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Abstract

Direction-of-arrival (DOA) estimation of acoustic sources is of great
interest in a number of applications. Acoustic vector sensors (AVSs)
provide an edge over traditional scalar sensors since they measure
the acoustic velocity field in addition to the acoustic pressure. It is
known that a uniform linear array (ULA) of M conventional scalar
sensors can identify up to M − 1 DOAs. However, using second-
order statistics, the class of sparse scalar sensor arrays have been
shown to identify more source DOAs than the number of sensors.
In this thesis, we extend these results using sparse AVS arrays. We
first assume that the sources are quasi-stationary and use the Khatri-
Rao subspace approach to estimate the source DOAs. In addition,
a spatial-velocity smoothing technique is proposed to estimate the
DOAs of stationary sources. For both scenarios, we show that the
number of source DOAs that can be identified is significantly greater
than the number of physical vector sensors.

The second problem considered in this thesis is sensor selection
for non-linear models. It is often necessary to guarantee a certain
estimation accuracy by choosing the best subset of the available set
of sensors. A non-linear measurement model in additive Gaussian
noise is considered. To solve the sensor selection problem, which is
inherently combinatorial, a greedy algorithm based on submodular
cost functions is developed. The proposed low-complexity greedy al-
gorithm is computationally attractive as compared to existing sensor
selection solvers for non-linear models. The submodular cost ensures
optimality of the greedy algorithm.
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Abstract

Direction-of-arrival (DOA) estimation of acoustic sources is of great interest in a num-
ber of applications. Acoustic vector sensors (AVSs) provide an edge over traditional
scalar sensors since they measure the acoustic velocity field in addition to the acous-
tic pressure. It is known that a uniform linear array (ULA) of M conventional scalar
sensors can identify up to M − 1 DOAs. However, using second-order statistics, the
class of sparse scalar sensor arrays have been shown to identify more source DOAs than
the number of sensors. In this thesis, we extend these results using sparse AVS arrays.
We first assume that the sources are quasi-stationary and use the Khatri-Rao subspace
approach to estimate the source DOAs. In addition, a spatial-velocity smoothing tech-
nique is proposed to estimate the DOAs of stationary sources. For both scenarios, we
show that the number of source DOAs that can be identified is significantly greater
than the number of physical vector sensors.

The second problem considered in this thesis is sensor selection for non-linear mod-
els. It is often necessary to guarantee a certain estimation accuracy by choosing the
best subset of the available set of sensors. A non-linear measurement model in additive
Gaussian noise is considered. To solve the sensor selection problem, which is inherently
combinatorial, a greedy algorithm based on submodular cost functions is developed.
The proposed low-complexity greedy algorithm is computationally attractive as com-
pared to existing sensor selection solvers for non-linear models. The submodular cost
ensures optimality of the greedy algorithm.
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Introduction 1
Spatial sensor arrays have found applications in several areas like seismology, optical
imaging, acoustic imaging, radio astronomy and radar systems, to list a few. In all
of these applications, the existing wavefield is assumed to be generated by radiation
from some sources, and that it contains information about the parameters character-
izing these sources. The main goal of array signal processing is parameter estimation,
achieved by combining both the temporal and spatial outputs of the array. In this
context, direction of arrival (DOA), or angle of arrival (AOA), estimation is a problem
where the source bearings have to be determined. Traditionally, the problem of DOA
estimation has been addressed using uniform linear arrays (ULAs) of scalar sensors,
where the time-difference-of-arrival (TDOA) between scalar sensors is used to extract
directional information of sources.

Pressure sensor arrays have been widely used in array processing and source local-
ization because it is straightforward to process their outputs. With recent advances in
sensor technology, it has become possible to manufacture more sophisticated sensors-
those which measure quantities such as velocity and acceleration in addition to pres-
sure. One such device is the acoustic vector sensor (AVS) which has made the acoustic
particle velocity a measurable quantity; see Figure 1.1a. The sensor consists of three
orthogonally placed velocity sensors. Each velocity sensor consists of two parallely
placed platinum wires and the temperature difference across these wires generates a
voltage difference which is proportional to the acoustic particle velocity. One such
velocity sensor is shown in Figure 1.1b. Since the AVS observes more information in
general, it has been shown to have a better estimation performance than conventional
pressure sensors. An omnidirectional pressure sensor cannot identify source directions
since it has equal response in all directions. A single vector sensor, on the other hand,
contains directional information of sources in its measurements and can, hence, iden-
tify directions unambiguously. The inherent directivity of a vector sensor also allows
construction of smaller vector sensor arrays in comparison to microphone arrays, in
addition to providing better range and angle accuracy.

A commonly used method for DOA estimation is a subspace based technique known
as MUltiple SIgnal Classification (MUSIC) [3]. In particular, MUSIC can identify up to
M − 1 DOAs using a uniform linear array of M scalar sensors. However, non-uniform
arrays have found considerable interest since they are not constrained by the resolution
limit of uniform arrays. Recently, it has been shown that the DOAs of more sources
than the number of available sensors can be estimated. These aim at constructing
the array more smartly. The processing of data for DOA estimation using such sparse
arrays usually takes place in the covariance domain, and, hence, it is referred to as
covariance sensing. In this work, we address the problem of covariance sensing with
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(a) Acoustic vector sensor [1]

(b) Velocity sensor [2]

Figure 1.1: Acoustic Vector Sensor

vector sensor arrays, and this is a subject of the first part of this work.

In addition to estimating the source DOAs, it might be necessary to guarantee a
certain parameter estimation accuracy. This is a subject of the second part of the
thesis which addresses the problem of sensor selection. Sensor selection has become
largely popular in several applications like localization, tracking, and remote-sensing.
Modern approaches use spatially deployed sensors to measure complex spatio-temporal
phenomena. Typically, a large number of sensors are involved in making observations
in the applications and therefore the sensing process can be expensive. Hence, it is
desirable to select the best subset of sensors from the available set so that a certain
estimation accuracy is ensured. The proposed framework can be extended to any
data model with additive noise when the measurements are non-linear in the unknown
parameter. Although we do not explicitly apply the proposed method to an example of
sensor selection for the AVS data model, it could be extended to the problem of DOA
estimation with AVSs. Such a sensor selection can be applied to design sparse AVS
arrays that also ensure a certain quality of DOA estimates next to their identifiability.
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1.1 Applications of Vector Sensors

The proposed framework using sparse AVS arrays could be used in several applications.
Vector sensors have been used to provide solutions in a diverse range of fields such as:

1. Sound localization and tracking- Arrays of vector sensors have found applications
in acoustic as well as electromagnetic source localization and tracking. In par-
ticular, vector sensors have found widespread usage in military applications like
gunshot localization, Doppler processing of passing aircrafts and missiles as well
as mapping of point of origin, trajectory and point of impact of artillery. Further-
more, since the AVS has an operating range of 0.1Hz−10kHz, it has been used to
locate infrasound (or low frequency sound) sources. AVSs have also been used in
near-field sound source localization in reverberant rooms and reverberant space
structures. Recent applications of AVSs include wideband source localization as
well as underwater source localization.

2. Noise and Vibration Analysis- The property of vector sensor arrays to provide
high spatial resolution has been used in noise and vibration analysis of compo-
nents. Noise contribution analysis and appliance monitoring are pertinent to the
automotive and space industry where the machinery has to be tested for quality
purposes. The acoustic vector sensor in particular is capable of providing the
acoustic particle velocity map in the entire frequency range.

3. Room Acoustics- The ability of AVSs to measure particle velocity has made it
suitable to applications which require the analysis of inhomogenous surfaces and
their charateristics. This can, in turn, provide information on the acoustic reflec-
tion, impedence and absorption charateristics of materials. Moreover, AVSs can
be used to map points of specular reflection which affect the acoustic properties
of a room. Recent applications of AVSs allow the measurement and mapping of
energy densities and energy flow in the room, which provide information about
its acoustic properties.

