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Abstract

In Amsterdam, more than 30 steel-concrete composite bridges were constructed from 1880-1960
without mechanical connectors and transverse reinforcement. Currently, there are no simplified
analytical methods to determine the bearing capacity of these bridges. Thus, the bearing capac-
ity is verified using NLFEM or oversimplified analytical calculations. This research proposes
an analytical method to determine the bearing capacity of historic steel-concrete-composite
bridges without mechanical connectors to avoid time-consuming FEM calculations and offers
reasonable results.

An experimental and numerical study is performed on data from in situ and laboratory testing
of samples from two different bridge decks from these Amsterdam bridges. The tests are
accompanied by a numerical model that has been studied and adjusted to a more generalized
loading case. This study determined that the exterior composite girders are critical due to their
lower lateral stiffness.

An analytical model is proposed to examine the behaviour of the exterior composite girder.
The model considers a 3-point bending load at midspan between the exterior composite and
adjacent girder. The force distribution is described through a compatibility-based strut and
tie model (C-STM). The concrete in compression is considered elastic compression struts, only
limited by the ultimate load of the model. The concrete in tension is interpreted as a tensile tie,
which fails when it exceeds the concrete tensile resistance. Following the failure of the tensile
tie, it is assumed that a longitudinal crack propagates between the exterior composite girder
and the adjacent girder. Additionally, vertical and lateral stiffness components are included
in the model. These account for the flexural stiffness of the exterior and interior composite
girder. The vertical stiffness is accounted for as elastic springs, and the lateral stiffness as
spring beams. The interior lateral spring beam summarises all the interior composite girders’
stiffness, whereas the exterior lateral spring beam only considers the exterior composite girder.
Therefore, the configuration assumes that the interior spring beam is significantly stiffer than
the exterior. Moreover, the stiffness of the exterior spring beam reduces when the longitudinal
cracking occurs, assuming a part of the concrete fails. The C-STM is linked to the cross-section
verification of longitudinal shear, biaxial bending and vertical shear resistance in two stages.
Stage 1, at the load at longitudinal cracking, determines if the specimen fails at this moment,
indicating that there possibly is a brittle failure. Stage 2 is after longitudinal cracking, where the
steel-concrete contact perimeters have reduced, and the corresponding resistances accordingly
reduce.

The failure modes obtained by the analytical model are comparable to the ones observed during
the experimental testing. The analytical model showed that the bridges failed due to biaxial
bending limited by partial shear interaction. One of the specimens from the testing yielded
due to bending but with limited ductility. The other specimen also yielded due to bending
with concrete crushing at the top concrete fibre. Further, the bearing capacities obtained from
the analytical model are comparable to the failure loads from the experimental and numerical
results.

The model predicts the failure modes and the bearing capacity and can therefore contribute
to the assessment of the historic Amsterdam bridges, helping to reduce the assessment time of
the bridges and understand their load-bearing behaviour better. Future work should focus on
verifying the method by examining more bridges using FEM.
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1 Introduction

1.1 Context

From 1880 to 1960, many bridges were constructed in Amsterdam, following the design regula-
tions of that time, and more than 30 were designed as steel-concrete-composite bridges without
mechanical connectors. These bridges are under assessment due to their age and the chang-
ing loads. Despite this historical development of the design and implementation of composite
structures as well as the introduction of European Standards, the Eurocode does not include
recommendations for assessing the historical steel-concrete composite bridges. Furthermore,
it is stated by law that the Dutch government must ensure that the bearing capacity of these
bridges is sufficient [1]. Thus, the municipality of Amsterdam wants to assess the historic bridges
to determine if the bearing capacity is sufficient to avoid unneeded replacements or repairs.
Replacing the bridges can be costly, time demanding and hinder Amsterdam’s infrastructure
users. Moreover, the environmental impact related to the possibly-unnecessary replacement
of the bridges may be substantial, assuming that the construction and production of a new
bridge has an environmentally negative footprint. If the bearing capacity is acceptable, the
bridges can remain or be repaired relatively cheaply without impacting the infrastructure and
the environment. Figure 1.1 shows an example of one of the historic Amsterdam bridges.

Figure 1.1: Cross section of a steel-concrete composite bridge in Amsterdam without mechanical
connectors.

Archive studies were done by de Boer et al. [1] looking further into the construction papers
of these bridges. To take a closer look at the historic steel-concrete composite bridges without
mechanical connectors, a cross-section is shown in Figure 1.2. The bridges consist of several
partially encased steel girders spanning in the longitudinal direction, only leaving the bottom
flange concrete-free. The transfer of forces between steel and concrete comes merely from
cohesion and friction due to the lacking mechanical connectors. In the top concrete layer
of the encasement, there is a mesh shrinkage reinforcement, which is the only reinforcement.
The reinforcement only has a diameter of 6mm and 100mm spacing. The typical historic
Amsterdam bridges have three spans, with two side spans and one main span. The bridges
have side spans of 5 to 8m, whereas the main span is 8.5 to 14m. The spans are usually
statically determined. The steel girders are DIN profiles of different types, and the height
varies from 260mm to 700mm. There is always a cut-out section between the steel girders
with a height of 140mm, whereas the width of the cut-out section depends on the dimension
of the steel girders.
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Figure 1.2: Cross-section of a historical steel-concrete bridge without mechanical connectors
from Amsterdam. Showing the position of shrinkage reinforcement and steel girders.

The bridges’ composite behaviour and lateral load distribution are mainly unknown for the
following reasons.

• There are no mechanical connectors; Thus, the transfer of forces at the interface merely
comes from the steel-concrete bond.

• There is very little transverse reinforcement; Hence, the lateral load distribution and
composite behaviour are uncertain.

Currently, EN1994-1-1:2004 and EN1994-2:2005 are used for the design of composite bridges.
Regarding shear connection, the European Standard states, ”Shear connection and transverse
reinforcement shall be provided to transmit the longitudinal shear force between the concrete and
the structural steel element, ignoring the effect of natural bond”[2, p. 52], which is not ensured
for the historic Amsterdam bridges without mechanical connectors.

The bridges differ from those mentioned in EN1994 for the above reasons. For bridges that
differ from the European Standard, it states that the design should, as far as practicable, rely
on existing design rules and methods and must be supported by experiments [3]. The only
existing methods to determine the bearing capacity of the bridges are oversimplified analytical
calculations or NLFEM (Nonlinear Finite Element Method) calculations. These oversimplified
calculations are based on conservative guesses, as the actual composite behaviour and load
distribution are unknown. Whereas FEM analysis provides more accurate results, modelling
the bridges can be time-consuming and requires knowledge of the interface behaviour, which is
also unknown.

Due to a larger construction of the inner infrastructure in Amsterdam, one of the steel-concrete
composite bridges without mechanical connectors, Amsterdam Bridge 70, had to be replaced.
The construction papers of the bridge date back to the early 1930s, and the bridge’s lifetime
had already passed. Still, it was considered to be in relatively good condition. Therefore, this
was an opportunity to perform a series of tests investigating this bridge, first by performing
in situ tests before it was demolished. After the in situ tests, three specimens were cut out
from the bridge deck and transported to Delft for further laboratory testing. The in situ and
laboratory tests were accompanied by numerical models helping to understand the behaviour
of the bridges.

Before the testing, the hypothesis was that the bridges would be subject to punching shear
failure due to the geometry at the cut-out section where the concrete is thinnest, as shown
in Figure 1.2. This was also anticipated due to the small amount of transverse reinforcement.
This hypothesis was tested by applying the load between the steel girders. However, the in situ
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tests and numerical analysis proved that the bridges had sufficient bearing capacity to resist
punching shear, according to existing design standards [1]. It can be expected that the failure
of the historic steel-concrete composite bridges will occur as one of the following:

• Yielding due to flexural bending

• Concrete crushing of the top fibre due to flexural bending

• Slip due to longitudinal shear

• Vertical shear failure

Punching shear failure is not regarded, as it was already covered and proved sufficient during
the in situ testing. Current methods to verify the resistance to these failure modes rely on
existing methods from the European Standards. These are for composite bridges with shear
connectors and transverse reinforcement. Thus, there is no straightforward analytical method
to assess the steel-concrete composite bridges without mechanical connectors adequately.

1.2 Research Objective and Questions

This study aims to provide an analytical model to determine the bearing capacity of historic
steel-concrete composite bridges without mechanical connectors. The model will be based
on the initial research in the form of experiments and FEM models previously created. The
purpose of the analytical model is to avoid time-consuming FEM modelling and oversimplified
analytical calculations. To help address the research objectives, the following research question
has been stated.

How can the bearing capacity of existing steel-concrete-composite bridges without
mechanical connectors be determined using an analytical model?

While the main question is meant to help address the problem, the sub-questions guide the
process. The sub-questions are given as follows:

1. Which are the failure modes of the composite bridges?

2. How can the load distribution between composite girders be determined?

1.3 Methodology

The following part briefly describes the main steps taken in this research project. Figure 1.3
shows an overview of the workflow performed in this study. Initially, the literature is reviewed
to get an overview of the relevant analytical models. The chosen compatibility-based strut
and tie model (C-STM) is used to analytically determine the bearing capacity of the historic
steel-concrete composite bridges without mechanical connectors. The model is configured from
geometry, compatibility conditions and material parameters. The C-STM is verified using a
comparative study, including the experimental results from the laboratory testing and a FEM
model. The FEM model is modified to a generalized case, similar to the analytical model. Then,
conclusions are made on the work done and the results achieved. Finally, recommendations are
made based on the assessment of the analytical model and the comparative study.
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Figure 1.3: A workflow diagram of the work included in this research.
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2 Literature Review

This literature review covers the methodologies previously and currently used to design steel-
concrete composite bridges. This includes the load models and design methods for cross-section
verification. Attention is put on cross-section verifications that, according to the European
Standards, may apply to this case. In addition, covering what these current methods lack that
must be accounted for to determine the bearing capacity of the steel-concrete composite bridges
in Amsterdam. Finally, alternative methods for analysing steel-concrete composite bridges are
considered; this includes the strut and tie method and two analytical methods to determine
the transverse load distribution of concrete bridges.

2.1 Early 20th Century Composite Bridge Design

The following sections include an overview of previously used concrete and steel-concrete com-
posite bridge design methods. This includes loads used during the early 20th century and the
design approach.

2.1.1 Load Models - VOSB1933

The VOSB1933 [4] was the first Dutch code for the design of steel bridges, including design
traffic loads. Although this code was for steel bridges, concrete bridges are assumed to be
designed for similar loads. The code proposes loading similar to the current code for traffic
loads EN 1991-2:2005. However, the VOSB1933 does not differentiate between traffic lanes, as
is the case for the current European Standard. The design loads are applied as concentrated
and uniformly distributed loads. The code has four different load classes that depend on the
use of the road bridge, e.g. if it allows heavy vehicles. The load classes are A/60 (60 ton), B/45
(45 ton), C/30 (30 ton) and D. Load class D is only for light traffic such as pedestrians and is
therefore not considered in the following. The remaining loads are shown in Table 2.1. For the
steel-concrete composite bridges in Amsterdam, it is assumed that they belonged to load class
B/45, as they are located in Amsterdam. Hence, not an industrialised area, although heavy
vehicles are expected.

Table 2.1: Traffic load classes from VOSB1933 [4].

Load Class a [kN] b [kN] c [kN/m2]
A/60 200 200 4
B/45 100 200 4
C/30 100 0 3.5

The loads from Table 2.1 must be applied according to Figure 2.1.
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Figure 2.1: Loading scheme according to VOSB1933 [4].

In addition, more examples of traffic loads from different European countries are given, assuming
that similar tendencies were present in the Netherlands. Assuming traffic loads used for design
in Great Britain in the early 20th century were similar to those in the Netherlands in the
same period, the bridges were designed to carry two fully loaded trams weighing about 12 tons
per tram. In more industrialised areas, the bridges were designed to carry 15-ton machines
pulling a 40-ton trolley[5]. Another design specification from the time is the one devised by the
Austrian engineer Joseph Melan, who designed a bridge in Lausanne in 1901 using the design
load of a 20-ton two-axle truck and a surface load of about 4.4 kN/m2 [6]. The loads from
the two previous cases are assumed to be similar to those applied in Amsterdam in the same
period.

2.1.2 Design Methods

As previously, assuming that the design standards in the Netherlands followed the same trends
as the rest of Europe, very little understanding of the application of shear connectors was
present in the early 1900s. The standards for designing composite structures have similarly
changed through time as the knowledge, and use of composite structures has increased. One
of the most recognised design protocols from the beginning of the 1900s century is the Melan
system invented by previously mentioned Austrian engineer Joseph Melan, who patented this
method in 1890. Following this, the approach became standard practice in the united states,
many European countries and Japan [6]. Using this method, the strain behaviour in composite
beams could be determined, accounting for the steel and concrete[1]. However, following World
War II, the use of composite structures with mechanical shear connectors in Germany rose,
similar to the implementation of composite elements in road bridges around the beginning of
the 1950s. This surge of composite structures in Germany led to the two first German design
standards for composite structures being published, DIN 4239 Composite beams in building
construction (1956) and DIN 1078 Composite road bridges (1955).

These first publications were simplified; they just considered elastic-static analysis for the com-
posite elements and the shear connectors design. However, this simplified approach is expected
since it can be assumed that there was generally limited research on composite structures with
mechanical shear connectors before the publication of the first German standards [7]. The fo-
cus was primarily on steel elements with concrete encasements and no mechanical connectors.
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Thus, composite elements without shear connectors designed before World War II do not seem
uncommon, as with some of the historic bridges in Amsterdam.

2.2 Eurocode Recommendations

The following includes an overview of design recommendations from the European Standards
that generally apply to the design of steel-concrete composite bridges. For the cross-section
verifications, the focus is mainly put on EN 1994:2004. However, certain parts also consider
EN 1993:2005 and EN 1992:2005 as the Standard refers to these for guidelines regarding the
material they concern.

2.2.1 Load Models - Eurocode NEN-EN 1991-2:2005

According to NEN-EN 1991-2;2005 [8], four load models are currently applied for road bridges,
from load model 1 to 4, where load model 1 is the most commonly used. For load model 1, the
load decreases on increasing traffic lane numbers. For the first traffic lane, which is the heaviest
loaded traffic lane, the applied load is 300 kN, which equates to 30.6 tons. Thus, for the first
traffic lane, the applied load already exceeds most of the loads suggested in the cases of load
models in the early 1900s, described in the previous section. The loads from load model 1 are
given in Table 2.2, and the application of the loads are shown in Figure 2.2.

Table 2.2: Load model 1 from EN 1991-2:2005.[8]

Location
Tandem system TS UDL system
Axle Loads Qk (kN) qik (kN/m2)

Lane number 1 300 9
Lane number 2 200 2,5
Lane number 3 100 2,5
Other lanes 0 2,5
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Figure 2.2: Application of load model 1.[8]

2.2.2 Design Verification - Eurocode NEN-EN 1994:2004

The following covers cross-section verification in agreement with the European Standards for
composite bridges. For composite bridges different from those described in EN 1994-1-1:2004
[2] and EN 1994-2:2005 [3], as far as practicable, the design should rely on existing design
rules and methods, which experiments must also support. Hence, for steel-concrete composite
bridge slabs without mechanical connectors, the design approach should strive to follow that of
steel-concrete composite bridges with mechanical connectors. The most similar design situation
would be the design of a composite slab with a partial shear connection, assuming that the
natural steel-concrete bond gives a lower shear connection than a full shear connection.

For composite beams with a partial encasement, EN 1994-1-1:2004 [2] describes two cross-
section verifications that must be made: bending and vertical shear resistance. These verifica-
tions are briefly described in the following. Moreover, as the historic steel-concrete composite
bridges do not ensure shear connection following the European Standard, it must also be verified
that there is sufficient longitudinal shear resistance. Lateral torsional buckling is not consid-
ered as the European Standard describes that a steel flange that is attached to a concrete slab
by shear connection according to the standard can be assumed to be laterally stable [2]. For
the case of steel-concrete composite bridges without mechanical connectors, as this research
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concerns, the steel girders are partially encased. Thus, it is assumed that lateral stability is
provided.

Bending Resistance

Conforming to EN1994-1-1:2004 [2], plastic theory may be applied to determine the bending
resistance. However, reinforcement in compression can be neglected, and concrete is assumed to
be cracked. Hence it has no tension strength. Figure 2.3 shows an example of the plastic stress
distribution to determine the bending moment resistance. Where the concrete compression
stress block is reduced by a factor of 0.85 according to the European Standard [2].

Figure 2.3: Example of plastic stress distribution according to NEN-EN 1994-1-1:2004 [2].

Additionally, the degree of shear connection must be considered. This is defined as the longitu-
dinal shear resistance denoted as Vx,Rd, which must be equal or larger to the compression force
in the concrete to ensure full shear connection. If there is a partial shear connection, the stress
distribution for the plastic bending resistance must be considered, as shown in Figure 2.4. Here
the concrete compression stress block is reduced due to the degree of shear connection, η. The
degree of shear connection is defined from Eq.2.1.

η =
Nc

Nc,f

(2.1)

Figure 2.4: Plastic stress distribution for partial shear connection from NEN-EN 1994-1-
1:2004[2].

Decreasing the shear connection will reduce the plastic bending resistance. Simplifying this,
it can be interpreted as a linear relationship between the degree of shear connection and the
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moment resistance, as the dotted line in Figure 2.5 shows. However, the ideal behaviour is
nonlinear, as the figure also illustrates.

Figure 2.5: Relation between plastic moment resistance and degree of shear connection. Sim-
plified theory vs plastic theory from NEN-EN 1994-1-1:2004[2].

To verify the resistance to biaxial bending, which is relevant for this case, EN 1994-2:2005 refers
to the methods described in EN 1993-1-1:2005 [9].

2.2.3 Bending Resistance - Eurocode NEN-EN 1993-1-1:2005

EN 1994-2:2005 states that composite beams subject to biaxial bending or combined bending
and torsion account should be taken of EN 1993-1-1:2005, 6.2.1(5) [3]. The Standard refers to
the yield criterion in Eq. 2.2 from EN 1993-1-1:2005 [9]. The yield criterion can be used for
elastic verification of cross-sections subject to biaxial bending.

(
σx,Ed

fy/γM0

)2

+

(
σz,Ed

fy/γM0

)2

−
(

σx,Ed

fy/γM0

)(
σz,Ed

fy/γM0

)
+ 3

(
τEd

fy/γM0

)2

≤ 1, 0 (2.2)

Another method is a linear summarization of the utilization ratios for each stress component
from Eq. 2.3.

NEd

NRd

+
My,Ed

My,Rd

+
Mz,Ed

Mz,Rd

≤ 1, 0 (2.3)

However, a linear summarization of the utilization ratios is relatively conservative in the case
of no normal force. Therefore, the expression in Eq.2.3 may be expressed as Eq.2.4

√(
My,Ed

My,Rd

)2

+

(
Mz,Ed

Mz,Rd

)2

≤ 1, 0 (2.4)
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2.2.4 Vertical Shear Resistance - Eurocode NEN-EN 1993-1-1:2005

Conforming to EN 1994-1-1:2004, [2], the design vertical shear resistance of the structural steel
must be determined by EN1993-1-1:2005 [9]. Generally, the concrete encasement is neglected.
However, for composite slabs, EN 1994-1-1:2004 states that the vertical shear resistance of
the concrete encasement may be accounted for following the guidelines of EN1992-1-1:2004,
6.2.2. Several studies have experimentally proved that the vertical shear strength of a partially
encased girder has improved shear resistance compared to the strength of a steel girder alone
[10] [11]. Therefore, it would be a conservative assumption neglecting the encasement of the
steel-concrete composite bridges in Amsterdam, where the concrete volume is a great part of
the total volume. Thus, the vertical shear resistance of the composite bridges is covered in
two stages, first for the steel part, followed by the concrete encasement from EN 1992-1-1:2004.
Finally, the feasibility of summarizing the two shear resistance components into a total shear
resistance is concluded based on the literature examined. When only the steel is considered,
the vertical shear resistance is determined from Eq.2.5 [9].

Vpl,Rd =
Avfyd√

3
(2.5)

For a hot rolled section, the area subject to the shear force is determined from Eq.2.6.

Av = A− 2btf + (tw + 2r)tf (2.6)

If VEd ≤ 0.5Vpl,Rd is valid, there is no need to reduce the bending moment resistance. However,
if VEd > 0.5Vpl,Rd, a reduction is needed by reducing the web yield strength to (1− ρ)fyd. The
reduction parameter, ρ, is obtained from Eq. 2.7.

ρ =

(
2VEd

Vpl,Rd

− 1

)2

(2.7)

However, the requirement in Eq. 2.7 may be disregarded as the shear resistance is assumed to
be increased significantly by accounting for the encasement.

2.2.5 Vertical Shear Resistance - Eurocode NEN-EN 1992-1-1:2004

This section merely focuses on the shear resistance of concrete, as a significant part of the cross-
section area of the steel-concrete composite bridges consists of concrete. Hence, it would be very
conservative to neglect this part. The vertical shear resistance of structural concrete members
can be determined according to EN 1992-1-1:2004 [12]. For concrete structural members not
requiring design shear reinforcement, the shear resistance of the concrete is determined from
Eq. 2.8.

VRd,c =
[
CRd,ck(100ρ|f

1/3
ck + k1σcp

]
bwd (2.8)

With a minimum given from Eq. 2.9.

VRd,c = (νmin + k1σcp)bwd (2.9)
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Where:

k = 1 +
√

200
d

≤ 2, 0.

ρ| =
Asl

bwd
≤ 0, 02 .

k1: Country recommended value found in the National Annex.
σcp = NEd/Ac < 0, 2fcd.

The minimum value in Eq. 2.9 can be determined from Eq. 2.10.

