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Abstract 
When modelling a structure-soil system, interaction stresses at the interface of the structure and the surface 
of soil layer influence the dynamic behaviour of the system. These interaction stresses are not accounted 
for in many simplified models that evaluate the behaviour of the soil layer and the structure separately. 
Modelling a fully coupled system requires extensive computation that changes with every alteration to the 
model. Having a general framework of equations that can be easily adapted to each specific case can 
therefor be of great value. 

In this thesis, we model the soil layer as a homogeneous, elastic continuum with two boundary conditions. 
One boundary condition is a kinematic excitation at the bottom of the soil layer, which is formulated in terms 
of a Fourier series with prescribed coefficients. The boundary condition at the top of the soil layer is a stress 
function, formulated as a Fourier series with unknown coefficients. The general solution of the equation of 
motion is then solved in terms of these known and unknown coefficients. The structure is modelled as an 
inextensible mass or as a mass-spring system, which is excited by an external force at the interface with the 
soil layer, formulated in the same Fourier terms and unknown coefficients as for the soil layer. The unknown 
coefficients are solved by means of an interface condition between the soil layer and the structure. 

This computational method provides an equation of motion for the soil layer that depends on the applied 
structure model. When the structure model is altered, for example by a mass-spring system instead of a 
single mass, only the interface condition has to be reevaluated to find a solution for the equation of motion 
of the soil layer and the structure. This thesis shows that this computational model, where we write the 
specific solution to the equation of motion in terms of unknown Fourier series coefficients, does indeed 
work. 

By analysing the stress distribution at the interface between the soil layer and the structure for different 
frequencies, results show that the stress is resonant at the natural frequencies of the system. The stress 
distribution is nearly uniform for most frequencies, but the stresses increase at the sides of the interface at 
the natural frequencies. It can also be shown that the interaction stresses increase with the frequency. 

When analysing various transfer functions, the influence of the stress interaction between the soil layer and 
the structure is most visible. Computing a fully coupled system shows that the natural frequencies of the 
system are affected by the structure on the top of the soil layer. First, the natural frequencies are partially 
shifted to lower frequencies. Secondly, not all natural frequencies lead to infinite resonance: the transfer 
functions show an alternating pattern of finite and infinite responses to the excitation at the natural 
frequencies. 

The transfer functions of added mass-spring systems, for example, used to model multi story buildings, also 
shows the influence of the interaction stress compared to the isolated model of the structure. The coupled 
system shows again that the natural frequencies are partially shifted and not all natural frequencies lead to 
infinite resonance. 

It can be concluded that the interaction stress in a fully coupled system has a significant impact on the 
system and should be taken into account when modelling a structure-soil system. The tested computational 
method is good way to do so. 
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Symbols 

Lower case characters 
!  distance to edge of the mass along the x coordinate 
!  damping coefficient 
!  wave speed 
!  space coordinates x, y and z 
!  imaginary unit 
!  coefficients of mode m and n, respectively 
!  displacement function at boundary in time and space domain 
!  displacement function at boundary in frequency and space domain 
!  displacement function at boundary in frequency and wave number domain 
!  stress function at boundary in time and space domain 
!  stress function at boundary in frequency and space domain 
!  stress function at boundary in frequency and wave number domain 
!  spring stiffness [Pa] 
!  wave number of mode m and n, respectively 
!  components of wave number in respective direction 
!  mass of the top block [kg] 
!  integers 
!  time [s] 
!  particle displacement of soil in direction i in time and space domain 
!  particle displacement of soil in direction i in frequency and space domain 
!  particle displacement of soil in direction i in frequency and wave number domain 
!  displacement of mass m in time domain 
!  displacement of mass m in frequency domain 
!  displacement of mass M in time domain 
!  displacement of mass M in frequency domain 
!  acceleration of mass m in time domain 
!  acceleration of mass M in time domain 
!  space coordinate x 
!  space coordinate y 
!  space coordinate z 

Capitals 
!  a closed contour in the complex plane 
!  Young’s modulus [Pa] 
!  Force [N] 
!  shear modulus [Pa] 
!  Heaviside step function 
!  bulk modulus [Pa] or flexibility matrix 
!  depth of source layer from surface [m] 
!  mass of the lower block [kg] 
!  specific values for integer p 

a
c
cs
i, j, k
i2

fm, gn
f ( . )
f̃ ( . )
˜̃f ( . )
g( . )
g̃( . )
˜̃g( . )
k
km, kn
ks, kx, kz
m
m , n, o, p
t
ui
ũi
˜̃ui
um
ũm
uM
ũM··um··uM
x
y
z

C
E
F
G
H( . )
K
L
M
P, Q
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!  return distance of periodic function in the space domain [m] 

Lower case Greek symbols 
!  pole in complex plane 
!  parameter representing infinitely small viscous damping 
!  shear angle 
!  Dirac-delta function 
!  parameter representing infinitely small viscous damping 
!  normal strain component on ! -surface in ! -direction, with !  
!  shear strain component on ! -surface in ! -direction, with !  

 angle in complex kx-plane 
!  Poisson’s ration, lateral contraction coefficient 

 density of soil [kg/m3] or magnitude of complex value 
!  normal stress component on ! -surface in ! -direction, with !  
!  shear stress component on ! -surface in ! -direction, with !  
!  circular frequency [rad/s] 
!  eigenfrequency of mass-spring system [rad/s] 

Greek capitals 
!  contour around a singularity in the complex plane 

Subscripts 
!  the !  refers to the partial derivation with respect to the space coordinate !  

  

X

α
β
γ
δ( . )
ε
εii i i i = x, y, z
εij i j i, j = x, y, z
θ
ν
ρ
σii i i i = x, y, z
σij i j i, j = x, y, z
ω
ωn

Γ

uy, j , j j
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1 Introduction 

1.1. General 
The world we live in never stands still. Everything from subatomic particles to entire galaxies are always 
moving. People move and nature around us moves. The structures we build are constantly subjected to 
forces that vary both in time and in space. These dynamic forces influence the behaviour of a structure 
significantly and in a way that static analysis can not account for. 

One way that structures are dynamically loaded is through moving soil. These loads can be human induced 
by construction work, piling in particular, which is becoming an ever increasing problem in dense cities 
where nearby buildings are influenced by the vibrations in the soil. 
Human made (underground) transportation systems are also notorious for creating waves in the soil. Many 
modern transportation systems are designed to reduce transportation time, for example by building 
railroads underground and increasing the velocity of trains. Modern trains can reach velocities of more than 
500 km/h where surface waves in the soil are often limited to velocities well below that, depending on the 
soil composition. When trains exceed the wave propagation velocity, wave radiation occurs and dynamic 
stresses become very relevant in engineering mechanics of nearby structures. 
Earthquakes are another obvious source for dynamic loads through the soil and have become increasingly 
relevant in the past few years in Groningen, where human induced earthquakes cause a lot of damage to 
nearby buildings that were not designed for this type of loading. 

Implementing dynamic analysis in structural engineering is essential in many cases and a good 
understanding of soil dynamics to do so is very important. Fortunately, when modelling soil as an elastic 
continuum, the dynamic behaviour of soil is well understood and derived in a few governing equations that 
we will touch upon in this dissertation. However, soil in real life is not just an endless (half)space. For 
practical application of this theory, we need to look beyond the elastic continuum and take a closer look at 
the boundaries. For example, we may find buildings or other (structural) objects at the soil surface that need 
to be accounted for when modelling the soil. One of the questions for this thesis that arises is: how does the 
interaction with objects on the surface impact the behaviour of waves in the soil? 

In this study we consider a homogeneous elastic continuum as depicted in figure (1.1) that is excited by a 
prescribed dynamic displacement as a function of time and space at the bottom at a depth of L, e.g. by an 
earthquake in a deeper soil layer. At the surface of the soil layer, we consider three cases: the first case is a 
free field case, where there are no objects on the soil (figure (2.1)). In the second case, an inextensible 
mass M of width 2a, from -a to a, rests on the soil. In the third case, we consider a double mass-spring 
system resting on the soil, where one mass M of width 2a is in direct contact with the soil and the other 
mass m is connected with a spring to mass M (figure (4.1)). The continuum is considered infinite in 
horizontal directions. 

The challenge we face is to formulate applicable governing equations, i.e. an equation of motion for the soil 
and appropriate boundary conditions at the top and bottom of the elastic layer in a general way, so that it 
can be tailored to more specific scenarios. 

1.2. Aim and scope 
This study aims at providing a general framework for calculations that can be used with various kinematic 
and natural boundary conditions. This framework can then be used to evaluate different scenarios where 
excitation area, size and type of the mass and the shape and frequency of the excitation may vary. By 
choosing a modular approach, various mass systems can be applied to solve the interface condition 
between the soil and the mass to adopt any particular case. This modular approach means that the soil 
system and the mass system are first evaluated independently by means of a generalised boundary 
condition at the interface that can be applied to any mass system. This allows us to use the framework for 
the soil for multiple cases. The generalised boundary conditions of the soil layer and the mass system are 
then solved with an interface condition to create a fully coupled system. This method contains four 
fundamental steps: 
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• Formulate an equation of motion for the soil layer. 
• solve the general solution of the equation of motion in terms of a known (kinematic) boundary condition f 

and an unknown (stress) boundary condition g at the interface. 
• Formulate an equation of motion for the mass system with an unknown stress boundary condition g. 
• solve the unknown boundary condition g of both systems by means of an interface condition between the 

systems. 

Fourier series will play an important role for this goal, as they allow us to define any shape of the stress 
distribution g between the soil and the mass. 

The benefit of this approach is that the mass system can be extended into a multi degree of freedom 
system without affecting the governing equation of the soil, which makes such an extension far more 
accessible. You will also have a fully coupled system once the interface condition is solved, so the influence 
of all parts of the system are taken into account when evaluating the response of any of the parts. The 
alternative would be to re-evaluate the entire governing equation for the soil for every case or to evaluate 
responses of isolated systems, which will lead to less accurate results. 

The main research question for this thesis is: will this computational method work? 

When studying soil dynamics, multiple types of waves can be distinguished and all of these types should be 
evaluated and combined for a realistic model. These waves include longitudinal waves where particles 
move in the same direction as the wave propagation, translational waves where the particles move 
perpendicular to the wave propagation direction and surface waves, which can have various particle 
motions along the surface of a continuum. Translational waves (or “shear waves”) can be further divided in 
two categories. Considering the situation as in figure (1.1) from the x-z-plane, one can distinguish shear 
waves where: 

!2

Figure 1.1: a homogeneous elastic soil layer subjected to dynamic, kinematic loading at bottom surface. 
The red arrows at the top represent the stress function g and the blue arrows at the bottom represent the 
displacement function f.



1. particles move out of plane. This means that for every (in plane) propagation direction of the wave, 
particles move exclusively horizontally and therefor are appropriately called “horizontally polarised shear 
waves” or “SH-waves”.  

2. particles move in plane. If we consider a horizontal propagation of a wave (i.e. parallel to the x-axis), this 
means that the particles move exclusively vertically (i.e. parallel to the z-axis) and therefor are 
appropriately called “vertically polarised shear waves” or “SV-waves”. Note that when the wave 
propagates under an angle (but still in plane), particles do not strictly move vertically with respect to the 
global coordinate system. The particle motion then has to be decomposed in a (coupled) horizontal and 
vertical motion. 

