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Abstract

Guiding path tracing in light transport simulation has been one of the practical choices for variance reduction in production
rendering. For this purpose, typically structures in the spatial-directional domain are built. We present a novel scheme for
unbiased path guiding. Different from existing methods, we work in primary sample space. We collect records of primary
samples as well as the luminance that the resulting path contributes and build a multiple dimensional structure, from which we
derive random numbers that are fed into the path tracer. This scheme is executed completely outside the rendering kernel. We
demonstrate that this method is practical and efficient. We manage to reduce variance and zero radiance paths by only working

in the primary sample space.

CCS Concepts
eComputing methodologies — Ray tracing;

1. Introduction

Simulating light transport for global illumination effects has been a
standard approach for offline rendering. The ultimate goal is to cap-
ture both direct illumination and indirect illumination. Light trans-
port is simulated in such a way that a path, possibly composed of
multiple scattering events, connects a light source and the sensor.
Direct and indirect illumination are both collected along the path
and finally contribute to a pixel, possibly with non-zero luminance.
This process is modeled by the rendering equation [Kaj86]:

L(®o + X) = Le(00 < x)+

/QL(X — @) fs (00  x +— ©;)G(x, ®;)d;. W

As the integral of luminance in the rendering equation is high di-
mensional and generally impossible to solve analytically, Monte
Carlo methods are usually employed.

Despite the many advantages of Monte Carlo methods, the noise
and the slow convergence rate are two major pitfalls. Various im-
portance sampling techniques have been developed to reduce vari-
ance and accelerate convergence. The common goal is to find an
“optimal” distribution that can approximate the true integral. In
practice, a distribution that resembles the optimal distribution is
known to have good performance [Vea97].
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Two of the many open problems addressed in this work are:

e too many samples are wasted on paths that do not contribute to
the final result;

e inappropriate probabilities are assigned to paths that do not
match their actual contribution.

One approach to solve the above problems is to model light
paths as states in Markov chains (MC) and the rendering problem
is transformed into a Markov chain Monte Carlo (MCMC) pro-
cess. This approach is also called the Metropolis light transport
(MLT) [VG97]. The core idea of MLT is to mutate existing paths
by either altering them a little bit (small mutation) or by completely
sampling a new path (large mutation). The major advantage of MLT
is that once a path with significant luminance is found, the cor-
responding region in the path space will be explored extensively,
making MLT very suitable for scenes with difficult lighting con-
figurations. The scheme of doing both small and large mutations
also guarantees ergodicity. However, MLT suffers from many dis-
advantages, including start-up bias, poor stratification, and unstable
convergence. This prevents its adoption in production especially for
animation [VKS*14, HEV*16].

One new trend is to build distributions based on the results of a
few pilot runs and use these distributions for rendering. Most path
guiding methods use this technique. Existing path guiding schemes
usually work in the spatial domain. One intuitive approach is to
cache a sparsely distributed set of records in the scene. To make
use of them later on, firstly new entries are queried in the spatial
structure and then queried results are interpolated to give a final
record.
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We propose to perform path guiding in a different domain: the
primary sample space (PSS), i.e., the space of random numbers
that are used to generate paths. Our scheme works in two phases:
a collecting phase comprising of one or more iterations and a ren-
dering phase. During the collecting phase, we take as input a the
random numbers used by a few generated paths together with cor-
responding luminance values returned by these paths and build a
structure that will encode these combinations. During the render-
ing phase, we sample the previously built structure and use the re-
sulting samples to feed the path tracer. By working in the primary
sample space, we are able to build distributions and sample from
these distributions outside the path tracing kernel. This makes it
easy to add our method to existing solutions while still enjoying
the many benefits of being an unbiased Monte Carlo method.

2. Related Work

Importance Sampling Variance reduction is the goal for almost
all Monte Carlo optimization methods. For a simplified version
of Equation 1: L = L, + [ L(®) fs(®)G(®)d®, the corresponding
Monte Carlo estimator can be denoted as

; Ly L(@)fs(@)G
L=Le+=) ————, @)
N ,; p(e)
where L denotes luminance, fs denotes the bi-directional scattering
distribution fuction (BSDF), G denotes the geometry term and p is
the probability associated with the current sample ®;.