νmin = 0, 035k3/2 · f 1/2
ck (2.10)

However, Eq.2.9 does not apply to the case of the steel-concrete composite bridges in Amster-
dam, as these do not have any reinforcement. Furthermore, none of these equations previously
presented account for the interaction and the case of partial shear connection. Therefore, using
Eq. 2.8 is deemed impossible.

Vertical Shear Resistance - Composite Slabs

In a study by Vasdravellis and Uy [13], the shear strength and moment-shear interaction of steel-
concrete composite beams were investigated. The motivation for the research was that steel-
concrete composite beams are designed neglecting the concrete slab. Therefore, Vasdravellis
and Uy proposed an analytical design procedure to account for the shear resistance of the
concrete in the composite beam. The analytical model was based on the results of testing.
Figure 2.6 shows the test up used for the experimental program, 14 specimens were tested, and
the clear span varied from 0.8m to 5.5m. The degree of shear interaction also varied, so it was
possible to determine the vertical shear resistance accounting for this.

Figure 2.6: Test setup and details of the cross sections from the study by Vasedravellis and Uy
[13].

The vertical shear resistance assuming full shear connection and accounting for the individual
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contribution from steel and concrete is obtained from Eq.2.11.

Vcomp = Vpl,Rd + Vslab (2.11)

The shear resistance of the steel girder is obtained from Eq.2.5, which was previously described.
The contribution from the concrete slab is determined from Eq.2.12.

Vslab = φsf(λsd)(bfDslab)
0.7
√

fc (2.12)

f(λsd), which is a function of the slab slenderness is obtained from Eq.2.13

f(λsd) = 110λsd + 13 (2.13)

For partial shear connection, the vertical shear resistance is determined through a number of
steps. First, the slenderness ratio, λsd and the vertical shear resistance of a composite beam
with the full shear connection are determined. Following Eq.2.14 is used to obtain the shear
resistance with no shear connection, Vcomp,0.

Vcomp = Vcomp,0(0.76λsd + 0.92) (2.14)

Finally, the vertical shear resistance with the degree of shear connection, η, can be obtained
from linear interpolation between the full and no shear connection values.

It is assumed that the analytical equations proposed by Vasdravellis and Uy give a more ac-
curate estimation of the vertical shear resistance. Moreover, these make it possible to account
for the degree of shear connection, which was impossible using the European Standards’ rec-
ommendations.

2.3 Longitudinal Shear Resistance

The following covers the relevant literature regarding the longitudinal shear resistance of
concrete-encased steel girders. The steel-concrete bond strength of concrete-encased steel pro-
files without mechanical connectors is complex to determine. This depends on several factors:
time, geometry, concrete cover, and surface treatment, are some of them.

FIB Model Code 2010 [14] generally provides recommendations and guidance for the Eurocode.
According to the Model Code, specific recommended values exist for a steel-to-concrete bond.
The Model Code distinguishes between bond types, such as chemical adhesion and active fric-
tion. The typical bond strength for chemical adhesion is around 0.1MPa, whereas the Model
Code does not include any recommendations for physical adhesion. Moreover, the recommended
values for active friction are between 0 and 0.6. Nevertheless, it can be challenging to determine
the exact value. Despite the Model Code providing guidelines for the European Standards, the
Standard recommends neglecting the effect of natural bonds for steel-concrete composite beams
[2]. Several studies have investigated the steel-concrete bond.

A recent study by Chrzanowski et al. [15] investigated the natural steel-concrete bond to
determine its contribution to the longitudinal shear resistance when shear connectors also are
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present. This was done as the contribution of shear connectors is commonly determined by
applying grease on the steel-concrete interface, so only the connectors contribute to shear
connection. However, tests have shown that the natural bond still provides bond strength
regardless of the grease applied. Thus, the isolated contribution from the shear connection
can be determined by determining the natural steel-concrete bond. This study used two test
types to evaluate the natural steel-concrete bond: small-scale cube push-out tests (SSCPOT)
and large-scale column-type push-out tests (CoPOT). The SSCPOTs were performed on steel
profiles with three different kinds of surface treatment to see how the bond strength varies. THE
CoPOTs were performed on HEB120 profiles, similar to DIN profiles, as the steel girders in the
historic Amsterdam bridges, although the ones from the tests had smaller dimensions.

As a result of the research Chrzanowski et al. stated that ”The contribution of the steel-concrete
bond is signification in the force transfer mechanism of shear connectors in push-out tests with
embedded steel profiles (even for greased surfaces) and cannot be disregarded” [15, p. 50]. Hence,
according to this study, the effect of the steel-concrete bond should be accounted for, regardless
of the surface treatment. The experimental results by Chrzanowski et al. are given in table
2.3. The table also includes the results of several other studies investigating the steel-concrete
bond on HEB profiles.

Table 2.3: Data from literature review on steel-concrete bond strength from push-out tests with
HEB-profiles.

No.
Test
Specimen

Surface
treatment

Concrete
cover

Encased length Bond strength

Chrzanowski et al. [15]
1. 2xHEB120 Anti adhesive

relase agent
440mm and
110mm. Stir-
rups Ø12/117

350mm 0.87MPa

Roik [16]
2. 9xHEB200

encased steel
profiles

Cleaned with
paint thin-
ners.

65mm 440mm 0.7-1.40MPa

Wium [17]
3. 29xHEB200 Sandblasted

Sa2.5
50mm and
100mm. Stir-
rups Ø8/100

440mm 0.54-1.20MPa

SmartCoCo [18]
4. One HEB120

encased steel
profile

Painted sur-
face

440mm and
110mm. Stir-
rups Ø12/150

900mm 1.34MPa

5. One HEB120
encased steel
profile

Rust surface 440mm and
110mm. Stir-
rups Ø12/150

900mm 2.91MPa

Table 2.3 shows that even for untreated and cleaned surfaces, there is a significant steel-concrete
bond. Therefore, steel-concrete bond strength can be assumed based on the values from Table
2.3. However, as previously mentioned, these should be chosen conservatively as they vary de-
pending on multiple parameters. From Table 2.3, a conservative estimate on the steel-concrete
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bond strength of the steel-concrete composite bridges in Amsterdam could be 0.54MPa, taking
the lowest value in the range of the experiments.

One of the factors that the bond strength is greatly sensitive to is the concrete cover. The
1970 AISC Specification [19] suggests that the natural bond between steel and concrete can be
accounted for when a concrete cover of 38mm at the top and 51mm at the sides and bottom is
provided. Thus, the effective concrete contact area may be determined using this assumption.
Furthermore, time effects can reduce the bond strength due to creep and shrinkage. In the
study by Wium [17], two identical specimens were investigated roughly six months apart with
a 15% loss of bond strength. This was not investigated further, yet a conservative assumption
of the bond strength from Table 2.3 is still considered safe.

Mohr-Coulomb Mechanism

The longitudinal shear resistance increases when two surfaces are subject to a normal compres-
sion stress. This effect is known as the Mohr-Coulomb mechanism. The Mohr-Coulomb shear
resistance can be determined from Eq. 2.15.

τRd = c+ σ · tanφ = c+ σµ (2.15)

Figure 2.7 shows how the shear resistance linearly increases with increasing normal stress.

Figure 2.7: Development of Mohr-Coulomb failure envelope [20].

The friction coefficient depends on the surface roughness. Thus, for a frictionless surface, this is
0, whereas, for concrete-to-concrete surfaces, this value could typically be around 0.6 [14].

A study performed by Rabbat et al. [21] strived to determine the static friction coefficient of
steel on concrete or grout. The test parameters included in the study were wet/dry interface
and level of normal compressive stress. In total, 15 tests were conducted and resulted in
static friction coefficients varying between 0.57 and 0.70. For a dry interface, Rabbat et al.
recommends using a friction coefficient at 0.57, whereas, for a wet interface, the recommended
value is 0.65.
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In another study by Baltay and Gjelsvik [22], the coefficient of friction for steel on concrete
was investigated. The research showed that the coefficient of friction for a mild steel surface
varied depending on the nominal stress. For values between 1 and 470MPa the coefficient of
friction linearly increased from 0.3 to 0.57. Furthermore, for a machined surface, the coefficient
of friction was on average 0.47 regardless of the nominal normal stress. Table 2.4 summarizes
the coefficient of friction from a few studies. However, the values vary greatly depending on
the surface roughness and the material.

Table 2.4: Coefficient of friction according to different references.

Reference Coefficient of friction
FIB Model Code 2010 [14] 0.00-0.60
Rabbat and Russel [21] 0.57-0.65
Baltay and Gjelsvik [22] 0.30-0.57

From Table 2.4, it can be concluded that the coefficient of friction should be accounted for, as
experiments have proved that the coefficient of friction should be at least 0.3. However, the
value is also related to a lot of uncertainty, as the coefficient of friction increases at increasing
normal stresses due to the concrete crushing that forms small grains. At these higher values,
the steel-concrete interface is assumed to fail due to the concrete crushing. Thus, a higher
coefficient of friction can not coexist with nonzero cohesion values. Therefore, it is assumed to
be safe, accounting for cohesion and a lower coefficient of friction value.

Longitudinal Shear Strees

The study by Chrzanowski et al. [15], evaluates the shear stresses from the effective steel-
concrete contact area that is determined from Eq. 2.16.

Ac,eff = Lemb,s · us,eff (2.16)

The shear stresses on the surface are determined from Eq. 2.17.

τsurf =
F

Ac,eff

(2.17)

The previous equations are derived from push-out tests, where the loading is in the same
direction as the effective shear stresses. Hence, in this case, the shear stress must be evaluated
differently, as the loads on the Amsterdam bridges are perpendicular to the surface. The shear
stress in the case of a load perpendicular to the surface can be obtained from Eq. 2.18 [19].

τsurf =
V S

IPcs

(2.18)
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2.4 Strut and Tie Method

The Strut and Tie Method (STM) is a force equilibrium method used to perform detailed
analysis and design of concrete structures. The method is used to rationally design concrete
structures using struts and ties connected at nodal points. The STM originates from the truss
analogy introduced by Ritter (1889) and Mörsch (1902). After introducing the truss analogy,
it was further developed and adapted. Following the initial introduction of the strut-and-tie
models, more research was done to implement this method to design various concrete structures.
In the early 1990s, Schlaich and Schäfer [23] proposed using strut and tie models for designing
concrete structures. Previously, this was limited to only deep beams and corbels. This proposal
by Schlaich and Schäfer suggested using STM for both reinforced and prestressed concrete
structures. The design of these structures using STM became possible with the introduction
of disturbed regions (D regions) and Bernoulli regions (B regions). The D regions exist at
discontinuities, where a nonlinear stress pattern is present, whereas the B regions, opposite of
D regions, are where the stress patterns are linear. Figure 2.8 shows two examples of the B
and D regions [24].

Figure 2.8: Examples of disturbed regions and Bernoulli regions [24].

Nowadays, strut and tie models are described in various literature, including several design stan-
dards, both European and American [12][25][26]. The method mainly applies to the disturbed
region of concrete elements, simplifying stress patterns into compression struts and tensile ties
connected by node regions. For instance, the STM can determine the transverse prestressing
reinforcement’s size and position [27]. One significant advantage of using the STM is that it
allows engineers to customise the model as long as it meets equilibrium requirements. Ensuring
that the yield and equilibrium criteria are satisfied makes it possible to accurately calculate
the stresses present in the model [28]. Figure 2.9 shows an example of different configurations
of strut and tie models applied to the same structure.
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Figure 2.9: Example of different strut and tie models [24].

STM is used for a wide range of design problems, and the complexity of the technique varies from
simple hand calculations to detailed numerical analysis. The following predominantly focuses
on the STM for analytical calculations, as this research investigates analytical methods.

2.4.1 STM for Analysis of Reinforcement-free Decks

A study by Ug Bae et al. [29] describes the application of an STM to determine the punching
shear resistance of reinforcement-free decks. The purpose of the study, was similar to this re-
search, to determine an analytical method that can replace time-demanding FEM calculations.
The reinforcement-free decks consist of I-girders and a deck on top; both elements are fibre-
reinforced concrete. Moreover, the I-girders are connected by lateral steel ties, as illustrated in
Figure 2.10. The STM is applicable for short-span bridge decks on girders.

Figure 2.10: Reinforcement free deck.[29]
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The STM is shown in Figure 2.11, also illustrating the compression stress trajectory, which
explains the position of the struts.

Figure 2.11: STM and compression stress trajectory. [29]

Figure 2.12 shows a top view of the STM and the spring components included in the STM. The
proposed model applies lateral springs to account for the lateral stiffness of adjoining girders,
flexural stiffness about the minor axis and torsional stiffness. However, parts of the modelling
approach depended on FEM analysis to determine displacement, which may be challenging to
apply to the scope of this thesis. Furthermore, this analysis neglects the vertical equilibrium.
Figure 2.12 shows a plan view of the bridge and the components of the horizontal stiffness.
Also illustrating how the exterior girder is subject to failure due to its lower stiffness compared
to that combined with the interior girders.

Figure 2.12: a) Plan view of deck and girders. b) Components of lateral stiffness. [29]

This research focuses on failure modes other than punching shear, regardless of the mechanical
behaviour of the STM that may be adapted for this research. The historic steel-concrete
composite bridges in Amsterdam are similar to those used for this STM, as the geometry is
similar, despite the lateral steel ties. Moreover, the Amsterdam bridges have different materials.
In addition, the Amsterdam bridges are also reinforcement free, assuming that the relatively
low amount of reinforcement can be neglected.
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2.4.2 Compatibility-based Strut and Tie Method

In the study described in the previous section, the stiffness of the steel ties was accounted for by
considering these as spring elements. Another method to directly account for the stiffness of the
steel ties and the compression struts is to include compatibility into the model. For instance,
this can be done by considering the strut and ties as bars with only axial deformation.

In a study by Park and Kuchma [30], a strain compatibility-based strut and tie method is
proposed to determine the bearing capacity of 214 deep beams. This method is proposed to
challenge the recommendations from the provisions on STM design from ACI318-5 and the
Canadian Code. The strain compatibility was included as an attempt to make a more accurate
strength prediction method with the STM. The research proves that the method consistently
provides accurate results. Furthermore, the method provided valuable insight into the behaviour
of deep beams, as it provided input on the strain behaviour of the different struts and ties.
The C-STM is shown in Figure 2.13. As the method considers strain compatibility, a stiffness
formulation is required, for this, a secant stiffness formulation is used.

Figure 2.13: C-STM for a deep beam. [30]

In addition, the constitutive laws considered also account for cracked reinforced concrete. This
may be difficult to apply for the scope of this research, as the steel-concrete composite bridges
in Amsterdam are considered reinforcement-free due to the small amount of reinforcement.
Although the computation of the compatibility-based strut and tie method (C-STM) is more
sophisticated than for a typical STM, this can, as in the study by Park and Kuchma, give more
accurate results and a better insight into the behaviour of the analysed structure.

2.4.3 Design Requirements - Eurocode NEN-EN 1992-1-1:2004

The strength of the struts, ties and nodal zones must be determined to ensure sufficient ca-
pacity. As the method is applied primarily for ULS design, the stresses in the struts and ties
are generally the maximum allowable. EN 1992-1-1:2004 [12] describes how to determine the
capacity of the elements in the strut and tie model. However, as tensile ties generally refer to
reinforcement and the Amsterdam steel-concrete composite bridges have very little reinforce-
ment, the capacity requirements for tensile ties are neglected. Instead, the capacity of the
tensile ties is assumed to equate to the tensile strength of concrete. For compressive struts
subject to either transverse compressive stress or no transverse stress, the capacity of the strut
is defined as the concrete compression strength according to Eq. 2.19.
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σRd,max = fcd (2.19)

Otherwise, if the struts are subject to transverse tension, the capacity must be reduced as
shown from Eq. 2.20.

σRd,max = 0, 6ν ′fcd (2.20)

Where:

ν ′ = 1− fck
250

(2.21)

The capacity for compression nodes without ties is determined from Eq. 2.22.

σRd,max = k1ν
′fcd (2.22)

Where the recommended value for k1 is 1.0. The capacity for compression-tension nodes without
ties is determined from Eq. 2.23.

σRd,max = k2ν
′fcd (2.23)

The recommended value for k2 is 0.85.

2.5 Transverse Load Distribution Models

Namely, two methods to analyse bridges’ transverse load distribution (TLD) have been inves-
tigated. These methods are Guyon Massonnet Method and Transfer Matrix Method
(TMM). The TLD methods are different from each other in complexity and use. The Guyon
Massonnet Method is widely known within bridge engineering for designing concrete bridges,
whereas the TMM has recently been developed to analyse the TLD of articulated bridges.
The models mentioned in the following have been deemed feasible, assuming that, with some
modifications, these models can be used to determine the bearing capacity of steel-concrete
composite bridges. It must be regarded that the methods should be feasible for the analytical
design of steel-concrete composite bridges. Hence, high complexity is not necessarily the aim
of this study.

2.5.1 Guyon Massonnet Method

A commonly used and widely known method to determine the TLD of concrete bridges is the
Guyon Massonnet Method, also called Mourice - Little Theory [31]. This method, depending on
the stiffness of the bridge, gives a nonlinear load distribution that is assumed to be more accurate
than linear load distribution methods such as Courbon´s Method. The Guyon Massonnet
Method accounts for the torsional and flexural stiffness of the bridge girders, respectively,
using the parameters α and θ, given from Eq. 2.24 and 2.25.

α =
γx + γy

2
√
ρx + ρy

(2.24)
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θ =
b

l
4

√
ρx
ρy

(2.25)

The Guyon Massonnet Method uses a reference system where each point can represent a bridge
girder. For the case of this example, the reference system is divided into 8 segments, as shown
in Figure 2.14.

Figure 2.14: Guyon Massonnet Method reference system [31].

The influence line of the TLD is determined using distribution coefficients that depend on
the stiffness coefficients. The distribution coefficients are denoted as K0 and K1, where the
subscript indicates the torsional stiffness. As the torsional stiffness often is somewhere between
0 and 1, the distribution coefficients are determined assuming that the torsional stiffness either
is 0, 1 or the intermediate value of the distribution coefficients are obtained from Eq. 2.26.

Kα = K0 + (K1 +K0)×
√
α (2.26)

The distribution coefficients are determined for each point of the reference system using design
aid graphs like the one shown in Figure 2.15. These graphs depend on the reference system
location; however, interpolation is used to obtain the distribution coefficients for a reference
system with reference points different than the ones in Figure 2.14.
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Figure 2.15: Distribution coefficient K0 at point 0 [31].

Finally, an influence line can be constructed using the design aid graphs by finding the distri-
bution coefficient for each reference point along the system. Figure 2.16 shows the influence
lines for the same bridge at different loading points.
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Figure 2.16: Influence lines at reference points between 0 and b [31].

An advantage of the Guyon Massonnet Method is that it gives a nonlinear transverse load
distribution. Furthermore, it is possible to account for both the torsional and flexural stiffness of
the bridge girders. Moreover, it is feasible to determine the transverse moment using the GMM.
However, the method is mainly used for concrete bridges. Therefore, stiffness assumptions must
be made to apply it to composite bridges.

2.5.2 Transfer Matrix Method

An alternative method to analytically determine the TLD is using the Transfer Matrix Method
(TMM), which recently was proposed in a study by Guo et al. [32]. The study investigated the
possibility of using the TMM to determine the TLD of an articulated slab bridge by comparing
it to the Force Method (FM) and FEM analysis. The derivation of the TMM is based on the
following assumptions:

1. Ends of slabs are simply supported

2. The torsional deformation of the slab is restrained

3. The slab sections have no warping
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4. The lateral connection between the slabs is replaced by an articulated point in the loading
position

Figure 2.17 shows each slab’s TLD influence line peaks across the span. Compared to FM and
FEM analysis, the study proved that TMM provided results similar to FEM analysis. Contrary
to FM, the TMM also accounts for the distance between the applied load and the supports, as
shown in Figure 2.17. Another advantage of TMM is that it provides the vertical displacement,
the torque and the rotation of each bridge element.

Figure 2.17: TLD influence line peak values for slab 1-5 at L/8. a) slab 1. b) slab 2. Etc. [32].
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The TMM considers flexural bending and torsion using stiffness coefficients, like the Guyon
Massonnet Method. These are given from Eq. 2.27 and 2.28.

fb =
d2(L− d)2

3EIL
(2.27)

ft =

{
a2d
2GJ

(0 ≤ d ≤ L/2)
a2(L−d)
2GJ

(L/2 ≤ d ≤ L)
(2.28)

With relatively few means, the TMM can calculate the TLD, as each bridge has a matrix
assembled from vectors describing the displacement and vertical shear force at each node, as
shown in Figure 2.18. Assuming that each bridge element is similar, the only matrix that
varies is the matrix of the loaded bridge element. Figure 2.18 shows the forces the TMM
considers.

Figure 2.18: The force diagram of articulated slab bridge. (a) external force, (b) vertical shear
of joints, (c) distribution load of each slab, (d) deflection of slabs. [32]

As mentioned, the TMM in the study considers articulated slab bridges with shear keys between
each box girder. Therefore, it neglects the transfer of the transverse moment. In contrast, the
steel-concrete composite bridge slabs in Amsterdam would require the method to account for
the transverse moment, as there is concrete between the composite girders. Thus, if TMM is
applied to determine the bearing capacity of the steel-concrete composite bridges analytically,
an additional degree of freedom must be derived to account for the transfer of transverse
moments between the slabs. Alternatively, a rotational spring can be introduced to decrease
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the rotation of the slabs. The stiffness of this spring element must also vary depending on
cracked or uncracked concrete in the longitudinal direction.

2.6 Summary

To summarise, the elements that have been discussed in this literature review:

Eurocode Design Recommendations

Following the review of the European Standards, it must be verified that the steel-concrete
composite bridges have sufficient resistance for bending, vertical- and longitudinal shear. It
can be concluded that the Eurocode does not include any guidelines for the design of existing
steel-concrete composite structures. Additionally, the Standards do not allow designing new
steel-concrete composite bridges without mechanical connectors, which is reasonable for an
efficient design. However, these guidelines can be conservative for the assessment of existing
bridges that are constructed without any mechanical connectors. This is a problem despite
there being multiple studies that found the natural steel-concrete bond sufficient to provide
composite interaction. On the other hand, there is a lack of studies investigating the bond
strength of historical structures, as the bond strength may decrease with time.

