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Celltrackingis anindispensable tool for studying development by time-lapse
imaging. However, existing cell trackers cannot assign confidence to
predicted tracks, which prohibits fully automated analysis without manual

curation. We present afundamental advance: an algorithm that combines
neural networks with statistical physics to determine cell tracks with error
probabilities for each step in the track. From these, we can obtain error
probabilities for any tracking feature, from cell cycles to lineage trees, that
function like Pvalues in datainterpretation. Our method, OrganoidTracker
2.0, greatly speeds up tracking analysis by limiting manual curation to rare
low-confidence tracking steps. Importantly, it also enables fully automated
analysis by retaining only high-confidence track segments, whichwe
demonstrate by analyzing cell cycles and differentiation events at scale for
thousands of cells in multiple intestinal organoids. Our approach brings cell
dynamics-based organoid screening within reach and enables transparent
reporting of cell-tracking results and associated scientific claims.

Cell proliferation, differentiation, movement and organization in
complex cell lineages are key to understanding organ homeostasis
and associated diseases. The development of organoid cultures,
which recapitulate key features of organ development ex vivo'?, has
enabled the study of developmental dynamics at the single-cell level
using time-lapse microscopy® . To address the complex challenge of
analyzing the dynamics of hundreds of cellsin dense three-dimensional
(3D) organoid architectures over multiple generations, artificial
intelligence-driven semi-automated algorithms have been developed
that track cells based on their fluorescently labeled nuclei**?2
However, all current cell-tracking approaches face afundamental
limitation: algorithms output a single tracking solution among many
possible solutions, are prone to making errors and yet lack a statistical
basisto quantify prediction uncertainty (Fig.1a). Thislack of statistical
interpretability makes rigorous analysis based on cell tracks impossi-
ble, as the inability to assess the confidence of tracking-based results
canlead tounfounded conclusions and, more generally, limits scientific
transparency and reproducibility. Finally, the black box nature of cell
tracking hampers method development and optimization itself, as
it makes it difficult to identify and tackle the true source of tracking
errors. By contrast, other widely used bioinformatic methods, such
as sequence alignment™" or differential gene analysis”, do provide

statistics on their output, and the resulting confidence in data inter-
pretation and reporting was crucial to their widespread adoption.

These problems are particularly acute when studying develop-
mentand tissue homeostasis, inwhich anerrorinevenasingle tracking
step canradically alter biological interpretation (Fig. 1a). For organoids,
additional tracking challenges are presented by closely packed nuclei
that move rapidly during cell division'. While the recent adoption
of neural networks in cell-tracking algorithms has greatly increased
tracking quality*®'°, current methods are far from being free of error,
especially in organoids®*. Existing methods use ad hoc heuristics,
such as rapid nuclear volume changes or large cell displacements, to
flag potential errors for manual correction**. These methods rely on
manually set cutoffs and user interpretation, which hampers reproduc-
ibility. Moreover, because such heuristics do not provide any measure
of confidence in the obtained cell tracks, creating error-free data-
sets relies on extensive manual curation, up to the point of checking
essentially each tracking step. This process can take days for a single
300-500-cell organoid, making tracking applications such as screen-
ing different growth conditions or mutant backgrounds prohibitively
time consuming.

Here, we present a conceptually new approach: an algorithm
that determines both cell trajectories and their error rates (Fig. 1b).
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Fig.1|Method overview. a, Current cell-tracking algorithms convert microscopy
images into cell tracks without providing information on accuracy. Yet
evensingle errors can greatly alter the biological interpretation of lineages
(here, change in symmetry of divisions). Hence, extensive manual review is
required and finally no assessment of statistical confidence can be provided.

b, OrganoidTracker 2.0 outputs not only tracks but also associated error rate
estimates, greatly aiding data interpretability and transparency. These error
estimates also enable drastically reduced manual review or fully automated
filtering to achieve high-confidence datasets. ¢, Method workflow, highlighting

(iv) Probabilistic graph
representation

Interpretable data

High-confidence
fragments

(v) Most likely
tracks

X/ X B
UM Eee

(vii) Tracking with
error rates

swiy

—

(vi) Error rates
by comparing possible

solutions
<
[
@©
S EOCEEEes .
[9) ' '
e} ' '
3 1 !
2 AN
6] 1 '
o ' '
— p 1 —
o mmmmme |
-85 versus
frmmm—-- -

l / A [P oo
it A
Hyafingingd 131

two new components (gray boxes): i, Generation of 3D confocal stacks of nuclear
marker fluorescence. i, Neural network detection of nuclear centers. iii, Neural
network prediction of cell linking or division probabilities, based on image
crops.iv, Constructing agraph representation of the tracking problem, based on
predicted link and division probabilities. v, Determination of the globally optimal
solution representing the most likely cell trajectories. vi, Estimating link error
rates through systematic comparison with alternative tracking solutions.

vii, Predicted cell tracks with error rate predictions for individual links.

Building on our previously developed OrganoidTracker*, we intro-
duced two major innovations: first, we show that neural networks can
perform key tracking tasks, such as linking cells between time points
and identifying divisions, while providing accurate estimates of the
error probability of their prediction. Second, we used concepts from
statistical physics, including microstates, partition functions and
marginalization, to combine the neural network error predictionsinto
‘context-aware’ error probabilities that implement our intuition that
alow-probability tracking step can in fact be of high confidence, if all

alternative cell-linking arrangements are excluded by high-confidence
tracks of surrounding cells.

Importantly, these innovations now also enable the reporting of
statistical significance. The resulting OrganoidTracker 2.0 can pro-
vide error probabilities for any lineage feature of interest, from cell
cycles to entire lineage trees. These error probabilities can then be
used to assess and report the statistical significance of conclusions
based on these tracking features, performing a role similar to that
of Pvalues. Our innovations also enhanced tracking performance.
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First, OrganoidTracker 2.0 is a highly competitive cell tracker, with
output tracks containing errors at <0.5% per cell per frame for intestinal
organoid data, even before manual curation. Moreover, it drastically
sped up thismanual curation by focusing it on those parts of cell tracks
that had high predicted error rates. A 60-h movie with over 300 cells
tracked for over 300 time points was curated in hours rather than
days. Second, the resulting method enables fully automated analysis
without any human curation by removing, instead of reviewing, the
low-confidence parts of cell tracks and using the high-confidence parts
for further analysis. Demonstrating the power of this approach, we
extracted cell cycle time and rates of differentiation and proliferation
for 20 organoids in a fully automated manner, thus opening up the
possibility of high-throughput screening of cellular dynamics. Orga-
noidTracker 2.0 also provides excellent automated tracking for mouse
blastocysts and Caenorhabditis elegans embryos, withits performance
for the latter ranking as the best-performing tracking algorithm on
the Cell Tracking Challenge”. Furthermore, we provide an easy user
interface, extensive documentation and straightforward retraining
procedures for different biological model systems.

Results

Method overview

Our method is divided into two parts: first, we use neural networks to
identify the cellsin each frame and predict the probabilities of all pos-
siblelinks between them (Fig. 1c(i-iv)). Next, we use these results to find
the most likely tracks and compute their error rates (Fig. 1c(v-vii)). Cen-
traltoourapproachisaprobabilisticgraph description of the tracking
problem® (Fig. 2a). Here, eachnode is a cell detected at one time point,
while links between nodes represent possible connections between cell
detections. Toeachlink, we assign a‘link energy’, defined as the negative
relative loglikelihood of alink being true, so that low energy indicates
amore plausible link. Similarly, we determine a ‘division energy’ for
eachnode that indicates division likelihood. Expressing predictions
of likelihoods as energies allows the use of statistical physics concepts
to analyze and combine these predictions. A key innovationis that we
employ neural networks to predict these link and division likelihoods
based on microscopy data. Here, we leverage a fundamental ability
of classification neural networks that use a cross-entropy loss during
training, especially when combined with Platt scaling subsequently'®?°,
namely, that their output scores formaccurate probability estimates®,
which has thus far not been used in tracking applications. Using an
integer flow solver, we find the collection of paths on the graph with
the minimal associated energy’®, representing the most probable set
of cell tracks. Finally, we use the link energies and graph structure to
compute context-aware error probabilities for every link in the pre-
dicted tracks, thereby providing both cell tracks and their associated
error rates. Below, we discuss each step in more detail.

Cell detection

We detect cell centers using a 3D U-Net neural network™ (Fig. 2c).
Specifically, this network uses 3D images of organoids carrying a fluo-
rescent nuclear marker (H2B-mCherry; Supplementary Fig.1) to predict
adistance map that, for every pixel, records its distance to the closest
cell center*'®, Cell centers then correspond to local peaks in this dis-
tance map. This approach enables the generation of training data by
annotating cell centers, which is less labor intensive than manual 3D
segmentation of nuclei. A challenge of distance mapsis that cell center
peaks for closely packed nucleiblend into one another, causing under-
segmentation. We therefore developed an adaptive distance map, in
which we assigned increased distance values to pixels that are almost
equidistant to two cell centers (Fig. 2c and Supplementary Fig. 2a).
This ensured that cells remained well separated in the resulting map,
thus reducing segmentation errors (Supplementary Fig. 2b). Overall,
the adaptive distance map (together with additional improvements
inthe training datageneration and augmentation pipeline; Methods)

substantially improved detection accuracy compared to that of Orga-
noidTracker 1.0, decreasing the error rate about fourfold. The high
accuracy only decreased slightly (99%to 95%) when cell nuclei showed
poor signal-to-noise ratio (SNR) after prolonged imaging (>50 h; Fig.2d)
or deepintheimaging volume (>40 pum; Fig. 2e). Finally, predicted cell
centroids closely aligned with the center of mass of the 3D nuclear
shape of each cell (Supplementary Fig. 3).

Estimating link and division probability

We then construct the linking graph by connecting each node, repre-
senting a detected cell, through all potential links, culling links that
represented unrealistically large displacements (Methods). Here,
links either connect the same cell in two consecutive frames or con-
nect a mother and daughter cell. We designed a neural network that
takes in cropped 3D fluorescence images centered on the detected
position of each cell for time points tand ¢ + 1and predicts the likeli-
hood that they represent the same cell (Fig. 2f). The trained network
correctly assigned low energy (high likelihood) to links between the
same cell, even when the fluorescence signal changed substantially,
while assigning high energy (low likelihood) for links connecting a
cell toits neighbor, with ‘energy’ defined as the negative relative log
likelihood. We compared the network’s performance to the baseline
criterion, often used for tracking®, that the links representing the small-
estdisplacementbetween frames are correct. While links representing
smaller displacements (<3 pm) were often true links in ground truth
data(Fig.2g), we also observed true large-displacement links (3-7 pm),
which often represented dividing cells and are thus essential for line-
agetreereconstruction (Fig.2g, insetand Supplementary Fig. 4). Only
the neuralnetwork correctly identified these large-displacement links
(Fig.2h), both for dividing (Supplementary Fig. 4a-d) and nondividing
fast-moving (Supplementary Fig. 5a,b) cells.

To determinethelikelihood that anoderepresents adividing cell,
thus connected toits daughters by two outgoing links, we exploited the
distinct nuclear morphology of dividing cells with the chromosomal
metaphase plate. We designed an additional neural network that used
3D image crops to predict division likelihood, including the previous
and subsequent frames to precisely identify the division moment
(Fig.2i). Forimages at different times relative to division, defined as the
last frame before chromosome separation, division assignment (>50%
probability) indeed coincided with the moment of divisionin >90% of
cases (Fig. 2j). Moreover, cells at time points before or after division
were only rarely assigned as dividing, even when visually similar to
cells at the exact division moment.

Prediction accuracy was significantly improved by upsampling
challenging cases during training: fast-moving and dividing cells for
links (Supplementary Fig. 6) and dying cells for divisions (Supplemen-
tary Fig. 7). The ability to tailor training datasets to individual tasks is
amajor advantage of our modular approach, compared to merging
multiple tasks in a single, more complex neural network>". Finally,
we validated that neural network output indeed represented true
probabilities. We binned all possible links based on their predicted
likelihood tobe correct. For each bin, we calculated the truelikelihood,
thatis, the fraction of links that were correct according to the ground
truth data. We found that predicted likelihoods were well calibrated,
with predicted and true link likelihood matching for the full likelihood
range (Fig. 2b).

