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SUMMARY

RNA viruses have specific mutation rates that bal-
ance the conflicting needs of an evolutionary res-
ponse to host antiviral defenses and avoidance of
the error catastrophe. While most mutations are
known to originate in replication errors, difficulties
of capturing the underlying dynamics have left the
mechanochemical basis of viral mutagenesis unre-
solved. Here, we use multiplexed magnetic tweezers
to investigate error incorporation by the bacterio-
phage F6 RNA-dependent RNA polymerase. We
extract large datasets fingerprinting real-time poly-
merase dynamics over four magnitudes in time, in
the presence of nucleotide analogs, and under vary-
ing NTP and divalent cation concentrations and fork
stability. Quantitative analysis reveals a new pause
state that modulates polymerase fidelity and so ties
viral polymerase pausing to the biological function
of optimizing virulence. Adjusting the frequency of
such pauses offers a target for therapeutics and
may also reflect an evolutionary strategy for virus
populations to track the gradual evolution of their
hosts.

INTRODUCTION

RNA viruses are responsible for many human pandemics,

including hepatitis C, polio, influenza, and dengue fever. Be-

cause of their high mutation rates, RNA viruses evolve rapidly

and are difficult to target with vaccines (Lauring et al., 2013).

On the molecular level, the dominant source of mutations is

the error-prone RNA-dependent RNA polymerases (RdRPs)

responsible for replicating the viral genomes (Vignuzzi et al.,

2006). A high mutation rate increases evolvability, but also in-

duces many deleterious mutations, and a delicate balance
Ce
needs to be struck to ensure the pathogenicity of the viral popu-

lation. Given the strict demands on the precision of mutation

rates, RdRPs have become an important target for antiviral ther-

apies that seek to either decrease (Crotty et al., 2000; Vignuzzi

et al., 2005) or increase (Vignuzzi et al., 2008) RdRP replication

fidelity. Understanding how RdRPs influence viral mutation rates

therefore carries direct implications for human health and the

development of antiviral therapies, but is also of fundamental

importance for our comprehension of viral evolution. Despite

this, little is known about the dynamics of RNA elongation by

RdRPs (Yang et al., 2012) and in particular of the nucleotide se-

lection process—the origin of most mutations.

Direct probing of error incorporation is challenging, as errors

are infrequent random events easily masked in bulk measure-

ments. Stop-flow and quench-flow experiments have greatly

elucidated the dynamics of nucleotide addition, but such ex-

periments often rely on nucleotide starvation conditions to

induce otherwise rare error-incorporation events (Jin et al.,

2011, 2012; Johnson, 2008; Yang et al., 2012); as the polymer-

ization dynamics is severely perturbed under such conditions, it

is not a priori evident that the error probabilities estimated in

this way represent error rates under physiological conditions.

Single-molecule experiments (Dulin et al., 2013; Geertsema

and van Oijen, 2013; Larson et al., 2011) do in principle have

the potential to detect error incorporation in the presence of

all nucleotides, but the limited throughput of these experiments

has so far precluded a detailed statistical study of such rare

events.

To gain a deeper insight into the origin of viral mutagenesis,

we here study error incorporation of a model RdRP at the sin-

gle-molecule level. Specifically, as all the structurally character-

ized RNA-dependent viral polymerases share a high degree of

structural conservation (Mönttinen et al., 2014; Ng et al.,

2008), we use the well characterized P2 (Figure 1A)—the

RdRP of the double-stranded RNA (dsRNA) bacteriophage

F6—as a model system for viral RdRPs and RTs (Butcher

et al., 2001; Makeyev and Grimes, 2004). To overcome limi-

tations induced by bulk averaging and limited statistics, we
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Figure 1. Detecting P2 Activity at the Single-Molecule Level
(A) Illustration of a cross-section of P2 in elongation, displaying the NTP and template tunnels (according to structure of the initiation complex, PDB number: 1UVI;

Salgado et al., 2004) together with the product channel, which has been drawn in manually for purposes of illustration.

(B) Schematic of the experimental setup for monitoring P2 transcription on magnetic tweezers. In all three panels, F refers to the force applied by the magnetic

tweezers. A primarily duplex RNA is tethered to a magnetic bead at one extremity and to a surface at the other. This RNA construct is built on a 4.2-kb plus strand

to which a 2.8-kb template strand for P2 transcription is hybridized. The template strand is fully complementary to the 4.2-kb plus-strand apart from a 15-nt

overhang at the 30 end to facilitate enzyme initiation (Figure S1).

(C) Three typical traces of P2-catalyzed transcription representing the increase in product length versus time at 20 pN force and [NTP]opt. All three traces were

acquired at 25 Hz (gray) and low-pass filtered at 0.5 Hz (black). These three traces present different dynamic behavior that is attributable to three unique P2

enzymes. The leftmost trace includes almost no pauses. Themiddle trace is interrupted by few short pauses, and the rightmost trace includes two distinct regions

of fast transcription activity separated by a very long pause.