This study solely focusses on SH-waves. In most cases it will be essential to combine the results of this 
study with those of studies for other wave types, but that will be outside of this study’s scope. We also only 
focus on steady-state behaviour of the wave. 

In this study, we work with a plane situation. An essential assumption that we make is that the gradient out 
of plane is zero, i.e. that ! . This implies that the “depth” along the y-axis is infinite, which should 
be considered carefully when using this model for practical application. 

The only excitation of the soil that is considered, is by a displacement at the bottom of the soil layer at depth 
! . No excitations from the sides or inside the continuum are considered. Because the continuum is 
infinite in horizontal direction, the radiation boundary condition should be satisfied. The soil is assumed to 
be homogeneous. 

1.3. Outline 
In chapter 1 we have so far analysed a problem in the context of soil dynamics and defined the goal of this 
thesis. We have established a reference frame for the research to come and we have set the scope on 
assumptions and limitations of the research. The research of this thesis is heavily oriented on finding 
mathematical expressions for dynamical behaviour where we consider three different cases: free field, 
single mass and double mass-spring system. These systems are evaluated in chapter 2, 3 and 4, 
respectively. These chapters are the core of this thesis. 

Chapter 2 is entirely devoted to mathematical operations for the free field case and sets a basis for chapter 
3 and 4. Chapter 2 is divided in 3 sections that each contain a set of mathematical operations. 

Section 2.1 derives the applicable equation of motion of an elastic continuum that is used to model the soil. 
Starting point is a generalised equation of motion that holds for a homogeneous elastic continuum that will 
be manipulated for the given case under the assumptions as determined in chapter 1. One important 
operation that is applied is the Fourier transform to the frequency domain and the wave number domain in 
order to reduce the equation of motion from a partial differential equation to an ordinary differential equation. 
A general solution for the equation of motion in the frequency and wave number domain will be the outcome 
of this section. 

Section 2.2 derives the boundary conditions that are needed to solve the general solution from section 2.1. 
These boundary conditions will be defined by means of Fourier series in order to adapt them to any 
arbitrary boundary condition that can vary in time and space. One boundary condition (at ! ) will be the 
input function for the dynamical behaviour of the soil and is prescribed through coefficients in the Fourier 
series. The other boundary condition (at ! ) is defined for the free field case specifically, which means a 
stress-free surface. 

Section 2.3 applies the boundary conditions to the general solution so that the specific solution is expressed 
in terms of the boundary conditions. After this, the solution (that is still expressed in the wave number 
domain) is transformed back to the space domain through the inverse Fourier transform. With this solution, 
the transfer function of the free field soil layer is evaluated.  

In chapter 3, we look at the case where a single mass rests on the soil layer. We use the general solution 
for the equation of motion for the soil from chapter 2. 

In section 3.1, we formulate new boundary conditions. We use the same excitation at !  as in chapter 2 
and we formulate a generalised stress function g at ! . The boundary conditions are transformed (with 

du /dy = 0

z = L

z = L

z = 0

z = L
z = 0
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the Fourier transform) to the frequency- and wave number domain to match the general solution that was 
derived in chapter 2. 

Section 3.2 applies the boundary conditions to the general solution so that the specific solution is expressed 
in terms of the boundary conditions, i.e. a Fourier series with known coefficients fm and a Fourier series with 
unknown coefficients gn. After this, the solution (that is still expressed in the wave number domain) is 
transformed back to the space domain through the inverse Fourier transform. This inverse Fourier transform 
will be done with the method of contour integration and the residue theorem. This section provides the 
solved equation of motion for the soil with a generalised boundary condition that can be used for any 
attached multi degree of freedom mass-spring system. 

Section 3.3 derives the equation of motion of the single mass system. The boundary condition from section 
3.1 at !  is used as the external force, which will then also give meaning to this (so far undefined) 
boundary condition. 

Section 3.4 finally solves the interface condition between the soil system and the mass system. Considering 
that the stress function is a Fourier series with n Fourier components, both equations of motion for the soil 
and the mass are a summation of n terms. By applying the orthogonality property, we can derive a flexibility 
matrix that relates the stress coefficients gn to the kinematic excitation coefficients fm. These coefficients can 
then be solved. Of interest will be the convergence of these coefficients for higher order Fourier 
components, the convergence of the stress distribution along the interface and the transfer function of the 
soil and mass. 
We compare the transfer function to the one from the free field case to see the influence of the mass on the 
dynamic behaviour of the soil. 

In chapter 4, we look at the case where an additional mass-spring system is attached to the mass resting 
on the soil layer. We use the specific solution in terms of f and g for the equation of motion for the soil from 
chapter 3 again. 

In section 4.1, we derive a new equation of motion for the mass-spring system. This will be a set of coupled 
equations for both masses. The boundary condition from section 3.1 at !  is used as the external force. 
The equations are transformed to the frequency domain to match the interface with the soil. 

Section 4.2 will solve the interface condition between the soil system and the mass-spring system, which 
means that the displacement of the lower mass that is in contact with the soil, must be the same as the 
displacement of the soil. The orthogonality property is again applied to derive a flexibility matrix that relates 
the stress coefficients gn to the kinematic excitation coefficients fm. 
We will look at the convergence of the Fourier components, the stress distribution and the transfer function 
of the soil again. We compare the transfer function to the free field case and the single mass case to see 
what influence the added mass spring system has. We will also evaluate the transfer function for the 
additional mass and compare it to an oversimplified, isolated model. This comparison should tell us how 
useful it is to consider a fully coupled system (soil and structure) rather than the structure alone. 

In chapter 5 we evaluate the results further and conclude our research questions. We finalise the thesis with 
suggestions for further research. 

Appendix A derives the equation of motion of an elastic homogeneous continuum that forms the basis of the 
equation of motion in chapter 2. 

Appendix B explains the concept of contour integration in a complex plane and the application of Cauchy’s 
residue theorem. This theory is used in section 2.3 to evaluate the inverse Fourier transform of the general 
solution the equation of motion. 

z = 0

z = 0
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2 Free field 

To find the response at the surface of the soil to a time dependent displacement in deeper layers of the soil, 
we need to derive set of governing equations to describe the dynamic behaviour of the soil, modelled as an 
elastic continuum. The problem description consists of the equation of motion for an elastic continuum and 
two boundary conditions. One boundary condition describes the motion of the deeper soil layer that acts as 
the source of the dynamic behaviour and the other boundary condition describes the free traction (! ) 
at the surface. 

2.1. Equation of motion of the elastic continuum 
A Cartesian coordinate-system is used in three dimensions. The coordinate system is called the x-y-z-
system. The displacement is described by three components: ! , !  and !  in x, y, and z direction 
respectively. The equation of motion of an elastic continuum reads 

!  (2.1) 

with 
 !  the bulk modulus [Pa] 
 !  the shear modulus [Pa] 
 !  the particle displacement in direction i 
  the density of the continuum [kg/m3] 
 !  space coordinates x, y and z 

σzy = 0

ux uy uz

(K −
2
3

G) uk,ki + G (ui, jj + uj,ij) = ρ ··ui

K
G
ui
ρ
i, j, k
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Figure 2.1: a homogeneous elastic soil layer subjected to dynamic, kinematic loading at bottom surface. 
The top surface is stress free.



This equation is derived in appendix A. Note that this equation includes longitudinal waves (also known as 
“primary waves” or “P-waves”) and transverse waves (also known as “shear waves” or “secondary waves” 
or “S-waves”). 

In a 3D-space, two transverse waves can be distinguished; 
• vertically polarised shear waves (“SV-waves”), where particles move along the vertical axis , 1

perpendicular to the direction of the wave propagation. 
• horizontally polarised shear waves (“SH-waves”), where particles move along a horizontal axis, 

perpendicular to the direction of the wave propagation. 

In this thesis, we will look specifically at SH-waves. To do so, we look at the x-z-plane under the following 
assumptions: 

!  (2.2) 

Under these assumptions, equation (2.1) is only non-trivial for ! , so: 

!  (2.3) 

Under the same assumptions, this can be reduced to 

!  (2.4) 

The summation convention applies, which means that identical indices are summed over all space 
dimensions. This means, explicitly: 

!  (2.5) 

Again, under the assumption of (2.2), the equation of motion can be further reduced to the final form that is 
applicable to this particular problem: 

!  (2.6) 

Or, in a different notation: 

!  (2.7) 

Rewriting equation (2.7) with all constants to the right hand side results in 

!  (2.8) 

{
∂u
∂y = 0

ux = uz = 0

i = y

(K −
2
3

G) uk,ky + G (uy, jj + uj,yj) = ρ ··uy

Guy, jj = ρ ··uy

G (uy,xx + uy,yy + uy,zz) = ρ ··uy

G (uy,xx + uy,zz) = ρ ··uy

G ( ∂2

∂x2
+

∂2

∂z2 ) uy = ρ
∂2

∂t2
uy

( ∂2

∂x2
+

∂2

∂z2 ) uy =
ρ
G

∂2

∂t2
uy

 For SV-waves that do not propagate perpendicular to the vertical axis, the particle displacement actually 1

has a vertical and a horizontal component. This situation is beyond the scope of this thesis and therefor not 
further elaborated.
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Equation (2.8) is a partial differential equation with respect to space x, space z and time t. This makes it 
particularly complicated to find the general solution to the problem. In order to circumvent this complication, 
we apply the Fourier transform with respect to t and x to transform the partial differential equation into an 
ordinary differential equation in the frequency- and wave number domain. 

The Fourier transform over time and the inverse Fourier transform over frequency read 

!  

 (2.9) 

!  

with 
 !  the imaginary unit 
 !  time 
 !  frequency 

The physical interpretation of the Fourier transform (2.9) is that we decompose the wave in the time domain 
into a superposition of waves in the frequency domain. 
Applying the Fourier transform (2.9) to the equation of motion (2.8) yields: 

!  (2.10) 

Defining the wave speed in the medium as 

!  (2.11) 

and the squared wave number in the medium as 

!  (2.12) 

we can rewrite (2.10) as 

!  (2.13) 

The Fourier transform over space x and the inverse Fourier transform over wave number kx read: 

!  

 (2.14) 

!  

with 
 !  space coordinate x 
 !  wave number in x direction 

ũy(x, z, ω) = ∫
∞

−∞
uy(x, z, t)e−iωtdt

uy(x, z, t) =
1

2π ∫
∞

−∞
ũy(x, z, ω)eiωtdt

i
t
ω

( ∂2

∂x2
+

∂2

∂z2 ) ũy = − ω2 ρ
G

ũy

cs =
G
ρ

ω2 ρ
G

=
ω2

c2
s

= k2
s

( ∂2

∂x2
+

∂2

∂z2 ) ũy = − k2
s ũy

˜̃uy(kx, z, ω) = ∫
∞

−∞
ũy(x, z, ω)eikx xd x

ũy(x, z, ω) =
1

2π ∫
∞

−∞

˜̃uy(kx, z, ω)e−ikx xdkx

x
kx
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Analogue to the Fourier transform over time, the physical interpretation of the Fourier transform over space 
(2.14) is that we decompose the wave in the space domain into a superposition of waves in the wave 
number domain. 

