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Abstract—EvoSuite-MOSA is a unit test data generation tool
that employs a novel many-objective optimization algorithm
suitably developed for branch coverage. It was implemented
by extending the EvoSuite test data generation tool. In this
paper we present the results achieved by EvoSuite-MOSA in
the third Unit Testing Tool Competition at SBST’15. Among
six participants, EvoSuite-MOSA stood third with an overall
score of 189.22.
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I. INTRODUCTION

EvoSuite-MOSA [1] is a research prototype, implemented
by extending EvoSuite [2], for automatic generation of unit
test suites for Java classes. This paper describes the results
obtained by applying EvoSuite-MOSA to the benchmark
used in the tool competition at the International Workshop
on Search-Based Software Testing (SBST’15). Details on
the competition and the benchmark can be found in refer-
ence [3].

We also discuss and analyse the limitations encountered
when using EvoSuite-MOSA to generate test cases for those
classes in the benchmark where the achieved coverage was
particularly low. For example, with classes having environ-
mental dependencies, such as files and databases, reaching
high coverage is very challenging even though their structure
—in terms of number of branches— is not complex. Finally,
we report some remarks and lessons learnt from the contest.

II. ABouT MOSA

EvoSuite-MOSA automatically generates JUnit test cases
for a given Java class starting from its bytecode. Built upon
EvoSuite [2], EvoSuite-MOSA is based on search-based
testing and uses a novel many-objective genetic algorithm,
namely Many-Objective Sorting Algorithm (MOSA) [1],
targeting the maximization of branch coverage.

The key novelty of MOSA compared to other existing
search-based techniques is the re-formulation of the branch
coverage criterion as a many-objective problem, where dif-
ferent branches are considered as different objectives to be
optimized [1]. In this new formulation, a candidate solution
is a test case, while its fitness is a vector measuring the
closeness from all uncovered branches in the program. The
potential problem of such reformulation is that the number
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Prerequisites

Static or dynamic
Software Type
Lifecycle phase
Environment
Knowledge required

Experience required

Dynamic testing at the Java class level.
Java classes.

Unit testing for Java programs.

All Java development environments.
JUnit unit testing for Java.

Basic unit testing knowledge.

Inout and Output of the tool

Input Java classes (compiled)
Output JUnit test cases (source)
Operation

Interaction
User guidance

Source of information

Maturity
Technology behind the tool

Through the command line.

Through the command line (inspection of gener-
ated tests to further improve assertions)

http://selab.fbk.eu/kifetew/mosa.html,
evosuite.org
Research prototype

Search-based testing (Many-Objective Optimiza-
tion)

Obtaining the tool and information

License
Cost
Support

GPL
Free
None

Does there exist empirical evidence about

Effectiveness
Efficiency
Scalability

[1]
[1]
(1]

Table 1
DESCRIPTION OF THE TOOL THAT IS BEING EVALUATED

of branches, hence of objectives considered by the many-
objective optimization algorithm, can be huge, making it
difficult to rank the candidate solutions just by relative
dominance. We have introduced a novel many-objective
sorting algorithm which extends the notion of dominance
to make it applicable and effective with the huge number of
objectives associated with the branch coverage problem. The
search population in MOSA is a set of randomly generated
test cases, which are evolved using traditional crossover and
mutation operators through subsequent generations. At each
generation, the selection of the fittest test cases is based
on our sorting algorithm, which gives higher probability of
survival to those test cases that are closest to at least one
of the uncovered branches. The closeness of a test case ¢
to cover each uncovered branch b; is measured according
to (i) the normalized branch distance of test case ¢ for
branch b;; and, (ii) the corresponding approach level, i.e.,
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the minimum number of control dependencies between the
statements in the test case trace and the branch. For test cases
having the same branch distance + approach level scores,
our preference criterion selects the shortest test case (i.e., the
test case with the lowest number of statements). The final
candidate test suite is represented by a second population,
named archive, that keeps track of test cases as soon as
they cover yet uncovered branches of the program under
test. The archive is updated at the end of each generation
by considering both the covered branches and the length of
test cases. For each covered branch b;, the archive stores the
shortest test case covering b; [1].

