
routes and vice versa. An exception is Winterswijk, where any set of calculated
positions performs well for random walk routes, likely due to their proximity to the
incident location, where the random walk routes concentrate.

The bottom row and rightmost column display the superset of routes, com-
bining the Cool 2%, Cool 5%, Hot 5%, and Hot 10% routes. The results confirm
that interception positions calculated for this superset are generally robust across
models. While they do not significantly outperform other optimization models,
they offer a reliable approach if the mode of behavior is unknown.

The heatmap of Utrecht (Figure 4.3a) shows that positions calculated based on
the set of escape routes generated using one model do not perform well on an-
other set of routes. Numerous potential escape nodes and equally attractive roads
leading to them result in considerable differences in calculated positions across
models. Notably, the Cool 5% model shows higher robustness compared to oth-
ers. The Winterswijk heatmap (Figure 4.3b) is relatively homogeneous, with most
values around 0. This can be explained by, first, the generally good interception po-
sition in the city center and, second, the limited number of roads that lead to the
escape nodes. The Manhattan heatmap (Figure 4.3c) also shows a somewhat uni-
form pattern. Generated escape routes converge on riverside roadways, leading to
a concentration of calculated positions. However, the Hot 10% model is an excep-
tion due to its broad set of escape routes covering most nodes in the road network.
Consequently, the calculated positions based on this model are less concentrated
on the riverside roadways. This results in poor performance when applying posi-
tions from the Hot 10% model to other models and vice versa.
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In summary, the robustness of the calculated police interception positions for
each model largely depends on network topology. In compact networks with few
escape nodes and distinct attractive roads leading to them, funnels emerge that
form good interception positions. However, in more uniform road networks, un-
derstanding the suspect’s route choice is crucial for successful interception.

4.4.4. DISCUSSION

This paper shows that the effectiveness of police interception depends on the route
choice model of the fugitive. The specific characteristics of escape routes and in-
terception positions largely depend on the case study network. Therefore, further
research should explore more types of road networks and identify network charac-
teristics that consistently lead to effective interception positions.

This paper presents a first attempt to operationalize conceptual models of fugi-
tive escape route decision-making. Additional state information that might influ-
ence fugitive behavior, such as the type of crime (ram raid, robbery, pickpocketing,
etc.) and the traffic situation, can be added. Additionally, the model of behavior
might switch during the escape, for example, shift to ‘cool’ after some time or shift
to ‘hot’ when unexpected things occur. Expert interviews can help to determine
relevant characteristics to add to the choice model. However, there is a limit to
predictability: the police do not know the exact psychological state of the fleeing
fugitive, and empirical data on fugitive routes does not exist. Additionally, limited
computation time for real-time decision support constrains the complexity of the
models that can be used.

4.5. CONCLUSION

Knowledge of the specific route choice model of the fleeing suspect is critical for
finding effective interception positions in complex networks with non-uniformly
distributed features and obstacles. This paper conceptualizes and operationalizes
three models of fleeing behavior to examine the resulting routes, calculated police
interception positions, and the robustness of the models. We show that

• A random walk model - often used to simulate fleeing suspects in intercep-
tion problems - leads to distinctly different escape routes and, therefore, cal-
culated interception positions compared to models based on psychological
theory. Therefore, a random walk model is unsuitable for decision support
in real-world police interception.

• Despite their similarities in implementation, the Cool and Hot models result
in different simulated escape routes and, therefore, calculated police inter-
ception positions. The differences are larger when the road network is com-
plex and has non-uniformly distributed obstacles.

• The calculated interception positions are robust to different models of a flee-
ing suspect when the road network is either (1) relatively simple with few
roads leading to the escape nodes, or (2) when police units can quickly reach
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intersections close to the incident, or (3) the positions of the escape nodes
create a funnel where escape routes converge.

Further research should focus on extending the library of plausible models of
fleeing suspect route choices based on data and interviews with domain experts.
Additionally, exploring a wider range of road networks should identify network
characteristics that consistently lead to effective interception positions.





5
TIMELY ADAPTIVE STRATEGIES

FOR FUGITIVE INTERCEPTION

The previous chapters have considered a static optimization problem, where the po-
lice interception positions are calculated once. In reality, information about the
fugitive’s location becomes available during the interception attempt. This chapter
evaluates promising solution approaches that adapt to the incoming information.

This chapter is under review as: Van Droffelaar, I.S., Kwakkel, J.H., Mense, J. P. & Verbraeck, A. (2024).
Timely adaptive strategies for fugitive interception.

The code and data associated with this chapter are available at: doi:10.4121/fa299948-661f-4003-a4c1-
a4f3a6bb2809
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ABSTRACT

The police need operational support to intercept fleeing suspects. The unpre-
dictability of the fleeing suspect and not knowing if, where, and when a traffic cam-
era detects the fugitive introduce uncertainty to the problem. Moreover, there is
clear path dependency: sending police units in a certain direction constrains their
possible rerouting in the future. In other words, there is a trade-off between the
flexibility to react to new information and the timeliness of decisions.

Models can support the decision of where to position police units. Traditional
stochastic optimization methods for solving fugitive interception do not account
for the path dependency. Two promising adaptive approaches are Policy Tree Op-
timization and Direct Policy Search. However, these solution approaches have not
been applied to fugitive interception, which has a rugged fitness landscape and re-
quires the solution to be calculated in real time to be relevant to decision-makers.
Therefore, this study evaluates the performance of policy tree optimization and di-
rect policy search on the fugitive interception problem for various road networks.

5.1. INTRODUCTION

Police interception of a fleeing fugitive is complex due to the unpredictability of the
fleeing fugitive, the many possible interception strategies, and limited decision-
making time (Mehlbaum et al., 2014; van Dijk et al., 2013). Models can support
decision-making by suggesting promising interception positions. Van Droffelaar
et al. (2024b) show the feasibility of sequential simulation-optimization for real-
time decision support for fugitive interception. They use simulation models to
generate an ensemble of plausible routes for the fleeing fugitive and metaheuris-
tic optimization methods to find interception positions for the police with a high
probability of interception. However, these positions are static and do not react to
updated information about the whereabouts of the fugitive.

The police can access traffic cameras with automatic number plate recognition
(ANPR) software. Additionally, they may receive calls from concerned citizens re-
garding abnormal or dangerous behavior. These information sources can help to
narrow the search for a fleeing fugitive and, therefore, increase the probability of
interception. Using the information to increase the probability of interception is
not straightforward due to the unpredictability of the behavior of the fugitive and
not knowing if, where, and when a sensor detects the fugitive. Given the known
positions of sensors that might detect the fugitive, both detections and lack of de-
tection rule out possible escape routes. Moreover, there is clear path dependency:
sending police units in a certain direction constrains their possible rerouting in
the future. In other words, there is a trade-off between the flexibility to react to
new information and the timeliness of decisions.
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The literature presents various methods for dealing with incoming information
in simulation-optimization (Henrichs et al., 2022). Yet, it is unknown which ap-
proach is most effective for fugitive interception problems. Traditional stochastic
online optimization methods, such as Periodic Re-Optimization (Psaraftis, 1980),
do not account for uncertainty or path dependency. On the other hand, most tech-
niques developed for adaptive decision-making under uncertainty are developed
for long-term planning problems and require ample time for analysis and interme-
diate input from decision-makers. Direct Policy Search (Giuliani et al., 2016; Kout-
soyiannis & Economou, 2003) and Policy Tree Optimization (Herman & Giuliani,
2018) are developed for optimal control under uncertainty and may be suitable for
real-time decision-making. However, timely calculation of the solution is essential
to support police interception operations in real time. Direct Policy Search opti-
mizes a policy, described by the parametrization of Radial Basis Functions, that
maps the system’s state (in our case, ANPR input) to control actions (Giuliani et al.,
2016; Rosenstein & Barto, 2001). Policy tree optimization optimizes a binary deci-
sion tree that delineates what actions should be taken under what conditions (i.e.,
ANPR input) (Herman & Giuliani, 2018). Policy Tree Optimization is, therefore, less
expressive than Direct Policy Search but yields a more interpretable output.

We implement and compare three promising adaptive approaches: Periodic
Re-Optimization, Direct Policy Search, and Policy Tree Optimization for the
fugitive interception problem with information updates. We evaluate the solution
approaches on three types of networks: (1) a demonstration network to observe
how the various approaches treat incoming information; (2) a 2D 10x10 grid with
equidistant vertices; (3) three distinct city road networks to assess the generaliz-
ability to real-world decision contexts. The online approaches are contrasted with
one-shot optimization, where the interception positions are not updated based on
new information, to evaluate the added value of information.

Section 5.2 describes the literature related to fugitive interception (Subsection
5.2.1) and online optimization (Subsection 5.2.2). Section 5.3 describes the formal-
ization of the fugitive interception problem, the implementation of the solution
approaches used in the paper, and the experimental setup. Sections 5.4.1, 5.4.2
and 5.4.3 respectively discuss the results for the test network, a grid network, and
the city road networks. The implications of the results are discussed in Section 5.5,
and, finally, we share our conclusions in Section 5.6.

5.2. RELATED LITERATURE

5.2.1. FUGITIVE INTERCEPTION

This paper considers the fugitive interception problem, where the positions of po-
lice units are optimized to maximize the probability of intercepting a fleeing fugi-
tive on a road network. The problem is formalized as a variation on the Flow Inter-
ception Problem, introduced by Hodgson (1990) and further developed by Berman
et al. (1992). The original Flow Interception Problem aims to maximize the inter-
cepted flow by a designated number of facilities, for example, consumers encoun-
tering at least one facility during their journeys. Gendreau et al. (2000) expanded
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the model by introducing gain coefficients ar v for each vertex v in route r , ex-
plicitly connecting the objective value to flow values. In a subsequent adaptation,
Tanaka and Kurita (2020) modified the Flow Interception Problem to handle prob-
abilistic interception and reward earlier interception. For fugitive interception,
the generic Flow Interception Problem is extended with a reachability constraint
that ensures the police unit can reach an interception vertex before the fugitive.
The generic Flow Interception Problem is NP-hard, meaning it cannot be solved in
polynomial time (Boccia et al., 2009). The problem, however, requires extremely
fast responses since the police have, at most, a few minutes to determine where
to send available police units. Therefore, (van Droffelaar et al. (2024b)) show that
metaheuristic solution approaches yield near-optimal solutions and demonstrate
and real-time applicability.

This study extends the fugitive interception problem to consider incoming in-
formation that informs the positions of the police units. To this end, we compare
adaptive solution approaches.

5.2.2. ADAPTIVE SOLUTION APPROACHES

Adaptive solution approaches aim to optimize a policy: "a rule (or function) that
determines a feasible decision given the available information in state St " (Powell,
2019). In Powell’s definition, a policy can take any shape, including a look-up table,
analytical function, or decision tree.

Adaptive solution approaches are applied to both strategic and operational de-
cision contexts. For long-term strategic planning, traditionally, one would opti-
mize for the most likely scenario or an ensemble of scenarios and re-optimize if
significant changes occur (W. E. Walker et al., 2001). In contrast, Dynamic Adaptive
Policy Pathways is a widely applied approach for adaptive planning under uncer-
tainty (Haasnoot et al., 2013; W. Walker et al., 2013), that finds sequences of actions
that maximize the performance of a system over a set of scenarios. The pathways
additionally provide insights into lock-ins and path dependencies. Tipping points
indicate when to switch strategies.

For operational decision-making, many approaches to adaptive decision-
making are rooted in the control literature. Approaches like stochastic dynamic
programming (Bellman, 1966) and multi-stage optimization (Bakker et al., 2020;
Dupačová et al., 2000) optimize a sequence of actions once, assuming to know the
likelihood that scenarios occur. However, we cannot estimate the probability of
the occurrence of the various fugitive routes because we have incomplete knowl-
edge of the decision-making of fugitives, and there is inherent variability in human
behavior. Another approach, Model Predictive Control, re-optimizes for a rolling
planning horizon, considering feedback from the system at each time step (Clarke
et al., 1987; Cutler & Ramaker, 1980). However, MPC’s typical rolling time horizon
is developed for continuous optimization problems and unsuitable for problems
with a fixed end time, such as fugitive interception. Periodic Re-Optimization is
a variant of MPC that re-optimizes at fixed time intervals until a fixed end time
(Psaraftis, 1980). Direct Policy Search (Quinn et al., 2017; Rosenstein & Barto, 2001)
and Policy Tree Optimization (Herman & Giuliani, 2018), originating from robotics
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Figure 5.1: Non-exhaustive structured overview of adaptive approaches

and water resource management, pre-optimize for an ensemble of scenarios
and determine tipping points at which to change the strategy. These seem to be
promising approaches for adaptive decision-making for fugitive interception.

This paper compares Direct Policy Search and Policy Tree Optimization for the
fugitive interception problem to evaluate their feasibility for fugitive interception
and for time-constrained optimization. The solution quality of Direct Policy Search
and Policy Tree Optimization is compared to a Periodic Re-Optimization method
to evaluate the value of pre-optimization compared to re-optimization. We choose
Periodic Re-Optimization (with a fixed time horizon) over Model Predictive Con-
trol (with a rolling time horizon) to ensure consistency and a fair comparison with
the other approaches. To benchmark the methods, we assess the solution quality
against one-shot optimization, where the strategy remains the same throughout
the time horizon, i.e., without utilizing incoming information.

The following paragraphs outline the related literature for the four solution ap-
proaches.

ONE-SHOT OPTIMIZATION

One-shot optimization is the benchmark that the online solution approaches are
compared to. The strategy remains the same throughout the time horizon, i.e.,
without utilizing incoming information. Section 5.3.1 describes the formalization
of the optimization problem and Section 5.3.2 describes the implementation of
one-shot optimization for fugitive interception used in this paper.

PERIODIC RE-OPTIMIZATION (PRO)

A logical first step to utilize incoming information is periodically rerunning the op-
timization problem. This way, outdated strategies are adjusted to reflect the new
situation. This approach is nothing new: there is a long-standing tradition in on-
line optimization, dynamic optimization, and control methods that are built on
this principle. Periodic Re-Optimization (Psaraftis, 1980) is a form of closed-loop
control, meaning that the actions depend on system output, reflecting how well
previous actions have worked. It is an approach to solve dynamic optimization
problems, meaning the problem changes over time. A static optimization prob-
lem is solved at fixed time intervals - also termed decision epochs or time slices
in the dynamic programming literature (Pillac et al., 2013). However, the solutions
found by re-optimization do not consider lock-ins, and the computation time of
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the static optimization problem determines how quickly decision-makers can re-
act to information. Section 5.3.2 describes the implementation of PRO for fugitive
interception used in this paper.