Track prediction

To construct cell trajectories, we use amin-cost flow-solver algorithm™
to select the set of links in the probabilistic graph that globally mini-
mize energy and thus maximize the probability of the tracking solu-
tion. While close-to-optimal tracks are obtained readily, the algorithm
doesnotguaranteeidentification of the global optimum, and we typi-
cally found minor mistakes, such as link pairs that decrease global
energy when swapped. Moreover, flow solvers cannot change the
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graphstructure by adding or merging nodes, causing vulnerability to
undersegmentation and oversegmentation, respectively”. We there-
fore automatically check whether overall probability is increased by
swapping link pairs and by adding or merging nodes (Methods and
Extended DataFig.1a,b). This statistically rigorous and fully automated
post-processing procedure substantially increases the duration over
which cells can be continuously tracked (Extended Data Fig. 1c).

Context-aware estimation of link error

Central to our approachis estimating the error rate of individual links.
The ‘naive’ link likelihoods, as predicted by the neural network, provide
informationoneachlink’s error probability but do not takeinto account
the context of the link predictions made for surrounding cells. The
importance of context is evident already in manual tracking: here,
human trackers typically first establish high-confidence links, which
inturn, by reducing the remaining possible links, facilitates subsequent
assignment of lower-confidence links. Such contextual information
canalsobe computedinour probabilistic framework. Thisisillustrated
by the simplified graphin Fig. 3a, in which the likelihood of a low-
confidencelink being trueisincreased dramatically (from 50% to 98%)
inthe context ofthelarger graph, because high-likelihood links exclude
allalternative linking arrangements. To generalize this notion (Fig. 3b),
we calculate the energy E(W,) for each possible tracking solution W;by
summing all link and division energies, with the solution likelihood
proportional to e, The ‘context-aware’ likelihood of link Ais then
given by the total likelihood of all tracking solutions containing that
link, 3, e"fin) normalized to the sum for all possible solutions,
> e~EWi) We call this procedure marginalization, as all other variables
aremarginalized out to arrive at asingle-link error rate estimate with-
out referencing any other links. As computing all possible tracking
solutions is unfeasible, we considered only local subgraphs of links
less than three steps away (Fig. 3b and the Methods). Increasing sub-
graphs to four links away did not improve prediction accuracy
(Extended Data Fig. 2 and the Methods). For three-link subgraphs,
marginalization required <1 h for a 60-h time-lapse dataset.

Our marginalization procedure assumes that the individual link
and division predictions are independent. However, these predictions
are partially based on shared inputs, as the image crops used as input
might overlap. Assuming that predictions representindependent evi-
dence causes overconfident error predictions when combined, mean-
ingthatlinks deemed very likely (low negative energy) are more often
false and links deemed unlikely (high positive energy) are more often
true than predicted (Extended Data Fig. 2). We therefore employed
the similarity with statistical physics to introduce a ‘temperature’ T
that decreases energies to £,/ T for every neural network prediction i.
For T>1, thisreduces the confidence of individual predictions to com-
pensate for the overconfidence introduced during the marginalization

procedure. We obtain the optimal value of Tby calibrating the margin-
alized predictions against the ground truth. This employs the same
data already used for neural network training and validation without
further userinput required (Extended Data Fig. 2 and the Methods).

Overall, our marginalization approach borrows conceptually from
statistical physics, with each possible tracking solution equivalent to
amicrostate and the normalization factor to the partition function.
From a probabilistic perspective, our method extends the multipli-
cative opinion-pooling framework?*%, in which different opinions
(here, neural network predictions) are combined by multiplying and
normalizing their associated probabilities (Methods and Supplemen-
tary Discussion).

Evaluation of error rate predictions

We compared both naive and context-aware error rate predictions with
measured error rates, obtained by testing their predictions against
manually annotated datasets. To avoid bias, these datasets were gener-
ated independently from the OrganoidTracker pipeline. We used these
ground truth cell centers to generate link and division predictions
and calculated context-aware error rates. Naive predicted likelihoods,
thatis, before marginalization, were already well calibrated, but links
identified by the flow solver as part of the globally optimal solution
displayed measured likelihoods significantly higher than predicted,
while measured likelihoods were lower than predicted for links rejected
from the global solution (Fig. 3c). This matches our intuition that the
graph contains additional information onlink likelihood (Fig. 3a), as the
flow solver selects links based on complete graph information, while
the neural network uses only onlocalimage information. By contrast,
context-aware link predictions had strongly improved confidence,
reducing the mismatch between predicted and measured likelihood
for both flow-solver-selected and -rejected links (Fig. 3d). Moreover,
incorporating graph context specifically increased the predicted likeli-
hood of true links while decreasing it for false links (Fig. 3e).

The improved context-aware link predictions have substantial
practical advantages for error correction. It strongly increased the
differences in likelihood between links rejected or selected from
the global solution (Fig. 3f,g). For naive predictions, a large fraction
(6%) of links selected by the flow solver must be reviewed when using
<99% predicted probability as the threshold for manual curation.
For context-aware predictions, this reduced substantially (1%), while
practically all true linking mistakes (0.12%) were still detected (Fig. 3h).
Many more links (-25%) must be reviewed to achieve similar accuracy
using a cell displacement-based heuristic (Supplementary Fig. 8). Our
marginalization procedure specifically benefitted challenging links
representing large cell displacements (Supplementary Fig. 5c). As a
final control, we tested the marginalization procedure in the context
of our full pipeline by creating new ground truth datasets for three

Fig. 2| Probabilistic graph construction by neural networks. a, Probabilistic
graph workflow. Nodes are detected cells, and gray lines are possible links

that connect cells between time points. Thicker lines indicate links with lower
‘energy’, thatis, more likely. Blue lines represent the globally optimal solution.
Cell detection (i) and link and division (div) likelihood (L, and L, respectively)
prediction (iii) are performed by neural networks. b, Neural network-predicted
relative log likelihoods strongly correlate with measured relative log likelihoods
(the probability of being true in the manually annotated control) both for links
and divisions. Dashed line corresponds to perfect calibration. Data represent
n=>5organoids, with the shaded region denoting standard deviation around
the mean. ¢, A3D U-Net neural network trained to generate a distance map
thatindicates proximity to nuclear centers. Cell centers (green squares) are
obtained by peak finding. Smaller squares indicate cell centers located below

or above the zslice shown. Insets: part of the organoids at higher resolution.
Scale bars, 25 pumand 5 um (inset). d,e, Accuracy of cell detection, compared

to OrganoidTracker 1.0, as a function of time (d) and imaging depth (e), for

one organoid dataset. Metrics were averaged over ten frames. For e, only cells

<40 pmdeep were included. f, CNN trained to predict link likelihoods, based on
crops centered around two cells detected at subsequent time points. Output
images demonstrate a high (green) and low (red) likelihood link prediction,
corresponding to true and false links, respectively. Scale bars, 5 pm. g, Link
analysis for manually curated data shows that both true (green) and false (red)
links are observed for large displacements. Insets: a correct large-displacement
link of a cell undergoing division. Scale bars, 5 pm. h, Link prediction accuracy.
For all but the smallest displacements, the neural network strongly outperforms
predictions based on the ‘smallest-displacement’ criterion, which assigns the
link that minimizes displacement as correct. i, Neural network trained to predict
division likelihood based onimage crops centered at detected cells. Images show
three subsequent frames: just before chromosome separation (green border,
high predicted likelihood) and before and after (red, low predicted likelihood).
Scalebars, 5 um. j, Fraction of cell crops assigned as dividing (>50% probability)
versus time relative to chromosome segregation. Division assignments occur
predominantly at the exact measured division time.
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organoids through manual curation, resulting again in well-calibrated
error rates (Extended Data Fig. 3). Lastly, we reduced computation
time without reducing accuracy by excluding highly unlikely links
before marginalization, as this did not significantly impact error rate
computation (Extended Data Fig. 3 and the Methods).

High-level error probabilities for lineage features and

manual curation

We ran our pipeline on a -60-h time-lapse dataset of a representative
organoid (Supplementary Videos1-3). The rate of predicted potential
errors (defined as <99% probability links) was 1.5% per cell per frame
after removing tracks deep in the imaging volume, with potential errors
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marginalization performed on a subset of links around the link of interest. P(A|G)
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(red) links. Marginalization increased the predicted likelihood of correct links
while decreasing it for incorrect links. f,g, Number of links versus predicted
naive (f) or context-aware (g) link likelihood. In f, while most links in the globally
optimal solution (blue) are predicted with high confidence (>99% probability),
afraction have confidence levels similar to those of rejected links (gray). By
contrast, for g, virtually all globally optimal links are now predicted with high
confidence. h, Fraction of links in the globally optimal solution deemed low
confidence (<99% probability). The fraction of low-confidence links that were
actual errors compared to ground truth (red) is almost identical to the fraction
of errorsamong all links (triangle), indicating that a <99% probability threshold
covers virtually all errors. Marginalization thus reclassified many low-confidence
links as high-confidence links but not those that represent errors.

yielding stretches containing multiple cell cycles from uncurated tracks
(Fig. 4b and Supplementary Fig. 9).

Our accurate knowledge of link probabilities implied that focus-
ing manual correction only on low-confidence links should suffice to
obtainerror-free tracks. To test this, we manually reviewed all links with
<99% probability. We also reviewed all beginnings and endings of cell
tracks mid-experiment (0.9% per cell per frame), which represented
cells dying, entering or exiting the imaging volume or cell detection
errors. Only a fraction represented true linking or detection errors

(0.3% per cell per frame; Fig. 4d). However, correcting the few true
errors strongly improved the lineage trees, complementing them
with previously unconnected subtrees (Fig. 4c and Supplementary
Fig.10), underscoring the importance of identifying even infrequent
tracking errors. Finally, independent manual tracking of cells in the
lineages of Fig. 4c yielded identical trees. Correction required ~4 h
for a dataset in which -300 distinct cells were tracked in a ~60-h time
window (Fig. 4e, Supplementary Fig. 10 and Supplementary Video 4).
When we calculated error probabilities for cell lineages after manual
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Fig.4 | Applications. a, Selected lineages before review, with color indicating
associated error rates. **, Flagged error with a clearly erroneous lineage structure
(unrealistically short cell cycle); *, Not identifiable as an error based on lineage
structure alone. Error probabilities (p.,,) are calculated for entire lineage

trees by combining underlying error rates. b, Blue lineage fragments are high
confidence (<0.01error rate). Users can identify high-confidence cell cycles
(black arrow) or sister pairs (gray arrow) without manual review. ¢, Lineage

trees after manual review. Gray lineage sections were added following curation.
Compared toa, error probabilities now indicate high confidence in the lineages.
d, Characterization of potential errors. Links flagged as potential errors either
represent (dis)appearing cells (blue) or are low confidence (red). A substantial
proportion of potential errors represented short tracks of cellular debris (gray),
with noimpact on lineage trees when removed and only few actual errors that
required correction. e, Three-dimensional reconstruction with colors indicating
cellsin the same lineage. f, Automated analysis without manual review by filtering

out low-confidence links and performing survival analysis on the resulting, partly
censored data. g,h, Survival curve of the fraction of cells not divided at time
tafter birth (g) or after the sister’s division (h). Shown are manually annotated
(gray) and automatically filtered (red) data for a single organoid. Vertical

dashed line denotes average cell cycle duration, while the horizontal line shows
theinferred fraction of cells that stop dividing. Proliferation ceases in 32% of
cells (g), while 97% of sister cells divide within a 10-h window of one another

(h), highlighting the dominance of symmetric divisions in intestinal organoid
growth. Shaded region, 95% confidence interval of the surviving fraction
estimate. i, Lineage dynamics parameters obtained by fully automated (red) or
manual analysis (gray) show excellent agreement. j k, Automatically obtained
cell cycle duration and its difference between sisters (j, n = 20 organoids) and the
fractions of cells that cease proliferation and of asymmetric sisters in which only
one cell divides (k, n =19 organoids). Dots represent individual organoids, and
error bars are the standard deviation around the mean.
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correction, assigning a probability of one to manually corrected links
and recomputing the marginalized link likelihoods (Methods), we
found low values (p < 0.05) for all analyzed lineage trees (Fig. 4c),
indicating high resulting confidence.

