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Abstract

Localization is an important element for a moving swarm of robots. A swarm contains many individuals, and
it is essential that the swarm members do not collide. Expensive and complex implementations to localize
others is undesirable. Hence, a localization system designed using the available resources is desired. The
available techniques that have been analysed are Received Signal Strength Indicator (RSSI), Time difference
of arrival (TDOA) using the ESP-NOW protocol and a spinning time of flight (TOF) sensor. The spinning TOF
sensor showed to be the most promising, with close range distance detection only containing a maximum
errors of 5cm. The sensor is implemented as a cheap LiDAR system by mounting it to the front of the robot,
which spins around its own axis. An IMU is responsible for keeping track of the orientation of the TOF sensor.
Furthermore, two small algorithms were designed and compared in order to process the TOF data.
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1
Introduction

In the current day and age, humans have the desire to achieve equal productivity whilst doing less man-
ual work. Hence the rise of automation and robots emerged. One of the new inventions from this current
century to fulfill this desire is the swarming of robotics: The collective movement of a group of individual
task-performing robots, whilst avoiding collisions but still remaining together. The application of swarms
or flocking behaviour in robotics becomes more and more present. Using drones is the most famous form of
swarming. Swarming can moreover be found in agricultural and aquatic applications [1]. Some of the higher-
end solutions still have limitations, such as flocking robots only being able to function in predetermined and
bounded environments. This thesis is part of a Bachelor Graduation Project that aims to research multiple
swarming methods and implement these as well.

1.1. Project Division
The project was divided into three sub-groups of two persons per group. When integrated together, the three
sub-parts form the total flocking system.

The first part of the project, and the focus of this thesis, is localization. Localization aims to locate the
members of the swarm, with an additional goal to also locate obstacles in the vicinity of the swarm. Using
the location of other members, each individual member should be able to decide in which way it can and
cannot head. Localization does not only aim to just locate other members of the swarm, but doing so without
the usage of external measuring instruments such as beacons or a central radar system. Such an localization
system is called decentralised.

The second part of communication. Communication is responsible for the exchange of information be-
tween swarm members. In larger swarms it is unnecessary as well as disadvantageous for each member to
communicate with every other member in the swarm. Often it is only necessary to keep track, and therefor
communicate with the relative neighbouring members. Consequently, communication also aims to iden-
tify which members in the swarm are neighbouring the current member and use this information to only
communicate with these neighbouring swarm members. It lastly aims to build a platform in order to have
wireless logging of the swarm network in order to observe the behaviour of the swarm which will be useful
for observational purposes and debugging.

The third part of the project is control. The control group designs and controls the individual swarm
members, based on the information that is provided by the communication- and localization sub-parts. It
aims to design the cars and their controls in order for each swarm member to manoeuvre through a two-
dimensional space. It furthermore aims to follow a simplified version of boids flocking algorithm [2]. Where
each members tries to stay a certain distance away from their respective neighbours, while trying to reach a
globally similar heading.

1.2. Problem definition
As stated in the previous section, this thesis specifically focuses on the localization of flock members as well as
the detection of obstacles which the flock should avoid. This is essential in order for the sub-group that does
the the control to steer each flock-member in the correct direction, without colliding. The main objective of
this thesis is to investigate in different localization techniques to find the best to implement for this project.
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1.3. Situation Assessment 2

However not all localization techniques can be investigated; The selection of possible methods is limited to
the available hardware. Hence this thesis searches for the best method of localization within these limitations
of the project.

1.3. Situation Assessment
The enormous research field of localization is in continuous motion. As chips grow smaller and cheaper,
the availability of higher end localization technology keeps improving over time. One of more dominantly
used method for localization is the global positioning system (GPS). This method can achieve high accuracy
in most applications. However, GPS is relatively expensive and the efficiency of the GPS trackers is heavily
influenced by their surroundings: For instances large buildings or an indoor environment [3] [4].