Applying the Fourier transform (2.14) to the equation of motion (2.13) results in an ordinary differential 
equation: 

!  (2.15) 

Note that both ks and kx are wave numbers and that kx is the horizontal component of ks. We can therefor 
combine both quantities in terms of the vertical component of the wave number kz: 

!  (2.16) 

This reduces equation (2.15) to 

!  (2.17) 

The general solution to the homogeneous equation (2.17) reads 

!  (2.18) 

2.2. Boundary conditions 
In order to solve the two unknown quantities (!  and ! ) in the general solution (2.18), we need two 
boundary conditions. Because this is a free field scenario, we can define a zero stress condition at ! .  
At ! , we define an input displacement function as a Fourier series with predetermined coefficients ! .  

The benefit of using Fourier series as a boundary condition lies in the fact that any function of space and 
time can be described, providing a framework for many cases. In this thesis we limit our case to a uniform 
displacement of the excitation, but we will use the Fourier series notation so that it can be easily adapted for 
other cases. 

2.2.1. Boundary condition at !  
For the free end of the soil layer, we require the shear stress !   to be zero. The stress-free boundary 
condition in frequency- and wave number-domain reads  

!  (2.19) 

2.2.2. Boundary condition at !  
We define the displacement !  of the deep layer as 

!  (2.20) 

with 

 !  wave number of mode m 
 !  coefficient of mode m 

−k2
x ˜̃uy +

∂2

∂z2
˜̃uy = − k2

s ˜̃uy

k2
s − k2

x = k2
z

d2

dz2
˜̃uy + k2

z ˜̃uy = 0

˜̃uy = Aeikzz + Be−ikzz

A B
z = 0

z = L fm

z = 0
σzy

G
d ˜̃u(kx, z, ω)

dz z=0
= 0

z = L
uy

f (x, t) = ∑
m

fm(t)e−ikm x

km
fm
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The wave number !  of mode m is defined as 

!  (2.21) 

with 
 !  !  
 !  the return distance of the function in the space domain 

Note that the function for !  is a periodic function, which means that the shape of the excitation repeats 
itself at the distance ! . If this characteristic is not desired, it can be limited by a “box function”. This will 
however make equation (2.20) much more complicated, as we will see in Chapter 3. Alternatively, the 
influence of the periodic characteristic can be reduced by choosing a very large !  in !  and choosing the  
coefficients !  wisely, because the limitation of the excitation area can be “hidden” inside ! . This method 
keeps equation (2.20) as simple as possible, which will turn out to be useful in section 2.3. The trade-off is 
that it will require more modes in the Fourier series to achieve a good approximation of the desired function. 
Increasing the number of modes increases the computational cost significantly. Given that we only consider 
a uniform excitation, the return distance !  is irrelevant. 

Because the equation of motion (2.17) is in the frequency- and wavenumber domain, the boundaries need 
to be transformed to the same domains according to (2.9) and (2.14) to be compatible. 

The Fourier transform over time reads 

!  (2.22) 

The Fourier transform of (2.22) over space reads 

!  (2.23) 

with 
 !  the Dirac delta function 

Having transformed the boundary condition to the appropriate domain, it can now be related to the general 
solution of the equation of motion (2.18). Recalling that (2.23) is a function for the displacement, the relation 
becomes 

!  (2.24) 

km

km = m
π
X

m ∈ ℤ
X

f (x, t)
X

X km
fm fm

X

f̃ (x, ω) = ∫
∞

−∞
f (x, t)e−iωtdt

= ∑
m

f̃m(ω)e−ikm x

˜̃f (kx, ω) = ∫
∞

−∞
f̃ (x, ω)eikx xd x

= ∫
∞

−∞
∑

m

f̃m(ω)e−ikm xeikx xd x

= ∫
∞

−∞
∑

m

f̃m(ω)ei(kx−km)xd x

= ∑
m

f̃m(ω)2πδ(kx − km)

δ

˜̃uy(kx, z, ω)
z=L

= ˜̃f (kx, ω)
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2.3. Solving the general solution 
With equation (2.19) and (2.24), we have two algebraic equations with two unknown quantities (!  and ! ): 

!  (2.25) 

!  (2.26) 

!  and !  can now be solved in terms of ! : 

!  (2.27) 

!  (2.28) 

Substituting (2.27) and (2.28) in (2.18), the specific solution reads 

!  (2.29) 

With equation (2.29), we have solved the equation of motion for the free field case in the wave number and 
frequency domain. The final step is to transform equation (2.29) back to the space !  domain by using the 
inverse Fourier transform (2.14). This gives us: 

!  (2.30) 

We can use equation (2.30) as a reference to see how the dynamic behaviour of the soil changes due to 
shear stresses from objects on the soil in chapter 3 and chapter 4. To do so, we look at the response of the 
soil at the surface to the frequency of the excitation (“transfer function”) in figure (2.2). 

In figure (2.2) we see a pattern of peaks at regular intervals of frequencies. These peaks occur at the 
natural frequencies of the soil and it is a resonance phenomenon. The response at the natural frequencies 
is (in theory) infinite because we work with an undamped system. In practice this will of course not be the 
case, as there will always be some damping in every system. In figure (2.2) we look at the range of 0 to 50 
Hz where we see 13 natural frequencies. In theory there are infinitely many natural frequencies, but the 
response at higher frequencies will damp out quickly and are therefor of less interest than lower 
frequencies. We will only look at the range of 0 to 50 Hz for that reason. 

A B

Gikz (Aeikzz − Be−ikzz)
z=0

= 0

Aeikzz + Be−ikzz
z=L

= ∑
m

f̃m(ω)2πδ(kx − km)

A B f̃m

A =
∑m f̃m(ω)2πδ(kx − km)

eikzL + e−ikzL

B =
∑m f̃m(ω)2πδ(kx − km)

eikzL + e−ikzL

˜̃uy(kx, z, ω) =
∑m f̃m(ω)2πδ(kx − km)

eikzL + e−ikzL
eikzz +

∑m f̃m(ω)2πδ(kx − km)

eikzL + e−ikzL
e−ikzz

= ∑
m

f̃m(ω)2πδ(kx − km)
cos ( k2

s − k2
x z)

cos ( k2
s − k2

x L)
x

ũy(x, z, ω) = ∑
m

f̃m(ω)
cos ( k2

s − k2
mz)

cos ( k2
s − k2

mL)
e−ikm x
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The reason that resonance occurs at these specific frequencies is that the denominator of equation (2.30) 
goes to zero. Consider that !  for the evaluated case, which means that the denominator goes to zero 
for: 

!  (2.31) 

with 
 !  !  

Considering that 

!  (2.32) 

we find that resonance occurs for 

!  (2.33)

  
This means that we find a resonance peak at the interval of 

!  (2.34) 

We can see that this is consistent with figure (2.2). 

km = 0

cos ( k2
s L) = 0 → ksL =

π
2

+ nπ

n ∈ ℤ

ks =
ω
cs

ω =
cs

L ( π
2

+ nπ)

Δω =
cs

L
π =

387.3
50

π = 24.3 rad/s = 3.8 Hz
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Figure 2.2: transfer function of the free field case.



3 Single mass 

In this chapter, we will look at the influence that an object resting on the soil has on the response of the soil 
subject to the excitation at the bottom of the layer. The object consists of a single, inextensible mass M of 
width 2a, from -a to a. We assume that the object cannot slip and that its displacement must therefor equal 
that of the soil (i.e. a continuity interface condition). It will be of particular interest to find the shear stresses 
!  between the soil and the object that we will define as function ! . 
This chapter follows up on section 2.1 where we derived the general solution (2.18) for the equation of 
motion of the soil. Similar to section 2.2 and 2.3, we follow up by defining new boundary conditions for this 
specific case and solving the general solution (2.18) to obtain a new transfer function. The object on the soil 
challenges us to use a new approach of computational modelling: we will first define boundary conditions 
for the dynamic behaviour of the soil in terms of !  and !  in section 3.1. We will then formulate an 
equation of motion for the object that is subject to the stress function !  in section 3.2. We will finally 
obtain the unknown coefficients !  by solving the interface condition between the soil and the object in 
section 3.3. 

σzy g(t, x)

f (t, x) g(t, x)
g(t, x)

gn

!12

Figure 3.1: a homogeneous elastic soil layer subjected to dynamic, kinematic loading at bottom surface. 
The red arrows at the top represent the stress function g and the blue arrows at the bottom represent the 
displacement function f. The structure is modelled as a single, inextensible mass resting on the top of the 
soil layer.



3.1. Boundary conditions 
In order to solve the two unknown quantities (!  and ! ) in the general solution (2.18), we need two 
boundary conditions. We define two functions as Fourier series at  !  and at ! , where one is a 
response shear stress function with unknown coefficients !  and one is an input displacement function with 
predetermined coefficients ! , like we used for the free field case in chapter 2, respectively. 

3.1.1. Boundary condition at !  
We define the shear stress !  as a summation of modes along the applicable length, each as a function of 
time and space x:  

!  (3.1) 

with 
 !  wave number of mode n 
 !  coefficient of mode n 
 !  Heaviside step function 
 !  half of the applicable length along the x coordinate 

The Heaviside step-function !  is defined as 

!  (3.2) 

The wave number !  of mode n is defined as 

!  (3.3) 

With 
 !  !  
 !  the return distance of the function in the space domain. 

Given that the function is limited from !  to !  due to the Heaviside function, any value for !  will do as 
we are not interested in a repetitive function. In fact, a small value for !  (i.e. ! ) is preferred because 
fewer modes are needed to create a detailed function, which can reduce computational cost significantly. 
We will use !  from here on. 

Because the equation of motion (2.17) is in the frequency- and wavenumber domain, the boundaries need 
to be transformed to the same domains according to (2.9) and (2.14) to be compatible. The Fourier 
transform of (3.1) over time according to (2.9) is straightforward: 

!  (3.4) 

A B
z = 0 z = L

gn
fm

z = 0
σzy

g(x, t) = ∑
n

gn(t)e−iknx (H (x + a) − H (x − a))

kn
gn
H
a

H

H(x) = {1  if x > 0
0  if x < 0

kn

kn = n
π
X

n ∈ ℤ
X

−a a X ⩾ a
X X = a

kn = nπ /a

g̃(x, ω) = ∫
∞

−∞
g(x, t)e−iωtdt

= ∑
n

g̃n(ω)e−iknx (H (x + a) − H (x − a))
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The Fourier transform of (3.4) over space according to (2.14) yields 

!  (3.5) 

Having transformed the boundary condition to the appropriate domain, it can now be related to the general 
solution of the equation of motion (2.18). Recalling that (3.5) is a function for the shear stress, the relation 
becomes 

!  (3.6) 

3.1.2. Boundary condition at !  
We use the same boundary condition at !  as we did in section 2.2.2: 

!  (3.7) 

We need to transform this boundary condition again to the frequency and wave number domain, where we 
find from (2.23) that 

!  (3.8) 

Having transformed the boundary condition to the appropriate domain, it can now be related to the general 
solution of the equation of motion (2.18). Recalling that (3.8) is a function for the displacement, the relation 
becomes 

!  (3.9) 

3.2. Solving the boundary value problem 
With equation (3.6) and (3.9), we have two algebraic equations with two unknown quantities (!  and ! ): 

!  (3.10) 

!  (3.11) 

˜̃g(kx, ω) = ∫
∞

−∞
g̃(x, ω)eikx xd x

= ∫
∞

−∞
∑

n

g̃n(ω)e−iknx (H (x + a) − H (x − a)) eikx xd x

= ∫
a

−a
∑

n

g̃n(ω)ei(kx−kn)xd x

= ∑
n

g̃n(ω)
i(kx − kn)

ei(kx−kn)x
x=a

x=−a

= ∑
n

g̃n(ω)
2 sin ((kx − kn)a)

kx − kn

G
d ˜̃u(kx, z, ω)

dz z=0
= ˜̃g(kx, ω)

z = L
z = L

f (x, t) = ∑
m

fm(t)e−ikm x

˜̃f (kx, ω) = ∑
m

f̃m(ω)2πδ(kx − km)

˜̃uy(kx, z, ω)
z=L

= ˜̃f (kx, ω)

A B

Gikz (Aeikzz − Be−ikzz)
z=0

= ∑
n

g̃n(ω)
2 sin ((kx − kn)a)

kx − kn

Aeikzz + Be−ikzz
z=L

= ∑
m

f̃m(ω)2πδ(kx − km)
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!  and !  can now be solved in terms of !  and ! : 

!  (3.12) 

!  (3.13) 

Substituting (3.12) and (3.13) in (2.18), the specific solution reads 

!  (3.14A) 

This solution can be simplified to 

!  (3.14B) 

From equation (3.14B), we can clearly see that the motion of the soil is a superposition of two distinct 
waves. The first term relates to the wave caused by the excitation at ! , which behaves as if there were 
no stress interaction with the mass system (! ). This term is indeed equal to the response from the 
free field case (equation (2.29)). The second term relates to the wave caused by the stress interaction with 
the mass system, which behaves as if !  at ! . 