1.2 Motivation

The aim of this thesis is motivated by the following two aspects:

• DOA estimation using acoustic vector sensor arrays: Sparse arrays are formed by
reducing the number of redundant spacings between sensors in the array. Then,
the number of redundant correlations between array elements, or the redundant
differences in the co-domain, are also reduced. Some examples of such sparse ar-
rays which provide all the phase-related differences in the co-domain are Minimum
Redundancy Array (MRAs) [4], Nested Arrays [5] and the Co-prime Arrays [6].
Similarly, sparse AVS array topologies can also be constructed. Since AVSs also
measure the acoustic particle velocity vector, it is expected that the sparse vector
sensor array is able to estimate more DOAs than that possible with a uniform
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linear scalar sensor array. For applications like source localization and tracking as
in Section 1.1, a natural consequence is that more sources can be localized than
that possible with a uniform linear AVS array. Hence, it is interesting to investi-
gate the maximum number of sources that can be identified by such a sparse AVS
array. Another reason to study the problem of covariance sensing with vector
sensor arrays is that a sparse array constructed with the same number of AVSs as
an AVS-ULA has a larger aperture. In addition to identifying more source DOAs,
the sparse AVS array can be expected to have a better resolution performance
than the AVS-ULA.

• Sensor selection for non-linear measurement models: While the first part of the
thesis deals with the identifiability analysis, or the conditions for unique DOA es-
timation, it is also important to guarantee a pre-defined performance measure, like
DOA estimation accuracy, in certain critical applications. For instance, in military
applications like gunshot localization and target tracking, it may be necessary to
have a high estimated angle accuracy like 1o. In such cases, sensor selection finds
the optimal set of sensors so that this accuracy is achieved. Usually, we want to
select K out of M existing sensors where K �M , and a straightforward method
of sensor selection is to perform a search over all

(
M
K

)
combinations and select

the combination that best meets the our performance criterion. Clearly, such an
approach is intractable for large values of M . Hence, it is solved with several
approximations - convex optimization and greedy heuristics.

Convex optimization generally have a better performance with respect to the
chosen cost function than greedy approaches if the cost to be minimized is convex.
On the other hand, greedy heuristics aim at finding computationally attractive
solutions to optimality. For a chosen cost function, convex optimization based
approaches generally have a better performance, but are computationally more
intensive. This has been illustrated in Figure 1.2. The sensor selection problem
is even more aggravated for non-linear models because the performance measure
depends on the unknown parameter itself. It is interesting to combine the benefits
of the two approaches to solve the sensor selection for non-linear models. That is,
the aim is to develop costs that can be optimized with a low complexity algorithm,
as well as guarantee the performance of the such a greedy algorithm.

1.3 Problem Statement

The problem that this thesis addresses is two-fold:

• How many sources DOAs can be identified using a sparse, linear AVS array using
covariance processing?

• How does one formulate performance measures for the non-linear model that are
independent of the unknown parameter? How does the error performance of the
greedy algorithm compare with that of convex optimization based approaches?

4



Figure 1.2: Computational complexity and performance for non-linear data models

1.4 Thesis Outline

In this section, we describe the content of this thesis and highlight the main contribu-
tions. This thesis is a two-part work. The first part of the thesis addresses the problem
of compressive covariance sensing using vector sensor arrays. In particular, we discuss
the concepts of sparse arrays and covariance based processing for existing scalar sensor
arrays. These will be extended to AVS arrays. The first contribution of the thesis
addresses the DOA estimation of quasi-stationary sources, which have a time-variant
covariance matrix. Further, we analyze the number of source DOAs that can be esti-
mated. The second contribution addresses the DOA estimation of stationary sources,
where the source covariance matrix is time-invariant. A new variant of the spatial
smoothing technique of [5], called the spatial-velocity smoothing due to its nature of
using both the spatial- and velocity-domain invariance, is proposed. This allows the
estimation of DOAs of even stationary sources.

The second part of the thesis addresses the problem of sensor selection for non-linear
measurement models. We propose a submodular cost function which is independent of
the unknown parameter. The concept of submodularity is similar to concept of dimin-
ishing returns. That is, adding a sensor index that maximizes a certain submodular
function to a set is less beneficial than adding the same index to a subset of that set.
Moreover, we leverage the concept of submodularity to assure the performance of the
proposed greedy algorithm by using a classic result of [7]. We use a greedy algorithm to
optimize the cost function which is computationally less intensive compared to convex
optimization based approaches. The reader is referred to Appendix A and Appendix B
for preliminaries and literature study on covariance sensing and sensor selection, re-
spectively.
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Part I
This part of the thesis discusses the covariance processing using sparse vector sensor
arrays. We use sparse AVS arrays, such as the nested array or the MRA, which result
in a co-array that is uniform and linear. We focus on 1D-DOA estimation of strictly un-
correlated sources. In particular, we consider quasi-stationary and stationary sources.

Chapter 2: Data model: In this chapter, we introduce the time-domain data model
for an AVS array as well as the correlation-domain data model on which DOA estimation
is investigated.

Chapter 3: Quasi-stationary sources: For quasi-stationary sources, we use a
Khatri-Rao subspace approach from [8] and extend it to a sparse AVS array. Specifi-
cally, we can identify 5α sources, where α represents the number of sources that can be
identified with a sparse scalar array. We also discuss the full-rank conditions of the ar-
ray manifold in the co-domain and identifiability issues with subspace based techniques
like MUSIC.

Chapter 4: Stationary Sources: For stationary sources, we propose spatial-velocity
smoothing to handle the time-invariance of the source covariance matrix and to identify
up to 1.5(α+1) sources. Here, we discuss the full-rank conditions of the array manifold
in the co-domain and identifiability issues using MUSIC.

Part II

Chapter 5: Greedy Sensor Selection for Non-Linear Measurement Models:
In this chapter, the non-linear function is linearized using a first-order Taylor approx-
imation around points where the parameter is likely to reside. A submodular cost is
proposed which does not depend on the unknown parameter but uses the knowledge
of the domain where the parameter resides. The cost function is based on frame po-
tential, a measure of the orthogonality of the rows of the measuring matrix. Similar to
the frame potential, we use the submodularity of the D-optimal criterion to propose a
second cost function for non-linear measurement models. Further, a greedy algorithm
to minimize the submodular cost function is proposed. Using the fundamental result
of Nemhauser et al. [7], the performance of the algorithm is guaranteed with respect to
the proposed cost functions.

1.5 Publications

1. Shilpa Rao, Sundeep Prabhakar Chepuri, and Geert Leus. “DOA Estimation
Using Sparse Vector Sensor Arrays”. Submitted to CAMSAP 2015.

2. Shilpa Rao, Sundeep Prabhakar Chepuri, and Geert Leus. “Greedy Sensor Selec-
tion for Non-Linear Models”. Submitted to CAMSAP 2015.

3. Shilpa Rao, Sundeep Prabhakar Chepuri, and Geert Leus. “Compressive Covari-
ance Sensing using Acoustic Vector Sensors”. Journal in preparation.
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DOA Estimation using Sparse AVS
Arrays
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Data Model - AVS Setup 2
In this chapter, we briefly present the data model for a general AVS array. Then, we
proceed to the signal model in the covariance domain.

2.1 Data Model

We assume that the sound wave is travelling in a homogenous and isotropic medium
and that the waves impinging on the array are planar. For the sake of simplic-
ity, we assume that the acoustic sources are narrowband and that the number of
sources are known a priori. We consider the problem of DOA estimation using a non-
uniform linear AVS array with the array being constructed either with the MRA [4]
or nested array [5]. In general, any array whose difference co-array is a filled ULA
can be used. Let us consider D incoherent narrowband sources with distinct azimuth
DOAs θd ∈ [−π, π), d = 1, 2, . . . , D. It is also assumed that each AVS measures the
acoustic pressure as well as two components of the acoustic velocity, i.e., cos θd and
sin θd, d = 1, 2, . . . , D. The output of the mth AVS is then a three-element complex
vector given by

ym(t) =

[
ym,p(t)
ym,v(t)

]
=

D∑
d=1

[
1
ud

]
pd(t) + nm(t) (2.1)

where ym,p and ym,v are, respectively, the pressure and velocity sensor outputs and
pd(t) is dth source signal. Here, ud is the bearing vector of the dth source given by
ud = [cos θd, sin θd]

T , where θd is the azimuth angle of the dth source. Finally, nm(t)
represents the noise on the mth AVS. Let nm(t) = [nm,p(t),nm,v(t)]

T where nm,p(t) and
nm,v(t) represent the noise on the pressure and velocity channels, respectively. The
noise covariance matrix for a single AVS is given by:

Rn = E[nm(t)nHm(t)] =

[
σ2 0
0 βσ2I2

]
∈ R3×3

where σ2 and βσ2 are the noise variances on the pressure and velocity channels re-
spectively, and the factor β ∈ R depends on how the noise is modeled. This has been
discussed in [9]. Collecting the outputs of M such vector sensors, we get

y(t) = A(θ)p(t) + n(t) (2.2)

where y(t) = [yH1 (t),yH2 (t), . . . ,yHM(t)]H ∈ C3M is the array output, p(t) =
[p1(t), p2(t), . . . , pD(t)]T is a vector containing the D source signals, and n(t) =

9



[nH1 (t),nH2 (t), . . . ,nHM(t)]H . Here, θ = [θ1, θ2, . . . , θD]T is the vector of unknown
source DOAs and has to be estimated. Further, the array manifold is given by
A(θ) = [a(θ1) a(θ2) · · · a(θD)], where a(θd) is given by

a(θd) = g(θd)⊗ h(θd) ∈ C3M ,

g(θd) = [1, ej2π(r2 cos θd)/λ, . . . , ej2π(rM cos θd/λ)]T ∈ CM ,

h(θd) = [1, uTd ]T ∈ R3.