DIRECT POLICY SEARCH (DPS)
Introduced by Rosenstein and Barto (2001) for robotics, Direct Policy Search
(DPS) is a simulation-based reinforcement learning approach to optimize the
parametrization of control policies. The integration of DPS with multi-objective
evolutionary algorithms by Giuliani et al. (2016) (Evolutionary Multi-Objective Di-
rect Policy Search (EMODPS)) sparked subsequent applications in water resource
management (Gold et al., 2022; Quinn et al., 2017; Zatarain Salazar et al., 2016) and
environmental modeling (Marangoni et al., 2021; Rodríguez-Flores et al., 2023).

DPS maps system states to sequential control actions to maximize the expected
performance over a specified time horizon. Instead of optimizing periodically to
find the best action at each time step, DPS optimizes the parameters θ that describe
a control policy pθ a priori. When deployed, this control policy is periodically eval-
uated with the current system state to obtain the control action at that time. Figure
5.2 shows a schematic overview of DPS. The following paragraphs describe each
component in the schematic in more detail.

The simulation model, or transition function xt+1 = ft (xt ,at ,εt+1), describes
the state of the system at the next time stepxt+1, determined by the state of the sys-
tem at the current time step (xt ), the control actions (at ), and the external stochas-
tic drivers (ϵt+1).

At each time step, universal approximators map policy parameters (θ) and sys-
tem states (xt ) to a vector of control actions (at ). Universal approximators are, for
example, Artificial Neural Networks (ANNs) or Radial Basis Functions (RBFs). Giu-
liani et al. (2016) compare RBFs to ANNs and demonstrate that RBFs outperform
ANNs in their reservoir management case study. They note that the performance of
DPS strongly depends on the chosen approximator, and the suitability of approxi-
mators depends on the problem characteristics. For example, Oliveira and Loucks
(1997) use piecewise linear approximators, while Giuliani et al. (2016) use squared
exponential RBFs and Quinn et al. (2017) use cubic RBFs. Zatarain Salazar et al.
(2023) systematically compare various Radial Basis Functions and show that the
choice of RBFs crucially affects tradeoffs, especially for complex problems. Under-
standing the structure of the policy improves the choice for the shape of the RBF.

The performance of a policy is given by the objective function Jpθ
, which may

comprise one or multiple objectives. To account for inherent system variability
and uncertainty, the policy is assessed across a set of scenarios or realizations de-
scribed by ϵ. The objective function (eq. 5.1) aggregates outcomes of the simula-
tion model across realizations and the time horizon, providing a robust measure of
the policy’s performance.

p∗
θ = argmin

pθ

Jpθ
s.t. θ ∈Θ; xt+1 = ft (xt ,at ,εt+1) (5.1)

The optimizer suggests values for the RBF parameters that optimize the ob-
jective value(s). Zatarain Salazar et al. (2016) and Gupta et al. (2020) evaluate the
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Figure 5.2: Schematic showing the workflow of DPS. The optimizer generates candidate policies for
evaluation. Each time step t , given the system state xt , RBFs translate these into actions at . The per-
formance of the policy is aggregated over time steps and realizations. The optimizer uses the objective
values to generate new candidate policies.

effectiveness of various Multi-Objective Evolutionary Algorithms (MOEA) for DPS
and demonstrate that the Borg MOEA (Hadka & Reed, 2013) outperforms or meets
the performance of other MOEAs across test problems.

Section 5.3.2 describes the implementation of DPS for fugitive interception
used in this paper.

POLICY TREE OPTIMIZATION (PTO)

Policy Tree Optimization is a simulation-based optimization method where the
structure of a binary decision tree is optimized (Herman & Giuliani, 2018). The
approach originates in water resource management and has since been applied to
several case studies (Cohen & Herman, 2021; Goharian et al., 2022).

An example of a policy tree is given in Figure 5.3. The structure and parameters
of the binary tree is optimized using an evolutionary process. First, a population
of random trees is generated. Then, the performance of the trees is assessed by
evaluating the tree at each time step and noting the simulation output. Based on
the relative performance, crossover (the recombination of trees), mutation (local
search on the threshold values ki and actions ai for all indicator nodes and action
nodes), and pruning (the deletion of superfluous branches) generate a new gen-
eration of trees. The optimization continues until the maximum number of tree
evaluations has been reached.

Section 5.3.2 describes the implementation of PTO for fugitive interception
used in this paper.
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Figure 5.3: A policy tree of depth 3, with indicator nodes in white with indicator variables bt and thresh-
olds k, and action nodes with actions ai in gray (based on (Herman & Giuliani, 2018)).

5.3. METHOD

5.3.1. OPTIMIZATION PROBLEM

We model the problem using the sequential simulation-optimization approach as
presented in Van Droffelaar et al. (2024b), where a simulation model is repeatedly
run to generate a set of scenarios, which are subsequently used as input for an op-
timization model (Figueira & Almada-Lobo, 2014). Specifically, the behavior of the
fugitive is described by a Discrete Event Simulation model, and the target positions
of the police units are subsequently optimized. In this paper, we substitute the op-
timization model with each of the considered adaptive approaches. The following
paragraphs describe the optimization model of the intercepting police units, the
simulation model of the fugitive, and the information updates.

FORMALIZATION OF THE OPTIMIZATION PROBLEM

The optimization model is adapted from the Flow Interception Problem, intro-
duced by Hodgson (1990) and Berman et al. (1992). The decision variables of the
optimization problem are the police unit positions πu,v and the intercepted routes
zr (Table 5.1). Equations 5.2-5.4 describe the generic formalization of the opti-
mization problem. Essentially, a route is intercepted (zr = 1) if, for that particular
route (r ), the fugitive is at the same place (v) at the same time (t ) as the target ver-
tex of a police unit (πu,v ), and that target vertex is within reach at that time for that
particular police unit u (τu,v,t ). The target vertices of the police units are optimized
to maximize the number of intercepted escape routes. Routes are only intercepted
at a target vertex - not at intermediate intersections. The min function encodes
that each route can only be intercepted – and count towards the objective function
– once. This objective function is implemented in each of the solution approaches
used in this paper.
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Table 5.1: Notation of parameters and decision variables.

Decision variables

zr ∈ {0,1} route r is intercepted
πu ∈V target vertex of police unit u
πu,v ∈ {0,1} vertex v is the target vertex of police unit u

Parameters

V = {v} set of vertices
R = {r } set of fugitive routes
U = {u} set of police units
S = {s} set of sensors
T = {t } ordered index set of time steps
tmax maximum time step; length of planning horizon
φr,v,t = {0,1} fugitive route r is present at vertex v at time step t
τu,v,t = {0,1} vertex v is reachable by police unit u at time t

Maximize: Z = ∑
r∈R

zr (5.2)

Subject to:
∑

v∈V
πu,v = 1 ∀u ∈U (5.3)

zr = min
(
1,

∑
u∈U

∑
t∈T

∑
v∈V

φr,v,t ·πu,v ·τu,v,t

)
∀r ∈ R (5.4)

SIMULATION OF THE FUGITIVE ESCAPE ROUTES

We model the route choices of the fugitive as the shortest paths from the incident
location to each of the escape vertices of the network and generate a set of plau-
sible escape routes by running this model with different random seeds. To obtain
a diverse set of routes, 2% noise is added to the routes, meaning that the suspect
takes a wrong turn every 2% of the intersections (van Droffelaar et al., 2024a). After
a wrong turn, the new shortest path is determined from their next position. This
noise accounts for three factors: (1) simulating human error, especially in stress-
ful situations; (2) accommodating adjustments for unexpected obstacles like red
traffic lights; and (3) accounting for factors not explicitly modeled. As a result, we
observe a distribution of routes around the optimal paths. In further research, this
model can, of course, be replaced by a richer behavioral model.

INFORMATION UPDATES

Besides, there are sensors on the networks that represent the traffic cameras with
automatic number plate recognition that the police can access. These sensors do
not intercept the fugitive routes but provide information about the fugitive’s lo-
cation. Upon detection, the set of fugitive routes collapses to a narrower set of
possible routes. At each time step t , all sensor detections from the preceding time
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interval [t−1, t ] are considered to adjust the strategy. We employ a ground truth ap-
proach to generate the sensor detections, meaning one fugitive route (the ground
truth) generates the considered input. If the ground truth fugitive route r passes
a sensor s in the time interval [t − 1, t ], the sensor detection is 1 for sensor s at
time t . For each repetition, another fugitive route in R is the ground truth route.
Specific descriptions of the implementation of sensor detections for each solution
approach are included in the next section.

5.3.2. SOLUTION APPROACHES

This paper compares the adaptive solution approaches Periodic Re-Optimization,
Direct Policy Search and Policy Tree optimization to a static one-shot optimization.
The following sections describe the implementation of each approach for fugitive
interception.

ONE-SHOT OPTIMIZATION

The one-shot optimization model maximizes the fraction of the generated set of
plausible escape routes that are intercepted by optimizing the positions of avail-
able police units, as described in Section 5.3.1. An escape route is intercepted when
it occupies the same vertex at the same time as a police unit. The model is op-
timized using a metaheuristic solution approach for 10 000 function evaluations.
The optimization runs once and is not updated, regardless of sensor detections.
We use a basic genetic algorithm complemented by Borg’s auto-adaptive frame-
work, which co-evolves evolutionary operators’ probabilities for population adap-
tation (Hadka & Reed, 2013). The operators, each initially assigned equal probabil-
ity during the algorithm’s initialization, contribute to population adaptation based
on their relative success. The operators used are Simulated Binary Crossover, Dif-
ferential Evolution, Parent-Centric Crossover, Simplex Crossover, Unimodal Nor-
mal Distribution Crossover, and Uniform Mutation. We use the default values for
all hyperparameters as presented by Hadka and Reed (2013).

PERIODIC RE-OPTIMIZATION (PRO)

Periodic re-optimization solves a static optimization problem at fixed time inter-
vals. Based on the information updates, the set of escape routes is updated to
exclude routes that are no longer possible given the received sensor detections.
To generate the information inputs to the optimization model, we pick a ground
truth escape route from the set of generated escape routes for each repetition. The
ground truth route triggers sensor detections. The generated escape routes are
filtered at each time step based on their feasibility given the received sensor detec-
tions. Then, the one-shot optimization is run based on this ever-shrinking subset
of routes. We record for each repetition whether or not the re-optimization has led
to interception, and we take the average over the set of ground truth escape routes
to obtain the probability of interception.

The optimization is run for 10 000 function evaluations for 10 seeds each time
the set of possible routes changes due to sensor detections (or lack thereof). The
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number of re-optimizations is dependent on the number of sensors and the prob-
lem instance. For problem instances with three sensors, this change happens on
average 2.2 times for the grid network, 3.7 for the Manhattan network, 4.0 times
for the Utrecht network, and 3.1 times for the Winterswijk network. For problem
instances with three sensors, this change happens on average 3.2 times for the grid
network, 5.3 for the Manhattan network, 6.5 times for the Utrecht network, and
5.2 times for the Winterswijk network. Consequently, the total number of func-
tion evaluations varies between 22 000 and 65 000 function evaluations. In prac-
tice, however, police vehicles can already start driving towards their first position
after the first 10 000 function evaluations. In contrast, with pre-optimization ap-
proaches like DPS and PTO, they have to wait until the entire optimization is com-
plete before starting to drive. Therefore, for the main experiments, the optimiza-
tion is run for 10 000 function evaluations. Additional analyses in C.2.1 explore the
impact of capping the total number of function evaluations to 10 000.

DIRECT POLICY SEARCH (DPS)
Direct Policy Search optimizes the parametrization of control policies that map
system states to sequential control actions. This mapping has the shape of a Radial
Basis Function (RBF). A transition function describes the progression of the system
state, depending on the control actions resulting from the optimized control policy.

For fugitive interception, the transition function details how the positions of
the police units and the fugitive change given the chosen actions and the ground
truth route. The ground truth route generates sensor detections, which make up
the state vectors xt . For improved convergence, the sensor stays flipped after a
detection (i.e., the vector looks like [000111], rather than [000100] for a detection
at time step 3).

For each time step, the control policy is evaluated for each police unit to obtain
its target vertex. Experimentation showed that representing the control policy by a
linear RBF with n=2 leads to the quickest convergence for this problem, compared
to a Gaussian or cubic RBF with n=2 or n=6 (Equation 5.5). cs, j , rs, j , and wu, j are
the centers, radii, and weights of n linear RBFs. The weights are specific to each
police unit (i.e., the decision variables), and the centers and radii are specific to the
sensors (i.e., the information). The resulting actions au,t are clipped to fall within
the bounds of the decision variable.

au,t =
∑
s∈S

n∑
j=1

wu, j
(
cs, j · xs,t + rs, j

) ∀u ∈U ,∀t ∈ T (5.5)

Analogous to other solution approaches, the algorithm is run for 10 000 func-
tion evaluations.

POLICY TREE OPTIMIZATION (PTO)
Policy Tree Optimization optimizes the structure of a binary tree, where the sensor
information is on the indicator nodes (has sensor A detected the fugitive or not),
and the positions of the police units are on the action nodes. We optimize a policy
tree for each police unit to ensure that each police unit can receive a new position
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at each time step. We adopt the evolutionary scheme implemented by Herman and
Giuliani (2018) but supplement the evaluation of the trees with a robustness con-
sideration. Each group of trees is evaluated for 100 ground truth realizations of the
fugitive route, and we record the number of realizations in which the route is suc-
cessfully intercepted. Analogous to PRO and DPS, the ground truth fugitive route
generates the sensor detections that serve as input to the policy tree. Like DPS, the
sensor stays flipped after detection to improve convergence (i.e., the vector looks
like [000111], rather than [000100] for detection at time step 3). Analogous to other
solution approaches, the algorithm is run for 10 000 function evaluations.

5.3.3. EXPERIMENTAL SETUP

CASE STUDY ROAD NETWORKS

We evaluate the solution approaches on three types of networks to gently build
complexity and assess the generalizability of our conclusions to different graph
topologies.

1. A demonstration network to observe how the various approaches treat in-
coming information.

2. A 2D 10x10 grid with equidistant vertices, with travel time over each link
equal to the time step. The starting positions are in the center of the grid,
and the designated escape vertices are on the boundary of the grid.