Recall from (2.16) that 

!  (3.15) 

In order to solve the interface condition between the displacement of the soil !  and the displacement of the 
mass !  in section 3.4, equation (3.14B) needs to be transformed back to the space !  domain through the 
inverse Fourier transform (2.14): 

!  (3.16) 

Evaluating (3.16) can be simplified by splitting (3.14B) into two equations that are evaluated separately and 
then summed up over. The Fourier transform is a linear operation and therefor the Fourier transform of a 
summation equals a summation of Fourier transforms: 

!  (3.17) 

A B f̃m g̃n

A =
(∑m f̃m(ω)2πδ(kx − km)) Gkz − i (∑n g̃n(ω)

2 sin ((kx − kn)a)
kx − kn ) e−ikzL

(eikzL + e−ikzL) Gkz

B =
(∑m f̃m(ω)2πδ(kx − km)) Gkz + i (∑n g̃n(ω)

2 sin ((kx − kn)a)
kx − kn ) eikzL

(eikzL + e−ikzL) Gkz

˜̃uy(kx, z, ω) =
(∑m f̃m(ω)2πδ(kx − km)) Gkz − i (∑n g̃n(ω)

2 sin ((kx − kn)a)
kx − kn ) e−ikzL

(eikzL + e−ikzL) Gkz
eikzz

+
(∑m f̃m(ω)2πδ(kx − km)) Gkz + i (∑n g̃n(ω)

2 sin ((kx − kn)a)
kx − kn ) eikzL

(eikzL + e−ikzL) Gkz
e−ikzz

˜̃uy(kx, z, ω) = ∑
m

f̃m(ω)δ(kx − km)
cos(kzz)
cos(kzL)

+ ∑
n

g̃n(ω)
2 sin ((kx − kn)a)

kx − kn

sin (kz(z − L))
cos(kzL)Gkz

z = L
˜̃σzy = 0

˜̃uy = 0 z = L

kz = k2
s − k2

x

uy
uM x

ũy(x, z, ω) =
1

2π ∫
∞

−∞

˜̃uy(kx, z, ω)e−ikx xdkx

F [x(t) + y(t)] = F [x(t)] + F [y(t)]
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This means that (3.16) can be formulated as 

!  (3.18) 

with 

!  (3.19A) 

!  (3.19B) 

Evaluating (3.19A) is straightforward as we have already seen in equation (2.30): 

!  (3.20) 

Evaluating (3.19B) is far more complex and has to be evaluated using the method of contour integration. 

3.2.1. Contour integration 
With the method of contour integration in the complex kx-plane, we can evaluate integral (3.19B) with the 
help of Cauchy’s residue theorem, see Appendix B. To do so, we need to identify all poles; a certain type of 
singularity in a meromorphic function that behaves like the the singularity of !  at ! . 

We find the following simple poles in equation (3.19B):  

1. !  (3.21A) 

2. !  

 !  (3.21B) 

All these poles lie on either the real axis or the imaginary axis of the complex kx-plane, see figure (3.2). The 
(finite) real-valued poles represent waves traveling to infinity. The (infinite) imaginary-valued poles represent  
exponentially decaying vibrations (“evanescent waves”). 
When using the method of contour integration, the signs of kx and x are very important as they determine 
the position of the poles in the upper or the lower half of the complex kx-plane and as a result on which side 
of the real axis the contour has to be positioned in order to let equation (3.19B) converge. To understand 
this, we first need to rewrite the first sinus term in (3.19B) in terms of exponential functions.  

ũy(x, z, ω) =
1

2π (∫
∞

−∞

˜̃uy1e−ikx xdkx + ∫
∞

−∞

˜̃uy2e−ikx xdkx)
= ũy1 + ũy2

ũy1(x, z, ω) =
1

2π ∑
m

f̃m(ω)∫
∞

−∞
2πδ(kx − km)

cos ( k2
s − k2

x z)
cos ( k2

s − k2
x L)

e−ikx xdkx

ũy2(x, z, ω) =
1

2π ∑
n

g̃n(ω)∫
∞

−∞

2 sin ((kx − kn)a)
kx − kn

sin ( k2
s − k2

x (z − L))
cos ( k2

s − k2
x L) G k2

s − k2
x

e−ikx xdkx

ũy1(x, z, ω) = ∑
m

f̃m(ω)
cos ( k2

s − k2
mz)

cos ( k2
s − k2

mL)
e−ikm x

1/zn z = 0

kx = kn =
nπ
a

, n ∈ ℤ

cos ( k2
s − k2

x L) = 0 ⇒ k2
s − k2

x L =
π
2

+ pπ, p ∈ ℤ

⇒ kx(p) = ± k2
s −

( π
2 + pπ)2

L2
, p ∈ ℤ
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Considering that 

!  (3.22) 

We can then rewrite equation (3.19B) as 

!

 (3.23) 

We can now split equation (3.23) in two integrals and focus on the exponentials in these integrals to 
understand the convergence. Consider that 

!  (3.24) 

3.2.1.1. First integral 
The first integral reads 

!  (3.25) 

2 sin ((kx − kn)a) = i [e−i(kx−kn)a − ei(kx−kn)a]

ũy2(x, z, ω) =
1

2π ∑
n

g̃n(ω)∫
∞

−∞

i
kx − kn

sin ( k2
s − k2

x (z − L))
cos ( k2

s − k2
x L) G k2

s − k2
x

[e−ikxaeikna − eikxae−ikna] e−ikx xdkx

∫
∞

−∞
[e−ikxaeikna − eikxae−ikna] e−ikx xdkx = ∫

∞

−∞
eiknae−ikx(x+a)dkx

(1)

− ∫
∞

−∞
e−iknae−ikx(x−a)dkx

(2)

ũy21(x, z, ω) =
1

2π ∑
n

g̃n(ω)∫
∞

−∞

i
kx − kn

sin ( k2
s − k2

x (z − L))
cos ( k2

s − k2
x L) G k2

s − k2
x

eiknae−ikx(x+a)dkx
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Figure 3.2: Poles in the complex kx-plane. Number of poles and their positions are indicative! 



We consider a complex value !  and substitute it in (3.25). The convergence of (3.25) 
will depend on the exponential term: 

!  (3.26) 

For equation (3.26) (and by extend equation (3.25)) to converge, we find the requirement that 

!  (3.27) 

If we require !  (which is the contact area between the soil and the mass system), only the first 
case holds. We can check this by evaluating the integrand of (3.25) as a function of the complex value  
! , see figure (3.3).  

Figure (3.3) clearly shows that the integrand of (3.25) converges for !  and diverges for 
! . This graph can be interpreted in two ways with the same outcome: with a positive magnitude 
( ! ), the function only diverges at ! : the positive part of the imaginary axis. With a negative 
magnitude (! ), the function diverges at ! : again at the positive part of the imaginary 
axis. We can conclude that in order to let (3.25) converge, we should only include poles with a negative 
imaginary part. 
 
So, when , the contour has to be placed in the upper half of the complex kx-plane and when 

, the contour has to be placed in the lower half of the complex kx-plane. From the requirement 
that ! , it follows that we place the contour of a semi-circle with radius !  in the lower half 
of the plane and integrate along the path clockwise, see figure (3.4). 

kx = Re(kx) + iIm(kx)

e−ikx(x+a) = e−iRe(kx)(x+a)eIm(kx)(x+a)

Im(kx){ < 0  if x > − a
> 0  if x < − a

x ∈ [−a, a]

kx = ρeiθ

Im(kx) → − ∞
Im(kx) → ∞
ρ → ∞ θ = π /2

ρ → − ∞ θ = − π /2

Im(kx) > 0
Im(kx) < 0

x ∈ [−a, a] R → ∞
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Figure 3.3: integrand of equation (3.25) as a function of kx.



3.2.1.2. Second integral 
The second integral reads 

!  (3.28) 

We consider a complex value !  again, substitute it in (3.28) and focus on the 
exponential term: 

!  (3.29) 

For equation (3.29) to converge, we find the requirement that  

!  (3.30) 

We require that !  again and we find that only the second case holds. We can check this again 
by evaluating (3.28) as a function of the complex value kx, see figure (3.5). Figure (3.5) clearly shows that 
the integrand of (3.28) converges for !  and diverges for ! . We can conclude that 
in order to let (3.28) converge, we should only include poles with a positive imaginary part. 
With these considerations we place the contour of a half circle with radius !  in the upper half of the 
plane and integrate along the path anticlockwise, see figure (3.6). 

Note that as a consequence of our choice for ! , the solution we find for the displacement field is 
only valid for the contact area between the soil and the mass system. If we want to compute the 
displacement at the free surface of the soil, i.e. !  or ! , we need to adapt the solution by placing 
the contours on the opposite sides. This is beyond the scope of this study and will not be evaluated. 

ũy22(x, z, ω) =
1

2π ∑
n

g̃n(ω)∫
∞

−∞

−i
kx − kn

sin ( k2
s − k2

x (z − L))
cos ( k2

s − k2
x L) G k2

s − k2
x

e−iknae−ikx(x−a)dkx

kx = Re(kx) + iIm(kx)

e−ikx(x−a) = e−iRe(kx)(x−a)eIm(kx)(x−a)

Im(kx){ < 0  if x > a
> 0  if x < a

x ∈ [−a, a]

Im(kx) → ∞ Im(kx) → − ∞

R → ∞

x ∈ [−a, a]

x < − a x > a
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Figure 3.4: Contour for (3.25) of infinite radius. The contour contains infinitely many poles.



Poles of type 1 are all real valued and therefor lie on the integration contour and not inside it. Poles of type 
2 can be either completely real or completely imaginary and therefor lie partially on and partially inside one 
of the integration contours. The poles on the integration contour cannot be simply ignored; we need a clever 
way to determine which poles to include and which poles not. 
 

!20

Figure 3.6: Contour for (3.28) of infinite radius. The contour contains infinitely many poles.