(D) The dwell-time distribution is extracted from 52 traces of P2 transcription activity acquired at 20 pN and [NTP]opt (gray dots). We fit this distribution to a

stochastic-pausing model (Supplemental Information) by using MLE (dashed black line). For clarity, we individually plot each contribution to the dwell-time

distribution: in green, the Gamma distribution; in dark blue, the first short pause (Pause 1); in cyan, the second short pause (Pause 2); and in red, the power law

distribution of pause times originating in backtracking. On top of the histogram are plotted representative events in P2 activity: from left to right (1) fast incor-

poration without pause, described by the Gamma distribution; (2) short pauses, described by the two exponential distribution; and (3) long backtracked pauses,

described by a power law distribution. The distinct appearance of the nucleotide-addition peak and the fact that the fitted Gamma distribution captures both its

width and average (using a single free parameter, assuming that the polymerase takes 1-nt steps) show that our approach is not appreciably affected by

experimental noise and avoids convolving elongation with pausing (Supplemental Information; Figure S3A).
have developed a stable and massively multiplexed magnetic-

tweezers assay (Figure S1B) that retains the single-molecule

resolution while producing the statistics necessary to study

rare error-incorporation events. We collected �1,000 elongation

traces (RdRP position versus time over a maximum of 2,800 nu-

cleotides [nt]) at varying nucleotide (NTP) and divalent cation

concentrations in the presence of nucleotide analog and under

varying fork stability (Figures 1B and S1E). Our elongation

traces are highly stochastic (Figure 1C), with force-insensitive

and rapid elongation (�20 nt/s) interrupted by pauses of dura-

tion 1–10 s and a small population of pauses lasting 10–

1,000 s. Based on a maximum-likelihood analysis tailored to

our large single-molecule force-spectroscopy data sets, we

uncover evidence that the f6 RdRP, and by extension other
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RdRPs and RTs, utilizes two distinct but coupled pathways

for error incorporation: one high-fidelity pathway without signif-

icant pausing and one low-fidelity pathway accessible through a

novel pause state. Direct mutations of the active site that have a

large effect on mutation rates are generally deleterious (Ace-

vedo et al., 2014). Therefore, the ability to gradually tune be-

tween two pathways with different inherent fidelities offers an

attractive alternative evolutionary strategy to achieve the pre-

cise mutation rates needed to track the evolution of the host

and ensure continued viral pathogenicity. Detailed information

regarding how error probabilities are dynamically set could

also facilitate the development and refinement of drug therapies

specifically targeting viral mutagenesis (Crotty et al., 2000; Vi-

gnuzzi et al., 2005, 2008).



RESULTS

Multiplexed Magnetic Tweezers Detail RdRP Dynamics
on Subsecond to Hour Timescales
In our magnetic tweezers assay, dozens of magnetic beads (Fig-

ure S1B) are tethered to a surface via dsRNA (Figure 1B). When

P2 is added to the reaction buffer, it initiates at a 30 overhang pre-

sent on each tether (Figures 1B and S1A) (Butcher et al., 2001;

Makeyev and Bamford, 2000a; Sarin et al., 2009; Wright et al.,

2012). By processively elongating the RNA product, P2 converts

the tethered dsRNA into single-stranded RNA (ssRNA) while pro-

ducing a free dsRNA strand (Figure 1B). Because of the length

difference between ssRNA and dsRNA (Figure S1C), the motion

of each elongating P2 molecule can be determined from the

change in vertical position of the magnetic bead (Figure 1B)

with an experimental spatial resolution of �5 nt or better, de-

pending on the applied force and the length of the exposed

ssRNA (with the instrumental noise, measured to equal 0.3 nm

at 0.5 Hz on a fixed bead, providing the ultimate limit; Fig-

ure S1B). The absolute bead position at initiation is determined

with a 10- to 20-nt precision, limited by occurrences of P2

pausing shortly after initiation. Each trace originates in the activ-

ity of a single P2, as the initiation site is removed once P2 has

converted the 30 overhang into duplex RNA (Figure 1B). Different

traces taken during the same experiment differ remarkably (Fig-

ures 1C and S1D) and demonstrate the highly stochastic nature

of P2 elongation dynamics; for example, in Figure 1C, the fastest

enzyme shown spent at most a few seconds in a paused state,

while the slowest enzyme paused for more than 1,000 s.

Maximum-Likelihood Estimation Based on the General
Sequence Independent Elongation Model with Two
Pauses and Backtracks
To analyze the stochastic P2 elongation dynamics, we perform a

probabilistic analysis of the times it takes the polymerase to tran-

scribe through consecutive windows of 10 nt along the trace.