Another method of localization is the usage of Received Signal Strength Indication, or RSSI for short. This
method uses either a WiFi or Bluetooth signal strength relative to an access point (AP) in order to deter-
mine the physical distance between the AP and the receiver[5] [6] [7]. It was further elaborated that the RSSI
method could be improved when there were multiple access points to connect with and therefore more accu-
rately determine the location [8]. However, RSSI still shows large uncertainties in its distance approximation
due to relative orientation of the receiver and noise reflections [9] [8].

The "Time Difference of Arrivals" method (TDOA) is the simple concept of measuring the time between
sending and receiving a signal in order to estimate distance. It is often used with Ultra Wide-Band (UWB)
frequency signals [10] [11] [12]. This technique often uses multiple beacons and trackers in order to locate
individual objects, which limits the work area of potential swarm implementations. [13] [14] [15].

A more complex localization method is the usage of LiDAR. With LiDAR, it is not possible to detect other
members of the swarm, but it can be used to map its surroundings. It has also been proven that LiDAR
implementations can be used to navigate an area rather than to map it [16] [17]. A similar approach can be
found using simpler hardware, such as time of flight sensors [18].



2
Programme of Requirements

The assignment provided by the supervisor stated that the subgroups should work together to build a swarm
that can drive in an formation. However during the project some plans where altered. Instead of a platooning
robot swarm, the project became more about flocking robots then platooning robots. The assignment for
the localization subgroup is to investigate in different localization techniques that can be used for a flocking
swarm. From these different techniques one should be chosen and implemented in a swarming group of
robots.

Mandatory Functional Requirements
This elaborates on the actions that the robots must be able to perform in order to successfully design the
localization method.

• The robots must behave like a swarm, in the sense that they remain together while avoiding collisions.

• The robots must be able to determine the angle and distance to other robots in their surroundings.

• The amount of robots in the swarm must be scalable without any software or hardware changes to the
robot itself.

• The robots must measure obstacles and other robots with an maximum accuracy error of 20 cm.

• The robots must have a detection range of at least one meter, relative to the robot itself.

Mandatory Non-Functional Requirements
These are the requirements that sketch the essential contours in which the project must be confined.

• The robots must be designed for an indoor environment.

• The robots must be designed for two-dimensional applications.

• The robots must be designed using only the following hardware:

– Robot chasis: Joy-IT ROBOT CAR KIT 4WD

– Micro-controller: ESP32-DevKit-V1 with an ESP32-WROOM-32 CPU

– Inertial measurement unit: MPU9250

– Time of flight sensor: VL53L0X

Trade-off Requirements
The trade-off requirements indicate what design aspects are aimed to reach, but with the knowledge that all
aspects can realistily never exist.

• The measurement rate should be fast enough for the respective implementation, with an lower bound
limit of 10 Hz.

• Minimize the error in localization method.
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Assumptions
It is furthermore assumed that the conditions that these robots are implemented in have a certain standard
in order to simplify this first design.

• The robots are non-holomonic

• The robot is programmed on an ESP32-board written in C programming language, using the Espressif
framework.

• The robots operate on a flat, horizontal surface.

• The potential objects within the operating area are always clearly detectable within the 2D-plane, and
such the robots do not have to account for ledges or obstacles that are hard to detect like wired fencing.



3
Localization Techniques

In this chapter multiple localization techniques will be discussed that were considered during the bachelor
graduation project for the localization of the robots. There are many different techniques for localization. It
was kept in mind that the solution had to be efficient while being low in costs. The methods that were tested
and their respective results can be found in this chapter. During the whole project the robot that is used got
upgraded with some techniques. In Appendix A the robot that is used during this project is shown.