Figure 3.5: integrand of equation (3.28) as a function of kx.



3.2.2. Applying viscous damping 
The real valued poles of type 2 can be accounted for by adding a small amount of (viscous) damping to the 
system, which shifts the poles away from the real axis into either the upper or the lower half of the complex 
plane. This procedure will also shift the poles that lie on the imaginary axis to the side, but this is not 
relevant for our case and can be ignored. Of particular interest is whether the poles on the real axis move 
up (away from the contour in the lower half plane and into the contour in the upper half plane) or down (into 
the contour in the lower half plane and away from the contour in the upper half plane). 

In the equation of motion (2.7) we replace the shear stiffness G by 

!  (3.31) 

with 
 !  damping coefficient 

In the frequency domain, the shear stiffness G will be complex and can be written as 

!  (3.32) 

This parameter represents both stiffness and viscous damping, like for an oscillator with parallel spring and 
damper. 

In many cases, a system gives the same result without damping as it will with infinitely small damping (limit 
case). In this system, this is not the case. Considering that in reality every system has at least a small 
amount of damping, the limit case will be more realistic than the case without damping and therefor give a 
more reliable result. This is the reason to add damping to the system to determine the position of the poles. 

Recalling the definition of !  from (2.12), we conclude that the damping makes !  complex. We therefore 
change this parameter in (3.21B) to 

!  (3.33) 

We use (3.33) to redefine (3.21B) and we expand it into a Taylor series: 

!  (3.34) 

with 

 !  (3.35) 

The sign of the second term in the brackets in (3.34) determines if the poles on the real axis shift up or 
down. As we are only interested in the shift of the poles that lie on the real axis, we look at the poles where 

. It is apparent that for  the imaginary part of the complex number kx(p) is negative. The 
sign of the second term in the brackets changes for ! , but these poles do not lie on the real axis of 
the complex plane and therefor do not require damping to determine their position. For the negative 
counterpart of (3.21B), the opposite holds. 

Therefor we conclude that; 
• The poles of the positive part of (3.21B) that lie on the real axis shift down. 
• The poles of the negative part of (3.21B) that lie on the real axis shift up. 
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Poles of type 1 cannot be shifted by adding viscous damping as they are directly related to the boundaries. 
These poles are therefor included by expanding the integration contours with small half-circles around the 
poles and the integration over these poles on the contour is equal to half of the residue. The complex kx-
plane with the poles and the integration contours then looks like figure (3.7). 

!22

Figure 3.7a: Contour for equation (3.25). The contour now also includes poles on the real axis.

Figure 3.7b: Contour for equation (3.28). The contour now also includes poles on the real axis.



3.2.3. Collecting residues 
We can now determine which poles to consider for equation (3.25) and (3.28) and calculate the residues of 
these poles. With these residues, we can then evaluate the integrals according to the residue theorem and 
solve equation (3.19B). 

3.2.3.1. First integral 
We look at equation (3.25) again: 

!  

We conclude from figure (3.7a) that the poles that are accounted for are: 

1.  (3.36A) 2

2. !  (3.36B) 

3. !  (3.36C) 

We evaluate (3.25) by finding the residues of these poles. There are infinitely many poles because infinitely 
many values for n and p satisfy (3.36A) and (3.36C), respectively. This means that the integral is a 
summation of infinitely many residues as well and needs to be truncated for practical application. For 
convenience in writing and to make a clear distinction between real and imaginary poles, let’s call all values 
for p that satisfy the condition of (3.36B) P and all p that satisfy the condition of (3.36C) Q. 

For (3.25), the residues read: 

!  (3.37A) 

!

 (3.37B) 

!

 (3.37C) 
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 These poles are included in the contour by half a circle around the poles and are therefor only integrated 2

over this half circle. This means that we only consider half of the residues of these poles.
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3.2.3.2. Second integral 
Now let us look at equation (3.28) again: 

!  

We conclude from figure (3.7b) that the poles that are accounted for are: 

1.  (3.38A) 3

2. !  (3.38B) 

3. !  (3.38C) 

The poles for (3.28) are similar to those of (3.25) except for the signs of type 2 and 3. As for (3.25), there 
are infinitely many poles because infinitely many values for n and p satisfy (3.38A) and (3.38C), 
respectively, which means that the number of poles (and therefor residues) needs to be truncated. In 
section 3.4.1 will be an example of this truncation. We will make a distinction again for real poles (P) that 
satisfy the condition of (3.38B) and imaginary poles (Q) that satisfy the condition of (3.38C). 

For (3.28), the residues read: 
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!

 (3.39B) 

!

 (3.39C) 
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 These poles are, again, included in the contour by half a circle around the poles.3
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3.2.4. Evaluation of the integral 
We can now evaluate the integrals according to the residue theorem. For the first integral (3.25), we 
integrated along the contour clockwise, so it holds that 

!  (3.40A) 

The second integral (3.28) is integrated along the contour anticlockwise, so it must be evaluated as 

!  (3.40B) 

Finally, we can conclude from (3.18), (3.24) and (3.40) that 

!  (3.41) 

Or, explicitly: 

!  

 (3.42) 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(ũy22) + ∑
Q

Res
kx=kx(Q)
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3.3. Equation of motion of mass 
In this section, we derive the equation of motion for the mass in the time domain and transform it to the 
frequency domain. We consider an inextensible block that is only constrained by the shear stress at the 
interface surface with the soil. The equation of motion for the mass reads 

!  (3.43) 

With 
 !  the mass of the block 
 !  the displacement of the block 
 !  the external force 

Applying the Fourier transform (2.9) to the equation of motion (3.43) yields 

!  (3.44) 

!  (3.45) 

Considering that the body is inextensible, we only consider rigid body displacements for the mass. We 
define the external force F with the help of (3.4) as 

!  (3.46) 

Combining (3.46) with (3.45) gives the explicit equation of motion for the mass in the frequency domain: 

!  (3.47) 

Considering that ! , we can immediately see that equation (3.47) will only give a non-trivial result 

for ! , because ! . For every other value of n, with n being an integer, !  will be 

zero. Therefor we find that; 

!  (3.48) 

Equation (3.47) can be used for the interface condition between the soil and the mass at the interface 
surface. This will ultimately give values to the (so far unknown) coefficients ! . 
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3.4. Solving the unknown coefficients 
To solve the interface condition at ! , we combine (3.42) and (3.47) and let ! . The equation for 
!  holds the known excitation modes !  and coefficients !  and the unknown stress modes !  and 
coefficients ! . The equation for !  holds the unknown stress modes !  and coefficients ! . We rearrange 
the equation such that all unknown terms are on the left hand side and all known excitation terms are on the 
right hand side: 

!  

 (3.49) 

The final step in solving the governing equation is to decouple the stress modes n as much as possible. We 
do this by applying the orthogonality property: both sides of the equation are multiplied by !  and then 
integrated over x from -a to a, where !  is defined as 

!  (3.50) 

with 
 !  !  
 !  the return distance of the function in the space domain. 

In short, this means 

!  (3.51) 

Where the !  represent the terms from equation (3.49). 

Given that we work with a coupled system, the system of equations cannot be fully decoupled. This means 
that we will find a fully populated !  flexibility matrix K that relates the stress coefficients !  to the 
excitation coefficients !  in the following way: 
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!  (3.52) 

Now that we know how to formulate the flexibility matrix and the relation between the excitation and the 
stress coefficients, we can solve the equation to find the stress coefficients. With these stress coefficients 
we can use equation (3.42) to compute the response of the soil to the excitation and compare it to the free 
field case. 
So far, we used a generalised and analytical approach in order to define the interaction stresses between 
the soil layer and the mass. For the next step, a numerical approach is necessary and we need to assume 
certain values for all parameters. The results from these assumptions are therefor only valid for this specific 
case and need to be reevaluated when different parameters are used! 

The number of poles p and the number of modes n are to be chosen such that the stress distribution and 
the transfer function lead to a converged result, based on the assumed parameters. It is hard to say a priori 
how many poles and modes need to be considered for a converged result, so we will look at the relation 
between these numbers in the following sections. 

3.4.1. Convergence of poles 
As we have discussed in section 3.2.3, there are infinitely many poles that satisfy (3.36C) and (3.38C) and 
therefor (3.49) contains infinitely many terms. In section 3.2.1 we already made sure that the summation of 
these terms must converge and we can therefor truncate the number of poles. The truncation influences the 
entries in the flexibility matrix. Figure (3.8) shows six examples of how the entry !  (see equation (3.52)) 
in the flexibility matrix of the residue of the imaginary poles changes (cumulatively) for each pole, depending 
on frequency 𝜔 and number of modes n. 
 

K−N,−N ⋯ K−N,0 ⋯ K−N,N

⋮ ⋱ ⋮ ⋱ ⋮
K0,−N ⋯ K0,0 ⋯ K0,N

⋮ ⋱ ⋮ ⋱ ⋮
KN,−N ⋯ KN,0 ⋯ KN,N
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⋮
g̃0
⋮
g̃N

g̃
(n×1)

=
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⋮
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2000 [kg/m3] M 25 000 [kg]

a 10 [m] G 3*108 [n/m2]

L 50 [m] X 10 [m]

!ρ

KN,N
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Figure 3.8a: Convergence of p at 10Hz, n=[-3:3] Figure 3.8b: Convergence of p at 50Hz, n=[-3:3]



Figure (3.8) shows a few consistent characteristics: for all frequencies and ranges of modes, the first (most 
negative) pole adds an insignificant amount to the converged result and hence the entry starts at zero. This 
makes sense as we are looking for a range of poles with converging attribution for both extremes: positive 
and negative. The attribution of each pole grows with alternating signs as they get closer to !  and 
ultimately converge to the final result as p becomes larger. 
The number of poles p to reach a converged result increases when the number of modes n increases. For 
the range ! , p needs a range of roughly !  to converge. For ! , p needs 
a range of roughly ! . For ! , p needs a range of roughly ! . 
Using more poles is, of course, always allowed. Using a range of !  ensures a properly 
converged result for even higher ranges of n. Computational cost increases significantly when using more 
poles than necessary, so it is wise to adjust the range of poles to the range of modes in the model. 
There is a noticeable gap in the plots around !  where no contribution is added. These centre poles 
represent the real valued poles that are finite and do not add to the residue of imaginary poles. We can see 
that the gap widens for higher frequencies, from which we can conclude that more traveling waves occur in 
the system at higher frequencies compared to lower frequencies. 

3.4.2. Solving stress coefficients gn 
With equation (3.49) and equation (3.51), we know how to populate the flexibility Matrix K of the system. We 
have also empirically found how many poles p need to be included to find a converged result for K. With 
equation (3.52) we can finally solve the stress coefficients gn: 

!  (3.53) 

p = 0

n = [3 : 3] p = [−50 : 50] n = [5 : 5]
p = [−100 : 100] n = [10 : 10] p = [−150 : 150]

p = [−200 : 200]

p = 0

g̃n = K−1f̃m
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Figure 3.8c: Convergence of p at 10Hz, n=[-5:5] Figure 3.8d: Convergence of p at 50Hz, n=[-5:5]

Figure 3.8e: Convergence of p at 10Hz, n=[-10:10] Figure 3.8f: Convergence of p at 50Hz, n=[-10:10]



With equation (3.4) and equation (3.53) we can then plot the stress distribution at the interface. Figure (3.9) 
shows the coefficients !  and the stress distribution !  for !  at 43.8 Hz and 44.7 Hz. 
Figure (3.10) shows the coefficients and the stress distribution for ! . Figure (3.11) for 
! . 