The goal of importance sampling is to make the shape of p(®) as
close to the numerator as possible [DBB06]. The original integrand
is composed of three terms: L, fs; and G, one of which in prac-
tice is considered the dominant factor. Sampling according to each
term has their own advantages. For instance, sampling G favors
light coming from above over light coming from the horizon, which
complies with the fact that irradiance is cosine weighted. In prac-
tice, this cosine weighted sampling is used as the core method to
generate an incoming direction for many BSDF implementations,
as for most of them there is no easy analytic inversion [PJH16].
Highly glossy materials generally benefit from sampling fs, as the
reflection cone is usually concentrated around a certain direction.
Sampling according to L usually works better for diffuse surfaces
since the BSDF is not peaky but it requires global knowledge,
which is typically difficult for scenes with unstructured lights and
complex visibility.

Multiple importance sampling (MIS) is a technique that com-
bines different sampling strategies [VG95b]. This is done by evalu-
ating the current configuration by using each strategy and weighing
the final contribution by balancing all involved pdfs using a certain
heuristic. The advantage of MIS is that it automatically gives a dis-
tribution that uses all involved strategies, thus making it less likely
to yield inappropriate probabilities. One direct application is in bi-
directional path tracing (BDPT) [VG95a], where for each sample
two pre-traced sub-paths are connected vertex-wise. The core ef-
ficiency therein is the massive reuse of existing path vertices and
MIS is the tool that makes it practical [HPJ12].

Many works try to importance sample one or more terms. Few
early BSDF models such as Phong can be explicitly inverted

and consequently be directly importance sampled [Shi91, War92,
LFTG97]. Sampling unstructured light sources, known as next
event estimation (NEE), is common practice [DBB06]. Similarly,
sampling structured light sources (such as an environment map)
has been investigated in [Deb08]. All of the above methods treat
one term in the equation as the dominant factor and provide good
results in respective applicable scenarios. Sampling according to
the product of multiple terms is studied in [CJAMIJ05], where a
structured environment map is pre-convolved with BSDFs using
wavelets.

Primary Sample Space In the original MLT, mutations are done
in the path space, a space P of paths with all possible lengths:

P=UP, 3)
i=2

Pi = {Xi|Xi = {X0,X1,X2,X3,.. -, Xi } }, “

where x; is a path vertex in the spatial domain. However, mutat-
ing in path space is difficult: a slight mutation of one vertex could
lead to a different path, possibly with different lengths and visi-
bility configurations. Although several methods such as Manifold
exploration [JM12] solve the path mutation problems for specular
surfaces, in practice mutating in path space is still difficult.

Primary Sample Space Metropolis Light Transport (PSSMLT)
offers a simplified version of MLT, where mutations are done by
changing random numbers in PSS instead of transforming vertices
in the original path space [KSKACO2]. The high dimensional vec-
tor of random numbers is then transformed into actual light paths
for final transport simulation. Many MLT variants are based on
PSSMLT. Replica Exchange Light Transport [KKKO09] introduces
jumping between mutation strategies. Multiplexed Metropolis Light
Transport (MMLT) [HKD14] improves efficiency by fixing path
length when mutating samples.

The core advantage of PSSMLT is that it transforms an ultra
high dimensional problem in path space into a reasonably high-
dimensional problem in PSS. This simplification makes MLT sim-
pler to implement and offers another advantage, which is not by
design: by altering random numbers only, we are still able to per-
form local importance sampling at certain locations. Our method is
based on this foundation and works in the same space.

Path Guiding Since we are simulating light transport, applying
importance sampling according to a certain distribution at a scat-
tering event to get an incoming direction translates to guiding a
random walk in path tracing.

The Photon map was first used to guide path tracing [JC95],
where at each bounce a 2D histogram over the directional domain
of surrounding flux information is used to sample an incoming di-
rection. Density estimation of photons is used to approximate the
L term. This achieves faster convergence than regular path tracing
at the expense of huge memory consumption and slow preprocess-
ing. Instead of using a fixed-resolution histogram, one can also use
cone-shaped splats on the hemisphere to represent directional dis-
tributions [HPO2]. The latter gives better results in terms of vari-
ance reduction than a fixed-resolution histogram at the expense of
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significantly more computation. Both above methods are particle-
based and require caching of certain information, which can be ex-
pensive.