3.1. Received Signal Strength Indication
This localization method is based on a beacon device which sends out a WiFi or Bluetooth signal. Another
device searches for this signal and measures the signal strength in dBm. Based on this received signal strength
a relative distance between the two devices can be established. This method was researched for this paper
as the costs of a transmitter and/or receiver are low in price (sub 10 euros) and the modules are already
integrated into the ESP32-WROOM development boards that are used for this project. Hence it is easy to test
and will be easy to implement for other projects in the future. In one of the papers the estimated localization
had an average error of 0.427 meter [8]. This error margin is for this project not sufficient. However in this
specific article the researchers used beacons. In this project the robots that are tracked can be a receiver and
a transmitter simultaneously. The hypothesis is that this could improve the accuracy of the RSSI distance
estimation method.

In order to calculate the distance between the receiver and the transmitter, a linear relationship between
the observed intensity and a reference intensity was assumed [19]. The equation for this calculation is de-
picted in Equation 3.1. Where D = distance [m], C = reference power [dBm], RSSI = the measured RSSI value
[dBm] and N = an environmental constant. The reference power and the environmental constant have to be
determined beforehand, and can differ per location and/or situation. Furthermore, it is possible to use the
Law of Cosines in order to estimate the relative angle of another car, based on the measured distances[20]. In
order to correctly estimate the positions of all robots in the swarm, one requires at least 4 nodes to remove all
uncertainties in this estimation.

D = 10
C−RSSI

10∗N (3.1)

Determining the constants
The first unknown to establish is the one-meter-constant (C). This is necessary to calibrate Equation 3.1 to
the signal strength of the transmitter and the receiver’s detection strength. To retrieve this value the following
setup was established: Two ESP32 boards were placed on the same elevation, one meter apart and facing
in the same heading. The first ESP32 board acted as a transmitter for the WiFi signal. The second ESP32
board measures the strength of the WiFi signal. A hundred measurements were done by the second ESP32
board, of which the data can be seen in Figure 3.1. A mode of -52 dBm is observed from this data, although
there are frequent deviations. The standard deviation of this data set can be calculated to be 1.085 dBm. This
margin is really promising because when converted into meters it equals σ = 0.074 m. This observation is
further emphasised by the fact that the measured values are rounded off to full integers by the ESP32 board,
hence small deviations in the RSSI measurements will result in larger sways in the standard deviation. After
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3.1. Received Signal Strength Indication 6

the one-meter constant was determined, the environmental constant (N) could be established. According to
the theory [19] the value of N should be between 2 and 4. This value was based on multiple factors such as
the amount of WiFi signals visible to the ESP32 chip, and the amount of metallic object in the test area that
disturb the WiFi signals. Because the RSSI measurements were perform in a large, free space, the N-value was
assumed to be 2. During the measurements and optimisation of the RSSI technique it was discovered that, in
this study, the environmental value acted as a scaling factor for the converted meter value. It did not impact
the RSSI method’s performance in any way.

Figure 3.1: Plot which shows 100 measurements.

Results
The measured RSSI values from the performed tests were not behaving like the designed model. In Figure 3.2
it can be observed that the measured RSSI values are not in line with the model. The standard deviation (σ) of
these measurements is smaller than 1.5 dB., hence the error is consistent. It is believed that this behaviour is
caused by reflections. The dip observed between 0 and 0.5 meters can be explained by the orientation of the
ESP-boards. The antenna is angled in such a way that when the cars are within the range of 0.5 meters, the
antennas have difficulty in direct line-of-sight-communication. Hence the data in this range is dominated
by unreliable reflected signals. Unfortunately when there is a lot of multipath-interference, the relation with
measured RSSI and distance vanishes. Another downside that arose while testing this implementation, is that
a single measurement of RSSI takes around 200ms. This is a very slow measuring rate, especially when the
amount of robots in the swarm is increased. This is something that needs to be taken into consideration.