(2.3)

Here, λ is the wavelength and rm is the mth marking on the nested array or MRA as
shown in Figure A.1. For the sake of convenience, we assume that the first element of
the sparse AVS array is located at the origin, i.e., r1 = 0.

2.2 Correlation Domain Data Model

We briefly describe the model based on the second-order statistics. In the correlation
domain, the array model in (2.2) can be re-written as

Ry = E[y(t)yH(t)] =ARpA
H + IM ⊗Rn (2.4)

where Ry is the data correlation matrix and Rp is the source correlation matrix. We
have dropped the dependence of the array manifold A on θ for brevity. We further
assume uncorrelated sources, i.e., , Rp is a diagonal matrix.

In practice, Ry is estimated by local averaging over, say, N samples. That is,

R̂y =
1

N

N∑
t=1

y(t)yH(t). (2.5)

Using the property vec(Adiag(b)C) = (CT ◦ A)b, where ◦ denotes the Khatri-Rao
product, vec(·) denotes vectorization, and diag(·) refers to a diagonal matrix with the
vector in its argument on the main diagonal, we vectorize Ry to get

ry = (A∗ ◦A)rp + e. (2.6)

Here, ry = vec(Ry) ∈ R9M2
, rp = diag(Rp), where diag(·) in this context forms a vector

from the main-diagonal elements, and e = vec(IM ⊗Rn). The KR product is defined
as

A∗ ◦A = [a∗(θ1)⊗ a(θ1), a∗(θ2)⊗ a(θ2), . . . , a∗(θD)⊗ a(θD)] ∈ C9M2×D. (2.7)

Since σ2 and β are known, the term e is deterministic and can be subtracted from (2.6)
to arrive at

z = ry − e = (A∗ ◦A)rp. (2.8)

Comparing the above equation with (2.2), we see that z behaves like the output of a
virtual array whose manifold is given by A∗ ◦ A. The rows of A∗ ◦ A are such that
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the KR product contains AVSs whose locations are given by the difference set S as
discussed in Appendix A. Thus, the difference set occurs naturally in problems where
the second-order statistics are taken. Instead of performing DOA estimation on the
signal model in (2.2), we may use the model in (2.8). Further, it is known that A∗ ◦A
contains a ULA due to the properties of the MRA and nested array. However, since
velocity measurements corresponding to the cosine and sine terms are also present, we
expect the DOF of the AVS co-array to be even higher than that of a scalar-sensor
ULA. In the next chapters, we discuss DOA estimation of two kinds of sources, viz.,
quasi-stationary sources and stationary sources using the signal model in (2.8) .

Remark : If σ2 is unknown, the term e can be projected out using the orthogonal
projection matrix P where P is given by

P = I3M −
eeT

‖e‖2

.
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Quasi-Stationary Sources 3
In this chapter, we propose an approach based on the quasi-stationarity of sources to
estimate the DOAs of sources using the model in (2.8). It can be noticed that only
a single measurement vector is available from (2.8) which makes the DOA estimation
problem difficult. However, there is a certain class of signals whose second-order statis-
tics vary over time but the statistics remain constant over short intervals. These are
called quasi-stationary signals. We use the Khatri-Rao subspace approach of [8] for
DOA estimation of quasi-stationary sources using the covariance model of (2.8).
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Figure 3.1: A speech signal

3.1 Khatri-Rao Subspace Approach

For quasi-stationary sources, the following assumption is made about the model. Each
source signal pd(t) is assumed to be quasi-stationary with a frame length L, i.e.,

E[|pd(t)|2] = rd,f ∀t ∈ [(f − 1)L, fL− 1]

f = 1, 2, . . . , F,

12



where rd,f is the variance of the dth source for frame index f . By allowing the source to
be quasi-stationary, the second-order statistics of the source signal is time-varying, but
rd,f is constant over duration of the frame. Moreover, for certain signals such as audio
and speech, quasi-stationarity of the sources is a reasonable assumption. Figure 3.1
shows an example of one such speech signal.

Then, re-writing (2.8) for each frame f , we get

zf = (A∗ ◦A)rp,f (3.1)

where zf is the vector z from (2.8) with the subscript f indicating the frame index.
Similarly rp,f = [r1,f , r2,f , . . . , rD,f ]

T . To build a full rank correlation matrix, the source
powers are allowed to vary in the different quasi-stationary intervals. Collecting the
data over F different intervals and defining Z = [z1 z2 · · · zF ] , we get

Z = (A∗ ◦A)Ψ (3.2)

with Ψ being given by

Ψ =[rp,1 rp,2 · · · rp,F ] =


r1,1 r1,2 . . . r1,F

r2,1 r2,2 . . . r2,F
...

...
...

...
rD,1 rD,2 . . . rD,F

 . (3.3)

Thus, the columns of Ψ contain the source powers in the frames.

The matrices Z and (A∗◦A) span the same column space when Ψ is full row rank. The
identifiability analysis and the conditions for which the KR product (A∗ ◦A) has full
column rank is discussed separately in Section 3.2. The singular value decomposition
(SVD) of Z gives

Z =
[

Us Un

] [ Σs 0
0 0

] [
VH
s

VH
n

]
, (3.4)

where Σs ∈ RD×D is a diagonal matrix containing the signal powers, Us ∈ C9M2×D

and Vs ∈ CF×D are the left and right singular matrices associated with the signal
subspace, respectively, and Un ∈ C9M2×(9M2−D) and Vn ∈ CF×(9M2−D) are the left and
right singular matrices associated with the noise subspace, respectively. Hence, the
following subspace criterion could be used

UH
n [a∗(θd)⊗ a(θd)] = 0, d = 1, 2, . . . , D. (3.5)

Further, the KR-MUSIC spectrum is given as:

JMUSIC(θ) =
1

‖UH
n [a∗(θ)⊗ a(θ)]‖2

. (3.6)

13



3.2 Full Rank Condition of KR Product

Since the full rank of (A∗◦A) in (3.2) is crucial to the application of the subspace-based
technique, it is essential to analyze under what conditions (A∗ ◦A) is full rank. This
section presents an analysis that leads to the full rank condition of the KR-product
(A∗ ◦A). Recalling that A is given by

A = [g(θ1)⊗ h(θ1),g(θ2)⊗ h(θ2), . . . ,g(θD)⊗ h(θD)],

and that the dth column of A is

a(θd) = g(θd)⊗ h(θd) =


1

ej2π(r2 cos θd)/λ

...
ej2π(rM cos θd)/λ

⊗
 1

cos θd
sin θd

 ,
the KR-product (A∗ ◦A) is then given by

A∗ ◦A = [(g∗(θ1)⊗ h(θ1))⊗ (g(θ1)⊗ h(θ1)), . . . , (g∗(θD)⊗ h(θD))⊗ (g(θD)⊗ h(θD))].

