
MSc Thesis
Event-Driven Graph Neural Network
Accelerators for Low-Power Vision

by

Yufeng Yang

Student number: 5579309
Project duration: December 1, 2022 – September 5, 2023
Thesis committee: Prof. Kofi Makinwa, TU Delft, Thesis advisor

Dr. Charlotte Frenkel, TU Delft, Daily supervisor
Dr. Chang Gao, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Event-based cameras promise new opportunities for smart vision systems deployed at the
edge. Contrary to their conventional frame-based counterparts, event-based cameras gener-
ate temporal light intensity changes as events on a per-pixel basis, enabling ultra-low latency
with microsecond-scale temporal resolution, low power consumption at milliwatts level, and
sparse information encoding where only dynamic objects trigger events, effectively excluding
static background data. However, mainstream computer vision algorithms based on convo-
lutional neural networks (CNNs) hardly exploit these advantages of event-based cameras.
Recently, event graph neural networks (event-GNNs) have been proposed as the backbone
for novel event-based vision algorithms. By treating events as graph data, GNNs are able
to process events while preserving their spatiotemporal information and sparse characteris-
tics. Further studies also revealed an event-driven computation workflow that translates an
event stream into a dynamic, evolving graph, outlining a path toward low-latency event-based
vision. Despite these promises, event-GNNs are still calling for dedicated hardware accelera-
tors toward integrated solutions with real-time prediction latency and low power consumption
for real-world edge intelligence.

In this thesis, for the first time, we proposed an event-driven GNN accelerator for low-power,
high-speed edge vision. Through hardware-algorithm co-design, an event-driven GNN model
is adopted for deployment on an edge FPGA platform without prediction accuracy loss. We
also pointed out two novel optimizations, edge-free storage and layer-parallel computation, to
further decrease memory footprints and processing latency. The proposed accelerator is im-
plemented on the Xilinx KV260 System-On-Module (SOM) platform containing an UltraScale+
MPSoC FPGA, and benchmarked on-board. Targeting a car recognition task based on the
NCars dataset, our accelerator achieves a prediction accuracy of 87.8%. Meanwhile, operat-
ing with a 6.86W board-level system power, the accelerator reaches an average 16µs predic-
tion latency per event and runs 9.2× faster than its software counterpart running on an NVIDIA
RTX A6000 GPU platform. Therefore, our event-driven GNN accelerator efficiently allows for
both real-time and microsecond-resolution event-based vision at the edge.

i

Acknowledgments

Though not seem like a long time, I have gained valuable insights during my master’s the-
sis journey during these nine months. First and foremost, I would like to express my sincere
gratitude to my supervisor, Dr. Charlotte Frenkel. From the inception of my thesis to the ex-
ploratory phases, and ultimately the completion of the design, she has provided meticulous
guidance every step of the way. Furthermore, her thorough review and feedback comments
on my thesis report have also contributed significantly to my progress. It is through her rigor-
ous and diligent approach to research that I can have the opportunity to knock on the door of
the scientific kingdom.

Additionally, I would like to extend my gratitude to the professors and Ph.D. students who have
provided guidance. I appreciate the constructive feedback offered by Ph.D. students Nicolas
Chauvaux and Fabrizio Ottati on my thesis. I am also thankful to Prof. Kofi Makinwa and
Dr. Chang Gao for taking the time to participate in my thesis defense and provide me with
valuable guidance.

Furthermore, I am thankful for the friends I have met during my master’s program, NingChao,
Xinhu, Fengwei, Lorenzo... The help and encouragement from everyone have touched me
deeply. Lastly, I would like to extend special thanks to my parents. Despite being far away,
they still consistently provided me with the most timely and warm comfort, letting me know that
they are forever my most loyal supporters.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1

2 Preliminaries 5
2.1 Event Graphs and Graph Building Algorithms 5

2.1.1 Key Concepts of Event Graphs . 5
2.1.2 Classifications of Event Graphs . 6

2.2 Neural Network Fundamentals . 8
2.2.1 Neural Networks . 8
2.2.2 Convolutional Neural Networks (CNNs) 10

2.3 Graph Neural Networks (GNNs) . 11
2.3.1 Graph Convolution . 11
2.3.2 Cluster-based Graph Pooling . 14
2.3.3 Grid-based Node Features Pooling . 14

2.4 Asynchronous Event-driven GNNs . 15
2.4.1 Event-driven GNNs with Dynamic Event Graphs 15
2.4.2 A K-hop Locality Event-driven GNN: AEGNN 16
2.4.3 A 1-hop Locality Event-driven GNN: HUGNet 17

2.5 Edge Vision Systems Application Scenarios . 20
2.5.1 Optical Flow Estimation . 20
2.5.2 Object Recognition . 20
2.5.3 Selected Target Task and Dataset . 21

3 Hardware-algorithm Co-design 22
3.1 Baseline: AEGNN . 22
3.2 Graph Building Algorithms . 23

3.2.1 Graph Building Improvements . 23
3.2.2 Degree Limitation . 24
3.2.3 Neighbor Search Range . 25

3.3 GNN Architecture Search and Optimization . 28
3.3.1 Activation Functions . 28
3.3.2 Alternative Graph Convolution . 28
3.3.3 Network Structure and Simplification . 29

3.4 Quantization . 30
3.4.1 Graph Convolution - Batch Normalization Folding 31
3.4.2 Post-Training Quantization . 32

3.5 Overall Co-design and Event-driven Experiments Results 34

4 Hardware Implementation 36
4.1 Overall System Architecture . 36
4.2 Graph Building . 38

4.2.1 Edge-Free Event Graph Storage and Event Queues 38

iii

Contents iv

4.2.2 Event-queue-based Neighbor Selection 39
4.3 Graph Convolution . 41

4.3.1 Layer-Parallel Computation . 41
4.3.2 Graph Convolution Hardware Sub-modules 41

4.4 Grid-based Feature Max Pooling . 46
4.5 Fully Connected Module . 47
4.6 Processing System Integration . 47
4.7 Hardware Experiments and Results . 49

4.7.1 Prediction Accuracy . 49
4.7.2 Runtime . 50
4.7.3 FPGA Resource Usage . 50
4.7.4 Power Consumption . 51

5 Conclusion 52

References 54

A Asynchronous Layers in HUGNet 57
A.1 Asynchronous Event-driven Node Feature Pooling Layer 57
A.2 Asynchronous FC Layer . 57

1
Introduction

Edge vision systems, combining digital cameras and edge computing devices deployed near
them, aim to capture environmental visual information and provide basic decisions with a lim-
ited power budget in the order of milliwatts, which have been widely used in various fields, such
as the Internet-of-Things or robotics sensing. However, in scenarios needed for microsecond-
level low-latency awareness, such as autonomous navigation [33], edge vision systems lever-
aging traditional cameras may not be optimal choices. Indeed, normal video cameras captur-
ing 30-60 frames per second (FPS) may not meet these speed requirements, while the power
dissipation of 1000-FPS high-speed camera systems can reach tens of Watts [12], easily ex-
ceeding power budgets of common edge vision systems.

Figure 1.1: Data generated by a standard frame-based camera and by an event-based camera when recording
a video about a black dot on a rotating plate. Top: the frame-based camera continuously outputs image-frame

data even when the plate stops, and encounters motion blur for a rapid motion. Bottom: the event-based camera
only outputs events (denoted as blue and red dots) corresponding to the rotating black dot, which are not

generated by the static background (the plate), and stop generating when there is no motion. Adopted from [15].

The event-based camera, also called silicon retina [22] or dynamic vision sensor (DVS) [20],
has obtained growing interest as a candidate for establishing low-power high-speed edge
vision. The working principle of event-based cameras is demonstrated in Fig. 1.1. As opposed
to their frame-based counterparts, which record absolute light intensity at every pixel in the field
of view at a fixed sampling rate, event-based cameras are locally sensitive: the pixels in event-
based cameras are asynchronously activated only when the received relative light intensity

1

2

changes exceed a preset threshold, and emit a binary signal, named an event, to indicate
the changes. Therefore, the static background information in video stream data delivers no
light intensity changes to the event-based camera and is filtered out, leaving only the motion
objects detected, thus causing inherent spatiotemporal sparsity of the event stream data. This
sparsity also provides opportunities for event-based cameras to achieve low-power sensing at
tens of milliwatts level, low latency and high temporal resolution (both at a microsecond scale)
that eliminates motion blur in frame-based high-speed vision.

Figure 1.2: Images generated by the dense-frame event data processing approach. Events are accumulated
and form high-contrast edge lines on a grey background. Adopted from [24]

However, current visual processing algorithms have difficulty processing event stream data
generated from event-based cameras efficiently. Though the mainstream artificial intelligence
(AI) approaches based on neural network algorithms, e.g. convolutional neural networks (CNNs)
[18], have already demonstrated excellent performance for various computer vision tasks like
object recognition or detection, their frame-based natures are still incompatible with sparse,
asynchronous event data. One straightforward solution is converting the event data into image-
like data, which is also known as the dense-frame approach [10, 21, 24], i.e. accumulating
every event from each pixel within a given accumulation time window (Fig. 1.2). While these
methods are able to leveragemature frame-based algorithms to process the transformed event
data, the high temporal resolution and the sparse nature of event data are lost. In fact, to ob-
tain processable image-like data, the accumulation window in the dense-frame approaches
needs to be on the order of milliseconds, [21] thus discarding the original microsecond-level
resolution of event data. Besides, to perform computer vision tasks, CNN algorithms have to
process the whole transformed images naturally containing static background pixels, thereby
directly translating into redundant computation, leading to higher power consumption, and
missing key advantages of event-based sensors, which are not favorable characteristics for
developing edge vision systems.

To solve these issues, graph neural networks (GNNs) [16, 8, 30, 19] have recently been pro-
posed as the backbone structure of novel event-based vision algorithms that aim to process
event data directly. A graph is a specific data structure consisting of nodes and edges, rep-
resenting data points and their relationship respectively. By regarding individual events as
nodes and their spatiotemporal relationship as edges, we can establish a specific graph that
stores the spatial location information and the triggering history of all events. Therefore, event
stream data is able to convert into a fully equivalent graph without impairment on fine-grained
time resolution and inherent data sparsity, which is called the event graph. Subsequently, a

3

Figure 1.3: Relationship between event stream data, event graphs, and event-GNNs, modified from [30].

following GNN can learn patterns inside the event graphs and deliver prediction results, which
establishes a system called event-GNN, as shown in Fig. 1.3. Event-GNNs also allow for
event-driven computation: new events in a stream can be processed immediately, leading to
continuously updating prediction results, which can further decrease the power consumption
while maintaining the prediction accuracy [30, 5]. Recent research has demonstrated a near-
equal performance between the sparse event-GNNs and dense-frame approaches in various
computer vision tasks, such as object recognition, detection, and segmentation [3, 23, 30].

Despite its advantages, the event-GNN is still an emerging approach calling for appropriate
hardware for real-world applications. Traditional neural networks leverage CPUs or GPUs, but
their power consumption may reach hundreds of watts that significantly exceed the milliwatt-
to-watt power budgets of edge devices. Though several general GNN hardware accelerators
have already achieved energy efficiency improvement by more than two orders of magnitude
over the CPU or GPU platforms [29, 39], they still focus on static graph computation, thus are
unable to exploit the potential of dynamic event graphs with event-driven computation. The
hardware-algorithm co-design landscape of event-driven GNN accelerators is therefore still
open for integrated solutions with milliwatt- to watt-level power consumption and microsecond-
scale latency.

In this thesis, for the first time, we propose an event-driven GNN accelerator for low-power
high-speed edge vision. By leveraging hardware-algorithm co-design, this prototype is suc-
cessfully implemented inside an edge FPGA platform with microsecond-level running time
and acceptable object recognition accuracy. We summarize our contributions as follows:

• We adopt and combine two state-of-the-art event-drivenGNNs, AEGNN [30] andHUGNet
[5], and according to the target FPGA platform, we transform the core algorithms into a
hardware-friendly version with full-integer computation.

• Based on this, we propose a novel event-driven GNN accelerator architecture exploiting
two novel techniques: edge-free storage, and layer-parallel computation, to reduce the
memory footprint and prediction latency.

• We design and implement the aforementioned event-driven GNN accelerator into the Xil-
inx KV260 System-On-Module (SOM) platform, which contains an UltraScale+ MPSoC
FPGA. We evaluate our design with the real-world dataset NCars [32] in a car recogni-
tion task. Our design achieves a prediction accuracy of 95.6% on the validation dataset,
and a prediction accuracy of 87.8% on the test dataset. Meanwhile, operating in a to-
tal 6.86W SoC system power on the Xilinx KV260 edge FPGA platform, the accelerator
reaches an average 16µs prediction latency per event, and runs 9.2× faster than its
software counterpart running on an NVIDIA RTX A6000 GPU platform.

4

This thesis report is organized as follows. Chapter 2 will first introduce basic knowledge and
algorithms of event data, event graphs, GNNs and event-driven GNNs. Chapter 3 will intro-
duce the hardware-algorithm co-design approach of this project to achieve a hardware-friendly
algorithm. Chapter 4 will demonstrate the concrete accelerator implementation workflow, as
well as on-board validation and benchmarking results. Finally, Chapter 5 will conclude the
entire project.

2
Preliminaries

In this chapter, we first introduce the preliminaries of event graphs and graph neural networks
(GNNs), then the methods enabling GNNs to predict in an event-driven fashion are also pre-
sented.

2.1. Event Graphs and Graph Building Algorithms
Event graphs are the foundations of event-driven GNNs. In this section, we will first provide
several key concepts of event graphs, then the classifications of event graphs will also be
introduced.

2.1.1. Key Concepts of Event Graphs

Figure 2.1: (a) Euclidean, structural data, e.g. conventional image data. (b) Non-Euclidean graph data. The dots
represent nodes, and the blue lines between them represent edges in the graph. Adopted from [35].

