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Cell tracking with accurate error prediction
 

Max A. Betjes1, Rutger N. U. Kok    2, Sander J. Tans1,3   & Jeroen S. van Zon    1 

Cell tracking is an indispensable tool for studying development by time-lapse 
imaging. However, existing cell trackers cannot assign confidence to 
predicted tracks, which prohibits fully automated analysis without manual 
curation. We present a fundamental advance: an algorithm that combines 
neural networks with statistical physics to determine cell tracks with error 
probabilities for each step in the track. From these, we can obtain error 
probabilities for any tracking feature, from cell cycles to lineage trees, that 
function like P values in data interpretation. Our method, OrganoidTracker 
2.0, greatly speeds up tracking analysis by limiting manual curation to rare 
low-confidence tracking steps. Importantly, it also enables fully automated 
analysis by retaining only high-confidence track segments, which we 
demonstrate by analyzing cell cycles and differentiation events at scale for 
thousands of cells in multiple intestinal organoids. Our approach brings cell 
dynamics-based organoid screening within reach and enables transparent 
reporting of cell-tracking results and associated scientific claims.

Cell proliferation, differentiation, movement and organization in 
complex cell lineages are key to understanding organ homeostasis 
and associated diseases. The development of organoid cultures, 
which recapitulate key features of organ development ex vivo1,2, has 
enabled the study of developmental dynamics at the single-cell level 
using time-lapse microscopy3–8. To address the complex challenge of 
analyzing the dynamics of hundreds of cells in dense three-dimensional 
(3D) organoid architectures over multiple generations, artificial 
intelligence-driven semi-automated algorithms have been developed 
that track cells based on their fluorescently labeled nuclei3,4,9–12.

However, all current cell-tracking approaches face a fundamental 
limitation: algorithms output a single tracking solution among many 
possible solutions, are prone to making errors and yet lack a statistical 
basis to quantify prediction uncertainty (Fig. 1a). This lack of statistical 
interpretability makes rigorous analysis based on cell tracks impossi-
ble, as the inability to assess the confidence of tracking-based results 
can lead to unfounded conclusions and, more generally, limits scientific 
transparency and reproducibility. Finally, the black box nature of cell 
tracking hampers method development and optimization itself, as 
it makes it difficult to identify and tackle the true source of tracking 
errors. By contrast, other widely used bioinformatic methods, such 
as sequence alignment13,14 or differential gene analysis15, do provide 

statistics on their output, and the resulting confidence in data inter-
pretation and reporting was crucial to their widespread adoption.

These problems are particularly acute when studying develop-
ment and tissue homeostasis, in which an error in even a single tracking 
step can radically alter biological interpretation (Fig. 1a). For organoids, 
additional tracking challenges are presented by closely packed nuclei 
that move rapidly during cell division16. While the recent adoption 
of neural networks in cell-tracking algorithms has greatly increased 
tracking quality4,9,10, current methods are far from being free of error, 
especially in organoids3,4. Existing methods use ad hoc heuristics, 
such as rapid nuclear volume changes or large cell displacements, to 
flag potential errors for manual correction3,4. These methods rely on 
manually set cutoffs and user interpretation, which hampers reproduc-
ibility. Moreover, because such heuristics do not provide any measure 
of confidence in the obtained cell tracks, creating error-free data-
sets relies on extensive manual curation, up to the point of checking 
essentially each tracking step. This process can take days for a single 
300–500-cell organoid, making tracking applications such as screen-
ing different growth conditions or mutant backgrounds prohibitively 
time consuming.

Here, we present a conceptually new approach: an algorithm 
that determines both cell trajectories and their error rates (Fig. 1b). 
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alternative cell-linking arrangements are excluded by high-confidence 
tracks of surrounding cells.

Importantly, these innovations now also enable the reporting of 
statistical significance. The resulting OrganoidTracker 2.0 can pro-
vide error probabilities for any lineage feature of interest, from cell 
cycles to entire lineage trees. These error probabilities can then be 
used to assess and report the statistical significance of conclusions 
based on these tracking features, performing a role similar to that  
of P values. Our innovations also enhanced tracking performance.  

Building on our previously developed OrganoidTracker4, we intro-
duced two major innovations: first, we show that neural networks can 
perform key tracking tasks, such as linking cells between time points 
and identifying divisions, while providing accurate estimates of the 
error probability of their prediction. Second, we used concepts from 
statistical physics, including microstates, partition functions and 
marginalization, to combine the neural network error predictions into 
‘context-aware’ error probabilities that implement our intuition that 
a low-probability tracking step can in fact be of high confidence, if all 
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Fig. 1 | Method overview. a, Current cell-tracking algorithms convert microscopy 
images into cell tracks without providing information on accuracy. Yet 
even single errors can greatly alter the biological interpretation of lineages 
(here, change in symmetry of divisions). Hence, extensive manual review is 
required and finally no assessment of statistical confidence can be provided. 
b, OrganoidTracker 2.0 outputs not only tracks but also associated error rate 
estimates, greatly aiding data interpretability and transparency. These error 
estimates also enable drastically reduced manual review or fully automated 
filtering to achieve high-confidence datasets. c, Method workflow, highlighting 

two new components (gray boxes): i, Generation of 3D confocal stacks of nuclear 
marker fluorescence. ii, Neural network detection of nuclear centers. iii, Neural 
network prediction of cell linking or division probabilities, based on image 
crops. iv, Constructing a graph representation of the tracking problem, based on 
predicted link and division probabilities. v, Determination of the globally optimal 
solution representing the most likely cell trajectories. vi, Estimating link error 
rates through systematic comparison with alternative tracking solutions.  
vii, Predicted cell tracks with error rate predictions for individual links.
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First, OrganoidTracker 2.0 is a highly competitive cell tracker, with 
output tracks containing errors at <0.5% per cell per frame for intestinal 
organoid data, even before manual curation. Moreover, it drastically 
sped up this manual curation by focusing it on those parts of cell tracks 
that had high predicted error rates. A 60-h movie with over 300 cells 
tracked for over 300 time points was curated in hours rather than 
days. Second, the resulting method enables fully automated analysis 
without any human curation by removing, instead of reviewing, the 
low-confidence parts of cell tracks and using the high-confidence parts 
for further analysis. Demonstrating the power of this approach, we 
extracted cell cycle time and rates of differentiation and proliferation 
for 20 organoids in a fully automated manner, thus opening up the 
possibility of high-throughput screening of cellular dynamics. Orga-
noidTracker 2.0 also provides excellent automated tracking for mouse 
blastocysts and Caenorhabditis elegans embryos, with its performance 
for the latter ranking as the best-performing tracking algorithm on 
the Cell Tracking Challenge17. Furthermore, we provide an easy user 
interface, extensive documentation and straightforward retraining 
procedures for different biological model systems.

Results
Method overview
Our method is divided into two parts: first, we use neural networks to 
identify the cells in each frame and predict the probabilities of all pos-
sible links between them (Fig. 1c(i–iv)). Next, we use these results to find 
the most likely tracks and compute their error rates (Fig. 1c(v–vii)). Cen-
tral to our approach is a probabilistic graph description of the tracking 
problem18 (Fig. 2a). Here, each node is a cell detected at one time point, 
while links between nodes represent possible connections between cell 
detections. To each link, we assign a ‘link energy’, defined as the negative 
relative log likelihood of a link being true, so that low energy indicates 
a more plausible link. Similarly, we determine a ‘division energy’ for 
each node that indicates division likelihood. Expressing predictions 
of likelihoods as energies allows the use of statistical physics concepts 
to analyze and combine these predictions. A key innovation is that we 
employ neural networks to predict these link and division likelihoods 
based on microscopy data. Here, we leverage a fundamental ability 
of classification neural networks that use a cross-entropy loss during 
training, especially when combined with Platt scaling subsequently19,20, 
namely, that their output scores form accurate probability estimates20, 
which has thus far not been used in tracking applications. Using an 
integer flow solver, we find the collection of paths on the graph with 
the minimal associated energy18, representing the most probable set 
of cell tracks. Finally, we use the link energies and graph structure to 
compute context-aware error probabilities for every link in the pre-
dicted tracks, thereby providing both cell tracks and their associated 
error rates. Below, we discuss each step in more detail.

Cell detection
We detect cell centers using a 3D U-Net neural network21 (Fig. 2c).  
Specifically, this network uses 3D images of organoids carrying a fluo-
rescent nuclear marker (H2B-mCherry; Supplementary Fig. 1) to predict 
a distance map that, for every pixel, records its distance to the closest 
cell center4,10. Cell centers then correspond to local peaks in this dis-
tance map. This approach enables the generation of training data by 
annotating cell centers, which is less labor intensive than manual 3D 
segmentation of nuclei. A challenge of distance maps is that cell center 
peaks for closely packed nuclei blend into one another, causing under-
segmentation. We therefore developed an adaptive distance map, in 
which we assigned increased distance values to pixels that are almost 
equidistant to two cell centers (Fig. 2c and Supplementary Fig. 2a). 
This ensured that cells remained well separated in the resulting map, 
thus reducing segmentation errors (Supplementary Fig. 2b). Overall, 
the adaptive distance map (together with additional improvements 
in the training data generation and augmentation pipeline; Methods) 

substantially improved detection accuracy compared to that of Orga-
noidTracker 1.0, decreasing the error rate about fourfold. The high 
accuracy only decreased slightly (99% to 95%) when cell nuclei showed 
poor signal-to-noise ratio (SNR) after prolonged imaging (>50 h; Fig. 2d) 
or deep in the imaging volume (>40 μm; Fig. 2e). Finally, predicted cell 
centroids closely aligned with the center of mass of the 3D nuclear 
shape of each cell (Supplementary Fig. 3).

Estimating link and division probability
We then construct the linking graph by connecting each node, repre-
senting a detected cell, through all potential links, culling links that 
represented unrealistically large displacements (Methods). Here, 
links either connect the same cell in two consecutive frames or con-
nect a mother and daughter cell. We designed a neural network that 
takes in cropped 3D fluorescence images centered on the detected 
position of each cell for time points t and t + 1 and predicts the likeli-
hood that they represent the same cell (Fig. 2f). The trained network 
correctly assigned low energy (high likelihood) to links between the 
same cell, even when the fluorescence signal changed substantially, 
while assigning high energy (low likelihood) for links connecting a 
cell to its neighbor, with ‘energy’ defined as the negative relative log 
likelihood. We compared the network’s performance to the baseline 
criterion, often used for tracking22, that the links representing the small-
est displacement between frames are correct. While links representing 
smaller displacements (<3 μm) were often true links in ground truth 
data (Fig. 2g), we also observed true large-displacement links (3–7 μm), 
which often represented dividing cells and are thus essential for line-
age tree reconstruction (Fig. 2g, inset and Supplementary Fig. 4). Only 
the neural network correctly identified these large-displacement links 
(Fig. 2h), both for dividing (Supplementary Fig. 4a–d) and nondividing 
fast-moving (Supplementary Fig. 5a,b) cells.

To determine the likelihood that a node represents a dividing cell, 
thus connected to its daughters by two outgoing links, we exploited the 
distinct nuclear morphology of dividing cells with the chromosomal 
metaphase plate. We designed an additional neural network that used 
3D image crops to predict division likelihood, including the previous 
and subsequent frames to precisely identify the division moment 
(Fig. 2i). For images at different times relative to division, defined as the 
last frame before chromosome separation, division assignment (>50% 
probability) indeed coincided with the moment of division in >90% of 
cases (Fig. 2j). Moreover, cells at time points before or after division 
were only rarely assigned as dividing, even when visually similar to 
cells at the exact division moment.

Prediction accuracy was significantly improved by upsampling 
challenging cases during training: fast-moving and dividing cells for 
links (Supplementary Fig. 6) and dying cells for divisions (Supplemen-
tary Fig. 7). The ability to tailor training datasets to individual tasks is 
a major advantage of our modular approach, compared to merging 
multiple tasks in a single, more complex neural network3,10. Finally, 
we validated that neural network output indeed represented true 
probabilities. We binned all possible links based on their predicted 
likelihood to be correct. For each bin, we calculated the true likelihood, 
that is, the fraction of links that were correct according to the ground 
truth data. We found that predicted likelihoods were well calibrated, 
with predicted and true link likelihood matching for the full likelihood 
range (Fig. 2b).