From figure (3.9), (3.10) and (3.11) we can draw a few conclusions: 

First of all, the frequency at which the stresses are analysed is of great relevance. As we can see from the 
figures above, stresses can easily change tenfold by changing the frequency by as little as 0.9 Hz. The 
chosen frequencies of 43.8 Hz and 44.7 Hz are not arbitrary: 43.8 Hz is one of the many natural 
frequencies of the system at which resonance occurs. Resonance does not only affect the kinematic 
amplitude of the response (as we have already seen in figure (2.2)), but also the interface stresses in this 
coupled model. At 44.7 Hz, the model shows very little response. The stress coefficient for the centre 
Fourier component, ! , is plotted against the frequency range in figure (3.12). 

g̃n g̃(ω, x) n = [−3 : 3]
n = [−5 : 5]

n = [−10 : 10]

g0
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Figure 3.9a: Coefficients gn, n=[-3:3]

Figure 3.10a: Coefficients gn, n=[-5:5]

Figure 3.9b: stress distribution, n=[-3:3]

Figure 3.10b: stress distribution, n=[-5:5]

Figure 3.11a: Coefficients gn, n=[-10:10] Figure 3.11b: stress distribution, n=[-10:10]



Figure (3.12) shows that the average stress is subject to resonance. We will see resonance at the same 
frequencies in the transfer function in figure (3.15). There appears to be an exponential growth for every 
natural frequency. 

We see for both frequencies and all ranges of n that the centre Fourier component, ! , has by far the 
largest contribution with a quick drop off and convergence to zero as ! . At 44.7 Hz, !  and !  
show very little contribution and all other components are nearly zero. The result is a fairly uniform stress 
distribution that does not change significantly when using more modes. A small range of modes, e.g. 
!  should suffice to compute these low stresses. At 43.8 Hz, !  and !  show a significantly 
larger contribution and also higher order components contribute to the stress distribution. The stress 
distribution changes noticeably when using more modes and is far from uniform. At natural frequencies like 
43,8 Hz, using a range of at least !  is strongly recommended! 

In figure (3.13) we directly compare the stress distributions at 43.8 Hz for different number of modes to see 
how it converges. 

n = 0
|n | → ∞ g1 g−1

n = [−3 : 3] g1 g−1

n = [−10 : 10]
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Figure 3.12: coefficient |g0| per frequency.

Figure 3.13: stress distribution at interface for different number of modes.



Figure (3.13) shows that the centre part of the stress distribution, roughly in the range of !  m, 
converges quickly and a range for n as low as !  gives fairly accurate results. At the sides of the 
interface however, the result has not converged up to !  and even more modes are required 
for accurate results.   

3.4.2. Analysing the transfer function 
With the stress coefficients !  known, we can use (3.47) to evaluate the displacement of the mass !  and 
we can compare it to the free field case figure (2.2). 

The transfer function in figure (3.14) shows a pattern of peaks similar to the free field case in figure (2.2). 
These peaks occur at the natural frequencies of the system and are therefor a consequence of resonance. 
These frequencies are the same as for the stress peaks in figure (3.12). Unlike the free field case, not all 
peaks are infinitely large: we see an alternating pattern of small and large (infinite) peaks. The reason for 
this can be found in the first two terms of equation (3.42): 

!  (3.54) 

The first term is related to the excitation as if it were a free field case. Like we have seen in chapter 2, this 
term causes the infinite peaks at the natural frequencies. The second term is only related to the stresses at 
the interface. Both terms go to infinity as !  for ! . !  is chosen to be positive and 
!  can be either positive or negative. If !  is positive, both terms add up and the displacement  !  
goes to infinity. If !  is negative, both terms cancel each other and the displacement !  is no longer 
necessarily infinite. !  can be calculated through equation (3.53) for every frequency ! . As research 
shows, the sign of !  changes after every natural frequency, causing the alternating pattern of finite and 
infinite peaks. 

Starting at around 46 Hz, we can see another peak “growing” in between other peaks. A third difference with 
the free field case is that the intervals between peaks are not entirely regular: while the smaller peaks 
remain at their original frequencies, the large peaks shift towards the left progressively as the frequency 
increases. This can be seen best in direct comparison to the free field case in figure (3.15). 
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Figure 3.14: transfer function of soil-mass system.



 
Figure (3.15) shows that the natural frequencies of this system have changed after putting a mass on the 
top of the soil layer. For some frequencies, the system behaves like a free field system and for other 
frequencies, the system “senses” that there is a mass on top of the soil layer and the dynamic behaviour is 
changed. For high frequencies, the interaction stress has more effect on the vibrations of the system than 
the lower frequencies. 

In contrast to the stress distribution at the interface (figure (3.13)), evaluating the transfer function does not 
require many modes n at all. Equation (3.48) shows that only the stress coefficient !  plays a role in the 
equation of motion for the mass, which represents the average stress along the interface. Figure (3.9a), 
(3.10a) and (3.11a) show that the !  is nearly independent of the number of modes used, despite being a 
fully coupled system of equations. Therefor, considering only !  is enough to obtain an accurate 
transfer function, especially for frequencies below 50 Hz, see figure (3.16), blue line. The range 
!  gives a completely converged result that is indistinguishable from higher orders, see figure 
(3.16), red line. The red line from figure (3.16) is identical to the line in figure (3.14), which was composed 
with ! . 

g0

g0
n = 0

n = [−1 : 1]

n = [−10 : 10]
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Figure 3.15: transfer function of free field and soil-mass system.

Figure 3.16: transfer function of soil-mass system.



4 Double mass-spring system 

In this chapter, we will look at the influence that an object consisting of two masses connected by one 
spring has on the response of the soil at the surface to the excitation at the deep layer. An example of such 
a structure could be a multi-storey building where the lower mass M represents the foundation and the 
upper mass m the rest of the building. Both masses are considered inextensible. The lower mass has the 
same dimensions as in chapter 2. We assume that the object cannot slip and that the displacement of the 
lower mass M must therefor equal that of the soil. We will look at the shear stresses !  between the soil 
and the foundation again like in chapter 2. Furthermore we are interested in the transfer function of this 
system compared to free field case and the case of a single mass on the soil. We will also look at the 
response of the top mass m and compare it to a conventional but strongly simplified model. 
This chapter follows up on section 3.2 where we derived the solution (3.42) for the equation of motion of the 
soil. Similar to section 3.3 and 3.4, we follow up by defining new equations of motion for both masses for 
this specific case and solving the interface condition !  at !  to obtain a new transfer function.  
The double mass-spring system will lead to a coupled set of equations in section 4.1 to describe the motion 
of both masses. The mass-spring system is subject to the same stress function !  as defined by 
equation (3.1) and used in equation (3.46). In section 4.2 we will solve both equations of motion by solving 
the interface condition between the soil and the foundation mass M.  

σzy

ũy = ũM z = 0

g(t, x)
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Figure 4.1: a homogeneous elastic soil layer subjected to dynamic, kinematic loading at bottom surface. 
The red arrows at the top represent the stress function g and the blue arrows at the bottom represent the 
displacement function f. The structure is modelled as a double mass-spring system.



4.1. Equation of motion of mass-spring system 
In this section, we derive the equation of motion for the mass-spring system in the time domain and 
transform it to the frequency domain. We consider two inextensible blocks with masses M and m, 
connected by a spring with stiffness k. The mass M is constrained by the shear stress at the interface with 
the soil. The equations of motion read 

!  (4.1) 

!  (4.2) 

Or in matrix notation: 

!  (4.3) 

With 
 !  the mass of the lower block 
 !  the mass of the upper block 
 !  the displacement of the lower block 
 !  the displacement of the upper block 
 !  the spring stiffness 
 !  the external force 

Applying the Fourier transform (2.9) to the equations of motion (4.1) and (4.2) yields 

!  (4.4) 

!  (4.5) 

Considering that the body is inextensible, we only consider rigid body displacements for the mass. We have 
seen from equation (3.46) that we can define the force as 

!  (4.6) 

Combining (4.6) with (4.4) and (4.5) gives the explicit equations of motion for the masses in the frequency 
domain: 

!  (4.7) 

!  (4.8) 

Equation (4.7) can be used for the interface condition between the soil and the foundation at the interface 
surface. From this interface condition, we can derive the coefficients ! . 

M ··uM + k (uM − um) = F(t)

m ··um + k (um − uM) = 0

[M 0
0 m] [

··uM
··um] + [ k −k

−k k ] [uM
um] = [F

0]
M
m
uM
um
k
F

ũM(k − ω2M ) − ũmk = F(ω)

ũm(k − ω2m) − ũMk = 0

F(ω) = g̃0(ω)2a

ũM = − g̃0(ω)
2a(−mω2 + k)

ω2(−Mmω2 + Mk + km)

ũm = − g̃0(ω)
2ak

ω2(−Mmω2 + Mk + km)

gn
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4.2. Solving the interface condition 
To solve the interface condition at ! , we combine (3.42) and (4.7) and let ! . The equation for !  
holds the known excitation modes !  and coefficients !  and the unknown stress modes !  and coefficients 
! . The equation for !  holds the unknown stress modes !  and coefficients ! . We rearrange the equation 
such that all unknown terms are on the left hand side and all known excitation terms are on the right hand 
side: 

!  

 (4.9) 

We proceed in a manner analogue to section 3.4. We apply the orthogonality property (equation (3.51)) 
which leads to a system of coupled equations (3.52). We solve the equations to find the stress coefficients, 
which are then used to compute the response of the soil to the excitation and compare it to the previous 
cases. 
We will use a numerical approach again and we assume the same parameters as in chapter 3. In addition 
we assume a value for parameters m and k. The results from these assumptions are only valid for this 
specific case and need to be reevaluated when different parameters are used! 

Like for the single mass case in chapter 3, the number of poles p and the number of modes n are to be 
chosen such that the stress distribution and the transfer function lead to a converged result, based on the 
assumed parameters. The recommended number of poles remains the same as for the single mass case: 
for the range ! , p needs a range of roughly !  to converge. For ! , p 
needs a range of roughly ! . For ! , p needs a range of roughly 
! . 
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Parameters

2000 [kg/m3] M 25 000 [kg]

a 10 [m] G 3*108 [n/m2]

L 50 [m] X 10 [m]

k 3*108 [n/m2] m 25 000 [kg]

!ρ

n = [3 : 3] p = [−50 : 50] n = [5 : 5]
p = [−100 : 100] n = [10 : 10]

p = [−150 : 150]
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4.2.1. Solving stress coefficients gn 
With equation (3.4) and equation (3.53) we plot the stress coefficients and the distribution at the interface 
again. Figure (4.2) shows the coefficients !  and the stress distribution !  for !  at 43.8 Hz 
and 44.7 Hz. Figure (4.3) shows the coefficients and the stress distribution for ! . Figure (4.4) 
for ! . 