3. Three city road networks to assess the generalizability to real-world deci-
sion contexts. The three networks are selected for their different topologies:
Utrecht, the Netherlands, represents a typical European city with a histori-
cal center surrounded by modern neighborhoods; Winterswijk represents a
rural area with sparse roads surrounding a town; and Manhattan represents
a modern city with a grid layout. The starting positions are in the center of
the network, and the escape vertices are the boundaries of the city (see also
Table 4.2).

PROBLEM INSTANCES

Besides the network topology, the starting positions of the fugitive and the po-
lice units determine the complexity of the optimization problem: the more over-
lap between vertices visited by the fugitive and vertices reachable by police units,
the more potential interception positions. The positions of the sensors determine
whether, to what extent, and how often strategies should switch. Therefore, we
control for the influence of these factors on our results by experimenting with 10
different problem instances. Each problem instance describes a different configu-
ration of the problem: a starting position for the fugitive, starting positions for the
police units, and positions of the sensors. A set of fugitive routes is generated for
each starting position of the fugitive. The sampled positions are checked for three
criteria and resampled if necessary: (1) the starting position of the fugitive does
not overlap with the starting position of a police unit; (2) each sensor is passed by
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Table 5.2: Case study road networks used in this study. Escape vertices and simulated escape routes are
marked in red. One set of starting positions is displayed in blue (police units) and green (sensors).

Utrecht Winterswijk Manhattan

Typical European city Rural area Modern, grid city
Incident: city center Incident: city center Incident: Union Square
Escape: reach the highway Escape: cross the border Escape: get off the peninsula
Size: 6001 vertices Size: 4892 vertices Size: 6419 vertices

at least one fugitive route; (3) each police units can reach at least one fugitive route
within the run length of the simulation. This last constraint ensures that all police
units can contribute to the interception, which contributes to a fair comparison
between problem instances. The solution approaches are evaluated on the same
problem instances to ensure a fair comparison.

METRICS FOR COMPARISON

The police have, at most, a few minutes to determine where to send available po-
lice units (Mehlbaum et al., 2014). Therefore, timely calculation of the intercep-
tion positions is essential to support police interception operations. Therefore, we
compare the performance of the solution approaches in this paper based on the
quality of the solution found after 10 000 function evaluations, rather than based
on their best attainable solution when converged. For each problem instance, only
consider the best-obtained solution across 10 random seeds for the optimization
algorithm. The number of function evaluations is a proxy for the computation
time. Due to varying degrees of code optimization and parallelization, compar-
ing the solution quality after a set computation time would not be fair. We discuss
this in more detail in the discussion (Section 5.5).

5.4. RESULTS

The following subsections present and discuss the results for the various networks:
firstly, a test network; second, a ten-by-ten grid; and last, three city road networks
to evaluate the influence of network topology and assess the generalizability of the
results.
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5.4.1. TEST NETWORK

First, we consider a network (Figure 5.4) where a police unit and a fugitive start
on opposite ends and three paths of equal length connect their respective vertices.
The target vertices of the fugitive are vertices 4, 8 and 12, and the fugitive is consid-
ered to be ‘escaped’ when they reach one of these vertices. To reach these vertices,
there are three possible routes for the fugitive: through vertices 1, 5, or 8. The po-
lice have additional paths between vertices 3 and 7, and 7 and 11, that allow them
to switch between paths. The fugitive cannot use these.

Figure 5.4: Network layout of the test problem

We optimize the target vertices of the police unit to maximize the probability
of interception. The fugitive is considered ‘intercepted’ when they are at the same
vertex at the same time as the police unit.

If there is no sensor, i.e., no additional information about the location of the
fugitive becomes available during the interception attempt, and the paths are
equally attractive to the fugitive, the probability of intercepting the fugitive is 33%.
The one-shot approach, periodic re-optimization, direct policy search, and policy
tree optimization all find this solution (Table 5.3).

A sensor on vertex 10 increases the probability of interception for all reactive
approaches. The pre-optimized adaptive approaches — PTO and DPS — both
quickly (in less than 2 generations) find the optimal solution where 67% of routes
are intercepted (Table 5.3). This is the solution where the police unit is either po-
sitioned on vertex 7 or remains on vertex 13 and goes to vertex 11 or 12 if the sen-
sor detects the fugitive and goes to vertex 7 or 8 if the sensor does not detect the
fugitive. The escape routes on the top path, escaping from vertex 4, are not inter-
cepted. Periodic re-optimization finds a slightly worse solution because the first
calculated position is on the top path in some repetitions. If the sensor then de-
tects the fugitive on the bottom path, the police unit does not have enough time
to reach them. This demonstrates the path dependency in online optimization of
fugitive interception.

5.4.2. 2D GRID NETWORK

Second, we consider a ten-by-ten undirected grid network with equidistant ver-
tices, where the fugitive starts in one of the nine middle vertices and can escape at
any of the 36 edge vertices. The police starting positions and sensor locations are
randomly positioned on the network, leading to ten different problem instances
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Table 5.3: Fraction of intercepted routes for each solution approach for the test network.

one-shot PRO DPS PTO

0.33 0.33
0.33
(100 nfe avg)

0.33
(100 nfe avg)

0.33 0.58
0.67
(175 nfe avg)

0.67
(135 nfe avg)

(illustrative examples in Figure 5.5). We examine situations with three and ten po-
lice units (|U |) and with three and ten sensors (|S|). The results in Figure 5.6 are
scaled to the best solution across seeds and across approaches. Each dot repre-
sents the best solution for a problem instance across seeds. The overlaid boxes
represent the first quartile, median, and third quartile of the scaled solution qual-
ity, respectively.

(a) Problem instance with three police units and
three sensors.

(b) Problem instance with three police units
and ten sensors.

Figure 5.5: Example problem instances for the ten-by-ten grid network. Fugitive starting locations and
simulated escape routes are marked in orange, and escape vertices are red. Combinations of starting
positions are displayed in blue (police units) and green (sensors).

The results (Figure 5.6) show that, in general, adaptive approaches outperform
one-shot optimization in terms of solution quality. With an increasing number of
sensors, the (unscaled) solution quality increases (Figure C.1), demonstrating that
additional information on the whereabouts of the fugitive improves the probability
of interception.

One problem instance with three police units demonstrates PRO’s vulnerability
to path dependence. For this particular instance, the difference between the pre-
optimized (DPS and PTO) and re-optimized (PRO) approaches is significant: PTO
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Figure 5.6: Comparison of solution quality on a 10x10 grid across problem instances for four solution
approaches: one-shot optimization, periodic re-optimization (PRO), policy tree optimization (PTO),
and direct policy search (DPS).

and DPS find a solution with a 100% probability of interception, whereas one-shot
optimization and PRO get stuck at 23% and 29%, respectively.

Across problem instances, PTO cannot find the best solution within the given
number of function evaluations. This is particularly visible in problem instances
with ten police units, where even one-shot optimization outperforms PTO in so-
lution quality. Policy trees are not as expressive as PRO and DPS and suffer from a
difficult evolution process. Crossovers, where pieces of policy trees are exchanged
between solutions, rarely produce feasible, well-performing policy trees. There-
fore, PTO quickly converges to and rarely escapes from a local optimum, making
it sensitive to the initial sample. DPS and PRO yield similar solution quality. PRO
performs slightly better for problem instances with three police units, and DPS
performs slightly better for instances with ten police units.

5.4.3. CITY ROAD NETWORKS

MANHATTAN

The Manhattan road network is similar to the grid discussed in the previous sub-
section, albeit with some one-way roads and other irregularities and fewer escape
vertices (see Table 4.2). However, the results (Figure 5.7) show different trends
compared to the results of the grid network. The spread in solution quality across
problem instances is much lower for all solution approaches. In other words, the
starting position of the police units and sensor locations has a smaller impact on
the ability of the various solution approaches to find a good solution. Evidently,
the underlying road network and simulation of escape routes affect the relative
performance of solution approaches.

Compared to the results for the grid network, one-shot optimization and policy
tree optimization perform much better. This is most likely due to the more limited
set of unique routes and, therefore, the presence of clear bottleneck interception
positions. Ten police units are enough to cover all major bottlenecks, leading to
very good performance for one-shot optimization. With three police units to be
positioned, PRO performs slightly better than other approaches for problem in-
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Figure 5.7: Comparison of solution quality for the Manhattan road network across problem instances
for four solution approaches: one-shot optimization, periodic re-optimization (PRO), policy tree opti-
mization (PTO), and direct policy search (DPS).

Figure 5.8: Comparison of solution quality on the Utrecht road network across problem instances for
four solution approaches: one-shot optimization, periodic re-optimization (PRO), policy tree optimiza-
tion (PTO), and direct policy search (DPS).

stances with three police units, and DPS performs best for instances with ten police
units. This is consistent with the results for the grid network.

UTRECHT

Compared to Manhattan, the road network of Utrecht is more complicated, with
one-way roads and cul-de-sacs, and hierarchical, with neighborhoods with main
roads connecting different parts of the city. Despite the differing network topology,
the results (Figure 5.8) are similar: PRO performs best on problem instances with
three police units, and DPS performs best on problem instances with ten police
units. For problem instances where PTO and DPS show a lower solution quality,
this is due to the low number of function evaluations, which does not allow for
convergence.

WINTERSWIJK

The road network of Winterswijk consists of a town surrounded by several larger
roads that lead to the German border, which forms the exit vertices. The results
(Figure 5.9, C.4) show that deploying ten police units is sufficient to guarantee in-
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Figure 5.9: Comparison of solution quality on the Winterswijk road network across problem instances
for four solution approaches: one-shot optimization, periodic re-optimization (PRO), policy tree opti-
mization (PTO), and direct policy search (DPS).

terception of all simulated escape routes. In other words, utilizing information to
improve the solution quality does not improve the probability of interception. On
the contrary, adding adaptation slows convergence, and therefore, the best solu-
tion may not be found.

Similar to the results for Utrecht and Manhattan, PRO performs best on prob-
lem instances with three police units. In contrast to the previous networks, PTO
performs better than DPS, which struggles to find a good solution for three prob-
lem instances.

5.4.4. CONVERGENCE

Additional analyses were performed to understand the underlying mechanisms
leading to the results discussed in this section. The number of function evalua-
tions is increased or decreased to evaluate the effect of convergence on the results.

PRO gets 10 000 function evaluations for each re-optimization, which occurs
3 - 7 times on average, depending on the problem instance, resulting in 30 000 -
70 000 function evaluations in total. C.2.1 presents the results limiting the number
of function evaluations of PRO to 10 000 in total (instead of per re-optimization).
Problem instances with many re-optimizations (Utrecht), more police units, and
more nodes visited by the simulated escape routes — and therefore more potential
interception positions — (Manhattan and Utrecht) suffer significantly from limit-
ing the number of function evaluations.

For a few problem instances where PTO performs relatively poorly, additional
experiments with 100 000 function evaluations are run (C.2.3). Across networks
and problem instances, the quality of the solution gets better, with solutions closer
to the best-found solution, indicating that slow convergence is an important factor
for the lower solution quality.

Similarly, for a few problem instances where DPS performs relatively poorly,
additional experiments with 100 000 function evaluations are run (C.2.2). The
quality of the solution rarely improves after 10 000 nfe, demonstrating that the
performance of DPS is not solely hindered by the number of function evaluations.
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5.5. DISCUSSION

5.5.1. REFLECTIONS ON SOLUTION APPROACHES

In this paper, we compare the performance of one-shot optimization, periodic re-
optimization, direct policy search, and policy tree optimization for real-time fugi-
tive interception. First, we discuss the solution quality obtained by each solution
approach.

• One-shot optimization is a non-reactive solution approach that functions as
a benchmark in this paper. This representation of the optimization problem
is easier to solve, and the optimization is at or close to convergence at 10 000
nfe. For problem instances with ten police units, one-shot optimization of-
ten finds the best-found solution quality, showing that using information is
more critical for problem instances with fewer police units.

• Periodic re-optimization reruns the one-shot optimization problem each
time the sensor information excludes potential escape routes. This approach
comparatively gets more function evaluations because not everything needs
to be computed before being able to send out police units, and therefore, it
performs very well. Experiments where PRO gets 10 000 nfe in total show
PRO lacking behind DPS. Some problem instances demonstrate PRO’s
vulnerability to path dependence. This is less common in the city network
used in this paper because the complexity of the road network allows
for quick pivoting. In a highway network, where pivoting is much more
time-consuming, PRO may be more vulnerable to lock-ins, similar to the
test graph discussed in Section 5.4.1.

• Direct policy search performs well across networks and problem instances,
especially considering the low number of function evaluations. The solu-
tion quality obtained by DPS depends strongly on the initial sample, and
extending the optimization to 100 000 function evaluations barely improves
the solution quality further. This suggests that improving the algorithm by
including restarts or a better-informed initial sample will likely improve the
solution quality found by DPS (Fukunaga, 1998; Hadka & Reed, 2013).

• Policy tree optimization is outperformed by PRO and DPS across networks
and problem instances. Experiments with 100 000 function evaluations
demonstrate that PTO often can find a good solution but converges too
slowly for real-time decision support. The evolutionary process leads to
many infeasible solutions and slows convergence. Tailoring the evolutionary
processes of crossover and mutation to the fugitive interception problem
will likely improve the real-time performance of PTO. Additionally, including
restarts would prevent PTO from getting stuck in local optimums, and an
informed initial sample would further speed up convergence.
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5.5.2. INTERPRETABILITY OF SOLUTIONS

Adaptive solution approaches not only improve solution quality but also im-
prove the interpretability of the interception strategy. In contrast, a one-shot
optimization might position units in one area even if they know the fugitive has
been detected on the other side of the city. Additionally, pre-computed solution
approaches (DPS and PTO) lead to fewer changes in interception positions, and
the changes can be anticipated and understood by individual police units. This
transparency could lead to higher trust and acceptance of the decision support
system (Shibl et al., 2013). Previous research on decision support systems for
the Dutch Police found that it is crucial for compliance that individual police
agents understand the reasoning behind the decision support and their individual
contribution to the interception (Drenth & Steden, 2017). Adaptive solution
approaches contribute to this.

Interpretability (the ability to explain or to provide the meaning of a model in
understandable terms to a human, as understood by Barredo Arrieta et al. (2020))
builds trust and acceptance of the decision support. Rudin (2019) even argues
that ‘black box models’ (models where the parameters and architecture are hid-
den) are insufficient in high-stakes decision environments and should be avoided
if possible. The most interpretable solution approach is one-shot optimization,
which presents a single combination of interception positions after an incident.
While the output of each re-optimization of PRO is interpretable, the solution ap-
proach is not inherently transparent about what information change triggered the
re-optimization. Instead, policy trees are designed to be an easily interpretable
structure that visualizes the conditions triggering various actions. In contrast, di-
rect policy search yields an incomprehensible combination of fitted radial basis
functions that map system states to interception positions. Further research could
develop an approach to map the functions to a binary decision tree, combining the
convergence speed of DPS and the interpretability of PTO.