This window size is set to equal at least twice the experimental

spatial resolution of the noisiest configuration (lowest force,

ssRNA tethers) in order to avoid noise-triggered crossings in

and out of the dwell-time window. The recorded times are

referred to as dwell times. By collecting a large number of dwell

times (for the exact total number of dwell time in each condition

presented here, see Figure S1E), we can construct empirical

dwell-time distributions (Figure 1D) that capture the probabilistic

nature of P2 dynamics with high precision (see typical error bars

indicated in Figure S2C). A few characteristic features become

immediately apparent (Figure 1D; Supplemental Information):

(1) a short-time peak—the nucleotide-addition peak—originating

from P2 elongating through the dwell-time window without

pausing, with the position of the apex of this peak reflecting

the typical time taken to cross the dwell-time window without

pausing, and its width is set by the number of steps taken in do-

ing so; (2) a shoulder situated at intermediate times, correspond-

ing to one or more short pauses with exponentially distributed

lifetimes; and (3) a long-lived pause with a broad distribution of

lifetimes that is consistent with a polymerase paused by back-

tracking (Cheung andCramer, 2011; Depken et al., 2009; Galburt

et al., 2007; Shaevitz et al., 2003; Voliotis et al., 2008). As
Ce
described in the Supplemental Information, we use the Bayes-

Schwartz information criterion (Schwarz, 1978) to objectively

determine that the data support the existence of two separate

short pauses—Pauses 1 and 2—represented in the shoulder

(2) of our measured dwell-time distributions (Figure 1D). We

use maximum-likelihood estimation (MLE) (Supplemental Infor-

mation) to fit a general stochastic-pausing model to each

measured dwell-time distribution and extract the nucleotide

addition rate (kna), the probability of nucleotide addition without

pausing (Pna), as well as the pause entrance probabilities (P1

and P2) and the exit rates (k1 and k2) for the two short pauses.

The fitting parameters extracted from the MLE are not altered

by the noise encountered in our experiments (Figure S3A). As

the exponential-pause shoulders in the dwell-time distributions

hide the features needed to determine the amount of backtrack-

ing, we merely include this pause type to avoid introducing a

late-time cutoff that might bias the analysis. Under any single

realization of experimental conditions, the fitted dwell-time dis-

tribution is consistent with a multitude of reaction schemes

including the specified pauses. In the Discussion, we argue

that the data from our concentration sweeps suggest a particular

minimal reaction scheme. As we cannot accurately determine

the absolute position of the RdRP, we do not include sequence

effects in our model. In the Supplemental Information, we also

argue why sequence effects are not likely to be significant.

Even so, if there is strong sequence dependence, our parameter

estimates can be seen as representing averages over sequence.

The NTP Concentration Dependence of P2 Catalyzed
RNA Elongation Dynamics
To probe the dynamics of nucleotide incorporation, we next vary

the nucleotide concentration in our assay in the mM tomM range,

all at a constant force (30 pN) and nucleotide stoichiometry (Fig-

ures 2 and S2A). We find that the average time P2 required to

transcribe the template increases with a decrease in the NTP

concentration: from 130 s at the highest concentration [NTP]opt
(a mM concentration optimized for P2 initiation; see Supple-

mental Information and Makeyev and Bamford, 2000b; Vilfan

et al., 2008) to 1,750 s at ½NTP�opt=500: Comparing the dwell-

time distributions obtained at [NTP]opt and ½NTP�opt=100 (Fig-

ure 2A, black circles and red triangles, respectively), we see

that a hundred-fold decrease in the nucleotide concentration

only results in a slight shift in the nucleotide-addition rate (as

judged from the position of the apex of the nucleotide-addition

peak in Figure 2A). At the same time, the time spent in short

pauses is greatly increased (as judged from the weight under

the exponential shoulders in Figure 2A). These results suggest

that in the concentration range examined, the major shift in dy-

namics originates in a change of pausing behavior, and not in

a slowdown of the nucleotide-addition process. The empirical

dwell-time distribution is well described by our stochastic-

pausing model over the concentration range examined (Figures

2B and 2C). Importantly, since we can directly judge from

Figure S2A if the elongation peak is discernable against the

background of the pausing shoulder, we can determine the con-

centration range over which it is possible to estimate the bare

nucleotide addition rate without the risk of inadvertently

including the effect of pauses. This constitutes a clear advantage
ll Reports 10, 983–992, February 17, 2015 ª2015 The Authors 985
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Figure 2. The Nucleotide Concentration Dependence of P2 Transcription Dynamics

(A) The empirical dwell-time distributions for two different NTP concentrations at the same force (30 pN): black dots, [NTP]opt; red triangles, [NTP]opt/100.