From figure (4.2), (4.3) and (4.4) we can see that the stress coefficients and the stress distribution looks 
very similar to the single mass case. We see the great relevance of the frequency again where the stresses 
are much higher for natural frequencies than other frequencies. The frequencies for these examples are 
also the same as for the single mass case. While the shapes of the coefficient distributions and the stress 
distributions have the same shape as for the single mass system, the magnitude is about twice as high. 

g̃n g̃(ω, x) n = [−3 : 3]
n = [−5 : 5]

n = [−10 : 10]
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Figure 4.2a: coefficients gn, n=[-3:3]

Figure 4.3a: coefficients gn, n=[-5:5]

Figure 4.2b: stress distribution, n=[-3:3]

Figure 4.3b: stress distribution, n=[-5:5]

Figure 4.4a: coefficients gn, n=[-10:10] Figure 4.4b: stress distribution, n=[-10:10]



Figure (4.5) shows that the centre part of the stress distribution, roughly in the range of !  m, 
converges quickly and a range for n as low as !  gives fairly accurate results. At the sides of the 
interface however, the result has not converged up to !  and even more modes are required 
for accurate results. 

4.2.2. Analysing the transfer function at surface 
We now use equation (4.7) to evaluate the displacement of the lower mass !  and we compare it to the 
free field case and the single mass case. 
The transfer function in figure (4.6) shows a pattern of peaks, indicating the natural frequencies of the 
system. From approximately 28 Hz upward, we see an alternating pattern of infinitely large peaks and 
smaller peaks. The reason for this alternating pattern is the same as for the single mass case: the 
(frequency dependent) coefficient !  changes sign after every natural frequency. This means that the first 
and second term of equation (3.42) either enforce or cancel each other, creating infinite or finite peaks. For 
frequencies beyond approximately 50 Hz we see another small peak in between the finite and infinite 
peaks. 

x = [−6 : 6]
n = [−3 : 3]

n = [−15 : 15]

ũM

g0
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Figure 4.5: stress distribution at interface for different number of modes.

Figure 4.6: transfer function of foundation mass M.



We see a remarkable inconsistency between 10 and 20 Hz were the response is very low and even zero in 
between. This inconsistency is the result of the added mass-spring system, whose eigenfrequency can be 
shown to be exactly 17.4 Hz: 

!  (4.10) 

When the system is excited at 17.4 Hz, resonance will occur in the added mass-spring system. As a 
consequence, all the energy in the system is absorbed by the response of the top mass which stabilises the 
bottom mass. We will see an increased response when we evaluate the transfer function of the top mass 
(figure (4.9)). 

 

ωn =
k
m

=
3 ⋅ 108

25000
= 109.5 rad/s = 17.4 Hz
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Figure 4.7: transfer function of double mass system compared to free field system.

Figure 4.8: transfer function of double mass system compared to single mass system.



In figure (4.7), the transfer function is compared to the free field case. Like for the single mass case (figure 
(3.15)), we see that the infinite peaks of the double mass system are slightly shifted to the left compared to 
the free field case. The smaller peaks remain more or less in their place. 
In figure (4.8) we compare the transfer function of the double mass-spring system to the single mass 
system. Aside from the clear differences in the 10 to 25 Hz range, both systems respond very similarly to 
the excitation, especially the further away you look from the 10 to 25 Hz range. 

4.2.3. Analysing the transfer function for the top mass 
In figure (4.9) we look at the transfer function for the top mass. We see an equidistant pattern of peaks at 
the natural frequencies of the system again with alternating heights beyond approximately 50 Hz. These 
peaks correspond with those we have seen earlier for other transfer functions, as they obviously occur at 
the same natural frequencies. If you look carefully in the high frequency range, you can see a third peak 
“growing” in between the regular peaks, similar like we have seen in figure (3.14) and figure (4.6). In the 
range of 10 to 25 Hz we see an increased response that is related to the eigenfrequency of the mass-spring 
system at 17.4 Hz. In figure (4.10), the transfer function from figure (4.9) is compared directly with figure 
(4.6). 

To analyse the transfer function of the top mass, we used a completely coupled system: the soil layer, 
bottom mass and top mass are all coupled and therefor all have an influence on the flexibility matrix of the 
system. As we have seen, each of these components have a significant influence on the interaction stress 
and how the system as a whole behaves. We will now touch briefly on an oversimplified model that forms 
the basis of conventional methods to determine the displacement of the top mass. This oversimplified 
model does not use a fully coupled system, but analyses the behaviour of the soil layer and the mass-spring 
system separately. This works in the following way: the soil layer is analysed as a free field case. The 
transfer function of the soil at the surface is then used as a kinematic excitation of the lower mass, which 
then excites the top mass-spring system. In essence this means that the interaction stress at the interface 
between the soil layer and the bottom mass is ignored, which is an extreme oversimplification of reality. We 
will have brief look at the differences between both models. Let it be clear that this oversimplified model 
does not do justice to current engineering models in use and should not be viewed as such! 
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Figure 4.9: transfer function of double mass system compared to single mass system.



To relate the response of the top mass, ! , to the kinematic excitation of the bottom mass, ! , we can use 
equation (4.5): 

!  (4.11) 

We can reformulate this to 

!  (4.12) 

with 
 !   

If we prescribe the excitation of the bottom mass to be that of the free field surface, we can formulate !  as 

!  (4.13) 

In figure (4.11) we compare this “isolated” method to the fully coupled method. 

ũm ũM

ũm(k − ω2m) − ũMk = 0
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1
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mL)
e−ikm x
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Figure 4.10: transfer function of top mass m compared to bottom mass M.



Figure (4.11) shows that there are significant differences between the isolated and coupled systems. The 
isolated system shows infinite resonance for all natural frequencies of the soil layer. This is a direct 
consequence of the fact that the free field response also shows infinite resonance on all natural 
frequencies. The coupled system shows the alternating pattern on finite and infinite peaks that we have 
seen in chapter 3 and 4. We also see a shift of the natural frequencies to the left for the coupled system. 
The isolated system clearly shows the natural frequency !  of the mass-spring system with an increased 
response. The coupled system also shows this increased response, even though there are clear differences 
between the two systems. 
This comparison shows that the oversimplified model is indeed strongly oversimplified. 

ωn
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Figure 4.11: transfer function of top mass m, coupled system compared to isolated system.



5 Conclusion & recommendations 

5.1. Conclusion 
The goal of this minor thesis is to provide a general framework for calculations for horizontally polarised 
shear waves in soil with dynamic boundary conditions of displacements and stresses. With this framework, 
different scenarios can be evaluated where the area, shape and frequency of the excitation and the size 
and type of the mass-spring system may vary. 
The method that was used relies on formulating the specific solution to the equation of motion in terms of 
Fourier series with unknown coefficients gn. These coefficients are solved through an interface condition 
between the soil layer and a mass-spring system that share an interface stress containing coefficients gn. 

The research questions that needed to be answered are: 
• How does interaction with objects on the surface impact the behaviour of waves in the soil? 
• Will this computational method work? 

In chapter 2, we formulated an equation of motion for a soil layer that is excited kinematically at a depth L. 
By making use of Fourier series, we can allow many different shapes for the excitation. We derived a 
general solution to the equation of motion and solved it for a free field case. In chapter 3 we solved the 
general solution for the case that the surface is no longer stress-free. This solution, equation (3.42), forms 
the general framework that can be applied to various mass-spring systems. We evaluated two of these 
systems.  

The following parameters can easily be adjusted to adapt the governing equation to any specific case: 

• excitation shape and frequency, through !  and !  
• soil type, through !  and !  
• depth of excitation area, through !  
• size, stiffness and mass of the structure, through ! , ! , !  and !  

Changing these parameters is straight forward for the most part, with some remarks: 

Careful consideration is required when choosing the number of modes for the excitation field. A low number 
of modes may give an unsatisfactory result when modelling abrupt changes in the excitation shape, like a 
step function. A high number of modes adds significant computational cost, which in many cases is not 
desirable. Finding the right balance is key. In the evaluated results, only a uniform displacement is used! 

The parameters ! , !  and !  will determine the position of the poles on the real and imaginary axis in the 
complex kx-plane. These poles have to be selected carefully. Additionally, there are infinitely many poles of 
type 2 (equation 3.21B) that cannot all be included in the calculation. Therefor, the number of poles p need 
to be truncated appropriately. How many poles should be included for a reliable result will also depend on 
the used parameters and cannot be answered a priori. 

The stress distribution at the interface highly depends on the excitation frequency and the number of 
Fourier components used. The latter is especially noticeable at the sides of the interface. Using as many 
Fourier components as available computational power allows is strongly recommended. On the contrary, 
when evaluating the transfer functions of the structure, a minimal number of Fourier components will suffice. 

5.1.1 impact of interaction stress 
The impact of the interaction stress is best visible in figure (3.15) where the transfer function from the single 
mass case is compared to the free field case. Most noticeable is that the natural frequencies have changed 
after putting a mass on the top of the soil layer. Resonance occurs at slightly lower frequencies than in the 
free field case for certain natural frequencies. For other natural frequencies the response seems to be lower 

fm km
G ρ

L
a k M m

G L ρ
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than with a free surface. For high frequencies, the interaction stress has more effect on the vibrations of the 
system than the lower frequencies. 

When evaluating the transfer function of the additional mass-spring system, figure (4.11), it also shows that 
it is affected by the interaction stress. It also shows an alternating pattern of infinite and finite resonance at 
the natural frequencies of the system, that are slightly shifted compared to the stress-free interface case. 
The (resonance) response at the eigenfrequency of the mass-spring system is less regular compared to the 
oversimplified, isolated case. 

5.1.2 Will this computational method work? 
Yes. We tested the computational method, where we use generalised boundary conditions on the soil layer 
and mass system that are then solved through an interface condition, on two specific cases and the 
outcome meets all expectations. The transfer functions show an expected pattern of resonance peaks that 
show a lot of resemblance to the free field case, that was solved in a conventional method. This shows a 
degree of the reliability of the outcome. The transfer function of the double mass-spring system also shows 
the eigenfrequency of the mass-spring system through a high excitation of the top mass and a much lower 
excitation of the bottom mass at 17.4 Hz. It clearly shows that this computational method can also handle 
more complex, multi degree of freedom systems. The coupled systems also show differences when 
compared to the free field case and the isolated mass-spring system, like shifting of the natural frequencies 
and the amplitude of the response. These differences underline the relevance of taking interaction stresses 
into account. 

5.2. Recommendations 
The scenario that was considered in this study is limited by a very strict scope. Some assumptions were 
made that only reflect a part of reality and therefor it is important to consider a few things when using the 
results of this study in practice. 

The scope of this study is limited to horizontally polarised shear waves. It is rather unlikely for this scenario 
to happen and therefor the results of this study should always be used in combination with other wave types 
like vertically polarised shear waves, longitudinal waves and surface waves. 

So far we have only considered a 2D model and we assumed the gradient in y-direction to be zero. This is 
not always a realistic model and therefor an expansion in 3D should be considered for a more realistic 
model. 

We only considered a homogeneous, infinite soil layer. In reality, you may find multiple soil layers with 
different characteristics and other boundaries in the soil. Evaluating an inhomogeneous elastic continuum 
might be of interest for further study. 

When we evaluated the transfer function of the top mass in chapter 4, we compared it to an oversimplified, 
isolated model. While this isolated model is the basis of more conventional methods, it does no justice to 
current standards. This isolated model could be improved by applying additional springs and dashpots at 
the soil-structure interface. Doing so would give a fairer comparison to see the real benefits of a fully 
coupled system. 
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Appendix A Equation of motion of 
an elastic continuum 

This appendix gives a derivation for a set of equations of motion in a homogeneous elastic continuum which 
are used to describe the dynamic behaviour of the continuum. 