Fully automated lineage tracking by error filtering

Manual curationistypically a prerequisite for analysis of 3D cell-tracking
data. Our ability to accurately estimate linking error rates enablesanew
and fundamentally different approach: to remove low-confidence
track fragments and analyze only the remaining high-confidence frag-
ments (Fig. 4b,f). For fragments that are high confidence from division
to division (Fig. 4b), properties such as cell cycle durations could be
directly measured and compared between different organoids. We
employed survival analysis (Methods), a statistical framework for deal-
ing with censored (incomplete) data**, to quantify a broad range
of lineage properties while also incorporating information from lin-
eage fragments containing incomplete cell cycles. Specifically, we
generated Kaplan—-Meier survival curves to estimate the fraction of
nondivided cells as a function of time since cell birth (Fig. 4g), using
all high-confidence track fragments that included at least one birth.
This survival curve plateaued at 32%, representing the fraction of
cells that do not divide again and, hence, have differentiated. We can
computecellcycle duration fromthe survival curve’s decrease in time
(Methods), yielding a duration of 17 £ 2.8 h. When we extended this
analysis to sisters, using sister pair fragments to generate survival
curves relative to the time of sister cell division (Fig. 4h), the curve
plateaued at 3%, representing the small fraction of sisters in which one
proliferated and the other did not. This high symmetry betweenssisters
is consistent with recent work>®. Moreover, the survival curve’s steep
decrease indicated highly similar cell cycle duration between sisters,
with<2.5 hbetweensister cell divisions. Overall, survival curves gener-
ated from automatically filtered and manually tracked datashowed an
almost exact overlap (Fig. 4h).Finally, we demonstrated the automated
nature of this approach by analyzing 20 different organoids (Fig. 4j,k).
We consistently found similar parameter values and survival curves,
evenasorganoids displayed differences insize and morphology, indi-
cating that the underlying lineage dynamics is independent of this
morphological variation (Fig. 4j,k and Extended Data Fig. 5).

Out-of-sample capabilities

We tested the performance of our neural networks on out-of-sample
data, which can degrade cell detection and linking performance, lead-
ingtopoor tracking, oryieldinaccurate error probability predictions.
We first examined the influence of biological variation by exposing
organoids to the cell cycle inhibitor palbociclib. Palbociclib exposure
changed cell appearance and dynamics, with cell division inhibition
causing smaller nuclei and reduced movement. Nonetheless, cells
werereadily tracked through -40-h lineages without manual curation
(Extended Data Fig. 6a), with automated lineage analysis by error fil-
tering demonstrating the expected cell division inhibition (Extended
DataFig. 6b,c). Manual curation of part of the datarevealed that error
rates remained well calibrated (Extended Data Fig. 6d).

We next tested the impact of using a different confocal microscope
(Methods). Differencesincluded lower pixel resolution, lower SNRand
an objective with higher working distance, with the latter enabling
imaging cells deeper (60 pm, about ten cell diameters) in the organoid.
After background subtraction and spatial rescaling to match the train-
ing data image resolution (Methods), cells could be tracked through
~40-h complex lineages without curation (Extended Data Fig. 7a,b),
even at a depth of 50 pm where SNR was low (Supplementary Videos
5and 6). Here, manual curation revealed slightly overconfident error
predictions (Extended Data Fig. 7c). However, we recovered perfect
calibration simply by recalibrating the scaling temperature T used
during marginalization, without any neural network retraining. This
recalibrated scaling temperature was obtained by manually reviewing

~200 links (<2 hof work; Methods) and did not differ between different
organoids and time points (Extended Data Fig. 7d-f). Finally, we note
that, even without recalibration, deviations in predicted error rates
were small, withonly 0.06% of links erroneously not flagged for manual
curation (Extended DataFig. 7c). Indeed, automated lineage analysis by
error filtering gave almostidentical results before and after recalibra-
tion (Extended Data Fig. 7g,h), suggesting that, while recalibration is
generally desirable, the impact of bypassing this step is limited.

Finally, we examined performance on a non-organoid model
system, using published light-sheet microscopy data of mouse blas-
tocysts”. Using the above approach, we could track most cells in
individual blastocysts through ~25-h lineages, corresponding to the
16-64-cell stage, and with low error rates (Extended Data Fig. 8a,band
Supplementary Videos 7 and 8). Blastocyst cells moved more rapidly
thanintestinal organoid cells, with displacements often larger than the
typical nucleus diameter, but were still linked correctly (Methods and
Extended Data Fig. 8b-d). Manual correction revealed minor deviations
from perfect calibration for error predictions that were corrected by
recalibrating the scaling temperature (Extended Data Fig. 8e,f).

Theversatility of our algorithm without neural network retraining
contrasts with the typical workflow for machine learning-driven 3D
cell tracking, in which, for out-of-sample data, new neural networks
are (re)trained®”*,

Neural network retraining

We examined the performance of our full pipeline on an imaging
dataset that required retraining of the underlying neural networks,
focusing on a confocal time-lapse microscopy dataset of C. elegans
embryogenesis hosted by the Cell Tracking Challenge*'. We trained
cell detection, division and link prediction neural networks with only
minimal changes to the training procedure (Methods). We found that
our method here performed as well as for intestinal organoid data,
generating cell tracks spanning up to seven generations (Extended
Data Fig. 9 and Supplementary Video 9), even though training data
were limited in comparison. Upon manual review of all <99% confidence
links and cell (dis)appearances, corresponding to 0.9% of total links,
the resulting data exactly reproduced the known C. elegans lineage
structure, while predicted error rates were well calibrated. Independent
verification of our automated tracking results before any correction by
the Cell Tracking Challenge confirmed the quality of our predictions,
ranking us first in tracking performance.

Discussion

In this study, we presented a conceptual innovation in cell tracking:
whereas existing algorithms typically generate tracks with minimal
information oncorrectness, OrganoidTracker 2.0 instead estimates the
confidenceinits predictions. Our approach exploits neural networks
to predict linking and division probabilities based on 3D microscopy
data and uses statistical physics concepts to adjust these probability
estimates based on information of surrounding cells. This enables
highly efficient manual curation, by only correcting a minority of
low-confidence tracking steps, or fully automated analysis, by using
only high-confidence track fragments. It also enables computing error
probabilities for any tracking feature, which function akin to P val-
ues, allowing researchers to report the statistical significance of their
cell-tracking results and associated scientific claims, which we believe
will be important in further stimulating the adoption of cell-tracking
methods in biology. Our approach is readily extended to cell track-
ing in other contexts, such as two-dimensional cultures or embryos.
OrganoidTracker 2.0is freely available, with extensive documentation
and a user-friendly graphical user interface (GUI)*.

Predicting well-calibrated error probabilities required using dis-
tinct neural networks for different tasks rather than a single neural net-
work for cell detection and linking simultaneously®™°. This modularity
brings furtheradvantages. First, this enabled task-specific optimization

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02845-6

both of network architecture and training data, for instance, by upsam-
pling the number of challenging division events when training the
division network. This optimization is greatly aided by the fact that
these subtasks have easily interpretable probabilities as their output,
which allow their isolated evaluation. Second, each network can be
swapped with otherimplementations®**** tailored to different model
systems, as long as they provide well-calibrated probabilities. Finally,
it allows extending our approach with additional neural networks to
predict probabilities of other events thatimpact cell tracking, such as
cell death, cell extrusion or abnormal divisions™.

Our ability to predict error probabilities represents afundamen-
tal advance in the cell-tracking field. Current state-of-the-art 3D cell
tracking typically relies on heuristic rules to identify tracking errors,
such as flagging unrealistically large displacements or short cell cycle
times**, although more systematic track quality measures were devel-
oped for 3D particle tracking®. Recent 3D cell-tracking algorithms
used neural networks for cell linking® and detection®® that provided
approximate information on link and division probability but not
in a manner that supports calculating error rates and statistical sig-
nificance. For two-dimensional cell tracking, studies used approaches
suchaslinear regression, Bayesian analysis, random forests or Kalman
filters®*>***to predict link and division likelihoods, sometimes even
explicitly calibrating these outputs®, but did not provide error rates
or otherwise quantify statistical significance based on these. The key
enabling step here is our marginalization procedure (Fig. 3), which
increases prediction confidence by incorporating the contextual
information provided by linking information of surrounding cells.
Without marginalization, too many links erroneously ranked as low
confidence for the error probabilities to be useful in subsequent
analysis (Fig. 3). Our marginalization procedure is independent of
how link probabilities are calculated and hence could benefit other
(cell-)tracking algorithms.

Addressing inevitable cell-tracking errors typically requires
labor-intensive manual review?. Our error rate predictions strongly
reduced manual curation time by focusing exclusively on uncertain
links, with a 60-h time-lapse movie of intestinal organoids with ~300
cellsrequiring only 4 hof manual review instead of days (Fig. 4). Alter-
natively, selecting only high-confidence fragments of cell tracks or
lineages allowed the extraction of lineage features and relationships
without human curation. Using this approach, we extracted key fea-
tures of cell proliferation control, such as cell cycle length, cell cycle
arrest rate and cell cycle correlations between sister cells at high
throughput (thousands of cells across 20 organoids, ~1 h of compu-
tation time per organoid on a desktop computer). This automated
analysis could be extended to other biological events, such as cell death
or cell cycle stages, when combined with fluorescent markers*** or
neural networks that can detect these events®. Moreover, it enables
systematic characterization of cell proliferation parameters or other
features under different conditions*, such as the addition of signaling
inhibitors or drugs. These experiments seem especially promising in
cancer research, in which studies have demonstrated the power of
microscopy-based screens of cancer organoid shape and size**, but
for which single-cell analysis at scale is not yet feasible**¢,

Our methods functions over a range of systems and image
modalities, provided the nuclear signal quality is similar to what
is used for standard manual annotation. Integration of artificial
intelligence-driven image restoration, which allows denoising and
deblurring®, or 3D ‘cell painting’, which reconstructs nucleus positions
based on transmitted light images*®, could push beyond this limit.
Our algorithm processes data on the basis of the fullimaging volume,
whichrenders the analysis of very large volumes (gigabytes of data per
frame) prohibitively memory consuming. This might be addressed by
combining our framework with approaches that tile datainto manage-
able subvolumes™. Furtherimprovements could come from replacing
our convolutional neural networks (CNNs) with transformer-based

architectures, which canintegrate more complete temporal informa-
tionin their cell-tracking predictions*>*°, incorporating, for example,
information on long-term tissue flow. Finally, to calculate error prob-
abilities, we implemented the required marginalization step simply by
considering all potential tracking solutions in a local neighborhood,
which is computationally intensive and limits the degree of context
thatisintegratedintheerror prediction. We speculate that the analo-
gies with statistical physics can be exploited to establish algorithms
that sample the space of possible tracking solutions more efficiently,
similar, for example, to the Metropolis-Hastings algorithm®*2,

Our results raise fundamental issues regarding the reporting of
cell-tracking-based results. For small datasets, manual curation may
be performed at least on a limited number of key features such as
divisions. However, for larger datasets, such asembryo or gastruloid
systems® or screens involving many conditions, this approach is no
longer feasible. Yet, once established, reported tracking results are
often treated as a given, without insight into the uncertainties. Cur-
rently, confidence of these results and associated claims can only be
assessed by studying the original microscopy images, whichis typically
infeasible. The ability to calculate error probabilities, as we advance
here, will be of general importance to mitigate this issue. Similar to
any other form of quantification in science, such error probabilities
or error probability cutoffs should be reported for displayed cell
tracks and lineage trees and for lineage features, such as cell cycles.
Reporting error probabilities of published tracking data will also be
crucial for datasharing by enabling external users to assess confidence
in different features of the data, even without access to the underly-
ing microscopy images. Our work here now provides the conceptual
framework and computational tools to extend thisapproachtoabroad
range of cell-tracking applications.
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Methods

Organoid culture

Mouse intestinal organoids with an H2B-mCherry reporter were used,
gifted by N. Sachs and ). Beumer (group of H. Clevers, Hubrecht Insti-
tute). Organoids were grown embedded in membrane extract (BME,
Trevigen) in medium consisting of murine recombinant epidermal
growth factor (50 ng ml™, Life Technologies), murine recombinant
Noggin (100 ng ml™, PeproTech), human recombinant R-spondin 1
(500 ng ml™, PeproTech), N-acetylcysteine (1 mM, Sigma-Aldrich), N2
supplement (1%, Life Technologies) and B27 supplement (1%, Life Tech-
nologies), GlutaMAX (2 mM, Life Technologies), HEPES (10 mM, Life
Technologies) and penicillin-streptomycin (100 U mi™, 100 pg ml?,
Life Technologies) in Advanced DMEM/F-12 medium (Life Technolo-
gies). Organoids were kept in incubators at 37 °C with 5% CO,. The
medium was changed every 2 d. Each week, organoids were mechani-
cally broken, and the fragments were reseeded.