(B) The pause exit and nucleotide addition rates as a function of NTP concentration. The error bars represent the SD of a MLE procedure applied to 200

bootstrapped data sets. The nucleotide addition rate (right axis) is represented by green dots connected by green lines as guides for the eye. The value of the

nucleotide addition rate at [NTP]opt/500 is not well estimated because of the disappearance of the Gamma distribution behind Pause 1 distribution (Figure S2A).

The pause exit rates (left axis) are represented by dots connected by lines as guides for the eye (dark blue, k1; cyan, k2).

(C) Probability for P2 to be in one of the three different states (green, nucleotide addition; dark blue, Pause 1; cyan, Pause 2) as a function of relative NTP

concentration.
over standard attempts of fitting out pause-free velocities as

detailed in the Supplemental Information and in Figures S3B

and S3C.

Error Incorporation Is Associated with P2 Pausing
To probe how error incorporations affect RdRP dynamics, we

introduced the nucleotide analog inosine 50-triphosphate (ITP)

to the reaction buffer. ITP has previously been used to probe er-

ror incorporation by eukaryotic RNA polymerase II (RNAPII)

(Thomas et al., 1998) and Escherichia coli (E. coli) RNAP (Shae-

vitz et al., 2003). As P2 is neither structurally nor evolutionary

related to the multisubunits RNAPs of cellular organisms

(Mönttinen et al., 2014; Steitz, 1999), we first analyzed how P2

RdRP incorporates ITP in bulk experiments. We used ethidium

bromide (EtBr) staining (Figure 3A, upper panel) and radiolabel-

ing ([a-32P]ITP) (Figure 3A, lower panel) to quantify the product

synthesis and the ITP incorporation when one of the canonical

NTPswas replacedwith ITP.We observed that ITP could replace

GTP, as the reaction successfully continues to completion (Fig-

ure 3A, lane ‘‘no GTP’’) with only a slight reduction in efficiency

(Figure 3A, upper panel, compare lanes ‘‘no GTP’’ and ‘‘all

NTPs’’): this implies that ITP will frequently replace GTP in

competitive nucleotide addition on a template cytosine. The in-

termediate band observed in the ‘‘no GTP’’ lane is likely due to

secondary structures in the ssRNA template, which transiently

stall P2 during the replication process. When replacing other nu-

cleotides with ITP, no replication products were observed (Fig-

ure 3A): this implies that ITP acts as a mismatched base when

pairing with G, U, and A in the template strand. The behavior of

P2 in the presence of ITP is directly comparable to the behavior

of RNAPII under similar conditions (Thomas et al., 1998), which

implies that ITP can also be used to probe error incorporation

by P2.

We next studied P2 transcription in the presence of ITP in our

single-molecule assay. At 1-mM ITP, we observed a marked in-

crease in the time spent in short pauses (Figure 3B), strongly

suggesting that these pauses are connected to error incorpora-

tion. The empirical dwell-time distribution is well described by
986 Cell Reports 10, 983–992, February 17, 2015 ª2015 The Authors
our stochastic-pausing model in the presence of ITP (Figures

3C and 3D).

Manganese Increases the Nucleotide Addition Rate
and Lowers the Probability of P2 Pausing
Multiple studies on both DNA polymerases and RdRPs have

shown that their fidelity is decreased when there is only manga-

nese (i.e., no magnesium) present in the reaction buffer (Arnold

et al., 2004; Beckman et al., 1985; Goodman et al., 1983). To

investigate the effect of manganese on P2 elongation dynamics,

we titrated the manganese concentration between 0 to 2 mM

once the P2 has entered elongation (Supplemental Information).

Varying the manganese concentration resulted in significant

changes in the dwell-time distributions (Figure 4A): as the man-

ganese concentration is increased, Pause 1 and Pause 2 proba-

bilities decrease by 30%–40% and 60%–70%, respectively, and

the Pause 1 exit rate increases by 30%–40%, while the Pause 2

exit rate shows no significant change. Additionally, the nucleo-

tide addition rate increases by 10%–20% (Figures 4B and 4C).

Taken together, these results are consistent with an increase in

overall elongation rate with increased manganese concentra-

tions, as reported in an earlier biochemical bulk study (Wright

et al., 2012).

The Force Dependence of P2 Catalyzed RNA Elongation
P2 performs both replication and transcription on ssRNA tem-

plates. Here we observe the force dependence of P2 enzymatic

activity when P2 has to displace the complementary strand of

the template. In the applied force range (16–35 pN), the base

pairs at the ds-ssRNA junction (Figure 1B) are destabilized by

0.6�2kBT due to the applied force. We acquired approximately

45 traces per applied force at ½NTP�opt (Figures 5A and S2B)

and found that an increase in the force leaves the nucleotide-

addition peak unaffected, but decreases the amount of time

spent pausing (Figure 5A). The increased time spent pausing is

quantitatively confirmed by the rate and probability estimates

produced from fitting the dwell-time distributions (Figures 5B

and 5C). In Figure S3D, we show how these results contrast
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(A) Replacement of GTP by ITP in P2-catalyzed

replication reaction. Initiation reactions were car-

ried out in the presence of 1-mM GTP and ATP.