5.5.3. FURTHER RESEARCH

In this paper, we make a number of assumptions and simplifications in the repre-
sentation of fugitive interception in our models. In the following paragraphs, we
discuss the assumptions and their impact on the various solution approaches.

First, this paper assumes that interception is deterministic: when a police unit
and the fugitive are at the same intersection at the same time, the fugitive is always
intercepted. However, in reality, busy intersections or multiple highway lanes are
difficult to monitor, and a fugitive can slip through unseen. Police interception
strategies hedge for this by assigning multiple police units to important bottle-
necks. Simulation-optimization for decision support could take this into account
by assuming probabilistic interception in the objective function. For example, only
80% of a fugitive route is intercepted by each intercepting police unit. This per-
centage could also depend on the interception position’s characteristics, such as
the number of lanes or typical traffic density. The implementation of probabilistic
interception is similarly simple for all solution approaches discussed in this paper.

Second, this paper assumes accurate detection of the fugitive. However, in re-
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ality, Automatic Number Plate Recognition (ANPR) Cameras may produce false
positives and false negatives. Accounting for these inaccuracies is very difficult
in pre-computed adaptive approaches that rely on threshold values to determine
the interception positions at each time interval. For periodic re-optimization, im-
plementing inaccurate detection would simply imply changing the reward of inter-
cepting a route (zr ) from a binary variable (zr ∈ {0,1}) to probabilistic values, such
as {0.05,1}.

Third, this paper only considers detection by ANPR cameras, which are located
at fixed, known points in the network. However, civilian reports of abnormal be-
havior (e.g., driving on the wrong side of the road or at excessive speeds) could
also inform police interception. In such cases, the detection location is not fixed
and can occur anywhere on the road network at any time. Pre-computed adap-
tive approaches cannot account for this, as the state space would explode in size,
making real-time calculation of interception strategies infeasible. For periodic re-
optimization, such detections would either change the relative rewards of different
simulated escape routes or simply exclude routes for the next re-optimization.

Finally, the experiments in this paper assume zero computation time, meaning
there is no delay between the start of the fugitive’s escape and the police units’
response. However, computation time varies based on factors such as hardware,
programming language, and code efficiency, making fair comparisons challenging.
Further research should examine the relationship between the number of function
evaluations (which influences the computation time), the solution quality (which
depends on the number of function evaluations), and the delay in police response
(which is tied to computation time). For the solution approaches discussed in this
paper, DPS and PTO initially have longer computation times, but they determine
the appropriate actions within milliseconds during the interception. On the other
hand, the initial computation time of PRO is shorter, but this computation time is
required at every re-optimization. While different detection scenarios can be pre-
calculated at the start of an interception, this is computationally intensive and only
possible for ANPR detections at fixed, known locations. In summary, the effect of
non-zero computation time on the effectiveness of the solution approaches is not
yet known and needs further experimentation.

5.5.4. RECOMMENDATIONS

Adaptive solution approaches increase the probability of interception and are
expected to improve trust in the decision support due to their added transparency.
Considering the solution quality in limited function evaluations and the inter-
pretability of results — both to intercepting police units and dispatchers in the
control room —, DPS is a promising approach for decision support, especially
if supplemented with an interpretable interface. However, in city networks with
low vulnerability to lock-ins, and if the police want to consider probabilistic
interception, probabilistic detection, and non-ANPR detections, PRO is the most
flexible and effective option.
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5.5.5. GENERALIZABILITY

The interception problem described in this paper is an example of a class of prob-
lems where an optimal intervention that reacts to observations of the system has
to be determined. Another example of this class of problems is the control of an
autonomous vehicle. At fixed, short time intervals, the best control action has to
be determined, meaning that the car follows its intended route and avoids crashes
while the behavior of the vehicles around it is unknown (Zanon et al., 2014). Be-
sides being a good control action for the current state of the system, it should
take into account possible changes in the system, such as unexpected other traffic.
Lock-ins that make it difficult to react to changes in the system should be avoided.
Moreover, similar to the fugitive interception problem discussed in this paper, the
control action must be available quickly — within a second or even less. Model
Predictive Controllers for autonomous driving are widely researched Cesari et al.
(2017) and Lamouik et al. (2023), but could benefit from pre-computation solution
approaches to anticipate path-dependence and prevent lock-ins. Different prob-
lems will have different trade-offs: the simpler the optimization problem and the
more vulnerable to high-impact lock-ins, the further the preference for a solution
approach shifts to DPS. In problem areas where the interpretability of the solution
is paramount the preference shifts to PTO.

5.6. CONCLUSION

Simulation–optimization can be used to support real-time decision-making for
fugitive interception. Incorporating real-time information about the fugitive’s lo-
cation can improve decision-making, but it also makes the optimization problem
harder to solve within the limited time available for real-time decision making.

This paper examines the solution quality obtained for the fugitive intercep-
tion problem with information updates within a limited number of function
evaluations for four solution approaches: One-shot Optimization, Periodic Re-
Optimization, Direct Policy Search, and Policy Tree Optimization. Our analysis
using the fugitive interception example shows that:

1. Adaptive solution approaches, utilizing the information updates, out-
perform static one-shot optimization, especially when the number of
intercepting police units is low.

2. Direct Policy Search effectively avoids lock-ins and finds high-quality solu-
tions across networks and problem instances. However, making the resulting
solutions interpretable for decision-makers requires further research.

3. Policy Tree Optimization, while the most interpretable, converges too slowly
for real-time decision support.

4. Periodic Re-Optimization performs well for networks and problem in-
stances with few lock-ins (for instance, city networks) and is flexible to
further extensions to include probabilistic interception and detection.
While the optimization results at each time step are interpretable, Periodic
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Re-optimization does not offer insight into causal relationships between
sensor information updates and changes in calculated positions of police
units.

Based on the results in this paper, practitioners are advised to use Direct Policy
Search for problems that are vulnerable to lock-ins. If the interpretability of the re-
sults is critical, Direct Policy Search should be supplemented with an interpretable
interface. Otherwise, practitioners are advised to use Periodic Re-optimization for
its flexibility and ease of implementation.

These results are generalizable to a class of problems where an optimal inter-
vention has to be determined in real time under uncertainty, and information up-
dates can improve the intervention, such as path planning of autonomous vehi-
cles.





6
EMPIRICAL EVALUATION

The previous chapters focused on developing models and testing various solution
approaches for fugitive interception. This chapter evaluates these models by com-
paring their outputs to the actual locations where police units were positioned by
the control room. This evaluation leads to a discussion of limitations and sugges-
tions for future research.
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6.1. INTRODUCTION

To apply models in the police control room to advise on interception strategies,
the models need to be thoroughly validated and tested. The evaluation discussed
in this chapter is the first step in this process. The evaluation helps to identify
strengths and limitations in the proposed approach, and leads to recommenda-
tions for improvements and further research.

Validation is the assessment of the accuracy of the model’s representation of
the real system (Sargent, 2011). In fugitive interception and, more broadly, in law
enforcement applications, validation is extremely difficult. Validation of models of
fugitive behavior is difficult because there is very little data about fugitive escape
routes. When data is available, this data has a historical bias (criminals constantly
change their strategies, especially when the police start catching on) and survivor-
ship bias (we only have information on successful cases where the suspect was
caught). Furthermore, the data collection in police systems does not facilitate sim-
ulation model validation. On the other hand, validation of the police interception
positions, for example, to assess whether interception positions were reachable in
the estimated time, is possible.

In this chapter, we take an initial step toward model validation by empirically
evaluating the simulated escape routes and the calculated police interception po-
sitions for three historical cases. For each case, we answer the following questions:

1. Is the location of the first sighting of the fleeing suspect included in the sim-
ulated escape routes?

2. How effective are the real police positions in intercepting simulated routes?

3. How effective and efficient are the calculated police interception positions
in intercepting simulated routes?

4. How do the real and calculated positions differ and why?

Effectiveness refers to the percentage of simulated routes intercepted by the
police positions. Efficiency, on the other hand, examines whether the same inter-
ception percentage could be achieved using fewer police units. These metrics are
further explained in Section 6.2.4.

6.2. METHOD

6.2.1. DATA SOURCE

Control room centralists from the fire department, the ambulance dispatch center
and the police use the ‘Geïntegreerd Meldkamer Systeem’ (GMS) to handle inci-
dent reports and direct the right emergency service to the right place as quickly
as possible. Each incident in GMS is classified to distinguish, for example, home
burglaries or resuscitations. Centralists use the free text fields (‘kladblok’) to note
information relevant to each incident. Each entry to the free text fields is times-
tamped. Communication with police units in the field is done primarily through
radios (‘portofoon’), which is not recorded.
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For this research, we had access to the free text fields of GMS of incidents la-
beled ‘chase’/ ‘achtervolging’. This label includes escapes by car and interceptions
as defined in this thesis. To ensure that we do not affect police operations, we only
consider cases older than 3 years.

6.2.2. SELECTION OF CASES

To align with the models developed in this dissertation, we applied criteria to the
dataset of incidents. First, we filtered all cases by excluding keywords:

• Escape by car (not by foot, bike, or moped).(‘te voet’; ‘fiets’; ‘scooter’)

• The suspect was not under the influence of drugs or alcohol. Behaviors as-
sociated with intoxication aren’t captured by the models of fugitive behavior
in this dissertation. (‘dronken’; ‘alcohol’; ‘onder invloed’)

• No kids were involved. (‘kind’)

Additionally, we filtered the dataset using the timestamps:

• The duration of the incident from the first notification to the last communi-
cation is at least 15 minutes. This excludes incidents that were not followed
up on or are concluded so fast they are not relevant to this dissertation.

• There are at least three entries. This excludes incidents that were not docu-
mented well enough to use in this evaluation.

After applying these filters, we screened the remaining incidents and selected cases
where:

• The suspects fled using a single car. Cases involving multiple vehicles are
excluded.

• The suspect does not switch vehicles.

• The police interception positions are documented well. The dataset includes
many instances where no or a fraction of the police interception positions
are noted in GMS, which makes evaluation difficult. This is very common,
especially for incidents with high time pressure (which applies to most of
the incidents).

• It is possible to rationalize a set of plausible target locations for the suspect,
without using personal data or confidential police information. For the ap-
proach proposed in this dissertation, this is needed to simulate the escape
routes.

One type of incident that fits these criteria is ATM burglaries using explosions
or a ram-raid (‘ram- en plofkraken’). These ATM raids are abundant and impact-
ful causing massive damage to buildings and surroundings (Politie, 20 April 2024).
With the improved security of Dutch ATMs, Dutch raid groups are targeting Ger-
man and Belgian ATMs and driving back to the Netherlands in stolen fast vehicles
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(van der Eng, 2018). This escape strategy has been well-covered in Dutch and Ger-
man press (NOS Nieuws, 7 August 2017, 25 July 2017), meaning we can safely use
these types of cases in this dissertation. Since the incident location is in Germany,
the Dutch police have ample time to develop an interception strategy and posi-
tion police vehicles accordingly. Generally, the interception positions are relatively
well-documented.

From the ATM raids in the dataset, we selected three with high data quality,
meaning that the interception positions are recorded, and, if the fleeing suspects
were sighted, their location.

6.2.3. CONFIDENTIALITY

We take several precautions to ensure that the selected cases cannot be traced back
to the related incidents and that no confidential information is disclosed. First, no
specific details or dates related to the case are shared. Second, the starting posi-
tions of the fugitives are not plotted at the real location of the incident, but within
the general area. Third, the locations where the fugitives were spotted or arrested
are not disclosed.

A security clearance and authorization to work with sensitive police data were
obtained for carrying out the data screening and evaluation. The Dutch Ministry
of Justice and Security has approved the use of police data for this study.

6.2.4. EXPERIMENTAL SETUP

NETWORK

We obtain the main road network between the incident location and the Nether-
lands from OpenStreetMap via the OSMnx Python library (Boeing, 2017). Only
motorways, and primary and secondary roads are imported, resulting in a road
network with 78 034 nodes, of which 17 839 in the Netherlands. The same road
network is used for all cases.

SIMULATION OF ESCAPE ROUTES

For each of the three cases, 1 000 escape routes are simulated to random points in
three large cities in the Netherlands (Amsterdam, Rotterdam, and Utrecht). We use
the shortest path model with 2% noise, which is also used in Chapters 3 and 5.

OPTIMIZATION OF INTERCEPTION POSITIONS

The police interception positions are optimized using the static sequential
simulation-optimization model proposed in Chapter 2 and used throughout this
dissertation. The model optimizes the police positions to maximize the number of
intercepted routes.

The police interception positions are limited to the eastern provinces of the
Netherlands: Overijssel, Gelderland, Noord-Brabant, and Limburg. Dutch police
cannot make arrests outside the Netherlands. The western provinces are excluded
to prevent interception positions at escape nodes, which would be an artifact of
the assumptions underlying the simulation model of the fugitive and ineffective
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for real-world interception. This constraint results in 9,995 possible nodes for in-
terception.

The dataset does not include the locations of the police units at the time of
the incidents. In other words, we do not know the starting positions of the police
units for the optimization and evaluation of interception positions. Therefore, we
assume the police units’ starting positions to be the locations they were positioned
at by the control room. Given the long time between the incident report and the
suspect crossing into the Netherlands, we do not expect this assumption to have a
large effect on the results of this study.

The model is optimized using the genetic algorithm used throughout this dis-
sertation, for 100 000 function evaluations, and 5 random seeds to account for the
seed variability in the optimization algorithm.

METRICS FOR EVALUATION

To evaluate the calculated police interception positions, we look at the effective-
ness and efficiency of the positions.

• The effectiveness is best-found solution across seeds. The resulting percent-
age of intercepted routes is compared to the percentage of routes intercepted
by the real police positions.

• To evaluate the efficiency, we examine the percentage of routes intercepted
by fewer police units. Initially, we tried evaluating efficiency through a
bi-objective problem formulation, optimizing both the number of police
units used and the number of intercepted routes. However, this problem
formulation did not converge. Instead, we evaluate the efficiency using the
single-objective problem formulation, which outperforms the bi-objective
solutions For each seed, we:

1. Recursively remove police units where their removal does not impact
the solution quality. This removes the redundancy in police positions
when multiple police units are positioned on the same route.