Sample preparation

Organoids were seeded around 2 d before imaging in four-well cham-
bered coverglass (#1.5 high-performance coverglass) from Cellvis. For
the organoids to move within the lens working distance and minimize
therequired laser power, we placed the sample on a cold block (-4 °C)
for10 min after seeding. In this manner, the organoid fragments could
sink to the bottombefore the gel solidified. Afterward, the BME gel was
allowed to solidify at 37 °C for 20 min before adding medium.

Microscopy

Imaging was performed on a Nikon AIR MP microscope with a x40
oil-immersion objective (numerical aperture,1.30). Around 30 zslices
with a step size of 2 um were taken per organoid every 12 min, with a
pixelsize 0of 0.32 um?. For the low signal-to-noise data, imaging was per-
formed with aLeica TCS SP8 microscope witha x40 water-immersion
objective (numerical aperture, 1.10) with a pixel size of 0.4 pm?.

Computational resources
All analysis described was carried out on a desktop computer with a
dedicated graphics card (Nvidia RTX 2080 Ti).

Intestinal organoid training data

Our training data consisted of nine different tracked crypts together
withnearby villusregions. Time-lapses were between16 hand 65 hlong,
with the full dataset totaling 281 h (1,405 frames). For a given frame,
around 150 cells were annotated, meaning that on the order of 200,000
celldetections and links between are presentin the training data. This
isthe same dataset used to train the original OrganoidTracker*; there-
fore, we can confidently say that any improvements are dueto the new
algorithm and not because of an expanded training dataset. All training
datawere generated in the context of an earlier publication®.

Statistics and reproducibility

Representative images (Fig. 2f,g,i) were chosen from hundreds (for
divisions) or tens of thousands (for links) of similar-looking images.
Random lineages (Fig. 4a—c) were randomly selected from lineages
that contained at least one cell at the end point, the ancestry of which
could be tracked completely in the manually corrected data.

General neural network training and prediction procedure

The input during both training and predicting for all neural net-
works consists of alistin which eachitem references animage frame
together with any data needed to create the final neural network
input (thatis, alist of cell centers around which to crop). Only during
training and prediction are image frames loaded, and the input data
are generated to minimize the memory footprint. All data augmen-
tation during training is performed at runtime for the same reason.
Image frames can be loaded from .tiff files but also from common

platform-specific file formats like .lif (Leica) or .nd2 (Nikon) to avoid
the need for data conversion.

Before training the neural network, the input list is randomized
and splitinto training and validation sets (80% versus 20%). After train-
ingwith thelink and division detection data, we perform asimple Platt
scaling based on the validation dataset to ensure that our predictions
arewell calibrated". During Platt scaling, we try to maximize the likeli-
hood of the ground truth data (x) given our scaled predictions (p*):

L(p*x) = Pixip*) = [ ] Pexilp}),

with, for agiven link or division prediction i:

L(p}lx;=0)=p(x;=0lp)) =1-p;, and

L(pjlx; =1) = PO = 1Ip}) = pj,
where the scaled predictions are given in terms of the original predic-
tions, p, by (with A and B to be optimized):
_ 1
1+exp (—Aln (1:;,;) + B)

p*

The maximum likelihood is then found by minimizing the
cross-entropy loss between x and p*:

n/g'iBn Y xilog(py) + A —x)log(1-p;).

Gradient descent is performed using the Adam optimizer for all
neural networks. The full network architectures can be found on our
GitHub (https://github.com/jvzonlab/OrganoidTracker).

Cell center detection: generating training data

Todetectcell centers, we use both the frame at the time point of interest
and the subsequent frame to give the neural network access to dynamic
information. We crop the images to a box that contains all annotated
cell centerstoavoid learning on unannotated regions. Images are then
normalized, after which random crops (32 x 96 x 96 x 2t) are made.
Users can set arbitrary time windows and crop sizes when training
their own neural networks.

To augment the data, these crops are randomly flipped along the
xoryaxis (50% of cases) or randomly rotated and scaled (by arandom
factor between 0.8 and 1.2). Further augmentation is performed by
randomly changing the contrast by exponentiation of the intensity
values by arandom number (between 0.8 and 1.2). The fluorescence
intensity decay with increasingimage depth canvary greatly between
imaging settings. We therefore also augment the data by increasing the
decayinintensity with depthby arandom factor, such that the deepest
frame can have up to afourfold reduction in intensity.

Cell center detection: distance map and weights

Theneural networkis trained to predict the distance to the nearest cell
center for every pixel in the image. The distances are transformed by
a Gaussian function to give rise to diffuse spots centered around cell
centers. This approach has achieved success in many cell localization
algorithms when the full segmentation of cells is not available™'***,
We improve this approach by also taking into account distances to
nearby cells other than the closest one. By increasing the distances
(and thereby decreasing intensities in the distance map) for pixels that
areclosetoanother cell, we ensure that the Gaussian spots remain well
separated. The mathematical description of the ‘adaptive’ distance d
isgiven by:

d= dclosest + 1— min(dmaxvdi)
drnax

i# closest dmax
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in which d,,,, represents the maximum radius within cell centers still
relevant in computing the distance value for a pixel. It can be chosen
up to the minimum distance between two cell centers before spots
will overlap. The first term measures the distance to the closest cell
center, while the second termincreases this value if other cell centers
arealsowithind,,,,.

Theintensity values in the distance map are then given by:

| = e=®/2°

in which we choose rto be y/1/8 d,,,, to produce well-separated spots.

The calculation of the distance map is carried out at runtime on
the GPU for maximum efficiency. It can be implemented using only
convolutional operations by replacing the minimum operator in the
equation above with a pseudominimum (soft-min function).

Our algorithm allows users to only partially annotate datasets,
reflecting the fact that most existing manually tracked data are often
focused onalimited region of interest due to time considerations. Train-
ing on partial annotations was enabled by assigning large weights to
pixelsin the annotated regions versus the background during training.
To assign these weights, we change our distance map so that pixels with
multiple cells nearby have lower distance values associated with them:

d= d;losest _ Z 1- min(t;imax’di).
max max

i+# closest

We then use these distances to calculate the weight values:

W=e®2" b,

where b is a small weight assigned to background pixels. By giving
some weight to the background, the neural network canlearntoignore
debrisand imaging artifacts outside the foreground. For the intestinal
organoid data, bis chosen such that half of the total summed weights
isassociated with annotated nuclei and half with the much larger back-
ground region.

Cell center detection: neural network

The neural network used for cell detection is very similar to the 3D
U-Netusedinthe previous OrganoidTracker*. The different time points
in the input are treated as different channels. A new element in the
network is a final smoothing layer (convolution with a Gaussian ker-
nel with a pixel width of 1.5). Because the center point annotation is
inherently noisy (not pixel perfect), the predicted output should be
smooth. By enforcing this explicitly, we reduce overfitting and speed
up the training.

Cell center detection: peak finding

Fromthe predicted distance map, we localize the cell centers by using
apeak-finding algorithm, as described before*. Peaks withina certain
radius (halfthe typical distance between nuclei) of other higher peaks
are excluded by the peak-finding process to avoid oversegmentation
duetonoisein the predicted distance map.

During cell division, cells round up and their distance to other
nuclei increases. At the same time, cells are more prone to overseg-
mentation as H2B fluorescence is not uniformly distributed anymore
because of chromosome condensation. To counteract this, we revisit
the cell detections after we have predicted the division probabilities
(see below) and merge dividing cell detections (defined as having a
division probability greater than 50%) that are closer than 5 pm from
each other.

Cell center detection: evaluation
Cell center detection was evaluated as previously described*. We
compared predicted data with partially annotated manual datasets.

The evaluation data consisted of five different organoids, imaged
on different days, for which at least one crypt was fully tracked. The
organoids were tracked for between 90 and 320 frames.

For every cell center in the manually annotated dataset, we check
whether thereisapredicted cell center within 5 pm; these countastrue
positives. A predicted center can only match asingle-cell centerin the
manual data. Unmatched manual annotations are false negatives. Pre-
dicted cell centers that remain unmatched and are within the manually
annotated region (distance of 5 um from an annotation) are counted
as false positives. Consigning the evaluation to annotated regions
means that mistakes far from the epithelial layer are ignored (that is,
debrisrecognized as anucleus), but these are both rare and generally
irrelevant for tracking.

Recall is calculated by dividing true positives by the total num-
ber of manual annotations. Precision is defined by dividing the false
negatives by theamount of predicted cell centers within the annotated
region. Accuracy is the number of mistakes over the sum of all observa-
tions (true positives, false positives, false negatives).

To test the effect of our ‘adaptive’ distance map, we also trained a
network on atarget mapping that consisted simply of Gaussian spots
around the cell centers. For these spots to not overlap, we had to half
their radius relative to the ‘adaptive’ version. The pixel weights were
kept the same (Supplementary Fig. 2).

Cell center detection: Cellpose comparison

We used the Cellpose 3D module®® to produce nuclear masks for three
time frames of our test dataset. The Cellpose algorithm was run from
a dedicated Cellpose plugin in the OrganoidTracker GUI. We used an
expected nucleus diameter of 25 pixels. After obtaining nuclear masks,
we computed the centroid positions as the center of mass of each 3D
mask. We manually removed Cellpose centroids that correspond to
oversegmentation or undersegmentation. These validated centroids
were then compared to the OrganoidTracker predictions. The analy-
sis was limited to a tissue depth of 15 pm, avoiding the poor Cellpose
segmentation for higher depths.

Link detection: proposing possible links

Toavoid examining extremely implausible links, we propose links based
on the distance between the subsequent cell detections. During both
training and prediction, we only consider links from a cell detection
toacell detection in the next frame that are at most two times farther
away in distance than the closest cell in the next frame.

Link detection: generating training data

The input of the neural network for link prediction consists of a crop
centered around a cell center, a crop around the cell detection in the
subsequent frame and a vector describing the distance in pixelsbetween
thecells. Thetwo cropsare16 x 64 x 64 insize and both contain the two
time points containing the cell center detections. Users can set arbitrary
time windows and crop sizes when training their own neural networks.

Data are augmented in the same way as during cell center detec-
tion, except that we do not vary the decay in intensity with depth, as
the crops are much smallerin the zdimension. Instead, we increase the
range in which we vary contrast (exponentiation by anumber between
0.5and1.5).

Toaid prediction, we provide the neural network with direct infor-
mationabout the direction of movement by adding the displacement
vector to the neural network inputs beside the crops around the cell
centers. Itisknown that CNNs have trouble integrating informationin
the form of Cartesian coordinates®. We therefore add an extra three
channels to both crops. These contain, for each pixel, the x, yand z
distances, respectively, to the other cell center detection in the pro-
posed link.

We upsample difficult cases, cells that are dividing (within a win-
dow of an hour around cell division) or move a considerable distance
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(more than3 um, less than 7 pm) by replicating these five times in our
training data.

Link detection: neural network
The first part of the neural network for link detection consists of two
CNNs. Tomaximize theamount of information extracted, one CNN takes
inthe concatenated crops while the second CNN takes as input asingle
crop (two identical copies of the second CNN are available to analyze
both crops). This means that one CNN can integrate pixel information
between crops and directly assess how similar the two cell detections
at subsequent time points are. The other CNN is forced to focus on a
single crop, which could, in combination with information about the
direction of movement, already be enough to assess the link probability.
The features extracted by the CNNs in combination with the dis-
placement vector are then fed into multiple densely connected neural
network layerstoyield a prediction.

Link detection: evaluation
Toevaluate the link neural network, we used the same set of evaluation
data as used in evaluating the cell center detection. See the main text
for the evaluation procedure.

To test the effect of adapting the training data, we also trained a
link detection neural network without upsampling difficult cases (Link
detection: generating training data). We then compared accuracy, pre-
cisionandrecall across all evaluation organoids (Supplementary Fig. 6).

Division detection: generating training data
Theinputofthedivisiondetectionneuralnetworkisacrop (12 x 64 x 64)
centered around acell center, with the previous and subsequent frames
included for dynamic information. Data augmentation is carried out
inthe same manner as during link detection training.

Toavoidatoolow frequency ofimages related to cell division, we
upsample cells in the process of division (within a 1-h window around
the nucleus dividing) by replicating them ten times in our training
data. We also upsample all dying cells (cells with tracks ending before
the end of the experiment), as these can closely resemble dividing
cells. From all other cell detections, which are often trivial to predict
asnondividing, onlyarandomsubsetisincluded so that they make up
20% of the total dataset.