The recommendations in the standards assume that bending can be determined using Eq.
2.4. For vertical shear resistance, the European Standard generally assumes that the steel
girders merely provide vertical shear resistance. but the account of the encasement may be
taken. However, there is no recommendation from the European Standards for how the shear
connection affects the interaction of steel and concrete for vertical shear resistance. Therefore,
additional literature was discovered to determine the vertical shear strength of steel-concrete
composite beams. It is assumed that the findings from the study by Vasedravellis and Uy [13]
can be applied to this study, as they proposed an analytical method to determine the vertical
shear contribution of the concrete and account for the degree of shear connection.

Longitudinal Shear Resistance

The literature review revealed multiple studies investigating the steel-concrete bond of concrete-
encased I-profiles. These studies proved that the natural bond due to cohesion contributes to
significant resistance and must be accounted for. However, many of these studies were per-
formed with relatively small HEB profiles. Only one study covered the time effects, investi-
gating the natural bond of specimens half a year after they were cast. Nonetheless, the loss of
bond strength due to time effects requires further research. Therefore, the bond strength, due
to cohesion, is taken as the lowest value from this literature review, e.i. the bond strength is
assumed to be 0.54MPa.

When accounting for the natural-steel concrete bond, it can be difficult to determine the ef-
fects of the Mohr-Coulomb mechanism. However, it is considered conservative to neglect the
Coulomb mechanism, and the bearing capacity may be unnecessarily reduced. Therefore, the
following study uses a value of 0.30 for the coefficient of friction, assuming that a high co-
efficient of friction can not coexist with cohesion being present, as the coefficient of friction
increases with increasing force, but concrete crushing occurs due to the force, which damages
the steel-concrete interface.

The Strut and Tie Method
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As the literature review covers, the strut and tie method is often used for reinforced or pre-
stressed concrete structures. In addition, this showed that the STM previously had been em-
ployed in a study with a bridge slab of similar geometry, although the materials were different.
Generally, the STM proved to be applicable for the scope of this thesis, as this method is widely
used and can be applied similarly to the research by Ug Bae et al. [29].

Transverse Load Distribution Models

For the transverse load distribution (TLD), two methods were considered: Guyon Massonnet
Method and Transfer Matrix Method. The Transfer Matrix Method proved relevant for
this research, providing accurate results with relatively little computation. The study applying
TMM investigated bridges with shear keys between the box girders. Therefore, applying the
TMM for this research would require that an additional degree of freedom is derived or that
rotation springs are implemented since the steel-concrete composite bridges in Amsterdam can
transfer the transverse moment. In addition, both TMM and GMM would require assumptions
to include the composite material parameters, as the methods generally only concern concrete
bridges.
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3 Experimental and Numerical Study

A series of investigations have been initiated to help determine the bearing capacity of the his-
toric steel-concrete Amsterdam bridges, including testing and FEM modelling. The testing was
performed over two phases, first in situ testing followed by laboratory testing, both accompa-
nied by numerical models. The findings of these investigations are studied and described in the
following. The main purpose of studying these results is to gain insight into the behaviour of
the bridges, helping to construct an analytical model based on this understanding. Thus, these
results will not be used to derive or calibrate parameters for the analytical model proposed in
Chapter 4.

3.1 Experimental Setup

The experimental testing includes in situ testing and laboratory testing. First, in situ, testing
was performed on Amsterdam Bridge 70, one of the about 30 steel-concrete composite bridges
in Amsterdam without mechanical connectors. Following the in situ testing, decks from the
same bridge were cut out and transported to Delft for laboratory testing by TNO and TU
Delft. The bridge consists of a main span and two side spans.

3.1.1 In Situ Testing

The first phase of the assessment of the historic Amsterdam bridges involved in cyclic situ test-
ing of Amsterdam Bridge 70, which was accompanied by a numerical model. The construction
drawings of Bridge 70 date back to the early 1930s, discovered through an archive study by de
Boer et al. [1]. Moreover, the lifetime of the bridge has already passed. Regardless the bridge
is considered to be in relatively good condition. It was possible to test Bridge 70, as a larger
construction of the inner Amsterdam infrastructure was already underway, which involved de-
molishing a number of bridge decks. The in situ tests were performed over two weeks. Only the
side spans were available for testing, as the main span had to remain open for the boat traffic.
Before the in situ testing, concrete cores were drilled, and samples of the steel girders were
taken to determine the material parameters of the concrete and steel. The material parameters
were used to input for a FEM model that accompanied the in situ testing.

The two tested samples of the bridge deck part had a width of 3.95m and a length of 6.5m.
The bridge deck was disconnected from the remaining part of the bridge by sawing the concrete
along the span of the bridge deck. The tested bridge deck consisted of six steel girders, as shown
in Figure 3.3, where the steel girders are marked with red rectangles. The cross-section of one
of the composite girders in the bridge deck is shown in Figure 3.1.
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Figure 3.1: Cross section of Amsterdam Bridge 70 side span bridge deck [1].

Before the in situ testing, the hypothesis was that the bridges would be subject to punching
shear failure due to the geometry of the cut-out section where the concrete is thinnest. This
was also anticipated due to the lack of transverse reinforcement. Thus the bridge was loaded
between the steel girders. Figure 3.2 shows the position of the loading that is between the two
composite girders.

Figure 3.2: Position of the load before the in situ testing. Internal distribution of stresses from
the load. [1]

The bridge was loaded by a single wheel-print with increasing load. The wheel-print was
positioned between beams 3 and 4, as shown in Figure 3.3. The wheel print was applied at
five different locations. One location was at the mid-span, and the remaining were between the
supports and the mid-span. The measurements and location of sensors are shown in Figure
3.3. The bridge was tested to a maximum load of 475 kN, which was the limit due to the
capacity of the foundation. The testing lasted 14 days as there were several load steps before
the maximum load was reached, and between each load level, which was reached three times

44



before increasing the load, there were additional intermediate load steps of 25 kN. Moreover,
the load was applied at five different locations, so this had to be done five times.

Figure 3.3: Load and sensor location of the testing at midspan. The red rectangle indicates
the wheel print load. The blue rectangles indicate strain sensors on the bottom steel flanges.
The orange dots are the lasers measuring the vertical displacement. The green lines show the
measurement of the transverse displacement between the bottom steel flanges.[1]

During testing, cracking only occurred at a micro level. From the vertical displacement, it was
possible to conclude that final the load still was distributed over the four girders adjacent to the
wheel print load, e.i. beams 2-5, according to Figure 3.3. It is assumed that the distribution
may differ when the load is between the exterior and the adjacent girders. Slip behaviour was
measured only at one in situ loading but requires more investigation. Additionally, the expected
stiffness of the bridge deck was higher than first expected. Also, the numerical model showed
remaining capacity up to 1900 kN. Still, after 675 kN, the cracks started propagating above the
top steel flange, which is not desired. Thus, it is assumed that the maximum acceptable wheel
print load is expected to be about 675 kN. [1]
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3.1.2 Laboratory Testing

From Amsterdam Bridge 70, which was tested in situ, three cut-out sections (LB1, LB2 and
LB3) were taken following the in situ testing of the same bridge. One specimen was taken from
the main span, whereas the other two others were taken from the side spans of the bridge, as
illustrated by Figure 3.4.

Figure 3.4: Western half of bridge 70. Showing the location of cut-out sections LB1-LB3. [33]

The details of the experiments and the results are further described in the report ”Experiment
report on steel-concrete-composite bridge deck without mechanical connectors (Verbundträger)”
by Jørgensen et al.[34]. For this study, only the main conclusions and observations are consid-
ered.

All specimens consisted of three encased steel girders without mechanical connectors. These
specimens were transported to Delft for laboratory testing. The specimens were tested using a
4-point bending test. TNO tested specimen LB2 but did not achieve failure at first. However,
TNO improved the test setup following the testing, and it was possible to achieve failure after
the initial testing [35]. The remaining specimens, LB1 and LB3, were tested by TU Delft in the
Stevin Lab and achieved failure. Only LB1 and LB3 are considered in the following, as LB2
was tested with cyclic loading, which does not compare to the scope of this research.

The specimens LB1 and LB3 differ in length and cross-section dimensions. LB1 has a span
of 5950mm and consists of three I-girders, two exteriors that are DIN280-profiles and one
middle that is a DIN260-profile. The cross-section dimensions of LB1 are shown in Figure
3.5. Additionally, the concrete cover above the steel girders varies greatly between 400mm and
490mm along the length of the width of the specimen.
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Figure 3.5: Cross-section of LB1 showing the dimensions.

LB3 has a span of 7600mm and consists of three I-girders, two exteriors DIN340-profiles and
one middle a DIN300-profile. The dimensions of LB3 are shown in Figure 3.6. The specimens
differ as LB3 has larger steel girders but a smaller concrete cover, which is assumed to affect
the longitudinal shear resistance. Similar to LB1, the concrete cover above the steel girders also
varies. However, the variation is less as it is between 405mm and 430mm. The centre-to-centre
distance between the girders is similar.

Figure 3.6: Cross-section of LB3 showing the dimensions.

The loading was applied as displacement control using hydraulic jacks. The load from each
hydraulic jack was transferred via a transfer beam to two loading plates, as shown in Figures
3.7 and 3.8. The hydraulic jacks were applied, each with a distance of 600mm from midspan.
Furthermore, the loading location was right between the middle girder and the exterior girders,
considered the most critical location. The purpose of this loading was to simulate the loading
from a vehicle.

Supports were positioned underneath each steel girder, with a corresponding load cell at each
support. These were used to measure the reaction forces at each beam to help understand the
load distribution between the beams.
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Figure 3.7: Side view of the test setup of LB1. Showing the position of hydraulic jacks.[34]

Figure 3.8: Top view of the test setup of LB1. Showing the position of loading plates.[34]

Due to the lack of transverse reinforcement, the transverse behaviour has been investigated
using 3D DIC and LVDTs positioned underneath the specimens. The location of the 3D DIC
is shown in Figures 3.9 and 3.10. Using this, it is possible to see how cracking propagates
with increasing load. Unfortunately, 3D DIC measurements were only taken during load holds.
Thus, these do not give a fully accurate presentation of the behaviour. Additionally, only the
3D DIC results from the testing of LB1 are relevant for the following, as the 3D DIC during
the testing of LB3 was positioned wrong.
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Figure 3.9: Bottom view position of 3D DIC at LB1.

Figure 3.10: Orientation of the 3D DIC positioned underneath LB1. Showing the DIC when
the total load is 1400 kN and 1500 kN at LB1.

From the 3D DIC in Figure 3.10, it is possible to see that at a load around 375 kN the longitu-
dinal cracking starts to propagate. However, as the bottom view in Figure 3.9 indicates, it is
impossible to see the onset of this longitudinal cracking, as the DIC measures from a distance
to the loading plates.

An additional method to further assess the transverse behaviour is using LVDTs that are
positioned at the bottom flange of the steel girders, measuring the relative displacement between
the exterior girders and the middle girder, as shown in Figures 3.11 and 3.12.
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Figure 3.11: Bottom view of the specimen indicating the location of the LVDTs relative to the
loading plates.

Figure 3.12: A-A section of the specimen in Figure 3.11 a cross-section with the position of
LVDTs underneath the specimen of LB1.

The onset of the longitudinal cracking is assumed to occur when the transverse displacement
increases nonlinearly. However, this can also be due to yielding of the steel girders, but with the
limited ductility of the concrete, it must crack before the displacement can increase nonlinearly.
The uncracked concrete is assumed to keep the exterior girder relatively rigid. Figures 3.13 and
3.14 show the transverse displacement.
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Figure 3.13: LB1 - Transverse displacement versus loading measured from underneath. Ftotal

is the total load.

Figure 3.14: LB3 - Transverse displacement versus loading measured from underneath. Ftotal

is the total load.

From Figures 3.13 and 3.14 it is assumed that for LB1 longitudinal cracking occurs at Ftotal =
1300 kN and LB3 at Ftotal = 1100 kN. From the above figures, it is also clear that following
what is assumed to be longitudinal cracking, the composite girders still have the remaining
capacity.
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The specimens LB1 and LB3 were loaded until failure. LB1 failed at a maximum load at
1746 kN due to yielding of the steel beams followed by a slip between the steel and concrete.
The maximum resistance of LB1 can be seen in Figure 3.15, which also shows how the specimen
yielded before failure. The figure also shows that the specimen was unloaded before loading
until failure, which for the other measurements, was removed for simplicity, as the girders
already were yielding.

Figure 3.15: LB1 - Vertical displacement versus the total load Ftotal. Vertical displacement was
measured from the hydraulic jack.

Following the failure of LB1, it was observed that there was an opening between the steel
and concrete at one of the exterior composite girders. Additionally, longitudinal cracks had
propagated as shown in Figure 3.16.
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Figure 3.16: At the left: Opening between steel and concrete at one of the exterior girders
observed after the failure of LB1. At the right: Longitudinal cracking observed after the failure
of LB1.[34]

LB3 failed at a maximum load at 1494 kN to yielding of the steel girders and concrete crushing
at the top fibre. The maximum capacity can be seen in Figure 3.17, showing the vertical
displacement versus the total load. In addition, the figure shows that the specimen was unloaded
before it was loaded till failure.

Figure 3.17: LB3 - Vertical displacement versus the total load Ftotal. Vertical displacement was
measured from the hydraulic jack.

The concrete crushing is shown in Figure 3.18. Additionally, longitudinal propagating cracks
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appeared between the steel beams from transverse bending due to the missing lateral rein-
forcement, as was the case for LB1. Moreover, the figure shows flexural cracks at the bottom
propagating approximately up to the height of the top steel flange.

Figure 3.18: Sideview of LB3 showing concrete crushing at the top concrete fibre following
failure [34].

3.2 Numerical Model

To better investigate the correlation between the longitudinal cracking and the loading, two
numerical models of LB1 and LB3 have been investigated. These models are from a previous
study by Poliotti et al. [36] investigating the specimens LB1 and LB3 by replicating their
geometry and the loading from the laboratory testing. However, there are variations between
the modelled geometry and the actual geometry, which may cause different results. The spec-
imens in the laboratory had a concrete cover that varied along the length of the specimens,
which may have caused a different load distribution in the specimens, as also was seen from
the reaction forces. These can be seen in Appendix D. The geometry in the FEM assumed a
constant concrete height and did not account for any imperfections.

For this study, it is desired to derive a generalised analytical model, so it can easily be modified
or adjusted for other loading cases. Therefore, the numerical models of LB1 and LB3 have been
adjusted so the loading is 3-point bending instead of 4-point bending. The numerical models
help better understand the specimens’ behaviour where the test measuring is insufficient, for
instance, the transverse displacement at other points than measured during the testing. Thus a
more accurate displacement profile can be achieved than the one achieved using LVDT, as was
the case for the experimental testing. Numerical modelling has not been used to derive input
parameters for the analytical model. The following describes the properties of the model and
the boundary and loading conditions, whereas only the loading conditions have been changed
from 4-point bending to 3-point bending. Except for the loading conditions, the models are
identical to the models constructed by Poliotti et al.

The two test specimens from the laboratory are modelled in 3D using DIANA v10.5. Four
elements of the bridge specimen are modelled, concrete, steel girders, steel plates for loading
and support, and interface elements. The average size of the mesh is 50mm. Figure 3.19 shows
the mesh of LB1. A more detailed overview of the finite element types and the iterative scheme
can be found in Appendix E.
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Figure 3.19: 3D view of the mesh of LB1.

3.2.1 Material Properties

The material properties of the numerical models are derived from the concrete cores drilled
during the in situ testing of Amsterdam Bridge 70 and are given from Table 3.1.

Table 3.1: Material properties of the concrete, steel and interface.

Concrete Properties
Compressive Strength fcm = 50.9MPa
Tensile Strength ftm = 3.68MPa
Poisson´s Ratio ν = 0.2
Young´s Modulus E = 37GPa
Fracture Energy Gf = 148N/m
Compressive Energy Gfc = 37 000N/m
Steel Properties
Young´s Modulus E = 200GPa
Poisson´s Ratio ν = 0.3
Yielding Stress fy = 235MPa
Interface Properties
Cohesion c = 0.1MPa
Friction µ = 0.5

The applied bond strength is relatively low compared to values found in the Literature Review
2. However, the study by Poliotti et al. [36] also stated that further study of these parameters
is required.

3.2.2 Boundary and Loading Conditions

As the numerical models are similar to the specimens from the laboratory testing. Only three
steel girders are considered. The specimens are loaded at midspan, 3-point bending at two
locations between the interior and exterior beams. Double symmetry is used, so a quarter of
the specimens are modelled. To secure convergence, the model is loaded using displacement
control. The boundary- and loading conditions of the two FEM models of LB1 and LB3 are
shown as 3D in Figure 3.20. The exact boundary- and loading conditions apply to the FEM
model of LB3.
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Figure 3.20: 3D view of LB1 showing the boundary- and loading conditions.

The main objective of the FEM models is to determine when the longitudinal cracking starts
propagating since the experimental tests only can measure this using LVDTs and 3D DIC.
However, the 3D DIC was not positioned correctly during the testing of LB3 to measure when
the longitudinal cracking started to propagate. Furthermore, the specimens were subject to
4-point bending, which makes it difficult to compare to a generalized case, where the specimens
only are subject to a load at midspan.

3.2.3 Results

A finite element analysis has been performed to understand the bridges’ behaviour further.
The analysis mainly focuses on the transverse behaviour and the occurrence of cracking. The
experiments showed that the composite girders’ lateral stiffness changes and is affected by
longitudinal cracking between the steel girders. From FEM analysis, a more accurate picture
of the behaviour along the specimen can be obtained. The transverse displacement is measured
at the midheight of the steel flange of the exterior I-girder, as shown in Figure 3.22. The focal
point is to determine when longitudinal cracking occurs and what mechanisms take place before
the occurrence of longitudinal cracking.

Figure 3.21 shows the transverse displacement versus the total load of the exterior composite
girder measured at the location shown in Figure 3.22. The transverse displacement increases
linearly until a certain point where a kink occurs. Afterwards, multiple linear parts are inter-
rupted by kinks until the displacement increases nonlinearly.
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Figure 3.21: Total load versus transverse displacement at midspan of LB1.

Figure 3.22: Cross-section showing the measuring point for the transverse displacement profiles
of LB1 and LB3.

About 450 kN in Figure 3.21 the first kink occurs, which has been examined further to de-
termine if this is due to longitudinal cracking. From the analysis, it was possible to see that
no longitudinal cracks had occurred yet. However, flexural cracks had started propagating, as
shown in Figure 3.23. Therefore, this jump is assumed to occur because of major axis flexural
cracking.
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b)

a)

Figure 3.23: Sideview of LB1 at the onset of cracking. a) Crack width at 457 kN. b) Crack
width at 488 kN.

Around 900 kN another sudden change in the displacement occurs, which is due to yielding of
the steel girders, as shown in Figure 3.24.

Figure 3.24: 3D view of LB1 showing the start of yielding at 940 kN.

Finally, when the load increases from 1145 to 1169 kN, longitudinal cracking propagates pro-
gressively, as shown in Figure 3.25. The onset of cracking occurred around 1169 kN but did not
indicate this from Figure 3.21. Following longitudinal cracking at 1169 kN, the load increases
further before the maximum capacity of the specimen has been achieved.
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Figure 3.25: Bottom view of LB1 showing the longitudinal cracking. a) crack width at 1145 kN.
b) crack width at 1169 kN.

The transverse displacement profiles in Figures 3.26 that show the transverse displacement from
support to midspan show that the cracks never fully propagate from support to support. Close
to the supports, the transverse displacement is about zero, which indicates that the lateral
behaviour can be interpreted as a clamped beam due to the higher lateral stiffness of the cross
beams at the supports.
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Figure 3.26: X, distance from support to mid-span, including the length of the cross beams,
versus the transverse displacement for LB1.

A similar analysis has been performed for LB3. Figure 3.27 shows the transverse displacement
versus the total load of LB3. The transverse displacement is measured from midspan, where
the load is applied and at midheight of the exterior steel girder as shown in Figure 3.22.

Figure 3.27: Total load versus transverse displacement at midspan of LB3.

There is no sudden kink in the displacement profile in Figure 3.27. However, around 800 kN,
a small kink occurs, indicating the start of yielding of the I-girders, as shown in Figure 3.28.
This is similar to LB1. However, the displacement profile analysis does not indicate a lateral
stiffness decrease following major axis flexural cracking, which would be displayed as a kink on
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the linear part of the graph in Figure 3.27. Moreover, the indication of yielding is only shown as
a relatively small kink; therefore, the displacement profile of LB3 has a more smooth nonlinear
curve than LB1.

Figure 3.28: 3D view of LB3 showing the start of yielding at 808 kN.

Similarly to LB1, it can be concluded that there is a stiffness reduction following the longitudinal
cracking, which occurs around 930 kN, indicating a change of the gradient in Figure 3.27.
Moreover, the longitudinal cracking has not fully propagated from support to support when
this occurs, as shown in Figure 3.29 when the load increases from 916 kN to 932 kN, which is
in the range where the beam starts to displace nonlinearly. However, the longitudinal crack
gradually propagates as the loading increases.

b)

a)

Figure 3.29: Bottom view of LB3 showing the longitudinal cracking. a) crack width at 916 kN.
b) crack width at 932 kN.
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Similar to LB1, analysing the displacement profile of LB3 from support to midspan at different
load stages in Figure 3.30, it can be seen that the transverse displacement is zero close to the
supports. This indicates that the composite girders in the lateral direction can be assumed to
have clamped supports.

Figure 3.30: X, distance from support to mid-span, including the length of the cross beams,
versus the transverse displacement for LB3.