Track prediction
To construct cell trajectories, we use a min-cost flow-solver algorithm18 
to select the set of links in the probabilistic graph that globally mini-
mize energy and thus maximize the probability of the tracking solu-
tion. While close-to-optimal tracks are obtained readily, the algorithm 
does not guarantee identification of the global optimum, and we typi-
cally found minor mistakes, such as link pairs that decrease global 
energy when swapped. Moreover, flow solvers cannot change the 
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graph structure by adding or merging nodes, causing vulnerability to 
undersegmentation and oversegmentation, respectively23. We there-
fore automatically check whether overall probability is increased by 
swapping link pairs and by adding or merging nodes (Methods and 
Extended Data Fig. 1a,b). This statistically rigorous and fully automated 
post-processing procedure substantially increases the duration over 
which cells can be continuously tracked (Extended Data Fig. 1c).

Context-aware estimation of link error
Central to our approach is estimating the error rate of individual links. 
The ‘naive’ link likelihoods, as predicted by the neural network, provide 
information on each link’s error probability but do not take into account 
the context of the link predictions made for surrounding cells. The 
importance of context is evident already in manual tracking: here, 
human trackers typically first establish high-confidence links, which 
in turn, by reducing the remaining possible links, facilitates subsequent 
assignment of lower-confidence links. Such contextual information 
can also be computed in our probabilistic framework. This is illustrated 
by the simplified graph in Fig. 3a, in which the likelihood of a low- 
confidence link being true is increased dramatically (from 50% to 98%) 
in the context of the larger graph, because high-likelihood links exclude 
all alternative linking arrangements. To generalize this notion (Fig. 3b), 
we calculate the energy E(Wi) for each possible tracking solution Wi by 
summing all link and division energies, with the solution likelihood 
proportional to e−E(Wi). The ‘context-aware’ likelihood of link A is then 
given by the total likelihood of all tracking solutions containing that 
link, ∑ e−E(Wi,A) , normalized to the sum for all possible solutions, 
∑ e−E(Wi). We call this procedure marginalization, as all other variables 
are marginalized out to arrive at a single-link error rate estimate with-
out referencing any other links. As computing all possible tracking 
solutions is unfeasible, we considered only local subgraphs of links 
less than three steps away (Fig. 3b and the Methods). Increasing sub-
graphs to four links away did not improve prediction accuracy 
(Extended Data Fig. 2 and the Methods). For three-link subgraphs, 
marginalization required <1 h for a 60-h time-lapse dataset.

Our marginalization procedure assumes that the individual link 
and division predictions are independent. However, these predictions 
are partially based on shared inputs, as the image crops used as input 
might overlap. Assuming that predictions represent independent evi-
dence causes overconfident error predictions when combined, mean-
ing that links deemed very likely (low negative energy) are more often 
false and links deemed unlikely (high positive energy) are more often 
true than predicted (Extended Data Fig. 2). We therefore employed 
the similarity with statistical physics to introduce a ‘temperature’ T 
that decreases energies to Ei/T for every neural network prediction i. 
For T > 1, this reduces the confidence of individual predictions to com-
pensate for the overconfidence introduced during the marginalization 

procedure. We obtain the optimal value of T by calibrating the margin-
alized predictions against the ground truth. This employs the same 
data already used for neural network training and validation without 
further user input required (Extended Data Fig. 2 and the Methods).

Overall, our marginalization approach borrows conceptually from 
statistical physics, with each possible tracking solution equivalent to 
a microstate and the normalization factor to the partition function. 
From a probabilistic perspective, our method extends the multipli-
cative opinion-pooling framework24,25, in which different opinions 
(here, neural network predictions) are combined by multiplying and 
normalizing their associated probabilities (Methods and Supplemen-
tary Discussion).

Evaluation of error rate predictions
We compared both naive and context-aware error rate predictions with 
measured error rates, obtained by testing their predictions against 
manually annotated datasets. To avoid bias, these datasets were gener-
ated independently from the OrganoidTracker pipeline. We used these 
ground truth cell centers to generate link and division predictions 
and calculated context-aware error rates. Naive predicted likelihoods, 
that is, before marginalization, were already well calibrated, but links 
identified by the flow solver as part of the globally optimal solution 
displayed measured likelihoods significantly higher than predicted, 
while measured likelihoods were lower than predicted for links rejected 
from the global solution (Fig. 3c). This matches our intuition that the 
graph contains additional information on link likelihood (Fig. 3a), as the 
flow solver selects links based on complete graph information, while 
the neural network uses only on local image information. By contrast, 
context-aware link predictions had strongly improved confidence, 
reducing the mismatch between predicted and measured likelihood 
for both flow-solver-selected and -rejected links (Fig. 3d). Moreover, 
incorporating graph context specifically increased the predicted likeli-
hood of true links while decreasing it for false links (Fig. 3e).

The improved context-aware link predictions have substantial 
practical advantages for error correction. It strongly increased the 
differences in likelihood between links rejected or selected from 
the global solution (Fig. 3f,g). For naive predictions, a large fraction 
(6%) of links selected by the flow solver must be reviewed when using 
<99% predicted probability as the threshold for manual curation. 
For context-aware predictions, this reduced substantially (1%), while 
practically all true linking mistakes (0.12%) were still detected (Fig. 3h). 
Many more links (~25%) must be reviewed to achieve similar accuracy 
using a cell displacement-based heuristic (Supplementary Fig. 8). Our 
marginalization procedure specifically benefitted challenging links 
representing large cell displacements (Supplementary Fig. 5c). As a 
final control, we tested the marginalization procedure in the context 
of our full pipeline by creating new ground truth datasets for three 

Fig. 2 | Probabilistic graph construction by neural networks. a, Probabilistic 
graph workflow. Nodes are detected cells, and gray lines are possible links 
that connect cells between time points. Thicker lines indicate links with lower 
‘energy’, that is, more likely. Blue lines represent the globally optimal solution. 
Cell detection (i) and link and division (div) likelihood (Llink and Ldiv, respectively) 
prediction (iii) are performed by neural networks. b, Neural network-predicted 
relative log likelihoods strongly correlate with measured relative log likelihoods 
(the probability of being true in the manually annotated control) both for links 
and divisions. Dashed line corresponds to perfect calibration. Data represent 
n = 5 organoids, with the shaded region denoting standard deviation around 
the mean. c, A 3D U-Net neural network trained to generate a distance map 
that indicates proximity to nuclear centers. Cell centers (green squares) are 
obtained by peak finding. Smaller squares indicate cell centers located below 
or above the z slice shown. Insets: part of the organoids at higher resolution. 
Scale bars, 25 µm and 5 µm (inset). d,e, Accuracy of cell detection, compared 
to OrganoidTracker 1.0, as a function of time (d) and imaging depth (e), for 
one organoid dataset. Metrics were averaged over ten frames. For e, only cells 

<40 µm deep were included. f, CNN trained to predict link likelihoods, based on 
crops centered around two cells detected at subsequent time points. Output 
images demonstrate a high (green) and low (red) likelihood link prediction, 
corresponding to true and false links, respectively. Scale bars, 5 µm. g, Link 
analysis for manually curated data shows that both true (green) and false (red) 
links are observed for large displacements. Insets: a correct large-displacement 
link of a cell undergoing division. Scale bars, 5 µm. h, Link prediction accuracy. 
For all but the smallest displacements, the neural network strongly outperforms 
predictions based on the ‘smallest-displacement’ criterion, which assigns the 
link that minimizes displacement as correct. i, Neural network trained to predict 
division likelihood based on image crops centered at detected cells. Images show 
three subsequent frames: just before chromosome separation (green border, 
high predicted likelihood) and before and after (red, low predicted likelihood). 
Scale bars, 5 µm. j, Fraction of cell crops assigned as dividing (>50% probability) 
versus time relative to chromosome segregation. Division assignments occur 
predominantly at the exact measured division time.
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organoids through manual curation, resulting again in well-calibrated 
error rates (Extended Data Fig. 3). Lastly, we reduced computation 
time without reducing accuracy by excluding highly unlikely links 
before marginalization, as this did not significantly impact error rate 
computation (Extended Data Fig. 3 and the Methods).

High-level error probabilities for lineage features and  
manual curation
We ran our pipeline on a ~60-h time-lapse dataset of a representative 
organoid (Supplementary Videos 1–3). The rate of predicted potential 
errors (defined as <99% probability links) was 1.5% per cell per frame 
after removing tracks deep in the imaging volume, with potential errors 

predominantly, but not exclusively, concerning divisions (Fig. 4a). 
These error rates can be propagated to complex downstream lineage 
features as p = 1 −∏i Pi, where Pi are the context-aware probabilities 
of all links i of the lineage feature of interest and p is the probability 
that the feature is not correctly tracked (Extended Data Fig. 4). These 
high-level error probabilities enable users to assess the statistical sig-
nificance of, for example, individual cell cycles, the observation that 
cells are sisters or even entire lineage trees (Fig. 4a,b and the Methods). 
These probabilities can thus function similarly to P values, although 
we note that they do not follow from a hypothesis-testing framework. 
This approach also enabled the identification of high-confidence line-
age fragments (p < 0.01, calculated over all links within the fragment), 
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yielding stretches containing multiple cell cycles from uncurated tracks 
(Fig. 4b and Supplementary Fig. 9).

Our accurate knowledge of link probabilities implied that focus-
ing manual correction only on low-confidence links should suffice to 
obtain error-free tracks. To test this, we manually reviewed all links with 
<99% probability. We also reviewed all beginnings and endings of cell 
tracks mid-experiment (0.9% per cell per frame), which represented 
cells dying, entering or exiting the imaging volume or cell detection 
errors. Only a fraction represented true linking or detection errors 

(0.3% per cell per frame; Fig. 4d). However, correcting the few true 
errors strongly improved the lineage trees, complementing them 
with previously unconnected subtrees (Fig. 4c and Supplementary 
Fig. 10), underscoring the importance of identifying even infrequent 
tracking errors. Finally, independent manual tracking of cells in the 
lineages of Fig. 4c yielded identical trees. Correction required ~4 h 
for a dataset in which ~300 distinct cells were tracked in a ~60-h time 
window (Fig. 4e, Supplementary Fig. 10 and Supplementary Video 4). 
When we calculated error probabilities for cell lineages after manual 
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Fig. 3 | Error rate estimation by marginalization. a, Simplified example 
explaining marginalization. Lines indicate putative links A–D, with thickness 
indicating their estimated probability. Link A (red) has a low predicted 
probability. However, the high-probability link D implies that A is true with high 
certainty by excluding options containing B and C. The probability P(A|G) that A 
is true given graph structure G can be calculated by comparing the probability of 
configurations containing link A and those that do not. b, Schematic outline of 
marginalization performed on a subset of links around the link of interest. P(A|G) 
is given by the summed energy of all configurations containing link A normalized 
to the summed energy of all configurations. c,d, Measured link likelihood 
versus naive likelihoods predicted by the neural network (c) or context-aware 
likelihoods calculated by marginalization (d). Data are shown for all possible 
links (black) or links that are either in the global solution (blue) or not (gray). For 
naive likelihoods (c), links in the tracking solution are more likely correct than 
expected, while, for context-aware likelihoods (d), they more closely match 
measured likelihoods, reflecting integration of graph information. Dashed line 

represents perfect calibration. Data for n = 5 organoids. Shaded region is the 
standard deviation around the mean. e, Context-aware likelihoods versus naive 
likelihoods. Dots are individual links. Lines are averages for true (green) or false 
(red) links. Marginalization increased the predicted likelihood of correct links 
while decreasing it for incorrect links. f,g, Number of links versus predicted 
naive (f) or context-aware (g) link likelihood. In f, while most links in the globally 
optimal solution (blue) are predicted with high confidence (>99% probability), 
a fraction have confidence levels similar to those of rejected links (gray). By 
contrast, for g, virtually all globally optimal links are now predicted with high 
confidence. h, Fraction of links in the globally optimal solution deemed low 
confidence (<99% probability). The fraction of low-confidence links that were 
actual errors compared to ground truth (red) is almost identical to the fraction 
of errors among all links (triangle), indicating that a <99% probability threshold 
covers virtually all errors. Marginalization thus reclassified many low-confidence 
links as high-confidence links but not those that represent errors.
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trees by combining underlying error rates. b, Blue lineage fragments are high 
confidence (<0.01 error rate). Users can identify high-confidence cell cycles 
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trees after manual review. Gray lineage sections were added following curation. 
Compared to a, error probabilities now indicate high confidence in the lineages. 
d, Characterization of potential errors. Links flagged as potential errors either 
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required correction. e, Three-dimensional reconstruction with colors indicating 
cells in the same lineage. f, Automated analysis without manual review by filtering 

out low-confidence links and performing survival analysis on the resulting, partly 
censored data. g,h, Survival curve of the fraction of cells not divided at time  
t after birth (g) or after the sister’s division (h). Shown are manually annotated 
(gray) and automatically filtered (red) data for a single organoid. Vertical 
dashed line denotes average cell cycle duration, while the horizontal line shows 
the inferred fraction of cells that stop dividing. Proliferation ceases in 32% of 
cells (g), while 97% of sister cells divide within a 10-h window of one another 
(h), highlighting the dominance of symmetric divisions in intestinal organoid 
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estimate. i, Lineage dynamics parameters obtained by fully automated (red) or 
manual analysis (gray) show excellent agreement. j,k, Automatically obtained 
cell cycle duration and its difference between sisters (j, n = 20 organoids) and the 
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one cell divides (k, n = 19 organoids). Dots represent individual organoids, and 
error bars are the standard deviation around the mean.
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correction, assigning a probability of one to manually corrected links 
and recomputing the marginalized link likelihoods (Methods), we 
found low values (p < 0.05) for all analyzed lineage trees (Fig. 4c), 
indicating high resulting confidence.