2. For each combination of the remaining interception positions, calcu-
late the percentage of intercepted routes. Record the number of posi-
tions as the number of utilized police units.

For each number of utilized police units, retain only the combination of po-
sitions that result in the highest solution quality across combinations and
seeds.
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6.3. ANALYSIS OF CASES

6.3.1. FIRST CASE

The first case is an ATM raid in the southwest of Germany (Rhineland-Palatinate),
where the suspects fled towards the Netherlands. Nine police units were posi-
tioned to intercept the suspects.

SIMULATION OF FUGITIVE ROUTES

Figure 6.1 shows the simulated routes from the location of the ATM raid in south-
west Germany to three major cities in the Netherlands. The routes primarily con-
centrate on 5 major highways in Germany and disperse in the Netherlands. The
simulated routes include the location where the fleeing suspects were first spot-
ted, indicating that the routes could be realistic.

EFFECTIVENESS OF POLICE INTERCEPTION POSITIONS

Figure 6.2 shows a comparison of the real and calculated police interception posi-
tions. The real positions are clustered around a few areas, and local police units are
posted in their area of operation. The simulated routes are more spread out than
the real police positions seem to anticipate. Due to the concentrated positions of
the police units, only 57.3% of the simulated routes are intercepted.

In contrast, the calculated positions are more dispersed, with police units po-
sitioned at funnel locations where multiple simulated routes converge. The calcu-
lated positions intercept 87.7% of the simulated escape routes.

EFFICIENCY OF POLICE INTERCEPTION POSITIONS

Figure 6.3 shows the trade-off between the number of police units positioned to
intercept the fugitive and the percentage of simulated routes intercepted. The fig-
ure shows that the same percentage of intercepted routes can be achieved with 8
police units instead of 9. Even with just 5 units, 85.9% of routes can be intercepted,
which is 98% effectiveness compared to the best-found solution. With fewer than
5 utilized police units, the percentage of intercepted routes quickly tapers off to
39.6% with 1 unit, and, of course, 0% with no police units.

Figure 6.3: Trade-off between the number of police units used for interception and the percentage of
routes intercepted for case 1.
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Figure 6.1: The simulated routes for case 1 from the location of the incident (orange) to random end
nodes in three major cities in the Netherlands (red). The thickness of the road segment indicates the
density of routes. As a visual aid, the grey nodes are the border crossings to the Netherlands.

(a) Real interception positions. Percentage of routes
intercepted: 57.3%.

(b) Calculated interception positions. Percentage of
routes intercepted: 87.7%.

Figure 6.2: The interceptions of the real and calculated police positions for case 1. Green indicates
intercepted and red indicates not intercepted routes. The blue dots are the police positions.
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6.3.2. SECOND CASE

The second case is an ATM raid in the west of Germany (North Rhine-Westphalia),
where the suspects fled towards the Netherlands. Sixteen police units were posi-
tioned to intercept the suspects.

SIMULATION OF FUGITIVE ROUTES

Figure 6.4 shows the simulated routes from the location of the ATM raid in West
Germany to three major cities in the Netherlands. Most routes cross the border to
the Netherlands around Nijmegen, with a few diverging further North or South. In
this case, the fleeing suspects were not spotted, so we cannot check if this location
is included in the simulated routes.

EFFECTIVENESS OF POLICE INTERCEPTION POSITIONS

Figure 6.5 shows a comparison of the real and calculated police interception po-
sitions. The real positions are concentrated on the most likely road from the in-
cident start location to the West of the Netherlands, intercepting a large percent-
age of routes. However, for this evaluation, the redundancy of 5 police units on
a single road is not reflected in the measure of the effectiveness of the intercep-
tion. Additionally, the real police positions are focused more on the North than
the simulated routes. Importantly, the simulated routes reveal gaps in the inter-
ception positions, leaving important roads to the Netherlands exposed. The calcu-
lated positions cover all border crossings to the Netherlands, intercepting 100% of
simulated routes.

EFFICIENCY OF POLICE INTERCEPTION POSITIONS

Figure 6.6 shows the trade-off between the number of police units positioned to in-
tercept the fugitive and the percentage of simulated routes intercepted. The figure
shows that the same percentage of intercepted routes can be achieved with 11 po-
lice units instead of 16, a significant decrease. With a decreasing number of police
units, the percentage of intercepted routes slowly tapers off. Most routes (73.9%)
cross the border near Nijmegen, which is also where the real positions are concen-
trated. In the optimization, these routes are intercepted by just 1 police unit.

Figure 6.6: Trade-off between the number of police units used for interception and the percentage of
routes intercepted for case 2.
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Figure 6.4: The simulated routes for case 2 from the location of the incident (orange) to random end
nodes in three major cities in the Netherlands (red). The thickness of the road segment indicates the
density of routes. As a visual aid, the grey nodes are the border crossings to the Netherlands.

(a) Real interception positions. Percentage of routes
intercepted: 84.6%.

(b) Calculated interception positions. Percentage of
routes intercepted: 100.0%.

Figure 6.5: The interceptions of the real and calculated police positions for case 2. Green indicates
intercepted and red indicates not intercepted routes. The blue dots are the police positions.
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6.3.3. THIRD CASE

The third case is an ATM raid in the west of Germany and close to the Netherlands
(North Rhine-Westphalia), where the suspects fled towards the Netherlands. The
police response differs significantly from that in the second case, making it an in-
teresting case to examine. Twenty-two police units were positioned to intercept
the suspects.

SIMULATION OF FUGITIVE ROUTES

Figure 6.7 shows the simulated routes from the location of the ATM raid in West
Germany to three major cities in the Netherlands. Most routes cross the border
to the Netherlands around Nijmegen. Because the incident occurred closer to the
border, the routes diverge less compared to the second case. The simulated routes
include the location where the fleeing suspects were first spotted, indicating that
the routes could be realistic.

EFFECTIVENESS OF POLICE INTERCEPTION POSITIONS

The real interception positions for case 3 cover the border between the Nether-
lands and Germany. The simulated routes reveal two border crossings that are not
covered, leading to 94.5% of simulated routes being intercepted. The calculated
positions are much more concentrated but intercept 100% of simulated routes.

EFFICIENCY OF POLICE INTERCEPTION POSITIONS

Figure 6.9 shows the trade-off between the number of police units positioned to
intercept the fugitive and the percentage of simulated routes intercepted. The fig-
ure shows that the same percentage of intercepted routes can be achieved with 7
police units instead of 22, a significant decrease. Again, the majority of the routes
(85.4%) converge around Nijmegen and can be intercepted by a single police unit.

Figure 6.9: Trade-off between the number of police units used for interception and the percentage of
routes intercepted for case 3.
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Figure 6.7: The simulated routes for case 3 from the location of the incident (orange) to random end
nodes in three major cities in the Netherlands (red). The thickness of the road segment indicates the
density of routes. As a visual aid, the grey nodes are the border crossings to the Netherlands.

(a) Real interception positions. Percentage of routes
intercepted: 94.4%.

(b) Calculated interception positions. Percentage of
routes intercepted: 100.0%.

Figure 6.8: The interceptions of the real and calculated police positions for case 3. Green indicates
intercepted and red indicates not intercepted routes. The blue dots are the police positions.
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6.4. DISCUSSION

In this chapter, we compared the calculated and real police interception positions
using three case studies. This section discusses potential benefits of using mod-
els for decision support in the control room, explains the model assumptions that
contribute to differences between the real and calculated interception strategies,
and suggests areas for model improvements and further research.

The experiments showed that in two cases, the locations where fleeing fugitives
were spotted were included in the simulated escape routes, suggesting that the
routes could be realistic. While this alone does not validate the routes, the inclu-
sion of these locations provides initial evidence of their plausibility. Furthermore,
the third case demonstrates that even with an effective interception strategy, sim-
ulating escape routes and evaluating the strategy based on these routes can reveal
gaps. This could be highly valuable in the control room.

6.4.1. USE OF POLICE INFORMATION

The real police interception positions are informed by additional information
about the suspects and former experiences with similar types of crime. On the one
hand, this could result in a more effective interception strategy. On the other hand,
this leads to a focus on known patterns, while criminals often change their tactics,
especially when the police start catching on (Bowers & Johnson, 2003; Reppetto,
1976). Research in other planning contexts shows that relying on the status quo
leads to strategies that are not robust, making them ineffective in scenarios that
differ from historical trends and expected future scenarios (Bankes, 1993). The
simulation-optimization framework proposed in this dissertation is flexible and
can incorporate different models of fugitive behavior. It would also be valuable to
explore ways of enabling interactive route adjustments to incorporate centralist
input.

6.4.2. REDUNDANT INTERCEPTION POSITIONS

Additionally, the real police positions are more redundant than the calculated po-
sitions. This is caused by two model assumptions. First, the optimization model
assumes a 100% probability of detection, meaning a route is intercepted if a po-
lice unit is positioned on the route. However, in reality, the fleeing suspect could
slip through and avoid detection, especially on busy roads where they can blend in
with traffic. Second, the model considers a route intercepted by just standing there.
However, in practice, an initial sighting typically leads to a pursuit, requiring mul-
tiple police vehicles to carry out an arrest by boxing in the suspect (Algemeen Dag-
blad, 4 February 2020). Positioning multiple units close together could increase
the probability of arrest, though the optimization algorithm currently treats these
additional units as redundant.

6.4.3. OPERATING AREA

Police units are generally limited to specific operating areas, which is reflected in
real interception positions, where local units are stationed near cities like Utrecht
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and Eindhoven. However, the calculated positions in the model do not account for
this constraint, which can result in local units being assigned outside their operat-
ing area. Addressing this is straightforward: during the search space representation
step of the optimization, the possible interception positions for each unit can be
filtered to stay within their operating areas (see Chapter 3).

6.5. CONCLUSION

This chapter evaluates the models proposed in this dissertation by comparing the
real and calculated police interception positions for three case studies. The analy-
sis showed that:

• The simulated fugitive routes include the locations at which the fugitive was
spotted, suggesting that the routes are not unrealistic.

• The simulation of the fugitive escape routes reveals gaps in the police inter-
ception positions and could therefore assist the control room to improve the
police interception strategy.

• The optimization of police interception positions could improve the effi-
ciency of the interception strategy by reducing the number of police units
involved.

• The simulated routes (and therefore the calculated interception positions)
differ from the real police strategy; in some cases, they are more dispersed
than the police interception positions, and in others, they are more con-
centrated. However, we do not know whether this discrepancy is due to the
limited behavioral detail in the escape route simulator or to a narrow police
strategy.

• The differences between the real and calculated police interception posi-
tions can be partly attributed to the underlying model assumptions, partic-
ularly the probability of detection, the operating area of the intercepting po-
lice units, and the need for multiple police units for arrest.

Additional experiments should investigate whether these conclusions apply to
other types of incidents and fugitive behavior. Future research should also explore
the reasons behind the differences between real and calculated positions by in-
terviewing control room centralists. These interviews could be conducted retro-
spectively for historical cases or by using fictional cases to compare centralist and
calculated strategies.





7
DISCUSSION

This chapter reflects on the methodology and practical aspects of the dissertation,
discusses the generalizability of the results, and provides recommendations for fu-
ture research.

7.1. METHODOLOGICAL REFLECTION

This section explores how real-world complexities that were not considered in this
research might impact the methods and results of this dissertation. The complex-
ities are categorized into fugitive behavior, police behavior, interactions between
fugitives and police, information updates, the road network, traffic, and optimiza-
tion.

7.1.1. FUGITIVE BEHAVIOR

First, models of fugitive behavior could simulate escape routes through more
dense road networks. Chapters 2 and 3 show that when the number of nodes
in the network increases, and when fugitive routes become more dispersed, the
computation time for the optimization problem also increases. Therefore, while
the simulation model in the simulation-optimization framework could be adapted
to use any fugitive behavior model, other models of fugitive behavior could affect
the timeliness of the optimization.

Second, fleeing fugitives may use other modes of transport, such as scooters,
mopeds, public transit, or even travel on foot. Considering these modes requires a
road network that includes bike and pedestrian paths, and public transit lines and
schedules. While it is possible and quite easy to include this in the fugitive simula-
tion model, extending the road network increases computation time, threatening
the timeliness of the optimization. Additionally, it becomes important to differen-
tiate between types of police vehicles — car, motorcycle, and bicycle — in terms of
speed and road segments they can access.

113
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Third, fugitives may plan to swap vehicles during their escape, which signifi-
cantly increases the number of possible routes. To manage this, it is important to
research locations that are likely for vehicle swaps, considering factors like cam-
era avoidance and parking availability. Besides affecting simulated routes, a vehi-
cle swap affects information updates. Chapter 5 assumes that the vehicle’s license
plate is known, but after a swap, the new plate may not be, leading to informa-
tion updates for only a part of escape routes. The tested methods could easily be
adapted to handle vehicle swaps by adding a condition to the detection logic.

Fourth, this dissertation considers cases with a single fugitive car, but in
many situations, suspects split into multiple cars. The static optimization in
this dissertation can easily handle multiple fugitives by simulating multiple sets
of routes, which could even be based on different behavioral models. Periodic
Re-Optimization, Direct Policy Search and Policy Tree Optimization could all be
applied to dynamic cases that incorporate information updates.

7.1.2. POLICE BEHAVIOR

First, this dissertation assumes a 100% probability of detection, meaning that a
route is fully intercepted if a police unit is positioned on it. However, in reality, the
fleeing suspect could slip through and avoid detection, especially on busy roads
where they can blend in with traffic. Chapter 6 showed that this assumption leads
to very different interception strategies. The methods used in this dissertation
could be adapted to consider probabilistic detection. Instead of simply counting
routes, each route would be assigned a total score of 1 and each police unit in-
tercepting the route would capture 80% of that score. A second unit intercepting
the same route would capture 80% of the remaining 20% (i.e., 16%, resulting in a
cumulative 96%). This percentage could also depend on factors such as road con-
gestion. However, this approach would require more time per function evaluation,
as it involves a different way of accounting for intercepted routes when calculating
the quality of a solution.

Second, police units are generally limited to specific operating areas. The
methods used in this dissertation do not account for this constraint, which can
result in local units being assigned outside their operating area (see also Chapter
6). Addressing this is straightforward: during the search space representation
step of the optimization, the possible interception positions for each unit can be
filtered to stay within their operating areas (see Chapter 3).