3.3 Summary of Experimental and Numerical Study

The following text summarizes the observations and conclusions from the experimental and
numerical investigations.

The in situ testing showed that the load was equally distributed between four neighbouring
steel girders. However, this was for a case where the load was in the middle of the bridge deck.
Following this, it is assumed that a more critical loading situation occurs when the bridge
deck is loaded between the exterior and adjacent girder. The in situ testing and numerical
model proved that the resistance to punching shear was sufficient and that flexural bending
was governing. However, this assessment also suggested investigating the bond-slip behaviour
further.

From the study of the experimental and numerical investigations, mainly the specimens LB1
and LB3 were relevant for further study, as these were tested using a similar loading setup.
Additionally, these specimens had the same amount of steel girders but a variation in the
dimensions of steel and concrete. LB1 failed at a load at 1746 kN due to yielding of the steel,
followed by a reduction of ductility due to interface failure. LB3 failed at a load at 1494 kN
due to bending with crushing of the top concrete layer, contrary to LB1 without interface
failure. Additionally, longitudinal cracks occurred at both specimens during the testing, which
decreased the lateral stiffness, but there was still remaining bearing capacity.
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The laboratory experiments were conducted as 4-point bending tests due to the recommen-
dations in the European Standards for the examination of asymmetric composite structures.
However, for an analytical model, the focal point will be to derive a model that is generalized
and, from this generalization, can be further modified for different cases. Therefore, two ex-
isting finite element models that were based on the testing of LB1 and LB3 were modified to
3-point bending instead of 4-point bending. These models will be used to verify the proposed
analytical model, as the loading situation of these is closer to a generalized case. The numerical
models showed how the lateral stiffness reduces gradually when the load is increased due to ma-
jor axis flexural cracks, yielding and longitudinal cracking. The largest stiffness reduction came
from the longitudinal cracking, while the other events only caused a minor reduction. Like the
experiments, the numerical models had remaining bearing capacity following the longitudinal
cracking. The transverse displacement profiles of the exterior composite girders showed that
the girders have zero transverse displacements near the cross beams. The general transverse
behaviour of the exterior girders was similar to that of a clamped beam.

Based on the experimental and numerical study, the hypothesis is that longitudinal cracking
between the exterior and adjacent girders causes an internal force redistribution. Additionally,
as a consequence of the longitudinal cracking, the total lateral stiffness of the exterior composite
girder reduces and the lateral displacement increases further.

An analytical model will be modelled based on these observations. Mainly focusing on the
exterior composite girder and the adjacent girder since the exterior composite girders have
the lowest lateral stiffness. First, considering the load until longitudinal cracking followed by
an internal force redistribution that eventually leads to failure is assumed to be governed by
longitudinal shear resistance or biaxial bending. Additionally, vertical shear is also included
in the verification, as it is required according to European Standards. However, none of the
previously studied investigations proved that vertical shear was critical. Thus, vertical shear is
considered but can not be directly linked to the proposed analytical model.
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4 Analytical Design Using the Strut and Tie
Method

The following chapter describes the design framework for the existing steel-concrete composite
bridges without mechanical connectors. The framework is based on observations from labo-
ratory experiments on bridge specimens and FEM analysis of similar specimens. A further
description of these can be found in Chapter 3. The focal point of this framework is to de-
scribe the behaviour of the exterior bridge girder and the mechanism that leads to failure. The
framework links the analytical model to the cross-section verifications for longitudinal shear,
biaxial bending and vertical shear.

4.1 Compatibility-based Strut and Tie Method

A nonlinear compatibility-based strut and tie model (C-STM) has been developed to represent
the behaviour of steel-concrete composite bridges in Amsterdam. The method aims to describe
behaviour helping to determine the bearing capacity of the bridges. The bearing capacity is
determined from a cross-section verification of longitudinal shear, vertical shear and biaxial
bending. The C-STM first determines when longitudinal cracking between one of the exterior
and the adjacent girders occurs. Figure 4.1 indicates cracking between the exterior and adjacent
girder from underneath. This cracking occurs due to a combination of transverse bending from
the single point load, F , between the exterior and adjacent steel girder and a lack of transverse
reinforcement.

Figure 4.1: The cracks due to lack of transverse reinforcement. (a) bottom view showing the
cracks underneath the exterior and adjacent girder. (b) shows the cross-section of the bridge
slab.

The exterior girder is investigated as its lateral stiffness is lower than any of the interior girders,
which is assumed to decrease its bearing capacity. In contrast, the in situ testing, introduced
in Chapter 3, discovered that for loading between interiors girders, the load was distributed to
the four adjacent girders. Therefore, the load taken by each girder is lower than for loading
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between an exterior composite girder and the adjacent girder. The proposed C-STM is shown
in Figure 4.2, showing the geometry of the model and the forces acting on it.
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Figure 4.2: Geometry of C-STM and forces acting on the model.

From Figure 4.2 it is assumed that the stresses distribute to the elastic neutral axis of the
composite girders. In reality, the stresses will distribute over the height of the steel girders,
mainly concentrating at the bottom steel flange, as shown in Figure 3.2. The principle of the C-
STM is to simplify nonlinear stress patterns. The C-STM is developed as a generalized model,
assuming that the single point load, F , is applied at the midspan of the composite bridge and
located between the exterior and adjacent composite girders. Figure 4.3 illustrates a top view
of the C-STM.

Figure 4.3: Topview of the C-STM, showing the spring components.

The geometry of the C-STM is first defined by determining the position of the spring nodes,
which is assumed to equate the elastic neutral axis of the composite section determined from
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Eq.4.2, where the modular ratio is obtained from Eq.4.1. The geometrical properties are defined
in Figure 4.4.

n =
Ea

Ec

(4.1)

eT0 =
Ac

n
zc + Aaza

Aa +
Ac

n

(4.2)

Figure 4.4: Definition of cross-section properties used to determine the geometry of the C-STM
and flexural stiffness.

The angles θ1 and θ2 between the struts and the tie are determined according to Eqs.4.3 and
4.4.

θ1 = tan−1

(
eT0

0.5Lt

)
(4.3)

θ2 = 90◦ − θ1 (4.4)

The width of the struts and the tie equates to the load dispersal, determined following EN1991-
2 [8], at a 1:1 spread-to-depth ratio until the centroid of the bridge, shown in Eq.4.5. Figure
4.5 illustrates the elements included in the load dispersal.

Ld = 2eT0 + b (4.5)
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Figure 4.5: Load dispersal according to EN1991-2.

4.1.1 Compression Strut

Figure 4.6 shows the constitutive relation for the compression struts in Figure 4.2, which is
assumed to be linear elastic. From Figure 4.6, it can be seen that the linear elastic relation
only is limited by the ultimate load, Fu.

Figure 4.6: Linear constitutive relation of the compression struts.

The height of the compression struts is determined according to Eq.4.6 and depends on the angle
between the horizontal plane and the struts and the width of the loading plate as illustrated in
Figure 4.2.

hs,i = wp cos (θ1) (4.6)

The area of the compression struts is determined according to Eq. 4.7.

67



As,i = Ldhs,i (4.7)

4.1.2 Tensile Tie

The constitutive material properties of the tensile tie are nonlinear, as it is assumed to fail when
the stresses in the tie reach the tensile strength of concrete. The material properties are shown
in Figure 4.7. However, the constitutive relation in Figure 4.7 may be limited by the ultimate
load Fu, although this is not assumed, as none of the test specimens from the laboratory testing
failed without longitudinal cracking occuring.

Figure 4.7: Nonlinear constitutive relation of the tensile tie.

The height of the tensile tie, ht, is defined, according to Eq.4.8 as half the height of the thinnest
concrete section with a limit at the top steel flange.

ht =
hc2

2
≤ hc2 − hc1 (4.8)

The area of the tensile tie is determined according to Eq.4.9. The area of the tensile tie only
considers a limited concrete area, which is a simplification. Ideally, the entire length of the
concrete in tension would be accounted for. However, this necessitates dividing the tensile tie
into multiple discrete springs over the length of the specimen or including the entire length into
the area of the tensile tie by getting a significantly higher stiffness and resistance, which is not
assumed to be representative of the onset of cracking.

At = Ldht (4.9)

Figure 4.8 shows the C-STM following longitudinal cracking, where the tensile tie is removed.
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Figure 4.8: Forces acting on the C-STM following the failure of the tensile tie.

4.1.3 Vertical Springs

The vertical stiffness of the C-STM is expressed through the position of the single springs, k3
and k4, representing a simply supported beam with a uniform load distributed over a partial
length at midspan. The length the load is distributed over equates to the load dispersal. The
loading and boundary conditions for the derivation of the vertical springs are shown in Figure
4.9.

Figure 4.9: Sideview showing the assumption of the vertical spring.

Figure 4.10 shows the constitutive relation for the vertical springs. Hence, assuming linear
elastic behaviour, although, in reality, this would be nonlinear, depending on when flexural
cracking and yielding occurs. However, the vertical displacement is not the focal point of this
research, thus this simplification. From Figure 4.10, it can be seen that the linear elastic relation
only is limited by the ultimate load, Fu.
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Figure 4.10: Linear constitutive relation for the vertical springs.

The spring constant of the single springs, k3 and k4, requires that the flexural stiffness is ob-
tained. For the following stiffness calculations, the stiffness of the composite slab is determined
considering the cross-section of the composite girder, including the steel girder and the concrete
encasement. The cross-section of the composite girders is separated at Lt/2. To fully utilise the
concrete area, all the concrete is accounted for and assumed uncracked. The major axis flexural
stiffness is determined by transforming the concrete into equivalent steel, using the modular
ratio from Eq.4.1. Thus, the vertical flexural stiffness is determined from Eq.4.10.

EIy,i = Ea (Ia,y,i + Ic,y,in) (4.10)

The spring constants, k3 and k4, representing the vertical stiffness of the C-STM, are determined
from Eqs.4.11 and 4.12.

δv,i =
qLd
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d
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)
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(4.11)

k3,4 =
qLd
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=
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) (4.12)

4.1.4 Lateral Spring Beams

The lateral springs k1 and k2 in Figure 4.2 are interpreted as clamped spring beams as shown
in Figure 4.11. The beams are assumed to be clamped as shown in the Experimental and
Numerical Study in Chapter 3, that the lateral displacement was zero at the location of the
cross beams close to the supports. The beams are considered as Euler-Bernoulli beams.
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Figure 4.11: Topview of the C-STM in Figure 4.2. Showing configuration of the spring beams,
as Euler-Bernoulli beams.

The lateral behaviour is a focal focus point of this model. Therefore, contrary to the vertical
springs, described using elastic springs, the lateral stiffness is described using Euler-Bernoulli
spring beams. This is done to describe the displacement along the span length of the exterior
composite girder.

The interior spring beam is considered linear elastic, as this beam, due to its higher lateral
stiffness, is assumed not to crack from minor axis bending. Additionally, the principle of the
model is that the interior lateral spring beam always will have a significantly higher stiffness
than the exterior lateral spring beam. The constitutive relation for the lateral behaviour of
the interior composite girder is shown in Figure 4.12. From the figure, it can be seen that the
linear elastic relation only is limited by the ultimate load, Fu.
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Figure 4.12: Linear elastic constitutive relation for spring 2.

The constitutive relation for the spring 1 is nonlinear, assuming that the stiffness reduces after
longitudinal cracking. Spring 1 has the constitutive relation shown in Figure 4.13. However,
the ultimate load may occur earlier than shown in Figure 4.13, for instance, before longitudinal
cracking.

Figure 4.13: Constitutive relation for spring 1. Fu is the ultimate load assuming full shear
connection

As previously mentioned following longitudinal cracking, it is conservatively assumed that the
concrete at the tensile tie has failed. Thus for the lateral stiffness, the stiffness of the exterior
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girder is determined by neglecting this concrete. Figure 4.14 illustrates the concrete considered
when determining the lateral flexural stiffness of the exterior girder (spring 1).

Figure 4.14: Cross section considered for calculating the flexural stiffness of the cross-section,
EI1,cr, following longitudinal cracking.

The beams in Figure 4.11 have the stiffness EIi. The previous section demonstrated how
to determine the flexural stiffness of the composite girders about the major axis; a similar
approach is required to determine the flexural stiffness about the minor axis. However, the
stiffness is described through the differential equation of a clamped beam. Therefore, only
the flexural stiffness must be obtained as part of the lateral stiffness calculation. The lateral
flexural stiffness is determined from Eqs.4.13 and 4.14. The stiffness of the interior girder is
assumed to account for the lateral stiffness of the adjacent composite girders. Thus p is the
total number of girders without the exterior girder.

EIz,1 = Ea (Ia,z,1 + Ic,z,1n) (4.13)

EIz,2 = EIz,1p (4.14)

Although the dimensions of the steel girders may vary, meaning the exterior and adjacent steel
girder may have slightly different dimensions, it is for simplicity assumed that this difference
can be neglected.

Following longitudinal cracking, the lateral stiffness of the exterior composite girder is reduced,
so only the area in Figure 4.14 is considered. The lateral flexural stiffness is determined from
Eq.4.15.

EIz,1,cr = Ea (Ia,z,1 + Ic,z,1,crn) (4.15)

However, the constitutive relation in Figure 4.13 may be limited by failure due to longitudinal
shear, biaxial bending, vertical shear or crushing of the concrete struts. Hence, the cross-section
verification includes two stages, stages 1 and 2. The first stage checks the bearing capacity at
longitudinal cracking and whether the resistance is sufficient to resist the load at longitudinal
cracking, Fcr. If this happens, it is expected that brittle failure will occur, as the bearing
capacity will reduce following longitudinal cracking. The second stage determines the bearing
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capacity following longitudinal cracking, where it is expected that a reduction of the resistances
has occurred. From what has been observed during experiments and from the numerical models,
it can be expected that this will occur as a ductile failure. Figure 4.15 shows the loading versus
displacement depending on the failure type. If the failure occurs when the load reaches the load
at longitudinal,Fcr, it is expected to be brittle. However, it is still related to uncertainty, as no
case of failure before or at longitudinal cracking has been observed from the testing.

Figure 4.15: Example of the load versus displacement depending on failure type.

Using the constitutive relations, the load at longitudinal cracking, Fcr, can be determined from
the criteria in Eq.4.16.

σt(Fcr) = ft (4.16)

When this occurs, it must be verified that the bearing capacity is sufficient. If this is not
the case, the specimen is expected to fail when longitudinal cracking occurs, as this reduces
the bearing capacity. Thus, the expected failure is brittle. Figure 4.16 shows a flowchart to
establish the C-STM.
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Figure 4.16: Flowchart to establish the C-STM.

4.1.5 Stage 1 - Cross-section Verification

The following goes through the cross-section verification, assuming the specimen will fail before
longitudinal cracking, which is expected to be brittle, as following longitudinal cracking, a
reduction of the bearing capacity is expected to occur. The load at longitudinal cracking is
determined using the proposed C-STM. If the bearing capacity is sufficient, the cross-section
verification for the stage following longitudinal cracking must be performed to determine the
bearing capacity and the failure mode.
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4.1.5.1 Compression Resistance of Struts

The capacity of the compression struts must be sufficient. This can be verified by calculating
when the strut reaches its maximum capacity from Eq.4.17 and from the C-STM determining
at what load this force is exceeded.

σs,i,max = fc (4.17)

4.1.5.2 Longitudinal Shear Resistance

The longitudinal shear resistance is evaluated globally, as the steel-concrete interface must be
able to transfer the shear force. Before longitudinal cracking, the concrete is assumed to be in
full contact with the steel. Additionally, it is assumed that the longitudinal shear resistance
only comes from cohesion, which is a simplification neglecting the Mohr-Coulomb mechanism
until longitudinal cracking occurs. It is assumed that the steel-concrete cohesion is 0.54MPa
derived from the literature review in chapter 2. This is the lowest value found from experiments
studying the steel-concrete bond strength of encased HEB profiles, similar to DIN profiles. It is
assumed that this value distributes around the effective contact perimeter, but only considering
50% of the perimeter of the bottom part of the top steel flange, as this usually has a lower bond
due to air bubbles from the casting [19]. The effective perimeter is the steel-concrete contact
within the concrete cover requirements. The longitudinal shear resistance is sensitive to the
concrete cover, so it is assumed that for any longitudinal shear resistance of the steel-concrete
contact surfaces, there must be at least 38mm concrete cover at the bottom and the sides of
the encased girders. At least 51mm concrete cover must be at the top [19]. The following
assumes the concrete cover at the bottom is insufficient due to the concrete-free bottom flanges
as illustrated in Figure 4.17. However, to determine the longitudinal shear resistance, it must
generally be considered that the concrete cover on the other sides can also be insufficient.

Figure 4.17: Contact perimeter for the longitudinal shear resistance before longitudinal crack-
ing.

The longitudinal shear resistance on a stress level is determined using Eq.4.18. Evaluating the
longitudinal shear resistance globally, it is obtained from Eq.4.19.

τRd = c (4.18)
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Vx,Rd = cLueff (4.19)

Where ueff is the effective contact perimeter, shown as the red line in Figure 4.17.

4.1.5.3 Biaxial Bending Resistance

The resistance to biaxial bending is determined by satisfying the condition in Eq.4.20.

√(
My,Ed

My,Rd

)2

+

(
Mz,Ed

Mz,Rd

)2

≤ 1, 0 (4.20)

The acting bending moments are determined according to Eqs.4.22 and 4.24, as the inclined
force from the compression strut can be separated into a vertical and lateral force component,
as shown in Figure 4.18.

Figure 4.18: Vertical and lateral force components acting on the exterior girder.

The moment from the vertical force component, Fy, is determined for a simply supported beam
subject to a point load at midspan. The moment due to the lateral force component, Fz, is
determined assuming the beam is subject to a single point load at midspan and clamped at
both ends, as shown in Figure 4.11. The force components and their moments are determined
from Eqs.4.21 and 4.24.

Fy =
F

2 cos θ1
cos θ1 (4.21)

My,Ed =
1

4
FyL (4.22)

Fz =
F

2 cos θ1
cos θ2 (4.23)
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Mz,Ed =
1

8
FzL (4.24)

The moment resistances are determined assuming the concrete is cracked and considering the
cross-section in Figure 4.4. First, the plastic bending moment resistance is determined assuming
a full shear connection, which must be checked to determine the degree of shear connection.
The plastic neutral axis can be either in concrete or steel and concrete. For the following cases,
it is assumed that it is in the steel, so a part of the steel is in compression. The steel is in full
tension if the plastic neutral axis is in the concrete. The plastic moment resistance about the
major axis, My,pl,Rd, is determined in accordance with Figure 4.19 and from Eq.4.25.

My,pl,Rd = Fcc,yz1 + Fac,yz2 (4.25)

Figure 4.19: Example of plastic bending resistance calculation about the major axis with the
plastic neutral axis in the steel flange.

A similar approach is used for the plastic moment resistance, Mz,pl,Rd, about the minor axis
and is shown in Figure 4.20 and Eq.4.26.

Mz,pl,Rd = Fcc,zy1 + Fac,zy2 (4.26)
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Figure 4.20: Example of plastic bending resistance calculation about the minor axis with the
plastic neutral axis in the steel flange.

It must be verified that the longitudinal shear resistance, Vx,Rd is sufficient to transfer the
compression force from the concrete. As there is biaxial bending, two compression forces are
determined. The degree of shear connection, η, is determined from Eq.4.27. If the degree of
shear connection is below 1.0, there is a partial shear connection. Otherwise, there is a full
shear connection.

η =
Vx,Rd

Fcc,y + Fcc,z

(4.27)

If there is a partial shear connection, a reduction of the compression forces is necessary. The
compression forces are reduced using Eqs.4.28 and 4.29.

Fcc,y,red = Fcc,yη (4.28)

Fcc,z,red = Fcc,zη (4.29)

Figure 4.21 shows an example plastic moment resistance calculation about the major axis in
the case of partial shear connection.

Figure 4.21: Example of plastic moment resistance calculation about the major axis with a
reduced concrete compression force due to partial shear connection.
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The distances between the compression forces and the tensile force, z1, z2, y1 and y2, are from
the centroid of the compressive stress block, which is not necessarily half the height of that block,
as the geometry varies across the height. The plastic neutral axis and the centre of each force
component are usually solved using an analytical expression, as composite slabs often consist of
an I-girder with a concrete slab on top. For this case, where the cross-section has many different
geometrical shapes, and the I-girders are encased, iteration is preferred to determine the plastic
neutral axis and the centroid of each force component. An example of the iteration procedure
using MATLAB is shown in Appendix C, including the remaining calculation steps to determine
the plastic bending resistance and how to perform the calculation using this MATLAB code.
Additionally, the code also plots the resistances to display an interaction diagram.

The calculation procedure to determine the biaxial bending resistance is shown in the flowchart
in Figure 4.22. The calculation of the bending resistance mainly depends on the degree of shear
connection, which is determined from the longitudinal shear resistance.

Figure 4.22: Flowchart of the biaxial bending calculation.
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4.1.5.4 Vertical Shear Resistance

The vertical shear resistance of the steel-concrete composite bridges without mechanical con-
nectors is calculated, assuming that individual contributions from the steel and the concrete
determine the resistance. The equations in the following have been derived based on a study
by Vasdravellis and Uy [13], who investigated the shear strength of steel-concrete composite
beams. This has been described further in the Literature Review Chapter 2. The concrete
encasement below the top steel is conservatively neglected, as its influence on the vertical shear
resistance is unknown. Eq.4.30 obtains the composite vertical shear resistance.

Vcomp = Vpl,Rd + Vslab (4.30)

The individual contributions from the steel girder and the concrete are respectively determined
from Eqs.4.31 and 4.32, assuming full shear connection. The dimensions from Eq.4.32 are
shown in Figure 4.23.

Vpl,Rd =
Avfyd√

3
(4.31)

Vslab = φsf(λsd) (bfDslab)
0.7

√
fc (4.32)

Figure 4.23: Cross-section properties considered for calculation of the vertical shear.