Fully automated lineage tracking by error filtering
Manual curation is typically a prerequisite for analysis of 3D cell-tracking 
data. Our ability to accurately estimate linking error rates enables a new 
and fundamentally different approach: to remove low-confidence 
track fragments and analyze only the remaining high-confidence frag-
ments (Fig. 4b,f). For fragments that are high confidence from division 
to division (Fig. 4b), properties such as cell cycle durations could be 
directly measured and compared between different organoids. We 
employed survival analysis (Methods), a statistical framework for deal-
ing with censored (incomplete) data26–28, to quantify a broad range 
of lineage properties while also incorporating information from lin-
eage fragments containing incomplete cell cycles. Specifically, we 
generated Kaplan–Meier survival curves to estimate the fraction of 
nondivided cells as a function of time since cell birth (Fig. 4g), using 
all high-confidence track fragments that included at least one birth. 
This survival curve plateaued at 32%, representing the fraction of 
cells that do not divide again and, hence, have differentiated. We can 
compute cell cycle duration from the survival curve’s decrease in time  
(Methods), yielding a duration of 17 ± 2.8 h. When we extended this 
analysis to sisters, using sister pair fragments to generate survival 
curves relative to the time of sister cell division (Fig. 4h), the curve 
plateaued at 3%, representing the small fraction of sisters in which one 
proliferated and the other did not. This high symmetry between sisters 
is consistent with recent work5,6. Moreover, the survival curve’s steep 
decrease indicated highly similar cell cycle duration between sisters, 
with <2.5 h between sister cell divisions. Overall, survival curves gener-
ated from automatically filtered and manually tracked data showed an 
almost exact overlap (Fig. 4h). Finally, we demonstrated the automated 
nature of this approach by analyzing 20 different organoids (Fig. 4j,k). 
We consistently found similar parameter values and survival curves, 
even as organoids displayed differences in size and morphology, indi-
cating that the underlying lineage dynamics is independent of this 
morphological variation (Fig. 4j,k and Extended Data Fig. 5).

Out-of-sample capabilities
We tested the performance of our neural networks on out-of-sample 
data, which can degrade cell detection and linking performance, lead-
ing to poor tracking, or yield inaccurate error probability predictions. 
We first examined the influence of biological variation by exposing 
organoids to the cell cycle inhibitor palbociclib. Palbociclib exposure 
changed cell appearance and dynamics, with cell division inhibition 
causing smaller nuclei and reduced movement. Nonetheless, cells 
were readily tracked through ~40-h lineages without manual curation 
(Extended Data Fig. 6a), with automated lineage analysis by error fil-
tering demonstrating the expected cell division inhibition (Extended 
Data Fig. 6b,c). Manual curation of part of the data revealed that error 
rates remained well calibrated (Extended Data Fig. 6d).

We next tested the impact of using a different confocal microscope 
(Methods). Differences included lower pixel resolution, lower SNR and 
an objective with higher working distance, with the latter enabling 
imaging cells deeper (60 μm, about ten cell diameters) in the organoid. 
After background subtraction and spatial rescaling to match the train-
ing data image resolution (Methods), cells could be tracked through 
~40-h complex lineages without curation (Extended Data Fig. 7a,b), 
even at a depth of 50 μm where SNR was low (Supplementary Videos 
5 and 6). Here, manual curation revealed slightly overconfident error 
predictions (Extended Data Fig. 7c). However, we recovered perfect 
calibration simply by recalibrating the scaling temperature T used 
during marginalization, without any neural network retraining. This 
recalibrated scaling temperature was obtained by manually reviewing 

~200 links (<2 h of work; Methods) and did not differ between different 
organoids and time points (Extended Data Fig. 7d–f). Finally, we note 
that, even without recalibration, deviations in predicted error rates 
were small, with only 0.06% of links erroneously not flagged for manual 
curation (Extended Data Fig. 7c). Indeed, automated lineage analysis by 
error filtering gave almost identical results before and after recalibra-
tion (Extended Data Fig. 7g,h), suggesting that, while recalibration is 
generally desirable, the impact of bypassing this step is limited.

Finally, we examined performance on a non-organoid model 
system, using published light-sheet microscopy data of mouse blas-
tocysts29. Using the above approach, we could track most cells in 
individual blastocysts through ~25-h lineages, corresponding to the 
16–64-cell stage, and with low error rates (Extended Data Fig. 8a,b and 
Supplementary Videos 7 and 8). Blastocyst cells moved more rapidly 
than intestinal organoid cells, with displacements often larger than the 
typical nucleus diameter, but were still linked correctly (Methods and 
Extended Data Fig. 8b–d). Manual correction revealed minor deviations 
from perfect calibration for error predictions that were corrected by 
recalibrating the scaling temperature (Extended Data Fig. 8e,f).

The versatility of our algorithm without neural network retraining 
contrasts with the typical workflow for machine learning-driven 3D 
cell tracking, in which, for out-of-sample data, new neural networks 
are (re)trained3,9,30.

Neural network retraining
We examined the performance of our full pipeline on an imaging 
dataset that required retraining of the underlying neural networks, 
focusing on a confocal time-lapse microscopy dataset of C. elegans 
embryogenesis hosted by the Cell Tracking Challenge17,31. We trained 
cell detection, division and link prediction neural networks with only 
minimal changes to the training procedure (Methods). We found that 
our method here performed as well as for intestinal organoid data, 
generating cell tracks spanning up to seven generations (Extended 
Data Fig. 9 and Supplementary Video 9), even though training data 
were limited in comparison. Upon manual review of all <99% confidence 
links and cell (dis)appearances, corresponding to 0.9% of total links, 
the resulting data exactly reproduced the known C. elegans lineage 
structure, while predicted error rates were well calibrated. Independent 
verification of our automated tracking results before any correction by 
the Cell Tracking Challenge confirmed the quality of our predictions, 
ranking us first in tracking performance.

Discussion
In this study, we presented a conceptual innovation in cell tracking: 
whereas existing algorithms typically generate tracks with minimal 
information on correctness, OrganoidTracker 2.0 instead estimates the 
confidence in its predictions. Our approach exploits neural networks 
to predict linking and division probabilities based on 3D microscopy 
data and uses statistical physics concepts to adjust these probability 
estimates based on information of surrounding cells. This enables 
highly efficient manual curation, by only correcting a minority of 
low-confidence tracking steps, or fully automated analysis, by using 
only high-confidence track fragments. It also enables computing error 
probabilities for any tracking feature, which function akin to P val-
ues, allowing researchers to report the statistical significance of their 
cell-tracking results and associated scientific claims, which we believe 
will be important in further stimulating the adoption of cell-tracking 
methods in biology. Our approach is readily extended to cell track-
ing in other contexts, such as two-dimensional cultures or embryos. 
OrganoidTracker 2.0 is freely available, with extensive documentation 
and a user-friendly graphical user interface (GUI)4.

Predicting well-calibrated error probabilities required using dis-
tinct neural networks for different tasks rather than a single neural net-
work for cell detection and linking simultaneously3,10. This modularity 
brings further advantages. First, this enabled task-specific optimization 
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both of network architecture and training data, for instance, by upsam-
pling the number of challenging division events when training the 
division network. This optimization is greatly aided by the fact that 
these subtasks have easily interpretable probabilities as their output, 
which allow their isolated evaluation. Second, each network can be 
swapped with other implementations30,32–36 tailored to different model 
systems, as long as they provide well-calibrated probabilities. Finally, 
it allows extending our approach with additional neural networks to 
predict probabilities of other events that impact cell tracking, such as 
cell death, cell extrusion or abnormal divisions37.

Our ability to predict error probabilities represents a fundamen-
tal advance in the cell-tracking field. Current state-of-the-art 3D cell 
tracking typically relies on heuristic rules to identify tracking errors, 
such as flagging unrealistically large displacements or short cell cycle 
times3,4, although more systematic track quality measures were devel-
oped for 3D particle tracking38. Recent 3D cell-tracking algorithms 
used neural networks for cell linking35 and detection30 that provided 
approximate information on link and division probability but not 
in a manner that supports calculating error rates and statistical sig-
nificance. For two-dimensional cell tracking, studies used approaches 
such as linear regression, Bayesian analysis, random forests or Kalman 
filters32–34,39–41 to predict link and division likelihoods, sometimes even 
explicitly calibrating these outputs33, but did not provide error rates 
or otherwise quantify statistical significance based on these. The key 
enabling step here is our marginalization procedure (Fig. 3), which 
increases prediction confidence by incorporating the contextual 
information provided by linking information of surrounding cells. 
Without marginalization, too many links erroneously ranked as low 
confidence for the error probabilities to be useful in subsequent 
analysis (Fig. 3). Our marginalization procedure is independent of 
how link probabilities are calculated and hence could benefit other 
(cell-)tracking algorithms.

Addressing inevitable cell-tracking errors typically requires 
labor-intensive manual review3. Our error rate predictions strongly 
reduced manual curation time by focusing exclusively on uncertain 
links, with a 60-h time-lapse movie of intestinal organoids with ~300 
cells requiring only 4 h of manual review instead of days (Fig. 4). Alter-
natively, selecting only high-confidence fragments of cell tracks or 
lineages allowed the extraction of lineage features and relationships 
without human curation. Using this approach, we extracted key fea-
tures of cell proliferation control, such as cell cycle length, cell cycle 
arrest rate and cell cycle correlations between sister cells at high 
throughput (thousands of cells across 20 organoids, ~1 h of compu-
tation time per organoid on a desktop computer). This automated 
analysis could be extended to other biological events, such as cell death 
or cell cycle stages, when combined with fluorescent markers28,42 or 
neural networks that can detect these events37. Moreover, it enables 
systematic characterization of cell proliferation parameters or other 
features under different conditions43, such as the addition of signaling 
inhibitors or drugs. These experiments seem especially promising in 
cancer research, in which studies have demonstrated the power of 
microscopy-based screens of cancer organoid shape and size44, but 
for which single-cell analysis at scale is not yet feasible45,46.

Our methods functions over a range of systems and image 
modalities, provided the nuclear signal quality is similar to what 
is used for standard manual annotation. Integration of artificial 
intelligence-driven image restoration, which allows denoising and 
deblurring47, or 3D ‘cell painting’, which reconstructs nucleus positions 
based on transmitted light images48, could push beyond this limit. 
Our algorithm processes data on the basis of the full imaging volume, 
which renders the analysis of very large volumes (gigabytes of data per 
frame) prohibitively memory consuming. This might be addressed by 
combining our framework with approaches that tile data into manage-
able subvolumes10. Further improvements could come from replacing 
our convolutional neural networks (CNNs) with transformer-based 

architectures, which can integrate more complete temporal informa-
tion in their cell-tracking predictions49,50, incorporating, for example, 
information on long-term tissue flow. Finally, to calculate error prob-
abilities, we implemented the required marginalization step simply by 
considering all potential tracking solutions in a local neighborhood, 
which is computationally intensive and limits the degree of context 
that is integrated in the error prediction. We speculate that the analo-
gies with statistical physics can be exploited to establish algorithms 
that sample the space of possible tracking solutions more efficiently, 
similar, for example, to the Metropolis–Hastings algorithm51,52.