Next, for the sake of exposition, we consider a single column of (A∗ ◦ A). The dth
column of (A∗ ◦A), (g∗(θd)⊗ h(θd))⊗ (g(θd)⊗ h(θd)), can be re-written as

(g∗(θd)⊗ h(θd))⊗ (g(θd)⊗ h(θd)) = E(g∗(θd)⊗ g(θd))⊗ (h(θd)⊗ h(θd)) (3.7)

where E ∈ R9M2×9M2
is a known square exchange matrix of full rank. Further, we know

from the properties of MRAs and nested arrays that the distinct rows of (g∗(θd) ⊗
g(θd)) represent a ULA and can be collected in a vector g̃(θd). That is, g̃(θd) =

[ψ
−(α−1)

2
d , . . . , 1, . . . , ψ

(α−1)
2

d ]T ∈ Cα. Then, g∗(θd)⊗ g(θd) can be rewritten as

g∗(θd)⊗ g(θd) = TG



ψ
−(α−1)

2
d

...
1
...

ψ
(α−1)

2
d


= TGg̃(θd) (3.8)

where TG ∈ RM2×α is a known tall permutation matrix that depends on the kind of
sparse array initially chosen and ψd = e(j2πd cos θd/λ), d being the minimum array spacing.
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The value of α is obtained from Table A.1 for an MRA or calculated from Table A.2
for a nested array. Similarly, h(θd)⊗ h(θd) can be written as

h(θd)⊗ h(θd) = TH


1

cos θd
sin θd

cos θd sin θd
cos2 θd

 = THh̃(θd) (3.9)

where TH ∈ R9×5 is also a tall permutation matrix. Similar to g̃(θd),

h̃(θd) is defined by taking the distinct rows of h(θd) ⊗ h(θd), i.e., h̃(θd) =
[1, cos θd, sin θd, cos θd sin θd, cos2 θd]

T ∈ R5. Combining (3.8) and (3.9), we can re-write
(3.7) as

(g∗(θd)⊗ h(θd))⊗ (g(θd)⊗ h(θd)) = E(TG ⊗TH)︸ ︷︷ ︸
B′

(g̃(θd)⊗ h̃(θd)) (3.10)

where B′ = E(TG ⊗ TH) and we have used the property: (WY) ⊗ (XV) = (W ⊗
X)(Y ⊗V). Thus, (A∗ ◦A) can be represented as

A∗ ◦A = B′[g̃(θ1)⊗ h̃(θ1), g̃(θ2)⊗ h̃(θ2), . . . , g̃(θD)⊗ h̃(θD)] = B′Ã (3.11)

where Ã = [g̃(θ1)⊗ h̃(θ1), g̃(θ2)⊗ h̃(θ2), . . . , g̃(θD)⊗ h̃(θD)] ∈ C5α.

Since E, TG and TH are full column rank matrices, the rank of (A∗ ◦A) depends on

the rank of Ã. It can be seen that the number of distinct rows in Ã is directly related
to the degrees of freedom. The full rank of the effective array (A∗ ◦ A) is ensured
by the linear independence of steering vectors. Firstly, we see that the parameter θ
can take values in the interval [0, 2π). This definition for θ is radically different from
that of a scalar-sensor array which cannot differentiate between two angles θ1 and θ2

which are related as θ2 = 2π − θ1. Hence, the steering vectors {g̃(θ1) ⊗ h̃(θ1)} and

{g̃(θ2)⊗ h̃(θ2)} related to θ1 and θ2 are not parallel. To prove the full column rank of

matrix Ã, we introduce the following lemma.

Lemma 1 : For D ≤ α, if the steering vectors of a scalar-sensor array
{g̃(θ1), g̃(θ2), . . . , g̃(θD)} are linearly independent, then the steering vectors of the AVS

array {g̃(θ1)⊗ h̃(θ1), g̃(θ2)⊗ h̃(θ2), . . . , g̃(θD)⊗ h̃(θD)} are also linearly independent.

Proof. Appendix A: Proof of Lemma 1. �

Recall that the number of entries in g̃(θd), ∀d is equal to α. A natural result of lemma

1 is that for D ≤ α and D distinct DOAs, the matrix Ã is full column rank. The
result can be extended for α < D ≤ 5α.
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Theorem 1. : For α < D ≤ 5α, if the D sources have distinct DOAs, then the steering

vectors {g̃(θ1)⊗ h̃(θ1), g̃(θ2)⊗ h̃(θ2), . . . , g̃(θD)⊗ h̃(θD)} are linearly independent.

Proof. Appendix B: Proof of Theorem 1. �

The proofs for the above two theorems can be found at the end of the chapter. A direct
consequence of the above theorem and lemma 1 is that with an M -element linear sparse
AVS array, up to 5α steering vectors are linearly independent. Thus, (A∗◦A) ∈ C9M2×D

is full column rank when D ≤ 5α. For DOA estimation using MUSIC described in the
previous sub-section the number of distinct DOAs that can be identified is 5α− 1.

3.3 MUSIC Identifiability

In this section, we discuss the necessary and sufficient condition for unique identifiability
of source DOAs using MUSIC.

Theorem 2. The subspace criterion of (3.5) holds for a true DOA θd, d = 1, 2, . . . , D,
if and only if

D ≤ 5α− 1. (3.12)

Proof. Assume that an angle ϕ /∈ {θ1, θ2, . . . , θD} exists such that the subspace criterion
of (3.5) is satisfied. That is,

UH
n [a∗(ϕ)⊗ a(ϕ)] = 0. (3.13)

Recall that Un ∈ C9M2×(9M2−D). Since the dimension of UH
n is only 9M2 − D and

not 9M2 − (D + 1), it means that a∗(ϕ) ⊗ a(ϕ) is linearly dependent on {a∗(θ1) ⊗
a(θ1), . . . , a∗(θD)⊗ a(θD)}. Hence,

a∗(ϕ)⊗ a(ϕ) =
D∑
d=1

a∗(θd)⊗ a(θd). (3.14)

However, we know from Theorem 1, that for D + 1 ≤ 5α, and for unique
{θ1, θ2, . . . , θD, ϕ}, [A a(ϕ)]∗ ◦ [A a(ϕ)] has linearly independent columns. Thus,
(3.13) is satisfied if and only if D + 1 > 5α. Hence, the condition for unique source
identifiability is D ≤ 5α− 1.

�

3.4 Simulation Results - Quasi-stationary sources

In this section we provide several simulations to illustrate the performance of the KR
product based MUSIC applied on an AVS nested array as well as the AVS-MRA. In par-
ticular, the performance is evaluated in terms of the root mean squared error (RMSE),
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probability of detection and the probability of resolving closely spaced sources. For
the sake of illustration, the two-level nested array with M = 6 is considered where the
sensor locations are given by {0, 1, 2, 3, 7, 11}. For comparison, we also show simula-
tion results for an MRA with 6 AVSs whose locations are given by {0, 1, 2, 6, 10, 13}.
Further, quasi-stationary sources are generated artificially as in Table 3.1 [8] where
Llow and Lupp, the upper and lower limit of the frame length, are fixed to 300 and
500, respectively. The frame length for each quasi-stationary interval is drawn from a
uniform random distribution [Llow, Lupp] since, in practice, the local stationary periods
are varying.

Given: Upper limit Lupp, lower limit Llow, and a total sequence length N .
Initialize: Sequence length counter Nseq = 0.
Step 1: Draw frame length L from the uniform distribution [Llow, Lupp].
Step 2: Generate signal variance σ2

d randomly from a uniformly from a random
distribution [0, 1].

Step 3: For t = Nseq, Nseq + 1, . . . , Nseq + L − 1, generate the complex signal pd(t)
with real and imaginary parts drawn from a Gaussian distribution [0, σ2

d/2].
Step 4: Update Nseq = Nseq + L, and repeat Step 1 if Nseq < N .

Table 3.1: Generation of Quasi-Stationary Signals.

MUSIC Spectrum

Figure 3.2a shows the normalized MUSIC spectrum for a nested array of 6 AVSs. A
total of 400 quasi-stationary intervals have been used and the SNR is assumed to be
10dB. The spectrum yields peaks at the locations of the 70 sources which are also
well-resolved. In general, the number of quasi-stationary intervals needed to resolve D
sources is at least D + 1 [5]. However, the theoretical bound on the number of sources
that can be identified is 5αnested = 5×(M2/2+M−1)−1 = 5×23−1 = 114. Similarly,
Figure 3.3a shows the normalized MUSIC spectrum for an MRA of AVSs with M = 6
and D = 80. The spectrum yields peaks at the true locations of the 80 sources and
these sources are also well-resolved. The upper bound on the number of sources in this
case is 5αMRA = 5× 27− 1 = 134.