The slenderness ratio, λsd is determined from Eq.4.33. The function f(λsd) is obtained from
Eq.4.34.

λsd = Dslab/Dbeam (4.33)

f(λsd) = 110λsd + 13 (4.34)
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φs is a safety factory derived on the mean values and standard deviation from a FEM model
used in the study. The above equations are valid for full shear connection. However, for the case
of partial shear connection, additional calculation steps are required to account for the degree of
shear connection. The first step is to determine the vertical shear resistance assuming full shear
connection, as previously. The vertical shear resistance assuming zero interaction, Vcomp,0, is
determined from Eq.4.35. Thus, the vertical shear resistance for the degree of shear connection,
Vcomp,η, can be determined using linear interpolation between the vertical shear resistance at
full and no shear interaction since the relation between the vertical shear resistance and the
degree of shear connection is a linear function. The shear resistance for the degree of shear
connection, Vcomp,η, is determined from Eq.4.36.

Vcomp = Vcomp,0(0.76λsd + 0.92) (4.35)

Vcomp,η = (Vcomp − Vcomp,0) η + Vcomp,0 (4.36)

Figure 4.24 shows the flowchart describing how to calculate the vertical shear resistance, which
like the biaxial bending resistance, depends on the longitudinal shear resistance.
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Figure 4.24: Flowchart of the vertical shear resistance calculation.

Figure 4.25 describes the entire procedure of the stage 1 cross-section verification.
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Figure 4.25: Flowchart for the stage 1 cross-section verification.

4.1.6 Stage 2 - Cross-section Verification

If the stage 1 cross-sections show that the resistance exceeds the load at longitudinal cracking,
ductile failure is expected and the stage 2 cross-section verification must be calculated. This
is shown in the following. Only the approach to determine the longitudinal shear resistance
changes following longitudinal cracking. However, this must be determined before calculating
the biaxial bending and vertical shear resistance, as the degree of shear connection influences
both resistances. If, in the following, the longitudinal shear resistance determined provides the
same degree of shear connection, the biaxial bending and vertical shear resistances are the same
as previously determined.

4.1.6.1 Longitudinal Shear Resistance

Following longitudinal cracking, the lateral stiffness reduces as the tensile tie has zero resistance,
and the lateral stiffness of the exterior composite girder is reduced as well, as shown in Figure
4.13. This means that the lateral displacement of the exterior composite girder, w1, increases
further. Thus, due to the limited ductility of the concrete, it will form an opening from the steel,
which reduces the effective steel-concrete contact perimeter, as illustrated in Figure 4.26.
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Figure 4.26: An opening is formed between the concrete and steel of the exterior girder facing
the other girder.

The steel-concrete opening in Figure 4.26 is evaluated using a strain criterion. This criterion
assumes that when the concrete’s strain exceeds its tensile strain, it will form an opening
between the steel and concrete. The strain criterion is obtained from Eq.4.38. The concrete
strain is determined from Eq.4.37, which considers the length of concrete between the steel
girders, so a larger concrete length makes the concrete more subject to this opening along the
span of the bridge.

ϵw1(x) =
w1(x)

Lt

(4.37)

ϵcr =
ft
Ec

(4.38)

The contact perimeter is reduced for the section at midspan having a gap between the steel
and the concrete. Figure 4.27 illustrates the normal stresses occurring on the outside surface of
the exterior girder due to the opening formed by the concrete. The shear resistance due to the
Mohr-Coulomb mechanism is shown in Eq.4.39 [20]. It is assumed that the confinement due to
the Mohr-Coulomb mechanism only occurs on the vertical surface facing outwards, neglecting
the bottom contact perimeter, due to the required concrete cover at 38mm. Additionally, it
is still assumed that there is a reduction of the contact perimeter at the bottom part of the
top steel flange due to air bubbles from casting. Closer to the supports, there is full contact
between the steel and concrete around the steel perimeter but no confinement. Thus, the shear
resistance merely comes from cohesion.

τRd = c+ µσ (4.39)

As described in the Literature Review Chapter 2, the shear resistance due to adhesion is
0.54MPa, and the coefficient of friction is 0.30. Figure 4.27 illustrates the shear stress flow
along the beam with the assumption that when the concrete forms an opening between the
steel, the contact perimeter is reduced.

85



Figure 4.27: Shear stress flow along steel-concrete interface at the exterior composite girder.
The red line indicates the contact perimeter accounted for when considering cohesion.

The length over which the concrete has formed an opening from the steel is determined from
Eq.4.40.

Lo = Leff − 2xcr (4.40)

The normal stress, σ, is determined over the confinement area. Thus, the length is the length of
the confinement where the steel and concrete have formed a gap. The height of the confinement
area is accounted for as the height of the vertical outside surface of the exterior steel girder.
Conservatively, no horizontal surfaces are accounted for. The horizontal surfaces in contact
with the steel still have resistance due to the adhesion. Therefore, the normal stress on the
confinement area is determined using Eq.4.41. The shear force is determined from the lateral
exterior beam and is multiplied by 2 as the shear force only is half the total lateral force the
composite girder is subject to.

σ =
2V1

hoLo

(4.41)

The longitudinal shear resistance is a summation of the resistance of the sections close to
the supports, where the concrete has not formed an opening, and the section at midspan,
where the concrete has formed an opening between the steel, as shown in Figure 4.27. As the
longitudinal shear resistance is evaluated globally, the total shear resistance can be determined
by multiplying the area at which the Mohr-Coulomb mechanism applies with the confinement
area. Therefore, the longitudinal shear resistance due to the Mohr-Coulomb mechanism is
obtained from Eq.4.42. The horizontal contact surfaces with a steel-concrete opening only
have resistance due to cohesion, as the confinement only affects the vertical outward-facing
surface.
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V1,x,Rd = µσh0L0 + cucrLo (4.42)

The shear resistance from the area where there still is full steel-concrete contact is determined
from Eq.4.43. The effective contact perimeter, ueff , is determined as the perimeter with steel-
concrete contact within the previously described concrete cover. The total longitudinal shear
resistance is determined from Eq.4.44.

V2,x,Rd = cueff (Leff + 2Lc − Lo) (4.43)

Vx,Rd = V1,x,Rd + V2,x,Rd (4.44)

Figure 4.28 shows how the longitudinal shear resistance decreases following longitudinal crack-
ing as the concrete forms an opening from the steel. Following the idealised behaviour, the
longitudinal shear resistance will gradually increase following longitudinal cracking due to the
Mohr-Coulomb mechanism from the concrete confinement where the concrete has opened from
the steel. This has been simplified, so the longitudinal shear resistance is assumed constant
following cracking.

Figure 4.28: Longitudinal shear resistance versus the shear force VEd. Fcr is the load at longi-
tudinal cracking.

In the following, the cross-section verifications for biaxial bending and vertical shear must
be performed. However, these follow the same method as described for stage 1 cross-section
verification. The only difference is that the degree of shear connection may have changed due
to reduced longitudinal shear resistance. Therefore, it must be checked if the degree of shear
connection has changed. If this is the case, biaxial bending and vertical shear resistance are
determined again. If not, the resistances determined from the cross-section verification of stage
1 are also valid.
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In Appendix A, a calculation example goes through a solution strategy to determine the dis-
placements and forces of the C-STM and the cross-section verification for stages 1 and 2. This
example considers a cross-section similar to LB1 so that the analytical design method can be
compared to experimental and numerical results. Additionally, a similar calculation has been
performed on the cross-section of LB3, but only the results are shown for this.

Figure 4.29 shows the calculation procedure for determining the stage 2 cross-section resistance,
which mainly depends on the longitudinal shear resistance. The following procedures of the
cross-section verification are similar if the longitudinal shear resistance for stage 2 cross-section
verification is different from the longitudinal shear resistance for stage 1 verification.

Figure 4.29: Flowchart of the stage 2 cross-section verification.
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5 Verification of the Analytical Model with Ex-
perimental and Numerical Results

The following compares the results of the proposed C-STM and the cross-section verifications
to the results of the experiment and numerical models. Therefore, the results of the following
calculations are based on the material parameters and geometry of LB1 and LB3, which were
introduced in Chapter 3.

5.1 Results of Analytical Calculations

The C-STM is established and solved using MATLAB. Ideally, a symbolic expression for the
displacement in the lateral direction would be derived. However, the system of differential
equations is relatively complex. Therefore only a numeric solution was determined. Appendix
A shows the calculation example applying the proposed analytical design method, including
establishing the C-STM and the cross-section verifications. This verification is supported by
the MATLAB code used to perform mathematical operations in Appendix B and C.

The following shows the key results of the analytical calculations, which mainly focus on LB1.
The calculation of LB1 showed that longitudinal cracking between the exterior and adjacent
composite girder occurred at 421 kN. Following, it was verified that brittle failure was not
governing by verifying the resistance of each failure mode was above the load at longitudinal
cracking. This verification included crushing of the compression struts, longitudinal shear,
biaxial bending and vertical shear. Additionally, it was proven that the degree of shear con-
nection was 0.56, hence partial shear interaction for the biaxial bending verification. The stage
1 cross-section verification proved none of the failure modes would occur before longitudinal
cracking. Thus, a stage 2 cross-section verification is required as well. Table 5.1 gives the resis-
tances determined from the brittle cross-section verification for LB1 and LB3 and the equivalent
single-point load for each resistance.

Table 5.1: Resistances of stage 1 cross-section verification and equivalent resistance to the single
point load, F .

Resistances Unit LB1 LB3
Ns,max [kN] 6164 4983
Vx,Rd [kN] 3250 4379
My,Rd [kNm] 664 772
Mz,Rd [kNm] 518 640
VRd [kN] 1304 1092
Equivalent resistance to Fu

Crushing of struts [kN] 8726 5666
Longitudinal Shear [kN] 13000 17516
Biaxial Bending [kN] 798 666
Vertical Shear [kN] 5216 4368

As the stage 1 cross-section verification showed that the bearing capacity before longitudinal
cracking is sufficient, the stage 2 cross-section verification was required. This calculation shows
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that the stage 2 verification has partial shear interaction but is lower than the stage 1 ver-
ification. The reason for the reduction is the lower longitudinal shear resistance due to the
opening that the concrete formed from the steel. Figure 5.1 shows the actual and simplified
longitudinal shear resistance and the shear force versus the load, F , for LB1. A similar be-
haviour was noticed for the verification of LB3. From the Figure, it can be seen that following
cracking, at 421 kN, a reduction of the longitudinal shear resistance occurs. Afterwards, the
resistance keeps increasing with increasing load. Moreover, a gap between the longitudinal
shear resistance and the shear force gradually reduces as the loading increases. However, for
the cross-section verification, it is assumed that this can be simplified into a constant shear
resistance after longitudinal cracking, as seen from Figure 5.1.

Figure 5.1: LB1 - Actual and simplified longitudinal shear resistance and shear force versus the
single point load, F .

As the longitudinal shear resistance decreases significantly following longitudinal cracking, as
shown in Figure 5.1, it can already be concluded that the degree of shear connection is further
reduced. Thus, it is necessary to perform the stage 2 cross-section verification, as biaxial bend-
ing and vertical shear reduce corresponding with the longitudinal shear resistance reduction.
Table 5.2 shows the moment resistance for full shear interaction, partial shear interaction -
which applies to this case - and no shear interaction — illustrating how the effects of the lon-
gitudinal cracking and the degree of shear connection, in general, impact the bending moment
resistance. Figure 5.2 shows the interaction diagram for LB1 at the degree of shear connection
before/after longitudinal cracking and the maximum and minimum values. The numeric results
of the bending resistances for both LB1 and LB3 are shown in Table 5.2, also showing how
increasing the degree of shear interaction will increase the bending moment resistance.
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Figure 5.2: Moment interaction diagram for LB1 at different full, partial and zero shear con-
nections.

Table 5.2: (*) The degree of shear connection before longitudinal cracking. (**) The degree of
shear connection after longitudinal cracking. Moment resistance for the full shear connection,
partial shear connection and zero shear connection of exterior composite girders with similar
geometry to LB1 and LB3.

η My,Rd [kNm] Mz,Rd [kNm]
LB1 1.00 786 601
LB1 0.56* 664 518
LB1 0.39** 590 361
LB1 0.00 361 169
LB3 1.00 780 660
LB3 0.79* 772 640
LB3 0.46** 726 533
LB3 0.00 565 231

The resistances calculated on the cross-sections are expressed in terms of the load, F , applied
for the generalized case as previously shown in Figure 4.2. Table 5.3 shows the cross-section
resistances for each failure mode and the equivalent point load that the failure mode can
resist.
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Table 5.3: Resistance of stage 2 cross-section verification and the equivalent resistance to the
single point load F .

Resistances Unit LB1 LB3
Ns,max [kN] 6196 4698
Vx,Rd [kN] 2097 2556
My,Rd [kNm] 590 726
Mz,Rd [kNm] 361 533
VRd [kN] 1217 970
Equivalent resistance to Fu

Crushing of struts [kN] 11892 6769
Longitudinal Shear [kN] 8388 10224
Biaxial Bending [kN] 675 587
Vertical Shear [kN] 4868 3880

Table 5.3 shows that biaxial bending is the governing failure mode for both specimens but is
limited due to the degree of shear connection, as shown in Table 5.3. Therefore, the analytical
calculations assume that the cross-section will have ductile behaviour but is limited due to the
longitudinal shear resistance.

This means that the concrete’s compression forces due to bending eventually exceeds the lon-
gitudinal shear resistance, so they can not be transferred to the steel. Moreover, the remaining
failure modes are far from governing the bearing capacity.

5.2 Verification using Experimental and Numerical Re-

sults

The verification focuses on the following three points:

• Failure mode

• Load at longitudinal cracking

• Bearing capacity

To compare the loading from the proposed analytical model, it is assumed that it can be applied
to a bridge deck similarly to the numerical model and the experiments. Thus, the middle girder
has a load on both sides, as shown in Figure 5.3. It is assumed that the resistance of the middle
girder is not critical, as the girder is not subject to biaxial bending due to the loading from both
sides that keeps it in horizontal equilibrium. Additionally, it will have higher longitudinal shear
resistance, which increases the bending resistance, as the concrete will not form an opening from
the steel. Finally, the resistance of the concrete is higher due to biaxial compression from the
flexural bending compression force and the horizontal force component from the loads, F .
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Figure 5.3: Assumed loading of the proposed analytical model for comparison with the experi-
mental and numerical results.

Figure 5.4 shows a bar chart of the results from the experiment, numerical and analytical model.
This includes the load at which longitudinal cracking occurs and the load at failure.

Figure 5.4: LB1 - comparison of the resistance to longitudinal cracking and failure from the
experiments, numerical and analytical results.

From Figure 5.4, it can be seen that the analytical model underestimates the load at longitudinal
cracking with 27 and 35% compared to the numerical and experimental results. Prior to the
laboratory testing of LB1, it was already expected that this specimen had cracked. Therefore,
the loads from the experiment may be at the point where the cracks further propagated. The
analytical model gets closer to the load at failure but is still below, which is considered safe.
Comparing the load at failure, the analytical result comes 4.2% below the numerical result,
which is considered relatively accurate. Whereas the result of the analytical calculation comes
23% below the experimental, the loading case is different, which may be why. Additionally, the
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analytical calculation showed that biaxial bending governs the resistance of LB1 but is limited
by the partial shear connection. This occurs because the interface can not transfer the concrete
compression forces from bending despite the high longitudinal shear resistance. The failure
of LB1 during the experiment was yielding of the steel girders due to bending with limited
ductility due to interface failure. Therefore, the failure mode predicted by the analytical model
is the same as during the experiment.

A similar comparison is made to the results of LB3. Figure 5.5 shows the experimental, numer-
ical, and analytical results of LB3, including the load at longitudinal cracking and failure.

Figure 5.5: LB3 - comparison of the resistance to longitudinal cracking and failure from the
experiments, numerical and analytical results.

From Figure 5.5, similar trends are shown from the figure comparing the results of LB1. Thus,
the analytical model underestimates the load at longitudinal cracking with 38 to 48% com-
pared to the numerical and experimental results. Likewise, in LB1, the analytical calculation
underestimates the result compared to the experimental with 21%, possibly due to the different
loading conditions. Contrary to LB1, the analytical model overestimates the bearing capacity
compared to the numerical with 4.4%. However, still relatively close to the numerical bearing
capacity, which is considered accurate. The analytical calculation of LB3 also showed failure
due to biaxial bending but was limited by partial shear interaction, as was the case for LB1.
During the testing, LB3 failed due to bending by concrete crushing. The reason why LB3 failed
due to the crushing of the concrete during the experiment could be due to the lower concrete
cover compared to LB1.

For both the analytical results of LB1 and LB3, longitudinal cracking occurs earlier than ex-
pected. The transverse displacement profile of LB1 and LB3 has been investigated further
to get an indication of the lateral stiffness. It can be seen that the analytical model with a
small margin either underestimates or overestimates the load at failure compared to the nu-
merical model. However, the proposed analytical model still determines the same failure mode
shown during the testing. The proposed model also accounts for the longitudinal cracking that
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occurred prior to failure. However, the behaviour of the longitudinal cracking may still be opti-
mized further, as this underestimates the load at which longitudinal cracking occurs by a large
margin. Additionally, the C-STM and the cross-section verifications prove that the exterior
composite girders yield before failure and are limited due to partial shear connection.

Figure 5.7 shows the transverse displacement profile of LB1 from the numerical model and the
analytical model at F = 380 kN, right before longitudinal cracking occurs. The displacement
is determined using the C-STM. Additionally, the length of the cross beam has been added, at
which the transverse displacement is 0. The transverse displacement profile of the numerical
model is measured at midheight of the exterior steel girder as shown in Figure 5.6, roughly
where the spring node is localized in the C-STM. For the experiments, it was measured from
underneath the bottom flange of the steel girders. Thus, the lateral displacement may be larger
than at midheight due to torsion.

Figure 5.6: Cross-section showing the measuring point for the transverse displacement profiles
of LB1 and LB3.
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Figure 5.7: LB1 - Transverse displacement profile at F = 380 kN from the experiment, numer-
ical and analytical model. X is the distance from the support to the midspan.

From Figure 5.7 it can be seen that the analytical model roughly follows the displacement profile
of the numerical model, especially at midspan and close to the supports. The gap between the
analytical and numerical displacement profiles can be due to the interpretation of the tensile tie,
which works as a single spring for the analytical model. In contrast, for the numerical model,
this would be similar to a uniformly distributed spring. The lateral stiffness assumptions before
longitudinal cracking are assumed to be sufficient, as they are similar to the numerical model
but far from the experimental model, which can be due to imperfections in the load distribution
and different loading conditions. As previously mentioned, the lateral displacement from the
experiment is higher because it was measured from the bottom steel flange, where the lateral
displacement due to torsion is higher. Hence, the lateral displacement would have been lower
if it was closer to the midheight of the steel girder. Additionally, prior to the testing of LB1,
it was already assumed that some of the concrete had cracked, which would have reduced the
lateral stiffness.

Figure 5.8 shows a similar transverse displacement profile for LB3 from the experiment and nu-
merical and analytical models, which also was measured at midheight of the exterior steel girder
as shown in Figure 5.6. Moreover, the lateral displacement from the experiment of LB3 comes
closer to the analytical model than was the case for LB1. Thus, indicating that LB1 already
had longitudinal cracks prior to the experiment, which increased the lateral stiffness.
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Figure 5.8: LB3- Transverse displacement profile at F = 250 kN from the experiment, numerical
and analytical model. X is the distance from the support to the midspan.

Following cracking, the experiment and numerical results showed that the steel girders were
already yielding. Therefore, it can be difficult to compare these results accurately. Based on
the stiffness used before cracking, it is assumed that similar assumptions but with reduced
stiffness due to failure of the tensile tie are an accurate interpretation of the lateral stiffness in
the analytical model.

There is a number of reasons why the analytical model underestimates the bearing capacity
compared to the experiment and the numerical model. First, the reaction forces at the supports
during the testing showed that the middle girder took more than half the load from each loading
plate, possibly due to eccentricities of the supports or the loading. The reaction forces at each
beam are shown in Appendix D. If the loading from each plate is distributed half-half to each
adjacent girder, a more critical case may have been present, where the loading at the exterior
girder is larger. Thus, the composite bridge would have failed at a lower loading. As previously
argued, it is assumed that the middle composite girder has a higher capacity. Thus if the
middle girder takes more of the load due to eccentricities etc., the capacity may be higher.
Another reason the bearing capacity during the experiments was higher was the height of the
concrete cover, which changed over the length. For the calculations, the lowest concrete cover
was assumed. The concrete cover influences the bond strength and the biaxial bending moment
resistance.

5.3 Extended Comparison of Results

During the experiments, the specimens were loaded using 4-point bending. Therefore, the
load gives a different moment distribution than the 3-point bending. The experiments and the
analytical model showed that the specimens failed due to bending. Hence, it is assumed that
the failure load from 4-point bending can be transformed into an equivalent load at 3-point
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bending, which gives the same bending moment, for a more accurate comparison of the results.
The assumption of the equivalent 3-point bending is shown in Figure 5.9. This equivalent load
is determined using Eq.5.1.

1

4
FEqL = FL1 (5.1)

Figure 5.9: Location and notation of loads for calculating the point load at midspan, giving a
maximum bending moment equivalent to 4-point bending.

LB1 gives an equivalent 3-point bending load at 1394 kN. The equivalent load for LB3 is
1258 kN. Therefore, the load is slightly lower than it was for 4-point bending. However, the
analytical model still underestimates the bearing capacity. The equivalent force is determined
assuming uniaxial bending, which is assumed to be adequate as an estimate. The equivalent
single point loads are compared to the other results in Figure 5.10.
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Figure 5.10: Comparison of the resistances for LB1 and LB3 from experiments, numerical and
analytical results.