Division detection: neural network

The design of the division detection neural network mimics that of
the link detection network. A CNN extracts features that are then fed
into a dense layer to generate the prediction. The main difference is
that, due to the limited nature of the division datasets (there are only
hundreds of divisions present in our training data), we employ only a
single dense layer to avoid overfitting.

Division detection: evaluation

To evaluate the division neural network, we again used the same set of
evaluation data used in evaluating the other neural networks. See the
main text for the evaluation procedure.

To test the effect of adapting the training data, we also trained a
division detection neural network without upsampling difficult nondi-
viding cases (‘Division detection: generating training data’). Wereplaced
these difficult cases by randomly selected cell centers so that divisions
make up the same fraction of the training data asin our normal training
procedure. If we would truly trainonanunbiased sampling of the data,
so that nondivisions make up the vast majority, this would cause the
training procedure to not converge. We then compared accuracy, preci-
sionandrecall across all evaluation organoids (Supplementary Fig. 7).

Graphdescription
Inour graphdescription of the dataset, we follow the framework devel-
oped ref.18. Here the nodes of the graph are the detected cell centers

and the edges are the proposed links. These edges have an associated
energy penalty thatis the relative negative log likelihood that the link
is true as predicted by the neural network. The nodes have an associ-
ated division penalty, which is again the negative relative predicted
log likelihood.

Within this framework, we also have to assign energy penalties
to the events in which a track disappears or appears or when a cell
detection is a false positive. A track can disappear when a cell dies
or its next position is not detected. The disappearance probability is
thus the combination of the death rate and the false negative rate of
the neural network. Here, the latter makes the dominant contribu-
tion. Tracks can appear when their previous position is not detected,
which again relates to the false negative rate. The probability of a cell
detection being spurious is given by the false positive rates. All these
rates canbe estimated from the validation of the cell detection neural
network and are around 1%. Varying these probabilities withinan order
of magnitude (3% to 0.3%) does not significantly affect track prediction
or the marginalization procedure (not shown).

To account for cells appearing or disappearing because they are
close to the edge of the imaging volume and can leave the imaging
volume, we assign lower (dis)appearance penalties (corresponding
to a10% chance of (dis)appearance) to cell detections at the edges of
the volume.

One could imagine a neural network that would assign explicit
probabilities to the correctness of cell detections so that we could use
node-specific (dis)appearance penalties. This should lead to minor
improvements in track quality, but such an approach would have sev-
eral drawbacks. First of all, training data are limited because the cell
detection network makes few mistakes. Furthermore, such a neural
network would have to be retrained every time anew cell detection net-
workistrained, asitis specific to the type of mistakes that that network
makes. Integrating a neural network to identify dying cells and adapt
the disappearance probabilities accordingly would be more feasible®”
but of limited use due to the rare nature of cell death in our system.

In principle, the predictions made by division and link detection
neural networks are probabilities conditional onthe correctness of the
underlying cell detections, because only correct cell detectionsarein
the training data. Itis possible to assign energy penaltiesin suchaway
that they represent probabilities of a link or division conditional on
the existence of the node it is coming from by combining the chance
thatalinkisincorrect and thatits source node does not existinasingle
energy penalty. This could avoid including some oversegmentations
that persist over multiple subsequent frames and have high-probability
links between them in the tracking solution. But including correct
links between oversegmented cellsis in our case actually the preferred
behavior. Not including these links would hamper our approach of
solving these oversegmentations during post-processing (see below).
This does mean that, after marginalization, we also have to interpret
the predicted error rates as the chance that the two different cells
associated with the detections are not linked, not the chance that the
linkis ‘incorrect’because one of the two detections is duetoan overseg-
mentation. Because oversegmentation onits own already introduces
errors by definition, as a track caused by oversegmentation both has
to appear out of nowhere and disappear again, this will not cause any
missed errors.

Flow solver

We use the flow solver developedinref. 18 to find the most likely set of
tracks. To help it converge to an optimal solution, we prune the graph
ofhigh-energy edges. We do this by comparing every edge toits alterna-
tives: links having the same source or target nodes. If alink withamuch
lower penalty is available (>4.0 difference, corresponding toa10,000
times more likely link), we remove the edge. This was not done during
the marginalization evaluation (Fig. 3), in which link removal such as
this would introduce a bias in the nonmarginalized probabilities for
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very unlikely links. Potential divisions that have a probability below
0.01arealso removed.

The flow solver sometimes has trouble converging or halts pre-
maturely especially inthe presence of alarge number of low-certainty
predictions. To circumvent this, users can also use the Viterbi-style
algorithm proposed by Magnusson et al.*" as implemented by
Haubold et al.

Fine-tuning flow-solver solution

Because the flow solver does not guarantee an optimal solution, we
fine-tune our solution by checking, for every link, whether removing it
andreplacingit with anappearance and a disappearance would lower
thetotal energy. We then also look at pairs of links in the solution that
connect two nodes at time point ¢ with two nodes at time point ¢ +1
and check whether they should be replaced with a pair of edges that
connect the nodes the other way around. We perform three cycles of
this pruning and swapping of links.

Solving oversegmentation and undersegmentation

Our probabilistic description allows us to add and merge nodes in the
graph in a statistically rigorous manner to tackle the track fragmen-
tation caused by oversegmentation and undersegmentation. The
procedure relies on four key parameters: the false positive and false
negative rates of the cell detection network and the predicted link and
division probabilities of each cell. The false positive and negative rates
follow automatically from the validation of the cell detection neural
network that happens during the training phase, while the link and divi-
sion probabilities are (automatic) predictions from the linking neural
network and the division neural network. Hence, these parameters are
inprinciple obtained through the network training procedure, without
any further user intervention.

Oversegmentation occurs when asingle cell generates two or more
cell detections, potentially during multiple frames, causing tracks to
split up erroneously. Such split tracks are identified as follows: these
pairs of tracks should partially overlap in time (minimum of one frame
and maximum of three frames) and nodes in the different tracks should
be connected by relatively high-probability edges that are otherwise
not partof the tracking solution. This reflects the fact that, if the tracks
represent the same cell, edges between nodesin the two tracks should
be likely. If the combined probability of an edge connecting the two
tracks and the probability of a false positive cell detection, as given
by the false positive error rate being higher than the probability of a
track disappearing and another appearing (based on the false negative
rates), we connect the tracks and prune the overlapping cell detections.
We add a penalty, reflecting the false positive rate, to the energy of the
link connectingthe two tracks. This accounts for the fact that we have
ignored a cell detectionin creating the link (Extended Data Fig. 1a).

Undersegmentation occurs when a cell is not detected, leading
to a single track becoming fragmented into two tracks. We identify
fragmented tracks with asingle frame gap betweenthemand propose a
new node that connectsthe tracks only if their start and end points are
withinasufficiently short distance. Here, a cell detectionis considered
near to another one if it is one of the six closest neighbors. The added
node receives a 3D position that is the average of the positions of the
start and end points of the two tracks and is assigned a probability of
being correct thatis equal to the false negative error rate.Inthe graph
containing all potential links, new edges are then made to all nearby
nodes, with an energy penalty representing a uniform link probability
(Extended Data Fig. 1b).

On a practical level, post-processing is implemented by first
identifyingall situations in which cell tracks appear or disappear. The
algorithm then first addresses oversegmentations by attempting to
connect appearing tracks with anearby disappearing track that over-
lap in time for a maximum of three frames. After that, the algorithm
addresses undersegmentation by attempting to connect appearing

tracks with anearby disappearing track that has disappeared just one
time frame before.

Fundamentally, our post-processing solves afundamental draw-
back of graph-based tracking frameworks that treat every cell detection
asindependent evidence for the existence of a cell. If, for instance, acell
is oversegmented in multiple subsequent time points, this is treated
as very strong evidence that there are actually two cells present. It is
obvious that this actually confers little more evidence than a single
oversegmentation because these detections are and should be highly
correlated between frames. Revisiting potential oversegmentations
during post-processing allows us to treat multiple subsequent over-
segmentations as a single false positive event.

Ourundersegmentation correction method solves another prob-
lem withusing flow solvers for tracking: they canignore cell detections
when making tracks but cannot add nodes for missed cell detections.
Apriori, itisdifficult to determine where ‘helper’ nodes might need to
beadded, and allowing cell‘merging’ to deal with undersegmentation'
makes the tracking problem much less constrained. We instead solve
itwithan easily understandable and straightforward post-processing
step. Earlier cell-tracking solutions have employed conceptually similar
methods but have to rely on manually picked parameters to regulate
post-processing in the absence of a probabilistic description®. By
contrast, we use our probabilistic graph description to rigorously iden-
tify the proper post-processing steps with minimal need for user-set
parameters.

There is in principle no need for the user to adapt the post-
processing procedure for different datasets, as long as the neural
network-predicted probabilities are well calibrated and the user-set
(dis)appearance probabilities are realistic (‘Graph description’). Simi-
larly, retraining the neural networks for a new dataset automatically
ensures proper post-processing on the new dataset as well. When
reusing already trained neural networks in a new context, it can be
beneficial to change the (dis)appearance probabilities to reflect the
performance of the cell detection neural network in this new context.

Marginalization

Marginalization is performed on a subset of the graph to make it
computationally tractable. We assume that the most informative
edges (and their associated nodes) are between the same time points
asthelink of interest and are the ones closest toitin space. Distanceis
measured by how many steps onthe graph have to be made to traverse
edgewise from the target node of the link of interest (Extended Data
Fig.2b). Taking three steps as cutoff for inclusionin the subset yielded
acomputation time for marginalization similar to the time needed for
neural network prediction of link and division probabilities, -1 h for
an imaging experiment of over 300 frames with over a hundred cell
detections per frame.

The number of steps used to construct the subgraph can be
changed by the user. We find that going beyond three steps, which
already includes all the links of neighboring cells, does not meaning-
fully improve prediction quality (Extended Data Fig. 2c). This lack of
improvement can partly be explained by marginalized link predictions
for which the subgraph does not change when increasing from three
to four steps (-30% of cases). For ~20%, the subgraph simply has no
connections beyond three steps. For the remaining -10%, the four-step
subgraph has too many elements to be evaluated inareasonable time
andweareforcedto usethethree-step subgraphinstead. Here, we use
acutoffso that no more than-2" possible tracking solutions have to be
checked. However, for links for which the subgraph used does grow, we
still seelittle change in the prediction. This is mostly because many of
the predictions with the three-step subgraph were already very high
confidence (64% of cases are above 99.99% or below 0.001%), suggest-
ing that most contextual information was already incorporated. Any
further improvement thus made little difference for the prediction
quality as measured by the cross-entropy loss.
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Foreverynodeinthesubset, all edges that point to nonmembers
ofthe subset are combined in a single edge that accounts for the total
probability to connect to anode outside of the set.

After subset selection, we construct a set of potential tracking
solutions, test which solutions fit the graph constraints and calculate
their associated energy. To avoid having to check the full set of binary
combinations of events (-2"), we construct the set by varying, for every
targetnodeinthe ¢ +1time point, whichnodein the previous time point
titisconnected toand combiningall these variants. In this manner, the
number of constructed potential solutions scalesas ~ (N, /Ny + DY 42N
in which N; is the number of target nodes, N; is the number of source
nodes and N, is the number of edges. The target nodes can on average
contact N,/N; possible source nodes and can appear without a source
(first term), while the cells represented by the source nodes can either
disappear or not (second term). We will refer to these possible variants
as ‘microstates’ of which we will later combine the probabilities to
compute the error rates.

Microstates canbe encoded as a vector with its length as the num-
ber of events (1if an event, such as a link or division, is part of it; O if
not). To check if a microstate is possible, we can construct a matrix
that encodes the flow constraints on the graph. This matrix gives the
net flow into every node when multiplied with amicrostate vector. An
outgoing link or disappearance event represents a flow of -1, while an
incominglink or appearance gives a flow of 1. Divisions are represented
with a-1flow, as they should allow an extra outgoing link. When for one
or more ofthenodes, the flowis unbalanced, the microstate is rejected
and excluded fromthe partition function. Total energies are calculated
by taking the inner product with a vector containing the energy pen-
alty per event. These energies are then divided by the ‘temperature’
for proper calibration (‘Motivation for using ‘temperature scaling”).