A graph, G = {V, E}, is a data structure where objects are abstracted as nodes (vertices) V and
their relationship are captured as edges E . Here, the relationship can be the distance, i.e. if
two nodes’ spatiotemporal distance is within a certain threshold, then they are connected by
an edge. The nodes can be assigned with additional information, called features or feature
vector made of various numbers. Unlike conventional 2-dimension image data, where one
pixel owns fixed 8 pixels around it in a square region, a node in a graph can have an arbitrary
number of neighbors, causing difficulty to define its dimension. Therefore, the graph data
is non-structural or non-Euclidean, contrary to the structural image-like data, as shown in
Fig. 2.1.

Event stream data is a series of events generated from the activated pixels of event-based
cameras, in which an event e is represented as a combination of the pixel position (x, y), the
microsecond-scale timestamp t, and the binary polarity p = {0, 1} to indicate decreasing or

5

2.1. Event Graphs and Graph Building Algorithms 6

increasing light intensity respectively, as shown in Eq. 2.1.

e = (x, y, t, p) (2.1)

Considering each event as a node in a graph, then each node carries two types of features:
the spatiotemporal position/location, i.e. (x, y, t), which is considered when building the graph
edges as explained hereafter, and the polarity feature, i.e. p, as the additional node information.

For one node, other nodes that connect direct edges with it are named neighbors, and these
neighbors and edges form a sub-graph called the neighborhood of the node. There are two
approaches to define the range of the neighborhood:

1. A uniform spatiotemporal distance r =
√

x2 + y2 + (βt)2 can be defined, where the
timestamp t is first scaled with preset a factor β to fit the range of the pixel positions
(x, y), as adopted in [30].

2. Otherwise, the spatial and temporal range of the neighborhood can be chosen separately,
usually several pixels in spatial radius rs and tens to hundreds of milliseconds in temporal
radius rt, as in [5].

Equipped with the edges and node features, the event stream data now can be fully trans-
formed into a graph without any information loss, thus this type of graph is known as an event
graph.

2.1.2. Classifications of Event Graphs
It will be demonstrated by the following contents that the results of GNNs are sensitive to the
structure of the graphs, therefore it is necessary to first elaborate on two different classifications
of event graphs in this sub-section. We categorize event graphs according to two aspects:
static/dynamic, and undirected/directed.

Static and Dynamic Event Graphs
Every event graph is compiled from an event stream, however, the time of processing the
event graph is different, and we separate event graphs as static or dynamic.

Conventional GNNs usually process static graphs, which requires pre-processing the dataset
to build the static graphs: the series of all event data is scanned, then the edges are estab-
lished according to each event’s spatiotemporal locations, and finally the generated event
graph can be processed by the GNN (Fig. 2.2(a)). During the entire process, the event graph
is only built once and has no change after the construction, corresponding to a ”static” event
graph.

Contrary to the static method, the event graph can be both built and processed by GNNs
simultaneously, as shown in Fig. 2.2(b). Whenever a new event is derived from the event
stream, it will first find its neighbors and connect to the current event graph. Afterwards, in-
stead of waiting for all events to build the graph, the event-GNN will immediately process this
updated event graph and then generate a prediction. Since the event graph keeps evolving
with the newly added events, this type is called the ”dynamic” event graph. With more events
processed, the dynamic event graph is converging to its static counterpart, finally ending up
with the same graph.

Undirected and Directed Event Graphs
Event graphs can also be categorized according to their connectivity (Fig. 2.3). Graphs default
to be undirected, which means that their edges have no direction limitation. On the contrary,

2.1. Event Graphs and Graph Building Algorithms 7

Figure 2.2: Static and dynamic event graphs with respect to the same event stream. (a). The whole event
stream is first transformed into a static event graph, then uses GNN to provide a prediction result. (b). Whenever
a new event is generated, the dynamic event graph will update, and be processed by an event-GNN immediately

to obtain an updated prediction result.

Figure 2.3: Examples of undirected (a) and directed (b) graphs. In (a), one can traverse all nodes in any order,
but in (b), only counter-clockwise traversing is permitted due to the directed edges (the direction is denoted as an

arrow).

2.2. Neural Network Fundamentals 8

directed graphs contain edges in a certain direction, denoted by an arrow, in which operations
(such as traversing) can only be processed in one direction. This extra limitation actually pro-
vides advantages to event-GNNs that leverage direct event graphs, which will be introduced
hereafter in Section 2.4.3.

2.2. Neural Network Fundamentals
Graph neural networks (GNNs) are developed based on standard neural networks and include
ideas from convolutional neural networks (CNNs). Therefore, before moving to GNNs, we first
introduce several key concepts of neural networks and CNNs.

2.2.1. Neural Networks
Fully Connected Layer

Figure 2.4: (a) The fully connected (FC) layer abstracted from the neuron system. (b) Equivalent mathematical
representation (matrix multiplication).

The cores of the mammalian nervous system are neurons and synapses, whose behavior can
be simplified as follows: a neuron sends out an electrical signal of a certain strength, which
is weighted by the synapse and transmitted to another neuron [28]. Instead of being point-
to-point, this connection forms a network: an upstream neuron can send a signal to multiple
downstream neurons, while the downstream neurons sum up weighted signals from different
neurons. This network can be further abstracted into the most basic structure of a neural
network, called the fully connected (FC) layer, as shown in Fig. 2.4(a). The circles represent
neurons, where the numbers are their signal values, and the connecting lines between the
circles represent synapses, where the numbers represent the weighted values of the synapses.
Furthermore, as the values of all neurons located in the same layer can be represented as a
vector, and the weights of all synapses as a matrix, the behavior of the above neural system
can be abstracted as a linear transformation, i.e. a matrix multiplication, as shown in Fig. 2.4(b)
and Eq. 2.2.

y = Θ× x (2.2)

Here, the values of neurons together are called features or feature vectors, each of whose
elements is called a feature; thus, the upstream and downstream neurons of the network

2.2. Neural Network Fundamentals 9

become the input and output feature vectors, represented by x and y respectively, and the
weights of the synapses are transformed to the weight matrix Θ.

Activation Layer
The goal of establishing a neural network is to generate predictions according to the input
features, e.g. giving a picture of a handwritten number and predicting the number, which can
be regarded as a function-fitting problem. However, a single FC layer is only able to fit a
linear function due to its linear transformation nature. To fit more complex functions, a non-
linear transformation is attached after the FC layer, which is called the activation layer. Various
activation functions can be applied to the activation layer, e.g. the exponential linear unit (ELU)
and the rectified linear unit (ReLU), which follow Eq. 2.3 and Eq. 2.4 respectively (a ≥ 0 is a
preset parameter), and are illustrated in Fig. 2.5:

Figure 2.5: The (a) ReLU and (b) ELU (a=1) activation functions.

ELU(x) =

{
x if x > 0,

a(ex − 1) otherwise
(2.3)

ReLU(x) =

{
x if x > 0,

0 otherwise
= max(0, x) (2.4)

Batch Normalization
However, directly implementing an activation layer after an FC layer may impair the information
extraction ability of the FC layer. For example, if the output feature vector y in Eq. 2.2 contains
a majority of negative components, sending it to a ReLU activation layer would result in large
parts of the output becoming 0, thereby losing information.

This problem can be alleviated by inserting a Batch Normalization layer between the FC layer
and the activation layer [13]. Batch Normalization, often called BatchNorm or BN, is a layer
responsible for correcting an output data distribution into a normal distribution, which is equiv-
alent to a scaling-and-shifting operation for each feature in the output of the layer. BN is
described in Eq. 2.5 as:

2.2. Neural Network Fundamentals 10

BN(x) = γ ◦ x− µ(x)

σ(x)
+ β

=
γ

σ(x)
◦ x+ (β − γ

σ(x)
· µ(x))

= WBN ◦ x+BBN ,

(2.5)

where

WBN =


w1

w2
...

wCout

 =
γ

σ(x)
, BBN =


b1
b2
...

bCout

 = β − γ

σ(x)
· µ(x), (2.6)

therefore

WBN ◦ x+BBN =


w1x1 + b1
w2x2 + b2

...
wCoutxCout + bCout .

 (2.7)

Here, x represents the output feature vector of a layer, µ(x) and σ(x) represent the mean
value and the standard deviation of x respectively; γ and β are parameters, and ◦ represents
element-wise multiplication. In most cases, elements in γ are greater than 0, thus wi in WBN

is also positive.

Training and Inference
However, to predict correctly, parameters in neural networks need to be optimized. The pro-
cess leveraging a certain algorithm to automatically tune the parameters is called the training
step, where these parameters can ”learn” to extract hidden information from the input. After
training, the neural network can actually perform the prediction process, which is also known
as the inference step. Typically, hardware neural network accelerators are designed to accel-
erate the inference step. Therefore, we will mostly focus on this step hereafter.

2.2.2. Convolutional Neural Networks (CNNs)
To more efficiently predict the image data, convolutional neural networks (CNNs) have rapidly
become the most prevalent algorithms [27, 1]. The fundamental structure is shown in Fig. 2.6.

Figure 2.6: An example number-recognition CNN with one convolution layer, one 2× 2 max pooling layer, one
flattening layer, and one FC layer (the activation layer is not depicted). The image data is first convoluted by a
kernel matrix. Then, the output image is sent to a 2× 2 max pooling layer to be down-sampled into a smaller

image (relative regions are drawn in the same colors). After reshaping to a vector by the flattening layer, the data
is processed by an FC layer. The prediction is finally generated by selecting the result with the maximum

confidence level.

2.3. Graph Neural Networks (GNNs) 11

CNNs introduce two novel layers, the convolution layer and the pooling layer. A convolution
layer can extract information from the image data through a convolution operation based on a
learnable parameter matrix, called a convolutional kernel. An activation layer typically follows
a convolution layer.

Usually after several convolution and activation layers, a pooling layer is added to down-
sample the image size. A pooling layer uses a window sliding across the image, and per-
forms various operations to the data inside the window to condense the image, e.g. averaging
all values (average pooling) or selecting the maximum values (max pooling), the latter being
illustrated in Fig. 2.6

Finally, the down-sampled image is flattened into a vector, then an FC layer is attached to
transform it into another vector, where each element represents a possible result with a cor-
responding confidence level 1 , and the maximal one is selected as the prediction. Therefore,
this final FC layer is also known as the prediction head.

2.3. Graph Neural Networks (GNNs)
Tightly coupled with the graph, GNNs gather information from nodes and edges to generate a
new representation of the graph. For GNNs designed for object recognition tasks, the aim is
to learn a mapping relation, f(G) = y, where G represents the event graph, and y is the GNN
prediction results, i.e. the inferred class of the object.

Figure 2.7: An illustration of the GNN network structure. The colors of nodes in the input graph represent their
features. After the graph convolution, the features are updated (color changed). Then, the nodes are sent to the
graph pooling layer, where certain nodes are selected and edges are re-arranged, thus the graph structure is
further simplified. Next, the pooled graph is rasterized by the features pooling layer, which transforms the graph
into several grids assigned with node features. Finally, after flattening, the features of grids are processed by the

FC layer to derive the prediction results.

Inspired by themature CNN algorithms introduced in Section 2.2.2, a typical GNN is composed
of various similar functional layers, including graph convolution layers, graph pooling layers,
features pooling / graph rasterization layers, and standard FC layers for the final prediction
head, as shown in Fig. 2.7.

2.3.1. Graph Convolution
The general description of various graph convolution types, typically expressed as the mes-
sage passing algorithm, consists of three major steps: message generation, message aggre-
gation, and feature update, which can be described using one general equation in Eq. 2.8
[4]:

x′
i = γΘ

xi,
⊕

j∈N (i)

ϕΘ (xi,xj , ej,i)

 , (2.8)

1Typically, a softmax layer is also needed to extract this confidence level, but we omit the details here.

2.3. Graph Neural Networks (GNNs) 12

Figure 2.8: An example of the message passing algorithm. The message passing algorithm of the graph
convolution consists of 3 steps: message generation, aggregation, and feature update. In the graph, each node
A,B,C,D has a feature vector xA,xB ,xC ,xD. First, every node generates its own message (msg A/B/C/D)

by the linear transformation ϕ() (Message Generation) (take a replication operation as an example). Next,
messages are exchanged through the edges, and nodes aggregate messages they receive (Aggregation). Note
that the message from A cannot be aggregated by D due to the directed edge. Finally, the aggregated features
are transformed by γ(), thus the updated feature vectors x′

i are generated (Feature Update) (take a replication
operation as an example).

2.3. Graph Neural Networks (GNNs) 13

where
x′
i = [x′i,1, x

′
i,2, ..., x

′
i,Cout

]T ;xn = [xn,1, xn,2, ..., xn,Cin]
T , n = {i, j} ∈ V (2.9)

Here, xi represents one node’s feature vector withCin features in the current convolution layer,
while x′

i is the convolution output node feature vector with Cout dimensions, passing to the next
layer, where Cin and Cout are called the input and output channels in a graph convolution layer.
Subscript j belongs to node i’s neighbors denoted by the neighborhood functionN (i), thus xj

represents the feature vector of node i’s jth neighbor. ej,i is the edge feature (or attribute) vec-
tor between node i and its jth neighbor. The

⊕
denotes a differentiable, permutation-invariant

function (e.g. , summation, average, maximum, etc.,) that is insensitive to the node process-
ing order. Finally, γΘ and ϕΘ denote differentiable functions such as multilayer perceptrons
(MLPs) with learnable parameters Θ. A trivial pass-through layer is also a legal choice for γΘ
and ϕΘ.

The three major steps of the general graph convolution are illustrated in Fig. 2.8. These steps
must be applied to all nodes in a graph. For one node (node i), Eq. 2.8 works as follows:

1. Message generation: the features of all neighbors of node i, including both node features
and edge features, are obtained and transformed by ϕΘ.

2. Aggregation: each neighbor of node i generates one message, and all messages are
aggregated by a chosen

⊕
function. For directed graphs, messages are only allowed

to be passed in a certain direction restricted by the direction of edges.
3. Update (optional): the aggregated message is transformed by γΘ to generate the new

feature vector of node i.

We present three specific algorithms of graph convolution hereafter:

Graph Convolution Network
x′
i = Θ

∑
j∈N (i)∪{i}

ej,i√
d̂j d̂i

xj (2.10)

As one of the most prevalent types of GNNs, the Graph Convolution Network (GCN) [16] illus-
trates the fundamental core of graph convolution. Its graph convolution algorithm, GCNConv,
is shown in Eq. 2.10, where d̂i = 1 +

∑
j∈N (i) ej,i denotes the node degree, i.e. the number

of neighbors of a node including itself, weighted by a scalar edge feature ej,i. Together with
ej,i, the generated messages are then aggregated by the summation function. Finally, a linear
transformation weight matrix Θ is multiplied as the update step.