Our results raise fundamental issues regarding the reporting of 
cell-tracking-based results. For small datasets, manual curation may 
be performed at least on a limited number of key features such as 
divisions. However, for larger datasets, such as embryo or gastruloid 
systems53 or screens involving many conditions, this approach is no 
longer feasible. Yet, once established, reported tracking results are 
often treated as a given, without insight into the uncertainties. Cur-
rently, confidence of these results and associated claims can only be 
assessed by studying the original microscopy images, which is typically 
infeasible. The ability to calculate error probabilities, as we advance 
here, will be of general importance to mitigate this issue. Similar to 
any other form of quantification in science, such error probabilities 
or error probability cutoffs should be reported for displayed cell 
tracks and lineage trees and for lineage features, such as cell cycles. 
Reporting error probabilities of published tracking data will also be 
crucial for data sharing by enabling external users to assess confidence 
in different features of the data, even without access to the underly-
ing microscopy images. Our work here now provides the conceptual 
framework and computational tools to extend this approach to a broad 
range of cell-tracking applications.
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Methods
Organoid culture
Mouse intestinal organoids with an H2B-mCherry reporter were used, 
gifted by N. Sachs and J. Beumer (group of H. Clevers, Hubrecht Insti-
tute). Organoids were grown embedded in membrane extract (BME, 
Trevigen) in medium consisting of murine recombinant epidermal 
growth factor (50 ng ml−1, Life Technologies), murine recombinant 
Noggin (100 ng ml−1, PeproTech), human recombinant R-spondin 1 
(500 ng ml−1, PeproTech), N-acetylcysteine (1 mM, Sigma-Aldrich), N2 
supplement (1×, Life Technologies) and B27 supplement (1×, Life Tech-
nologies), GlutaMAX (2 mM, Life Technologies), HEPES (10 mM, Life 
Technologies) and penicillin–streptomycin (100 U ml−1, 100 μg ml−1, 
Life Technologies) in Advanced DMEM/F-12 medium (Life Technolo-
gies). Organoids were kept in incubators at 37 °C with 5% CO2. The 
medium was changed every 2 d. Each week, organoids were mechani-
cally broken, and the fragments were reseeded.

Sample preparation
Organoids were seeded around 2 d before imaging in four-well cham-
bered coverglass (#1.5 high-performance coverglass) from Cellvis. For 
the organoids to move within the lens working distance and minimize 
the required laser power, we placed the sample on a cold block (~4 °C) 
for 10 min after seeding. In this manner, the organoid fragments could 
sink to the bottom before the gel solidified. Afterward, the BME gel was 
allowed to solidify at 37 °C for 20 min before adding medium.

Microscopy
Imaging was performed on a Nikon A1R MP microscope with a ×40 
oil-immersion objective (numerical aperture, 1.30). Around 30 z slices 
with a step size of 2 µm were taken per organoid every 12 min, with a 
pixel size of 0.32 µm2. For the low signal-to-noise data, imaging was per-
formed with a Leica TCS SP8 microscope with a ×40 water-immersion 
objective (numerical aperture, 1.10) with a pixel size of 0.4 µm2.

Computational resources
All analysis described was carried out on a desktop computer with a 
dedicated graphics card (Nvidia RTX 2080 Ti).

Intestinal organoid training data
Our training data consisted of nine different tracked crypts together 
with nearby villus regions. Time-lapses were between 16 h and 65 h long, 
with the full dataset totaling 281 h (1,405 frames). For a given frame, 
around 150 cells were annotated, meaning that on the order of 200,000 
cell detections and links between are present in the training data. This 
is the same dataset used to train the original OrganoidTracker4; there-
fore, we can confidently say that any improvements are due to the new 
algorithm and not because of an expanded training dataset. All training 
data were generated in the context of an earlier publication5.

Statistics and reproducibility
Representative images (Fig. 2f,g,i) were chosen from hundreds (for 
divisions) or tens of thousands (for links) of similar-looking images. 
Random lineages (Fig. 4a–c) were randomly selected from lineages 
that contained at least one cell at the end point, the ancestry of which 
could be tracked completely in the manually corrected data.

General neural network training and prediction procedure
The input during both training and predicting for all neural net-
works consists of a list in which each item references an image frame 
together with any data needed to create the final neural network 
input (that is, a list of cell centers around which to crop). Only during 
training and prediction are image frames loaded, and the input data 
are generated to minimize the memory footprint. All data augmen-
tation during training is performed at runtime for the same reason. 
Image frames can be loaded from .tiff files but also from common 

platform-specific file formats like .lif (Leica) or .nd2 (Nikon) to avoid 
the need for data conversion.

Before training the neural network, the input list is randomized 
and split into training and validation sets (80% versus 20%). After train-
ing with the link and division detection data, we perform a simple Platt 
scaling based on the validation dataset to ensure that our predictions 
are well calibrated19. During Platt scaling, we try to maximize the likeli-
hood of the ground truth data (x) given our scaled predictions (p*):

L ( p∗|x) = P(x|p∗) =∏iP(xi|p
∗
i ),

with, for a given link or division prediction i:

L( p∗i |xi = 0) = p(xi = 0|p∗i ) = 1 − p∗i , and

L(p∗i |xi = 1) = P(xi = 1|p∗i ) = p∗i ,

where the scaled predictions are given in terms of the original predic-
tions, p, by (with A and B to be optimized):

p∗ = 1
1 + exp (−Aln ( p

1−p
) + B)

.

The maximum likelihood is then found by minimizing the 
cross-entropy loss between x and p*:

min
A,B

∑ xi log (p∗i ) + (1 − xi) log (1 − p∗i ) .

Gradient descent is performed using the Adam optimizer for all 
neural networks. The full network architectures can be found on our 
GitHub (https://github.com/jvzonlab/OrganoidTracker).

Cell center detection: generating training data
To detect cell centers, we use both the frame at the time point of interest 
and the subsequent frame to give the neural network access to dynamic 
information. We crop the images to a box that contains all annotated 
cell centers to avoid learning on unannotated regions. Images are then 
normalized, after which random crops (32 × 96 × 96 × 2t) are made. 
Users can set arbitrary time windows and crop sizes when training 
their own neural networks.

To augment the data, these crops are randomly flipped along the 
x or y axis (50% of cases) or randomly rotated and scaled (by a random 
factor between 0.8 and 1.2). Further augmentation is performed by 
randomly changing the contrast by exponentiation of the intensity 
values by a random number (between 0.8 and 1.2). The fluorescence 
intensity decay with increasing image depth can vary greatly between 
imaging settings. We therefore also augment the data by increasing the 
decay in intensity with depth by a random factor, such that the deepest 
frame can have up to a fourfold reduction in intensity.

Cell center detection: distance map and weights
The neural network is trained to predict the distance to the nearest cell 
center for every pixel in the image. The distances are transformed by 
a Gaussian function to give rise to diffuse spots centered around cell 
centers. This approach has achieved success in many cell localization 
algorithms when the full segmentation of cells is not available4,10,54. 
We improve this approach by also taking into account distances to 
nearby cells other than the closest one. By increasing the distances 
(and thereby decreasing intensities in the distance map) for pixels that 
are close to another cell, we ensure that the Gaussian spots remain well 
separated. The mathematical description of the ‘adaptive’ distance d 
is given by:

d = dclosest
dmax

+ ∑
i≠ closest

1 − min(dmax,di)
dmax

,
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in which dmax represents the maximum radius within cell centers still 
relevant in computing the distance value for a pixel. It can be chosen 
up to the minimum distance between two cell centers before spots 
will overlap. The first term measures the distance to the closest cell 
center, while the second term increases this value if other cell centers 
are also within dmax.

The intensity values in the distance map are then given by:

I = e−d2/2r2 ,

in which we choose r to be √1/8 dmax to produce well-separated spots.
The calculation of the distance map is carried out at runtime on 

the GPU for maximum efficiency. It can be implemented using only 
convolutional operations by replacing the minimum operator in the 
equation above with a pseudominimum (soft-min function).

Our algorithm allows users to only partially annotate datasets, 
reflecting the fact that most existing manually tracked data are often 
focused on a limited region of interest due to time considerations. Train-
ing on partial annotations was enabled by assigning large weights to 
pixels in the annotated regions versus the background during training. 
To assign these weights, we change our distance map so that pixels with 
multiple cells nearby have lower distance values associated with them:

d = dclosest
dmax

− ∑
i≠ closest

1 − min(dmax,di)
dmax

.

We then use these distances to calculate the weight values:

W = e−d2/2r2 + b,

where b is a small weight assigned to background pixels. By giving 
some weight to the background, the neural network can learn to ignore 
debris and imaging artifacts outside the foreground. For the intestinal 
organoid data, b is chosen such that half of the total summed weights 
is associated with annotated nuclei and half with the much larger back-
ground region.

Cell center detection: neural network
The neural network used for cell detection is very similar to the 3D 
U-Net used in the previous OrganoidTracker4. The different time points 
in the input are treated as different channels. A new element in the 
network is a final smoothing layer (convolution with a Gaussian ker-
nel with a pixel width of 1.5). Because the center point annotation is 
inherently noisy (not pixel perfect), the predicted output should be 
smooth. By enforcing this explicitly, we reduce overfitting and speed 
up the training.

Cell center detection: peak finding
From the predicted distance map, we localize the cell centers by using 
a peak-finding algorithm, as described before4. Peaks within a certain 
radius (half the typical distance between nuclei) of other higher peaks 
are excluded by the peak-finding process to avoid oversegmentation 
due to noise in the predicted distance map.

During cell division, cells round up and their distance to other 
nuclei increases. At the same time, cells are more prone to overseg-
mentation as H2B fluorescence is not uniformly distributed anymore 
because of chromosome condensation. To counteract this, we revisit 
the cell detections after we have predicted the division probabilities 
(see below) and merge dividing cell detections (defined as having a 
division probability greater than 50%) that are closer than 5 µm from 
each other.

Cell center detection: evaluation
Cell center detection was evaluated as previously described4. We 
compared predicted data with partially annotated manual datasets.  

The evaluation data consisted of five different organoids, imaged 
on different days, for which at least one crypt was fully tracked. The 
organoids were tracked for between 90 and 320 frames.

For every cell center in the manually annotated dataset, we check 
whether there is a predicted cell center within 5 µm; these count as true 
positives. A predicted center can only match a single-cell center in the 
manual data. Unmatched manual annotations are false negatives. Pre-
dicted cell centers that remain unmatched and are within the manually 
annotated region (distance of 5 µm from an annotation) are counted 
as false positives. Consigning the evaluation to annotated regions 
means that mistakes far from the epithelial layer are ignored (that is, 
debris recognized as a nucleus), but these are both rare and generally 
irrelevant for tracking.

Recall is calculated by dividing true positives by the total num-
ber of manual annotations. Precision is defined by dividing the false 
negatives by the amount of predicted cell centers within the annotated 
region. Accuracy is the number of mistakes over the sum of all observa-
tions (true positives, false positives, false negatives).

To test the effect of our ‘adaptive’ distance map, we also trained a 
network on a target mapping that consisted simply of Gaussian spots 
around the cell centers. For these spots to not overlap, we had to half 
their radius relative to the ‘adaptive’ version. The pixel weights were 
kept the same (Supplementary Fig. 2).

Cell center detection: Cellpose comparison
We used the Cellpose 3D module36 to produce nuclear masks for three 
time frames of our test dataset. The Cellpose algorithm was run from 
a dedicated Cellpose plugin in the OrganoidTracker GUI. We used an 
expected nucleus diameter of 25 pixels. After obtaining nuclear masks, 
we computed the centroid positions as the center of mass of each 3D 
mask. We manually removed Cellpose centroids that correspond to 
oversegmentation or undersegmentation. These validated centroids 
were then compared to the OrganoidTracker predictions. The analy-
sis was limited to a tissue depth of 15 µm, avoiding the poor Cellpose 
segmentation for higher depths.

Link detection: proposing possible links
To avoid examining extremely implausible links, we propose links based 
on the distance between the subsequent cell detections. During both 
training and prediction, we only consider links from a cell detection 
to a cell detection in the next frame that are at most two times farther 
away in distance than the closest cell in the next frame.

Link detection: generating training data
The input of the neural network for link prediction consists of a crop 
centered around a cell center, a crop around the cell detection in the 
subsequent frame and a vector describing the distance in pixels between 
the cells. The two crops are 16 × 64 × 64 in size and both contain the two 
time points containing the cell center detections. Users can set arbitrary 
time windows and crop sizes when training their own neural networks.