The probability of a link of interest (A) being true given all pre-
dictions made on the elements of the subgraph (G) is thus found by
normalizing the probabilities associated with microstates containing
thatlink to the sum of the probabilities of all possible microstates. The
probability of a given microstate (W,) in turn is proportional to the
exponent of the negative sum of the energy of all its elements (E(W,)):

e~ EWIT

-_— WA
P(AG) = Zweff(w)/r :

Toreduce the computational burden, links that are deemed almost
certainly correct (>99.99%) or incorrect (<0.01%) are marginalized over
aminimal subgraph containing only the other input edges of the target
node of thelinkin question. When the estimated number of microstates
that would need to be constructed exceeds 2", we shrink the subgraph
by one ‘step’ to avoid long computation times.

Motivation for using ‘temperature scaling’
The marginalization procedure without temperature scaling assumes
that the energy penalties are derived from information thatis unique
to the predictor, a neural network in our case. This is not a realistic
assumption, as predictions might be made on the basis of overlapping
crops and on shared baseline estimates. Not accounting for this over-
lapping information leads to overconfidence (Extended Data Fig. 2).
Inour solution for this problem, we propose to split all predictions
inacomponent thatisbased oninputs shared between neural networks
andinonebased oninformation unique to that prediction. The predic-
tions (p) can then be seen as the product of the relative probabilities
based on this shared and unique information:

Pshared Punique

1- Pshared

P
1- p 1- punique

This allows us in turn to split up the energy (the negative relative
log likelihood) in a shared and unique component. We then assume

that the energy related to the probability based on the shared inputs
is proportional to the total energy (E;). This assumption reflects our
intuition that the confidence of neural network prediction should be
reflected by both the unique and shared component. If, for instance,
alinkis highly likely, then this can probably be deduced both from the
shared and the unique information available to the network and both
energies should be highly negative. This gives:

Ei,unique = Ei - Ei,shared = Ei - aEi;

where ais aconstant between zero and one.

When calculating the energy of amicrostate (£},), we can thensum
theunique energies while assuming we can combine the shared infor-
mation in a weighted manner. This weighing factor b (smaller then 1)
should belowifallthe shared informationis shared betweenall events
and higher if the overlapisless (for instance, when a prediction made
aboutalink mostly sharesinformation with adjacent links but not with
allelements in the subset):

Ety = Z Ei,unique + bEi,shared = Z (1 - a)Ei + baEi~
iinw iinWw

From this, we derive that we can account for shared information
by using a single factor that functions as atemperature (7). This tem-
perature is high if much of the information in any given prediction is
not unique (high a) and if this shared information is shared with all
other predictions (low b):

Marginalization as an opinion-pooling procedure
We canalso motivate our marginalization procedure without relying on
analogies with statistical physics. Instead, we caninterpret our method
asan extension of the ‘multiplicative opinion-pooling’ framework pro-
posed by Dietrich?**. The idea of combining predictionsinamachine
learning context has an older history*®, but the specific framework
of Dietrich and List enables us to neatly deal with prior probabilities
and overlapping information. This will prove to be key in producing
well-calibrated outputs.

Multiplicative opinion pooling suggests that opinions of different
agents (different predictions by neural networks in our case) can be
combined by multiplying them:

P@) « [T .Pi(®),

inwhich w is a state in the set of possible state and P;and denotes the
probabilities predicted by individual predictors. Shared information
between predictors canbeincorporatedin this framework by normal-
izing the predictions tothe priors of the predictors based on the shared
information. Conceptually, this means that predictors first arrive ata
consensus P,onthebasis of their shared prior information, after which
their unique information is pooled multiplicatively.

P(®) = cPo (@) ] ] Pi (@) /Py prior (@),

with c functioning as anormalization factor:

1
Pi(w)

c= -
EwPo (w) Hi

P; i,pvinr(w)
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Inthis framework, each predictor must have an opinion onall pos-
sible states. In our case, predictors make only asingle predictiononan
eventa (alink or division) thatis part of astate. Therefore, we redefine
multiplicative pooling as:

P(w) = CPO ((4)) Haewpa/pa,priornagm(l - pa)/(l - pa,prior)’

inwhich the microstate probability is now proportional to the product
of the probabilities that its constitutive parts are true and the other
events are false. The probability of a given event can then simply be
calculated as:

P@ =7, Pw).

woa

By extending multiplicative pooling in this manner, we retain a
major motivation behind multiplicative pooling, namely ‘individual-
wise bayesianity’. This axiom states that it should not matter to the
final prediction whether extra information is integrated before or
after the pooling procedure, as the input information is the same. In
our case, this holds on two levels (see Supplementary Discussion for
the proof). First, it does not matter when we introduce information
aboutamicrostate when calculatingits probability (P(w)). It also does
not matter when information about anindividual eventisintroduced
when we are calculating its probability (P(a)). This provides large flex-
ibility in post hoc integration of new opinions, such as the judgment
ofahumanreviewer.

The question remains of how to extend our concept of ‘tempera-
ture’ to this framework. For simplification, we can rewrite everything
interms of relative probabilities (L;=p,/(1- p):

L
P@=c) Lou]] T -
w3a iew —Lprior
with;c = ;L
ZwLO-w]-_L'Em l__l

i,prior

The question now remains of how to define the consensus prior L,
and determine the priors. Dietrich and List suggest using a geometric
mean on the priors if the shared information is completely shared
between all agents®. In our case, this is not necessarily true; therefore,
we let the weight associated to a single prediction be free (b) instead
of 1/n. For the priors, we again assume that the shared information is
proportional (withafactor a) to the total information held by an agent.

Pl@=c z H Li,priorb H

w3a iew iew Liprior

L;

P@=cy T[L” It

w3a iew icw

P@=cy T[L"

w3a iew

1

with;T= ———,
l1-a+ba

whichisequivalentto the description we arrived at using the statistical
physics framework.

We finally wish to contrast this opinion-pooling procedure with
updating a‘Bayesian belief matrix’, a (cell-)tracking approach that uses
link probability estimates to connect nondividing object detections®*".
This method cannot integrate division probabilities and can only
take one type of constraint into account: the fact that cells cannot

merge. In situations in which these are the only constraints present
(for instance, when considering a subgraph in which only one cell is
present atthelater time point), we show that thisapproachis equivalent
to our marginalization method (Supplementary Discussion).

Estimating the calibration temperature

We find the optimal temperature (as defined by the binary cross-
entropy loss) by calibrating on the training data. To do this, we use
neural networks to predict link and division probabilities for the cell
detections in the training data. Next, we perform marginalization
and compare marginalized link probabilities to the manual tracking.
The task is now to find a ‘temperature’ (7), for which the predictions
p;are closest to the ground truth (/;denotes the truth value of a link).
That is, the temperature for which the likelihood of the ground truth
given the predictions is maximized, and the binary cross-entropy is
thus minimized:

min 3} ;log () + (1 - ) log (1 - py).

with p;given by:

> W, e~ EWIT
Pit = W
In practice, most of the energy contribution in our marginalization
comes from a handful of, often two, microstates. As an example, the
dominant microstates of an uncertain link often take the form of an
optioninwhichall cells move halfacellto the leftand another in which
they move halfa cell to the right. Foragivenlink A, one of these states
dominates the microstates that contain the link (W,) and the other
state dominates the ones that do not containit (W,,). Thisallows us to
approximate the marginalized probability p; ras:

1
Pir = 5 o EMAIT
1+ W
ZWA e—EWAIT
P 1
TR 7
. T
1+ kT S
Ty e
1
PiT~

Ut
1+ (Pi,r:1/ 1- Pi,T:l)

Pir ® —————=-
1+Li,T=11/T

This clearly and conveniently maps onalinear regression problem,
for which we have to learn parameter 1/T given the original marginal-
ized relative likelihoods (L; 7-,) as aninput.

The temperature obtained in this manner works well on data that
are partof (Extended DataFig.2) and outside (‘Evaluation of the margin-
alization procedure’) the training dataset in producing well-calibrated
error rates. This proves that the simplifications made to arrive at a
single correction factor amenable to linear regression are allowable.

The obtained temperature (similar to the Platt scaling parameters
previously) isused inour algorithm as a point estimate without consid-
ering the uncertainty associated with the calibration. This can be justi-
fied by thetight confidence intervals we obtain (Extended Data Fig. 2d)
and therobust calibration we see across datasets (Fig. 3 and Extended
DataFig. 3). For a fully Bayesian description of our framework, which
includes calibration uncertainty, see the Supplementary Discussion
(Full Bayesian description of link error prediction framework).
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Evaluation of the marginalization procedure

To evaluate the correctness of the marginalized error rates, we again
compare our predictions against the five fully manually annotated
organoids used for the other evaluations. We use the manually anno-
tated cell centers as the input for our division and link detection and
perform marginalization afterward. This allows us to compare all
error rate estimates to a fully human-derived ground truth, without
the need to map machine-predicted cell centers on the cell centers
annotated by humans. These mappings are not trivial, and errors in
these mappings can strongly skew the results. Furthermore, because
the human-assigned links are completely independent from the algo-
rithm output, we deem this the strongest test for our marginalization
procedure.

We bin the marginalized link predictionsin groups based on their
relative log likelihood (15 bins). For every bin, we then compute the
average probability of the link being correct and compare this to the
actualamount of the correct link in this bin as determined by examin-
ing the ground truth.

We also perform this evaluation on the manually reviewed tracking
data (‘Manual review’). Here we started out with cell centers predicted
by aneural network. Verifying that the error rates are well calibrated in
this case shows that the marginalization procedure is not dependent
on human-annotated cell centers. We compare the error rates against
tracking datawhenalllinks are corrected but no undersegmentations
oroversegmentations are fixed (Extended Data Fig. 3). Fixing segmen-
tation errors involves changing the graph representation and thus
introduces links without an associated error rate prediction, making
evaluationimpossible.

Manual review
To evaluate manual annotation, we reviewed the possible errors for
three complete organoids tracked foraround 100 to 300 frames. Poten-
tial errors were flagged at all links that had a marginalized probability
below 99% and the startand end points of appearing and disappearing
tracks, respectively. We first corrected all potential link errors and
used the corrected data to check the calibration of the marginalized
predictions as described above. We then checked all other errors and
identified their cause for the largest (>300-frame-long) dataset.
Error correction was carried out in our GUI*, which zooms in on
errors and informs user about the kind of error they encountered:
possible link mistake, track appearing or track disappearing. The GUI
also allows backtracking, thatis, the selection of cells of interest, based
for instance on their cell type or final position, to focus curation and
analysis only on these cells.

Palbociclib intestinal organoid tracking

Palbociclib (at afinal concentration of 10 pM) was added 2 d after seed-

ing, and organoids were thenimaged for 2 d. Three crypts that stayed

inthefield of view for the fullimage duration were chosen for analysis.
To create the ground truth dataset, 50 frames each in two orga-

noids were manually corrected around 20 hafter palbociclib treatment.

Out-of-sample use: image preprocessing

For out-of-sample usage of our intestinal organoid trained neural
network, we have identified two key preprocessing steps to improve
tracking results: scaling and background subtraction. First, regard-
ing scaling, CNNs (and UNETSs by extension) are generally not scale
free. Therefore, to avoid oversegmentation or undersegmentation,
the nuclear size should match the nuclear sizes in the training data.
For same-sized nuclei imaged on different microscopes, this typi-
cally corresponds to matching the pixel resolution. Second, during
the acquisition of the intestinal organoid training data, the detector
gainand offset was set such that the background (meaning the region
outside the organoid) largely had fluorescence values of zero. Subtract-
ingthe background so that this holds for the out-of-sample dataset as

well helps to restrict the cell detections to the region containing the
tissue, reducing false positive cell detections. Lastly, we have seen
that, for data in which cells have large differences in nuclear fluores-
cence (unpublished), it helps to reduce the contrast using a gamma
correction.

Out-of-sample use: recalibration

Recalibration of the error rates for out-of-sample datafollows the same
processas theinitial estimation of the scaling temperature (‘Estimating
the calibration temperature’): we compare the marginalized predic-
tions against a ground truth dataset to find the optimal temperature
that minimizes the cross-entropy loss between predictions and truth
values.

To create the ground truth, the user has to correct potential mis-
takes in a number of representative frames. We find that correcting
around 200 potential linking mistakes is generally enough to obtain
tight estimates of the new scaling temperature (Extended Data
Fig. 7e,f). The procedure requires users to review all potential errors
(<99% probability) inagiven frame to avoid bias in which mistakes are
corrected.