B-Spline Curve Convolution Network

x′
i =

1

|N (i)|
∑

j∈N (i)

xj · hΘ(ei,j), (2.11)

The B-Spline Curve Convolution Network [8] introduces a new graph convolution algorithm,
SplineConv, which extends the scalar edge feature ej,i in GCNConv into a vector ei,j , which
is then processed by a specific function used in the B-Spline curve (see Eq. 2.11, where hΘ()
denotes a specific function defined over the weighted B-Spline basis). Although promising
a faster convergence in the training step of neural networks, this type of convolution has a
heavy computational burden in the inference phase due to the high computational complexity
of B-Spline curve functions.

2.3. Graph Neural Networks (GNNs) 14

PointNet

x′
i = γΘ

(
max

j∈N (i)∪{i}
ϕΘ(xj ,pj − pi)

)
, pi = (xi, yi) (2.12)

In PointNet [26], Qi et al. proposed a new graph convolution type described in Eq. 2.12,
which we named PointNetConv. PointNetConv leverages the relative Cartesian coordinates
of nodes, pj − pi, together with feature vectors of nodes, to generate messages by ϕΘ, with
learnable parametersΘ. Meanwhile, the complexity of this algorithm can be controlled by the
choices of γΘ and ϕΘ. For example, one simplified yet feasible version consists in defining
ϕΘ as one FC layer, with γΘ being a trivial passthrough layer, as shown in Eq. 2.13:

x′
i = max

j∈N (i)
(Θ · (xj , |pj − pi|)) (2.13)

2.3.2. Cluster-based Graph Pooling

Figure 2.9: An illustration for hierarchical cluster-based graph pooling layer. Nodes are divided into different
clusters (different colors). A cluster extracts node features (small white rectangles) inside to form a new node

after a graph pooling layer, with new edges reconnected between clusters. Modified from [38].

Graph pooling layers transform the input graph G into a more coarse version GC , which facili-
tates GNNs to learn hierarchical representations. Proposed by [38], the cluster-based graph
pooling algorithm leverages groups of nodes, named clusters, to coarsen the graph. Illus-
trated in Fig. 2.9, clusters gather the features of inner nodes, and process them with a certain
pooling function (e.g. average or max pooling function), to derive new representations for the
clusters. Next, the clusters are further abstracted as new nodes, with new representations
as their features, while edges are reconnected between these new cluster nodes, thus finally
forming a coarsened graph GC .

2.3.3. Grid-based Node Features Pooling
The graphs provide an uncertain number of nodes and their features. However, the final FC
layer requires fixed dimensions for input data. To solve this mismatch, one straightforward
idea is to rasterize the graph according to the physical position (x, y) of each node, with a
certain type of pooling operation (e.g. max pooling) to extract general information.

The algorithm demonstrated in Fig. 2.10 works as follows. First, the whole field of view of the
event-based camera is sliced into several spatial grids, i.e. small rectangular areas that are
several pixels in length and width. Next, if a node’s position (xi, yi) belongs to a grid’s pixel
ranges, the node is put into that grid. Finally, all nodes are traversed, then the features of
nodes within each grid are collected for a pooling operation.

This feature pooling layer discards the timestamps of nodes and removes the edges between
them, transforming event graphs into Euclidean, image-like data to be processed by the FC

2.4. Asynchronous Event-driven GNNs 15

Figure 2.10: Grid-based node features max pooling layer in 4 grids. Nodes belonging to a grid are collected
together and the pooling layer only takes the maximal feature values as the output, discarding nodes and edges

of the graph.

layer. The features pooling layer only functions as a bridge between GNN backbone layers
and the final FC prediction head.

2.4. Asynchronous Event-driven GNNs
2.4.1. Event-driven GNNs with Dynamic Event Graphs
As mentioned in the event graph section (Section 2.1), current GNNs are specialized for pro-
cessing static graphs. However, this paradigm only works for situations where a dataset al-
ready exists, which is not the case for real-time edge vision systems in the real world, which
have to directly process the data generated by an event-based camera. While a dataset is
indispensable for training the neural network, the computing device will face a totally different
environment after its deployment. Indeed, it no longer processes fixed-length event streams
from a dataset, but has to receive continuously generated new events from the event-based
camera. Therefore, it is not possible to wait until all events are generated to build the graph,
as the conventional GNNs using static graphs do.

To solve this problem, a trade-off solution still using static graphs is to set a processing time
window for the vision systems. In that time window, every generated new event is simply
buffered. Only at the end of the window, all buffered events are leveraged to build a static
event graph. Then, the graph is processed by the event-GNN to deliver a prediction for this
time window. Finally, the graph and the event buffer are cleaned up, waiting to accommodate
new events for the next time window. However, this solution proposed in [3] has two problems.
First, it is fundamentally an accumulation method that, although avoiding transforming the
event data into dense image frames, still sacrifices the high temporal resolution of event-based
cameras. Second, since the static graphs cannot evolve, they have to be destroyed and rebuilt
after each time window. However, in real-world scenarios, the graphs from two continuous time
windows might be similar. This destroying-and-rebuilding scheme thus leads to redundant
computation, causing unnecessary energy overhead.

The characteristics of dynamic event graphs are much preferable to solve this difficulty, as
they avoid losing previous information, and keep evolving when new events are generated.
An event-GNN is designed to keep track of new events and to update the prediction. This
solves the issue of temporal resolution loss. However, it leaves unsolved the fact that, each
time the graph is updated, the event-GNN has to process the new event together with all
previous events, which still entails redundant computation.

2.4. Asynchronous Event-driven GNNs 16

Figure 2.11: (a). Normal event-GNNs process the entire dynamic event graph. The processed events and
edges are highlighted with green color. (b). Event-driven GNNs only process the new event and its limited

locality. The range of green region in (b) is significantly smaller than in (a). Adopted from [31].

However, in recent studies, AEGNN [30] and HUGNet [5] have proposed novel schemes to
eliminate this redundant computation. They show that the event-GNN processing range can
be decreased from the entire dynamic event graph to only small neighborhood subgraphs
around the newly generated event, as shown in Fig. 2.11. This local computation scheme for
event-GNNs is called event-driven GNN, which achieves 12× lower computational complexity
[30] than [19], providing the possibility to establish low-cost real-time edge vision systems.
Therefore, in the following sections, we will elaborate on these two event-driven GNN designs,
AEGNN and HUGNet.

2.4.2. A K-hop Locality Event-driven GNN: AEGNN
In graph theory, the term ”hop” represents a unit distance moving from one node to one of
its direct neighbors. Therefore, a 1-hop subgraph contains a node, all of its neighbors, and
their common edges. Similarly, a K-hop subgraph consists of all elements within one node’s
first-to-Kth-order neighborhood.

The information that can be processed by a K-layer GNN is actually only inside a K-hop re-
gion. Due to the message passing model, in one graph convolution layer, a node can only
update features through the messages aggregated from its 1-hop neighborhood. However,
when stepping into the next layer, since the node’s neighbors also aggregate their neighbors’
messages, the node actually obtains the information from a 2-hop radius. The deeper the
network, the larger the region of the neighborhood that is processed. Therefore, the receptive
field of a GNN, in which the GNN can effectively process the information, is tightly coupled to
the number of layers.

This characteristic brings new insights into the design of event-GNNs with dynamic event
graphs. The node’s final output features are only decided by the K-hop neighborhood, which
also means that, for a dynamic event graph built by only adding one new event at a time,
the GNN can only process information within its K-hop subgraph, rather than updating all the
nodes when a new event comes. Introduced in AEGNN [30], this method points out the way
to construct an asynchronous event-driven GNN depicted in Fig. 2.12(c), which is as follows:

1. When an asynchronous event comes, it triggers the dynamic graph building process to
search its neighbors and assign edges, generating its new 1-hop neighborhood, and up-
dating the event graph. (The new event and new edges are depicted in blue in Fig. 2.12.)

2. Dynamic graph updating further triggers the event-driven GNN: In the first layer, it pro-
cesses the new event and all its 1-hop neighbors. Then in the second layer, the 2-hop
locality is affected and updated, and so on.

2.4. Asynchronous Event-driven GNNs 17

Figure 2.12: (a). An event graph, with the blue dot representing the new event, the blue lines representing the
new edges between neighbors and the new event, and K = 1, 2, ... showing its 1- to K-hop subgraphs. (b). For a
normal event-GNN with multiple graph convolution layers, each layer will take the entire event graph as input. (c).
For an event-driven GNN (e.g. AEGNN), the first layer only takes the 1-hop subgraph as input, the second layer

only takes the 2-hop subgraph, and so on until the Kth layer.

3. When reaching the lastKth layer of the GNN, the entire K-hop neighborhood is updated,
and the system waits for the next new event.

In this manner, the event graph is able to iteratively add events, and the event-driven GNN
can only process a K-hop subgraph of an event graph, with the final output being the same as
from normal event-GNNs with static event graphs.

Revealing the locality nature of the GNN algorithms, AEGNN significantly reduces the com-
putation workload, measured in Million Floating-point Operations per event (MFLOP/ev), by
12× comparedwith conventional event-GNNalgorithms (6.1MFLOP/ev in [19] to 0.47MFLOP/ev
in AEGNN), with even higher prediction accuracy (93.1% in [19] and 94.5% in AEGNN). How-
ever, this method containing the task of finding K-hop neighbors with 0.47MFLOP/ev still
represents a significant burden on embedded devices targeting high-speed event-based vi-
sion scenarios.

2.4.3. A 1-hop Locality Event-driven GNN: HUGNet
In HUGNet [5], Dalgaty et al. re-scrutinized the necessity of updating all nodes’ features within
the K-hop subgraph. It turns out that, in AEGNN, a new event comes and is updated by its
older event neighbors, and at the same time, the older events also change their presentations
due to the new event’s features. This is due to the fact that edges are undirected, thus the
messages are able to freely pass from the past to the present, and vice versa. The update
of 1-hop nodes affects their neighbors in the same manner, then the whole K-hop locality is
influenced by the new event.

A simple solution is thus proposed: if the messages cannot flow from the present to the past,
i.e. the edges are restricted in one direction, the older neighbors within the 1-hop subgraph are
not needed to update, and the rest of the K-hop locality can stay static. This heuristic solution
is also causal in real-world scenarios: the information should only depend on past events, and
should not be shaped by future ones.

Therefore, by using the directed graph building technique introduced in Section 2.1.2, HUGNet
allows restricting the feature update only within the 1-hop neighborhood. The workflow is
shown in Fig. 2.13(b):

1. As in AEGNN, the new event (blue) triggers the graph building algorithm to select its
spatiotemporal neighbors among the previous events. However, this time the new event

2.4. Asynchronous Event-driven GNNs 18

Figure 2.13: (a). K-layer AEGNN processes 1- to K-hop subgraphs of a dynamic event graph (same as in
Fig. 2.12(c)) [30]. (b) K-layer HUGNet processes only the 1-hop subgraph of a directed dynamic event graph [5].

2.4. Asynchronous Event-driven GNNs 19

connects directed edges with its neighbors, pointing from the neighbors to itself.
2. The updated directed dynamic graph also triggers the GNN, but for each layer of the

GNN, only the new event and its 1-hop directed subgraph are processed. Due to the
directed edges, only the features of the new event are actually updated by the GNN,
leaving the features of neighbors untouched.

It is worth noting that, since the graph is dynamically and iteratively built with directed edges,
the older neighbor nodes already carry their final node features, which are unlike the ones
in AEGNN waiting to be updated by the new event. Therefore, though it seems that the new
node is obtaining information only from its 1-hop neighborhood, the information from the rest
of the K-hop region is already aggregated into the older nodes, thus the actual receptive field
still holds to K for a K-layer GNN.

Figure 2.14: Hemi-sphere search range used in HUGNet. Modified from [5].

This novel workflow leads to the following advantages:

1. The K-hop-neighbor search function can be removed, as only 1-hop subgraphs are pro-
cessed.

2. If the chosen graph convolution type in GNNs contains no edge features (e.g. the ej,i
in GCN (Eq. 2.10) and the ej,i in SplineConv (Eq. 2.11)), then edges do not need to be
stored. Indeed, as only the 1-hop subgraph is processed, it is safe to discard the edges
of the new event after information from its neighbors has been fully processed by the
event-driven GNN.

3. Older features do not need to be written back, as they are not changed due to the directed
edges, leading to lower computational burden and latency.

4. A hemi-sphere search range can be used, as shown in Fig. 2.14. In other event-driven
GNNs using undirected graphs, such as AEGNN [30], the neighbor search range for
a new event is a spherical region: after calculating the spatiotemporal distance with
other nodes, a new event ei not only needs to search for potential neighbors within a
spatial radius rs and a temporal radius rt among previous events, it also has to wait
for future events in the other half of the temporal radius rt, since the future ones may
influence the new event as well. In HUGNet, thanks to the directed edges, the future
events cannot affect the new one, thus restricting the neighbor search range within a
hemi-sphere spatiotemporal region, which avoids buffering and latency overhead.

2.5. Edge Vision Systems Application Scenarios 20

5. Executing feature pooling layers and FC layers asynchronously. The 1-hop locality up-
date characteristic of HUGNet also facilitates the process of feature pooling layers and
FC layers, which can be referred to in Appendix A.1 and Appendix A.2 respectively.

2.5. Edge Vision Systems Application Scenarios
Asmentioned in Chapter 1, edge vision systemswith event-based cameras are able to process
various computer vision tasks, such as optical flow estimation [5, 37], and object recognition
[30, 32]. In this section, we will briefly introduce the purposes of these tasks, and the dataset
they use in training and benchmarking the GNNs.

2.5.1. Optical Flow Estimation

Figure 2.15: Optical flow estimation results based on event data. Arrows represent predicted velocity vectors.
Adopted from [9].

Optical flow estimation is a task aiming at estimating the velocity vectors of moving objects in a
video stream, as shown in Fig. 2.15. For example, HUGNet [5] and EV-Flow [37] are solutions
to process this task. Relevant event-based datasets are MVSEC [40] and Rock Scenes [5].