The formed elongation complexes were purified,

and the formation of new initiation complexes was

prevented by heparin. The subsequent elongation

reactions were performed in [NTP]opt, supple-

mented with 35-nM [a-32P]ITP (lane all NTPs) or in

conditions where one of the canonical rNTPs was

replaced with 1-mM ITP as indicated. The reaction

products were analyzed by standard agarose gel

electrophoresis using EtBr staining (upper) or

visualization by phosphorimaging (lower). The

mobility of the 2,948-nt-long ssRNA template and

the dsRNA product is indicated on the left. The

radioactively labeled ssRNA bands observed in

the no-ATP and no-CTP lanes (lower) likely

correspond elongation complexes that were stal-

led at early stage of the elongation phase, close to

the 30 end of the ssRNA template.

(B) Empirical dwell-time distribution from single molecule experiments with (red circles) and without (gray circles) ITP, at 30 pN force and [NTP]opt. The dashed

lines represent the MLE fits.

(C) Rates extracted from the MLE fits of the distributions in (B).

(D) Probabilities extracted from theMLE fits of the distributions in (B). The errors bars in (C) and (D) represent the standard deviation of aMLE procedure applied to

200 bootstrapped data sets.
with those that result from the use of the more standard

approach of attempting to extract pause-free velocities from ve-

locity histograms.

DISCUSSION

Basis for a Kinetic Model of P2-Catalyzed RNA
Elongation
Our multiplexed magnetic-tweezers setup enables us to collect

very large dwell-time data sets detailing the dynamics of the

F6 RdRP P2 over four orders of magnitude in time. The size of

the data sets allows us to appreciably constrain the type of

models consistent with our data. We use MLE to analyze our

dwell-time distributions. Similar stochastic analysis has previ-

ously been used in the study of ion channels (Colquhoun and

Hawkes, 1995) and single-molecule fluorescence microscopy

(Xie, 2001), but not in single-molecule force spectroscopy exper-

iments—in part due to the relative paucity of data that could be

collected. Using the Bayesian information criterion (Supple-

mental Information), we determine that the inclusion of at least

two exponentially distributed short pauses is supported by the

data. In constructing a kinetic model (Greive and von Hippel,

2005) of P2-catalyzed RNA elongation, we therefore choose to

include the two simplest and most widely accepted pathways

for polymerase pausing: pausing due to nucleotidemisalignment

arising from error incorporations (Johnson, 2008) (Figure S6A)

and pausing that originates in a thermally driven large-scale

conformational change that renders the enzyme catalytically

inactive (Neuman et al., 2003) (Figure S6C).

Evidence for Two Distinct Nucleotide Addition Pathways

A key observation is that the pauses we identify fail to satisfy the

nucleotide concentration dependencies expected for the two
Ce
above-mentioned categories of off- and on-pathway pauses

(for the full argument, see Supplemental Information, especially

Figures S6A–S6D). In order to capture the observed decrease

in pause lifetimes with increased nucleotide concentration (Fig-

ure 2B), we need to relax the assumption of complete catalytic

inactivity (Donehower et al., 1977; Neuman et al., 2003) in the

RdRP conformation responsible for the standard off-pathway

pause (Figure 6A). To capture the concomitant decrease in

pause probability, we further need to assume that nucleotide

addition from the off-pathway configuration forces its reversal,

bringing the RdRP back to its original on-pathway configuration

(Figure 6A). With this, we can rationalize the concentration de-

pendencies of Figure 2B in terms of Michaelis-Menten kinetics

of nucleotide addition from different catalytically active configu-

rations of the RdRP, with and without a mismatched terminal

base (see Figure 6B and the discussion in next subsection). Inter-

estingly, a recent fluorescence resonance energy transfer study

(Brenlla et al., 2014) of an error-prone family Y DNA polymerase,

related to RdRPs and RTs (Mönttinen et al., 2014), also

provides evidence of an alternative pathway to increased error

incorporation.