Root Mean Squared Error (RMSE)

Next, we compare the performance in terms of the RMSE. Figure 3.2b shows the RMSE
as a function of the SNR for the nested array. Since the two-level nested array of 6
AVSs has 115 unique measurements, a ULA of 38 AVSs is used for comparison which
has 38 × 3 = 114 measurements. We also use a ULA for 6 AVSs for comparison.
Further, conventional MUSIC is used on these two ULAs. The RMSE is plotted for
a source at 33.4o and only 20 quasi-stationary frames are used. It is seen that the
performance of the KR product based MUSIC improves with SNR and comes close to
that of the conventional MUSIC on the AVS-ULA of 38 elements whereas, at low SNRs,
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the AVS-ULA of 6 elements performs worse than that the nested AVS as well as the
longer AVS-ULA of 38 elements.

Similarly, Figure 3.3b illustrates the RMSE versus SNR for the 6 element AVS-MRA.
As before, we compare its performance to that of an AVS-ULA of 6 elements. A 45-
element AVS-ULA is also used in the comparison since it has 45 × 3 = 135 = 27 × 5
measurements. The performance of the KR product based MUSIC improves with SNR
and comes close to that of the conventional MUSIC on the AVS-ULA of 45 elements
whereas the performance of the AVS-ULA of 6 elements is even worse than that of the
other two array topologies at low SNRs.

Probability of Resolution

To illustrate the performance of the sparse AVS arrays in resolving two closely spaced
sources, we also plot the probability of resolution as in [10]. For this purpose, we
consider two cases of source separation: (i) two sources with θ1 = 30o and θ2 = 35o,
∆θ = 5o, and (ii) two sources with θ1 = 30o and θ2 = 32o, ∆θ = 2o.

The procedure used is briefly described as follows. Define the function b(θ) as:

b(θ) = 1− aH(θ)

[
D∑
d=1

sds
H
d

]
a(θ), (3.15)

where sd is the dth left singular vector from (3.4) and a(θ) is the steering direction in
the direction θ. For two closely spaced equi-powered sources with DOAs θ1 and θ2, [10]
proposes the threshold as b(θm) where θm = cos−1( cos θ1+cos θ2

2
). Since in practice b(θ1),

b(θ2), and b(θm) are unknown, they are estimated from the estimated covariance matrix

(2.5). Let b̂(θ1), b̂(θ2), and b̂(θm) represent the estimates where b̂(θ) is given by

b̂(θ) = 1− aH(θ)

[
D∑
d=1

ŝdŝ
H
d

]
a(θ), (3.16)

where ŝd is the dth estimated left singular vector. Resolution is said to be achieved
when both b̂(θ1) and b̂(θ2) are less than b̂(θm).

The number of quasi-stationary intervals is taken to be 50 and the resolution perfor-
mance is averaged over 1000 Monte-Carlo simulations. The probabilities of resolution
versus SNR for the KR product based MUSIC for the nested array, conventional MU-
SIC on the AVS-ULA of 38 elements, and conventional MUSIC on the AVS-ULA of
6 elements are plotted in Figure 3.4a. It is seen that the performance of all the three
arrays improve with SNR. However, for a given SNR and a given separation of sources,
the conventional MUSIC employed on the longer AVS-ULA of 38 elements clearly has
a better resolution performance than the nested AVS array as well the AVS-ULA of 6
elements.

Similarly, Figure 3.4b illustrates the probability of resolution versus SNR for the AVS-
MRA of 6 elements, conventional MUSIC on the AVS-ULA of 45 elements, and conven-
tional MUSIC on the AVS-ULA of 6 elements. It is seen that both the AVS-MRA as
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(a) KR-MUSIC: Spectrum for the two-level AVS nested array M = 6, D = 70.
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(b) KR-MUSIC: RMSE (degrees) versus SNR (dB) - two-level nested array.

Figure 3.2: KR-MUSIC: MUSIC Spectrum and RMSE - Two-level AVS nested array.

well as the AVS-ULA of 45 elements perform better than the AVS-ULA of 6 elements.
Moreover, even at a smaller source separation (∆θ = 2o), the AVS-ULA of 45 elements
and the AVS-MRA have a better performance than that of the AVS-ULA of 6 elements
at ∆θ = 5o.
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Figure 3.3: KR-MUSIC: MUSIC Spectrum and RMSE - AVS-MRA.

Probability of Detection

In the previous examples, the number of sources present was assumed to be known.
However, the number of sources has to be estimated in practice. In this thesis, we use
the simple singular-value threshold based technique of [11] to calculate the probability
of detection emperically. The procedure is summarized as follows.
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Figure 3.4: KR-Subspace MUSIC: Probability of resolution- two level nested array and MRA.

Let ŝj, j = 1, 2, . . . , 9M2, represent the jth estimated singular value from (3.4) and F
be the number of quasi-stationary intervals considered. Let li be the average observed
noise-subspace singular value given by
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li =
1

9M2 − i+ 1

[
9M2∑
j=i

ŝj

]
.

The binary hypothesis for the pth iteration is given by:

H0 : D < 9M2 − p
H1 : D = 9M2 − p.

(3.17)

Next, the either H0 or H1 is accepted according to:

ŝ9M2−p
H1

≷
H0

ŝu9M2−p, (3.18)

where ŝu9M2−p is the upper threshold on the (9M2 − p)th singular value given by:

ŝu9M2−p =

[
(p+ 1)

1 + t(F (p+ 1))−0.5

1− t(Fp)−0.5
− p
]
l9M2−p+1. (3.19)

Here, t is a threshold that is fixed for a given false alarm probability Pfa. Consider the
binary hypothesis of (3.17) and assume that H1 is accepted at the pth step. That is, the

estimated number of sources D̂ = 9M2 − p. A false alarm occurs when D̂ > D. More
specifically, Pfa is calculated by integrating a complex integral given by Equation (4.11)
in [11]. However, for our example, we evaluate the false alarm probability numerically
for various values of t as illustrated in Figure 3.5. Then, t is chosen so that the
probability of false alarm is required to satisfy a certain level for a given F . In this
case, for a Pfa of, say 1.5%, and F = 400, t is taken to be 2.9. Then the detection
algorithm of [11] is summarized in Algorithm 1.

Algorithm 1 Detection Algorithm

Require: 9M2 singular values ŝj , j = 1, 2, . . . , 9M2, number of quasi-stationary intervals F .
1: Initialize:

Iteration counter p = 1.
2: Check the test in (3.18).
3: If H0 is accepted, put p = p+ 1 and continue with Step 2.
4: If H1 is accepted, stop testing and estimate the number of sources as D̂ = 9M2 − p.

Figure 3.6a shows the detection performance for the AVS nested array. The probability
of detection is averaged over 1000 Monte-Carlo simulations for each SNR that is consid-
ered. As expected, it is seen that the 38-element AVS-ULA shows a higher probability
of detection for a given SNR. We do not consider the AVS-ULA of 6 elements since it
cannot detect more than 6× 3− 1 = 17 sources.

Similarly, Figure 3.6b shows the detection performance for the AVS-MRA. The AVS-
ULA of 45 elements has a slightly better performance than the AVS-MRA of 6 elements.
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Figure 3.5: Probability of false alarm: Two level nested array M = 6

3.5 Conclusions

In this chapter, we investigated the upper bound on the number of sources that can be
localized using a sparse AVS array by leveraging the time-varying nature of second-order
statistics of quasi-stationary sources. Further, we proposed a tight upper bound on the
number of DOAs that can be identified, based on the linear independence of steering
vectors. More specifically, the number of source DOAs that can be uniquely identified
with a sparse AVS array with MUSIC is 5α−1, where α is the DOF of the sparse scalar
sensor array. Through extensive simulations, we also verified the advantages of using
a sparse AVS array over a ULA of the same number of sensors. Moreover, the sparse
AVS array with only 6 elements has a resolution and detection performance that comes
very close to a much longer AVS-ULA with an equivalent number of measurements.
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(a) KR-Subspace MUSIC: Probability of Detection - Two level nested array.