Data are augmented in the same way as during cell center detec-
tion, except that we do not vary the decay in intensity with depth, as 
the crops are much smaller in the z dimension. Instead, we increase the 
range in which we vary contrast (exponentiation by a number between 
0.5 and 1.5).

To aid prediction, we provide the neural network with direct infor-
mation about the direction of movement by adding the displacement 
vector to the neural network inputs beside the crops around the cell 
centers. It is known that CNNs have trouble integrating information in 
the form of Cartesian coordinates55. We therefore add an extra three 
channels to both crops. These contain, for each pixel, the x, y and z 
distances, respectively, to the other cell center detection in the pro-
posed link.

We upsample difficult cases, cells that are dividing (within a win-
dow of an hour around cell division) or move a considerable distance 
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and the edges are the proposed links. These edges have an associated 
energy penalty that is the relative negative log likelihood that the link 
is true as predicted by the neural network. The nodes have an associ-
ated division penalty, which is again the negative relative predicted 
log likelihood.

Within this framework, we also have to assign energy penalties 
to the events in which a track disappears or appears or when a cell 
detection is a false positive. A track can disappear when a cell dies 
or its next position is not detected. The disappearance probability is 
thus the combination of the death rate and the false negative rate of 
the neural network. Here, the latter makes the dominant contribu-
tion. Tracks can appear when their previous position is not detected, 
which again relates to the false negative rate. The probability of a cell 
detection being spurious is given by the false positive rates. All these 
rates can be estimated from the validation of the cell detection neural 
network and are around 1%. Varying these probabilities within an order 
of magnitude (3% to 0.3%) does not significantly affect track prediction 
or the marginalization procedure (not shown).

To account for cells appearing or disappearing because they are 
close to the edge of the imaging volume and can leave the imaging 
volume, we assign lower (dis)appearance penalties (corresponding 
to a 10% chance of (dis)appearance) to cell detections at the edges of 
the volume.

One could imagine a neural network that would assign explicit 
probabilities to the correctness of cell detections so that we could use 
node-specific (dis)appearance penalties. This should lead to minor 
improvements in track quality, but such an approach would have sev-
eral drawbacks. First of all, training data are limited because the cell 
detection network makes few mistakes. Furthermore, such a neural 
network would have to be retrained every time a new cell detection net-
work is trained, as it is specific to the type of mistakes that that network 
makes. Integrating a neural network to identify dying cells and adapt 
the disappearance probabilities accordingly would be more feasible37 
but of limited use due to the rare nature of cell death in our system.

In principle, the predictions made by division and link detection 
neural networks are probabilities conditional on the correctness of the 
underlying cell detections, because only correct cell detections are in 
the training data. It is possible to assign energy penalties in such a way 
that they represent probabilities of a link or division conditional on 
the existence of the node it is coming from by combining the chance 
that a link is incorrect and that its source node does not exist in a single 
energy penalty. This could avoid including some oversegmentations 
that persist over multiple subsequent frames and have high-probability 
links between them in the tracking solution. But including correct 
links between oversegmented cells is in our case actually the preferred 
behavior. Not including these links would hamper our approach of 
solving these oversegmentations during post-processing (see below). 
This does mean that, after marginalization, we also have to interpret 
the predicted error rates as the chance that the two different cells 
associated with the detections are not linked, not the chance that the 
link is ‘incorrect’ because one of the two detections is due to an overseg-
mentation. Because oversegmentation on its own already introduces 
errors by definition, as a track caused by oversegmentation both has 
to appear out of nowhere and disappear again, this will not cause any 
missed errors.

Flow solver
We use the flow solver developed in ref. 18 to find the most likely set of 
tracks. To help it converge to an optimal solution, we prune the graph 
of high-energy edges. We do this by comparing every edge to its alterna-
tives: links having the same source or target nodes. If a link with a much 
lower penalty is available (>4.0 difference, corresponding to a 10,000 
times more likely link), we remove the edge. This was not done during 
the marginalization evaluation (Fig. 3), in which link removal such as 
this would introduce a bias in the nonmarginalized probabilities for 

(more than 3 µm, less than 7 µm) by replicating these five times in our 
training data.

Link detection: neural network
The first part of the neural network for link detection consists of two 
CNNs. To maximize the amount of information extracted, one CNN takes 
in the concatenated crops while the second CNN takes as input a single 
crop (two identical copies of the second CNN are available to analyze 
both crops). This means that one CNN can integrate pixel information 
between crops and directly assess how similar the two cell detections 
at subsequent time points are. The other CNN is forced to focus on a 
single crop, which could, in combination with information about the 
direction of movement, already be enough to assess the link probability.

The features extracted by the CNNs in combination with the dis-
placement vector are then fed into multiple densely connected neural 
network layers to yield a prediction.

Link detection: evaluation
To evaluate the link neural network, we used the same set of evaluation 
data as used in evaluating the cell center detection. See the main text 
for the evaluation procedure.

To test the effect of adapting the training data, we also trained a 
link detection neural network without upsampling difficult cases (Link 
detection: generating training data). We then compared accuracy, pre-
cision and recall across all evaluation organoids (Supplementary Fig. 6).

Division detection: generating training data
The input of the division detection neural network is a crop (12 × 64 × 64) 
centered around a cell center, with the previous and subsequent frames 
included for dynamic information. Data augmentation is carried out 
in the same manner as during link detection training.

To avoid a too low frequency of images related to cell division, we 
upsample cells in the process of division (within a 1-h window around 
the nucleus dividing) by replicating them ten times in our training 
data. We also upsample all dying cells (cells with tracks ending before 
the end of the experiment), as these can closely resemble dividing 
cells. From all other cell detections, which are often trivial to predict 
as nondividing, only a random subset is included so that they make up 
20% of the total dataset.

Division detection: neural network
The design of the division detection neural network mimics that of 
the link detection network. A CNN extracts features that are then fed 
into a dense layer to generate the prediction. The main difference is 
that, due to the limited nature of the division datasets (there are only 
hundreds of divisions present in our training data), we employ only a 
single dense layer to avoid overfitting.

Division detection: evaluation
To evaluate the division neural network, we again used the same set of 
evaluation data used in evaluating the other neural networks. See the 
main text for the evaluation procedure.

To test the effect of adapting the training data, we also trained a 
division detection neural network without upsampling difficult nondi-
viding cases (‘Division detection: generating training data’). We replaced 
these difficult cases by randomly selected cell centers so that divisions 
make up the same fraction of the training data as in our normal training 
procedure. If we would truly train on an unbiased sampling of the data, 
so that nondivisions make up the vast majority, this would cause the 
training procedure to not converge. We then compared accuracy, preci-
sion and recall across all evaluation organoids (Supplementary Fig. 7).

Graph description
In our graph description of the dataset, we follow the framework devel-
oped ref. 18. Here the nodes of the graph are the detected cell centers 
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very unlikely links. Potential divisions that have a probability below 
0.01 are also removed.

The flow solver sometimes has trouble converging or halts pre-
maturely especially in the presence of a large number of low-certainty 
predictions. To circumvent this, users can also use the Viterbi-style 
algorithm proposed by Magnusson et al.41 as implemented by 
Haubold et al.

Fine-tuning flow-solver solution
Because the flow solver does not guarantee an optimal solution, we 
fine-tune our solution by checking, for every link, whether removing it 
and replacing it with an appearance and a disappearance would lower 
the total energy. We then also look at pairs of links in the solution that 
connect two nodes at time point t with two nodes at time point t + 1 
and check whether they should be replaced with a pair of edges that 
connect the nodes the other way around. We perform three cycles of 
this pruning and swapping of links.

Solving oversegmentation and undersegmentation
Our probabilistic description allows us to add and merge nodes in the 
graph in a statistically rigorous manner to tackle the track fragmen-
tation caused by oversegmentation and undersegmentation. The 
procedure relies on four key parameters: the false positive and false 
negative rates of the cell detection network and the predicted link and 
division probabilities of each cell. The false positive and negative rates 
follow automatically from the validation of the cell detection neural 
network that happens during the training phase, while the link and divi-
sion probabilities are (automatic) predictions from the linking neural 
network and the division neural network. Hence, these parameters are 
in principle obtained through the network training procedure, without 
any further user intervention.

Oversegmentation occurs when a single cell generates two or more 
cell detections, potentially during multiple frames, causing tracks to 
split up erroneously. Such split tracks are identified as follows: these 
pairs of tracks should partially overlap in time (minimum of one frame 
and maximum of three frames) and nodes in the different tracks should 
be connected by relatively high-probability edges that are otherwise 
not part of the tracking solution. This reflects the fact that, if the tracks 
represent the same cell, edges between nodes in the two tracks should 
be likely. If the combined probability of an edge connecting the two 
tracks and the probability of a false positive cell detection, as given 
by the false positive error rate being higher than the probability of a 
track disappearing and another appearing (based on the false negative 
rates), we connect the tracks and prune the overlapping cell detections. 
We add a penalty, reflecting the false positive rate, to the energy of the 
link connecting the two tracks. This accounts for the fact that we have 
ignored a cell detection in creating the link (Extended Data Fig. 1a).

Undersegmentation occurs when a cell is not detected, leading 
to a single track becoming fragmented into two tracks. We identify 
fragmented tracks with a single frame gap between them and propose a 
new node that connects the tracks only if their start and end points are 
within a sufficiently short distance. Here, a cell detection is considered 
near to another one if it is one of the six closest neighbors. The added 
node receives a 3D position that is the average of the positions of the 
start and end points of the two tracks and is assigned a probability of 
being correct that is equal to the false negative error rate. In the graph 
containing all potential links, new edges are then made to all nearby 
nodes, with an energy penalty representing a uniform link probability 
(Extended Data Fig. 1b).

On a practical level, post-processing is implemented by first 
identifying all situations in which cell tracks appear or disappear. The 
algorithm then first addresses oversegmentations by attempting to 
connect appearing tracks with a nearby disappearing track that over-
lap in time for a maximum of three frames. After that, the algorithm 
addresses undersegmentation by attempting to connect appearing 

tracks with a nearby disappearing track that has disappeared just one 
time frame before.

Fundamentally, our post-processing solves a fundamental draw-
back of graph-based tracking frameworks that treat every cell detection 
as independent evidence for the existence of a cell. If, for instance, a cell 
is oversegmented in multiple subsequent time points, this is treated 
as very strong evidence that there are actually two cells present. It is 
obvious that this actually confers little more evidence than a single 
oversegmentation because these detections are and should be highly 
correlated between frames. Revisiting potential oversegmentations 
during post-processing allows us to treat multiple subsequent over-
segmentations as a single false positive event.

Our undersegmentation correction method solves another prob-
lem with using flow solvers for tracking: they can ignore cell detections 
when making tracks but cannot add nodes for missed cell detections. 
A priori, it is difficult to determine where ‘helper’ nodes might need to 
be added, and allowing cell ‘merging’ to deal with undersegmentation18 
makes the tracking problem much less constrained. We instead solve 
it with an easily understandable and straightforward post-processing 
step. Earlier cell-tracking solutions have employed conceptually similar 
methods but have to rely on manually picked parameters to regulate 
post-processing in the absence of a probabilistic description23. By 
contrast, we use our probabilistic graph description to rigorously iden-
tify the proper post-processing steps with minimal need for user-set 
parameters.

There is in principle no need for the user to adapt the post- 
processing procedure for different datasets, as long as the neural 
network-predicted probabilities are well calibrated and the user-set 
(dis)appearance probabilities are realistic (‘Graph description’). Simi-
larly, retraining the neural networks for a new dataset automatically 
ensures proper post-processing on the new dataset as well. When 
reusing already trained neural networks in a new context, it can be 
beneficial to change the (dis)appearance probabilities to reflect the 
performance of the cell detection neural network in this new context.

Marginalization
Marginalization is performed on a subset of the graph to make it 
computationally tractable. We assume that the most informative 
edges (and their associated nodes) are between the same time points 
as the link of interest and are the ones closest to it in space. Distance is 
measured by how many steps on the graph have to be made to traverse 
edgewise from the target node of the link of interest (Extended Data 
Fig. 2b). Taking three steps as cutoff for inclusion in the subset yielded 
a computation time for marginalization similar to the time needed for 
neural network prediction of link and division probabilities, ~1 h for 
an imaging experiment of over 300 frames with over a hundred cell 
detections per frame.