2.5.2. Object Recognition
Object recognition tasks aim at identifying the category of an object in a video stream, which
corresponds to a classification task in the computer vision field. Event-based methods have
also been introduced for recognition tasks, such as AEGNN [30] and HATS [32].

There are two prevalent event-based datasets for object recognition tasks, NCaltech101 [25]
and NCars [32], with example samples illustrated in Fig. 2.16. NCaltech101 is an event-based
version of the famous Caltech101 [6] dataset used for standard frame-based image recogni-
tion. NCaltech101 is obtained by displaying samples of Caltech101 on an LCD monitor and
recording them with an event-based camera, thus also containing the same 101 object cate-
gories as the frame-based Caltech101.

Different from NCaltech101, objects in the NCars dataset [32] only have 2 categories: either
”Car” or ”Background”, which corresponds to a binary classification task for car recognition.
However, as opposed to NCaltech101, NCars is not derived from an existing dataset: sam-
ples in NCars are recorded by an event-based camera mounted behind the windshield of a
car driving in real urban environments [32]. Therefore, though the number of categories is
significantly reduced compared with NCaltech101, the complex real-world road conditions still
lead to a challenging dataset.

2.5. Edge Vision Systems Application Scenarios 21

Figure 2.16: Example samples from (a) NCaltech101 and (b) NCars dataset, both obtained by accumulating
100ms of events. NCaltech101 (a) has multiple categories, while NCars (b) has only 2 categories. Modified from

[32].

2.5.3. Selected Target Task and Dataset
In this thesis, we choose object recognition and NCars as our target task and dataset for the
following reasons:

1. Compared with optical flow estimation requiringmultiple output results (predicted velocity
vectors), the object recognition algorithms are less complex and thus more suitable for a
resource-limited edge hardware platform. Meanwhile, as a mature computer vision task,
it is still a proper benchmark for testing performance metrics (e.g. prediction accuracy,
runtime, etc.) of our hardware event-driven GNN accelerator.

2. Concerning datasets, NCars is more representative of real-world environments than
NCaltech101, which is consistent with the ultimate purpose of applying edge vision sys-
tems to real-world scenarios.

3
Hardware-algorithm Co-design

The original event-driven GNN algorithms are hardly compatible with hardware accelerators as
they are usually optimized for high-performance computing platforms such as dedicated CPU
+ GPU environments. These algorithms tend to involve: (i) large amounts of memory usage
and frequent data movement; (ii) parallelizable yet coarse-grained computation workflow; (iii)
complex and non-linear algebra, such as square-root and exponential operations; (iv) floating-
point calculation. Directly mapping algorithms with these characteristics on edge FPGA plat-
forms may thus lead to sub-optimal efficiency and performance. Therefore, a hardware-aware
optimization of these algorithms is critical, which is a part of hardware-algorithm co-design.

The purpose of hardware-algorithm co-design is different from conventional software design
aiming at finding a novel algorithm with higher performance. Instead, the co-design part aims
at developing an alternative model that is mathematically approximately equivalent to the orig-
inal algorithm, while the operations inside have been simplified toward an efficient implemen-
tation in custom hardware.

In this chapter, we will first introduce the baseline software design, together with the details
of our co-design experiments. Afterwards, we will elaborate on our hardware-algorithm co-
design in three key aspects: graph building algorithms, GNN structure optimization, and full-
integer quantized computation.

3.1. Baseline: AEGNN
To prove that our hardware-algorithm co-design implementations are indeed effective alterna-
tives to the original algorithms while introducing no significant prediction accuracy loss, we
need to select a proper baseline.

In this chapter, we choose AEGNN (Section 2.4.2) as the baseline design. AEGNN is designed
for the object recognition task using the NCars dataset, which corresponds to our target task
and dataset in Section 2.5.3. Meanwhile, the prediction accuracy of AEGNN is 94.5%, which
is the state-of-the-art result among all event-based object recognition algorithms with NCars
[30].

All experiments in this chapter are based on the validation dataset, which is a random-selected
subset of the NCars dataset (16% of the total), while the rest part of dataset is used for train-
ing. The prediction accuracy is also derived by calculating the percentage of correct predicted
samples among the entire validation dataset. NCars also provides another independent test

22

3.2. Graph Building Algorithms 23

dataset, containing around 4× more samples than the validation dataset. However, for con-
venience, in this chapter we will not evaluate our design results on the test dataset due to its
large volume, until the final hardware accelerator benchmarking in the next chapter.

All experiments are deployed on a NVIDIA RTX A6000 GPU hardware platform, and are es-
tablished, trained, and tested using the PyTorch Geometric library (PyG) [7] in the Python
software environment.

3.2. Graph Building Algorithms

Figure 3.1: In software algorithms, event position information is stored in the system memory (DRAM) in (x, y, t)
format. When a new event arrives, the software neighbor selection algorithm requires traversing the position
information of all previous events, and computes spatiotemporal distances between the new event and older

ones (Dist() function), following a sorting operation to finally select the neighbors (Sort() function). Therefore, this
process is memory-intensive.

The first step of event-driven GNN algorithm design is the graph building part, which aims at
searching and selecting spatiotemporal neighbors for each new event. As shown in Fig. 3.1,
for software algorithms, selecting neighbors for a new event within a certain spatiotemporal
distance can be a memory-intensive workload since it needs to traverse all the previous nodes’
positions 1. However, with proper simplification and limitations on the neighbor searching
range, it is possible for this part to be implemented efficiently on custom hardware.

In the graph building co-design part, we first adopted the directed graph and the hemi-sphere
search range ideas of HUGNet into the baseline design, then explored two sub-problems: the
total number of neighbors to select (degree limitation problem), and the range of the neighbor
search (search range problem). These three aspects will be elaborated upon in the following
sections.

3.2.1. Graph Building Improvements
For two major parts of event-driven GNNs, the dynamic graph building algorithms and the
GNNs, only the latter is task-specific. Therefore, even though aiming at a different target task
from us (Section 2.5.3), the techniques proposed in HUGNet for the former can still facilitate
our event-driven GNN design, which contains two core innovations of HUGNet, the directed
event graphs, and the hemi-sphere search range, as introduced in Section 2.4.3.

Based on the above observations, we proposed to fuse HUGNet into the baseline design,
AEGNN, by replacing the graph building part with the HUGNet fashion, thus we can still main-
tain the target object recognition task while obtaining the advantages brought by HUGNet. The
detailed adoption process is as follows:

1. Replacing the undirected event graphs used in AEGNN to the directed version, as in
HUGNet.

1In the following contents, unless otherwise indicated, the terms ”position” or ”location” of an event both refer
to its spatiotemporal position (x, y, t). ”Spatial position” or ”physical position” both refer to its spatial coordinates
(x, y), and ”timestamp” or ”time” both refer to its temporal coordinate t.

3.2. Graph Building Algorithms 24

2. According to Section 2.4.3, restricting the processing subgraphs from the K-hop neigh-
borhood (AEGNN) into the 1-hop neighborhood (HUGNet).

3. Limiting the neighbor search range from a sphere spatiotemporal region (AEGNN) into
a hemi-sphere region (HUGNet).

Table 3.1: Prediction accuracy for the baseline and the improved graph building on NCars dataset

Methods Accuracy
Baseline (AEGNN) 94.5%
AEGNN + HUGNet 94.7%

Table 3.1 demonstrates that the AEGNN+HUGNet scheme achieves 0.2% higher accuracy,
which proves that this improved graph building scheme is also suitable for the object recogni-
tion tasks.

3.2.2. Degree Limitation

Figure 3.2: (a). In an undirected graph, the blue node has 3 neighbors, thus its degree D = 3. (b). In a directed
graph, the blue node has 2 neighbors pointing to it, and 1 neighbor pointing from it, thus its in-degree Din = 2,
and out-degree Dout = 1. Note that, in the following contents, we still use the term ”degree” referring to the

in-degree of nodes in direct graphs.

In graph theory, the degreeD of a node is the number of its 1-hop neighbors, also equal to the
number of edges that connect with the node. For a directed event graph, we instead define
the in-degree Din of a node as the number of edges coming into the node. There is also
a counterpart, the out-degree Dout, which represents the number of edges departing from a
node. However, in directed event graphs, we only care about the message flowing from the
past to the future, thus in the following, the term ”degree” in the directed graph context will
refer exclusively to the in-degree, unless otherwise specified (Fig. 3.2).

Event-driven GNNs do not impose any limit to the node degree by definition. Indeed, theoret-
ically, more neighbors provide more information to a node. However, concerning the actual
hardware resources, a proper upper limit of Dmax is also needed to bind the computation and
memory footprints of the neighbor search process. These characteristics render Dmax as a
use-case-dependent parameter.

Since, as mentioned in Section 2.5.3, we use the NCars dataset in this work, we converted
each sample in the dataset into an event graph and counted the degree distribution of each
node. The statistics shown in Fig. 3.3 demonstrate that most nodes have degrees smaller
than 75, taking around 53.8% of total nodes, and highlight an obvious power law decay trend.
Considering both the graph representation ability and the hardware efficiency, we chose three
power-of-2 maximal degrees as candidates, i.e. Dmax = 16, 32, 64.

We tested these candidates, and the prediction results are listed in Table 3.2. Note thatDmax =
32 is actually the baseline design, AEGNN. It is clear that, Dmax = 32 is not the best choice,

3.2. Graph Building Algorithms 25

Figure 3.3: Maximal node degree distribution of the NCars [32] dataset

Table 3.2: Prediction accuracy for different maximal degrees on NCars dataset

Dmax Accuracy
16 95.8%

32 (Baseline) 94.5%
64 96.0%

while Dmax = 16, 64 have similar accuracies. Considering smaller Dmax leads to smaller
memory footprints on edge devices (roughly proportional), we finally select Dmax = 16 as the
final choice.

3.2.3. Neighbor Search Range
The neighbor search range defines within what spatiotemporal range a previous event can be
regarded as a neighbor to a new event. We scrutinized this problem from two perspectives.
First, we checked the spatiotemporal distance definitions and proposed an L1 distance alter-
native. Next, we decoupled the spatial and temporal coordinates of the search range to deliver
a novel cylinder search scheme. Finally, we combined the aforementioned improvements to
create a prism neighbor search range for efficient hardware graph building implementations.

L1 Search Range
The method for calculating distance decides whether a previous node can be regarded as a le-
gitimate neighbor to a new node. The distance is defined by the Lp-norm of a difference vector
of two position vectors, thus this type of distance is also known as the Lp distance. Choosing
a proper Lp distance can simplify the search algorithm without sacrificing performance.

For an n-dimensional vector x = [x1, x2, ..., xn]
T , the Lp-norm, ∥x∥p, is defined as:

∥x∥p = (|x1|p + |x2|p + ...+ |xn|p)1/p, p ≥ 1 (3.1)

Especially, for L1-norm and L2-norm respectively:

∥x∥1 = |x1|+ |x2|+ ...+ |xn|,

∥x∥2 =
√

(x21 + x22 + ...+ x2n)
(3.2)

3.2. Graph Building Algorithms 26

Therefore, for points in theR3 spatiotemporal space, pi = [xi, yi, ti]
T , we can use the Lp-norm

to define the Lp distance between two points. Taking the L1 and L2 distances as examples,
which are:

dist1(p1,p2) = ∥p1 − p2∥1
= |x1 − x2|+ |y1 − y2|+ |t1 − t2|
= |dx|+ |dy|+ |dt|,

(3.3)

and

dist2(p1,p2) = ∥p1 − p2∥2
=

√
(x1 − x2)2 + (y1 − y2)2 + (t1 − t2)2

=
√
dx2 + dy2 + dt2,

(3.4)

the L2 distance, also known as the Euclidean distance, is the most prevalent distance defini-
tion leveraged by software event-GNN algorithms [30, 5, 19] to calculate the spatiotemporal
neighborhood range of a node. However, it requires computing a square root function, which
is a costly operation in edge hardware implementations. On the other hand, the L1 distance
involves only additions and taking absolute values, both of which are hardware-friendly func-
tions.

Combining the hemi-sphere search scheme we adopted in Section 3.2.1, we illustrate different
Lp distance search ranges in Fig. 3.4. While the original L2 search range in HUGNet is a hemi-
sphere region as shown in Fig. 3.4(a), our L1 alternative is a semi-octahedron region depicted
in Fig. 3.4(b).

Spatiotemporal Decoupling: Cylinder Search Scheme
Common event-driven GNN algorithms [30, 5] usually adopt a uniform L2 spatiotemporal dis-
tance limit, r, to define the range of a node’s spatiotemporal neighborhood, i.e. every previous
event within the distance r can be selected as a neighbor of a new event. However, there
is a scale mismatch between the spatial and temporal coordinates: the spatial coordinates of
an event, (x, y), correspond to the pixel physical locations in event-based cameras, which are
integers within a few hundreds; while the timestamps t are already on the order of 106µs in an
event stream lasting for seconds.

dist∗2(p1,p2) =
√
dx2 + dy2 + (βdt)2 ≤ r (3.5)

As shown in Eq. 3.5, in HUGNet, this mismatch is alleviated by multiplying a factor β on the
timestamps to scale down their ranges until comparable to spatial coordinates. Therefore,
the search range is actually transformed into a half-ellipsoid region [5]. 2 However, if we
want to leverage this hemi-sphere search scheme while maintaining the microsecond-scale
temporal resolution from event-based cameras, βdt will require a high-precision fixed-point, or
even floating-point, number representation, which is not an efficient solution for edge hardware
implementations.

Instead of searching neighbors with the above hemi-sphere scheme, which forces timestamps
to fit the scale of spatial coordinates so that one can use a uniform spatiotemporal distance r

2To avoid confusion, we still named it the ”hemi-sphere” search scheme as consistent in the original HUGNet.