−20 −10 0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n 

of
 a

ll 
80

 s
ou

rc
es

Probability of detection vs SNR − MRA

 

 

KR−MUSIC M=6

Ordinary MUSIC, M=45

(b) KR-Subspace MUSIC: Probability of detection - MRA

Figure 3.6: KR-Subspace MUSIC: Probability of detection - Two level nested array and MRA.
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Appendix

3.A Appendix A: Proof of Lemma 1

First, assume that {g̃(θ1)⊗ h̃(θ1), g̃(θ2)⊗ h̃(θ2), . . . , g̃(θD)⊗ h̃(θD)} are linearly depen-
dent. Then

D∑
d=1

cd(g̃(θd)⊗ h̃(θd)) = 05α×1 =
D∑
d=1

g̃(θd)⊗ (cdh̃(θd)) (3.20)

where not all the cd, d = 1, 2, . . . , D are zeros. Since {g̃(θ1), g̃(θ2), . . . , g̃(θD)} are

linearly independent, it follows that either cd = 0 or h̃(θd) = 0, d = 1, 2, . . . , D.

Since neither is possible, our assumption is invalid. Therefore, {g̃(θ1)⊗ h̃(θ1), g̃(θ2)⊗
h̃(θ2), . . . , g̃(θD)⊗ h̃(θD)} are linearly independent.

3.B Appendix B: Proof of Theorem 1

To show that as many as 5α steering vectors of Ã are linearly independent, we will use
mathematical induction.

More specifically, we show that for D such that α ≤ D ≤ 5α − 1, if the D steering

vectors {g̃(θ1)⊗ h̃(θ1), g̃(θ2)⊗ h̃(θ2), . . . , g̃(θD)⊗ h̃(θD)} are linearly independent, then

the D+1 steering vectors {g̃(θ1)⊗ h̃(θ1), g̃(θ2)⊗ h̃(θ2), . . . , g̃(θD+1)⊗ h̃(θD+1)} are also
linearly independent. In lemma 1, it was shown that for D = α, the D steering vectors

{g̃(θ1)⊗ h̃(θ1), g̃(θ2)⊗ h̃(θ2), . . . , g̃(θD)⊗ h̃(θD)} are linearly independent.

Assume that g̃(θD+1) ⊗ h̃(θD+1) is linearly dependent on g̃(θ1) ⊗ h̃(θ1), g̃(θ2) ⊗
h̃(θ2), . . . , g̃(θD)⊗ h̃(θD). We get

g̃(θD+1)⊗ h̃(θD+1) =
D∑
d=1

cdg̃(θd)⊗ h̃(θd) (3.21)

where none of the cd are zeros. This is because if any cd = 0, the set of D steering

vectors {g̃(θ1)⊗ h̃(θ1), . . . , g̃(θd−1)⊗ h̃(θd−1), g̃(θd+1)⊗ h̃(θd+1), . . . , g̃(θD+1)⊗ h̃(θD+1)}
will constitute a linearly independent set. Similar to the first part, g̃(θD+1) can be
expressed as

g̃(θD+1) =
D∑
d=1

edg̃(θd)

⇒ g̃(θD+1)⊗ h̃(θD+1) =

(
D∑
d=1

edg̃(θd)

)
⊗ h̃(θD+1)

(3.22)
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where not all of the ed, d = 1, 2, . . . , D are zeros. Subtracting (3.21) from (3.22), we get

D∑
d=1

g̃(θd)⊗ (edh̃(θD+1)− cdh̃(θd)) = 05α×1 (3.23)

Let
edh̃(θD+1)− cdh̃(θd) = fdzd

where fd and zd are the amplitude and normalized direction of the new vector. If we
show that all the fd are non-zero and all zd, d = 1, 2, . . . , D are different, we prove the

linear independence of the vectors {g̃(θ1)⊗h̃(θ1), g̃(θ2)⊗h̃(θ2), . . . , g̃(θD+1)⊗h̃(θD+1)}.

1. If fd = 0, d = 1, 2, . . . , D, then edh̃(θD+1) = cdh̃(θd). This implies that h̃(θd) and

h̃(θD+1) are parallel which contradicts our previous assumption. Thus, none of
the fd, d = 1, 2, . . . , D are zeros.

2. To prove that all the zd, d = 1, 2, . . . , D are different, assume without loss of
generality, that z1 = z2. Then

e1

f1

h̃(θD+1)− c1

f1

h̃(θ1) = z1 = z2 =
e2

f2

h̃(θD+1)− c2

f2

h̃(θ2). (3.24)

So (
e1

f1

− e2

f2

)
h̃(θD+1)− c1

f1

h̃(θ1) +
c2

f2

h̃(θ2) = 05×1. (3.25)

Since h̃(θD+1), h̃(θ1) and h̃(θ2) are linearly independent, it is implied that c1 =
c2 = 0, and e1

f1
= e2

f2
. Since neither of these possibilites are true, equation (3.25)

does not hold.

This proves the linear independence of the steering vectors {g̃(θ1) ⊗ h̃(θ1), g̃(θ2) ⊗
h̃(θ2), . . . , g̃(θD+1)⊗ h̃(θD+1)} for any D such that α ≤ D ≤ 5α− 1. Thus, the steering

vectors {g̃(θ1)⊗ h̃(θ1), g̃(θ2)⊗ h̃(θ2), . . . , g̃(θ5α)⊗ h̃(θ5α)} are linearly independent.

26



Stationary Sources 4
Previously, we discussed a method to exploit the degrees of freedom available in the co-
array through the assumption of quasi-stationary sources. In this chapter, we propose
an alternative method to DOA estimation using the co-array.

To build a rank-D covariance matrix from (2.8), the authors of [8] and [12] use the
time-variant nature of z for quasi-stationary sources. This was discussed for an array of
AVSs in Section 3. However, this method cannot be applied to stationary sources since
the covariance matrix for stationary sources is time-invariant. This chapter presents
an approach to handle stationary sources based on a technique, which we call spatial-
velocity (SV) smoothing. This approach is slightly different from the spatial smoothing
techniques discussed in [5] and [13]. In order to exploit the degrees of freedom of the
co-array, spatial smoothing in [5] builds a covariance matrix of rank D from z since
the full column rank of the array manifold is key to the application of subspace-based
techniques. In [13], spatial smoothing is used on the measurement model (2.2) to decor-
relate correlated sources. Here, the proposed approach is used to strictly enhance the
rank of covariance matrix by smoothing along both the spatial and velocity dimensions.
The basic principle is to divide the uniform linear co-array into overlapping subarrays
of the same length and to average the resulting different covariance matrices.

4.1 Extraction of Rows

The method works as follows. First, the unique phase differences from A∗ ◦ A are
extracted while the velocity-related self-correlations h(θd) ⊗ h(θd), d = 1, 2, . . . , D are

retained. We define a new matrix Â whose columns are now given by

Â =[g̃(θ1)⊗ h(θ1)⊗ h(θ1), · · · , g̃(θD)⊗ h(θD)⊗ h(θD)]

=[g̃(θ1)⊗ ĥ(θ1), . . . , g̃(θD)⊗ ĥ(θD)] ∈ C9α×D,
(4.1)

where ĥ(θD) = h(θ1) ⊗ h(θ1) ∈ R9×1 and we recall that g̃(θD) contains the phase
differences sorted from −(α− 1)/2 to (α− 1)/2. That is

g̃(θD) = [ψ
−α−1

2
d , . . . , ψ

α−1
2

d ]T ∈ Cα×1.

where ψd = ej(2π/λ)d cos θd . We first illustrate the formation of these subarrays with an
example.
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4.2 Formation of Subarrays: Example

For the sake of exposition, we illustrate the construction of subarrays for α = 3. Then,

the dth column of Â, which we denote by â(θd), is given by

â(θd) =

 ψ−1
d

1
ψd

⊗



1
cos θd
sin θd
cos θd
cos2 θd

cos θd sin θd
sin θd

cos θd sin θd
sin2 θd


= g̃(θd)⊗ ĥ(θd).

The dth column of the first subarray, â1(θd), is now constructed as

â1(θd) =

[
1
ψd

]
⊗

 1
cos θd
sin θd

 ∈ C6×1.

These rows correspond to the terms [1, cos θd, sin θd]
T of ĥ(θd) and [1, ψd]

T of g̃(θd).
More specifically, these are the rows of â(θd) which are given by the expression 9j + k
where j and k span {1, 2} and {1, 2, 3} respectively. Similarly, the dth column of the
second subarray, â2(θd), is constructed as

â2(θd) =

[
ψ−1
d

1

]
⊗

 1
cos θd
sin θd

 = ψ−1
d â1(θd).