ITI. CONFIGURATION FOR THE COMPETITION ENTRY

Currently, EvoSuite-MOSA uses only branch coverage as
structural criterion to be optimised. It extends the EvoSuite
test data generation framework by implementing the many-
objective genetic algorithm briefly outlined in Section II.
All other details (e.g. test case encoding schema, genetic
operators, etc.) are those implemented in EvoSuite [2].

There are several parameters that control the performance
of the tool being evaluated. We adopted the default parame-
ter values used by EvoSuite [2] in the two previous contest
competitions, with the exception of the coverage criterion
that in our case is branch coverage. For the assertions, we
configured the tool to include all possible assertions in the
test cases, without running the assertion minimiser. For the
execution time, we chose three minutes as timeout for the
search and we also added the following further empirical
stop condition: if none of the objectives scores (related
to uncovered branches) is improved for 100 consecutive
generations or for 60 seconds, the search is ended even if
the global timeout is not reached.

IV. BENCHMARK RESULTS

The results achieved by EvoSuite-MOSA on the bench-
mark are reported in Table II. On the 63 classes used
in the competition, EvoSuite-MOSA produced an average
instruction coverage equal to 56.41%, average branch cov-
erage equal to 46.13% and average mutation score equal to
38.53%. Specifically, it generated on average 20 test cases
for each class under test with a search time of only 84
seconds on average.

In general, the average total time required by EvoSuite-
MOSA for generating test cases is less than 2 minutes
(93.97s in particular), where the total time is computed as
the sum of (i) preparation time, (ii) generation time, and
(iii) execution time of the final test suite. This result is very
surprising if compared with the results yielded by other tools
in the contest. Indeed, the total time required by EvoSuite-
MOSA is about 25% the time required by the other tools
with highest ranks in the contest, while its average branch
coverage is sometimes even better. This confirms the strong
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performance of EvoSuite-MOSA for the branch coverage
criterion [1].

It is important to notice that the final score used for the
contest aggregates time and coverage scores in a unique
scalar value, giving a quite marginal weight to the generation
time [3]. Hence, our configuration of EvoSuite-MOSA (the
empirical stop condition in particular) was penalizing for
our tool. Indeed, we found that by giving more time to
EvoSuite-MOSA we would have obtained higher coverage
scores, with a major impact on the final aggregate score,
despite the increased execution time.

Since our tool is built upon EvoSuite, it inherits all the
corresponding limitations of EvoSuite for complex classes,
classes with non deterministic code and classes with environ-
mental dependencies [4]. Moreover, the version of EvoSuite
we extended with MOSA is older than the current version.
In fact, some classes of the benchmark crashed our tool
due to bugs fixed in later versions of EvoSuite. After a
closer analysis, we also found that in those case where
the mutation score is particularly low, compared to the
other coverage scores (e.g., statement coverage), there was
an internal problem of EvoSuite in generating assertions.
The common problem in these cases is that the produced
assertions do not hold upon test re-execution and tests with
failing assertions are excluded from mutation analysis.

In the remainder of this section, we focus our discussion
on some interesting cases where EvoSuite-MOSA achieved
very low branch coverage and/or mutation scores.

Java Exception At the time of the competition, the ver-
sion of EvoSuite we used as baseline to implement our
many-objective genetic algorithm was not able to han-
dle classes extending the Java class Exception. As
a consequence, for the classes SearchException or
TwitterException in the benchmark our tool achieved
0% coverage (either statement or branch coverage) after few
seconds of generation time, which corresponds to the time
required by the tool for the analysis of the classpath.