A Gaussian mixture model (GMM) is used in [VKg* 14,
HEV*16] to represent incoming luminance. Their method features
an online learning scheme and the introduction of GMMs gives
superior performance over histogram or cone-shaped particle foot-
prints. However, for scenes with small light sources or complex
visibility, GMMs tend to be unstable and perform unpredictably.
Light transport is modeled as a Q-learning process in [DK17] and
previous samples are used to guide successive samples in an iter-
ative manner. This reinforced light-transport scheme, using results
from all samples, is thus biased but consistent [MGN17]. Recently
a simple path guiding scheme is introduced in [MGN17], where an
adaptive quad tree is used to represent a directional domain, while
each record is associated with a leaf node in a k-d tree of the spatial
domain. This method benefits greatly from averaging incoming lu-
minance over the entire leaf node, which guarantees an abundance
of information gathered in each iteration. This method also features
a reinforced iterative scheme, with which samples in each iteration
are solely guided by the distribution built in the last iteration. This
not only guarantees unbiasedness but also reinforces the distribu-
tion with minimum effort.

2.1. Distinction

In previous methods for path guiding, records of directional repre-
sentation are stored sparsely in the spatial domain. The main dis-
tinctive feature of our method is that we work in the primary sample
space and we do not explicitly build any spatial-directional struc-
ture.

3. Method
3.1. Formulation

Equation 1 can be re-formulated as a series:

n—1

L=BoE1+BoB1Er+...+ [ Bin+ ... 5)
i=0
where ; is the unit throughput f;G/p at the i-th bounce. E; denotes
the emission of the i-th intersected surface. Note that in this formu-
lation, direct illumination sampling is considered another path.

With reference to Figure 1, where a path of length 4 is illustrated,
we can model rendering as a function of random number inputs,
ie.

L= fpath()_()
x=T{u}) (6)
{u}! = {ug, w1, 12,13, },

where T({u}?) is a function that transforms certain dimensions
of random numbers {u}¢ into a path X. By building a multi-
dimensional distribution over this space, we approximate the full
integral implicitly, i.e., Lf;G.

It is worth pointing out that PSS is still constrained by the di-

mensionality. That is, we can only process sample vectors with a

(© 2018 The Author(s)
Eurographics Proceedings (© 2018 The Eurographics Association.

(u2, u3)

Light

Sensor

Pixel

(u0, ul)

Figure 1: A path of length 4, where the light source for the last
bounce is connected by either NEE or BSDF sampling. Suppose all
three bounces hit non-emissive surfaces. Then the final luminance
brought back by this path is L = B1B2B3E4. In this example, each
bounce takes two random numbers to generate an incoming direc-
tion. For the first two bounces, the corresponding path record is

{{u07u17u27u3}7L}'

limited length. In practice this makes sense, as shorter paths are
more likely to bring back luminance than longer ones [AK90]. To
keep the method unbiased, when extracting the random numbers of
a path from this structure, we do not stop the path on the position
defined by the last random numbers, but continue tracing the path
in a Monte-Carlo fashion.

With this formulation, we build a structure with input gathered
from a path tracer {{u}?,L} so that the distribution contained in
our structure is proportional to Hl'.’:_ol BiEx. (d = n x m where n is
the bounces we work on, and m is the amount of random numbers
used per bounce). In practice, in our examples, we have n = 2 and
m=2.

3.2. Overview

An overview of the general process is given in Figure 2. In a regu-
lar path-tracing solution, samplers are used to generate uniformly-
distributed random numbers. The main role of samplers is to main-
tain a certain level of stratification across dimensions, which is cru-
cial for exploration. In our method, we will use a structure to in-
fluence the random number generation. With proper and careful
transformation of the sample distribution and probability, we can
distribute samples in each dimension such that they can better con-
tribute to the final result.

Our method works in two phases: collecting and rendering,
which are iterated. In the first phase, records are collected to build
a structure. In the rendering phase, instead of using uniformly-
distributed random numbers to generate paths, we sample the struc-
ture to subsequently generate paths. Following the scheme as in
[MGN17], we fuse the collecting and rendering within one single
rendering budget, i.e., total samples.