Determining a new model
The provided model, Equation(3.1), is not sufficient for this setup. Therefore a simple solution is introduced.
Due to the small variance (σ) in the measurements there is some consistency. Three zones are introduced.
The first zone is 0 to 0.5 meter, the second zone is 0.5 to 2 meter and the third zone is from 2 to 3 meter. In
these zones separate models can be formulated. In Figure(3.2) the simple linear model (green line) can be
seen, Equation(3.2). Where D is the distance predicted by the model and RSSI is the measured RSSI. It can
be seen that the model is rough and only is valid within the 0.5 and 2 meters. Similar models could be made
for the other zones, then the cars are restricted to stay in these zones. With smart predictions the models
can be integrated with one another. However there are more localization systems that look more promising.
Therefore only the second zone model is created. The model is tested on the robots. The robots drove behind
one another while keeping 1.25 meter distance.

D = 38−RSSI

11.63
(3.2)
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Figure 3.2: RSSI different models in comparison with the measured values.

3.2. Time Difference of Arrival
Time difference of arrival (TDOA) is a distance determination method that uses the difference between the
transmission and receival of a signal to estimate the distance between the two antenna’s. This method is
not bound to a certain technique or hardware; it can have multiple implementations. In this thesis the ESP-
NOW communication protocol was used, as it was designed by Espressif and hence readily available on the
ESP32 board used in this project. ESP-NOW uses a 2.4 GHz low power wireless connectivity, but remains a
separate protocol and does not use WiFi or Bluetooth. The implementation that is investigated is a "ping
pong" protocol using two ESP32 boards. When the angles at which the other car is then located, can be
calculated using the Law of Cosine [20].

Designing the protocol
The protocol works as follows: Two ESP32 boards are activated, one acts as a transmitter, the other as receiver.
The transmitter sends an one byte message via ESP-NOW to the receiver. This receiver immediately returns an
one byte message back to the transmitter to indicate that a message has been received. Once the transmitter
receives this return signal, it uses the time difference between the originally transmitted- and return signal
to determine the distance between the two chips. Equation(3.3) shows the formula for a vacuum. In the
equation ∆t is the time it takes from sending the ping signal and receiving the pong signal, C is the constant
of light speed and d is the distance between the two chips. When the chips are 1 meter apart then ∆t is equal
to 7 ns. Where there are no reflections as it acts on the first signal, received from direct line of sight.

∆t = 2d

C
(3.3)

Results
When the protocol was implemented it’s performance was tested. The the ping-pong protocol was executed
with a steady distance of one meter between the two ESP32 boards, while the response time was measured
and logged. The ESP32 board was only able to determine the TDOA with an accuracy of micro seconds. The
The results of this test can be seen in Figure(3.3). It can be seen that there is a nominal delay of around a
thousand micro seconds, but there are also spikes presents of several thousands micro seconds. In order
to get a better understanding of the basic behaviour of the measurements the spikes are filtered out. These
filtered measurements can be seen in Figure 3.4. From this it is observed that the measurements from the
tests at one meter still range from 718µs to 1054µs. Using Equation 3.3, this consequently results a difference
ranging from 215km to 315km. These results appear extremely far off the desired distance range of around
0.5 meters. In order to investigate whether a model-based approach, likewise to the RSSI, was possible, it was
moreover performed multiple times at different differences. These results are shown in Appendix B. These
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results show that there is no correlation between the data and the distance over which the measurements
were performed.

The CPU clock speed of the ESP32 board is 240 MHz at maximum. It was expected that there would be
a constant delay of several nanoseconds due to processing, where one cycle takes 4.2ns. However this is
not what can be seen in the results from the performed measurements. The results show a large variance
between measurements. It is believed that this is due to the ESP32-WROOM-32 chip’s internal processor,
which performs non directly visible tasks within these clock cycles and hence produces unpredictable and
largely varying delays in each individual measurement. Examples of such tasks could include f.i. the handling
of internal flags and interrupts or the performing of queued tasks in the pipeline. It was tried to prioritise the
TDOA task within the ESP32 chip itself, but due to disappointing results and the availability of alternatives
methods it was not looked into further.

Figure 3.3: ∆t when the chips are 1 meter from one another
without the peaks filtered out.