Environmental dependencies. A widely known limitation
of automatic testing tools regards the generation of test cases
for classes having environmental dependencies, e.g., classes
accessing external files, etc. Most of the classes in the JWPL
project (such as Page) fall into this category. For example,
class ARFFHandler consists of only one method that takes
an external file as input. Such file must respect the standard
format of ARFF files. Similarly, class Page requires a valid
instance of Wikipedia and indirectly a valid instance of
the class DatabaseConfiguration.

Memory consumption Some classes in the benchmark are
particularly complex and they can lead to the generation of
test cases that may cause an excessive memory consumption.
For example, for the class Predicates our tool crashed in
some runs because of an out-of-memory exception. Running
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EvoSuite-MOSA with more memory would have likely
resulted in avoiding the out-of-memory exception, hence
leading to higher coverage.

Other issues We also faced some issues concerning bugs
affecting our version of EvoSuite. For example, our tool
crashed in some runs for the class CharMatcher, thus,
terminating its execution without generating any test case.
In other runs, for the same subject, the tool didn’t crash
and generated test cases providing the following scores:
70% of statement coverage, 62% of branch coverage
and 44% of mutation score. For CycleHandler and
WikipediaInfo classes, our tool crashed in every run
because of some bugs related to the EvoSuite front-end.
Similarly, for ExceptionDiagnosis out tool was not
able to generate test cases because of a bug concerning
classes handling the Java class Throwable. Finally, for the
class TwitterImpl our tool had problems in finding all
the required dependences at preparation time. After deeper
analysis we found that this is also due to another bug
affecting our version of EvoSuite.

V. REMARKS FOR THE CONTEST

The results achieved by the tools participating in the con-
test point out some issues associated with classes that have
a simple structure (e.g., few branches or few statements),
but are particularly challenging for automatic techniques.
For example, some classes requiring external environment
resources are very difficult to deal with. Similarly, classes
probing time information from the system environment pose
challenges for the automatic generation of assertions, since
assertions that are valid at generation time may not hold
when re-executing the test cases later (e.g., when computing
the mutation scores, as done for the contest).

We also notice that the analysis of the scores achieved by
different tools in the contest is challenging, since multiple
criteria, such as coverage scores and time, are involved. For
example, the formula used to aggregate time and cover-
age scores into a unique scalar value gives a particularly
marginal relevance (weight) to the execution time of each
tool [3]. Thus, tools that were configured with few minutes
of execution time have been penalized with respect to other
tools that were configured with more time for the generation
process. In fact, the tools that yielded the highest global
scores in the contest are also those that were configured
with a longer timeout for the search. Indeed, we found that,
given the formula used to compute the global score, more
execution time is quite likely to result in higher coverage
score, and then in higher final aggregate score, just by the
possibility to randomly cover previously uncovered branches
if additional execution time is available.

Another important point to debate is whether to consider
or not the size of the generated test cases as a further
criterion for evaluating the cost-effectiveness of automated
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unit test generators. After our own experiment with some
classes in the benchmark, we noticed that minimizing the
size of test cases, while keeping the same level of structural
coverage, might negatively affect the achieved mutation
scores. Indeed, at constant level of statement and branch
coverage, larger test cases tend to have higher chances to kill
mutants (a key factor for the final score [3]). Thus, since our
tool maximizes branch coverage while selecting the shortest
test cases at equal level of branch coverage, it is penalized
since the final aggregate score includes the mutation score.

For example, for the class FlushLuceneWork our tool
generated a minimized test suite with 26 statements on
average (without counting the assertions), which kills 62% of
mutants generated by PIT. When disabling the minimization,
our tool generates a test suite with the same branch and
statement coverage but with 562 statements on average
(without counting the assertions) and a corresponding av-
erage mutation score equal to 86% (+26%). Thus, the non-
minimized test cases are able to kill more mutants, but they
are much longer, hence, they are also more difficult to be
analyzed manually.