3.2. Graph Building Algorithms 27

to define the range, we proposed a novel search scheme, where we separated the distance
limit into two independent parts, the spatial distance range rs and the temporal distance range
rt. Based on the most prevalent L2 distance, our spatiotemporal decoupled search scheme
is expressed as:

dist2(p1,p2)|s =
√
dx2 + dy2 ≤ rs, (3.6)

and
dist2(p1,p2)|t = dt ≤ rt (3.7)

In our scheme, an event can only be a neighbor of a new event if its relative spatiotemporal
coordinates satisfy both the spatial condition (Eq. 3.6) and the temporal condition (Eq. 3.7). In
this way, the spatial metric and the temporal metric can be decoupled, and each of them can
be processed in different units, e.g. rs can be a few pixels while rt can cover a temporal range
of 105µs.

The visualization of this search scheme is shown in Fig. 3.4(c). As opposed to the hemi-
sphere search range of HUGNet in Fig. 3.4(a), this scheme searches neighbors in a cylinder
range, thus we named our spatiotemporally decoupled scheme the cylinder search scheme.
In Fig. 3.4(c), the base of the cylinder represents the spatial search range rs, while the height of
the cylinder represents the temporal search range rt, both of which can be selected according
to the actual use case.

Combination of the Two Approaches: Prism Search Range

Figure 3.4: Illustrations of four spatiotemporal search ranges, by combining two different search schemes, the
hemi-sphere and the cylinder schemes, with two different Lp distance.

3.3. GNN Architecture Search and Optimization 28

It is worth noticing that, our cylinder search scheme can be extended to any Lp distance.
Therefore, we combined our L1 search range with the cylinder search scheme, which is:

|dx|+ |dy| ≤ rs and dt ≤ rt (3.8)

Table 3.3: Prediction accuracy for different neighbor search ranges on NCars dataset. For the hemi-sphere
scheme, β = 5× 10−6, r = 3; for the cylinder scheme, rs = 3, rt = 65, 535µs.

Search Ranges Search Scheme Lp Accuracy
Hemi-sphere Hemi-sphere L2 94.7%

Semi-octahedron L1 95.6%
Cylinder Cylinder L2 95.1%
Prism L1 95.6%

We also visualize this search range in Fig. 3.4(d), which is a prism region. Table 3.3 provides
the prediction accuracies of all four search ranges in Fig. 3.4 with parameters derived from
[30]. It is clear that the proposed prism search range promises easier computing operations
without compromising performance, which is a key toward deployment on custom hardware.

3.3. GNN Architecture Search and Optimization
After building the event graph according to the algorithms introduced in the previous section,
a GNN performs the actual computer vision task, i.e. the object recognition task in this thesis
(see Section 2.5.3). In this section, we will first compare different activation functions and dif-
ferent graph convolution types to minimize hardware requirements. Then, we will introduce the
network architecture of our GNN, which is inspired from the AEGNN [30] with simplifications.

3.3.1. Activation Functions
In AEGNN, the authors leverage the exponential linear unit (ELU) to work as the activation
function. To avoid the hardware-intensive exponential computation, we change it into a recti-
fied linear unit (ReLU). Both functions are introduced in Section 2.2.1, following Eq. 2.3 and
Eq. 2.4 respectively.

Table 3.4: Prediction accuracy for different activation functions on NCars dataset

Activation Functions Accuracy
ELU (Baseline) 94.5%

ReLU 95.2%

The resulting classification accuracies on the NCars dataset are provided in Table 3.4. Statis-
tics prove that, the usage of ReLU does not affect the prediction accuracy, while providing a
simpler linear activation function compared with the ELU version, which is more suitable for a
hardware implementation.

3.3.2. Alternative Graph Convolution
In Section 2.3.1, we have introduced 3 types of typical graph convolution algorithms: GCN-
Conv, SplineConv, and PointNetConv. In AEGNN [30], the adopted convolution algorithm is
the SplineConv.

However, we argue that SplineConv may not be the optimal choice as shown in Table 3.5.
Here, the #Parameters column represents the total number of parameters needed. The fewer

3.3. GNN Architecture Search and Optimization 29

Table 3.5: Performance metrics of 3 types of graph convolution algorithms on NCars dataset

Convolution Types Accuracy #Parameters Runtime
Baseline (SplineConv) 94.5% 33.4k 16s

GCNConv 92.6% 7.8k 11s
PointNetConv (Eq. 2.13) 95.7% 12.3k 11s

parameters in an algorithm, the less memory space it requires. For the Runtime column, we
counted the time spent by the 3 algorithms after performing inference on the entire validation
dataset, where a faster runtime typically implies a lower computational complexity.

Among all 3 metrics, though accuracy is high, SplineConv has the largest number of parame-
ters and the slowest runtime, due to the computationally intensive B-Spline convolution algo-
rithms. GCNConv has the least parameters, but the accuracy is around 2% lower than others,
partially because it does not consider position parameters in its calculation. Finally, PointNet-
Conv achieves the highest accuracy, the same runtime as GCNConv, and a balanced number
of parameters. We thus select PointNetConv, as it takes position information into account at a
much lower computational overhead than SplineConv (see Eq. 2.13), while further increasing
accuracy.

3.3.3. Network Structure and Simplification

Figure 3.5: The AEGNN network structure. The grey blocks represent graph convolution blocks including a
graph convolution layer, a batch normalization layer, and an activation layer. The blue block represents a graph
max pooling layers, the green block represents a feature max pooling layer, and the orange block represents the

final FC layer. Modified from [30].

Fig. 3.5 shows the original AEGNN network structure for the car recognition task, as proposed
in [30]. Here, a grey block represents a sequence of layers containing a graph convolution
layer, an activation layer, and a batch normalization layer, named a graph convolution block.
The

⊕
symbols indicate residual connections, which add the current node features with previ-

ous features from shallower layers. A blue block represents a cluster-based graphmax pooling
layer, and a green block represents a grid-based feature max pooling layer, both of which are
introduced in Section 2.3. Finally, a conventional FC layer outputs the final GNN prediction
results for the input event graphs.

We implement 2 simplifications for a more hardware-friendly design:

1. Removing residual connections and the middle graph max pooling layer (Component
Removing). The residual connection needs extra storage and memory access to fetch
the previous features. To keep a low memory footprint, we removed these components.
The graph max pooling layer coarsens the input graph, as mentioned in Section 2.3.2,
thus involving node deleting and edge re-connection, which would introduce frequent
memory accessing and overwriting in hardware. Therefore we also remove it, leaving

3.4. Quantization 30

only the feature pooling layer.
2. Graph convolution block number and feature channels adjustments (Block Adjustments).

We eliminated several graph convolution blocks in the middle of the original network,
reducing the total number of graph convolution blocks from 7 in AEGNN to 4 in our
design. Input and output feature channels of certain graph convolution layers have also
been adjusted accordingly.

Figure 3.6: Our optimized event-driven GNN inspired from the AEGNN structure, including 4 graph convolution
blocks (Conv in the figure), a feature max pooling layer, and an FC layer for prediction.

The proposed network structure is depicted in Fig. 3.6. A Conv represents a graph convolu-
tion block, where the numbers follow the format ”Cin → Cout”. Notice that for input feature
channels Cin, there is a ”+2” representing the event’s spatial position information (x, y) used
in PointNetConv (Eq. 2.13).

Table 3.6: Prediction accuracy for different network structure simplifications on NCars dataset

Simplifications Accuracy
Baseline (AEGNN) 94.5%

Components Removing 94.9%
Block Adjustments 96.0%

Table 3.6 demonstrates the prediction accuracy of these two simplifications. In this table, we
found that purely removing the graph max pooling layer and residual connections does not
provide notable accuracy changes. However, when combined with a reduction of the number
of convolution blocks (i.e. shallower network), the final simplified scheme achieves a significant
accuracy improvement, which we abbreviate to optimized network. Meanwhile, the decreased
number of graph convolution blocks also promises less resource usage in custom hardware.

3.4. Quantization
In this section, we will introduce the quantization technique, which is necessary to achieve
low-cost full-integer calculation in the edge hardware, thereby reducing the computational and
memory requirements

The default precision in neural networks (weights, bias, features, etc.), for both training and
inference, is the 32-bit floating-point (FP32) format. Nevertheless, studies [17, 11, 14] have
demonstrated that applying simpler, lower-precision data formats, such as 8-bit integer (INT8)
or even 4-bit integer (INT4), can further compress the networks without apparent accuracy
loss for the inference results. Changing the data format from a high precision to a lower one is

3.4. Quantization 31

called quantization. For example, quantizing the network from FP32 to INT8 allows for 4× less
memory usage and bandwidth while avoiding complex floating-point algebra units to perform
calculations, leading to 3 − 4× acceleration and 3 − 7× energy efficiency improvements in
hardware [11], which is highly favorable for edge systems.

However, emerging GNNs lack a standard to perform quantization, therefore we developed a
feasible two-step quantization workflow for GNNs, which we will introduce in this section.

3.4.1. Graph Convolution - Batch Normalization Folding
Quantization introduces errors due to a loss in data precision. For neural network quantization,
if we quantize the convolution layer and the BN layer separately, quantization errors will be
introduced twice. To alleviate this issue, an approach is to fuse the convolution computation
with the BN computation, i.e. convolution-BN Folding, and then to quantize the fused layer
[14]. Indeed, the basis of the convolution algorithm is a matrix multiplication, which can be
easily combined with the scaling-and-shifting operation in the BN layer introduced in Section
2.2.1.

Figure 3.7: Graph convolution - BN folding. The message() function is the message generation step, and the
aggregate() function is the aggregation step.

However, as introduced in Section 2.3.1, our simplified PointNetConv (Eq. 2.13) is actually
a linear transformation (the message generation step) wrapped by a non-linear max function
(the aggregation step), therefore it is not trivial to implement convolution-BN folding on it.

Based on Eq. 2.5 and Eq. 2.13, a uniform equation for a PointNetConv followed by a BN layer
is described as:

x′
i = BN

(
max
j∈N (i)

Θ · (xj , |pj − pi|)
)

= WBN ◦
(

max
j∈N (i)

Θ · (xj , |pj − pi|)
)
+BBN

(3.9)

3.4. Quantization 32

Since elements inWBN are positive (see Section 2.2.1), the order of scaling operation (WBN◦)
and aggregation (max()) can be reversed, therefore:

x′
i = WBN ◦

(
max
j∈N (i)

Θ · (xj , |pj − pi|)
)
+BBN

= max
j∈N (i)

(WBN ∗Θ) · (xj , |pj − pi|) +BBN

= max
j∈N (i)

W · (xj , |pj − pi|) +BBN ,

(3.10)

where we define the column-wise matrix-vector multiplication ∗ as

W = WBN ∗Θ

=

 w1
...

wCout

 ∗

 θ1,1 · · · θ1,Cin

...
θCout,1 · · · θCout,Cin


=

 w1 · θ1,1 · · · w1 · θ1,Cin

...
wCout · θCout,1 · · · wCout · θCout,Cin


(3.11)

The complete workflow described in Eq. 3.10 is depicted at Fig. 3.7.

3.4.2. Post-Training Quantization
To achieve full quantization of the network, post-training quantization (PTQ) is themost straight-
forward solution. PTQ, as its name suggests, will first perform a normal network training phase
in the original data precision (FP32), then quantize the FP32-format weight and bias matrices
into a lower precision, such as INT8, its unsigned counterpart UINT8, or even fewer bits. Be-
cause PTQ quantizes the network after the training, it can only be implemented in the inference
phase, which is appropriate for an inference-only hardware accelerator.

There are two phases in the PTQ [17]: calibration and quantization, shown in Fig. 3.8. To
quantize weights, bias, and features in theGNN calculation, we first need to obtain themaximal
and minimal values of these data by running the GNN inference in the original FP32 format
on the specific dataset we used, i.e. the NCars. This step is called the calibration.

Qi = round(ri/S), where S =
|r|max

|Q|max
(3.12)

After calibration, the quantization step can be performed according to Eq. 3.12. The basic
method for quantizing a floating-pointer number to an integer described in Eq. 3.12 [14] is
called scale quantization. Here, ri is a floating-point real number belonging to set r, which
represents a set of floating-point data, such as all weights, all bias, or all features, of one
network layer. Its maximal absolute value, |r|max, is derived from the above calibration step.
Qi is the quantized integer belonging to set Q, which includes all possible numbers within the
target quantization precision, e.g. for INT8, Q = [−128, 127] ⊆ Z, |Q|max = 127; and for UINT8,
Q = [0, 255] ⊆ Z, |Q|max = 255. Together with the scaling factor S, each floating-point number
ri can be quantized into an integer Qi without overflow nor underflow, while a zero in r still
maps to a 0 in Q.

3.4. Quantization 33

Figure 3.8: Flow chart of the PTQ, including calibration and quantization after the training phase.

Figure 3.9: Inference accuracy after different bit-width quantization.

3.5. Overall Co-design and Event-driven Experiments Results 34

This idea can be easily applied to linear transformation, which is the core of neural networks.
It can be proved that [14], quantizing a linear transformation is equivalent to multiplying a
quantization factor M by the transformation.

Following this idea, we quantized each graph convolution - BN folding layers and the final FC
layer in our GNN, by transforming all features into unsigned integers (since they are the output
of the ReLU function which yields no negative data) and all weights and biases into signed
integers. To decide the precision, we performed the network inference with various bit widths,
ranging from 8 bits to 2 bits. As demonstrated in Fig. 3.9, when setting the bit width to 8, the
accuracy is basically the same as the result without quantization. Therefore, we chose the
INT8-quantization for all weights, and UINT8-quantization for all features.

3.5. Overall Co-design and Event-driven Experiments Results

Figure 3.10: The accuracy changing when using dynamic event graphs.

From the above discussion, our final co-design schemes are: (i) graph building: prism neigh-
bor search range with Dmax = 16; (ii) GNN network optimization: simplified structure with
ReLU activation layers and PointNet graph convolution; (iii) full-integer network quantization.
Combining all co-design schemes, our final proposed event-driven GNN reaches a prediction
accuracy of 95.8% on the validation dataset, which is even higher than the AEGNN baseline
(94.5%).

However, the above accuracy results are still derived by using the static graph building method
(see Section 2.1.2). Since we are designing an event-driven GNN, we also tested the accuracy
changing using dynamic event graphs. Fig. 3.10 shows the average GNN prediction accuracy
changing across the entire validation dataset, according to the number of events processed.
It is clear that the accuracy is increasing as more events are processed by the event-driven
GNN. The final average accuracy is 96.0%, which matches the accuracy obtained with static
graph building. We also highlight the event number when the accuracy reaches 90%. The
90%-correct accuracy only requires 2,323 events, which provides an opportunity for an early-
stopping inference scheme, if a faster though slightly less accurate prediction is further needed
in the selected real-world application scenario.