These are the rows 9(j − 1) + k of â(θd) where j and k again span {1, 2} and {1, 2, 3}
respectively. Extending this further, the dth columns of the third, fourth, fifth and
sixth subarrays, respectively, are constructed as

â3(θd) =

[
1
ψd

]
⊗

 cos θd
cos2 θd

cos θd sin θd

 = cos θd â1(θd),

â4(θd) =

[
ψ−1
d

1

]
⊗

 cos θd
cos2 θd

cos θd sin θd

 =ψ−1
d â3(θd) = cos θdψ

−1
d â1(θd),

â5(θd) =

[
1
ψd

]
⊗

 sin θd
cos θd sin θd

sin2 θd

 = sin θd â1(θd),

â6(θd) =

[
ψ−1
d

1

]
⊗

 sin θd
cos θd sin θd

sin2 θd

 =ψ−1
d â5(θd) = sin θdψ

−1
d â1(θd).
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Thus, for âi(θd) with i = 3, 4, the rows that are selected from â(θd) are given by
9(3+ j− i)+k where j and k span {1, 2} and {4, 5, 6} respectively. Whereas, for âi(θd)
with i = 5, 6, the rows that are selected from â(θd) are given by 9(5 + j− i) +k where j
and k span {1, 2} and {7, 8, 9} respectively. These results are summarized in Table 4.1.

Subarray i âi(θd) Rows of â(θd) j, k

2 ψ−1
d â1(θd) 9(j − 1) + k k = 1, 2, 3

3 cos θd â1(θd) 9j + k k = 4, 5, 6

4 cos θdψ
−1
d â1(θd) 9(j − 1) + k k = 4, 5, 6

5 sin θd â1(θd) 9j + k k = 7, 8, 9

6 sin θdψ
−1
d â1(θd) 9(j − 1) + k k = 7, 8, 9

Table 4.1: Summary of subarray selection (Example)

4.3 Formation of Subarrays: General Procedure

Equipped with the above example, we may now generalize the method for any α. The

array response for the ith subarray is denoted by Âi, and it corresponds to certain

rows of the matrix Â. More specifically, the array response of the first subarray is

Â1 = [â1(θ1) â1(θ2) · · · â1(θD)] ∈ C3(α+1)/2×D where the dth column of Â1 is given by

â1(θd) =[1, ψd, . . . , ψ
(α−1)

2
d ]T ⊗ [1, cos θd, sin θd]

T . (4.2)

For any i, we may write

• For i = 1, 2, . . . , (α+1)/2, the ith subarray is constructed from the 9(α−1
2

+j−i)+k
rows of Â where j ∈ {1, 2, . . . , (α + 1)/2} and k ∈ {1, 2, 3}.

• For i = (α + 1)/2 + 1, . . . , (α + 1), the ith subarray is constructed from the

9(α−1
2

+j−i+ (α+1)
2

)+k rows of Â where j ∈ {1, 2, . . . , (α+1)/2} and k ∈ {4, 5, 6}.

• For i = (α+ 2), . . . , 3(α+ 1)/2, the ith subarray is constructed from the 9(α−1
2

+

j − i+ (α + 1)) + k rows of Â where j ∈ {1, 2, . . . , (α + 1)/2} and k ∈ {7, 8, 9}.

When the subarrays are chosen in this manner, the ith subarray matrix Âi is related

to Â1 as

Âi =


Â1Φ

i−1, 1 ≤ i ≤ (α + 1)/2

Â1Φ
i− (α+1)

2
−1Φc, (α + 1)/2 < i ≤ (α + 1)

Â1Φ
i−(α+1)−1Φs, (α + 1) < i ≤ 3(α + 1)/2,
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where Φ, Φc and Φs, respectively, are given by

Φ =


e−j(2π/λ)d sin θ1

e−j(2π/λ)d sin θ2

. . .
e−j(2π/λ)d sin θD

 ,

Φc =


cos θ1

cos θ2
. . .

cos θD

 ,

Φs =


sin θ1

sin θ2
. . .

sin θD

 .

4.4 Effective Model

With Â as the array manifold, the effective model of (2.8) becomes

ze = Ârp (4.3)

where ze contains the corresponding rows extracted from the vector z.

Similar to the extraction of rows from Â for the ith subarray, the equivalent output of
the ith subarray, denoted by ẑei is formed. The same rows as the ones used to construct

Âi are removed from ze and stored in ẑei. More specifically,

ẑei = Âirp (4.4)

Then, for the ith subarray, i = 1, 2, . . . , 3(α + 1)/2, we define R̂i as

R̂i =ẑeiẑ
H
ei = Âirpr

H
p ÂH

i . (4.5)

Averaging over the 3(α + 1)/2 subarrays, we define the smoothed matrix Rss as

Rss =
1

3(α + 1)/2

3(α+1)/2∑
i=1

R̂i. (4.6)

Theorem 3. The matrix Rss can be expressed as Rss = R̂2 where

R̂ =
1√

3(α + 1)/2
(Â1RpÂ

H
1 ).
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Proof. From (4.6), we have,

Rss =
1

3(α + 1)/2

3(α+1)/2∑
i=1

R̂i

=
1

3(α + 1)/2
Â1

(α+1)/2∑
i=1

(Φi−1rpr
H
p (Φi−1)H)

+

(α+1)∑
i=(α+1)/2+1

(Φi− (α+1)
2
−1Φcrpr

H
p Φc(Φ

i− (α+1)
2
−1)H)

+

3(α+1)/2∑
i=α+2

(Φi−(α+1)−1Φsrpr
H
p Φs(Φ

i−(α+1)−1)H)

 ÂH
1

=
1

3(α + 1)/2
Â1

(α+1)/2∑
i=1

Φi−1
(
rpr

H
p + Φcrpr

H
p Φc + Φsrpr

H
p Φs

)
(Φi−1)H

 ÂH
1

=
1

3(α + 1)/2
Â1

(α+1)/2∑
i=1

RpΨiΨ
H
i Rp

 ÂH
1

=
1

3(α + 1)/2
Â1Rp

(α+1)/2∑
i=1

ΨiΨ
H
i

RpÂ
H
1

(4.7)
where Ψi is given by

Ψi =


ψ
−(i−1)
1 ψ

−(i−1)
1 cos θ1 ψ

−(i−1)
1 sin θ1

ψ
−(i−1)
2 ψ

−(i−1)
2 cos θ2 ψ

−(i−1)
2 sin θ2

...
...

...

ψ
−(i−1)
D ψ

−(i−1)
D cos θD ψ

−(i−1)
D sin θD

 ∈ CD×3.

Let us define a new matrix Ψ given by

Ψ

=


1 cos θ1 sin θ1 . . . ψ

−(α−1)
2

1 ψ
−(α−1)

2
1 cos θ1 ψ

−(α−1)
2

1 sin θ1

1 cos θ2 sin θ2 . . . ψ
−(α−1)

2
2 ψ

−(α−1)
2

2 cos θ2 ψ
−(α−1)

2
2 sin θ2

...
...

...
...

...
...

...

1 cos θD sin θD . . . ψ
−(α−1)

2
D ψ

−(α−1)
2

D cos θD ψ
−(α−1)

2
D sin θD


= ÂH

1 .

(4.8)
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Noticing the structure of Ψ, we can write
(∑(α+1)/2

i=1 ΨiΨ
H
i

)
as(α+1)/2∑

i=1

ΨiΨ
H
i

 = ΨΨH = ÂH
1 Â1. (4.9)

Then, we can simplify (4.7) to

Rss =
1

3(α + 1)/2
Â1RpÂ

H
1 Â1RpÂ

H
1

=(
1√

3(α + 1)/2
Â1RpÂ

H
1 )2.

(4.10)

�

It can be seen from Theorem 1 that the matrix R̂ has the form of a covariance matrix of
an AVS-ULA with 3(α+ 1)/2 measurements. Further, since R̂ and Rss have the same
set of eigenvectors, subspace based techniques can be used on Rss. The column space of

Rss also spans the column space of Â1. As shown in [14], Â1 is full column rank when

D ≤ 3(α+1)/2. Further, it can be shown that no two columns of Â1 with distinct DOAs
are ambiguous. Thus, by applying the MUSIC on Rss, up to 3(α + 1)/2 − 1 sources
can be identified. We note here that although the degrees of freedom available from
the co-array are higher than 3(α + 1)/2, the spatial-velocity based smoothing reduces
this number to 3(α + 1)/2 due to the averaging of subarrays. this can be increased to
(9/4)(α + 1).