More specifically, in the collecting phase, we use all path records
from the rendering stage (u, L), where u is the random number vec-
tor, which corresponds to the path, and L is the brought-back lu-
minance, add them to the structure and will refine it accordingly.
Initially, in the first iteration, the structure is empty and will simply
return uniformly distributed random numbers.

During the rendering phase, the successively sampled random
numbers will be based on the structure, which is influenced by the
path records collected in the previous iteration. This process can be
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Figure 2: A flow chart view of regular path tracing (above) and our
method (below). Notice how our method is inserted into an existing
pipeline and not inside the kernel.

seen as working in the primary sample space (instead of the spatial
domain plus the directional domain). Hereby, we are automatically
freed from the trouble of building sparsely distributed records and
the interpolations incurred.

The rest of the rendering process remains largely untouched;
only the random numbers that are used to feed the path tracer are
altered. Multiple importance sampling is used to combine samples
from our structure and regular uniform samples to ensure that sam-
ples cover corresponding domains properly without being stuck in
local maxima.

Within one iteration, all samples are generated from the same
unbiased distribution, thus results from one iteration remain un-
biased. However, when we combine results across iterations, they
would be no longer unbiased [DK17]. Thus, we adopt the scheme
as in [MGN17] and only use the last iteration when outputting re-
sults to the final image. This process is demonstrated in Algorithm
1.

3.3. k-d tree

In this part, we will detail our structure and how to use it to influ-
ence the random-number generation process.

Traditional path guiding methods work in a 5D domain where 3
dimensions are used for spatial domain and the remaining for direc-
tional domain. In our case, the more bounces we take into account,
the higher the dimension. As a common practice in implementa-
tion, each scattering event usually takes a fixed amount of random
numbers [PJH16]. Recent methods from Metropolis Light Trans-
port also assume fixed dimensions of random numbers when in-
verting paths to primary samples [Pan17]. It is therefore reasonable
to assume that each bounce consumes the same amount of random
numbers. We will denote n the amount of bounces and m the in-
volved random numbers, thus our k-d tree spans n X m dimensions.

For the high dimensional problem that we are facing, one proper
structure is the multiple dimensional binary tree [Ben75], also
known as the k-d tree. The advantage of using a k-d tree instead

Algorithm 1 Pseudo code for PSS path guiding. The only add-ons
to a PBRT style render kernel are highlighted in red.

procedure RENDER(scene, camera)

1:

2 .

3 for pixel in tile do

4 kdTree.Init()

5: for each iteration do

6 for each sample in iteration do

7 ray <— camera.generate(pixel)

8 {u}? « uniform random numbers
9 {u'}* + kdTree.SampleTree({u}?)

10: L « Li(scene, ray, {u'})
11: kdTree.Collect({{u'},L})
12: end for

13: kdTree.Update()

14: end for

15: end for

16:

17: end procedure

of a hyper grid or any other structure is that k-d trees have O(N)
memory efficiency and O(log N) query efficiency. We use a k-d tree
that switches axis in a round robin fashion and always splits in the
center of current node range.

3.3.1. Data Structure Design

We use a pointer-less indexed tree structure, so the left child is al-
ways next to the parent in memory and a child pointer indicates the
right child. We use a compact node structure of only 8 bytes, the
child offset for inner nodes, which is used as a sample counter in
leafs, is encoded on 31 bits, a leaf flag one bit, and the remaining
bits are used to encode a node value.

3.4. Tree Construction

Our method follows in spirit three dimensional binary trees in the
spatial domain [MGN17]. Whenever a path is complete, all path
vertices are traversed and luminance from a vertex onward is ac-
cumulated to the leaf node where the vertex is located. Within the
spatial tree leaf, all accumulated information is averaged and added
to an associated directional quad-tree in world space. Similarly, we
use all path records within a tile of pixels to construct our sample-
space tree. We also adopt an iterative scheme, where samples from
the current iteration are sampling results from the tree built in the
previous iteration. Using samples from the same distribution de-
fined by this tree gives unbiased results. For the initial iteration,
with an empty tree, the output remains uniform. Figure 3 shows a
visualization of two selected trees across iterations.