VI. CONCLUSION

This paper reports the results obtained by EvoSuite-
MOSA, an extension of the EvoSuite test data generation
framework that employs a novel many-objective optimiza-
tion algorithm for branch coverage, at the third SBST Unit
Testing Tool competition. We believe that the SBST Unit
Testing Tool Competition can be improved along several
directions: (1) providing a fixed amount of computational
resources and execution time to participants; (2) having
multiple separate tracks for different adequacy criteria used
to rank tools; (3) avoiding subjects under test with non-
deterministic behaviours or environmental dependencies; (4)
introducing a measurement of test case size, possibly as a
secondary goal of test case generation.
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EVOSUITE-MOSA RESULTS ON THE BENCHMARK CLASSES

Table 1T

Time in min. Coverage

Class Name N. Test Case tgen tezec Instruction Branch  Mutation
com.google.gdata.data. AttributeHelper 60.33 0.59 0.20 74.83 72.56 40.22
com.google.gdata.data.DateTime 44.67 0.39 0.17 70.72 57.86 63.59
com.google.gdata.data.Kind 11.17 0.95 0.04 43.22 39.39 40.58
com.google.gdata.data.Link 55.50 1.59 0.21 76.05 73.20 36.11
com.google.gdata.data.OtherContent 23.00 0.67 0.09 41.78 39.77 32.92
com.google.gdata.data.OutOfLineContent 26.17 0.61 0.10 78.35 76.79 50.69
com.google.gdata.data.Source 50.67 1.34 0.20 50.18 45.27 25.07
net.sf.javaml.core. AbstractInstance 21.33 2.13 0.08 87.97 68.45 63.54
net.sf.javaml.core.Complex 8.00 0.08 0.03 88.21 0.00 50.00
net.sf.javaml.core.DefaultDataset 24.83 0.89 0.08 72.68 74.17 35.48
net.sf.javaml.core.Denselnstance 32.83 2.08 0.11 78.53 83.33 67.20
net.sf.javaml.core.Fold 35.83 0.30 0.12 86.68 88.33 77.08
net.sf.javaml.core.Sparselnstance 35.83 0.59 0.12 95.47 84.90 66.91
net.sf.javaml.tools.data. ARFFHandler 2.00 3.03 0.01 2.54 0.00 0.00
twitter4j.ExceptionDiagnosis 1.00 3.04 0.01 0.00 0.00 0.00
twitter4j.GeoQuery 45.00 0.42 0.15 97.83 89.58 76.46
twitter4j.OEmbedRequest 36.17 0.63 0.12 94.02 78.40 13.29
twitter4j.Paging 36.67 0.35 0.13 93.90 93.06 64.89
twitter4j. TwitterBaseImpl 3.33 2.01 0.02 7.81 2.94 0.00
twitter4j. TwitterException 0.00 0.06 0.00 0.00 0.00 0.00
twitterdj. TwitterImpl 1.00 1.48 0.01 0.00 0.00 0.00
com.puppycrawl.tools.checkstyle.api.AbstractLoader 5.00 3.04 0.03 77.00 50.00 30.00
com.puppycrawl.tools.checkstyle.api.AnnotationUtility 12.00 0.33 0.05 52.04 45.00 4091
com.puppycrawl.tools.checkstyle.api.AutomaticBean 5.17 3.04 0.03 54.97 52.38 16.28
com.puppycrawl.tools.checkstyle.api.FileContents 13.33 0.40 0.07 24.51 19.23 23.67
com.puppycrawl.tools.checkstyle.api.FileText 12.33 0.47 0.06 43.20 46.79 56.38