From Figure 5.10 it can be seen that the analytical model comes close to both the experimen-
tal and numerical results. The analytical model for LB1 underestimates the load at failure
compared to the other results, which is considered safe. Additionally, the margin between the
results is relatively small. The same is valid for LB3, although the model overestimates the
load at failure compared to the numerical model. Although this comparison is a relatively
simplified method to determine the resistance for different loading cases, it is possible that the
current model can be used to verify the loads from 4-point bending using the transformation.
For instance, reversing this process so the 3-point bending resistance is transformed into an
equivalent 4-point bending resistance. For loading cases that are less critical but still have to be
verified, for instance, loading between interior girders, the model may be modified. The in situ
testing in Amsterdam showed that the load distributes equally to the four adjacent girders for
loading between interior girders. Therefore, the loading on each beam can be reduced compared
to the C-STM. Additionally, it may be assumed that the concrete does not form an opening
from the steel, which will increase the longitudinal shear resistance.

To summarize the verification, it can be concluded that the analytical model predicts the same
failure modes observed during testing, which for LB1 is bending with limited ductility due to
interface failure. For LB3, this is bending with concrete crushing. Additionally, the analytical
results get close to the experimental and numerical results, especially regarding the load at
failure, when considering the equivalent 3-point bending load from the experiments. However,
the model underestimates the load at longitudinal cracking with a relatively large margin, which
the verification showed was not due to the lateral stiffness, as this gave similar displacement
profiles to the experimental and numerical results. This can be due to the tensile area or
the height of the spring node, as these are parameters that influence the stresses and the force
components in the C-STM. Nonetheless, it is considered more important that the load at failure
is closer to the experimental and numerical results.

99



6 Discussion

A compatibility-based strut and tie model (C-STM) has been proposed. The model simplifies
the distribution of forces into struts and ties. The absence of transverse reinforcement means
that the C-STM interprets the concrete in tension as ties, which typically would be the as-
sumption for the reinforcement. The vertical stiffness of the composite girders is accounted for
as elastic single-point springs, whereas the lateral stiffness is computed as lateral spring beams.
The C-STM considers the struts and ties as axial bars and the spring beams as clamped Euler-
Bernoulli beams. The lateral displacement of the exterior composite girder determines if the
concrete has formed an opening from the steel, which reduces the effective contact perime-
ter and the longitudinal shear resistance. The longitudinal shear resistance is linked to the
remaining cross-section verifications, as they depend on the degree of shear connection. The
contributions to the longitudinal shear resistance mainly come from the cohesion determined
through a literature review and taken as the lowest value. Additionally, the model considers the
Mohr-Coulomb mechanism, which has a relatively low influence on the bearing capacity.

6.1 Differences Between the FEM and the Analytical

Model

One of the differences between the numerical and analytical model are the assumptions re-
garding lateral behaviour. The numerical model considers the concrete in tension as multiple
discrete elements so that it will fail gradually. In contrast, the analytical model considers the
tensile tie as a single spring, when this fails, the entire concrete in transverse tension has failed.
Figure 6.1 shows the assumption from the numerical and analytical model.

Figure 6.1: Bottom view exterior and adjacent composite girder. (a) numerical model concrete
tensile tie as uniformly distributed spring. (b) analytical model concrete tensile tie as single
spring.

As a consequence of the configuration of the analytical model, the numerical model gives a better
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representation of the transverse displacement profile along the length of the specimen. Whereas
the analytical model only gives an accurate representation of the supports and midspan, as
shown in Figure 6.2.

Figure 6.2: The lateral displacement profile of LB1 before cracking the C-STM and the numer-
ical model. X is the distance from the support to the midspan.

Another consequence of using the analytical model is that it assumes a constant shear resistance
along the contact perimeter, as shown in Figure 6.3. The shear resistance around the contact
perimeter is variable due to the confinement, which will vary depending on the location around
the steel girder. Additionally, it can be assumed that there is stronger cohesion between the
top part of the top steel flange compared to other areas. This is something the analytical
model does not account for. However, it is assumed that the simplification, assuming constant
values for cohesion and the coulomb mechanism, reduces the calculation time and still provides
accurate results.

The numerical model uses a coefficient of friction at 0.5, which is significantly higher than the
coefficient of friction at 0.3 used for the analytical model. The analytical model assumes that
cohesion is 0.54MPa, whereas the numerical model uses 0.1MPa. However, the analytical model
simplifies the Mohr-Coulomb mechanism to a limited area. In contrast, the ideal behaviour
would be that the mechanism gives higher resistance closer to the top steel flange. Then the
value reduces along the height of the steel girder, combined with confinement due to torsion of
the steel girder. Therefore, these parameters can not necessarily be directly compared. Figure
6.3 shows the idealised shear resistance around the perimeter of the steel girders compared to
the simplified shear resistance, which is assumed for the analytical model when the concrete
has formed an opening from the steel. The principal idea about simplifying the shear resistance
is to average it along the effective contact perimeter using the lowest cohesion value found in
the literature review.
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Figure 6.3: Longitudinal shear resistance of the exterior composite girder. (a) idealised dis-
tribution of the longitudinal shear resistance. (b) Simplification of the distribution of the
longitudinal shear resistance in the analytical model.

The analytical model is highly dependent on the bond strength values, as these directly influence
the longitudinal shear resistance and, therefore, the degree of shear connection linked to the
biaxial bending - and vertical shear resistance. The cohesion especially impacts the degree of
shear connection before and after longitudinal cracking. This is shown in Figure 6.4 showing
the longitudinal shear resistance of LB1 assuming the cohesion is 0.01MPa and the coefficient
of friction at 0.3 as previously. When decreasing the cohesion close to 0, the longitudinal
shear resistance governs the failure before longitudinal cracking occurs. Therefore, changing
these parameters highly influence the longitudinal shear resistance, thus, the failure mode and
the bearing capacity. The numerical model is less dependent on the cohesion value as this is
significantly lower than the analytical model.

Figure 6.4: Longitudinal shear resistance and shear force versus the single point load, FEd.
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For future work, it may be considered that the strain criteria used to determine when the
concrete opens from the steel is relatively conservative, as following longitudinal cracking, most
of the steel opens from the concrete, which is shown in Figure 6.5 showing the strain from
lateral displacements of LB1 right after longitudinal cracking. For LB1, the cross beams have
a length of 510mm, and almost all of the concrete that can displace in the lateral direction
already has formed an opening from the steel.

For instance, the configuration of the Mohr-Coulomb mechanism is considered for the analytical
model. This assumes that confinement occurs where the concrete has formed an opening from
the steel, which is determined using the strain criteria. However, the current calculations show
that most of the concrete has formed an opening following longitudinal cracking, as shown in
Figure 6.5. Therefore, the longitudinal shear resistance is not reduced when increasing the
loading further. When increasing the loading, the longitudinal shear resistance increases as the
confinement area remains while the normal stress increases.

Figure 6.5: The lateral strain along the exterior composite girder of LB1 right after longitudinal
cracking. X is the distance from the cross beam to the midspan.

6.2 Other Loading Cases

The proposed C-STM is configured to analyse 3-point bending at the midspan between the
exterior composite girder and the adjacent girder. However, changing the loading case to 4-point
bending or applying a uniformly distributed load necessitates adjustments in the configuration
of the C-STM. This is especially important as certain elements within the C-STM depend on
the specific loading conditions, such as the height of the compression struts that depends on
the width of the loading plate.

Modifications must be made for 3-point bending at different locations in longitudinal direction
other than midspan. The vertical springs and the lateral spring beams are derived based on this
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load location. Therefore this must be modified. Similarly, for 4-point bending, as used in the
experiments, the stiffness of the vertical springs must be adjusted accordingly. Moreover, it is
crucial to determine if the loads impact the same area, as illustrated in Figure 6.6. The current
C-STM configuration only accounts for 3-point bending and does not consider this aspect. If
the loads affect the same area, the C-STM can be retained by potentially increasing the area
of the struts and ties. However, an alternative configuration with two tensile ties should be
examined if the loads do not impact the same area.

Figure 6.6: Example of load dispersal in the transverse direction from the two wheel print loads
influencing the same area.

The proposed C-STM considers the loading following longitudinal cracking in a simplified way,
where almost all the concrete has formed an opening from the steel following longitudinal
cracking. Therefore, it is assumed that this will also occur for other loading cases, meaning
that the longitudinal shear resistance is the same. Assuming the specimen will fail due to
biaxial bending with limited ductility due to interface failure, a quick scan can be performed
for 4-point bending without any modification. As shown in the extended verification in chapter
5, the 4-point bending load is transferred into an equivalent 3-point bending load, giving the
same bending moment. By reversing this, it is possible to determine the equivalent 4-point
bending load from the 3-point bending resistance, as shown in Figure 6.7.
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Figure 6.7: Location and notation of loads for calculating the point load equivalent 4-point
bending resistance from the 3-point bending ultimate load.

When changing the position of the load in the transverse direction so the load is between two
interior girders, the lateral stiffness model and assumptions may be redefined. Similarly, as
shown in Figure 6.8 during the in situ testing, the load will distribute to the 4 adjacent girders.
Therefore, the load distribution may be redefined as well.

Figure 6.8: Example showing the load distribution at loading between interior composite gird-
ers.

Since the model mainly focuses on the lateral displacement of the exterior girder, which has
a significantly lower stiffness than the adjacent girder. For the case of a uniform distributed
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load, especially the load dispersal and the loading of the C-STM must be changed. However,
the general principles of the model should remain, as the loading of the exterior girder merely
changes from a single-point load to a uniform distributed load. One thing that remains when
changing any of the above loading conditions is the cross-section verifications, as it is assumed
that these can be performed following the same procedure as has been proposed. However,
when loading between two interior girders, the concrete may not form an opening from the
steel, and there will be full steel-concrete contact.

The loading case considered for the laboratory testing was between an exterior and interior
girder. Therefore, this gave very little indication of the load distribution between the girders
in the case of a load between interior girders. However, the in situ testing showed that the
load was distributed equally between the four adjacent girders. On the other hand, this testing
did not lead to failure, and therefore, the full picture for this loading case is still missing. It is
assumed that another configuration of the proposed analytical model will have to be used, as
it mainly focuses on the lateral behaviour of the exterior composite girder. The lateral stiffness
will be significantly higher for loading between two interior composite girders. Despite this,
the general principles and material parameters may still be applicable, such as bond strength
properties and the rules for concrete cover around the encasement. Additionally, the cross-
section verifications will still rely on the same principles but with different lateral behaviour
due to the higher lateral stiffness.

The engineers of Gemeente Amsterdam can apply the proposed analytical to determine the
bearing capacity for the critical case where the load is present between the exterior composite
girder and an adjacent girder. Additionally, this method can predict the onset of longitudinal
cracking, and as a quick scan, the method can be used to determine the resistance for 4-
point bending as previously described. However, adjustments must be made to the proposed
method for other loading cases. These adjustments would involve modifying the geometry of the
elements of the C-STM, as they largely depend on the specific loading conditions Nonetheless,
the main principles of the C-STM are expected to remain. Similarly, the proposed cross-section
verifications will still be applicable, although there may be instances where there is full steel-
concrete contact based on the loading case. Consequently, the degree of shear connection will
be higher when the lateral strain exceeds the strain criteria and the concrete forms an opening
from the steel.

6.3 Sensitivity Analysis of Stiffness Parameters

The stiffness of some elements from the C-STM has been studied in a minor sensitivity analysis
aiming to understand the elements further. This may as well contribute to recommendations
for further research.

6.3.1 Compression Struts

It is interesting to investigate the influence of the strut’s stiffness as the height of these is
determined from the width of the wheel print load. Therefore, a relatively small amount
of concrete may be utilized, whereas, in reality, the stresses distribute over a larger area.
Figure 6.9 shows that increasing the axial stiffness by multiple factors barely changes the load
at longitudinal cracking. However, when decreasing it from its original value, the load at
longitudinal cracking is slightly reduced, indicating that when increasing the axial stiffness, it
at some point reaches a plateau.
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Figure 6.9: The sensitivity to longitudinal cracking to changes of the axial stiffness of the
compression struts relative to the original axial stiffness.

From the analysis of Figure 6.9, it is determined that it is not necessary to increase the stiffness
of the struts, as this has a low impact on the load at longitudinal cracking. Another reason
increasing the stiffness does not influence the load at longitudinal cracking is that the stiffness
of the struts is relatively small compared to the stiffness of the vertical springs and the lateral
spring beams. Therefore, no further modification is done to the stiffness of the struts to increase
the accuracy of the proposed analytical model.

6.3.2 Tensile Tie

It is reasonable to analyse the effects of changing the stiffness of the tensile tie, as this is
the element that fails when longitudinal cracking occurs. Figure 6.10 shows the sensitivity
of the load at longitudinal cracking to changes in the axial stiffness of the tensile tie. The
axial stiffness has been changed by increasing the cross-section area of the tensile tie, which
shows that by doing this, the load at longitudinal cracking increases linearly because the area
is directly related to the resistance of the tensile tie.
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Figure 6.10: The sensitivity to longitudinal cracking to changes of the cross-section area of the
tensile tie relative to the original axial stiffness.

Figure 6.11 shows how the lateral displacement decreases when increasing the cross-section area
of the tensile tie.

Figure 6.11: The sensitivity of the exterior lateral displacement at 250 kN to changes of the
cross-section area of the tensile tie relative to its original value.

Thus, it can be concluded that increasing the axial stiffness of the tensile ties increases the
load at longitudinal cracking, which was significantly lower than the load measured from the
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experiments and numerical models. However, this also decreases the lateral displacement, which
was similar to the displacement profile of the numerical models. Therefore, it is relevant to
see if, by adjusting the stiffness of the interior spring beam, the load at longitudinal cracking
of the analytical model can be increased while keeping the displacement profile similar to the
numerical models.

6.3.3 Interior Spring Beam

A similar study has been conducted on the interior springs to understand the stiffness param-
eters’ influence further. The elements related to the exterior composite girder are especially
essential as the lateral behaviour of this girder is a focal point of the proposed analytical design
method. However, if the elements related to the interior composite girder can be reduced or
removed, this may help simplify the solution of the C-STM.

When the spring beams’ lateral stiffness increases, the load at longitudinal cracking increases
as well. This can be seen in Figure 6.12. Therefore, results closer to the numerical and
experimental studies can be achieved by increasing the stiffness of the interior spring beam.
However, the load distribution between the struts also changes when the stiffness increases.
Therefore, it must be ensured that adequate load distribution is still ensured, which is currently
related to many uncertainties. As seen in Appendix D the reaction forces of the supports vary
greatly between the support ends and each experiment.

Figure 6.12: The sensitivity to longitudinal cracking to changes of spring k2 relative to spring
k1.

Figure 6.13 shows the effects of increasing the lateral stiffness on the lateral displacement of
the exterior composite girder. When the stiffness increases, the lateral displacement decreases.
However, as shown in the verification, the displacement of the C-STM with the assumed spring
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stiffness k2 comes relatively close to the numerical values. Therefore, it is not desired to increase
the stiffness if it significantly impacts the behaviour of the exterior composite girder.

Figure 6.13: The sensitivity of the exterior lateral displacement to changes of spring k2 relative
to spring k1 at a load at 400 kN.

Thus it can be seen from Figures 6.12 and 6.13 that increasing the stiffness of spring k2 impacts
the displacement and load significantly compared to increasing the stiffness of the struts. A
reason for this can be that any changes in the stiffness of spring k2 relative to spring k1 decreases
the symmetry, e.i. the distribution of the force F to each of the struts. This is also shown in
Figure 6.14, showing how increasing the stiffness of k2 changes the load distribution.
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Figure 6.14: The sensitivity of the load distribution to changes of spring k2 relative to spring
k1.

Figure 6.14 shows that increasing the stiffness greatly impacts the load distribution, especially
when increasing the stiffness close to infinite, which may be equivalent to a horizontal support
at spring k2. As the load distribution is related to a lot of uncertainty, it is assumed that some
general limits on the load distribution can be established based on the results from Figure
6.14. For a loading where the middle girder has an infinite stiffness compared to the exterior
composite girder, it can be assumed that the exterior girder takes about 0.2 of F between
the two girders. Whereas, for a system where the interior girder has a stiffness closer to the
exterior, it is recommended to use a load at the exterior girder of 0.5 of F .

6.4 Limitations

The proposed analytical model has limitations as it is only verified using two test specimens and
two numerical models based on the same test specimens. These specimens are relatively short,
about 6 to 7.5m considering the span range of the Amsterdam bridges with a maximum span
of about 14m. To enhance the reliability of the model, it is recommended to include a larger
number of specimens for verification. To address the limitation of the proposed model, further
research should involve the verification of the model using longer-spanning bridge decks, which
can be achieved by using the same modelling approach as was currently used. Further research
should consider the effects on the bearing capacity when increasing the span length.

Another limitation of the analytical model is its configuration to analyse the most critical
loading case between the exterior composite girder and an adjacent girder. However, loading
between the interior girders, where the load distributes to multiple adjacent girders, needs to
be considered as well, which is considered less critical. The proposed analytical model should
be adjusted to account for this scenario, focusing on the composite girders’ load distribution
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and vertical behaviour. Nonetheless, there is currently no available data for verifying this
configuration. Therefore, additional testing or numerical modelling is necessary.

Finally, a limitation of the proposed model is that it only girders 3-point bending. As previously
discussed by a few means, the model can, in a simplified way, account for 4-point bending,
assuming that failure occurs from flexural bending. However, the model has shortcomings
considering other loading cases, such as a uniformly distributed load or loading between interior
girders. To overcome this limitation, modifications to the load dispersal and adjustments in
the model geometry is necessary as the current model assumes a single-point load.
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7 Conclusions and Recommendations

7.1 Conclusions

This research project has been conducted with the aim of providing an analytical model to
determine the bearing capacity of historic steel-concrete composite bridges in Amsterdam.
Such a model is critical to avoid oversimplified analytical calculations and time-consuming
FEM calculations. To address this problem, it has strived to answer the following research
question:

How can the bearing capacity of existing steel-concrete-composite bridges without
mechanical connectors be determined using an analytical model?

The main assumptions of the analytical model are described in the following:

• The distribution of stresses is represented through a compatibility-based strut and tie
model (C-STM).

• The model considers loading between the exterior composite girder and the adjacent
girder. Determined from an experimental and numerical study.

• When the tensile tie exceeds its resistance, it fails, and longitudinal cracking occurs.

• The lateral behaviour of the girders is interpreted as lateral spring beams with clamped
supports, which is derived from displacement profiles from FEM.

• The lateral behaviour of the exterior girder is linked to the cross-section verifications.

• When the lateral displacement increases sufficiently, the concrete will form an opening
from the steel, and the effective contact perimeter between the steel and concrete reduces.

• The effective contact perimeter is linked to the longitudinal shear resistance, which im-
pacts the biaxial bending and the vertical shear resistances through the degree of shear
connection.

The analytical model has been compared to numerical and experimental results by calculating
cross-sections similar to the ones modelled and tested in the laboratory. In the following, the
main results and observations from the model are shown:

• The load at longitudinal cracking is underestimated with a significant leeway compared
to the experiments and numerical models.

• Analytical calculations show that test specimens LB1 and LB3 fail due to biaxial bending
with limited ductility due to partial shear connection.

• The load at failure from the analytical calculation is close to that of the numerical models.

• The load at failure is close to the analytical when transferring the 4-point bending load
from the experiments into an equivalent 3-point bending load.

The proposed model predicts a similar failure as was observed during the experiments. The
method can replace oversimplified analytical calculations and time-consuming NLFEM calcula-
tions. However, this model is only valid for 3-point bending between the exterior composite and
adjacent girder. Nonetheless, contributing to the research and assessment of these Amsterdam
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bridges. Other bridges around the Netherlands or Europe may be constructed after similar
design methods as the steel-concrete composite bridges in Amsterdam. Thus, the application
of the method may be broader than for the current amount of bridges under assessment.

7.2 Recommendations

This research proposes an analytical model based on observations from experiments and nu-
merical models. However, the sample size of the Amsterdam bridge decks tested was relatively
small. Therefore, a further investigation of the bridges would require increasing the sample
size. Alternatively, implementing NLFEM would be sufficient, as numerical models of the two
specimens have already been created and verified. The same modelling approach could be imple-
mented on other Amsterdam bridges, avoiding more laboratory tests that are time-demanding
and expensive. This would especially be relevant for bridges with larger dimensions than the
bridge decks already tested, as the ones tested are some of the shortest-spanning bridges of
this type, which is about 5m. In contrast, the maximum span is 14m. However, looking at
the results from the current calculations, it can be expected that the failure mode will be the
same as for LB1 and LB3. When increasing the span, generally, bending becomes more critical.
Additionally, the current specimens, which had a relatively short span, already proved that a
large margin governed biaxial bending compared to vertical shear.

A general limitation of this research is the absence of literature or experiments on similar topics.
One reason for this is the composite bridges’ complexity, as they are missing shear connectors
and transverse reinforcement. Very few composite structures in bending are designed without
shear connectors. Therefore, no or little research has been done in this field. The same applies
to unreinforced concrete structures, which rarely appear. Moreover, this construction method
was used almost a century ago and is not as relevant for research as current design methods.
Experiments or an extended literature review should further investigate the bond strength
parameters, as previously shown how dependent the bearing capacity is on the bond strength
parameters, especially the cohesion. This should consider the time effects on cohesion as the
literature review currently regarded the bond strength from experiments conducted relatively
short from the casting. This could also be done by using push-out tests and further examining
the bridges’ steel-concrete interface. On the other hand, push-out tests may not be suitable for
the bridges due to their asymmetric encasement, which is not desired for this type of test. The
influence of the concrete cover, which also affects bond strength parameters, would be relevant
to the study, as this varies a lot for the specimens. Similar to investigating the influence of the
span length, this can also be studied using numerical modelling.