3.5. Tree Sampling

We maintain two trees: one for collecting and the other for sam-
pling. After each iteration, we copy the collection tree to the sam-
pling tree. We descend the k-d tree as in [MH97] from the root
node and select a child according to the values contained therein
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Figure 3: Visualizations of the first two dimensions in k-d trees in
two regions. In this case we use a two dimensional tree. Notice in
the first iteration, samples are uniformly distributed. In the second
iteration and the third iteration, samples are warped. Other regions
remain covered properly thanks to MIS. Notice also that the direc-
tional views are merely for visualization, all collection and sam-
pling are done in PSS.

compared to a random number. In this way, we change the sam-
pling process to follow previously recorded contributing samples.

Specifically, for node i, with a value recorded as v;, children
nodes j and k, the naive probability of selecting either one is set
to:

r_Vj Vj

S Jd - 7
Pj Vi Vit @)
1 Vi Vi
=Lt =_% 8
Pr Vi VitV ®)

Since we are dividing node i in half, the correct probability should
include this scaling factor. Thus the correct probability is;

I
Pj 2v;

P ' B 9
Pj 1/2 vj+vk ©)
T (10)
k 1/2 Vj+vk'

The denominator in the expression of the current depth will cancel
all the way to the root node and the probability of a node i being
sampled will depend on node depth and node value:
zdi Vi
pi=— (1)

b
Vroot

where d; is the depth of node i.

Once at the leaf node, the leaf node represents a n X m-
dimensional range (the range covered by the k-d tree leaf). We then
sample a uniformly distributed vector u € [0,1)"*™ and multiply
it with the ranges to derive our new random variables to be used
to define a path. To support paths of arbitrary lengths, beyond n
bounces, we can simply feed the path tracing kernel with uniform
random numbers after having used the components of u.

To be able to weigh the contribution of the chosen path cor-
rectly according to its probability, we keep track of the probability
of the ranges that are represented in the leaf in form of a vector
(pdfo,...,pdﬁgil,...pdf;’l:ll). If all values in the tree are one,
these probabilities would correspond to the size of the k-d tree cell.
With the values in the nodes, these probabilities need to be adapted
accordingly during the descent.

(© 2018 The Author(s)
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3.6. Rendering

Having derived random numbers to produce a path, we need to
properly weigh its contribution. In our case, for bounce n, the sam-
ple probability p.sr‘lample is comprised of two parts; the conditional
probabilities of previous dimensions and the probabilities of the
current bounce:

n—1 m—1
1 i
pgample = P(Pn|p:ample) = H plsample H Pdf]r'l (12)
=0 =0

where p;ample is the sample probability of bounce i, p; is the prob-
ability of the j-th random number for bounce n. This sample prob-
ability is multiplied with the Jacobian ||J|| of the BSDF sampling
method, e.g., for cosine weighted sampling where the sample is
transformed into a direction m:

1 cos©
p(w) = W X Psample = T X Psample- (13)

To avoid over exploration of certain region in PSS due to our re-
inforced scheme, MIS is used to combine samples from our struc-
ture and the original uniform samples. A guide probability is used
to balance between the two. In all our tests, we use a guide proba-
bility of 0.5.

3.6.1. Record Collection

We start with an empty tree that has a uniform output. After the
first iteration, to insert samples from the rendering stage, we take a
path with random numbers « and luminance L. We traverse the tree
according to u. At inner nodes, we simply add the path record value
and then check into which child to descend. At leaf nodes, we not
only add a path record value, but also increase the count variable in
the corresponding leaf. When a threshold for the count is reached
and increasing depth is still permissible, we split the current leaf
node into two and update index information accordingly.

4. Implementation and Results
4.1. Implementation

We implemented our method in PBRT [PJH16] as a guided uni-
directional path tracing integrator. The k-d tree is implemented as
an acceleration structure. We build a k-d tree for each tile, as this
requires minimum parallel implementation effort and distant pix-
els from other tiles are less likely to share correlated illumination
condition.