Therecalibration procedure thus functions as follows:

1. Predict tracks and compute error rates.

2. Inthe manual curation GUI, select frames in which to correct
potential mistakes (aim for more than 200 potential mistakes).

3. Correct mistakes in the GUI.

4. Recalibrate the error rates using the temperature-scaling
functionality.

5. Recompute the error rates with the new scaling temperature.

A graphic description of the pipeline users have to follow when
using neural networks on out-of-sample data including both the
image-preprocessing and recalibration steps canbe found in Extended
DataFig.10.

Out-of-sample use: low-SNR intestinal organoid tracking

The low-SNR intestinal data were taken (but not yet analyzed) in the
context of Zhang et al., and imaging was carried out as described in
their paper®. Preprocessing consisted of downscaling inxy by a factor
of1.33to correct for different pixel resolution and background subtrac-
tion using a tophat filter. Post-processing was changed to retain deep
tracks, up to 60 pm deep in the tissue.

Out-of-sample use: blastocyst tracking

The two longest time series in the BlastoSPIM dataset” were chosen for
analysis (the series starting with F30 and F41, respectively). Preproc-
essing consisted of downscaling the image in xy by a factor of 2.5 and
background subtraction by subtracting a constant value. This down-
scaling was not meant to match the pixel resolution of the blastocyst
data to that of the training data (different by a factor of 1.25 in xy) but
rather to match the nuclear volumes, which are considerably largerin
theblastocyst (nuclear radius® of -6.5 pmversus ~3.5 pm in intestinal
organoids). When ablastocyst underwent a major rotation, we ignored
that time pointinour analysis of the error rates. These major rotations
occurred only during two frames in only one of the blastocysts. To cor-
rectly track cells through these major rotations, our tracking algorithm
would simply have to be combined with animage registration step, as
in the original paper describing the dataset”.

Out-of-sample use: C. elegans cell tracking
We obtained the C. elegans embryo datasets from the Cell Tracking
Challenge website". The available training data consisted of two fully
annotated movies (150 frames long) following cells from two-cell to
~128-cell stages.

We trained new cell detection and link and division prediction
neural networks on the two provided annotated training datasets.
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Asallcellsintheimaging volume were annotated, there was no need to
crop theimage during cell detection training, and we could increase the
background weighting to 0.95 without risking training on unannotated
cellcenters. Due to the differencein nucleus sizes compared to those of
theintestinal organoid data, we also increased the radius parameters
in the distance mapping for cell detection. All other networks were
trained as for the intestinal organoids. We estimated the proper scaling
temperature for the marginalization by calibrating on the training data
as described for the intestinal organoid data.

We used one of the unannotated ‘challenge’ datasets to evaluate
tracking quality and validate that the marginalized probabilities were
well calibrated. We did this by manually checking all potential errors
and using the corrected dataset as our reference.

Automated lineage dynamics analysis

For the automated analysis, we first filtered out all links that had a
marginalized probability below 99%. All tracks that donotendina
division are considered censured.

Akey assumption underlying survival analysis is that the probabil-
ity of an eventhappeningisindependentof the chance of being lost to
follow-up. Inour case, thisassumptionis broken, as cells are relatively
often lost when they are close to dividing (due to rapid nucleus move-
ment) and cell divisionis the key event when studying lineage dynamics.
This means that we would underestimate the number of dividing cells,
because we tend to lose track of them just before they divide. We break
this dependency by using a division detection neural network to check
for every track that is lost to follow-up if it is lost during the division
process. We then reassign tracks thatendin a predicted division (>50%
predicted probability) from the censured category to the divided class.
Now observing the division eventsis no longer affected by uncertainties
intracking during the division process.

The neural network trained for this task was trained in the exact
same manner as described before except that we are not interested
in pinpointing the exact moment of chromosome separation. We
also wish to classify tracks as dividing if they are lost during any other
moment of the division process. We therefore classify all cells within
two frames around division as dividing during training. Because of the
varying length of the division process, we exclude time points directly
around this window to avoid including cells in the training data that
look clearly mitotic but are just outside the window.

We can also use this neural network to split tracks that contain a
divisionbut were not assigned as dividing ininitial tracking due to lack
ofaplausible daughter cell, for instance, because one of the daughters
moved out of view. Therefore, we break up tracks when the chance of
divisionis on average higher than 99% for three consecutive frames.

Our method detects some cells with very short cell cycles, in which
celldivision generally leads to cell deathand notin two daughter pairs,
potentially reflecting polyploid cells. These are not classified as divid-
ing in the manually annotated data; therefore, we remove these very
short cell cycles (less than 6 h). This has the added benefit that it also
removes some cases in which the division neural network wrongly
assignsadivisiontoatrack end. Although the chance of thishappening
islow, it happens generally in less than 2.5% of tracks.

For survival analysis, we use the ‘surv’ package in R and for the
fitting ‘survflexcure’. During analysis, we only use tracks that startina
division and use the next division as the event under study. Cell cycle
times are analyzed by fitting a Guassian hazard to the data, allowing for
a‘cured’ fraction that will not divide again. The mean of the Gaussian
represents the average cell cycle, and its standard deviation represents
the spread around this mean. The ‘cured’ fractionis used as an estimate
ofthe fraction of differentiating cells. Before fitting, we remove outli-
ers that are more than ~7 h from the mean (more than three times the
standard deviation). To avoid dealing with negative times, we fitted a
log normal distribution to the exponents of the survival times instead
of using anormal distribution directly.

Manual data for comparison are analyzed in the same manner,
but the only censoring events derive from cell death, the end of the
experiment or cells leaving the imaging volume. No neural network
thus hastobe used tocheck whether censured tracks endinadivision.

Video visualization

Three-dimensional rendering of the microscopy with overlaid tracks
was carried out using Napari. We have written a plugin (available on
GitHub) that allows importing of tracking results into Napari. The 3D
reconstruction of lineages using manually curated data (Supplemen-
tary Video 4) was carried out using ParaView. We provide extensive
documentation that can be used to reproduce this visualization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Due to storage considerations, all imaging data and accompany-
ing tracking data are available upon request. Sample imaging and
tracking data are available on Zenodo (https://doi.org/10.5281/
zenodo.13982844)%,

Code availability

OrganoidTracker software s freely downloadable from GitHub (https://
github.com/jvzonlab/OrganoidTracker). Themodels used are available
on Zenodo (https://doi.org/10.5281/zenodo0.13912686, https://doi.
org/10.5281/zenodo.13946119)<,
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A Treat oversegmentation at multiple timepoints as single event
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Extended Data Fig. 1| Post-processing of the tracking solution. a) lllustration
of how post-processing deals with over-segmentations. The blue links represent
the maximume-likelihood solution, while the grey links are excluded from the
solution. Over-segmentations are not independent events, but are treated as
such by the min-cost flow solver, which can lead to fragmentation of tracks

(left panel). During post-processing we check if track fragments can be joined
by adding a single link and removing the cell detections associated with the
over-segmentation. Removing multiple of these nodes is associated with a
single penalty (E;z., the relative log-likelihood of over-segmentation, based on
the false positive cell detection rate) whichis added to the new link so that our
probabilistic description remains correct. b) lllustration of how post-processing
deals with under-segmentations. The min-cost flow solver cannot add nodes

to the graph, which can lead to fragmentation of tracks (left panel). During
post-processing we check if track fragments can be joined by adding anode.

Time since start of experiment (hours)

Adding anodeis associated with a penalty (E,qq0n, the relative log-likelihood of
missing a cell detection, based on the false negative detection rate) and the node
is connected to nearby nodes in the graph with uniform probability. c) Error-free
track length distributions in a representative tracked organoid. The ground truth
(green) represents fully manually corrected data, where tracks are only cut short
by cell death, the end of the experiment, or leaving the field-of-view. The initial
maximume-likelihood solution (gray) has many more short tracks, which s partly
solved by post-processing (blue). d) The fraction of cells present at a certain time
that can be tracked without error from the start of the experiment. Only cells that
are trackable for the full experiment in the ground truth are considered. By post-
processing the datawe canincrease the fraction of cells that are trackable for the
complete experiment (>60 h) from around 50% to around 75%. See the section
‘Solving over- and undersegmentation’ in the Methods for more details.
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Extended Data Fig. 2| Temperature scaling during the marginalization
procedure. a) Visual illustration of the temperature scaling procedure. The
prediction onasingle link (encoded inits weight) is not independent from
predictions on nearby links. To account for this shared information we divide
thelink energy by a ‘calibration temperature’ (Eq. 1). The marginalized link
probability, P(A|B), is then based on scaled energies (Eq. 2). The calibration
temperature is found by minimizing the cross-entropy loss (CE) between

the marginalized predictions and the ground truth (y), with respect to this
temperature (Eq. 3). This scaling temperature has to be calibrated only once after
training a set of division and link neural networks. The calibration can be done

on the same data that was used for neural network training. For data far outside
the training distribution new calibration can be performed on a small manually
corrected set of links. b) Illustration of the difference subsets used in the
subsequent plots. Red symbolizes the naive approach, where the subset simply is
thelink of interest. In this case no marginalization is done. The green subset only
considers link at a distance of one step from the target node of the link of interest.
Theblue subset goes up to a distance of three steps. This is the largest set that is
computationally feasible (-1 h of computation time for 300 frames). ¢) Prediction
performance as measured by the binary cross entropy loss versus the subgraph

size, all dots areindividual organoids. The loss at the optimal temperature
(lowest point in panel d) was taken. Increasing subgraph size improves
prediction, but there is noimprovement when going beyond three steps, see
method section ‘Marginalization’ for further discussion. d) Cross entropy loss
between predictions and ground truth (based on all 9 organoids in the training
dataset) for different neighborhoods and temperatures. Minimum loss (dotted
line) is achieved at higher temperatures when the subset gets larger. All lines
represent individual organoids. e) Optimal calibration temperature for every
neighborhood. The error bars represent the 95% confidence interval (thisis a
lower bound as not all observed links are truly independent). Limiting ourselves
to calibration on the validation dataset that was left during training gives the
same results. f) Optimal temperatures and confidence intervals (again lower
bounds) per organoid. The estimates show great overlap between organoids,
validating that we can use a single calibration temperature for all. g) Predicted
versus actual log-likelihoods after marginalization on different subsets.

When marginalizing on larger subsets predictions become overconfident. If
predictions suggest that links are not correct, more than expected fraction is
actually correct and the other way around. h) After scaling the energies with the
proper temperature per subset, we get well-calibrated link predictions.
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Extended Data Fig. 3| Marginalization during full procedure. a) The predicted
relative log,,-likehoods from the link neural network (black line) is well-calibrated
when compared to the manually corrected ground truth (dotted line denotes
perfect calibration). The overestimation at low likelihoods is due to the filtering
of unlikely links before tracking and marginalization (see Methods). This filtering
preferentially removes low-probability incorrect links, making the remaining
ones more likely to be true. The fact that links in the global solution (blue line)

are much more likely than expected and links excluded from the tracking
solution (gray line) are less likely than expected, suggests that contextual
information could improve the error rate prediction. b) Many links in the tracking
solution are less than 99% (black line) certain based on the naive predictions.

c) Marginalization integrates context and largely removes the discrepancy

b |

error rate: [ o |
>50% 0.1%

between links in and out of the tracking solution. d) Only few links in the tracking
solution are less than 99% certain after marginalization. e) The fraction of
uncertain links (<99% certainty) as fraction of total. Marginalization decreases
the amount of uncertain links around four-fold. The longest experiments, which
have poorer signal to noise, benefitted most from the marginalization (the black
lines denote individual experiments). The red fraction indicates actual errors

in the low-confident fraction. The dotted line the fraction of errors across all
links including ones that have a high probability of being true, showing that no
significantamount of errors is missed. f) Five randomly selected lineage trees
colored by their naive predicted error rate (yellow to red links are uncertain.

g) The same trees after marginalization.