7.1.3. INTERACTION EFFECTS

This dissertation assumes that the fugitive and police do not influence each other.
However, in reality, the fugitive may react to police, for example when hearing
sirens. Modeling these interactions would require simulation model optimization,
where the simulation model describes both the fugitive and the police, and their
interactions. Chapter 2 showed that simulation model optimization is significantly
slower than sequential simulation-optimization, where the fugitive and police are
decoupled, and which is used throughout this dissertation.
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7.1.4. TRAFFIC

The interaction with traffic affects the police and the fugitive in different ways.
The police, using sirens, can maneuver through traffic more easily by accessing
the shoulder, running red lights, and cars get out of the way. On the other hand,
the fugitive is more likely to encounter delays and get stuck in traffic or risks detec-
tion by breaking traffic laws, such as running red lights or weaving through vehi-
cles. Zuurdeeg (2024) show that these differences in how each party interacts with
traffic can significantly influence the effectiveness of police interception. Incor-
porating static traffic into the travel time calculations for both fugitives and police
is straightforward to implement and has no impact on the computation time. Fur-
ther research should extend these experiments by adding dynamic real-time traffic
information. However, including dynamic traffic does affect the timeliness of the
optimization.

7.1.5. INFORMATION UPDATES

First, this dissertation assumes a 100% probability of detection by ANPR cameras,
meaning that the fugitive is always detected when passing by a camera. However,
in reality, the fleeing suspect could avoid detection by hiding behind trucks, and
camera performance is impaired at high speeds or in bad weather conditions (van
Berkel et al., 2021). As a result, both false positives (where the fugitive is detected by
a camera but was not actually there) and false negatives (where the fugitive passes a
camera but is not detected) occur. Among the adaptive methods tested in this dis-
sertation, Periodic Re-optimization can handle imperfect detections quite easily,
similar to how it would handle imperfect interception (Section 7.1.2). For Direct
Policy Search and Policy Tree Optimization, the imperfect detections should be
implemented in the evaluation step, where the candidate interception strategy is
tested across realizations of the fugitive routes. Introducing this noise would likely
slow convergence significantly, threatening the timeliness of the optimization.

Second, the police uses civilian reports of abnormal behavior (e.g., driving on
the wrong side of the road or at excessive speeds) to inform their interception strat-
egy. In such cases, the detection location is not fixed and can occur anywhere on
the road network at any time. Pre-computed adaptive approaches cannot account
for this, as the state space would explode in size, making real-time calculation of
interception strategies infeasible. For periodic re-optimization, such detections
would either change the relative rewards of different simulated escape routes or
simply exclude routes for the next re-optimization.

Third, the police can use helicopters or drones to scout for the fugitive. The
routing of helicopters or drones should be optimized alongside the positions of
the police vehicles. While promising, this requires extensive further research to
develop effective methods.

7.1.6. ROAD NETWORK

Throughout this dissertation, we have seen a dependence of results on the topol-
ogy of the road network. First, it is apparent that it is much easier to intercept



7

116 7. DISCUSSION

a fleeing fugitive on some road networks than others. Sparser road networks, or
those where funnels of fugitive routes emerge lead to higher probability of inter-
ception compared to complex (city) road networks (Chapter 4). Second, the size
and topology of the road network impact the computation time required for the
optimization and the extent to which search space representation can reduce the
size of the network (Chapter 3). Combining coarsening approaches - especially
further preprocessing the road network to remove unimportant parts of the net-
work - could further reduce computation time. Third, the topology of the road net-
work determines how easily police units can change interception strategies, and
therefore how important flexibility to adapt to information updates is for the effec-
tiveness of the interception strategy (Chapter 5). Understanding the relationship
between network topology (measures) and the effectiveness of interception strat-
egy and algorithm performance would improve the applicability of the methods in
this dissertation to support the police control room.

7.1.7. OPTIMIZATION

This dissertation uses a genetic algorithm to optimize the simulation-optimization
models, a choice based on its proven effectiveness in the literature, open-source
availability, and preliminary experimentation comparing different algorithms.
Throughout this research, it has become clear that the fugitive interception
problem is difficult to solve, especially given the time constraints. Future re-
search should compare different (configurations of) optimization algorithms, and
perhaps develop a tailored heuristic, to improve real-time performance.

7.2. PRACTICAL REFLECTION

This section describes the practical steps to be taken before applying the models
for decision support in the police control room. The steps are categorized into vali-
dation, decision support, fugitive behavior, police behavior, and the road network.

7.2.1. VALIDATION

To apply models in the police control room to advise on interception strategies,
the models need to be thoroughly validated and tested. We suggest at least three
approaches:

1. Historical data: While Chapter 6 compares the real and calculated positions
for three ATM raids, additional analyses should examine other types of in-
cidents and fugitive behavior. This should include interviews with control
room centralists to understand the reasons for differences between real and
calculated interception positions.

2. Prototypical cases: Discussing prototypical cases to compare and discuss in-
terception positions could be a less time-consuming analysis than using his-
torical data. It also allows for exploring cases that are poorly reflected in the
existing dataset. Comparing the interception positions proposed by central-
ists with those calculated by the model can reveal aspects that might be over-
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looked by either. In this way, the models could also serve as a training tool
to help improve interception strategies, even if they are not directly used in
real-time decision-making.

3. Randomized controlled trials: Lastly, testing the calculated police intercep-
tion positions in cases with lower impact (e.g., for outstanding fines) could
provide insight into further development needs and demonstrate the deci-
sion support system’s added value. Assessing whether interception prob-
ability actually improves, however, is challenging because each incident is
unique. Randomized controlled trials, as used in the medical field, could
help compare the effectiveness of interception strategies when supported by
the decision support system versus when they are not (Chalmers et al., 1981).

7.2.2. DECISION SUPPORT

First, this dissertation considers cases in isolation, whereas control room central-
ists have to weigh whether a case can be followed up, and if so, determine the ap-
propriate number of police units to allocate. To support control room centralists in
those decisions, it would be valuable to present the trade-off between the number
of police units utilized and the probability of interception. The trade-off between
keeping more police units available and adding a couple of percentage points to
the interception should be made by the centralists, and depends on the severity of
the case and the demand from other cases at that time.

Second, it would be valuable to extend the scope of the optimization to ac-
count for the concurrent and future demands on police (such as intercepting flee-
ing suspects, responding to emergencies like CPR, and other incidents). Extensive
research has been done on the dynamic relocation of fire companies and ambu-
lances. For example, Kolesar and Walker, 1974 look at how to maintain fire cov-
erage when fire companies are already engaged in active firefighting, which can
increase the risk of future fires because units are unavailable. van Barneveld et al.,
2016 and van Barneveld et al., 2018 show the importance of dynamic ambulance
relocations to maintain short response times and adapt to real-time demands. For
fire companies and ambulances, the main challenge is relocating units to maintain
coverage, with the responding vehicle and its destination fixed. In contrast, opti-
mizing police interception requires balancing coverage - or how easily coverage
can be restored - and the probability of intercepting the fleeing suspect.

Third, incorporating the experience and expertise of control room centralists
in the interception strategy could improve its effectiveness. Input from centralists
could be used to either refine the simulated routes — by including or excluding
specific areas — or by adjusting the calculated interception strategy. One approach
for collecting input is to present alternative interception strategies, allowing cen-
tralists to select the most suitable option; these diverse strategies can be generated
using quality-diversity algorithms (Pugh et al., 2016). Another approach is interac-
tive (multi-objective) optimization, where users can explore and engage with the
solution space to tailor outcomes (Miettinen et al., 2016). Neither approach has
been applied to fugitive interception and both should be evaluated for their real-
time performance.
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Fourth, interpretability (understanding what the outputs mean and how they
can be used) and explainability (understanding how and why the model works) of
the interception strategy could increase trust and acceptance of the decision sup-
port system (Shibl et al., 2013). Previous research on decision support systems for
the Dutch Police found that it is crucial that individual police agents understand
the reasoning behind the decision support and their contribution to the intercep-
tion (Drenth & Steden, 2017; Herrewijnen et al., 2024). Future research should
develop methods for improving the interpretability of the simulation of escape
routes, the explainability of the optimization of the interception positions, and the
interpretability of the presentation of the recommended interception positions.

7.2.3. FUGITIVE BEHAVIOR

For application in the control room, the library of fugitive behavior models should
be expanded by interviewing control room centralists and police officers to de-
velop profiles of fugitive behavior. However, criminals often change their tactics,
especially when the police start catching on (Bowers & Johnson, 2003; Reppetto,
1976). Therefore, the collection of models should be continuously evaluated and
extended to reflect current tactics.

7.2.4. ROAD NETWORK

The road network data used throughout this dissertation was obtained from Open-
StreetMap, an open-source, crowd-sourced geographic database. However, errors
occur in network topology and attributes, such as road classifications or speed lim-
its. Additionally, we encountered a highway on-ramp that was mistakenly not con-
nected to the main highway in the data. These inaccuracies affect the simulation of
fugitive escape routes, the routing calculations for police units, and the coarsening
of road networks. For the real-world application of models in the control room, the
models should use the high-quality map data of the police.

7.3. GENERALIZABILITY

The fugitive interception problem is characterized by a difficult (NP-hard)
network-based optimization problem that needs to be solved in very little time,
where modeling behavior is important for the effectiveness of the optimization,
and information gradually becomes available. Each chapter (2 - 5) focuses on
different aspects of this problem, and each solves a methodological challenge.

• Chapter 2 addresses timely simulation-optimization, showing that sepa-
rating controllable and uncontrollable components into optimization and
simulation, respectively, leads to a significant reduction in the computation
time. This approach, sequential simulation-optimization can be applied
to other simulation-optimization problems where an optimal intervention
has to be determined independent of the uncertainty in the system, such as
autonomous vehicle control.
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• Chapter 3 addresses graph coarsening and search space representation,
which can be applied to various graph-based optimization problems to
improve the timeliness of the optimization, such as large-scale route
planning.

• Chapter 5 compares adaptive optimization approaches that have been ap-
plied to a variety of planning problems, including water management and
climate adaptation. This comparison is valuable for understanding the con-
texts in which each approach is most effective, regardless of the application
area.

In addition to the generalizability of the methods developed in this disserta-
tion, the models can be applied to other graph-based search problems where poli-
cies or control actions must be determined quickly based on limited information.
Examples are tracking down and managing virus outbreaks (Auping et al., 2017),
wildfire protection and mitigation (Garcia-Martinez et al., 2015), and search and
rescue (Hashimoto et al., 2022; Koester, 2008).

Furthermore, the research approach is applicable to other domains involving
large-scale optimization problems on large networks, where rapid response times
— within seconds or minutes — are essential. Examples are mitigating cascading
failures in power networks (Smolyak et al., 2020) and rerouting train passengers
after disruptions (Dollevoet et al., 2012). In both cases, responses to thousands
of potential failure scenarios can be precomputed, enabling timely and effective
decision-making during critical events.

7.4. FUTURE RESEARCH

This section discusses the topics for future research identified in the reflections.
Following the structure of the reflections, we distinguish between topics for
methodological research and those focused on practical application.

7.4.1. METHODOLOGICAL RESEARCH

Five interesting topics for future research emerged from the methodological reflec-
tions in Section 7.1. Below, we list these topics and, where relevant, discuss their
potential implications for other application domains.

First, the accuracy of the models could be further improved by incorporating
dynamic real-time traffic information (Subsection 7.1.4). However, this addition
would increase the computation time for both simulating fugitive routes and op-
timizing police interception positions. Future research should evaluate the extent
to which dynamic traffic information affects fugitive interception using a similar
framework to Chapter 4 and Zuurdeeg (2024). If the impact proves significant,
methods should be developed to integrate this information without significantly
increasing computation time.

Second, this dissertation assumes that the information updates are accurate,
while both false positives (where the fugitive is detected by a camera but is not
there) and false negatives (where the fugitive passes a camera but is not detected)
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occur (Subsection 7.1.5). While imperfect information has been extensively stud-
ied in model predictive control and periodic re-optimization, further development
and testing are needed for Direct Policy Search and Policy Tree Optimization. Im-
proving these methods to handle imperfect information would be beneficial across
applications, as real-world data is often unreliable or incomplete.

Third, the police can use helicopters or drones to scout for the fugitive. The
routing of helicopters or drones should be optimized alongside the positions of
the police vehicles. While promising, this requires extensive further research to de-
velop effective and timely methods that can co-optimize the routing of helicopters
or drones for scouting and police vehicles for intercepting (Subsection 7.1.5).

Fourth, we have seen a dependence of results on the topology of the road net-
work throughout this dissertation (Subsection 7.1.6). Understanding the relation-
ship between network topology measures and the effectiveness of optimization
methods would allow the police to tailor the methods to specific cases or operat-
ing areas. Further research into network topology and fugitive interception would
contribute to the broader fields of graph theory and network analysis.

Fifth, this dissertation uses a genetic algorithm to optimize the simulation-
optimization models, a choice based on its proven effectiveness in the literature,
open-source availability, and preliminary experimentation comparing different al-
gorithms. Comparing a wide range of optimization algorithms for fugitive inter-
ception and developing heuristic methods could further improve timeliness and
effectiveness (Subsection 7.1.7). These algorithms have applications beyond fugi-
tive interception, including search and rescue, and, potentially, other graph-based
optimization problems

7.4.2. PRACTICAL RESEARCH

Four interesting topics for future research emerged from the practical reflections in
Section 7.2. Below, we list these topics and, where relevant, discuss their potential
implications for other application domains.

First, the simulation of fugitive escape routes and calculated police intercep-
tion positions should be validated and tested based on historical data, prototypical
cases, and randomized controlled trials (Subsection 7.2.1). Besides improving the
simulation and optimization, this research would provide valuable insights into
validating decision support systems in critical, time-sensitive environments.

Second, interpretability and explainability of the interception strategy could
increase trust and acceptance of the decision support system (Shibl et al., 2013).
Future research should develop methods for improving the interpretability of the
simulation of escape routes, the explainability of the optimization of the intercep-
tion positions, and the interpretability of the presentation of the recommended in-
terception positions. Research on the interpretability and explainability of simula-
tion and optimization models could improve trust and broaden their applicability,
particularly in sensitive and critical decision-making contexts.

Third, incorporating the experience and expertise of control room centralists
in the interception strategy could improve its effectiveness. However, approaches
that enable user input, such as interactive optimization, have yet to be applied to
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fugitive interception or time-constrained decision-making more generally. Future
research should assess the real-time performance of these approaches and their
impact on both the effectiveness of interceptions and trust in decision support sys-
tems.