Memory-wise, due to our scheme of working within tiles, the
maximum memory is bounded by the number of threads times
maximum memory for one tree. In our test where we use an eight
core machine and a k-d tree max depth of 20, memory is in the-
ory bounded by 128 MB. However in our low dimensional tests,
we never observe higher memory consumption than 32 MB for all
k-d trees during the whole rendering process. Since in our scheme
memory is bounded and not an issue, we focus our verifications on
other criterias.
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4.2. Comparing Standards

In all our tests, we compare our results with non-guided results.
Since the main objective of this work is to explore the possibility of
guiding paths in PSS, we do not compare our results with existing
path-guiding methods that work in the spatial-directional space.

Two comparing criteria corresponding to the two problems men-
tioned in section 1 are:

e Zero-radiance path ratio refers to the ratio of full paths that
do not contribute to final results, as well as the NEE sampled
direct-illumination subpaths that are occluded.

e Mean square error (MSE) is a common tool to evaluate conver-
gence rate. Typically, the lower the MSE, the lower the variance.

To better visualize the difference between our method and stan-
dard path tracing, we off NEE at the first bounce. We leave NEE on
from the second bounce onwards to improve finding non-zero light
paths.

We test our method in four closed scenes with complex illumi-
nation configurations:

e Ajar door scene: most of the image is lit by indirect illumination

e Dinning room scene: featuring complex visibility because of the
window blinds

e Staircase scene: most of the image is lit by an area ceiling light,
regions under the staircase have difficult light configuration

e Kitchen scene: complexity visibility

All scenes are rendered at a resolution of 800 x 450 and a tile size
of 16 x 16.

4.3. Results

We render four scenes with different sample budget (collection plus
rendering) and compare them against a regular path tracer with
the same sample budget. The reference images are rendered with
the regular path tracing integrator using around 10k samples per
pixel. In all our guided renderings, we use 1/8 total samples for the
collection phase and the remaining 7/8 samples for the rendering
phase. For sample rate above 1024, we use two iterations for the
collecting phase, each using an equal amount of samples.

Visual results are shown in Figure 4, Figure 5, Figure 6 and Fig-
ure 7. In all our figures, we use the notation of “collection” sam-
ples + “rendering” samples, e.g, 64 + 448 means 64 samples are
collection samples and the remaining 448 are rendering samples.
Convergence rates (MSE-spp) of all tests are plotted in Figure 8.
Zero radiance paths statistics are given in Table 1.

Observations Comparing our guided results with non-guided re-
sults at the same budget, we have the following observations:

e In all our tests, our guided results show better overall conver-
gence in terms of MSE, where in the best case we managed to
reduce costs by 39.5% in Figure 7.

e In regions where the first bounces make a major difference, our
results show obvious improvement over non-guided results. See,
e.g., red region in the dining room scene in Figure 5. In regions,
where more than two bounces are needed to connect the light

source to the sensor, the improvement is minor or none.

e In all our tests, we managed to reduce the ratio of non-
contributing paths. In the best case by 12.77% in the Ajar scene.

e With our iterated scheme, this ratio drops further, as the sample
budget increases. While for the non-guided tests, this ratio stays
at the same level. This is to be expected, since samples in later
iterations are guided towards lit regions.

5. Discussion

Our method reduces non-contributing paths and overall variance,
showing the effectiveness of the primary sample space-path guid-
ing. When comparing same sample rate quality, especially in the
dinning room scene and the kitchen scene, our method significantly
outperforms unguided results.

In all our tests with building distributions in primary sample
space, results show that this approach is not only viable, but also
efficient. Within a fixed rendering budget, even 1/8-th of the sam-
ples will result in a proper distribution that improves the result. One
of the core advantages of our approach is that we are working com-
pletely outside the rendering kernel, all we need to do is modify
samplers so that their outputs are no longer uniform.

Higher dimensions In our tests, we are only working with two
bounces and use two random numbers for this bounce (hence,
n = m = 2). The result we get in the staircase scene shows that
for regions that can reach the light source via a two-bounce path,
the improvement is evident. However, for regions that require more
bounces, our method provides little help for them. These regions
remain noisy, similar to the result of an un-guided path tracer.