The number of steps used to construct the subgraph can be 
changed by the user. We find that going beyond three steps, which 
already includes all the links of neighboring cells, does not meaning-
fully improve prediction quality (Extended Data Fig. 2c). This lack of 
improvement can partly be explained by marginalized link predictions 
for which the subgraph does not change when increasing from three 
to four steps (~30% of cases). For ~20%, the subgraph simply has no 
connections beyond three steps. For the remaining ~10%, the four-step 
subgraph has too many elements to be evaluated in a reasonable time 
and we are forced to use the three-step subgraph instead. Here, we use 
a cutoff so that no more than ~216 possible tracking solutions have to be 
checked. However, for links for which the subgraph used does grow, we 
still see little change in the prediction. This is mostly because many of 
the predictions with the three-step subgraph were already very high 
confidence (64% of cases are above 99.99% or below 0.001%), suggest-
ing that most contextual information was already incorporated. Any 
further improvement thus made little difference for the prediction 
quality as measured by the cross-entropy loss.
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For every node in the subset, all edges that point to nonmembers 
of the subset are combined in a single edge that accounts for the total 
probability to connect to a node outside of the set.

After subset selection, we construct a set of potential tracking 
solutions, test which solutions fit the graph constraints and calculate 
their associated energy. To avoid having to check the full set of binary 
combinations of events (~2N), we construct the set by varying, for every 
target node in the t + 1 time point, which node in the previous time point 
t it is connected to and combining all these variants. In this manner, the 
number of constructed potential solutions scales as ∼ (NL/NT + 1)NT + 2Ns, 
in which NT is the number of target nodes, Ns is the number of source 
nodes and NL is the number of edges. The target nodes can on average 
contact NL/NT possible source nodes and can appear without a source 
(first term), while the cells represented by the source nodes can either 
disappear or not (second term). We will refer to these possible variants 
as ‘microstates’ of which we will later combine the probabilities to 
compute the error rates.

Microstates can be encoded as a vector with its length as the num-
ber of events (1 if an event, such as a link or division, is part of it; 0 if 
not). To check if a microstate is possible, we can construct a matrix 
that encodes the flow constraints on the graph. This matrix gives the 
net flow into every node when multiplied with a microstate vector. An 
outgoing link or disappearance event represents a flow of −1, while an 
incoming link or appearance gives a flow of 1. Divisions are represented 
with a −1 flow, as they should allow an extra outgoing link. When for one 
or more of the nodes, the flow is unbalanced, the microstate is rejected 
and excluded from the partition function. Total energies are calculated 
by taking the inner product with a vector containing the energy pen-
alty per event. These energies are then divided by the ‘temperature’ 
for proper calibration (‘Motivation for using ‘temperature scaling’’).

The probability of a link of interest (A) being true given all pre-
dictions made on the elements of the subgraph (G) is thus found by 
normalizing the probabilities associated with microstates containing 
that link to the sum of the probabilities of all possible microstates. The 
probability of a given microstate (WA) in turn is proportional to the 
exponent of the negative sum of the energy of all its elements (E(WA)):

p(A|G) =
∑WA

e−E(WA)/T

∑We−E(W )/T
.

To reduce the computational burden, links that are deemed almost 
certainly correct (>99.99%) or incorrect (<0.01%) are marginalized over 
a minimal subgraph containing only the other input edges of the target 
node of the link in question. When the estimated number of microstates 
that would need to be constructed exceeds 216, we shrink the subgraph 
by one ‘step’ to avoid long computation times.

Motivation for using ‘temperature scaling’
The marginalization procedure without temperature scaling assumes 
that the energy penalties are derived from information that is unique 
to the predictor, a neural network in our case. This is not a realistic 
assumption, as predictions might be made on the basis of overlapping 
crops and on shared baseline estimates. Not accounting for this over-
lapping information leads to overconfidence (Extended Data Fig. 2).

In our solution for this problem, we propose to split all predictions 
in a component that is based on inputs shared between neural networks 
and in one based on information unique to that prediction. The predic-
tions (p) can then be seen as the product of the relative probabilities 
based on this shared and unique information:

p
1 − p = pshared

1 − pshared
×

punique

1 − punique
.

This allows us in turn to split up the energy (the negative relative 
log likelihood) in a shared and unique component. We then assume 

that the energy related to the probability based on the shared inputs 
is proportional to the total energy (Ei). This assumption reflects our 
intuition that the confidence of neural network prediction should be 
reflected by both the unique and shared component. If, for instance, 
a link is highly likely, then this can probably be deduced both from the 
shared and the unique information available to the network and both 
energies should be highly negative. This gives:

Ei,unique = Ei − Ei,shared = Ei − aEi,

where a is a constant between zero and one.
When calculating the energy of a microstate (E∗W), we can then sum 

the unique energies while assuming we can combine the shared infor-
mation in a weighted manner. This weighing factor b (smaller then 1) 
should be low if all the shared information is shared between all events 
and higher if the overlap is less (for instance, when a prediction made 
about a link mostly shares information with adjacent links but not with 
all elements in the subset):

E∗W = ∑
i in W

Ei,unique + bEi,shared = ∑
i in W

(1 − a)Ei + baEi.

From this, we derive that we can account for shared information 
by using a single factor that functions as a temperature (T). This tem-
perature is high if much of the information in any given prediction is 
not unique (high a) and if this shared information is shared with all 
other predictions (low b):

E∗W = (1 − a − ba) ∑
i in W

Ei =
1
T ∑

i in W
Ei

with;T = 1
1 − a + ba

.

Marginalization as an opinion-pooling procedure
We can also motivate our marginalization procedure without relying on 
analogies with statistical physics. Instead, we can interpret our method 
as an extension of the ‘multiplicative opinion-pooling’ framework pro-
posed by Dietrich24,25. The idea of combining predictions in a machine 
learning context has an older history56, but the specific framework 
of Dietrich and List enables us to neatly deal with prior probabilities 
and overlapping information. This will prove to be key in producing 
well-calibrated outputs.

Multiplicative opinion pooling suggests that opinions of different 
agents (different predictions by neural networks in our case) can be 
combined by multiplying them:

P (ω) ∝∏iPi (ω) ,

in which ω is a state in the set of possible state and Pi and denotes the 
probabilities predicted by individual predictors. Shared information 
between predictors can be incorporated in this framework by normal-
izing the predictions to the priors of the predictors based on the shared 
information. Conceptually, this means that predictors first arrive at a 
consensus P0 on the basis of their shared prior information, after which 
their unique information is pooled multiplicatively.

P (ω) = cP0 (ω)∏iPi (ω) /Pi,prior (ω) ,

with c functioning as a normalization factor:

c = 1
∑ωP0 (ω)∏i

Pi(ω)
Pi,prior(ω)

.
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In this framework, each predictor must have an opinion on all pos-
sible states. In our case, predictors make only a single prediction on an 
event a (a link or division) that is part of a state. Therefore, we redefine 
multiplicative pooling as:

P (ω) = cP0 (ω)∏a∈ωpa/pa,prior∏a∉ω(1 − pa)/(1 − pa,prior),

in which the microstate probability is now proportional to the product 
of the probabilities that its constitutive parts are true and the other 
events are false. The probability of a given event can then simply be 
calculated as:

P (a) = ∑
ω∋a

P (ω) .

By extending multiplicative pooling in this manner, we retain a 
major motivation behind multiplicative pooling, namely ‘individual- 
wise bayesianity’. This axiom states that it should not matter to the 
final prediction whether extra information is integrated before or 
after the pooling procedure, as the input information is the same. In 
our case, this holds on two levels (see Supplementary Discussion for 
the proof). First, it does not matter when we introduce information 
about a microstate when calculating its probability (P(ω)). It also does 
not matter when information about an individual event is introduced 
when we are calculating its probability (P(a)). This provides large flex-
ibility in post hoc integration of new opinions, such as the judgment 
of a human reviewer.

The question remains of how to extend our concept of ‘tempera-
ture’ to this framework. For simplification, we can rewrite everything 
in terms of relative probabilities (Li = pi/(1 − pi)):

P (a) = c ∑
ω∋a

L0,ω∏
i∈ω

Li
Li,prior

with; c = 1
∑ωL0,ω∏i∈ω

Li
Li,prior

.

The question now remains of how to define the consensus prior L0 
and determine the priors. Dietrich and List suggest using a geometric 
mean on the priors if the shared information is completely shared 
between all agents25. In our case, this is not necessarily true; therefore, 
we let the weight associated to a single prediction be free (b) instead 
of 1/n. For the priors, we again assume that the shared information is 
proportional (with a factor a) to the total information held by an agent.

P (a) = c ∑
ω∋a

∏
i∈ω

Li,prior
b∏

i∈ω

Li
Li,prior

P (a) = c ∑
ω∋a

∏
i∈ω

Li
ab∏

i∈ω
Li

1−a

P (a) = c ∑
ω∋a

∏
i∈ω

Li
1/T

with;T = 1
1 − a + ba

,

which is equivalent to the description we arrived at using the statistical 
physics framework.

We finally wish to contrast this opinion-pooling procedure with 
updating a ‘Bayesian belief matrix’, a (cell-)tracking approach that uses 
link probability estimates to connect nondividing object detections32,57. 
This method cannot integrate division probabilities and can only 
take one type of constraint into account: the fact that cells cannot 

merge. In situations in which these are the only constraints present 
(for instance, when considering a subgraph in which only one cell is 
present at the later time point), we show that this approach is equivalent 
to our marginalization method (Supplementary Discussion).

Estimating the calibration temperature
We find the optimal temperature (as defined by the binary cross- 
entropy loss) by calibrating on the training data. To do this, we use 
neural networks to predict link and division probabilities for the cell 
detections in the training data. Next, we perform marginalization 
and compare marginalized link probabilities to the manual tracking. 
The task is now to find a ‘temperature’ (T), for which the predictions 
pi are closest to the ground truth (li denotes the truth value of a link). 
That is, the temperature for which the likelihood of the ground truth 
given the predictions is maximized, and the binary cross-entropy is 
thus minimized:

min
T

∑ li log (pi) + (1 − li) log (1 − pi) ,

with pi given by:

pi,T =
∑WA

e−E(WA)/T

∑We−E(W )/T
.

In practice, most of the energy contribution in our marginalization 
comes from a handful of, often two, microstates. As an example, the 
dominant microstates of an uncertain link often take the form of an 
option in which all cells move half a cell to the left and another in which 
they move half a cell to the right. For a given link A, one of these states 
dominates the microstates that contain the link (WA) and the other 
state dominates the ones that do not contain it (W\A). This allows us to 
approximate the marginalized probability pi,T as:

pi,T =
1

1 +
∑W\A

e−E(W\A)/T

∑WA
e−E(WA)/T

pi,T ≈
1

1 + (
∑W\A

e−E(W\A )

∑WA
e−E(WA )

)
−1/T

pi,T ≈
1

1 + (pi,T=1/1 − pi,T=1)
1/T

pi,T ≈
1

1 + Li,T=1
1/T

.

This clearly and conveniently maps on a linear regression problem, 
for which we have to learn parameter 1/T given the original marginal-
ized relative likelihoods (Li,T = 1) as an input.

The temperature obtained in this manner works well on data that 
are part of (Extended Data Fig. 2) and outside (‘Evaluation of the margin-
alization procedure’) the training dataset in producing well-calibrated 
error rates. This proves that the simplifications made to arrive at a 
single correction factor amenable to linear regression are allowable.

The obtained temperature (similar to the Platt scaling parameters 
previously) is used in our algorithm as a point estimate without consid-
ering the uncertainty associated with the calibration. This can be justi-
fied by the tight confidence intervals we obtain (Extended Data Fig. 2d) 
and the robust calibration we see across datasets (Fig. 3 and Extended 
Data Fig. 3). For a fully Bayesian description of our framework, which 
includes calibration uncertainty, see the Supplementary Discussion 
(Full Bayesian description of link error prediction framework).
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Evaluation of the marginalization procedure
To evaluate the correctness of the marginalized error rates, we again 
compare our predictions against the five fully manually annotated 
organoids used for the other evaluations. We use the manually anno-
tated cell centers as the input for our division and link detection and 
perform marginalization afterward. This allows us to compare all 
error rate estimates to a fully human-derived ground truth, without 
the need to map machine-predicted cell centers on the cell centers 
annotated by humans. These mappings are not trivial, and errors in 
these mappings can strongly skew the results. Furthermore, because 
the human-assigned links are completely independent from the algo-
rithm output, we deem this the strongest test for our marginalization 
procedure.

We bin the marginalized link predictions in groups based on their 
relative log likelihood (15 bins). For every bin, we then compute the 
average probability of the link being correct and compare this to the 
actual amount of the correct link in this bin as determined by examin-
ing the ground truth.