Fourth, for application in the control room, the library of fugitive behavior
models should be expanded based on interviews and analysis of historical data
to develop profiles of fugitive behavior. To deal with crime displacement, the pro-
files and models should be continuously evaluated and extended to reflect current
tactics.





8
CONCLUSION

Search and interception of fugitives by the police on a road network is a challenging
task due to the complexity of the network, the unknown whereabouts of the fugi-
tive and uncertainty about the routes that the fugitive takes, and time pressure:
police control room centralists have, at most, a few minutes to decide where to po-
sition intercepting police units. Information technology, supported by modeling
and simulation to depict the complex and stochastic decision space, can improve
decision-making by suggesting interception positions for police units.

Simulation–optimization models are well-suited for real-time decision-
support to the control room for search and interception of fugitives by police
on a road network, due to their ability to encode complex behavior while still
optimizing the interception. However, timely calculation of the recommended
interception positions is essential to support police interception operations in real
time. Given the complexity of the problem, caused by a large number of nodes in
a road network, the uncertainty in the behavior of the fugitive, and the degrees
of freedom of the police units, solving the simulation–optimization in real-time
is challenging. Incorporating real-time information about the fugitive’s location
can improve decision-making, but it also makes the optimization problem even
harder to solve within the limited time available.

This dissertation aims to identify, develop, and evaluate methods to identify ef-
fective fugitive interceptions. Four sub-research questions address the challenges
in reaching this goal. Each research question aims to improve the effectiveness of
the interception while preserving the timeliness of the calculated solutions. First,
we formalize the fugitive interception problem. Second, to improve the timeli-
ness of the optimization, we propose a search space representation method that
reduces problem complexity without compromising solution quality. Third, we
operationalize and compare different models of fugitive escape behavior. Fourth,
we compare adaptive optimization approaches and outline the conditions under
which each approach is most suitable. This chapter answers the research questions
introduced in Chapter 1, and provides a general conclusion of the dissertation.
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8.1. ANSWERING THE RESEARCH QUESTIONS

This dissertation identified, developed, and evaluated methods to identify effec-
tive fugitive interceptions. Four sub-research questions address the challenges in
reaching this goal. In this section, we address each sub-question one by one and
the next section presents a general conclusion.

1. How to formalize fugitive interception?

We use simulation-optimization to model fugitive behavior and optimize
police positioning. Fugitive routes are simulated to represent possible es-
cape routes. The optimization is formalized as a variation of the flow in-
terception problem, where the number of simulated routes intercepted by
positioning police units is maximized. This formalization only considers in-
terceptions at the end positions, not while units are en route. This simplifi-
cation improves the optimization’s timeliness; the flow interception problem
is NP-hard, and adding routing would significantly increase complexity.

Moreover, solving a typical simulation-optimization configuration in real-
time is infeasible due to the complexity of the problem, caused by a large
number of edges in a road network, the uncertainty in the behavior of
the fugitive, and the degrees of freedom of the police units. A different
way of combining simulation and optimization is sequential simulation-
optimization, where the simulation constructs (part of) the constraints of an
optimization problem. To answer this research question, Chapter 2 provides
an extension to the taxonomy of simulation-optimization configurations,
presents and researches sequential simulation-optimization, and provides a
quantitative analysis of the real-time performance of classical simulation-
optimization compared to sequential simulation-optimization. Thus, we
show the potential of sequential simulation-optimization to mitigate the
expensive optimization of simulation models. Additionally, the analysis
shows that metaheuristic solution approaches reach a high quality of solu-
tions in a fraction of the computation time of exact optimization algorithms.
Experiments on a grid network and city road network demonstrate that
these findings hold for various graph topologies. Sequential simulation-
optimization and the metaheuristic solution approach are used to model
fugitive interception throughout this dissertation.

2. How to leverage graph coarsening to improve the timeliness of simulation-
optimization for fugitive interception?

Graph coarsening, a technique to reduce the size of a graph while preserving
essential structural properties, offers a promising approach to reducing the
computation time of the fugitive interception problem. The effectiveness
of graph coarsening algorithms varies depending on the application, as the
importance of the nodes and links is very case-specific.

Chapter 3 compares four graph coarsening techniques for fugitive intercep-
tion across five road networks. Pruning – the removal of dead ends and self-
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loops – seems to always be effective: it removes 2.7% to 29.1% of nodes (de-
pending on the network), but these nodes are likely not relevant for fugi-
tive interception. Other preprocessed graph coarsening algorithms can sig-
nificantly reduce the number of nodes in the networks, but cause the so-
lution quality to deteriorate significantly. Important interception positions
and paths for the police units are often not preserved for these algorithms.
In contrast, on-the-fly network reconstruction, where a new network is cre-
ated from the escape routes and the shortest paths from the police starting
positions to any node on these escape routes, improves the optimization.
By removing poor-quality solutions, the optimization algorithm converges
more quickly and results in higher-quality solutions.

Based on these results, we propose an approach incorporating on-the-fly
graph reconstruction into the Search Space Representation in the optimiza-
tion process. This allows for more flexibility, capable of handling different
fugitive profiles and network structures. Search space representation im-
proves the quality of the best solutions obtained by the optimization algo-
rithm with up to 12%. Notably, the reliability of the optimization to find
high-quality solutions is increased: the average obtained solution quality
across seed increases by up to 24%. Meanwhile, the number of function eval-
uations required to obtain high-quality solutions is reduced to 5 000 -10 000
depending on the size and complexity of the road network, which is feasible
for real-time decision-making.

3. How to generate an ensemble of realistic fugitive escape routes?

Many theoretical studies (including the first version of the fugitive intercep-
tion model in Chapter 2) implement a random motion for the fleeing sus-
pect. Explicitly encoding behavior through decision rules could lead to more
effective interception strategies.

To answer this research question, we conceptualize and operationalize two
modes of fleeing suspect route choices in Chapter 4. We compare the result-
ing sets of routes and the optimized police interception positions. Finally,
we evaluate the effectiveness of the police interception positions for differ-
ent route generation models.

We found that knowledge of the specific route choice model of the fleeing
suspect is critical for finding effective interception positions in complex net-
works with non-uniformly distributed features and obstacles. This paper
conceptualizes and operationalizes three models of fleeing behavior to ex-
amine the resulting routes, calculated police interception positions, and the
robustness of the models. We show that a random walk model - often used
to simulate fleeing suspects in interception problems - leads to distinctly dif-
ferent escape routes and, therefore, calculated interception positions com-
pared to models based on psychological theory. Therefore, a random walk
model is unsuitable for decision support in real-world police interception.
Despite their similarities in implementation, the Cool and Hot models result
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in different simulated escape routes and, therefore, calculated police inter-
ception positions. The differences are larger when the road network is com-
plex and has non-uniformly distributed obstacles. The calculated intercep-
tion positions are robust to different models of a fleeing suspect when the
road network is either (1) relatively simple with few roads leading to the es-
cape nodes, or (2) when police units can quickly reach intersections close to
the incident, or (3) the positions of the escape nodes create a funnel where
escape routes converge.

4. How to use incoming information to increase the probability of interception?

Simulation–optimization can be used to support real-time decision-making
for fugitive interception. Incorporating real-time information about the fugi-
tive’s location can improve decision-making, but it also makes the optimiza-
tion problem harder to solve within the limited time available for real-time
decision making.

Chapter 5 examines the solution quality obtained for the fugitive intercep-
tion problem with information updates within a limited number of function
evaluations for four solution approaches: One-shot Optimization, Periodic
Re-Optimization, Direct Policy Search, and Policy Tree Optimization. Our
analysis shows that for the fugitive interception problem:

(a) Adaptive solution approaches, utilizing the information updates, out-
perform static one-shot optimization, especially when the number of
intercepting police units is low.

(b) Direct Policy Search effectively avoids lock-ins and finds high-quality
solutions across networks and problem instances. However, making
the resulting solutions interpretable for decision-makers requires fur-
ther research.

(c) Policy Tree Optimization, while the most interpretable, converges too
slowly for real-time decision support.

(d) Periodic Re-Optimization performs well for networks and problem in-
stances with few lock-ins (for instance, city networks) and is flexible to
further extensions to include probabilistic interception and detection.
While the optimization results at each time step are interpretable, Pe-
riodic Re-optimization does not offer insight into causal relationships
between sensor information updates and changes in calculated posi-
tions of police units.

Based on the results in this paper, practitioners are advised to use Direct Pol-
icy Search for problems that are vulnerable to lock-ins. If the interpretability
of the results is critical, Direct Policy Search should be supplemented with an
interpretable interface. Otherwise, practitioners are advised to use Periodic
Re-optimization for its flexibility and ease of implementation.
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8.2. GENERAL CONCLUSION

This dissertation explores models for decision support to the police control room
for fugitive interception. We highlight three main contributions. First, we demon-
strate how sequential simulation-optimization reduces computation time com-
pared to classical simulation model optimization. Additionally, we present a meta-
heuristic solution approach that identifies near-optimal solutions in a fraction of
the time required for exact optimization, with the computation time increasing at
a slower rate as the network size grows. Second, we identify a method for incorpo-
rating information updates — both observations and the absence of observations
of the fugitive — into the interception strategy while maintaining consistency in
the interception positions. Third, we show how behavioral assumptions impact
the effectiveness of interception strategies. More detailed models of behavior can
easily be incorporated into the proposed simulation-optimization method.

To summarize, this research provides the foundation for effective decision sup-
port to police control rooms to increase the chance of red-handed arrests.
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A
APPENDIX FOR CHAPTER 3:

TABULAR COMPARISON OF

RESULTS

Tables A.1 - A.5 present the results of the evaluated graph coarsening algorithms
for the five road networks. The results for node consolidation are presented using
a tolerance value of 30 meters, as this value results in a balanced trade-off between
node reduction and maintaining solution quality. For the heuristic coarsening al-
gorithms, the maximum coarsening settings are applied, with pruning set to 1, it-
erations to the maximum, and the threshold also at its maximum value. For each
algorithm, we report the minimum, median, mean, and maximum values across
seeds. The first row in each table presents the results for the uncoarsened graph:
Z is the fraction of intercepted routes and NFE is the number of function evalu-
ations to search stall (reaching 95% of the solution quality). For each coarsening
algorithm, the results are scaled to the best found for the uncoarsened graph: the
maximum value for Z and the minimum value for NFE. A Z value close to or above
1 indicates good solution quality, while an NFE value below 1 indicates faster con-
vergence.
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Table A.1: Results of the coarsening algorithms for fugitive interception in Winterswijk.

min med mean max

G
Z 0.72 0.74 0.73 0.74
NFE 3443 20433 27752 83163

Pruning
Z(Gc )/Z(G) 0.98 1.00 1.00 1.01
NFE(Gc )/NFE(G) 0.62 5.43 6.27 18.00

Node consolidation
Z(Gc )/Z(G) 0.69 0.74 0.78 1.01
NFE(Gc )/NFE(G) 0.41 2.88 3.04 6.22

Heuristic - type
Z(Gc )/Z(G) 0.34 0.34 1.00 0.35
NFE(Gc )/NFE(G) 0.03 0.76 2.69 9.12

Heuristic - betweenness
Z(Gc )/Z(G) 0.34 0.34 0.34 0.36
NFE(Gc )/NFE(G) 0.03 1.69 2.71 13.30

On-the-fly
Z(Gc )/Z(G) 0.99 1.00 1.00 1.01
NFE(Gc )/NFE(G) 0.66 2.66 3.55 10.86

Table A.2: Results of the coarsening algorithms for fugitive interception in Manhattan.

min med mean max

G
Z 0.76 0.85 0.85 0.90
NFE 23159 52635 52994 79822

Pruning
Z(Gc )/Z(G) 0.89 0.96 0.95 1.02
NFE(Gc )/NFE(G) 1.19 1.72 2.00 3.12

Node consolidation
Z(Gc )/Z(G) 0.12 0.45 0.45 0.89
NFE(Gc )/NFE(G) 0.31 1.09 1.73 4.15

Heuristic - type
Z(Gc )/Z(G) 0.01 0.42 0.48 1.00
NFE(Gc )/NFE(G) 0.01 0.35 0.54 1.67

Heuristic - betweenness
Z(Gc )/Z(G) 0.01 0.01 0.05 0.30
NFE(Gc )/NFE(G) 0.05 0.13 0.14 0.33

On-the-fly
Z(Gc )/Z(G) 0.91 0.97 0.96 0.99
NFE(Gc )/NFE(G) 0.60 1.41 1.41 2.22
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Table A.3: Results of the coarsening algorithms for fugitive interception in Utrecht.

min med mean max

G
Z 0.48 0.55 0.55 0.65
NFE 24000 62978 58561 87309

Pruning
Z(Gc )/Z(G) 0.78 0.91 0.90 1.05
NFE(Gc )/NFE(G) 0.86 2.36 2.32 3.25

Node consolidation
Z(Gc )/Z(G) 0.05 0.50 0.45 0.77
NFE(Gc )/NFE(G) 0.66 1.78 2.13 4.14

Heuristic - type
Z(Gc )/Z(G) 0.00 0.00 0.01 0.03
NFE(Gc )/NFE(G) 0.00 0.00 0.00 0.00

Heuristic - betweenness
Z(Gc )/Z(G) 0.80 1.00 0.99 1.06
NFE(Gc )/NFE(G) 0.25 1.30 1.38 2.89

On-the-fly
Z(Gc )/Z(G) 0.75 0.90 0.90 1.05
NFE(Gc )/NFE(G) 0.31 1.92 1.76 3.38

Table A.4: Results of the coarsening algorithms for fugitive interception in the main road network
around Amsterdam.

min med mean max

G
Z 0.61 0.78 0.78 0.96
NFE 5769 24928 36126 91322

Pruning
Z(Gc )/Z(G) 0.82 0.84 0.88 1.01
NFE(Gc )/NFE(G) 1.53 5.00 6.68 17.34

Node consolidation
Z(Gc )/Z(G) 0.83 0.99 0.95 1.03
NFE(Gc )/NFE(G) 0.30 8.01 7.23 15.50

Heuristic - type
Z(Gc )/Z(G) 0.00 0.00 0.00 0.01
NFE(Gc )/NFE(G) 0.02 0.02 0.02 0.02

Heuristic - betweenness
Z(Gc )/Z(G) 0.00 0.02 0.34 0.89
NFE(Gc )/NFE(G) 0.02 0.02 2.38 9.35

On-the-fly
Z(Gc )/Z(G) 0.84 1.01 0.99 1.03
NFE(Gc )/NFE(G) 1.05 5.80 6.34 11.80
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Table A.5: Results of the coarsening algorithms for fugitive interception in Rotterdam.

min med mean max

G Z 0.31 0.33 0.34 0.37
NFE 11169 26599 33641 72047

Pruning Z(Gc )/Z(G) 0.91 0.94 0.94 0.97
NFE(Gc )/NFE(G) 1.27 3.39 3.28 6.38

Node consolidation Z(Gc )/Z(G) 0.06 0.17 0.20 0.58
NFE(Gc )/NFE(G) 0.90 2.84 3.26 6.70

Heuristic - type Z(Gc )/Z(G) 0.84 0.93 0.92 0.99
NFE(Gc )/NFE(G) 1.05 1.69 2.36 7.80

Heuristic - betweenness Z(Gc )/Z(G) 0.89 0.93 0.94 1.07
NFE(Gc )/NFE(G) 0.75 1.62 1.98 6.13

On-the-fly Z(Gc )/Z(G) 0.89 0.96 0.96 1.03
NFE(Gc )/NFE(G) 0.32 1.96 2.51 7.57
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NETWORK FEATURES

Table B.1 shows the distribution of features on the case study networks used in
Chapter 4. The considered features are cameras, traffic lights, roundabouts, tun-
nels, and bridges.
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Table B.1: Case study road networks used in this study. Incident locations are marked in orange; escape nodes in red, and police starting positions in blue.