Adaptive structures In our implementation, we use one k-d tree
per tile and average information gathered in this tile. It can be help-
ful to make our structure adaptive. The fact that most of the ob-
viously improved regions in our tests are flat and smooth surfaces
also complies with this point. To this extent, we could define tiles
according to scene geometry, e.g., the surface normal difference.

Combination with existing methods The independence of the
rendering kernel and the spatial domain, makes it easy to combine
our scheme with existing path-guiding methods using directional
records in spatial structures. One possible combination is to work
in a “relay race" mode, in which the duty of path guiding is handed
over to the spatial-directional structure from our primary sample
space structure after a few bounces.

6. Conclusion and Future Work

In this work, we presented a novel scheme for unbiased path guid-
ing in primary sample space, which we showed to be practical and
efficient. Even when sparing only a small portion of the total ren-
dering budget on the collection step the results typically lead to a
better outcome than using the entire budgets for rendering alone.
Our scheme of working in primary sample space is easy to imple-
ment and can be comfortably added onto any existing Monte Carlo
rendering system.

(© 2018 The Author(s)
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512 MSE 0.0030744
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512 MSE: 0.018208 1024 MSE: 0.013109 2048 MSE: 0.0097646 ~ 4096 MSE: 0.0076802

64+448 MSE: 0.015039 '128+896 MSE: 0.0106658 256+1792 MSE: 0.00812855 512+3584 MSE: 0.0067486

Figure 4: The Ajar scene.

4096 MSE 0.00055087

512+3584 MSE 0.00042622

128 MSE 0.01152982 256 MSE 0.0059134

16+112 MSE 0.008141752 32+224 MSE 0.0041369

1024 MSE 0.00163943 2048 MSE 0.0009080

64+448 MSE 0.00214330
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128+896 MSE 0.00114818 256+1792 MSE 0.0006681

Figure 5: The Dining room scene.
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Reference MSE: 0.01308987 MSE: 0.0077334

Ld

sInQ

MSE: 0.01079915 MSE: 0.0066086
MSE: 0.0048977 MSE: 0.00344243

Ld

iile)

MSE: 0.0043931 MSE: 0.00320734

Figure 6: The staircase scene. Notice the improvement in pink regions.

Reference 512 MSE 0.001217212 1024 MSE 0.00063779
o
—~
o
c
. a
64+448 MSE 0.000617857 128+896 MSE 0.00032123
64 MSE 0.00931987 128 MSE 0.00473832 256 MSE 0.00237285 2048 MSE 0.00035252 4096 MSE 0.000207535
d
—
c
%

8+56 MSE 0.00700874 16+112 MSE 0.00298661 324224 MSE 0.00131502  256+1792 MSE 0.00018706 512+3584 MSE 0.00012555

Figure 7: The kitchen scene.
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Figure 8: Convergence plot of all our tests.
Scene Method 64 spp 128spp 256spp S12spp 1024 spp 2048 spp 4096 spp
Ajar PT 96.58% 96.58% 96.59% 96.59%  96.58% 96.58% 96.59%
Ajar Ours 94.70%  93.68% 92.37% 90.72% 88.71% 86.50% 84.26%
Dining PT 87.13% 87.13% 87.13% 87.13% 87.13% 87.14% 87.14%
Dining Ours 87.33% 87.24% 87.08%  86.92% 86.75% 86.62% 86.53%
Kitchen PT 97.50% 97.50% 97.50% 97.50%  97.50% 97.50% 97.50%
Kitchen Ours 96.46%  95.52% 94.20% 92.61%  90.94% 89.40% 88.11%
Staircase PT 66.51% 66.52% 66.52% 66.52%  66.52% 66.52% 66.52%
Staircase  Ours 65.93% 6538% 64.61% 63.72%  62.74% 61.76% 60.76%

Table 1: Zero radiance path ratios of all our tests. Notice in all our tests, our method manages to bring down zero radiance paths ratio.
Notice also that as more and more samples are used for the collection phase, zero-radiance path rates drops accordingly. While in the
non-guided tests, this ratio remains at the same level regardless of the sample rate. This demonstrates the effectiveness of our scheme.

For future work, we would like to extend our idea to higher di-
mensions and to bi-directional path tracing.
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