Long Pauses Directly Report on Single-Error

Incorporation Events

We now expect one of our two observed pauses to correspond

to a slowdown after an error has been incorporated; the proba-

bility of this pause should be a direct readout of the error rate

of the process. Assuming Pause 1 is the pause reporting on er-

rors unrealistically leads to an error estimate of one error every

26 ± 1 bp at [NTP]opt (Figure 2C), while assuming it is Pause 2

leads to an error estimate of one error every 1,350 ± 410 (Fig-

ure 2C), in broad agreement with error-estimates for related

enzymes (Vignuzzi et al., 2006). This suggests that Pause 1
ll Reports 10, 983–992, February 17, 2015 ª2015 The Authors 987
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Figure 4. Mn2+ Increases the Nucleotide

Addition Rate and Reduces the Probability

of Pausing

(A) The empirical dwell-time distribution for four

different concentrations of Mn2+: 0 mM, 50 mM,

500 mM, and 2 mM. The concentration of Mg2+ is

maintained constant at 5 mM, as is the nucleotide

concentration (fixed at [NTP]opt).

(B) The nucleotide addition rate, the Pause 1 exit

rate, and the Pause 2 exit rate, plotted for the

different manganese concentrations.

(C) The probabilities for P2 to be present in

nucleotide addition, Pause 1, or Pause 2, plotted

for the different manganese concentrations.
corresponds to the entrance into a long-lived elongation-compe-

tent state (Figure 2B), with a reduced—albeit nonzero—catalytic

activity; Pause 2 arises from a catalytic slowdown (Figure 2B)

when an error has just been incorporated, as is reported for other

polymerases upon error incorporation (Johnson, 2008; Yang

et al., 2012). Since the probability of entering Pause 2 is largely

proportional to the probability of entering Pause 1 (Figure 2C),

we infer that most errors are incorporated through the slow cat-

alytic state that accompanies Pause 1, rendering this a fidelity-

controlling pause. From here on we refer to the fast active state

as the high-fidelity catalytic (HFC) state, the state corresponding

to Pause 1 as the low-fidelity catalytic (LFC) state, and the state

corresponding to Pause 2 as the terminal-base mismatched cat-

alytic (TMC) state (Figure 6A). By considering Figures 2B and 6A,

we can infer which path dominates the exit out of each state.

Correct nucleotide addition dominates the exit from the HFC

state, as most catalytic steps occur without pausing (Pna is close

to one). The same holds true for LFC state, as the total exit rate

from the LFC state depends on NTP concentration, and only a

small fraction of transitions originating in the LFC state enters

into the TMC state. The fact that the nucleotide addition rate in

the TMC state is proportional to but lower than that of the LFC

state (Figure 2B) indicates that the two states have a similar

nucleotide dissociation constants, but that there is an increased

barrier to nucleotide addition in the TMC.

Nucleotide Analog andManganese Titration Confirm the

Link between Long Pauses and Error Incorporation

To confirm that the long pauses observed are a direct result of

error incorporation, we examined the effect of introducing ITP
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into the reaction buffer (Figures 3B–3D).

Inosine has previously been shown to

act like an error after incorporation by

other polymerases (Martin et al., 1985;

Matsuzaki et al., 1994), but to bind more

strongly than a standard mismatch to

the template base in the active site.

Consequently, assays utilizing inosine

will allow us to detect the effects of

increased error incorporation already at

modest levels of inosine. As the effect of

ITP has not been established for P2, we

first performed bulk experiments showing

that ITP influences P2-directed RNA elon-
gation in a manner consistent with the effect in other poly-

merases: it acts like an error when incorporated instead of all

canonical bases apart from G, which it replaces with only a slight

reduction in efficiency (Figure 3A). With the introduction of ITP in

our buffer, we expect to see a rise in the probability of entering

the TMC state. We also expect a modest reduction of nucleotide

addition rate because ITP replaces GTPwith a slight reduction in

efficiency. As the entrance into the LFC state is assumed to be

through a thermally driven transition in competition with nucleo-

tide addition, we also expect a small rise in the probability of

Pause 1 as the nucleotide addition rate is moderately decreased.

The exit rate out of the LFC state (Pause 1) is also expected to

decrease, as correct nucleotide addition is the dominant escape

route and ITP is incorporated instead of GTP with a reduced ef-

ficiency. All of these effects are observed experimentally (Figures

3C and 3D). Additionally, and in accord with a run-off replication

assay (Wright et al., 2012), our manganese titration experiments

show that the nucleotide addition rate increases with manga-

nese concentration (Figure 4B). With an increased nucleotide

addition rate, we would expect a decreased entry to the LFC

state and consequently a fall of the probabilities of both Pause

1 and Pause 2; this is also observed in our data (Figure 4C), add-

ing further support to our model.

Interestingly, our manganese experiments lead to a different

conclusion for polymerase fidelity from what has been proposed

based on stop-flow experiment on the poliovirus RdRP. Replac-

ing magnesium with manganese in the reaction buffer has previ-

ously been suggested to decrease RdRP fidelity (Arnold et al.,

2004) not increase it, as suggested by our data (Figure 4C).
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Figure 5. The Force Dependence of P2 Transcription

(A) The dwell-time distribution for two different applied forces at [NTP]opt: black dots, 20 pN; red triangles, 35 pN.