com.puppycrawl.tools.checkstyle.api.ScopeUtils 18.00 1.49 0.07 18.62 8.33 19.13
com.puppycrawl.tools.checkstyle.api.Utils 23.33 3.06 0.11 61.20 83.97 57.94
com.google.common.base.CharMatcher 28.50 12.64  0.08 20.75 16.67 11.78
com.google.common.base.Joiner 39.67 0.38 0.13 83.05 94.20 81.91
com.google.common.base.Objects 27.50 0.28 0.10 98.13 82.41 94.14
com.google.common.base.Predicates 27.67 0.56 0.06 22.12 12.85 15.19
com.google.common.base.SmallCharMatcher 11.67 3.65 0.04 97.76 93.59 60.07
com.google.common.base.Splitter 52.83 0.69 0.19 94.30 85.90 74.18
com.google.common.base.Suppliers 13.17 0.72 0.03 53.84 47.22 42.05
org.hibernate.search.SearchException 0.00 0.10 0.00 0.00 0.00 0.00
org.hibernate.search. Version 1.83 0.16 0.01 100.00 0.00 0.00
org.hibernate.search.backend.BackendFactory 11.67 4.02 0.06 41.48 28.13 50.00
org.hibernate.search.backend.FlushLuceneWork 2.83 0.13 0.01 89.74 100.00 62.50
org.hibernate.search.backend.OptimizeLuceneWork 2.83 0.12 0.01 89.74 100.00 70.83
org.hibernate.search.util.logging.impl.LoggerFactory 2.00 3.16 0.01 4.69 0.00 0.00
org.hibernate.search.util.logging.impl.LoggerHelper 3.00 0.17 0.02 100.00 0.00 11.11
de.tudarmstadt.ukp.wikipedia.api.CategoryDescendantsIterator 1.00 3.05 0.01 8.24 0.00 0.00
de.tudarmstadt.ukp.wikipedia.api.CycleHandler 0.00 0.55 0.00 0.00 0.00 0.00
de.tudarmstadt.ukp.wikipedia.api.Page 7.00 1.63 0.04 1.49 6.00 2.67
de.tudarmstadt.ukp.wikipedia.api.Pagelterator 21.00 1.94 0.12 50.77 57.14 38.19
de.tudarmstadt.ukp.wikipedia.api.PageQueryIterable 8.00 1.56 0.05 18.57 9.30 0.00
de.tudarmstadt.ukp.wikipedia.api.Title 9.00 3.04 0.03 82.10 79.17 100.00
de.tudarmstadt.ukp.wikipedia.api. Wikipedialnfo 0.33 1.10 0.01 0.00 0.00 0.00
org.asynchttpclient. AsyncHttpClient 28.50 6.62 0.19 54.48 39.58 45.38
org.asynchttpclient. AsyncHttpClientConfig 73.00 0.57 0.27 80.12 53.89 3591
org.asynchttpclient.FluentCaselnsensitiveStringsMap 57.33 0.65 0.18 78.59 71.70 66.50
org.asynchttpclient.FluentStringsMap 52.00 0.55 0.15 78.63 73.45 69.57
org.asynchttpclient.Realm 68.50 0.79 0.24 88.11 57.63 59.38
org.asynchttpclient.RequestBuilderBase 0.00 0.53 0.00 0.00 0.00 0.00
org.asynchttpclient.Simple AsyncHttpClient 0.00 0.49 0.00 0.00 0.00 0.00
org.scribe.model.OAuthConfig 6.67 0.09 0.03 89.03 91.67 53.70
org.scribe.model. OAuthRequest 6.50 0.26 0.03 100.00 100.00 80.00
org.scribe.model.ParameterList 16.83 0.12 0.06 98.36 96.30 85.51
org.scribe.model.Request 20.33 0.39 0.07 59.34 43.18 34.11
org.scribe.model.Response 1.00 3.03 0.01 0.00 0.00 0.00
org.scribe.model. Token 14.83 0.11 0.06 98.32 92.71 84.85
org.scribe.model. Verifier 1.00 0.06 0.01 100.00 0.00 50.00
Mean 20 1.41 0.07 56.41 46.13 38.54
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