A.1. General 
A cartesian axis-system is used in three dimensions. The coordinate system is called the x-y-z-system. The 
displacement is described by three components: ! , !  and !  in x, y, and z direction respectively. These 
components are degrees of freedom of a particle and in general these quantities vary in time and in space.  
This appendix uses the index notation together with the application of the summation convention. The index 
notation uses the notation !  where i and j are x, y, z in a 3D space. The first index gives the direction of the 
outward normal of the surface, the second index gives the direction in which the force works. The 
summation convention means that identical indices are summed over all space dimensions.  
A stress is considered positive if the external force works in the same direction as the external normal of the 
surface, i.e. tension. If the external force works opposite to the direction of the external normal, i.e. 
compression, the stress is considered negative. Stresses with identical indices are normal stresses, 
stresses with non-identical indices are shear stresses. 

Derivatives 
In soil dynamics, variables depend on time and space and the first and second derivative with respect to 
these quantities play an important role. A short notation can be used to avoid complex writing, that is in 
agreement with the index notation and makes a distinction between partial derivates for space coordinates 
and time. 
A partial derivative with respect to space is written in the subscript index, separated by a comma. A time 
derivative is shown by a single super- imposed dot, the second time derivative by a double super-imposed 
dot: 

!  !  !  !  

A.2. Governing equations
To derive the equations of motion for the homogeneous elastic continuum, kinematic, constitutive and 
equilibrium equations need to be combined. 

A.2.1. Kinematic equations 
The kinematic equations relate the displacements to the strains. For the shear strain, it holds that 

!  (A.1) 

For the shear deformation, the relation between the shear angle and the strain must be derived. The angle 
between two originally perpendicular lines changes by ! . From geometry, we find that the angle can be 
approximated by 

!  (A.2) 
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Summation of these two equations results in 

!  (A.3) 

This equation relates the angle of deformation and the strain in the material. 

A.2.2. Constitutive equations 
The constitutive equations relate the stresses to the strains. In a continuum, two types of deformations are 
possible: 

• An isotropic deformation where the volume of the material changes, but angles between lines do 
not change. 

• A shear deformation where the volume of the material does not change, but the angles between 
lines do. 

For the isotropic deformation, the relation between the isotropic stress and the volumetric strain is 
  
!  (A.4) 

!  (A.5) 

!  (A.6) 

with 
 !  the bulk modulus [Pa] 
 !  the isotropic stress [Pa] 
 !  the normal stress component in the i direction [Pa] 
 !  the volumetric strain 
 !  the strain component in the i direction 

For the shear deformation, the relation between the shear stress and the angle of deformation is 

!  (A.7) 

For the shear stress, it holds that 

!  (A.8) 

Together with equation (A.3), it follows that 

!  (A.9) 

A.2.3. Equilibrium equations 
For the equilibrium equations, Newton’s second law applies: the sum of all forces in direction i gives the 
mass an acceleration in direction i, which is the second time derivative of the displacement. The 
contributing forces include the change in normal stresses and shear stresses, multiplied by their respective 
surface. For an infinitesimal cube, this results in the following equilibrium equations: 
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!  (A.10) 

In full index notation: 

!  (A.11) 

A.3. Generalisation of Hooke’s law 
For a bar, unconstraint in lateral directions, the following linear relation known as Hooke’s law holds: 

!  (A.12) 

with 
 !  the coordinate along the axis of the bar [Pa] 
 !  the Young’s modules [Pa] 
 !  the normal stress in the bar [Pa] 
 !  the strain in the bar 

While the lateral stresses (!  and ! ) are zero, the lateral strains (!  and ! ) are not. Based on the 
linearity of the load and the strain, the lateral strains are proportional to the load and thus the strain ! : 

!  (A.13) 

where !  is the lateral contraction coefficient or “Poisson’s ratio”. 
This leads to Hooke’s law for a continuum in three dimensions. In vector notation: 

!  (A.14) 

Inverting this equation leads to 

!  (A.15) 

A.4. Summary of constitutive equations 
Relation (A.15) can be simplified by using the geotechnical useful bulk modulus K and shear modulus G: 

!  !  (A.16) 

Recalling the relation between the shear stress and shear strain from (A.9) we can compliment (A.15) to the 
full constitutive equation for the linear elastic continuum. In vector notation: 
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σxx = Eεxx

x
E
σxx
εxx

σyy σzz εyy εzz
εxx

εyy = εzz = − νεxx

ν

εxx
εyy
εzz

=
1/E −ν /E −ν /E

−ν /E 1/E −ν /E
−ν /E −ν /E 1/E

σxx
σyy
σzz

σxx
σyy
σzz

=
E

(1 + ν)(1 − 2ν)

1 − ν ν ν
ν 1 − ν ν
ν ν 1 − ν

εxx
εyy
εzz

K =
E

3(1 − 2ν)
G =

E
2(1 + ν)
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!  (A.17) 

In index notation: 

!  (A.18) 

Where !  is the Kronecker !  defined by 

!  (A.19) 

A.5. Equation of motion 
Having found the kinematic, constitutive and equilibrium equations, the equation of motion can be derived. 
Recalling from (A.1) that 

!  (A.20) 

We conclude that 

!  (A.21) 

Substituting (A.21) in the constitutive equation (A.18) leads to 

!  (A.22) 

Substituting (A.22) in the equilibrium equation (A.11) requires differentiation with respect to space: 

!  (A.23) 

The summation convention also applies to derivate indices, which leads to the fact that differentiation and 
summation are included in one single step. This gives us the equation of motion for an elastic continuum: 

!  (A.24) 

σxx
σyy
σzz
σxy
σyz
σzx

=

K + 4
3 G K − 2

3 G K − 2
3 G 0 0 0

K − 2
3 G K + 4

3 G K − 2
3 G 0 0 0

K − 2
3 G K − 2

3 G K + 4
3 G 0 0 0

0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G

εxx
εyy
εzz
εxy
εyz
εzx

σij = (K −
2
3

G) εkkδij + 2Gεij

δij δ

δij = {1  if i = j
0  if i ≠ j

εij =
1
2

(ui, j + uj,i)

εkk = uk,k

σij = (K −
2
3

G) uk,kδij + G (ui, j + uj,i)

σij, j = (K −
2
3

G) uk,kjδij + G (ui, jj + uj,ij)

(K −
2
3

G) uk,ki + G (ui, jj + uj,ij) = ρ ··ui
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Appendix B Contour integration 
and Cauchy’s residue theorem 

This appendix summarises a method from the field of complex analysis to evaluate complex integrals. This 
method includes contours in the complex plane, poles and the residue theorem. This method is used in 
section 2.3 to evaluate the inverse Fourier transform of the equation of motion. 

B.1. Poles and residues 
When a function !  is defined on the complex z-plane and a singularity occurs at ! , the function 
cannot be expanded in a Taylor series around ! . Instead, it can be expanded in a Laurent series of the 
form 

!  (B.1) 

Or 

!  (B.2) 

If !  is analytical on ! , where r is the distance to the nearest singularity and of the form of 
(B.1), then a is said to be a pole of order p. A pole of order one is also called a simple pole. 

In general, we can say that a is a pole of order p for !  if 

!   (B.3) 

exists and is not zero. 

The coefficient of !  is called the residue of !  at the pole ! . The residue of a function is 
important when evaluating complex integrals. To find the residue of !  at the simple pole ! , we 
consider a general case: 

!  (B.4) 

From this, we conclude that 

!  (B.5) 

If !  has a pole of order p at ! , the residue of !  at !  can be found as 

f (z) z = a
z = a

f (z) =
bp

(z − a)p
+

bp−1

(z − a)p−1
+ . . . +

b1

(z − a)
+ a0 + a1(z − a) + . . .

f (z) =
p

∑
n=1

bp(z − a)−p +
∞

∑
n=0

an(z − a)n

f (z) 0 < |z − a | < r

f (z)

lim
z→a

(z − a)p f (z)

(z − a)−1 f (z) z = a
f (z) z = a

f (z) =
b1

(z − a)
+ a0 + a1(z − a) + . . .

(z − a)f (z) = b1 + a0(z − a) + a1(z − a)2 + . . .

 Res 
z=a

f (z) = b1 = lim
z→a

(z − a)f (z)

f (z) z = a f (z) z = a
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!  (B.6) 

B.2. Cauchy’s residue theorem 
Consider a regular function !  in the complex z-plane and a closed contour C like in figure (B.1).  

Cauchy’s theorem states that if !  is regular within and on a closed contour C, then 

!  (B.7) 

If the function !  is not regular at a finite number of poles within the contour C, we need to adapt the 
contour to make it regular inside again. To do so, we “cut out” the pole !  by drawing a small circle Γ 
around it with centre !  and radius r in opposite direction of C. We connect Γ to C with a cut AB, see 
figure (B.2). Now inside and on the closed curve defined by C, AB, Γ and BA, the function !  is regular 
again. 

 Res 
z=a

f (z) = b1 =
1

(p − 1)!
lim
z→a

dp−1

dzp−1 [(z − a)p f (z)]

f (z)

f (z)

∮C
f (z)dz = 0

f (z)
z = a

z = a
f (z)

!  VI

Figure B.1: Closed curve in complex z-plane.

Figure B.2: Closed curve in complex z-plane with a pole.



From (B.7) we then find 

!  (B.8) 

The integrals over AB and BA cancel out as the are the same integral in opposite direction, hence: 

!  (B.9) 

The sign of -Γ indicates that the integral is taken in the opposite direction, which is the same direction as for 
C. On -Γ, z can be written as 

!  (B.10) 

To evaluate the integral over -Γ, it holds that 

!  (B.11) 

We combine (B.10), (B.11) and (B.2) and let ! . We can then write the integral around -Γ as 

!  (B.12) 

The integral of (B.12) has the form of 

!  (B.13) 

Hence, we conclude that 

!  (B.14) 

When there are multiple poles within C, we can repeat the process above for each pole and sum up their 
results. This leads us to what is called the residue theorem: 

!  (B.15) 

Note that the integral has to be taken counter clockwise along C. If the integral is taken clockwise, the right 
hand side of (B.15) will have a minus sign. 

Contour integration together with the residue theorem is a very powerful method to evaluate complex 
integrals.

∮C
f (z)dz + ∫AB

f (z)dz + ∮Γ
f (z)dz + ∫BA

f (z)dz = 0

∮C
f (z)dz = − ∮Γ

f (z)dz = ∮−Γ
f (z)dz

z = a + reiθ

∫Γ
f (z)dz = ∫

b

a
f (Γ(θ )) d Γ(θ )

dθ
dθ

0 ⩽ θ ⩽ 2π

∮−Γ
f (z)dz = ∫

2π

0 [
p

∑
n=1

bn

rneinθ
+

∞

∑
n=0

anrneinθ] ireiθdθ

= ir∫
2π

0 [
p

∑
n=1

bn

rn
ei(1−n)θ +

∞

∑
n=0

anrnei(n+1)θ] dθ

∫
2π

0
eiNθdθ = [ eiNθ

iN ]
2π

0

= {2π  if N = 0
0  if N ≠ 0

∮C
f (z)dz = ∮−Γ

f (z)dz = 2π ib1 = 2π iRes
z=a

(f (z))

∮C
f (z)dz = 2π i∑

n

Res
z=zn

(f (z))
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