Utrecht Winterswijk Manhattan



C
APPENDIX FOR CHAPTER 5:

ADDITIONAL ANALYSES

C.1. UNSCALED SOLUTION QUALITY

Regardless of the generative model, the probability of interception increases with
an increasing number of sensors for PRO and DPS. This shows that adaptive meth-
ods can utilize the information to improve the solutions. There is one problem
instance for each combination of number of police units and number of sensors,
where the adaptive methods (PTO and DPS) find a solution with a 100% probabil-
ity of interception, which the non-adaptive techniques do not find. This solution
is highly dependent on sensor information and preserving flexibility. With 10 po-
lice units on a 10x10 grid, achieving a probability of interception of close to 100%
is possible, especially for the random walk model.
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Figure C.1: Comparison of (unscaled) solution quality on the grid network across problem instances
for four solution approaches: one-shot optimization, periodic re-optimization (PRO), policy tree opti-
mization (PTO), and direct policy search (DPS).

Figure C.2: Comparison of (unscaled) solution quality on the Manhattan road network across problem
instances for four solution approaches: one-shot optimization, periodic re-optimization (PRO), policy
tree optimization (PTO), and direct policy search (DPS).
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Figure C.3: Comparison of (unscaled) solution quality on the Utrecht road network across problem
instances for four solution approaches: one-shot optimization, periodic re-optimization (PRO), policy
tree optimization (PTO), and direct policy search (DPS).

Figure C.4: Comparison of (unscaled) solution quality on the Winterswijk road network across problem
instances for four solution approaches: one-shot optimization, periodic re-optimization (PRO), policy
tree optimization (PTO), and direct policy search (DPS).
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C.2. ANALYSIS OF CONVERGENCE

C.2.1. PRO

Figures C.5, C.6, C.7, C.8 show the results of the experiments where the total num-
ber of function evaluations used by PRO is 10 000. In the experiments presented
in the main text (Figures 5.6, 5.7, 5.8, 5.9), PRO gets 10 000 function evaluations
for each re-optimization, which occurs 3-7 times on average, depending on the
problem instance, resulting in 30 000 - 70 000 function evaluations in total. These
experiments show that, with a more limited number of function evaluations, PRO’s
performance decreases.

For the grid network, limiting the number of function evaluations only slightly
decreases the solution quality: PRO still outperforms DPS and PTO for problem in-
stances with three police units (Figure C.5). For the Manhattan network, the quality
of the solutions found by PRO decreases significantly for most problem instances
(Figure C.6). 2 000 - 3 000 function evaluations are often insufficient to converge,
leading to poor solutions and lock-in effects. Across problem instances, the solu-
tion quality is on par or worse than the solutions found by DPS. For the Utrecht
network, limiting the number of function evaluations for PRO decreases the qual-
ity of the solutions significantly for most problem instances (Figure C.7). On aver-
age, the quality of the solutions found by PRO is lower than the solutions found by
one-shot optimization, PTO, and DPS. Due to the complexity of the Utrecht road
network, many re-optimizations are triggered, reducing the number of function
evaluations to 1 500 - 2 500, which is too few to reliably find good solutions. In
contrast, for the Winterswijk network, the solution quality only slightly decreases:
PRO still outperforms DPS and PTO for problem instances with three police units
(Figure C.7).

Figure C.5: Comparison of solution quality on the grid network, where the total nfe used by PRO is
10 000.
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Figure C.6: Comparison of solution quality on the Manhattan road network, where the total nfe used by
PRO is 10 000.

Figure C.7: Comparison of solution quality on the Utrecht road network, where the total nfe used by
PRO is 10 000.

Figure C.8: Comparison of solution quality on the Winterswijk road network, where the total nfe used
by PRO is 10 000.
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Table C.1: Comparison of the solutions found by DPS, given 10 000 and 100 000 function evaluations.

network |U | |S| instance
unscaled solution quality

10 000 nfe 100 000 nfe best-found

Manhattan
3 3 4 0.15 0.15 0.18
3 10 3 0.41 0.41 0.43
3 10 4 0.40 0.42 0.48
10 10 1 0.95 0.98 0.99

Utrecht
3 10 4 0.43 0.49 0.56
3 10 6 0.56 0.56 0.68

Winterswijk

3 3 5 0.35 0.35 0.58
3 3 6 0.57 0.57 0.75
3 10 5 0.34 0.35 0.58
3 10 6 0.57 0.57 0.81
3 10 8 0.35 0.35 0.55

C.2.2. DPS

Table C.1 shows the solution quality found by DPS after 10 000 and 100 000 function
evaluations for problem instances where DPS performed relatively poorly. The so-
lution quality barely increases with an increased number of function evaluations.
This demonstrates that the performance of DPS is not hindered by the convergence
within the limited time frame.

C.2.3. PTO

Table C.2 shows the solution quality found by PTO after 10 000 and 100 000 func-
tion evaluations for problem instances where PTO performed relatively poorly. The
solution quality increases for all instances, sometimes even to 99% of the best-
found solution quality. This demonstrates that the performance of PTO is primar-
ily hindered by the convergence within the limited time frame. However, even with
100 000 function evaluations and 10 seeds, PTO is not able to find the best-found
solution across approaches. The evolution process rarely produces feasible, well-
performing policy trees. Therefore, PTO quickly converges to and rarely escapes
from a local optimum, making it sensitive to the initial sample.

C.3. RANDOM WALKS

The number of intercepted routes is significantly higher when optimizing for a ran-
dom walk model of the fugitive compared to a shortest path model. Comparatively,
the random walk model generates routes more concentrated around the starting
position of the fugitive, resulting in relatively easy interception. The shortest path
model with 2% noise (1) results in relatively shorter routes, constraining the time
that the police have for interception, and (2) results in routes that are less con-
centrated and hence it is more difficult to intercept a high percentage with limited
number of police units.
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Table C.2: Comparison of the solutions found by PTO, given 10 000 and 100 000 function evaluations.

network |U | |S| instance
Unscaled solution quality

10 000 nfe 100 000 nfe best-found

grid

3 3 0 0.33 0.33 0.39
3 10 1 0.31 0.41 0.71
10 3 2 0.68 0.73 0.94
10 10 3 0.38 0.44 0.92

Manhattan
3 10 6 0.57 0.64 0.67
10 3 7 0.86 0.92 1.0
10 10 5 0.9 0.99 1.0

Utrecht

3 3 7 0.6 0.72 0.74
3 10 7 0.64 0.72 0.73
10 3 7 0.78 0.89 1.0
10 10 7 0.8 0.85 1.0
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(a) Shortest path with 2% noise

(b) Random walk

Figure C.9: Comparison of online optimization approaches, using an (a) shortest path with noise, and
(b) random walk generative models for the fugitive.
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Geržinič, N., The Impact of Public Transport Disruptors on Travel Behaviour,
T2023/20, December 2023, TRAIL Thesis Series, the Netherlands

Dubey, S., A Flexible Behavioral Framework to Model Mobility-on-Demand Service
Choice Preference, T2023/19, November 2023, TRAIL Thesis Series, the Netherlands

Sharma, S., On-trip Behavior of Truck Drivers on Freeways: New mathematical
models and control methods, T2023/18, October 2023, TRAIL Thesis Series, the
Netherlands

Ashkrof, P., Supply-side Behavioural Dynamics and Operations of Ride-sourcing
Platforms, T2023/17, October 2023, TRAIL Thesis Series, the Netherlands

Sun, D., Multi-level and Learning-based Model Predictive Control for Traffic Man-
agement, T2023/16, October 2023, TRAIL Thesis Series, the Netherlands

Brederode, L.J.N., Incorporating Congestion Phenomena into Large Scale Strategic
Transport Model Systems, T2023/15, October 2023, TRAIL Thesis Series, the Nether-
lands




	Summary
	Samenvatting
	Introduction
	Motivation
	Background
	Search and interception optimization
	Representation of the search space
	Simulation of fugitive behavior
	Adaptation to information updates

	Research questions
	Outline

	Simulation-optimization configurations for real-time decision-making in fugitive interception
	Introduction
	Simulation-optimization
	Real-time simulation-optimization
	Simulation-optimization configurations

	Method
	Case study: fugitive interception
	Solution approaches
	Search space representation
	Design of experiments
	Road networks

	Results and discussion
	Casus 1: grid test graph
	Casus 2: real-world road network
	Discussion

	Threats to validity
	Conclusion

	Graph coarsening
	Introduction
	Optimization problem
	Background
	Formalization of the optimization problem
	Simulation of the fugitive escape routes
	Solution approach

	Method
	Case study networks
	Evaluation method

	Coarsening algorithms: results and discussion
	Pruning
	Node consolidation
	Heuristic coarsening
	On-the-fly coarsening
	Comparison

	Proposed method: search space representation
	Discussion
	Conclusion

	The effect of models of criminal behavior on police interception
	Introduction
	Modeling behavior
	Modeling behavior in interception problems
	Modeling criminal behavior

	Method
	Models
	Optimization
	Design of experiments
	Road networks

	Results & Discussion
	Simulated escape routes
	Calculated interception positions
	Robustness evaluation
	Discussion

	Conclusion

	Timely adaptive strategies for fugitive interception
	Introduction
	Related literature
	Fugitive interception
	Adaptive solution approaches

	Method
	Optimization problem
	Solution approaches
	Experimental setup

	Results
	Test network
	2D grid network
	City road networks
	Convergence

	Discussion
	Reflections on solution approaches
	Interpretability of solutions
	Further research
	Recommendations
	Generalizability

	Conclusion

	Empirical evaluation
	Introduction
	Method
	Data source
	Selection of cases
	Confidentiality
	Experimental setup

	Analysis of cases
	First case
	Second case
	Third case

	Discussion
	Use of police information
	Redundant interception positions
	Operating area

	Conclusion

	Discussion
	Methodological reflection
	Fugitive behavior
	Police behavior
	Interaction effects
	Traffic
	Information updates
	Road network
	Optimization

	Practical reflection
	Validation
	Decision support
	Fugitive behavior
	Road network

	Generalizability
	Future research
	Methodological research
	Practical research


	Conclusion
	Answering the research questions
	General conclusion

	Bibliography
	Appendix for Chapter 3: Tabular comparison of results
	Appendix for Chapter 4: Network features
	Appendix for Chapter 5: Additional analyses
	Unscaled solution quality
	Analysis of convergence
	PRO
	DPS
	PTO

	Random walks

	Acknowledgements
	About the author
	dissertation useful pages.pdf
	Summary
	Samenvatting
	Introduction
	Motivation
	Background
	Search and interception optimization
	Representation of the search space
	Simulation of fugitive behavior
	Adaptation to information updates

	Research questions
	Outline

	Simulation-optimization configurations for real-time decision-making in fugitive interception
	Introduction
	Simulation-optimization
	Real-time simulation-optimization
	Simulation-optimization configurations

	Method
	Case study: fugitive interception
	Solution approaches
	Search space representation
	Design of experiments
	Road networks

	Results and discussion
	Casus 1: grid test graph
	Casus 2: real-world road network
	Discussion

	Threats to validity
	Conclusion

	Graph coarsening
	Introduction
	Optimization problem
	Background
	Formalization of the optimization problem
	Simulation of the fugitive escape routes
	Solution approach

	Method
	Case study networks
	Evaluation method

	Coarsening algorithms: results and discussion
	Pruning
	Node consolidation
	Heuristic coarsening
	On-the-fly coarsening
	Comparison

	Proposed method: search space representation
	Discussion
	Conclusion

	The effect of models of criminal behavior on police interception
	Introduction
	Modeling behavior
	Modeling behavior in interception problems
	Modeling criminal behavior

	Method
	Models
	Optimization
	Design of experiments
	Road networks

	Results & Discussion
	Simulated escape routes
	Calculated interception positions
	Robustness evaluation
	Discussion

	Conclusion

	Timely adaptive strategies for fugitive interception
	Introduction
	Related literature
	Fugitive interception
	Adaptive solution approaches

	Method
	Optimization problem
	Solution approaches
	Experimental setup

	Results
	Test network
	2D grid network
	City road networks
	Convergence

	Discussion
	Reflections on solution approaches
	Interpretability of solutions
	Further research
	Recommendations
	Generalizability

	Conclusion

	Empirical evaluation
	Introduction
	Method
	Data source
	Selection of cases
	Confidentiality
	Experimental setup

	Analysis of cases
	First case
	Second case
	Third case

	Discussion
	Use of police information
	Redundant interception positions
	Operating area

	Conclusion

	Discussion
	Methodological reflection
	Fugitive behavior
	Police behavior
	Interaction effects
	Traffic
	Information updates
	Road network
	Optimization

	Practical reflection
	Validation
	Decision support
	Fugitive behavior
	Road network

	Generalizability
	Future research
	Methodological research
	Practical research


	Conclusion
	Answering the research questions
	General conclusion

	Acknowledgements
	Bibliography
	Appendix for Chapter 3: Tabular comparison of results
	Appendix for Chapter 4: Network features
	Appendix for Chapter 5: Additional analyses
	Unscaled solution quality
	Analysis of convergence
	PRO
	DPS
	PTO

	Random walks

	About the author