3.5. Overall Co-design and Event-driven Experiments Results 35

For a fast and convenient co-design workflow, we did not test the prediction accuracy of our
event-driven GNN on the test dataset (8,606 samples) of NCars, since the processing time is
much longer than on the smaller validation dataset (2,462 samples). However, the test dataset
was still leveraged to benchmark our final hardware accelerator, which will be introduced in
the next chapter.

4
Hardware Implementation

Thanks to the hardware-friendly scheme derived from the hardware-algorithm co-design part
in Chater 3, we can easily map the software code into an actual hardware solution. In this
thesis, we implemented our design on the Xilinx KV260 development board, which contains a
Zynq UltraScale+ MPSoC in the Kria K26 System-On-Module (SOM) platform, targeting edge
vision applications.

This chapter will first introduce our overall design diagram. Afterwards, components of the sys-
tem, including the graph building module, the graph convolution module, the pooling module,
the FC computation module, and the host CPU controlling software are introduced. Finally,
the performance of the on-board implementation is tested, with the results provided at the end
of this chapter.

4.1. Overall System Architecture
There are two major parts in the Xilinx Zynq MPSoC: the Programmable Logic (PL) part con-
taining the field-programmable-gate-array (FPGA), and the Processing System (PS) part con-
taining an ARM CPU and 4GB of external DRAM as the main memory for the CPU. The hard-
ware in the PL is also able to access the DRAM in the PS. In the following contents, we name
the PS DRAM as the ”off-chip” memory, while the SRAM memory resources (total 3.32MB) in
the PL part, including the Distributed-RAM (LUTRAM, 0.44MB), Block-RAM (BRAM, 0.63MB),
and Ultra-RAM (URAM, 2.25MB), are regarded as the ”on-chip” memory [36].

Fig. 4.1 shows the overall system architecture. The entire hardware accelerator is imple-
mented on the PL part using the Verilog and SystemVerilog hardware description languages
(HDLs). The ARM core in the PS works as a host CPU, responsible for loading dataset sam-
ples, feeding data to the accelerator, reading accelerator prediction results, calculating the
prediction accuracy, and measuring the runtime.

The PS and the PL can communicate through bi-directional AXI system buses. The AXI proto-
col family is established by the ARM company [2], and we used two sub-protocols for communi-
cation: AXI-Lite and AXI-Memory-Mapped (AXI-MM). The AXI-Lite is suitable for transmitting
a single data pack, such as event data, control signals, and status signals. The other bus, the
AXI-MM bus, can transmit data packs with larger bit-width (in our case 4×), thus we use it as
the off-chip memory bus for the accelerator to load intermediate data from, and store the data
into the off-chip memory.

36

4.1. Overall System Architecture 37

Figure 4.1: The overall system architecture. The designed accelerator is located in the PL part, while the PS
host CPU is mainly responsible for benchmarking and monitoring.

Inside the PL accelerator, there are three major blocks: the control and configuration, the GNN
computation, and the AXI communication.

There are two purposes for the control and configuration block. From/to the outside of the
accelerator, represented by the PS, it receives the event data e = (x, y, t, p), the accelerator
control signals (start signal and data clean signal), and some constant parameters, while it
sends back a binary prediction result (”Car” or ”Background”) and accelerator status signals
(idle signal or done signal). From/to the inside of the accelerator, it broadcasts the event data
to all modules in the GNN computation block and guides their running order using a finite-state
machine (FSM).

The GNN computation block consists of 4 modules corresponding to 4 important steps in the
event-driven GNN computation pipeline, which are: graph building, graph convolution, grid-
based feature max pooling, and the FC prediction head, labeled as Graph build, Graph conv,
Max pool, and FC in Fig. 4.1 respectively. These modules are functionally identical to the
steps in the algorithm mentioned in previous chapters with the corresponding names.

The AXI communication block is designed to ease the design of the graph convolution module.
The graph convolution module alone requires at least 3.1MB of memory to store the GNN
network features, not tomention thememory requirements of othermodules. Therefore, due to
the limited on-chipmemory resources inside the ZynqMPSoC (3.32MB), the graph convolution
module has to offload its data to the off-chip DRAM through the AXI communication block,
which is made of a large AXI buffer for the sending and receiving off-chip memory data, and a
standard module implementing the AXI-MM protocol.

In the following sections, we will elaborate on the design details of the core of this acceler-
ator, i.e. the 4 modules of the GNN computation block, in a top-down manner. We will also
introduce the host software we designed for controlling and benchmarking the accelerator
in an integrated environment. Finally, we will also provide the actual on-board performance
experiment results in the last section.

4.2. Graph Building 38

4.2. Graph Building
As introduced in Section 3.2, in this thesis, the first step for establishing our event-driven
accelerator is to build a directed dynamic event graph, followed by an event-driven GNN. In
order to map the graph building algorithms into custom hardware, we address two important
problems: where to store the event graph, and how to select neighbors of the new event. The
graph building hardware diagram is shown in Fig. 4.2.

Figure 4.2: Hardware diagram of the graph building module, designed specifically for NCars, which uses an
event-based camera with 12,000 pixels. The input is the new event’s spatiotemporal position (x, y, t), and the

output is stored into the neighbor buffer FIFO.

4.2.1. Edge-Free Event Graph Storage and Event Queues
There are two fundamental elements in an event graph: the nodes (or events) and the edges.
Thanks to the directed graph scheme introduced in Section 3.2.1, we do not need to store
and fetch the edges in the graph: since we only need the 1-hop locality information, i.e. the
direct neighbors of each new event, edges only need to be connected and processed once.
Therefore, once processed, edges do not have to be stored. Only the nodes, which con-
tain spatiotemporal positions (x, y, t) closely linked to the graph building process, need to be
stored.

To store and process the position information of events, we adopt the event queue technique,
which has been used in several previous works [19, 34]. Event queues for each pixel are First-
In-First-Out (FIFO) queues with a depth equal to the node maximal degree Dmax (Section
3.2.2), which is illustrated in Fig. 4.3. At each pixel, an event queue FIFO is implemented to
store events whose position is the same as this pixel’s physical location (x, y). Besides spatial
coordinates, other data of an event is also stored in the FIFO, including the timestamp t and
event order n.

The event queue FIFOs have special storage and accessing behaviors contrary to standard
FIFOs. When storing a new event into it, the event queue works like a FIFO, except that
it is designed to be overflow-free: once a new event has to enter a full event queue FIFO,
it will automatically pop out the first event in the FIFO, therefore the new event can always
be stored unconditionally. However, when accessing the event queue, it then works like a
normal memory unit where every entry inside can be read out independently and multiple
times, contrary to the conventional FIFO which provides the data at the front end of the queue

4.2. Graph Building 39

Figure 4.3: Illustrations for event queues. Left: Pixels from a 120× 100 event-based camera. Each pixel has a
physical location (x, y). Middle: 120× 100 Event queues. Each queue corresponds to a unique pixel. Every
event generated by that pixel will be collected by this queue. Right: An event queue FIFO. In a queue, event
order n and its spatiotemporal coordinates (x, y, t) are stored. FIFO depth is equal to Dmax in Section 3.2.2.

and discards it after being popped out.

In our hardware implementation, all event queues are stored in an on-chip memory buffer
called the global event buffer, where each entry corresponds to an event queue.

4.2.2. Event-queue-based Neighbor Selection
The aforementioned event queue storage scheme naturally separates space and time: each
event queue corresponds to a pixel, thus its index directly maps the spatial location of the pixel;
while inside an event queue, the timestamp is the only important difference across events.
This spatiotemporal decoupling in storage facilitates our hardware design for implementing
the spatiotemporally decoupled prism search range introduced in Section 3.2.3. Based on
the event queues, the neighbor selection hardware sub-module can perform the spatial and
temporal search step by step. The detailed workflow is shown in Fig. 4.4.

First, according to the position (x, y, t) of the new event, spatial search is performed to pick
up all candidate event queues within rs, which is equivalent to the first half of Eq. 3.8. For
example, with rs = 3, there are 25 event queues within the search range, which are accessed
following the arrows shown in Fig. 4.5 to ease the queue-fetching process. If there is an invalid
index, i.e. beyond the valid pixel ranges, it will be simply skipped, and the search for the next
legal queue continues. Each time a queue is selected, it will be fetched from the global event
buffer and stored in a smaller storage pool: the local event buffer.

Whenever a candidate queue is selected by the above process, the following temporal search
is activated. The temporal search process first reads out each timestamp of events stored
in the candidate queue and subtracts the timestamp of the current event to derive the time
differences dt. Finally, according to Eq. 3.8, events that meet the constraint dt ≤ rt will be
selected as potential neighbors.

There is also a storage FIFO with a depth equal to Dmax, named neighbor buffer, to store
previous events selected as potential neighbors. The full signal of this FIFO can also control
the spatial and temporal search processes, as shown in Fig. 4.4. After all neighbors are
selected, the neighbor buffer will be further passed to the downstream module, the graph
convolution module, for the following event-driven GNN computation.

4.2. Graph Building 40

Figure 4.4: Graph building module workflow, from taking the new event position as the input, to all neighbors
being selected. Blue blocks belong to the spatial search process, while orange blocks belong to the temporal
search process. Note that if the neighbor buffer is full, it will immediately stop the spatial and temporal search

processes.

Figure 4.5: Event queue access order in L1 search range within rs = 3. (a). A new event locates at
(x, y) = (3, 3). Numbers in the circles represent the access order. (b). Another new event locates at

(x, y) = (2, 3). Illegal access (circle 17) will be directly skipped (red arrow).

4.3. Graph Convolution 41

4.3. Graph Convolution
In the previous section, the graph buildingmodule selected neighbors and passed them through
the neighbor buffer. In this section, we will present the hardware design of the graph convolu-
tion module for our quantized event-driven GNN.We will first introduce a novel computation for
multiple graph convolution layers: layer-parallel computation. Then, we will describe the de-
tailed hardware sub-module design inside the graph convolution module, including message
generation, aggregation, and biasing-activation-quantization.

4.3.1. Layer-Parallel Computation
For the first time, we point out that all graph convolution layers in an event-driven GNN using
directed dynamic event graphs can be processed simultaneously, which we denoted as layer-
parallel computation, and illustrate in Fig. 4.6.

To achieve parallel computation, there should be no data dependencies between graph convo-
lution layers, i.e. the output of one layer cannot be the input of the next one. It is not possible
for GNNs to use static graphs (Fig. 4.6(a)), as features of nodes will change after a convolu-
tion layer, thus the next layer has to use the updated features. The same problem occurs on
event-driven GNNs using undirected graphs, such as AEGNN. As mentioned in Section 2.4.2,
graph convolution layers in such GNNs will change the features of both the new event and its
K-hop locality neighbors, and the next layer needs to process the changed neighbor features
to process.

This problem is solved by event-driven GNNs leveraging directed dynamic graphs, such as
HUGNet or our proposed GNN (Section 3.2.1). As mentioned in Section 2.4.3, directed edges
prevent the graph convolution from changing the neighbor features. Meanwhile, features of
the new event itself are not needed in the convolution computation, since the new event is for-
bidden to point back to older neighbors. Therefore, the input of such graph convolution layers,
i.e. the features of the nodes neighboring each new event, can be considered as constants.
The output of the convolution layers, i.e. the features of the new event, can just be stored,
waiting for the next upcoming event. This process is depicted in Fig. 4.6(b).

Therefore, in this computation flow, the output of a convolution layer is not the input of the
next layer, but the input of the next event, thus cutting the data dependencies between layers.
Hence, as shown in Fig. 4.6(c), we can process all graph convolution layers simultaneously:
we first collect all features of neighbors generated by every convolution layer, then parallelize
layer computation. This series-to-parallel computation flow reduces the total runtime of the
GNN, making it more suitable for real-time hardware implementations, targeting high-temporal-
resolution event flows.

4.3.2. Graph Convolution Hardware Sub-modules
Based on Section 2.3.1 and the proposed layer-parallel computation, the workflow of the graph
convolution sub-modules can be divided into 5 steps, shown in Fig. 4.7:

1. Loading features: themodule first tries to read one neighbor’s information in the neighbor
buffer. If the buffer is not empty, the module will use the neighbor’s event order n as the
index to fetch the corresponding feature vectors stored in the off-chip DRAM. In this step,
all feature vectors of layers are fetched and loaded for the layer-parallel computation.

2. Message generation: according to Eq. 2.13, for each neighbor in the input neighbor
buffer, a message vector is generated by a linear transformation.

3. Aggregation: a max aggregation function is used according to PointNetConv. Among
all the neighbors, this max aggregation function compares and selects the maximum

4.3. Graph Convolution 42

Figure 4.6: Event graphs processed by an example GNN containing two graph convolution layers, Conv 1 and
Conv2, both of which consist of a simple average-and-replicate operation for illustration. (a) A static event graph
is processed by the GNN. The features are changed and the channels of features are increased by the graph

convolution layers. (b) A directed dynamic event graph is processed by the GNN in an event-driven fashion, with
new events colored blue. The outputs are identical to (a). Note that the output of a convolution layer is not used
by the next layer, but by the next event in the same layer, denoted in dotted arrows. (c) The same directed graph

is processed by a convolution-layer-parallel event-driven GNN, which is mathematically equivalent to (b).

4.3. Graph Convolution 43

Figure 4.7: Graph convolution module workflow, including 5 major steps.

value for each element in the generated message vectors independently, forming a new
feature vector. Then, the module proceeds to read every entry in the neighbor buffer
until it is empty, which indicates that all neighbors have been processed.

4. Biasing-activation-quantization (BAQ): after all neighbors have been processed, a bias
vector BBN derived from batch normalization is added to the new feature vector. Then,
the biased vector is rectified by the ReLU activation layer and, eventually, the activated
vector is quantized, leading to the final feature vector.

5. Storing features: the new event’s feature vectors derived from the graph convolution
layer are sent back to the off-chip DRAM. The memory address is decided by the new
event’s order in the event stream.