Following the verification of this method to bridges with larger dimensions, it is recommended
to expand the method to other loading cases, as was mentioned in the discussion. The next
step will mainly be loading between interior girders. This will have to focus more on the
vertical behaviour of the composite girders and the load distribution between adjacent girders,
which can be done by modifying the proposed C-STM. The following, the bearing capacity to
3-point bending can be determined regardless of the loading position. This theory can then be
elevated to consider multiple loading cases, such as 4-point bending and a uniformly distributed
load.
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A Calculation Example

In the following is a calculation example shown of the analytical C-STM design with the corre-
sponding cross-section verifications. However, some of these calculations are performed using
MATLAB functions and iterations. Thus, the MATLAB code is shown in Appendix B and C
and will frequently be referred to where the MATLAB code has been used.

A.1 Example - Establish the C-STM

The following example considers the cross-section of the middle and exterior girder of LB1 shown
in Figure A.1 with a load applied between these two girders. In the longitudinal direction, the
load is applied at midspan. The total height of the bridge deck is assumed to be 460mm;
however, the height of specimen LB1 varied between 400mm and 490mm. 460mm is used as
this is the height of the numerical model of LB1. Moreover, the profiles are DIN profiles, but
for simplicity they are considered as HEB profiles.

Figure A.1: Cross-section of LB1 of the exterior and middle girder.

Table A.1 gives the input parameters for the following calculation example.
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Table A.1: Material properties of the concrete, steel and interface for LB1. * Calculated from
the reference system in Figure A.2.

Concrete Properties
Compressive Strength fc = 50.9MPa
Tensile Strength ft = 3.68MPa
Young´s Modulus Ec = 37GPa
Steel Properties
Young´s Modulus Ea = 200GPa
Yielding Stress fy = 235MPa
Geometry
Wheel print width wp = 230mm
Wheel print length b = 230mm
Length tie Lt = 600mm
Total height bridge deck h = 460mm
Concrete cover above the exterior steel girder hc1 = 180mm
Height cut-out section hc2 = 330mm
Height exterior steel girder ha = 280mm
Span length between supports L = 5950mm
Span length between cross beams Leff = 5600mm
Length cross beams Lc = 510mm
Interface Properties
Cohesion c = 0.54MPa
Friction µ = 0.3
Cross-section properties - exterior composite girder
Moment of inertia concrete major axis Ic,y,1 = *1.33 · 1010mm4

Moment of inertia concrete minor axis Ic,z,1 = *2.79 · 1010mm4

Moment of inertia cracked concrete minor axis Ic,z,1,cr = *2.44 · 1010mm4

Moment of inertia steel major axis Ia,y,1 = *1.48 · 109mm4

Moment of inertia steel minor axis Ia,z,1 = *1.18 · 109mm4

Centroid of concrete to the top of the concrete zc = 204mm
Centroid of steel to the top of the concrete za = 320mm
Shear area of the steel girder Av = 4109mm2

1. Calc. η,eT0

n =
200GPa

37GPa
= 5.4

eT0 =
235 743mm2

5.4
· 204mm+ 12 642mm2 · 320mm

12 642mm2 + 235 743mm2

5.4

= 230mm

2. Calc. θ1, θ2, Ld

Ld =
2 · 230mm

tan 45◦
= 690mm
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θ1 = tan−1

(
230mm

0.5 · 600mm

)
= 39.9◦

θ2 = 90◦ − 39.9◦ = 50.1◦

3. Calc. hs,1, hs,2, ht, As,1, As,2, At

hs1 = cos(39.9◦) · 230mm = 176mm

hs2 = hs1 = 176mm

ht =
330mm

2
= 150mm ≤ 330mm− 180mm = 150mm

As1 = 176mm · 690mm = 121 720mm2

As2 = 176mm · 690mm = 121 720mm2

At = 150mm · 690mm = 103 520mm2

4. Calc. EIy3, EIy4, k3, k4

The moments of inertia for the specimens are calculated using a MATLAB function. This
function calculates the moment of inertia around the x- and y-axis as shown in Figure A.2.
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Figure A.2: Reference axis for cross-section properties of LB1 and LB3.

However, as it is desired to determine the total bending stiffness for the composite girder around
its neutral axis, Steiner’s Theorem is applied to shift the axis from the x- and y-axis. This is
shown from Eq. A.1.

Iy1 = (Ia,y,1 + Ic,y,1n)− e2T0,y(Aa + Acn) (A.1)

EIy1 =200GPa
([
1.48 · 109mm4 + 1.33 · 1010mm4

]
− (230mm)2 · (12 642mm2 + 235 743mm2 · 5.4))

=1.94 · 1014Nmm2

k3 =
48 · 1.94 · 1014Nmm2 · 690mm

690mm
(
(5950mm)3 − (690mm)2

2
· 5950mm+ (690mm)3

8

) = 5.34 · 104N/mm

EIy2 = 1.94 · 1014Nmm2

k4 = 5.34 · 104N/mm

5. Calc. EI1, EI2, EI1,cr
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The same principles as in the previous are applied to calculate the moment of inertia for the
minor axis.

EIz1 =200GPa
([
1.18 · 109mm4 + 2.79 · 1010mm4 · 5.4

]
− (299.6mm)2 · (12 642mm2 + 235 743mm2 · 5.4))

=2.57 · 1014Nmm2

For the case of this calculation, it is assumed that p, which is the number of interior composite
girders, is relatively high, giving a high stiffness of the composite girder. This is due to the
loading of the specimens during the laboratory testing, as they were loaded at both sides of
the middle girder. This loading keeps the middle composite girder in horizontal equilibrium,
equating to high lateral stiffness.

EIz2 = 2.57 · 1014Nmm2 · 10 = 2.57 · 1015Nmm2

The flexural stiffness of the failed concrete is shown in Figure A.3 using a similar calculation to
uncracked concrete; the only difference is the reduction of the concrete area considered.

Figure A.3: Concrete considered following longitudinal cracking.

For this calculation, the elastic neutral axis must be calculated again. This is calculated to the
following.

eT0,x,cr = 389.4mm

EI1,cr =200GPa
([
1.18 · 109mm4 + 2.44 · 1010mm4 · 5.4

]
−(389mm)2 ·

(
12 642mm2 + 120 140mm2 · 5.4

))
=7.98 · 1013Nmm2

6. Determine displacements of each element

Now the parameters used to describe the C-STM have been determined. Following the displace-
ment of each element can be determined. For this example, the solution strategy of the C-STM
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relies on ordinary differential equations that can be solved from equilibrium and compatibil-
ity conditions. However, a more direct solution strategy may be found, for instance, using
the matrix method. The displacements of the system are solved numerically using MATLAB.
The MATLAB code is also shown in Appendix B. The displacements are determined as the
following.

us1(xs1, F ) = −1.33 · 10−10Fx+ 1.65 · 10−7F [N,mm]

us2(xs2, F ) = −1.57 · 10−10Fx+ 1.65 · 10−7F [N,mm]

ut(xt, F ) = 2.36 · 10−10Fx− 6.80 · 10−8F [N,mm]

w1(x, F ) = −6.70 · 10−18Fx3 + 2.83 · 10−14Fx2 [N,mm]

w2(x, F ) = −6.20 · 10−18Fx3 + 2.60 · 10−14Fx2 [N,mm]

The stresses and strains can be determined using the constitutive relation for each element.

7. Determine Fcr when σt = ft

The stresses in the tensile tie can be determined by using the constitutive relation for the tensile
tie as given from Eq.A.2, where the strain is determined as the derivative of the displacement
of the tensile tie.

σt = εtEc =
dut

dx
Ec (A.2)

Therefore, the stresses in the tensile tie can be described using the following equation.

σt = 2.36 · 10−10F · 37GPa = 8.7320 · 10−6F MPa

Thus, with a tensile resistance of concrete at 3.68MPa, the load at cracking can be determined
as the following.

3.68MPa = 8.7320 · 10−6Fcr ⇒ Fcr = 421 kN

Therefore, the load at longitudinal cracking is 421 kN.

A.1.1 Stage 1 Cross-section Verification

Following longitudinal cracking, it must be determined if the specimen fails before the load
at longitudinal cracking occurs. This is checked using the load at longitudinal cracking Fcr to
verify each resistance. The following resistances are checked:

• Resistance of the compression struts
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• Longitudinal shear resistance

• Biaxial bending resistance

• Vertical shear resistance

A.1.1.1 Resistance Compression Struts

The forces in the compression struts at Fcr = 421 kN is determined using the constitutive
relation for the struts from Eq.A.3.

σs,i = εs,iEc =
dus,i

dx
Ec (A.3)

σs,1(F ) = 1.33 · 10−10F · 37GPa = 4.92 · 10−6F

σs,1(Fu) = 4.92 · 10−6Fu = 50.9MPa ⇒ Fu = 1.03 · 104kN

σs,2(F ) = 1.57 · 10−10F · 37GPa = 5.81 · 10−6F

σs,2(Fu) = 5.81 · 10−6Fu = 50.9MPa ⇒ Fu = 8760 kN

Thus, the compression struts fail when the single point load exceeds 8760 kN, far from the load
at longitudinal cracking.

A.1.1.2 Longitudinal Shear Resistance

1. Determine the longitudinal shear resistance Vx,Rd.

The total length of LB1 with cross beams is:

Ltotal = 5600mm+ 2 · 510mm = 6620mm

The effective contact perimeter is 909mm with the 50% reduction of the bottom part of the
top steel flange. Thus, the longitudinal shear resistance of the exterior composite girder is
determined by the following:

Vx,Rd = 6620mm · 909mm · 0.54MPa = 3250 kN

The force, that the exterior composite girder is subject to can be calculated as half the force of
the compression force in the strut. The force in the compression strut is determined from the
constitutive relation in Eq.A.4.

Ns,1(F ) =
dus1

dx
EAs,1 (A.4)
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Ns,1(F = Fcr) = 1.33 · 10−10 · 421 kN · 37GPa121 720mm2 = 252 kN

VEd =
Ns,1

2
= 126 kN

Therefore, the longitudinal shear resistance is larger than the vertical shear force at longitudinal
cracking.

A.1.1.3 Biaxial Bending Resistance

The following shows a calculation example of how to determine the biaxial bending resistance
of LB1. As previously mentioned, some of these calculations involved iteration and other
mathematical operations where software such as MATLAB is preferable. Thus, where soft-
ware has been used, references to the corresponding appendix with the MATLAB code are
provided.

1. Calc. Fcc,y, Fcc,z using iteration

For biaxial bending, the concrete compression forces are first determined, assuming a full shear
connection. These are determined using iteration with the MATLAB code in Appendix C. The
compression force from major axis bending and minor axis bending has been determined to
Fcc,y = 2995 kN and Fcc,z = 2768 kN.

2. Calc. η using Vx,Rd

The minimum value of the longitudinal shear resistance occurs following the longitudinal crack-
ing. This value is 3250 kN. Hence the degree of shear connection can be determined as the
following.

η =
3250 kN

2995 kN + 2768 kN
= 0.56

As the degree of shear connection is below, there is a partial shear connection. Thus, the
concrete compression forces must be reduced.

3. Calc. Fcc,y,red, Fcc,z,red

Fcc,y,red = 0.56 · 2995 kN = 1677 kN

Fcc,z,red = 0.56 · 2768 kN = 1550 kN

4. Determine z1, z2, y1, y2

The distance between the respective compression forces and the tension forces are similarly
determined using iteration that also is included in the MATLAB code in Appendix C. The
values are determined to z1 = 326mm, z2 = 173mm, y1 = 274mm and y2 = 129mm. Figure
A.4 shows the compression and tension components of the steel and concrete for major axis
bending. Figure A.5 shows the same for minor axis bending.
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Figure A.4: Internal force components from major axis bending of the exterior composite girder.
The red dots indicate the centroid of each force component.

Figure A.5: Internal force components from minor axis bending of the exterior composite girder.
The red dots indicate the centroid of each force component.

5. Calc. My,pl,Rd, Mz,pl,Rd
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My,pl,Rd = 1677 kN · 326mm+ 658 kN · 173mm = 664 kNm

Mz,pl,Rd = 1550 kN · 274mm+ 710 kN · 129mm = 518 kNm

6. Solve Fu

Knowing the bending resistance, the bearing capacity can be found as the maximum value of
F . The horizontal force components, Fy and Fz, are defined below.

Fy =
Fu

2 cos θ1
cos θ1

Fz =
Fu

2 cos θ1
cos θ2

For the major axis bending, the span length between the supports, L, is used as this is considered
a simply supported beam. Whereas, for the minor axis bending, accounted for as a clamped
beam, the length is the span between the cross beams Leff . Thus, the maximum force the
biaxial bending resistance can resist is determined as follows:

√( 1
4
Fy · 5950mm

664 kNm

)2

+

( 1
8
Fz · 5600mm

518 kNm

)2

≤ 1.0 ⇒ Fu = 798 kN

A.1.1.4 Vertical Shear Resistance

1. Calc. λsd, f (λsd).

λsd =
180mm

280mm
= 0.64

f(λsd) = 110 · 0.64 + 13 = 83.7

2. Calc. Vpl,Rd, Vslab.

Vpl,Rd =
4109mm2 · 235MPa√

3
= 557 kN

Vslab = 0.8 · 83.7 · (280mm · 180mm)0.7
√
50.9MPa = 935 kN

3. Calc. Vcomp

Vcomp = 935 kN + 557 kN = 1493 kN

4. Solve Vcomp,0
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As the degree of shear connection, previously shown, is below 1.0, there is partial shear con-
nection. Therefore, the vertical shear resistance to the degree of shear connection is calculated
as a linear relation between Vcomp and Vcomp,0.

1493 kN = Vcomp,0(0.76 · 0.64 + 0.92) ⇒ Vcomp,0 = 1060 kN

5. Calc. Vcomp,η

The vertical shear resistance can be determined according to the degree of shear connection,
which is 0.56.

Vcomp,η = 1060 kN + 0.56 · (1493 kN− 1060 kN) = 1304 kN

A.1.2 Stage 2 Cross-section Verification

Following longitudinal cracking, the struts and spring beams’ displacements and forces have
changed. It is assumed that the computation can be simplified by using the same load dis-
tribution as was determined with the previous configuration. This load distribution means
that the exterior strut takes 45% of the load F . Therefore, the displacements are described
using a new set of equations. However, as the system following cracking mainly focuses on the
exterior composite girder, merely the displacement of one strut and the exterior spring beam
are considered.

us1(x, F ) = −7.72 · 10−72F
(
1.69 · 1061x− 1.13 · 1066

)
[N,mm]

w1(x, F ) = −5.10 · 10−16Fx2(x− 4200) [N,mm]

The expression for the lateral displacement of the exterior composite girder only considers the
effective length of the specimen, e.i. for LB1. This is 5600mm. The full length, including the
cross beams, is 6620mm.

A.1.2.1 Resistance of Compression Struts

The maximum resistance of the compression strut is determined using the same constitutive
relation from Eq.A.3 as was used for the cross-section verification to brittle failure. The only
difference for the ductile verification is that the equation describing the struts has changed due
to the failure of the tensile tie.

σs,1(F ) = 1.30 · 10−10F · 37GPa = 4.82 · 10−6F

σs,1(Fu) = 4.82 · 10−6Fu = 50.9MPa ⇒ Fu = 11 892 kN

Ns,max = 50.9MPa · 121 720mm2 = 6196 kN

Therefore, the compression strut can resist a load of 9487 kN.
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A.1.2.2 Longitudinal Shear Resistance

In the following, the longitudinal shear resistance is determined for stage 2 after longitudinal
cracking.

1. Calc. Lo after longitudinal cracking

As it is assumed that the longitudinal shear resistance is constant following longitudinal crack-
ing, only the values right after longitudinal cracking must be determined. From the expression
for the lateral displacement of the exterior composite girder, it can be determined when the
strain criteria is exceeded.

εw1(x, Fcr) =
w1(x)

Lt

= −3.97 · 10−13x2(x− 4200)

Thus, the length of the crack opening can be determined by determining when the strain of
exterior composite beam equates to the strain criteria.

9.9502 · 10−5 = −3.97 · 10−13x2
cr(xcr − 4200) ⇒ xcr = 251mm

Therefore, the length of the steel-concrete opening can be determined as:

Lo = Leff − 2xcr = 5600mm− 2 · 251mm = 5098mm

Thus most of the concrete has formed an opening from the steel over the span. The strain
along the exterior girders right after longitudinal cracking is shown in Figure A.6. Only half
the beam is considered as symmetry is used.

Figure A.6: Concrete strain and strain criteria along the length of LB1 at Fcr = 421 kN.
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2. Calc. V1,x,Rd.

The first part of the longitudinal shear resistance is determined where the confinement occurs,
due to the concrete that opens from the steel. For his calculation, the normal stress at the
confinement must be determined. This is done from the constitutive relation for an Euler-
Bernoulli beam. Using the constitutive relation, the shear force that the beam is subject to is
determined.

V1 = −EI1,cr
d3w1

dx3
= 0.27F

V1(Fcr) = 0.27 · 421 kN = 113.7 kN

The stress due to the confinement is calculated as the following.

σ =
2V1(Fcr)

hoLo

Where ho is the height of the steel girder excluding the minimum concrete cover at the bottom
of 38mm.

σ =
2 · 113.7 kN

242mm · 5098mm
= 0.19MPa

Thus, the longitudinal shear resistance V1,x,Rd be calculated assuming a coefficient of friction
at 0.3 and cohesion at 0.54MPa according to the literature review chapter 2.

V1,x,Rd = 0.3 · 0.19MPa · 242mm · 5098mm+ 0.54MPa · 5098mm · 465mm = 1342 kN

3. Calc. V2,x,Rd.

The longitudinal shear resistance of the part of concrete and steel that steel has full contact
is determined in the following using the same effective contact perimeter as was used in the
first verification. Besides the part of the span that is in full contact, the length of the cross
beams must also be added, assuming that these also are in full contact. For LB1, the length
of the cross beams at each side is 510mm. For LB1, the effective contact perimeter is 909mm,
considering the concrete cover requirements not fulfilled at the bottom and the 50% reduction
of the bottom part of the top steel flange due to air bubbles from casting. The same reduction
is applied for the part following the steel-concrete opening. However, this only regards one side,
as the side facing the interior girder does not have contact anymore.

V2,x,Rd = 0.54MPa · 909mm · (5600mm+ 2 · 510mm− 5084mm) = 754 kN

4. Calc. Vx,Rd.

Vx,Rd = 1342 kN + 754 kN = 2096 kN
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It is assumed that the longitudinal shear resistance remains constant after cracking, which is
considering safe as the resistance will keep increasing. Additionally, this simplifies the calcula-
tion procedure, as when the longitudinal shear resistance changes depending on the loading, the
degree of shear connection will simultaneously change, which makes the calculation an iterative
process.

A.1.2.3 Biaxial Bending Resistance

For the ductile calculation of the biaxial bending resistance the same calculation principles are
applied. However, on the safe side the concrete from the cut out section is neglected as this
may have cracked, which reduces the moment resistance by a small margin. the cross-section
considered for the cross-section verification of LB1 is shown in Figure A.7.

Figure A.7: Reduced cross-section considered following longitudinal cracking

1. Calc. Fcc,y, Fcc,z using iteration

For biaxial bending, the concrete compression forces are first determined, assuming a full shear
connection. These are determined using iteration with the MATLAB code in Appendix C. The
compression force from major axis bending and minor axis bending has been determined to
Fcc,y = 2985 kN and Fcc,z = 2403 kN.

2. Calc. η using min(Vx,Rd)

The minimum value of the longitudinal shear resistance occurs following the longitudinal crack-
ing. This value is 2096 kN. Hence the degree of shear connection can be determined as the
following.
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η =
2096 kN

2985 kN + 2403 kN
= 0.39

As the degree of shear connection is below 1.0, there is a partial shear connection. Thus, the
concrete compression forces must be reduced.

3. Calc. Fcc,y,red, Fcc,z,red

Fcc,y,red = 0.39 · 2985 kN = 1164 kN

Fcc,z,red = 0.39 · 2403 kN = 937 kN

4. Determine z1, z2, y1, y2

The distance between the respective compression forces and the tension forces are similarly
determined using iteration that also is included in the MATLAB code in Appendix C. The
values are determined to z1 = 355mm, z2 = 193mm, y1 = 254mm and y2 = 121mm.

Figure A.8 shows the compression and tension components of the steel and concrete for major
axis bending. Figure A.9 shows the same for minor axis bending.

Figure A.8: Internal force components from major axis bending of the exterior composite girder.
The red dots indicate the centroid of each force component.
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Figure A.9: Internal force components from minor axis bending of the exterior composite girder.
The red dots indicate the centroid of each force component.

5. Calc. My,pl,Rd, Mz,pl,Rd

My,pl,Rd = 1164 kN · 355mm+ 921 kN · 193mm = 590 kNm

Mz,pl,Rd = 937 kN · 254mm+ 1019 kN · 121mm = 361 kNm

6. Solve Fu

Knowing the bending resistance, the bearing capacity can be found as the maximum value of
F . The horizontal force components, Fy and Fz are defined below.

Fy =
Fu

2 cos θ1
cos θ1

Fz =
Fu

2 cos θ1
cos θ2

For the major axis bending, the span length between the supports, L, is used as this is considered
a simply supported beam. Whereas, for the minor axis bending, accounted for as a clamped
beam, the length is the span between the cross beams Leff . Thus, the maximum force the
biaxial bending resistance can resist is determined as follows:

√( 1
4
Fy · 5950mm

590 kNm

)2

+

( 1
8
Fz · 5600mm

361 kNm

)2

≤ 1.0 ⇒ Fu = 675 kN
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A.1.2.4 Vertical Shear Resistance

Most values for calculating the vertical shear resistance have already been determined in the
previous section determining the vertical shear resistance for brittle failure. The only thing
that has changed is the degree of shear connection.

1. Calc. Vcomp,η

Vpl,Rd = 557 kN

Vslab = 935 kN

Vcomp = 1493 kN

As previously shown, the degree of shear connection is below 1.0 and, therefore, is a partial
shear connection. Therefore, the vertical shear resistance to the degree of shear connection is
calculated as a linear relation between Vcomp and Vcomp,0.