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02845-6

>

5

=== Predicted links

44

Measured log4g -likelihood correct

-4 4

-5 T T T
5 4 3 2 1 0 1 2 3

12000 1

9000 A

M Correct link

6000 .
Mincorrect link

3000 A

Number of links

0 T T T T

5 4 3 2 1 0 1 2 3

Marginalized log1g — likelihood

00 @ !
; )
AW
@ t+

\\v’

1

(g}

=== Partial tracks

Measured logy -likelihood correct

4 e

5 T

4

5

B
51 &
w== Random link pairs R
g 44 K
= === Subsequent link pairs g
8 31 ¢
g 2
<
© 11
=
= oA
=
g -
B 2-
Q
2 .
8 34 K3
o) o
= 4 o
.
K
-5 ¥—r—r—T—T—T—T—T—T—T
5 4 3 2 1 0 1 2 3 4 5
o 120001
P
£ 9000
pres
) :
— 60004 M Correct subsequent pair
2 Mincorrect subsequent pair
£ 3000
Z
0 —
5 4 3 2 1 0 1 2 3 4 5
Combined logyg - likelihood
Qe 1
|4
.
y ;‘ N N
E H
1:1:1
'@ t+1
D
51 K
5
44 === Full tracks o

Measured log4o -likelihood correct

5 4 3 2 1 0 1 2 3
12000

9000 A

[ Correct track
Mincorrect track

6000 A

3000 A

Number of tracks

0-
5 4 3 2 41 0 1 2 3
Combined logqg — likelihood

Extended Data Fig. 4 | See next page for caption.

Number of tracks

-

N

o
J

©0
o
1

W Correct track
Mincorrect track

60

w
o
1

0-
5 4 3 2 1 0 1 2 3 4 5
Combined logqp - likelihood

Fommm e —— -

== é

—— i y
—

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02845-6

Extended Data Fig. 4 | Track error rates. a) The predicted likelihood (after
marginalization) of links in the tracking solution against the measured likelihood
of being correct based on the manual data (top panel). The line does not overlap
the dotted line, because not all graph information available to the flow-solver can
beintegrated inthe error prediction. Key is that they remain above the dotted
lineso that the error predictions are conservative. The histogram (bottom

panel) shows the distribution of likelihoods of correct (green) and incorrect
links (red). Because the linking error rate is so low, incorrect instances cannot be
seenin the histograms a) and b). The black vertical line indicates the threshold

0f 99% chance of being correct. b) Thelikelihood of a pair of links both being
correct can be calculated by combining their constituent probabilities by simple
multiplication. It does not matter if the links are subsequent (blue line)

orunconnected (gray line). Itis thus not so thatalink being true is informative
ofthe truth of the subsequent link, beyond its predicted error probability.

c) The predicted error rates for tracks of arbitrary length. The probability thata
cellcanbe correctly traced back toits last division (red dotted lines) is predicted
for every cell at every timepoint. The probability of the track being correct

is calculated by multiplying all the constituent probabilities. The tracks are
compared to the ground truth and deemed correct if they recapitulate it exactly,
yielding a similar calibration curve to a). d) The same as in ¢) but now only with
tracks that span the full cell cycle, again producing a similar calibration curve as
ina). Error detection works efficiently for full tracks spanning the complete cell
cycle, only oneincorrect track is above the 99% certainty cut-off.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Survival curves for different organoids. a) Kaplan-Meier
curves describing the fraction of non-divided cells as a function of time since
division, for 5 organoids where manual reference data was available for the
complete crypt (grey curve). The shaded region denotes the 95% confidence
interval. b) Kaplan-Meier curves describing the fraction of non-divided cells
asafunction of the time since the division of the sister cell. ¢) Comparison of
manually annotated data to automated analysis for the estimation of three key
parameters of lineage dynamics. Color indicates whether the variationin cell
cycle duration or the probability that the cell will divide again was calculated for
all cell cycles (red) or for cell cycles relative to the moment of division of the sister
cell (blue). Cell cycle times show almost perfect correlation between manual and
automated data. The deviation in the cell cycle time is more sensitive to outliers
and consequently shows poorer correlation. The non-dividing fraction again

shows strong correlation. d) Overlay of all Kaplan-Meier curves of automatically
tracked organoids, n =20, which describes the fraction of non-divided cellsasa
function of time since division. Black line represents the combined data. e) Same
butas afunction of time since the sister division. f) Statistical analysis of organoid
lineage parameters. Error bars indicate standard deviations around the mean.
Cellcycle times only show limited variation across organoids and experiments,
with standard deviation <10% of the mean cell cycle time (left panel). The
variation around the cell cycle mean for cell cycle times is significantly larger than
the variation between the cell cycle times of sisters (middle panel), suggesting
strong correlation between sister pairs. This is further supported by the results
that given that the sister divides, the non-dividing fraction becomes close to zero
instead of around 30% (right panel).
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Extended Data Fig. 6 | Tracking performance on organoids with perturbed
dynamics. (a) The number of detected cells in the imaging volume for two
organoids treated with palbociclib, which blocks cell division. After ~10 h

of Palbociclib exposure, cell death dominates over cell division, leading to
decreased cell numbers. (b) Distribution of cell cycle lengths (O his cell cycle
start) plotted for the same two organoids. Cells divide either slowly (>25 h) or not
atall, consistent with Palbociclib action. (c) Thirty randomly selected lineages
show tracking with very low potential error rates. Cells generally divide only
once, or not at all. (d) Top: measured link likelihood versus likelihoods predicted

by the neural network. Data is shown for all possible links (black) or links that
are eitherin the global solution (blue). Dotted line is perfect calibration. Datais
for the 2 different organoidsin (a) and (b). Shaded regionis S.D.M. Predictions
for Palbociclib-treated organoids remain well-calibrated, indicating that
perturbation of cell dynamics does not affect the quality of error predictions.
Bottom: histogram of the predictions. Almost all links in the tracking solution
(blue) are above the 99% probability threshold (vertical line) indicating highly
confident tracking.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Performance for different image acquisition
parameters. (a) Tracking performance for intestinal organoidsimagedona
different scanning confocal microscope (Leica TCS SP8) than used for collecting
the training data (Nikon AIR MP). Consequently, imaging data had lower planar
resolution (0.4 pm/px rather than 0.32 pm/px), cells could be imaged deeper
into the organoid, but at low signal-to-noise. Green squares are tracked cells at
60 um depth, while red and blue squares are their previous and next locations,
respectively. The cells marked with an asterisk (*) correspond to cells in the
lineage trees (right). Open circles (0) denote missed cell detections. Even at this
comparatively low signal-to-noise ratio most (>80%) cells are detected. The YZ-
cross-section show the depth of these cells in terms of cell number. Lineage trees
are color-coded by predicted error rate. Most cells can be tracked for multiple
hours without potential mistakes. b) Same as ina, but for cells at 50 pm. Signal-
to-noise ratios are higher here and all cells are detected, while lineages show cell
tracking for long (>10 h) periods without potential mistakes. ¢, d) Top: measured
link likelihood versus likelihoods predicted by the marginalization procedure
either without (c) or with (d) recalibration on newly corrected data. Data is shown
for all possible links (black) or links that are either in the global solution (blue).
Dotted lineis perfect calibration. Data is for the 4 different data sets shown in (e)
and (f). Shaded region is S.D.M. Without recalibration (c), predicted likelihoods

are overconfident, for example the 99% probability threshold actually
corresponds to alower level of certainty. Using the actual 99% probability
threshold would increase the number of links needed to be checked

(c, bottom histogram). However, the number of flagged potential mistakes
omitted when using the uncalibrated threshold remains low (0.06% of links).

e) Visualization of the recalibration process. The recalibration constant, defined
astheratio of the old and new scaling temperature, is estimated by manual error
correction of predicted tracks. Graphs show the estimated recalibration constant
versus the number of frames corrected for four different data sets, as well as all
data pooled. The estimates converge on the consensus estimate (dotted line)

for >5 corrected frames. Shaded area denotes 95% confidence interval.f) The
number of reviewed potential errors (<99% certainty links) as a function of
frames corrected. Tight estimates of the recalibration constant are reached after
~200 reviewed potential errors. g) Survival curve indicating the probability that
acellhas not divided at time t after its birth. Shown are the original (blue, green)
and recalibrated (orange, red) data for the same organoid. h) Same as g) but for
the timing of division relative to the sister division. The strong overlap between
original and recalibrated dataindicates that for downstream applications perfect
calibration is often not essential.
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Extended Data Fig. 8| Performance on different system: blastocyst.

(a) Lineages color-coded by error-rates for a blastocyst developing from the

16 to 64-cell stage (BlastoSPIM 1.0 dataset), as obtained by tracking without
manual curation. Many cells can be tracked from the beginning to the end
without any potential mistakes. b) Blastocyst cells undergoing large movements,
with subsequent timepoints shown in green and magenta. Green square and

red circlesindicate the current and subsequent detected centroid position,
respectively. The red line connects these positions, while the blue line connects
to the centroid positionin the previous time point. When either marker is not
present, then the corresponding positions are >4 pm away from the z-slice
shown. Our method tracks cells even for displacements larger than the typical
nucleus size. ¢) Histogram of potential cell displacements in a single frame, for all
potential links, with the correctness of each link established by manual curation.
Many true links represent fast-moving cells, corresponding to displacements

between timesteps of >1 cell radius, or -6 pm, large compared to cellmovements
inintestinal organoids both in absolute and relative terms. d) Precision, recall
and accuracy versus displacement between timesteps, for the optimal tracking
solution before manual curation. Even fast-moving cells are tracked with high
accuracy. e, f) Top: measured link likelihood versus likelihoods predicted by
marginalization, either without (e) or with (f) recalibration on newly corrected
data. Datais shown for all possible links (black) or links that are either in the
global solution (blue). Dotted line is perfect calibration. Data is for 2 different
blastocysts, corresponding to the datain (c) and (d). Shaded regionis S.D.M.
Without recalibration (c) predicted likelihoods are overconfident. Using a
recalibrated threshold does not majorly increase the number of links to be
checked (d, bottom histogram), as the bulk of links in the tracking solution
remains above the 99% probability threshold (black vertical line).
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Extended DataFig. 9| C. elegans tracking. a) Z-slices of 3D confocal data for

C. elegans embryogenesis (training data). b) Using retrained neural networks,
we obtain well-calibrated link-likelihood predictions (top panel). Almost all links
inthe tracking solution that minimize the global energy (blue) have very high
marginalized likelihoods (bottom panel). In this data set, only few links in the
graph arenotin the tracking solution (grey) as the nuclei are less closely packed
theninintestinal organoid data. c) Lineage trees with associated error rates

show that only few potential errors (41links with an error probability above 1%)
are present after automated tracking. d) Lineage trees after manual correction
of potential errors. The lineages map exactly on the known C. elegans AB, e, MS,
c,dand P, sub-lineages, strongly suggesting that no errors remain. e) Tracking
statistics show a very low error rate and that almost no error in linking.

Most errors arise from undetected nuclei (under-segmentation), deep in the
imaging volume.
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(DOI: 10.5281/zenodo.13982844). Blastocyst data was retrieved from the Blastospim website (https://blastospim.flatironinstitute.org/html/series.html) and c.
Elegans data retrieved from the Cell Tracking Challenge website (https://celltrackingchallenge.net/3d-datasets/).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample sizes used for training the neural networks were the same as in our paper describing the previous iteration of our tracking
software (Kok et al.), to facilitate a fair comparison. Validation was done on 5 organoids with data taken months apart, to facilitate robustness.
Validation experiments (palbociclib, different microscopes, blastocysts, c. Elegans) were done on 2 samples each as there was limited
blastocyst and c. Elegans data publicly available. In all these cases both samples behaved extremely similar. For the automated analysis of
lineage dynamics we used 20 organoids to showcase throughput, a single organoid can already show that we can automatically measure
lineage dynamics.

Data exclusions  We did not specifically exclude data from our analysis, but did chose organoids to track that remained in the field-of-view during our imaging
window. When comparing the automatically generated tracking with manually annotated data, we only used manually annotated data that

tracked almost all dividing cells and not available manual tracking that only tracks one of multiple organoid crypts in the field-of-view.

Replication We replicate the whole procedure on c. Elegans data from the Cell Tracking Challenge. The procedure without neural retraining was
performed 3 times (palbociclib data, data from a different microscope, blastocysts). All these replication attempts were succesful.

Randomization  The research does not rely on interventions, so randomization does not apply.

Blinding The original ground truth data used for evaluation was generated before the algorithm's predictions and annotators were thus blind to them.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines XI|[] Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
|:| Clinical data

|:| Dual use research of concern

XXNXNX X s




Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Mouse intestinal organoids with a H2B-mCherry reporter were used, gifted by Norman Sachs and Joep Beumer (Group of
Hans Clevers, Hubrecht Institute).

Authentication No further authentication was done in our lab.

Mycoplasma contamination The cell line was tested negative for mycoplasma throughout its use.

Commonly misidentified lines  n/a
(See ICLAC register)
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