(B) The pause exit and nucleotide addition rates as a function of force at [NTP]opt. The error bars represent the SD of aMLE procedure applied to 200 bootstrapped

data sets. The nucleotide addition rate (right axis) is represented by green dots connected by green lines as guides for the eye. The pause exit rates (left axis) are

represented by dots connected by lines as guides for the eye (dark blue, k1; cyan, k2).

(C) Probability for P2 to be in one of the three different states (green, nucleotide addition; dark blue, Pause 1; cyan, Pause 2).
Possible explanations are that there is a significant enzymatic dif-

ferences between the polio and the F6 RdRPs or that we did not

completely replace magnesium with manganese in the reaction

buffer. An interesting alternative explanation for the observed dif-

ferences is that for enzymes with dual incorporation pathways,

stop/quench flow assays are liable to skew the balance between

the pathways used by allowing the HFC and LFC states to equil-

ibrate between nucleotide additions. For our system, starving the

polymerase of nucleotides would lead to an overestimate of error

incorporation, an effect that is enhanced by the addition of man-

ganese (Figure 4B), as it increases the catalytic rates.

Force Dependence of Pause Probabilities Suggests

Translocation before Chemistry in the Slow Catalytic

States

We observe no force dependence in the nucleotide addition rate

from the HFC state, implying that either the translocation step is

not rate limiting or that P2 translocates through a power stroke

that renders it insensitive to the forces we apply. However, the

nucleotide addition rates in the LFC and TMC states are still sen-

sitive to force (Figure 5B). Fitting an Arrhenius law to the exit rates

(Figure S4), we determine that the transition states are situated

0.17 ± 0.02 and 0.12 ± 0.09 nm from the pretranslocated posi-

tion, respectively; these distances are consistent with the

decrease in tether length due to the opening of one base pair

in the tethered dsRNA (Figure S1C) and strongly suggest that

the chemistry of bond formation does not provoke translocation

in the LFC and TMC states, but rather that translocation of P2 is

here thermally driven.

Conclusions
Here, we have extensively probed themechanochemistry of viral

mutagenesis. Specifically, we studied the elongation dynamics

of P2 from bacteriophage F6, an established model system for

RdRPs and RTs, by employing high-throughput magnetic twee-

zers combinedwithmaximum-likelihood analysis. This approach

has allowed us to capture the P2-catalyzed RNA elongation pro-

cess for both correct and incorrect nucleotides with unprece-

dented detail. By analyzing how the replication dynamics of P2

RdRP are affected by nucleotide concentrations, destabilization

of the fork, and the presence of both nucleotide analog andman-
Ce
ganese, we have found strong evidence for a stochastic parti-

tioning between two catalytically active configurations with

different catalysis rates and substrate selectivity. Importantly,

bulk techniques such as stop/quench flow assays would not

be able to discriminate between the two catalytic pathways we

have described and would always under estimate the fidelity of

the polymerase.

Our observations are of both potential therapeutic and funda-

mental importance: identifying compounds that affect the proba-

bility of entering the fidelity controlling pause we describe here

(Pause 1 in the above) might lead to ways of modifying mutation

rates in RNA viruses and consequently decrease their pathoge-

nicity; the gradual tuning of probabilities of entering fidelity con-

trolling pauses might similarly be a general evolutionary strategy

that allows viral populations to continuously adapt to the evolution

of the hosts antiviral defenses. Such an evolutionary strategy is

especially appealing sincemutations at the active site of viral poly-

merases induce large fidelity changes (Vignuzzi et al., 2006) that

may inactivate the virus (Acevedo et al., 2014). Using our novel

approach for single-molecule error quantification at physiological

nucleotide stoichiometry, future studies will examine whether the

conclusions we draw for P2 hold true also for other polymerases.

Finally, and importantly, our high-throughput single-molecule

approach is able to detail the dynamic behavior of enzymes

over four orders of magnitude in time; used together with the

accompanying theoretical modeling, this should help to usher

in a mode of single-molecule approaches where a vast array of

kinetic effects can be separated with statistical significance,

increasing the biological impact of single-molecule studies.

This is especially exciting in the context of understanding the

molecular effect of drugs, as our approach has the potential to

yield precise dynamic fingerprints of any antiviral drug (Crotty

et al., 2000, 2001) affecting the elongation process.