Figure 3.4: ∆t when the chips are 1 meter from one another. Equal
data as in Figure 3.2, but high spikes were filtered out

Additional Considerations
The TDOA method maintains promising for localization purposes. For instance using Ultra Wide Band (UWB)
to broadcast the signal and having either a separate or faster processor available for the implementation of
TDOA would greatly improve it’s potential [21]. Moreover, the ESP-NOW protocol communicates using a
peer-network. This network is limited to 6 ESP32 chips that are able to send and receive signals, where this
ability is critical for the ping-pong protocol. This means that for the current implementation the swarm size
would be limited to 6 robots. This may be able to be extended with other implementation, but that was not
tested for this thesis.

3.3. Time of Flight
The last method that was researched and implemented for this thesis is the time of flight (TOF) sensor. This
sensor uses the time difference between transmitting a infrared light signal and receiving its reflection. This
is an external sensor and, as such, can only be connected to the ESP32 board using a I2C bus. For this the-
sis the time of flight sensor that was used for the implementation and measurements was the ’VL53L0X’, de-
signed and produced by STMicroelectronics. This sensor is capable of measuring a distance from 20mm up to
1200mm, which includes the required range for this thesis. The accuracy in the data sheet is very promising,
as the ranging error offset is, according to the data sheet, smaller than 3%. This means that at the maximum
measuring distance of 1200mm would theoretically result in a maximum error of 36mm, which is better than
the maximum acceptable error of 20cm (200mm). The sensor is capable of performing these measurements
within roughly 33ms, which roughly equal 30 measurements per second. A downside of the sensor is that it is
only capable to determine an one dimensional distance. However, the proposed solution to this issue in this
thesis is to place the sensor on a vertically extended, rotating pillar. So that it will be able to scan a 360◦, two
dimensional surroundings using the TOF sensor.
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Figure 3.5: 100 measurements with a TOF with obstacle at 10 cm.

One Dimensional Performance
Before implementing the sensor for the 360◦ scan, the sensor was first tested stationary. The TOF was con-
nected to the ESP32 board sensor via I2C. It was then placed horizontally on the floor facing a wall, which
was 10cm away from the sensor. The results showed inconsistencies due to the practical functioning of the
sensor itself: In practise the sensor sends out a light signal in a cone shape with a 35◦ angle, opposed to a
single one dimensional array. This meant the TOF sensor would sometime sense reflections from the floor
instead of the wall it was facing, which is undesired behaviour. The sensor was then elevated from the floor,
as it will be when mounted on the robot. Once elevated, the distance was measured again. The results of
these measurements are depicted in Figure 3.5. In this figure it can be seen that the measured error margins
are really small: The standard deviation (σ) is 1.6mm and the maximum deviation was 3mm. These deviation
results are within the requirements for this project and hence showed real promise for implementation. This
simple setup was then repeated at multiple distances, of which the results can be found in B.2. These results
also show respectively similar results.

However, when the sensor was pointed toward the robot that were used in this project, see Figure(A.1),
it sometimes failed to measure the slim profile of the robot’s chassis. When the TOF sensor fails to detect a
object within a 1.2m range, it returns a miss-value of 8191mm. The data from the TOF sensor trying to detect
a robot at 90cm, is depicted in Figure 3.6. This data shows a frequent failure by the TOF to sense any object
within a 1.2m distance. The proposed solution to this problem is to improve the detectability of the robot by
constructing a larger shell around or on top of the robot. In this thesis, the shell was realised by mounting a
paper sheet on the side to improve the reflection surface, as shown in Figure A.3. The TOF sensor was again
faced towards to car, that now had an improved detectability. The results, as depicted in Figure 3.7, show that
the TOF sensor detects an object at approximately 90cm without any failed measurements. Hence it can be
concluded that the sensor is very accurate and is able to be implemented for localization.