Step 1 and Step 5 are feature data movements, which are performed by the AXI communica-
tion block introduced in Section 4.1. Steps 2 to 4 are mapped into 3 sub-modules in hardware,
as shown in the hardware diagram Fig. 4.8, which are described hereafter.

Message Generation
The core of the message generation step is the linear transformation, i.e. the combination of
matrix-vector multiplications, where the vector is one feature vector of the neighbor, and the
matrix is the column-wise matrix-vector product (matrix W) of the trained weight Θ and the
scaling factors WBN due to the convolution-BN folding in Eq. 3.11, which is reminded below
for convenience:

4.3. Graph Convolution 44

Figure 4.8: Hardware diagram of the graph convolution module. The letter ”F” refers to features. This diagram is
specific to our GNN structure, which contains four graph convolution layers denoted as L1, L2, L3, and L4. Each
graph convolution module has three sub-modules: message generation (Msg Gen), aggregation (Aggr), and
bias-activation-quantization (BAQ), taking features from the corresponding neighbors’ feature buffer with depth
equal to Dmax (16). All convolution layers are computed simultaneously, following the proposed layer-parallel

computation.

W = WBN ∗Θ

=

 w1 · θ1,1 · · · w1 · θ1,Cin

...
wCout · θCout,1 · · · wCout · θCout,Cin



message = W × x =

 w1,1 · · · w1,Cin

...
wCout,1 · · · wCout,Cin

×

 x1
...

xCin

 =

Cin∑
j=1

 xj · w1,j

· · ·
xj · wCout,j

 , (4.1)

where wi,j = wi · θi,j from the above mentioned Eq. 3.11.

To achieve matrix-vector multiplications, we designed the MatVec unit. This unit is based on a
specific multiplication decomposition algorithm shown in Eq. 4.1, which we named row-parallel-
column-accumulated (RP-CA) multiplication. Here, x represents the input feature vector with
Cin input feature channels, andmessage represents the generated message vector with Cout

output feature channel. The reason to choose this type of multiplication is two-fold: if we
perform matrix-vector multiplication element-by-element (i.e. serial multiplication), then the
overall computation latency will be unacceptably slow; otherwise, if we perform every operation
in the multiplication at the same time (i.e. parallel multiplication), then the logic overhead will
exceed the FPGA resources. Therefore, this RP-CA multiplication can reasonably balance
both the resource usage and the computation latency in a reasonable range.

Based on this algorithm, the hardware design of the message generation sub-module is de-
picted in Fig. 4.9(a). Here, the weight matrixW , containing multiple weights wi,j , is separately
stored in Cout on-chip SRAM. Each memory stores Cin weight elements, and all memories

4.3. Graph Convolution 45

Figure 4.9: (a) Hardware diagram of the message generation sub-module, including a MatVec unit and on-chip
weight memories. (b) MatVec inner structure. It repeats Cin times for accumulation (j = 1, · · · , Cin). (b) MAC
inner structure. Both xj and wi,j have 8-bit data and 1-bit sign extension. The output messagei is padded to

32-bit to avoid overflow in accumulation.

can send out 1 element at a time, thus forming a memory array able to output one column of
the weight matrix at once.

The jth column of the weight matrix, denoted as w1,j , · · · , wCout,j , and the jth element of x,
are sent together into the MatVec unit consisting of Cout multiplier-and-accumulator (MAC)
units. xj is broadcasted to all MAC units, while each weight in the column is dispatched to
one MAC unit. The MAC unit first multiplies the weight element with the feature element, and
then accumulates the product with the previous output, whose inner structure is shown in
Fig. 4.9(c).

This process is repeated until all Cin feature elements and weight columns are processed.
This operation can run in a pipelined fashion thanks to partial-sum registers in the MAC units,
thus reducing the computation latency.

Aggregation
The aggregation sub-module is activated upon completion of the message generation sub-
module, and keeps track of all neighbors’ messages to find the maximum elements (Fig. 4.10).
The aggregation sub-module is made of Cout processing elements (PEs), each of which in-
cludes a register file History (64B to 128B, according to the output channels of different graph
convolution layers) to hold the last maximum value, and a multi-bit algebra comparator (max())
selects the largest value between the newly received message from the message generation
sub-module (messagei) and the previous maximum value. After all neighbors are processed,
all messages are aggregated, and a feature vector of the new event is automatically generated,
waiting to be sent to the final biasing-activation-quantization sub-module.

4.4. Grid-based Feature Max Pooling 46

Figure 4.10: Hardware diagram of the aggregation sub-module.

Figure 4.11: Hardware diagram of the biasing-activation-quantization (BAQ) sub-module.

Biasing-Activation-Quantization (BAQ)
Similar to the aggregation step, the biasing step, the activation step, and the quantization
step process the new feature vector element by element, thus we combine them in a biasing-
activation-quantization (BAQ) sub-module. The diagram is shown in Fig. 4.11.

xfinal = max (0, (x+BBN)) ·M (4.2)

The BAQ sub-module can be described by a uniform equation, Eq. 4.2. After all neighbors
are processed, the BAQ sub-module first adds a bias vector BBN , derived from the BN layer,
to the feature vector (Eq. 3.10). Then, the biasing vector passes through the ReLU activation
function (Eq. 2.4). Finally, the activated vector is multiplied by the factor M to perform the
quantization step, as introduced in Section 3.4.2. After these steps, the final quantized feature
vectors are sent to the off-chip DRAM, which ends the graph convolution module operation.

4.4. Grid-based Feature Max Pooling
As outlined in Fig. 4.1, the output feature vector from the last graph convolution layer then
goes through the grid-based feature max pooling layer, which derives grid features for the rest
of the GNN.

Following Section 3.3.3, we split the full 120 × 100-pixel input range into 8 × 7 grids, each of
which is a square region containing 16× 16 pixels with a unique grid index.

The hardware diagram of the feature max pooling module is shown in Fig. 4.12. The new
event’s position (x, y) is first used to calculate the grid index it belongs to. According to this
index, the module fetches the history of maximum grid features in a buffer. Although similar
to the aggregation sub-module, here, the ”history” features are actually from a previous event,

4.5. Fully Connected Module 47

Figure 4.12: Hardware diagram of the grid-based feature max pooling module. Left-side arrows indicate the
module input, consisting of the new event’s pixel location (x, y), and the output node features from the final layer
of the event-driven GNN. Right-side arrows indicate the module output, consisting of the grid index where the
new event belongs, and the differentiated grid features, derived from subtracting the final layer features with the

maximal grid features.

not from the last neighbor. After fetching the history maximum, a same max() comparator
selects the new maximum features between the previous and the current features, which will
not only update the history buffer, but also subtract from the current features to generate the
differentiated grid features, i.e. dX = x′

grid − xgrid (Eq. A.3), used by the final FC layer.

4.5. Fully Connected Module
Guided by Eq. A.2:

y′ = y + dy = Θ×X+Θpartial × dX,

the fully connected (FC) module, whose diagram is shown in Fig. 4.13, is responsible for the fi-
nal prediction. The module first leverages the grid index generated by the feature max pooling
module to form the partial weight matrixΘpartial. The sameMatVec unit is then reused to calcu-
late the matrix-vector multiplication Θpartial × dX, where dX corresponds to the differentiated
grid features mentioned above.

The output results of the FC layer are 2 numbers. Finally, a comparator-based predictor fol-
lows, which compares these 2 numbers to find the largest one. The larger number corresponds
to a ”Car” prediction, while the smaller one to a ”Background” prediction.

4.6. Processing System Integration
To control and benchmark the accelerator implemented in the PL, it is necessary to design a
host software running on a host CPU, i.e. an ARM core in the PS

The host software written in C code runs in a bare-metal environment. This software has 4

4.6. Processing System Integration 48

Figure 4.13: Hardware diagram of the FC sub-module. The MatVec (same as used in the graph convolution
module) is re-used for the computation of the FC layer, and a predictor follows for generating the final prediction.

Figure 4.14: The host benchmarking workflow. #Correct means the number of correctly predicted samples, and
#Samples represents the total number of samples in the validation/test dataset.

4.7. Hardware Experiments and Results 49

main functions: reading 1 the dataset in an SD card and storing it into the external DRAM, con-
trolling the behavior of the accelerator, sending and reading data, and extracting performance
results. The detailed workflow is depicted in Fig. 4.14 and described as follows:

1. At the beginning, the host CPU in the PS fetches a new sample from the dataset, and
sends a data clean signal to the accelerator, to reset all data inside the accelerator to
default values.

2. The actual inference process begins: the host sends one new event data from the se-
lected sample. If the accelerator is idle, the host will start it, and start runtime recording
at the same time.

3. The hardware accelerator selects neighbors for the new event and updates the graph
inside the graph building module, then performs the GNN computation.

4. After the GNN computation, an updated prediction result is sent back to the host. The
host stores the prediction and the accelerator runtime of this event, then sends the next
event data in the sample.

5. Once all events in the sample are processed, the host takes the final prediction result
to compare with the ground truth, i.e. the label of the selected sample. Then, the host
sends a data clean signal, telling the accelerator to prepare for event data from a new
sample.

6. If all samples in the dataset are processed, the host calculates the final prediction accu-
racy and average runtime for one event.

We benchmarked our accelerator with the validation dataset and the test dataset of the NCars.
After benchmarking, the host software can report the statistics through a standard serial port
(such as a USB) for further analysis.

4.7. Hardware Experiments and Results
In this section, we will discuss the experiments and results of our GNN accelerator imple-
mented on the FPGA platform. As mentioned, we implemented our design on the Xilinx KV260
development board containing a Zynq UltraScale+ MPSoC, with the accelerator written in Ver-
ilog and SystemVerilog and implemented in the PL part, and the host software running in an
ARM core located in the PS part. We will report the results in 4 aspects: prediction accuracy,
runtime, FPGA resource usage, and board-level power consumption.

4.7.1. Prediction Accuracy
Table 4.1: Prediction accuracy for the object recognition task on the NCars dataset

Methods Accuracy
NVS-S [19] 91.5%
EvS-S [19] 93.1%
AEGNN [30] 94.5%

Ours (software, validation set) 96.0%
Ours (hardware, validation set) 95.6%

Ours (hardware, test set) 87.8%

1From the viewpoint of the host CPU, the accelerator is regarded as a peripheral device, thus in the following,
the term ”send” means passing data from the CPU to the accelerator, and the term ”read” means fetching data
from the accelerator to the CPU.

4.7. Hardware Experiments and Results 50

The prediction accuracy results are provided in Table 4.1. For a total of 2,462 samples in
the validation dataset, the overall prediction accuracy reaches 95.6% in hardware, which is
consistent with the results of the hardware-algorithm co-design using dynamic event graphs on
the same validation dataset (96.0%), proving that we successfully implemented and deployed
our event-driven GNN algorithm in edge hardware.

For a total of 8,606 samples in the test dataset, the prediction accuracy drops to 87.8%, indicat-
ing reduced generalization capabilities for our event-driven GNN compared to state-of-the-art
models in Table 4.1, which will be further investigated in future work.

4.7.2. Runtime
Table 4.2: Runtime comparison for the software and hardware solutions on the validation dataset.

Methods Runtime
Event-driven GNN (software) 13h50m

Accelerator (hardware) 1h30m

FPGA acceleration also leads to a significantly faster runtime compared with the CPU or GPU
platforms. The measurement results are shown in Table 4.2.

We first measured the total time for the whole benchmarking workflow, including the validation
dataset loading time, and inference time of all samples (i.e. runtime from the start to the end
in Fig. 4.14). Our proposed accelerator demonstrates significant speed-up compared with
the software-only solution: it took 1h30m to process the validation dataset, achieving 9.2×
acceleration with respect to the event-driven GNN software counterpart implemented on an
NVIDIA RTX A6000 GPU platform.

To further assess the potential of the accelerator when integrated into a real-world edge vision
system, we also measured the event runtime, which is the time duration from receiving a new
event to updating the prediction result. The event runtime reaches 16µs on average, basically
matching the event generation time constant of the event-based camera, which is on the order
of microseconds [9].

4.7.3. FPGA Resource Usage
Table 4.3: FPGA resource usage of our proposed hardware accelerator

Resources Usage Total Percentage

Computation LUT 30,908 117,120 26.4%
DSP 228 1,248 18.3%

On-chip
SRAM

LUTRAM 0.45 kB 0.44 MB 0.1%
BRAM 85.2 kB 0.63 MB 13.2%

UltraRAM 1.68 MB 2.25 MB 75.0%

Table 4.3 demonstrates the resource usage of our proposed accelerator on the Xilinx KV260
platform. For the computational resources, we used 26.4% of look-up tables (LUTs) as logic,
and 18.3% of digital signal processors (DSPs), which are mainly used for MAC units in the
graph convolution module. For on-chip SRAM, we used 0.1% of LUTRAM, 13.2% of BRAM,
and 75.0% of UltraRAM, which are mainly consumed by the event queues in the graph building
module.

4.7. Hardware Experiments and Results 51

4.7.4. Power Consumption
We measured the power consumption of the whole system with a power meter. The overall
board-level system power is 6.86W on the Xilinx KV260 edge FPGA platform, which aligns
with the watt-level low-power requirements for edge vision systems, and outlines a promising
path for future ASIC implementations.

5
Conclusion

In this chapter, we will briefly conclude our works and results, with several perspectives for
future works.

In Chapter 3, through hardware-algorithm co-design, we fined-tuned the entire event-driven
GNN to enhance its hardware compatibility in three aspects: graph building algorithms, GNN
architectures, and full-integer quantized computation.

1. We adopted the directed dynamic graph building algorithm proposed in HUGNet [5],
with a restricted maximal number of neighbors and a customized prism neighbor search
range.

2. We adjusted the GNN architecture in AEGNN, and leveraged more hardware-friendly
alternatives for the activation layers and the graph convolution layers.

3. We implemented convolution-BatchNorm folding on GNNs. Based on that, we further ap-
plied a post-training quantization to implement the full-integer computation in our event-
driven GNN.

4. Combining all designs, our event-drivenGNN reached competitive 95.8% and 96.0% pre-
diction accuracies on the NCars validation dataset for static and dynamic graph building
schemes respectively.