EXPERIMENTAL PROCEDURES

Single-Molecule Transcription Experiments

Once the RNA construct length is calibrated inside a flow cell containing P2 re-

action buffer (50-mM HEPES [pH 7.9], 20-mM ammonium acetate, 3% w/v

polyethylene glycol 4,000 Da, 0.1-mM EDTA [pH 8.0], 5-mM MgCl2, 2-mM

MnCl2, 0.01% Triton X-100, 5% Superase RNase inhibitor [Life Technologies],
ll Reports 10, 983–992, February 17, 2015 ª2015 The Authors 989



A B Figure 6. Model for On-Pathway Polymer-

ase Pauses

(A) In our model, the polymerase has two catalyt-

ically active configurations, indicated by a narrow

or wide space around the active site in the sche-

matic polymerase structure (yellow). This, together

with the state of the nascent RNA—having a ter-

minal mismatch or not—gives rise to our two

observed pause types. The resulting states for the

RdRP and RNA are an HFC state, which is fast,

without terminal mismatch, and with a low error

rate; a LFC state, which is slow, without terminal

mismatch, error prone, and entered through a

thermal transition from the HFC state; and a TMC

state, entered upon error incorporation, where

nucleotide misalignment results in very slow

nucleotide addition (Pause 2). In the reaction scheme, black arrows represent transitions dependent on nucleotide concentration, while green arrows represent

thermal transitions. The thick arrow out of each state represents the dominant path to leave that state, as deduced from our experimental observations (see main

text).

(B) The expected trends in pause probabilities and pause exit rates as a function of NTP concentration for the pauses in (A). These rates are dominated by the

transitions indicated by thick arrows in (A), and from Figure 2B, we see that these exit rates are consistent with Michaelis-Menten kinetics.
and 20-mg/ml BSA) (see Supplemental Information for P2 and RNA production

and Figure S1A for the RNA construct), 9 nM of P2 is flushed in. We perform

experiments at 21�C for 1 hr at constant force and fixed NTP concentration

while recording images of the magnetic beads at 25 Hz. Because of the large

field of view of our camera we are able to follow up to 200 tethers at a time

(Cnossen et al., 2014; De Vlaminck et al., 2011). The recorded images of the

beads are converted into (x, y, z) positions using custom-written routines in

Labview (Lipfert et al., 2011; van Loenhout et al., 2012). Distinct traces are

low-pass filtered at 0.5 Hz, providing an optical resolution of 0.3 nm along

the optical axis (z axis) (Figure S2B) and synchronized with regards to starting

position. The changes in extension are converted into the numbers of tran-

scribed nucleotides using the force-extension relationships for dsRNA and

ssRNA constructs obtained in P2 reaction buffer (Figure 2B) (Maier et al., 2000).

Stalling Reaction with P2

Following a 30-min incubation with the P2 initiation buffer (P2 reaction buffer

supplemented with 1-mM rATP, 1-mM rGTP, 0.2-mM rCTP), we rinse the re-

action chamber with an excess amount of P2 reaction buffer containing

0.5% Superase RNase inhibitor (Life Technologies) (no NTPs). We then trigger

elongation by adding P2 reaction buffer supplemented with rNTPs (and ITP) as

indicated. The dynamic of P2 is not affected by the stalling reaction (Figure S5).

In the case of the Mn2+ titration experiments, no EDTA was added into the P2

reaction buffer for all experiments containing less than 2-mM Mn2+.

Bulk Replication Experiments

RNA replication reactions were carried out in 50-mM HEPES (pH 7.5), 20-mM

ammonium acetate, 6% (w/v) polyethylene glycol 4000, 5-mM MgCl2, 2-mM

MnCl2, 0.1-mM EDTA, 0.1% Triton X-100, and 0.8-U/ml RNasin Ribo Lock

(Thermo Scientific). Initiation reactions were carried out (125-nM ssRNA and

500-nM P2) in the presence of 1-mM rGTP and rATP (to allow the synthesis

of the first 10 nts complementary to the 30 end of the ssRNA template)

at +30�C for 20 min, the formed elongation complexes were purified using Se-

phacryl S-300 matrix (Pharmacia) and the reaction buffer with no NTPs for

elution. The formation of new initiation complexes was prevented by heparin

(5 mg/ml), and the incubation was continued at +30�C for 5 min. The subse-

quent elongation reactions were supplemented with 0.2 mCi/ml of [a-32P]ITP

(6,000 Ci/mmol; Cambro Scientific GmbH) and the indicated nucleotides,

and the incubation at +30�C was continued for 2 hr.

Generation of Empirical Dwell-Time Distributions

When constructing empirical dwell-time distributions, dwell-times from

different polymerases operating at identical conditions were grouped together

(Figure S1E). Looking at dwell-time distribution for individual polymerases, a

small percentage consistently spend a much longer than average time
990 Cell Reports 10, 983–992, February 17, 2015 ª2015 The Authors
pausing; to prevent these pause-prone polymerases from biasing the data,

we remove the 5% with the highest and lowest dwell-time densities at 3 s.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2015.01.031.
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