Two Dimensional Scan
In order to detect obstacles and neighbouring robots inside a swarm, the robot needs to be able to detect
it’s 2D surroundings. The TOF sensor is only capable to detect in one direction. By implementing multiple
sensors facing in different directions, the desired 2D result could be obtained. However this is not a low cost
solution, as the TOF sensors are €15,- per unit. The proposed solution was to place the sensor on a rotating
pillar, but this was in practise not obtainable for this thesis. Hence, a variation of this solution was imple-
mented by making the robot spin with the TOF sensor horizontally mounted at the front of the robot, facing
forward. Making the robot spin creates an additional challenge: The robot needs to know the heading in
which a TOF measurement was taken, in order to accurately depict its surroundings. Therefor, an inertia
measurement unit (IMU) was implemented on the robot. The IMU used for this project was the ’mpu9250’,
designed by InvenSense. This IMU contained a magnetometer, which provides the angle of the IMU by mea-
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Figure 3.6: 100 TOF measurements of a robot at 90 cm. The 8191mm
readings are misses of the TOF sensor

Figure 3.7: 100 TOF measurements of a robot at 90 cm, where the
robot’s profile is improved for detectability.

suring the magnetic field of the earth, likewise to a compass. This IMU was also connected to the ESP32 board
via the I2C bus.

Now the robot is able to scan it’s surroundings by measuring the distance and corresponding heading
whilst rotating. In order to test the robot’s ability to scan it’s surroundings, an object was placed at a 225◦
heading and a 450mm distance from the car. The results of the spinning robot’s scan can be seen in Figure
3.8. In the figure it can be observed that there is an object between 160 and 270°at a distance of about 440
mm. This shows that the robot is able to correctly measure the distance and associate this with the correct
heading. The last step for the robot in detecting the surroundings is to understand where a possible object
might be located. This is done by creating an algorithm that is able to filter out false data and locates possible
swarm members.

Figure 3.8: Spinning the TOF sensor with the IMU to produce a 360°surroundings of the robot. The red dots represent measurements.
Measurements at 1200mm were in fact failed measurements that returned 8191mm, but capped for readability purposes.
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2D Obstacle Detection Algorithm
Obstacle detection implementations such as the one required for this project, can be regarded as their own
thesis subjects on their own. Nonetheless, it is still necessary for this localization method to implement. Two
different, basic algorithms were made and tested for the purpose of this thesis. They will be evaluated in this
thesis by using measurement data used was gathered using the real sensors on the car. The first algorithm that
was tested was a simple differential filter. This algorithm filtered data based on the difference in distance with
previous data. The steps of the algorithm can be found in Algorithm D.1. The output of this filter was then
visualised so the results could be compared. These visualisations are shown in Figure 3.9 and 3.10. Figure 3.9
clearly shows that the wrong data points get filtered out so that a clear representation of the obstacle in the
scan can be formed. The exact same algorithm was used on a different data set in Figure 3.10. However, here
the algorithm shows quite a few errors in its approximation, due to concurrent faulty measurements.

Figure 3.9: Differential filter algorithm on real data
with good results.

Figure 3.10: Differential filter algorithm on real data
with bad results.

The second algorithm is based on a window that stay preserved when the average off all the values in that
window stay above a certain threshold. The algorithm starts with checking whether the robot sees something
or looks at nothing. When the robots see an object it adds an 1 to an array, when it sees nothing it adds an
zero to this array. Then the average of the whole array is taken, see Equation 3.4.∑Hits

n=1 1

Hits + Misses
(3.4)

Every time the average stays above the threshold, which is 0.5. The algorithm adds a 1 to the prediction
array. This prediction array is then normalized to the average of the measured point. In this way the robot
recognizes the whole obstacle, instead as lose pieces of an obstacle. The results can be seen in Figure 3.11
and Figure 3.12. In Algorithm D.2 The pseudo code of this algorithm can be found.
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Figure 3.11: Result of the windowed version, with no error Figure 3.12: Result of the windowed version, which is improved
relative to the derivative solution.