1493 kN = Vcomp,0(0.76 · 0.64 + 0.92) ⇒ Vcomp,0 = 1060 kN

The vertical shear resistance can be determined according to the degree of shear connection,
which is 0.36.

Vcomp,η = 1060 kN + 0.39 · (1493 kN− 1060 kN) = 1228 kN
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B Solution Strategy to Determine Displacements
of the C-STM

B.1 Equilibrium Conditions

The compatibility-based strut and tie model is defined using the coordinate system in Fig-
ures B.1 and 4.11. The struts and ties are considered trusses. Thus, only axial forces and
deformations are accounted for. The lateral beams are Euler-Bernoulli beams.

Figure B.1: Coordinate system for the ordinary differential equations.

The system’s equilibrium is first determined by considering the top compression node. where
the point load, F , is applied. The equilibrium at the top node where the point load is applied
is determined based on Figure B.2 and stated as Eqs.B.1 and B.2.

us1 = us2 (B.1)

−F = (Ns1 +Ns2) cos θ1 (B.2)
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Figure B.2: Forces at the top compression node.

Symmetry is applied for the lateral Euler-Bernoulli beams, so the beams are described through
equilibrium and compatibility conditions at one of the supports and midspan. Since the lateral
beams are described using 4th-order differential equations, two equilibrium and two compati-
bility conditions are required. For a clamped Euler Bernoulli beam, the equilibrium conditions
are given from Eqs.B.3 and B.4.

φ1 = 0 (B.3)

w1 = 0 (B.4)

Similar principles apply to the interior lateral Euler-Bernoulli beam. The equilibrium conditions
are given from Eqs.B.5 and B.6.

φ2 = 0 (B.5)

w2 = 0 (B.6)

B.2 Compatibility Conditions

The remainder of the system is described through compatibility conditions. The compatibil-
ity conditions for the spring node of the exterior composite girder are determined mainly by
considering displacement equilibrium, as three different elements are connected in this node.
Figure B.3 shows the forces acting on the node. The compatibility conditions are given from
Eqs.B.7 to B.10. The force equilibrium in Eq.B.9 has been determined using the method of
joints. Similarly, displacement compatibility is considered as the displacement of the tensile tie,
the compression strut and the exterior lateral beam must be equal in the horizontal direction,
as shown in Eqs.B.7 and B.8.
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Figure B.3: Forces considered for at the bottom right joint of the C-STM.

ut = us1 cos θ2 (B.7)

ut = w1(L/2) (B.8)

−V1(L/2) cos θ2 =
Ns1 cos θ2 +Nt cos θ2 + us1k3 cos θ1

2

2
(B.9)

φ1(L/2) = 0 (B.10)

The compatibility conditions for the node of the interior composite girder are determined sim-
ilarly. Figure B.4 shows the forces acting on this node. The compatibility conditions are given
from Eqs.B.11 to B.14.

Figure B.4: Forces considered for at the bottom left joint of the C-STM.

−ut = us2 cos θ2 (B.11)

−ut = w2(L/2) (B.12)

−V2(L/2) cos θ2 =
Ns2 +Nt cos θ2 + us2k4 cos θ1

2

2
(B.13)

φ2(L/2) = 0 (B.14)
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B.3 Kinematic and Constitutive Relations

The kinematic and constitutive relations for the C-STM are derived in the following based
on the coordinate system shown in Figures 4.11 and B.1. The struts and ties are considered
extension bars, as previously mentioned. Thus, only axial deformations are accounted for. The
axial deformations of the struts and the tie can be determined using the ordinary differential
equations from Eqs.B.15 and B.16, where the index i is for strut 1 and 2.

EAs,i
d2us,i

dx2
= 0 for 0 ≤ xsi ≤ Lsi (B.15)

EAt
d2ut

dx2
= 0 for 0 ≤ xt ≤ Lt (B.16)

The kinematic and constitutive relations for extension bars are obtained from Eqs.B.17 and
B.18.

ϵ =
du

dx
(B.17)

N = EAϵ (B.18)

As previously mentioned, the lateral spring beams in Figure 4.11 are considered Euler-Bernoulli
beams, with the ordinary differential equation from Eq.B.19.

EIz,i
d4wi

dx4
= 0 for 0 ≤ x ≤ L (B.19)

The kinematic and constitutive relations for the Euler-Bernoulli beams are obtained from
Eqs.B.20 to B.22.

φ = −dw

dx
(B.20)

M = EI
dφ

dx
(B.21)

V =
dM

dx
(B.22)

The kinematic and constitutive relations are solved using the 14 equilibrium and compatibility
conditions in the previous sections.
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B.4 MATLAB Compatibility-based Strut and Tie Method

The cross-section is graphically analysed using a polyshape function that creates the shape
based on coordinates. These coordinates are defined following the system in Figure B.5. The
shape is defined by the MATLAB code shown below. The plots in the below code are created to
illustrate the geometry that is constructed for the user to understand if there are any mistakes
or errors.

Figure B.5: Coordinates used to create the MATLAB polyshape.

xlim=[x0 x7];

x_steel = [x2 x2 x3 x3 x2 x2 x5 x5 x4 x4 x5 x5];

y_steel = [y1 y2 y2 y4 y4 y5 y5 y4 y4 y2 y2 y1];

x_boundary = [x0 x0 x1 x2 x5 x6 x7 x7 x6];

y_boundary = [y0 y3 y3 y5 y5 y3 y3 y0 y0];

steel = polyshape(x_steel ,y_steel);

edges = polyshape(x_boundary ,y_boundary);

concrete = subtract(edges ,steel);

figure (1)

plot(concrete)

hold on

plot(steel)

yticklabels ();

set ( gca , 'ydir', 'reverse ','xlim',[x0 x7],'ylim',[y0 y5

])

figure (2)

plot(steel)

yticklabels ();

set ( gca , 'ydir', 'reverse ','xlim',[x0 x7],'ylim',[y0 y5

])
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The above code also plots the steel and the concrete of the exterior girder, so it is possible to
see if the correct dimensions have been applied. Using the above code the C-STM has been
defined as the following.

%% STM: Geometry and stiffness

wp = 230; Ld = 2*eT01/(tand (45))+wp; Ls1 = sqrt((Lt/2) ^2+ eT01 ^2)

; Ls2 = Ls1;

theta1 = acosd(eT01/(Lt/2)); theta2 = 90 -theta1;

k3 = (48* EIy3)/(L^3-(Ld^2)/2*L+(Ld^3)/8); %Vertical springs -

with the composite stiffness considered.

k4 = (48* EIy4)/(L^3-Ld^2/2*L+(Ld^3)/8); %Vertical springs - with

the composite stiffness considered.

p = 10; %number of girders without the exterior one

EIz2 = p*EIz1;

if y3/2 <= y3-y1

ht = y3/2;

At = Ld * ht;

"Tensile height below top flange"

else

ht = y3-y1;

At = Ld * ht;

"Tensile height limited"

end

%% ODE

syms w1(x) w2(x) us1(x) us2(x) ut(x) F

hs1 = cosd(theta1)*wp;

As1 = Ld*hs1;

As2 = As1;

ODE1 = Ec*As1*diff(us1 ,x,2) == 0;

ODE2 = Ec*As2*diff(us2 ,x,2) == 0;

ODE3 = Ec*At*diff(ut,x,2) == 0;

ODE4 = EIz1*diff(w1 ,x,4) == 0;

ODE5 = EIz2*diff(w2 ,x,4) == 0;

ODES = [ODE1; ODE2; ODE3; ODE4; ODE5];

%% Kinematic and constitutive relations

epsilon_s1 = diff(us1); Ns1 = epsilon_s1*Ec*As1;

epsilon_s2 = diff(us2); Ns2 = epsilon_s2*Ec*As2;

epsilon_t = diff(ut); Nt = epsilon_t*Ec*At;

phi1 = -diff(w1); M1 = EIz1*diff(phi1) ; V1 = diff(M1);

phi2 = -diff(w2); M2 = EIz2*diff(phi2) ; V2 = diff(M2);

%% STM: BC before cracking

% Node 1 - top node

cond1 = us1 (0) == us2 (0);

cond2 = -F -(Ns1 (0)+Ns2(0))*cosd(theta1) == 0;

% Node 2 - bottom right node

cond3 = ut(Lt) == us1(Ls1)*cosd(theta2);

cond4 = w1(L/2) == ut(Lt);

cond5 = phi1(L/2) == 0;

cond6 = -V1(L/2)*cosd(theta2) == (Nt(Lt)*cosd(theta2)+k3*us1(Ls1)
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*cosd(theta1)^2+Ns1(Ls1))/2;

% Boundary at spring beam k1

cond7 = phi1 (0) == 0;

cond8 = w1(0) == 0;

% Node 3 - bottom left node

cond9 = ut(0) == -us2(Ls2)*cosd(theta2);

cond10 = w2(L/2) == -ut(0);

cond11 = phi2(L/2) == 0;

cond12 = -V2(L/2)*cosd(theta2) == (Nt(0)*cosd(theta2)+k4*us2(Ls2)

*cosd(theta1)^2+Ns2(Ls2))/2;

% Boundary at spring beam k1

cond13 = phi2 (0) == 0;

cond14 = w2(0) == 0;

conds = [cond1 cond2 cond3 cond4 cond5 cond6 cond7 cond8 cond9

cond10 cond11 cond12 cond13 cond14 ];

[u1(x,F),u2(x,F),ut(x,F),w1(x,F),w2(x,F)] = dsolve(ODES ,conds);

eq1 = diff(ut(x,F),x)*Ec == 3.68;

F_cracking = vpa(solve(eq1 ,F))

%% STM: BC after cracking

x_cr = [x3 x3 x5 x6 x7 x7 x6];

y_cr = [y0 y5 y5 y3 y3 y0 y0];

edges2 = polyshape(x_cr ,y_cr);

concrete_cr = subtract(edges2 ,steel); %Concrete with a reduced

size due to the failure of the tensile tie.

Ac_cr = area(concrete_cr);

Cxc_cr = MOMENT(concrete_cr ,1,0)/Ac_cr;

eT0_cr = (Ac_cr*Cxc_cr*n+As*Cxs)/(As+Ac_cr*n);

Ixx_concrete_cr =MOMENT(concrete_cr ,2,0);

Ixx_total_cr = (Ixx_steel+Ixx_concrete_cr*n)-eT0_cr ^2*(As+Ac_cr*n

);

EIz1_cr = Es*Ixx_total_cr; % Lateral stiffness cracked concrete

syms w1_c(x) us1_c(x) F

ODE1 = Ec*As1*diff(us1_c ,x,2) == 0;

ODE2 = EIxx_Ext_cr*diff(w1_c ,x,4) == 0;

ODES_s2 = [ODE1; ODE2];

% Kinematic and constitutive relations

epsilon_s1 = diff(us1_c); Ns1 = epsilon_s1*Ec*As1;

phi1 = -diff(w1_c); M1 = EIz1_cr*diff(phi1) ; V1 = diff(M1);

% Node 1 - top node

cond1 = -F*0.45 == Ns1 (0)*cosd(theta1);

% Node 2 - bottom right node

cond2 = w1_c(L/2) == us1_c(Ls1)*cosd(theta2);

cond3 = -V1(L/2)*cosd(theta2) == (k3*us1_c(Ls1)*cosd(theta1)^2+

Ns1(Ls1))/2;

cond4 = phi1(L/2) == 0;

% Boundary at spring beam k1

cond5 = phi1 (0) == 0;

cond6 = w1_c (0) == 0;
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conds = [cond1 cond2 cond3 cond4 cond5 cond6];

S = dsolve(ODES_s2 ,conds);

u1_cracked(x,F) = simplify(S.us1_c);

w1_cracked(x,F) = simplify(S.w1_c);
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C MATLAB Iteration for Biaxial Bending

Using the geometry defined in Appendix B and the longitudinal shear resistance, the bending
moment resistance can be determined by the below function. The code is created in such a way
that it can determine the position of the plastic neutral axis z for any angle of the axis between
0 and 90 degrees. However, for this case, only the angles 0 and 90 degrees are used. The area
of the force components is determined using the polyshape function. Furthermore, using the
centroid function, the centroid of each force component is determined. Finally, the bending
moment resistance for the corresponding angle is determined using these values and the steel
and concrete resistance. In the calculation, it is assumed that the concrete is cracked.

angle = [0 90];

z = ones(size(angle));

t = ones(size(angle));

x_centroid=zeros(length(angle) ,3);

y_centroid=zeros(length(angle) ,3);

h_tension_steel = zeros(size(angle));

h_compression_concrete = zeros(size(angle));

h_compression_steel = zeros(size(angle));

M_Rd = zeros(size(angle));

x_tension=zeros(length(angle) ,4);

y_tension=zeros(length(angle) ,4);

x_compression=zeros(length(angle) ,4);

y_compression=zeros(length(angle) ,4);

Aca = zeros(size(angle));

Acc = zeros(size(angle));

At = zeros(size(angle));

Fc = zeros(size(angle));

Ft = ones(size(angle));

Fconcrete = zeros(size(angle));

x_concrete = zeros(length(angle) ,4);

y_concrete = zeros(length(angle) ,4);

x_ca = zeros(length(angle) ,4);

y_ca = zeros(length(angle) ,4);

for i = 1: length(angle) %i == 1 denotes the major axis whereas i

== 2 denotes the minor axis

while Fc(i) < Ft(i)

if i == 1;

x_tension(i,:) = [x0 x0 x7 x7];

y_tension(i,:) = [y5 y0+z(i) y0+z(i) y5];

x_compression(i,:) = [x0 x0 x7 x7];

y_compression(i,:) = [y0 y0+z(i) y0+z(i) y0];

else

x_tension(i,:) = [x0+z(i) x0+z(i) x7 x7];

y_tension(i,:) = [y5 y0 y0 y5];

x_compression(i,:) = [x0 x0 x0+z(i) x0+z(i)];
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y_compression(i,:) = [y0 y5 y5 y0];

end

z(i) = z(i) +1;

compression_zone(i) = polyshape(x_compression(i,:),

y_compression(i,:));

tension_zone(i) = polyshape(x_tension(i,:),y_tension(

i,:));

compression_concrete(i) = subtract(concrete ,

tension_zone(i));

compression_steel(i) = subtract(steel ,tension_zone(i)

);

tension_steel(i) = subtract(steel ,compression_zone(i)

);

Acc(i) = area(compression_concrete(i));

Aca(i) = area(compression_steel(i));

At(i) = area(tension_steel(i));

Fcc(i) = Acc(i)*fc *0.85;

Fca(i) = Aca(i)*fy;

Fc(i) = Fcc(i)+Fca(i);

Ft(i) = At(i)*fy;

end

end

Fccy = Fcc(1); Fccz = Fcc(2); %Concrete compression forces

respectively for the major and minor axis

Fc = zeros(size(angle));

Ft = ones(size(angle));

if Fcc (1)/VxRd_min+Fcc(2)/VxRd_min <= 1.0

"Full shear connection"

for i = 1: length(angle)

[x_centroid(i,1),y_centroid(i,1)] = centroid(tension_steel(i)

); %CA in coordinates

[x_centroid(i,2),y_centroid(i,2)] = centroid (concrete_block(

i)); %CA in coordinates

[x_centroid(i,3),y_centroid(i,3)] = centroid (

compression_steel(i)); %CA in coordinate

if i == 1;

h_tension_steel(i) = y_centroid(i,1)-z(i);

h_compression_concrete(i) = z(i)-y_centroid(i,2);

h_compression_steel(i) = z(i)-y_centroid(i,3);

else

h_tension_steel(i) = x_centroid(i,1)-z(i);

h_compression_concrete(i) = z(i)-x_centroid(i,2);

h_compression_steel(i) = z(i)-x_centroid(i,3);

end

h_compression_steel(isnan(h_compression_steel))=0;

M_Rd(i) = (h_compression_concrete(i)+h_tension_steel(i))*

Fcc(i)+( h_compression_steel(i)+h_tension_steel(i))*Fca

(i);
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end

else

"Partial shear connection"

Fcc (1) = Fccy/(Fccy+Fccz)*VxRd_min; %Reduction of the

concrete compression from major axis bending

Fcc (2) = Fccz/(Fccy+Fccz)*VxRd_min; %Reduction of the

concrete compression from minor axis bending

for i = 1:2

while Fcc(i) > Fconcrete(i) %To determine the reduced

concrete area

if i == 1;

x_concrete(i,:) = [x0 x0 x7 x7];

y_concrete(i,:) = [y5 y0+t(i) y0+t(i) y5];

else

x_concrete(i,:) = [x0+t(i) x0+t(i) x7 x7];

y_concrete(i,:) = [y5 y0 y0 y5];

end

t(i) = t(i) + 1;

concrete_subtract(i) = polyshape(x_concrete(i,:),

y_concrete(i,:));

concrete_block(i) = subtract(concrete ,concrete_subtract(i

));

Fconcrete(i) = area(concrete_block(i))*fc *0.85;

end

while Fc(i) < Ft(i) %To determine the new steel

compression and tension areas

if i == 1;

x_tension(i,:) = [x0 x0 x7 x7];

y_tension(i,:) = [y5 y0+z(i) y0+z(i) y5];

x_ca(i,:) = [x0 x0 x7 x7];

y_ca(i,:) = [y0 y0+z(i) y0+z(i) y0];

else

x_tension(i,:) = [x0+z(i) x0+z(i) x7 x7];

y_tension(i,:) = [y5 y0 y0 y5];

x_ca(i,:) = [x0 x0 x0+z(i) x0+z(i)];

y_ca(i,:) = [y0 y5 y5 y0];

end

z(i) = z(i) +1;

ca_zone(i) = polyshape(x_ca(i,:),y_ca(i,:));

tension_zone(i) = polyshape(x_tension(i,:),

y_tension(i,:));

compression_steel(i) = subtract(steel ,

tension_zone(i));

tension_steel(i) = subtract(steel ,ca_zone(i));

Aca(i) = area(compression_steel(i));

At(i) = area(tension_steel(i));

Fca(i) = Aca(i)*fy;

Fc(i) = Fcc(i)+Fca(i);
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Ft(i) = At(i)*fy;

end

[x_centroid(i,1),y_centroid(i,1)] = centroid(tension_steel(i)

); %CA in coordinates

[x_centroid(i,2),y_centroid(i,2)] = centroid (concrete_block(

i)); %CA in coordinates

[x_centroid(i,3),y_centroid(i,3)] = centroid (

compression_steel(i)); %CA in coordinate

if i == 1;

h_tension_steel(i) = y_centroid(i,1)-z(i);

h_compression_concrete(i) = z(i)-y_centroid(i,2);

h_compression_steel(i) = z(i)-y_centroid(i,3);

else

h_tension_steel(i) = x_centroid(i,1)-z(i);

h_compression_concrete(i) = z(i)-x_centroid(i,2);

h_compression_steel(i) = z(i)-x_centroid(i,3);

end

h_compression_steel(isnan(h_compression_steel))=0;

M_Rd(i) = (h_compression_concrete(i)+h_tension_steel(i))*Fcc(

i)+( h_compression_steel(i)+h_tension_steel(i))*Fca(i);

figure(i)

hold on

grid on

plot(concrete_block(i))

plot(compression_steel(i))

plot(tension_steel(i))

plot(x_centroid(i,:),y_centroid(i,:),'r*')
yticklabels ();

set ( gca , 'ydir', 'reverse ','xlim',[x0 x7],'ylim',[y0 y5

])

hold off

end

end

eta = VxRd_min /(Fccy+Fccz) %Degree of shear connection

MyRd = M_Rd (1)

MzRd = M_Rd (2)
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D Experimental Results - LB1 and LB3

Figure D.1 shows the location and notation of the six supports used during testing.

Figure D.1: Location and notation of the supports used during experimental testing.

D.1 LB1 Reaction Forces

Figures D.2 and D.3 show the support reaction forces at each support for LB1.

Figure D.2: LB1 - Support reaction forces of support FS01-FS03 positioned at the west end of
the specimen
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Figure D.3: LB1 - Support reaction forces of support FS04-FS06 positioned at the east end of
the specimen.

D.2 LB3 Reaction Forces

Figures D.4 and D.5 show the support reaction forces at each support for LB3.

Figure D.4: LB3 - Support reaction forces of support FS01-FS03 positioned at the west end of
the specimen.
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Figure D.5: LB3 - Support reaction forces of support FS04-FS06 positioned at the east end of
the specimen.
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E Numerical Model Input

Finite Element Types

Table E.1: Finite elements types in the model

Element Element Type
Concrete Solid brick, 20 nodes, quadratic (CHX60)
Steel girders Solid brick, 20 nodes, quadratic (CHX60)
Steel plates Solid brick, 20 nodes, quadratic (CHX60)
Interface Quadrilateral interface, 16 nodes, quadratic (CQ48I)

Iterative Scheme

The iterative scheme is shown in Table E.2. The prescribed deformation is 0.5mm.

Table E.2: Iterative scheme for LB1 and LB3.

LB1 LB3
Iteration method Regular Newton-Raphson Regular Newton-Raphson
Convergence norm Energy Energy
Convergence tolerance 0.0001 0.0001
Step size 0.5(100) 0.5(140)
Maximum number of iterations 150 150

Material Properties

The material properties of the numerical models are shown in Table E.3.

Table E.3: Material properties of the concrete, steel and interface.

Concrete Properties
Compressive Strength fcm = 50.9MPa
Tensile Strength ftm = 3.68MPa
Poisson´s Ratio ν = 0.2
Young´s Modulus E = 37GPa
Fracture Energy Gf = 148N/m
Compressive Energy Gfc = 37 000N/m
Steel Properties
Young´s Modulus E = 200GPa
Poisson´s Ratio ν = 0.3
Yielding Stress fy = 235MPa
Interface Properties
Cohesion c = 0.1MPa
Friction µ = 0.5
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