In Chapter 4, we implemented our event-driven GNN algorithm into an edge FPGA MPSoC
platform, then benchmarked our event-driven GNN hardware accelerator on-board with the
validation dataset and the test dataset of NCars.

1. Thanks to directed dynamic event graphs, we introduced an edge-free event graph stor-
age scheme and only stored nodes in event queues, which facilitated the hardware map-
ping of our graph building algorithms.

2. We pointed out a novel low-latency computation workflow for multiple graph convolution
layers, the layer-parallel computation, which is enabled by the use of directed graphs for
event-driven GNNs.

3. We designed every layer in an event-driven GNN in hardware, including the graph con-
volution module with layer-parallel computation, the feature max pooling module, and
the FC prediction module.

4. Our accelerator achieved 95.6% prediction accuracy on the validation dataset, which
is consistent with the dynamic result of the hardware-algorithm co-design in software,

52

53

96.0%. Meanwhile, operating in a total 6.86W SoC system power, the accelerator reached
an average 16µs prediction latency per event, and ran 9.2× acceleration compared with
its software counterparts. Our accelerator also reached 87.8% prediction accuracy on
the test dataset, which is acceptable but leaves room for further optimizations in the
future.

Several aspects are worth further exploitation in the future.

1. In-depth research for the accuracy drop of 7.8% on the test dataset compared to the
validation dataset. There are several possible reasons, such as the weak generalization
capabilities of our GNN, or inappropriate system hyperparameters, which we will further
investigate.

2. Configurable graph building hardware modules. For now, the parameters of the graph
building module in our accelerator are fixed, which impedes scalability and flexibility.

3. More challenging computer vision tasks. For now, we target a car recognition task using
the NCars dataset. In the future, adaptation to more challenging tasks, such as object
detection or simultaneous localization and mapping (SLAM), will provide broader appli-
cation scenarios for our accelerator.

References

[1] Pranav Adarsh, Pratibha Rathi, and Manoj Kumar. “YOLO v3-Tiny: Object Detection and
Recognition using one stage improved model”. In: 2020 6th International Conference on
Advanced Computing and Communication Systems (ICACCS). 2020, pp. 687–694. DOI:
10.1109/ICACCS48705.2020.9074315.

[2] ARM. AMBA AXI Protocol Specification. 2023. URL: https://developer.arm.com/
documentation/ihi0022/latest/.

[3] Yin Bi et al. “Graph-based object classification for neuromorphic vision sensing”. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision. 2019, pp. 491–
501.

[4] Michael M. Bronstein et al. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics,
and Gauges”. In: CoRR abs/2104.13478 (2021). arXiv: 2104.13478. URL: https://
arxiv.org/abs/2104.13478.

[5] Thomas Dalgaty et al. “HUGNet: Hemi-Spherical Update Graph Neural Network Ap-
plied to Low-Latency Event-Based Optical Flow”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) Workshops. June 2023,
pp. 3952–3961.

[6] Li Fei-Fei, Rob Fergus, and Pietro Perona. “Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object categories”.
In: 2004 conference on computer vision and pattern recognition workshop. IEEE. 2004,
pp. 178–178.

[7] Matthias Fey and Jan Eric Lenssen. “Fast Graph Representation Learning with PyTorch
Geometric”. In: CoRR abs/1903.02428 (2019). arXiv: 1903.02428. URL: http://arxiv.
org/abs/1903.02428.

[8] Matthias Fey et al. “SplineCNN: Fast Geometric Deep Learning with Continuous B-
Spline Kernels”. In: CoRR abs/1711.08920 (2017). arXiv: 1711.08920. URL: http://
arxiv.org/abs/1711.08920.

[9] Guillermo Gallego et al. “Event-based vision: A survey”. In: IEEE transactions on pattern
analysis and machine intelligence 44.1 (2020), pp. 154–180.

[10] Daniel Gehrig et al. “End-to-end learning of representations for asynchronous event-
based data”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 5633–5643.

[11] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding”. In: arXiv preprint
arXiv:1510.00149 (2015).

[12] M. Hillebrand et al. “High speed camera system using a CMOS image sensor”. In: Pro-
ceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511). 2000,
pp. 656–661. DOI: 10.1109/IVS.2000.898423.

[13] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference on machine
learning. pmlr. 2015, pp. 448–456.

54

https://doi.org/10.1109/ICACCS48705.2020.9074315
https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/ihi0022/latest/
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1711.08920
http://arxiv.org/abs/1711.08920
http://arxiv.org/abs/1711.08920
https://doi.org/10.1109/IVS.2000.898423

References 55

[14] Benoit Jacob et al. “Quantization and training of neural networks for efficient integer-
arithmetic-only inference”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 2704–2713.

[15] Hanme Kim, Stefan Leutenegger, and Andrew J Davison. “Real-time 3D reconstruction
and 6-DoF tracking with an event camera”. In: Computer Vision–ECCV 2016: 14th Eu-
ropean Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part VI 14. Springer. 2016, pp. 349–364.

[16] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: CoRR abs/1609.02907 (2016). arXiv: 1609.02907. URL: http:
//arxiv.org/abs/1609.02907.

[17] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks for efficient in-
ference: A whitepaper”. In: CoRR abs/1806.08342 (2018). arXiv: 1806 . 08342. URL:
http://arxiv.org/abs/1806.08342.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing sys-
tems 25 (2012).

[19] Yijin Li et al. “Graph-based asynchronous event processing for rapid object recognition”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 934–943.

[20] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. “A 128× 128 120 dB 15 µs
Latency Asynchronous Temporal Contrast Vision Sensor”. In: IEEE Journal of Solid-
State Circuits 43.2 (2008), pp. 566–576. DOI: 10.1109/JSSC.2007.914337.

[21] Min Liu and Tobi Delbruck. “Adaptive time-slice block-matching optical flow algorithm for
dynamic vision sensors”. In: BMVC. 2018.

[22] Misha A. Mahowald and Carver Mead. “The silicon retina”. In: Scientific American 264
5 (1991), pp. 76–82.

[23] Anton Mitrokhin et al. “Learning visual motion segmentation using event surfaces”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 14414–14423.

[24] Anh Nguyen et al. “Real-time 6dof pose relocalization for event cameras with stacked
spatial lstm networks”. In:Proceedings of the IEEE/CVFConference onComputer Vision
and Pattern Recognition Workshops. 2019, pp. 0–0.

[25] Garrick Orchard et al. “Converting static image datasets to spiking neuromorphic datasets
using saccades”. In: Frontiers in neuroscience 9 (2015), p. 437.

[26] Charles Ruizhongtai Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classifi-
cation and Segmentation”. In: CoRR abs/1612.00593 (2016). arXiv: 1612.00593. URL:
http://arxiv.org/abs/1612.00593.

[27] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In:
CoRR abs/1506.02640 (2015). arXiv: 1506.02640. URL: http://arxiv.org/abs/1506.
02640.

[28] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage and
organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[29] Rishov Sarkar et al. “FlowGNN: ADataflowArchitecture for Real-TimeWorkload-Agnostic
Graph Neural Network Inference”. In: 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE. 2023, pp. 1099–1112.

https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1806.08342
https://doi.org/10.1109/JSSC.2007.914337
https://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640

References 56

[30] SimonSchaefer, Daniel Gehrig, andDavide Scaramuzza. “AEGNN: Asynchronous Event-
Based Graph Neural Networks”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). June 2022, pp. 12371–12381.

[31] SimonSchaefer, Daniel Gehrig, andDavide Scaramuzza.AEGNN: Asynchronous Event-
based Graph Neural Networks (Demo Video). 2022. URL: https://www.youtube.com/
watch?v=opbFE6OsAeA.

[32] Amos Sironi et al. “HATS: Histograms of Averaged Time Surfaces for Robust Event-
basedObject Classification”. In:CoRR abs/1803.07913 (2018). arXiv: 1803.07913. URL:
http://arxiv.org/abs/1803.07913.

[33] Amr Suleiman et al. “Navion: A Fully Integrated Energy-Efficient Visual-Inertial Odometry
Accelerator for Autonomous Navigation of Nano Drones”. In: 2018 IEEE Symposium on
VLSI Circuits. 2018, pp. 133–134. DOI: 10.1109/VLSIC.2018.8502279.

[34] Stepan Tulyakov et al. “Learning an event sequence embedding for dense event-based
deep stereo”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 1527–1537.

[35] Zonghan Wu et al. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE
Transactions on Neural Networks and Learning Systems 32.1 (2021), pp. 4–24. DOI:
10.1109/TNNLS.2020.2978386.

[36] Xilinx. Kria K26 SOM Data Sheet (DS987). 2023. URL: https://docs.xilinx.com/r/
en-US/ds987-k26-som/Overview.

[37] Chengxi Ye et al. “Unsupervised learning of dense optical flow, depth and egomotion
from sparse event data”. In: arXiv preprint arXiv:1809.08625 (2018).

[38] Rex Ying et al. “Hierarchical Graph Representation Learning with Differentiable Pooling”.
In: CoRR abs/1806.08804 (2018). arXiv: 1806.08804. URL: http://arxiv.org/abs/
1806.08804.

[39] Zhe Zhou et al. “Blockgnn: Towards efficient gnn acceleration using block-circulant weight
matrices”. In: 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE. 2021,
pp. 1009–1014.

[40] Alex Zihao Zhu et al. “EV-FlowNet: Self-supervised optical flow estimation for event-
based cameras”. In: arXiv preprint arXiv:1802.06898 (2018).

https://www.youtube.com/watch?v=opbFE6OsAeA
https://www.youtube.com/watch?v=opbFE6OsAeA
https://arxiv.org/abs/1803.07913
http://arxiv.org/abs/1803.07913
https://doi.org/10.1109/VLSIC.2018.8502279
https://doi.org/10.1109/TNNLS.2020.2978386
https://docs.xilinx.com/r/en-US/ds987-k26-som/Overview
https://docs.xilinx.com/r/en-US/ds987-k26-som/Overview
https://arxiv.org/abs/1806.08804
http://arxiv.org/abs/1806.08804
http://arxiv.org/abs/1806.08804

A
Asynchronous Layers in HUGNet

The 1-hop locality event-driven GNNs, such as HUGNet [5], furthermore allow for executing
features pooling layers and FC layers in an asynchronous, event-driven manner, which is
necessary to build a fully event-driven GNN.

A.1. Asynchronous Event-driven Node Feature Pooling Layer
Since only the features of the new event are changed in HUGNet, asynchronizing grid-based
feature pooling layers is straightforward, which is described in Eq. A.1:

x′
grid = Pool(xnew,xgrid), (A.1)

where the xnew represents the feature vector of the new event generated from the last graph
convolution layer, the grid represents the grid index, thus the xgrid is the previous grid-based
feature pooling outputs, and Pool() represents one type of pooling function, e.g. max pooling.

A.2. Asynchronous FC Layer
The conventional FC layer is a linear transformation y = Θ × x, as introduced in Section
2.2.1. However, each time x changes, the FC layer has to compute again to update y. This
progress is computationally intensive when vector x comprises numerous elements, which is
usually the case if x is derived from a flattening layer. Therefore, an asynchronous FC layer
is proposed to release the computational burden.

The asynchronous FC layer is based on the following equation:

y′ = y + dy = Θ×X+Θpartial × dX, (A.2)

where

X =


x1

· · ·
xgrid

· · ·

 , dX =


x1

· · ·
x′
grid

· · ·

−X = x′
grid − xgrid, (A.3)

57

A.2. Asynchronous FC Layer 58

and

Θ =

 θ1,1 · · · θ1,gridstart · · · θ1,gridend
· · ·

...
θout,1 · · · θout,gridstart · · · θout,gridend

· · ·

 ,

Θpartial =

 θ1,gridstart · · · θ1,gridend

...
θout,gridstart · · · θout,gridend

 ,

(A.4)

where gridstart = (grid− 1) · Cout + 1 and gridend = grid · Cout.

The Cout is the number of elements of the xgrid, while the out represents the output feature
number of this FC layer. The capitalized X indicates that it is derived by flattening the grid
features xgrid. When the upstream xgrid changes, it will also change a part ofX and generate
a narrow vector called differentiated grid features dX. Then multiplying dX with corresponding
partial weights, an output increment dy can be produced and further added into the older y to
deliver the new prediction y′. In this workflow, only partial data is processed in the calculation,
thus saving computational time.

	Abstract
	Acknowledgments
	Introduction
	Preliminaries
	Event Graphs and Graph Building Algorithms
	Key Concepts of Event Graphs
	Classifications of Event Graphs

	Neural Network Fundamentals
	Neural Networks
	Convolutional Neural Networks (CNNs)

	Graph Neural Networks (GNNs)
	Graph Convolution
	Cluster-based Graph Pooling
	Grid-based Node Features Pooling

	Asynchronous Event-driven GNNs
	Event-driven GNNs with Dynamic Event Graphs
	A K-hop Locality Event-driven GNN: AEGNN
	A 1-hop Locality Event-driven GNN: HUGNet

	Edge Vision Systems Application Scenarios
	Optical Flow Estimation
	Object Recognition
	Selected Target Task and Dataset

	Hardware-algorithm Co-design
	Baseline: AEGNN
	Graph Building Algorithms
	Graph Building Improvements
	Degree Limitation
	Neighbor Search Range

	GNN Architecture Search and Optimization
	Activation Functions
	Alternative Graph Convolution
	Network Structure and Simplification

	Quantization
	Graph Convolution - Batch Normalization Folding
	Post-Training Quantization

	Overall Co-design and Event-driven Experiments Results

	Hardware Implementation
	Overall System Architecture
	Graph Building
	Edge-Free Event Graph Storage and Event Queues
	Event-queue-based Neighbor Selection

	Graph Convolution
	Layer-Parallel Computation
	Graph Convolution Hardware Sub-modules

	Grid-based Feature Max Pooling
	Fully Connected Module
	Processing System Integration
	Hardware Experiments and Results
	Prediction Accuracy
	Runtime
	FPGA Resource Usage
	Power Consumption

	Conclusion
	References
	Asynchronous Layers in HUGNet
	Asynchronous Event-driven Node Feature Pooling Layer
	Asynchronous FC Layer