3.4. Result Comparison
This chapter contains a small representation of the measured values that resulted from tests performed in
this thesis. The explanation of these values can be found in their respective chapters. This table only serves
as a small recap of the obtained results.

Method Total Measurement
Duration

Effective Range Error in Effective
Range

Starting Costs

WiFi RSSI 200ms 0.5m-2.0m 0.02m-0.5m €5,- to €10,-
TDOA (ESP-
NOW)

1ms 0.01m to >10m 0.02m-0.5m €9,-

Time of Flight 33ms 0.02m-1.2m 0.02m €15,-

Table 3.1: Comparison table for the different methods and their accuracy- and costs considerations. The effective range was determined
either by limitations of the sensor, or the data contained too much uncertainty to be considered usable.



4
Conclusion and Discussion

4.1. Conclusion
This thesis discusses multiple localization methods with the aim to find the best method within the contours
of the project. From the tests and measurements performed in this thesis, the time of flight sensor is the
only one out of the total of three methods that is able to perform high accuracy measurements, within the
required range distance and with an sufficient measurement frequency. Therefor this method seems best for
localization purposes.

4.2. Discussion
The results of the research for different localization techniques gave great insights. The problem definition of
this thesis was to find a poor mans solution. Several solutions where investigated. The RSSI and the TDOA via
ESPNOW didn’t gave the results that where expected. The reason why the results weren’t what was expected
is not sufficient tested. Therefor it cannot be concluded that these techniques will never work.

The technique that is used for determining the localization of the robot is spinning with a TOF sensor on
top of the robot. However it can be stated that the robot does not need a full 360 °image. It can be hypothe-
sised that looking in a forward cone is enough to let the control algorithm work.

There are many other solutions to localize. The solutions tested in this report is a small sample of the
many solutions. While the results of TOF are sufficient, there could be a solution out there that will perform
better in comparison to TOF.

4.3. Future work
While the presented results comply with the requirements, there are a number of improvements that can be
made in future projects. The first improvement is the algorithm used in the spinning TOF sensor to determine
where obstacles are. The algorithm that is written for the this thesis can be more optimized. However, it can
be concluded that the algorithm to determine obstacles could be a whole theses in itself. Another improve-
ment is the robot vehicles. The wheels and chassis where already upgraded during this project, however to
have better performance an upgrade in the mechanical hardware would be preferred.

In future works it could also benefit the driving speed of the robots when the they do not have to turn a full
spin to localize and decide where to go. As told before it can be hypothesised that a full spin is not mandatory
to let the robots drive in a flocking pattern.

There are many more solution to localization. F.i. another version of the ESP32 chip; the ESP32-S2, has
different sensors which could be useful for localization. The ESP32-S2 chip has a Fine Timing Measurement
(FTM) unit, measures the round trip time over WiFi. This works with the principles of TDOA, but it is purely
made for approximating the distance, where ESP-NOW is designed to transfer data. In future works more of
these systems could be tested and therefor considered as a poor mans solution.
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A
Additional Images

Robot models

Figure A.1: Robot delivered original to us, hard to rotate. Figure A.2: Robot designed for spinning around its own axis.

Figure A.3: The robot, mounted with a paper sheet in order to
optimize detectability by the TOF sensor.
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B
Additional Simulation Results

B.1. ESP-NOW

Figure B.1: ∆t when the chips are 0.5 meter from one another. Figure B.2: ∆t when the chips are 2 meter from one another.

B.2. TOF

Figure B.3: 100 measurements with a TOF at 30 cm. Figure B.4: 100 measurements with a TOF at 50 cm.
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C
Setup

This section will discuss the some predetermined hardware and software aspects of the project as an whole.

Vehicles
The "Autonomous robots" that are used, are non-holonomic, 3 wheeled vehicles. They are outfitted with an
ESP-WROOM 32 development board, as well as a motor control chip. 2 of the wheels are driven by a PWM
signal, generated by the ESP. Whilst the third wheel is an unpowered castor wheel.