We also perform this evaluation on the manually reviewed tracking 
data (‘Manual review’). Here we started out with cell centers predicted 
by a neural network. Verifying that the error rates are well calibrated in 
this case shows that the marginalization procedure is not dependent 
on human-annotated cell centers. We compare the error rates against 
tracking data when all links are corrected but no undersegmentations 
or oversegmentations are fixed (Extended Data Fig. 3). Fixing segmen-
tation errors involves changing the graph representation and thus 
introduces links without an associated error rate prediction, making 
evaluation impossible.

Manual review
To evaluate manual annotation, we reviewed the possible errors for 
three complete organoids tracked for around 100 to 300 frames. Poten-
tial errors were flagged at all links that had a marginalized probability 
below 99% and the start and end points of appearing and disappearing 
tracks, respectively. We first corrected all potential link errors and 
used the corrected data to check the calibration of the marginalized 
predictions as described above. We then checked all other errors and 
identified their cause for the largest (>300-frame-long) dataset.

Error correction was carried out in our GUI4, which zooms in on 
errors and informs user about the kind of error they encountered: 
possible link mistake, track appearing or track disappearing. The GUI 
also allows backtracking, that is, the selection of cells of interest, based 
for instance on their cell type or final position, to focus curation and 
analysis only on these cells.

Palbociclib intestinal organoid tracking
Palbociclib (at a final concentration of 10 μM) was added 2 d after seed-
ing, and organoids were then imaged for 2 d. Three crypts that stayed 
in the field of view for the full image duration were chosen for analysis.

To create the ground truth dataset, 50 frames each in two orga-
noids were manually corrected around 20 h after palbociclib treatment.

Out-of-sample use: image preprocessing
For out-of-sample usage of our intestinal organoid trained neural 
network, we have identified two key preprocessing steps to improve 
tracking results: scaling and background subtraction. First, regard-
ing scaling, CNNs (and UNETs by extension) are generally not scale 
free. Therefore, to avoid oversegmentation or undersegmentation, 
the nuclear size should match the nuclear sizes in the training data. 
For same-sized nuclei imaged on different microscopes, this typi-
cally corresponds to matching the pixel resolution. Second, during 
the acquisition of the intestinal organoid training data, the detector 
gain and offset was set such that the background (meaning the region 
outside the organoid) largely had fluorescence values of zero. Subtract-
ing the background so that this holds for the out-of-sample dataset as 

well helps to restrict the cell detections to the region containing the 
tissue, reducing false positive cell detections. Lastly, we have seen 
that, for data in which cells have large differences in nuclear fluores-
cence (unpublished), it helps to reduce the contrast using a gamma 
correction.

Out-of-sample use: recalibration
Recalibration of the error rates for out-of-sample data follows the same 
process as the initial estimation of the scaling temperature (‘Estimating 
the calibration temperature’): we compare the marginalized predic-
tions against a ground truth dataset to find the optimal temperature 
that minimizes the cross-entropy loss between predictions and truth 
values.

To create the ground truth, the user has to correct potential mis-
takes in a number of representative frames. We find that correcting 
around 200 potential linking mistakes is generally enough to obtain 
tight estimates of the new scaling temperature (Extended Data 
Fig. 7e,f). The procedure requires users to review all potential errors 
(<99% probability) in a given frame to avoid bias in which mistakes are 
corrected.

The recalibration procedure thus functions as follows:

1.	 Predict tracks and compute error rates.
2.	 In the manual curation GUI, select frames in which to correct 

potential mistakes (aim for more than 200 potential mistakes).
3.	 Correct mistakes in the GUI.
4.	 Recalibrate the error rates using the temperature-scaling 

functionality.
5.	 Recompute the error rates with the new scaling temperature.

A graphic description of the pipeline users have to follow when 
using neural networks on out-of-sample data including both the 
image-preprocessing and recalibration steps can be found in Extended 
Data Fig. 10.

Out-of-sample use: low-SNR intestinal organoid tracking
The low-SNR intestinal data were taken (but not yet analyzed) in the 
context of Zhang et al., and imaging was carried out as described in 
their paper6. Preprocessing consisted of downscaling in xy by a factor 
of 1.33 to correct for different pixel resolution and background subtrac-
tion using a tophat filter. Post-processing was changed to retain deep 
tracks, up to 60 µm deep in the tissue.

Out-of-sample use: blastocyst tracking
The two longest time series in the BlastoSPIM dataset29 were chosen for 
analysis (the series starting with F30 and F41, respectively). Preproc-
essing consisted of downscaling the image in xy by a factor of 2.5 and 
background subtraction by subtracting a constant value. This down-
scaling was not meant to match the pixel resolution of the blastocyst 
data to that of the training data (different by a factor of 1.25 in xy) but 
rather to match the nuclear volumes, which are considerably larger in 
the blastocyst (nuclear radius29 of ~6.5 µm versus ~3.5 µm in intestinal 
organoids). When a blastocyst underwent a major rotation, we ignored 
that time point in our analysis of the error rates. These major rotations 
occurred only during two frames in only one of the blastocysts. To cor-
rectly track cells through these major rotations, our tracking algorithm 
would simply have to be combined with an image registration step, as 
in the original paper describing the dataset29.

Out-of-sample use: C. elegans cell tracking
We obtained the C. elegans embryo datasets from the Cell Tracking 
Challenge website17. The available training data consisted of two fully 
annotated movies (~150 frames long) following cells from two-cell to 
~128-cell stages.

We trained new cell detection and link and division prediction 
neural networks on the two provided annotated training datasets.  
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As all cells in the imaging volume were annotated, there was no need to 
crop the image during cell detection training, and we could increase the 
background weighting to 0.95 without risking training on unannotated 
cell centers. Due to the difference in nucleus sizes compared to those of 
the intestinal organoid data, we also increased the radius parameters 
in the distance mapping for cell detection. All other networks were 
trained as for the intestinal organoids. We estimated the proper scaling 
temperature for the marginalization by calibrating on the training data 
as described for the intestinal organoid data.

We used one of the unannotated ‘challenge’ datasets to evaluate 
tracking quality and validate that the marginalized probabilities were 
well calibrated. We did this by manually checking all potential errors 
and using the corrected dataset as our reference.

Automated lineage dynamics analysis
For the automated analysis, we first filtered out all links that had a 
marginalized probability below 99%. All tracks that do not end in a 
division are considered censured.

A key assumption underlying survival analysis is that the probabil-
ity of an event happening is independent of the chance of being lost to 
follow-up. In our case, this assumption is broken, as cells are relatively 
often lost when they are close to dividing (due to rapid nucleus move-
ment) and cell division is the key event when studying lineage dynamics. 
This means that we would underestimate the number of dividing cells, 
because we tend to lose track of them just before they divide. We break 
this dependency by using a division detection neural network to check 
for every track that is lost to follow-up if it is lost during the division 
process. We then reassign tracks that end in a predicted division (>50% 
predicted probability) from the censured category to the divided class. 
Now observing the division events is no longer affected by uncertainties 
in tracking during the division process.

The neural network trained for this task was trained in the exact 
same manner as described before except that we are not interested 
in pinpointing the exact moment of chromosome separation. We 
also wish to classify tracks as dividing if they are lost during any other 
moment of the division process. We therefore classify all cells within 
two frames around division as dividing during training. Because of the 
varying length of the division process, we exclude time points directly 
around this window to avoid including cells in the training data that 
look clearly mitotic but are just outside the window.

We can also use this neural network to split tracks that contain a 
division but were not assigned as dividing in initial tracking due to lack 
of a plausible daughter cell, for instance, because one of the daughters 
moved out of view. Therefore, we break up tracks when the chance of 
division is on average higher than 99% for three consecutive frames.

Our method detects some cells with very short cell cycles, in which 
cell division generally leads to cell death and not in two daughter pairs, 
potentially reflecting polyploid cells. These are not classified as divid-
ing in the manually annotated data; therefore, we remove these very 
short cell cycles (less than 6 h). This has the added benefit that it also 
removes some cases in which the division neural network wrongly 
assigns a division to a track end. Although the chance of this happening 
is low, it happens generally in less than 2.5% of tracks.

For survival analysis, we use the ‘surv’ package in R and for the 
fitting ‘survflexcure’. During analysis, we only use tracks that start in a 
division and use the next division as the event under study. Cell cycle 
times are analyzed by fitting a Guassian hazard to the data, allowing for 
a ‘cured’ fraction that will not divide again. The mean of the Gaussian 
represents the average cell cycle, and its standard deviation represents 
the spread around this mean. The ‘cured’ fraction is used as an estimate 
of the fraction of differentiating cells. Before fitting, we remove outli-
ers that are more than ~7 h from the mean (more than three times the 
standard deviation). To avoid dealing with negative times, we fitted a 
log normal distribution to the exponents of the survival times instead 
of using a normal distribution directly.

Manual data for comparison are analyzed in the same manner, 
but the only censoring events derive from cell death, the end of the 
experiment or cells leaving the imaging volume. No neural network 
thus has to be used to check whether censured tracks end in a division.

Video visualization
Three-dimensional rendering of the microscopy with overlaid tracks 
was carried out using Napari. We have written a plugin (available on 
GitHub) that allows importing of tracking results into Napari. The 3D 
reconstruction of lineages using manually curated data (Supplemen-
tary Video 4) was carried out using ParaView. We provide extensive 
documentation that can be used to reproduce this visualization.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Due to storage considerations, all imaging data and accompany-
ing tracking data are available upon request. Sample imaging and 
tracking data are available on Zenodo (https://doi.org/10.5281/
zenodo.13982844)58.

Code availability
OrganoidTracker software is freely downloadable from GitHub (https://
github.com/jvzonlab/OrganoidTracker). The models used are available 
on Zenodo (https://doi.org/10.5281/zenodo.13912686, https://doi.
org/10.5281/zenodo.13946119)59,60.
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Extended Data Fig. 1 | Post-processing of the tracking solution. a) Illustration 
of how post-processing deals with over-segmentations. The blue links represent 
the maximum-likelihood solution, while the grey links are excluded from the 
solution. Over-segmentations are not independent events, but are treated as 
such by the min-cost flow solver, which can lead to fragmentation of tracks 
(left panel). During post-processing we check if track fragments can be joined 
by adding a single link and removing the cell detections associated with the 
over-segmentation. Removing multiple of these nodes is associated with a 
single penalty (Eignore, the relative log-likelihood of over-segmentation, based on 
the false positive cell detection rate) which is added to the new link so that our 
probabilistic description remains correct. b) Illustration of how post-processing 
deals with under-segmentations. The min-cost flow solver cannot add nodes 
to the graph, which can lead to fragmentation of tracks (left panel). During 
post-processing we check if track fragments can be joined by adding a node. 