ESP-32 WROOM
The ESP-32 WROOM development board functions as the main decision making unit of the car. It is a low-
cost, low-power system on a chip micro-controller. The chip is capable of WiFi and ESP-NOW communica-
tions, which allows the car on which is outfitted to communicate with other nearby cars. Furthermore, the
board is outfitted with an Inter-IC-bus (I 2C ). This feature allows other integrated circuits to communicate
with the micro-controller. This is necessary for the required magnetometer in the form of an IMU. The I 2C
bus is also used by the TOF sensor.

Inertial Measurement Unit
The inertial measurement unit consists of a integrated gyroscope, accelerometer and magnetometer. The
magnetometer is most of interest, as the magnetometer determines the heading of the car using the earth’s
magnetic field. This is a feature necessary for swarming. The car is equipped with the MPU-9250. This IMU
has a full scale range of ±4800µT . Magnetometer measurement values can be retrieved at a frequency of 200
Hz using this chip. In Figure C.1 the accuracy can be seen when the motors operate at 40% power.

Time of Flight sensor
The time of flight (TOF) sensor uses the time difference between transmitting a infrared light signal and
receiving its reflection. For this thesis the time of flight sensor that was used for the implementation and
measurements was the ’VL53L0X’, designed and produced by STMicroelectronics. This sensor is capable of
measuring a distance from 20mm up to 1200mm, which includes the required range for this thesis. It deter-
mines the distances by using a laser in the form of a infrared light signal and measuring the time to detect the
reflection of said signal.

16
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Figure C.1: The results of the IMU when the robot is spinning.

Espressif
The Espressif framework is used building, flashing and monitoring the code on an ESP chip. ESP-IDF is a tool
written in python that comes with Espressif. It allows the user to interact with and flash instructions to build
its program on an ESP chip.

Clion, C
ESP-IDF flashes C code onto the ESP chip. The C code is written in the integrated development environment
Clion. Using a Cmake framework, independent modules are created.

PyCharm, Python
Python is used for modeling, Libraries such as numpy and pyplot are used to plot data and do calculations.



D
ToF Filter Algorithms Psuedo-code

D.1. Derivative filter algorithm
Used to filter the gathered data for the TOF sensor in order to detect potential obstacles.

Algorithm 1 Differential filter algorithm

1: sorted_data = empty_list[360]
2: for d at a in scan_d at a do
3: sorted_data[data.heading] = data.distance
4: end for
5: return_list = empty_list[360]
6: for di st ance in sor ted_d at a do
7: previous_distance = previous_valid_data in sorted_data
8: if di st ance −pr evi ous_di st ance ≤ thr eshol d then
9: return_list.add(distance)

10: end if
11: end for

18



D.2. Windowed filter algorithm 19

D.2. Windowed filter algorithm
Used to filter the gathered data for the TOF sensor in order to detect potential obstacles.

Algorithm 2 Windowed filter algorithm

for d at a in scan_d at a do
2: if r obot sees somethi ng then

hit_miss_array.append(1)
4: else

hit_miss_array.append(0)
6: end if

end for
8: for i of hi t_mi ss_ar r ay do

if hit_miss_Array[i] == 1 or AVG > 0.5: then
10: AVG = calculate Average of hit_miss_array, AVG_array.append(AVG)

else
12: AVG_array.append(0)

end if
14: end for

for i of AV G_ar r ay do
16: if AVG_array[i] == 0 and AVG_array[i - 1] != 0 then

windowArray = [AVG_array[i - 5], AVG_array[i - 4], AVG_array[i - 3], AVG_array[i - 2], AVG_array[i -
1]]

18: if windowArray has more than 2 zeros then
last 5 items in AVG_array are set to 0.

20: end if
end if

22: end for
Average the seen points and plot.
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