Adding a node is associated with a penalty (Eaddition, the relative log-likelihood of 
missing a cell detection, based on the false negative detection rate) and the node 
is connected to nearby nodes in the graph with uniform probability. c) Error-free 
track length distributions in a representative tracked organoid. The ground truth 
(green) represents fully manually corrected data, where tracks are only cut short 
by cell death, the end of the experiment, or leaving the field-of-view. The initial 
maximum-likelihood solution (gray) has many more short tracks, which is partly 
solved by post-processing (blue). d) The fraction of cells present at a certain time 
that can be tracked without error from the start of the experiment. Only cells that 
are trackable for the full experiment in the ground truth are considered. By post-
processing the data we can increase the fraction of cells that are trackable for the 
complete experiment (>60 h) from around 50% to around 75%. See the section 
‘Solving over- and undersegmentation’ in the Methods for more details.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Temperature scaling during the marginalization 
procedure. a) Visual illustration of the temperature scaling procedure. The 
prediction on a single link (encoded in its weight) is not independent from 
predictions on nearby links. To account for this shared information we divide 
the link energy by a ‘calibration temperature’ (Eq. 1). The marginalized link 
probability, P(A|B), is then based on scaled energies (Eq. 2). The calibration 
temperature is found by minimizing the cross-entropy loss (CE) between 
the marginalized predictions and the ground truth (y), with respect to this 
temperature (Eq. 3). This scaling temperature has to be calibrated only once after 
training a set of division and link neural networks. The calibration can be done 
on the same data that was used for neural network training. For data far outside 
the training distribution new calibration can be performed on a small manually 
corrected set of links. b) Illustration of the difference subsets used in the 
subsequent plots. Red symbolizes the naïve approach, where the subset simply is 
the link of interest. In this case no marginalization is done. The green subset only 
considers link at a distance of one step from the target node of the link of interest. 
The blue subset goes up to a distance of three steps. This is the largest set that is  
computationally feasible (~1 h of computation time for 300 frames). c) Prediction 
performance as measured by the binary cross entropy loss versus the subgraph 

size, all dots are individual organoids. The loss at the optimal temperature 
(lowest point in panel d) was taken. Increasing subgraph size improves 
prediction, but there is no improvement when going beyond three steps, see 
method section ‘Marginalization’ for further discussion. d) Cross entropy loss 
between predictions and ground truth (based on all 9 organoids in the training 
dataset) for different neighborhoods and temperatures. Minimum loss (dotted 
line) is achieved at higher temperatures when the subset gets larger. All lines 
represent individual organoids. e) Optimal calibration temperature for every 
neighborhood. The error bars represent the 95% confidence interval (this is a 
lower bound as not all observed links are truly independent). Limiting ourselves 
to calibration on the validation dataset that was left during training gives the 
same results. f) Optimal temperatures and confidence intervals (again lower 
bounds) per organoid. The estimates show great overlap between organoids, 
validating that we can use a single calibration temperature for all. g) Predicted 
versus actual log-likelihoods after marginalization on different subsets. 
When marginalizing on larger subsets predictions become overconfident. If 
predictions suggest that links are not correct, more than expected fraction is 
actually correct and the other way around. h) After scaling the energies with the 
proper temperature per subset, we get well-calibrated link predictions.
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Extended Data Fig. 3 | Marginalization during full procedure. a) The predicted 
relative log10-likehoods from the link neural network (black line) is well-calibrated 
when compared to the manually corrected ground truth (dotted line denotes 
perfect calibration). The overestimation at low likelihoods is due to the filtering 
of unlikely links before tracking and marginalization (see Methods). This filtering 
preferentially removes low-probability incorrect links, making the remaining 
ones more likely to be true. The fact that links in the global solution (blue line)  
are much more likely than expected and links excluded from the tracking 
solution (gray line) are less likely than expected, suggests that contextual 
information could improve the error rate prediction. b) Many links in the tracking 
solution are less than 99% (black line) certain based on the naïve predictions.  
c) Marginalization integrates context and largely removes the discrepancy 

between links in and out of the tracking solution. d) Only few links in the tracking 
solution are less than 99% certain after marginalization. e) The fraction of 
uncertain links (<99% certainty) as fraction of total. Marginalization decreases 
the amount of uncertain links around four-fold. The longest experiments, which 
have poorer signal to noise, benefitted most from the marginalization (the black 
lines denote individual experiments). The red fraction indicates actual errors 
in the low-confident fraction. The dotted line the fraction of errors across all 
links including ones that have a high probability of being true, showing that no 
significant amount of errors is missed. f) Five randomly selected lineage trees 
colored by their naïve predicted error rate (yellow to red links are uncertain.  
g) The same trees after marginalization.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Track error rates. a) The predicted likelihood (after 
marginalization) of links in the tracking solution against the measured likelihood 
of being correct based on the manual data (top panel). The line does not overlap 
the dotted line, because not all graph information available to the flow-solver can 
be integrated in the error prediction. Key is that they remain above the dotted 
line so that the error predictions are conservative. The histogram (bottom 
panel) shows the distribution of likelihoods of correct (green) and incorrect 
links (red). Because the linking error rate is so low, incorrect instances cannot be 
seen in the histograms a) and b). The black vertical line indicates the threshold 
of 99% chance of being correct. b) The likelihood of a pair of links both being 
correct can be calculated by combining their constituent probabilities by simple 
multiplication. It does not matter if the links are subsequent (blue line)  

or unconnected (gray line). It is thus not so that a link being true is informative  
of the truth of the subsequent link, beyond its predicted error probability.  
c) The predicted error rates for tracks of arbitrary length. The probability that a 
cell can be correctly traced back to its last division (red dotted lines) is predicted 
for every cell at every timepoint. The probability of the track being correct 
is calculated by multiplying all the constituent probabilities. The tracks are 
compared to the ground truth and deemed correct if they recapitulate it exactly, 
yielding a similar calibration curve to a). d) The same as in c) but now only with 
tracks that span the full cell cycle, again producing a similar calibration curve as 
in a). Error detection works efficiently for full tracks spanning the complete cell 
cycle, only one incorrect track is above the 99% certainty cut-off.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Survival curves for different organoids. a) Kaplan-Meier 
curves describing the fraction of non-divided cells as a function of time since 
division, for 5 organoids where manual reference data was available for the 
complete crypt (grey curve). The shaded region denotes the 95% confidence 
interval. b) Kaplan-Meier curves describing the fraction of non-divided cells 
as a function of the time since the division of the sister cell. c) Comparison of 
manually annotated data to automated analysis for the estimation of three key 
parameters of lineage dynamics. Color indicates whether the variation in cell 
cycle duration or the probability that the cell will divide again was calculated for 
all cell cycles (red) or for cell cycles relative to the moment of division of the sister 
cell (blue). Cell cycle times show almost perfect correlation between manual and 
automated data. The deviation in the cell cycle time is more sensitive to outliers 
and consequently shows poorer correlation. The non-dividing fraction again 

shows strong correlation. d) Overlay of all Kaplan-Meier curves of automatically 
tracked organoids, n = 20, which describes the fraction of non-divided cells as a 
function of time since division. Black line represents the combined data. e) Same 
but as a function of time since the sister division. f) Statistical analysis of organoid 
lineage parameters. Error bars indicate standard deviations around the mean. 
Cell cycle times only show limited variation across organoids and experiments, 
with standard deviation <10% of the mean cell cycle time (left panel). The 
variation around the cell cycle mean for cell cycle times is significantly larger than 
the variation between the cell cycle times of sisters (middle panel), suggesting 
strong correlation between sister pairs. This is further supported by the results 
that given that the sister divides, the non-dividing fraction becomes close to zero 
instead of around 30% (right panel).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Tracking performance on organoids with perturbed 
dynamics. (a) The number of detected cells in the imaging volume for two 
organoids treated with palbociclib, which blocks cell division. After ~10 h 
of Palbociclib exposure, cell death dominates over cell division, leading to 
decreased cell numbers. (b) Distribution of cell cycle lengths (0 h is cell cycle 
start) plotted for the same two organoids. Cells divide either slowly (>25 h) or not 
at all, consistent with Palbociclib action. (c) Thirty randomly selected lineages 
show tracking with very low potential error rates. Cells generally divide only 
once, or not at all. (d) Top: measured link likelihood versus likelihoods predicted 

by the neural network. Data is shown for all possible links (black) or links that 
are either in the global solution (blue). Dotted line is perfect calibration. Data is 
for the 2 different organoids in (a) and (b). Shaded region is S.D.M. Predictions 
for Palbociclib-treated organoids remain well-calibrated, indicating that 
perturbation of cell dynamics does not affect the quality of error predictions. 
Bottom: histogram of the predictions. Almost all links in the tracking solution 
(blue) are above the 99% probability threshold (vertical line) indicating highly 
confident tracking.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Performance for different image acquisition 
parameters. (a) Tracking performance for intestinal organoids imaged on a 
different scanning confocal microscope (Leica TCS SP8) than used for collecting 
the training data (Nikon A1R MP). Consequently, imaging data had lower planar 
resolution (0.4 μm/px rather than 0.32 μm/px), cells could be imaged deeper 
into the organoid, but at low signal-to-noise. Green squares are tracked cells at 
60 μm depth, while red and blue squares are their previous and next locations, 
respectively. The cells marked with an asterisk (*) correspond to cells in the 
lineage trees (right). Open circles (o) denote missed cell detections. Even at this 
comparatively low signal-to-noise ratio most (>80%) cells are detected. The YZ-
cross-section show the depth of these cells in terms of cell number. Lineage trees 
are color-coded by predicted error rate. Most cells can be tracked for multiple 
hours without potential mistakes. b) Same as in a, but for cells at 50 μm. Signal-
to-noise ratios are higher here and all cells are detected, while lineages show cell 
tracking for long (>10 h) periods without potential mistakes. c, d) Top: measured 
link likelihood versus likelihoods predicted by the marginalization procedure 
either without (c) or with (d) recalibration on newly corrected data. Data is shown 
for all possible links (black) or links that are either in the global solution (blue). 
Dotted line is perfect calibration. Data is for the 4 different data sets shown in (e) 
and (f). Shaded region is S.D.M. Without recalibration (c), predicted likelihoods 

are overconfident, for example the 99% probability threshold actually 
corresponds to a lower level of certainty. Using the actual 99% probability 
threshold would increase the number of links needed to be checked  
(c, bottom histogram). However, the number of flagged potential mistakes 
omitted when using the uncalibrated threshold remains low (0.06% of links).  
e) Visualization of the recalibration process. The recalibration constant, defined 
as the ratio of the old and new scaling temperature, is estimated by manual error 
correction of predicted tracks. Graphs show the estimated recalibration constant 
versus the number of frames corrected for four different data sets, as well as all 
data pooled. The estimates converge on the consensus estimate (dotted line)  
for >5 corrected frames. Shaded area denotes 95% confidence interval. f) The 
number of reviewed potential errors (<99% certainty links) as a function of 
frames corrected. Tight estimates of the recalibration constant are reached after 
~200 reviewed potential errors. g) Survival curve indicating the probability that 
a cell has not divided at time t after its birth. Shown are the original (blue, green) 
and recalibrated (orange, red) data for the same organoid. h) Same as g) but for 
the timing of division relative to the sister division. The strong overlap between 
original and recalibrated data indicates that for downstream applications perfect 
calibration is often not essential.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Performance on different system: blastocyst.  
(a) Lineages color-coded by error-rates for a blastocyst developing from the 
16 to 64-cell stage (BlastoSPIM 1.0 dataset), as obtained by tracking without 
manual curation. Many cells can be tracked from the beginning to the end 
without any potential mistakes. b) Blastocyst cells undergoing large movements, 
with subsequent timepoints shown in green and magenta. Green square and 
red circles indicate the current and subsequent detected centroid position, 
respectively. The red line connects these positions, while the blue line connects 
to the centroid position in the previous time point. When either marker is not 
present, then the corresponding positions are >4 μm away from the z-slice 
shown. Our method tracks cells even for displacements larger than the typical 
nucleus size. c) Histogram of potential cell displacements in a single frame, for all 
potential links, with the correctness of each link established by manual curation. 
Many true links represent fast-moving cells, corresponding to displacements 

between timesteps of >1 cell radius, or ~6 μm, large compared to cell movements 
in intestinal organoids both in absolute and relative terms. d) Precision, recall 
and accuracy versus displacement between timesteps, for the optimal tracking 
solution before manual curation. Even fast-moving cells are tracked with high 
accuracy. e, f) Top: measured link likelihood versus likelihoods predicted by 
marginalization, either without (e) or with (f) recalibration on newly corrected 
data. Data is shown for all possible links (black) or links that are either in the 
global solution (blue). Dotted line is perfect calibration. Data is for 2 different 
blastocysts, corresponding to the data in (c) and (d). Shaded region is S.D.M. 
Without recalibration (c) predicted likelihoods are overconfident. Using a 
recalibrated threshold does not majorly increase the number of links to be 
checked (d, bottom histogram), as the bulk of links in the tracking solution 
remains above the 99% probability threshold (black vertical line).
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Extended Data Fig. 9 | C. elegans tracking. a) Z-slices of 3D confocal data for  
C. elegans embryogenesis (training data). b) Using retrained neural networks, 
we obtain well-calibrated link-likelihood predictions (top panel). Almost all links 
in the tracking solution that minimize the global energy (blue) have very high 
marginalized likelihoods (bottom panel). In this data set, only few links in the 
graph are not in the tracking solution (grey) as the nuclei are less closely packed 
then in intestinal organoid data. c) Lineage trees with associated error rates 

show that only few potential errors (41 links with an error probability above 1%) 
are present after automated tracking. d) Lineage trees after manual correction 
of potential errors. The lineages map exactly on the known C. elegans AB, e, MS, 
c, d and P4 sub-lineages, strongly suggesting that no errors remain. e) Tracking 
statistics show a very low error rate and that almost no error in linking.  
Most errors arise from undetected nuclei (under-segmentation), deep in the 
imaging volume.
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Extended Data Fig. 10 | OrganoidTracker 2.0 workflow. Pipeline for using already trained neural networks on new (out-of-sample) data.
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