4.5 Simulation Results - Stationary Sources

For the sake of illustration, two topologies, an AVS-MRA and a two-level nested AVS
array each of 6 sensors are used. For a two-level nested AVS array with M = 6,
5αnested = 5 × 23, but spatial-velocity smoothing reduces the number of sources that
can be identified to 3(αnested +1)/2−1 = 35. Figure 4.1a shows the normalized MUSIC
spectrum for the nested array after the SV-smoothing process. All the 32 sources are
identified. Similarly, Figure 4.3a shows the normalized MUSIC spectrum for the nested
array with M = 6. For the AVS-MRA, the number of sources that can be identified
using SV-smoothing is 3(αMRA + 1)/2− 1 = 41. A total number of N = 5000 samples
have been used, the SNR is assumed to be 10dB, and β = 1 for both cases.

Figure 4.1b shows the root mean squared error (RMSE) as a function of the SNR for a
source at 33.4o. Since the two-level nested AVS array of M = 6 elements can effectively
identify 3(α + 1)/2 − 1 = 35 sources, an AVS-ULA of 12 elements which can also
identify 12 × 3 − 1 = 35 sources has been used for comparison. The RMSE is also
compared with that of an AVS-ULA of 6 elements. It is seen that the performance
of MUSIC after spatial smoothing improves with SNR and comes close to that of the
conventional MUSIC on the AVS-ULA of 12 elements. The AVS-ULA of 6 elements
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performs significantly worse than the other two array topologies. Similarly, Figure 4.3b
illustrates the RMSE versus SNR for the MRA. Since the AVS-MRA of 6 elements can
effectively identify 3(α + 1)/2 − 1 = 41 sources, an AVS-ULA of 14 elements is used
since it also identifies 14×3−1 = 41 sources. Since the RMSE is evaluated for a single
source, only N = 500 samples have been considered. The performance is also compared
with that of the AVS-ULA of 6 elements.

As in Section 3.4, we also plot the probabilities of resolution and the probability of
detection. To plot the probability of resolution, we consider two cases: (i) two sources
with θ1 = 31o and θ2 = 36o, ∆θ = 5o, (ii) two sources with θ1 = 31o and θ2 = 33o,
∆θ = 2o. Figure 4.2a shows the probability of resolution for the two-level nested array.
It is seen that the performance of the nested array is similar to that of the AVS-ULA of
12 elements. The AVS-ULA of 6 elements performs considerably worse than the nested
AVS array as well as the AVS-ULA of 12 elements. Similarly, Figure 4.4a shows the
probability of resolution for the MRA. For all the cases, N = 1000.

Figure 4.2b illustrates the probability of detection for the two-level nested AVS array.
The probability of detection is calculated following Algorithm 1. Further, we only use
the AVS-ULA of 12 elements for comparison since the AVS-ULA of 6 elements cannot
identify 32 sources. Similarly Figure 4.4b illustrates the probability of detection versus
SNR for the AVS-MRA and compare it to that of the AVS-ULA of 14 elements. Here,
N = 5000.

4.6 Conclusions

In this chapter, we proposed a new technique to leverage the higher number of unique
measurements that were available in the co-array. In the proposed spatial-velocity
smoothing, subarrays were constructed by dividing the longer coarray. The smoothed
covariance matrix was calculated by averaging the outputs of these subarrays. It was
also seen that the smoothed matrix has the same form as that of an AVS-ULA. Hence,
the traditional approaches to DOA estimation could be used. For the sparse AVS array,
the maximum number of source DOAs that can be identified was upper bounded by
3(α + 1)/2 − 1 where α is the DOF of the sparse scalar sensor array. The simulation
results show that with only 6 elements, the two level nested AVS array has a resolution
and a detection performance that is very close to that of a longer AVS-ULA of 12
elements. Similarly, the AVS-MRA of 6 elements has a detection and a resolution
performance similar to that of an AVS-ULA of 14 elements.
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Figure 4.1: SV-Smoothing: MUSIC Spectrum and RMSE versus SNR, two-level nested array,
M = 6.
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(a) SV-Smoothing: Probability of Resolution: Two level Nested Array.
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(b) SV-Smoothing: Probability of Detection of all 32 sources.

Figure 4.2: SV- Smoothing: Probability of resolution and probability of detection- two-level
nested array.
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(a) SV Smoothing: MUSIC for an MRA M = 6, D = 38.
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(b) SV SMoothing: RMSE (degrees) versus SNR (dB) for an MRA, θ = 33.4o.

Figure 4.3: SV Smoothing: MUSIC Spectrum and the RMSE versus SNR - MRA, M = 6.
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(b) SV Smoothing: Probability of detection of all 38 sources, MRA M = 6.

Figure 4.4: SV Smoothing: Probability of resolution and probability of detection - MRA.
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Part II

Sensor Selection for Non-linear
Measurement Models
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Greedy Sensor Selection for
Non-Linear Models 5
Sensor networks have become popular in many applications, like localization, environ-
mental monitoring, and remote-sensing, to list a few. Typically, a large number of
sensors are involved in making observations related to a physical phenomenon, thereby
making the sensing process expensive. Hence, it is of interest to select a subset of
K sensors from M candidate sensors, where K � M . Sensor selection addresses the
question of choosing the best subset of sensors so that the uncertainty in estimating
the unknown parameter is minimized.

A straightforward method to solve the sensor selection problem is to perform a search
over all possible

(
M
K

)
combinations and select the subset that yields the best perfor-

mance. Evidently, finding the optimal solution in this manner is computationally inten-
sive and the computational cost involved is exponential. Thus, it is often suboptimally
solved using two approaches depending on the cost function that specifies the uncer-
tainty: convex optimization or greedy heuristics. Convex optimization techniques can
be used to solve sensor selection if the cost function is a convex function of the selection
variables. On the other hand, greedy heuristics aim at finding a computationally at-
tractive solution. In order to ensure optimality of such greedy algorithms, submodular
cost functions are required.

Typical functions that are used in convex optimization are related to the A-, D-, and
E- optimal experiment designs [15]. In [16], non-linear measurement models are con-
sidered and scalar functions of the Cramér-Rao Bound (CRB) (as a generalization of
the mean-squared error considered in [17]) are used as performance measures. Con-
vex optimization approaches for sensor selection are computationally intensive. This
is even more so for non-linear models due to the fact that the performance measure
depends on the unknown parameter itself. Specifically, solving such convex optimiza-
tion problems with interior point methods (using SeDuMi [18], for example) incurs
cubic complexity. On the other hand, greedy algorithms have a linear complexity in
the size of the problem, but require proxies of the mean-squared error (MSE) that are
submodular. A number of such proxies are discussed in [19, 20]. A fundamental result
by Nemhauser et al. [7] shows that a greedy algorithm which maximizes a normalized,
monotone submodular function is near-optimal. In [21], it has been shown that the D-
optimal criterion is submodular for linear measurement models. Another submodular
function proposed in [20] uses a scalar property called frame potential (FP), which is
related to the inner product of the rows of the measurement matrix. Hence, it can be
used only for linear measurement models.

In this work, we propose two submodular costs for non-linear measurement models,
which are independent of the unknown parameter, but use the knowledge of the domain
where the parameter resides. The non-linear model is first linearized around points
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obtained by gridding the unknown parameter space and this is used to build a weighted
performance measure. In particular, we devise two cost functions that are submodular,
namely, the weighted FP and weighted log-det criterion. Then, a greedy algorithm to
optimize these costs is presented. The low complexity of the greedy algorithm allows
us to densely grid the domain where the unknown parameter is assumed to be present.

5.1 Problem Statement

We consider a general non-linear model with additive Gaussian noise, i.e.,

ym = gm(θ) + nm, m = 1, 2, . . . ,M, (5.1)

where ym denotes the mth sensor measurement, the function gm(·) is non-linear, and
nm is the Gaussian noise process. Here, θ ∈ RN is the unknown parameter. Let its

estimate be denoted by θ̂. The aim of sensor selection is to select a subset of K sensors

out of M sensors so that a certain accuracy of θ̂ is achieved. Mathematically, the
optimization problem is formulated as

min
K

F (K), s. to K ⊂ {1, 2, . . . ,M}, |K| = K, (5.2)

where F (K) is the cost function characterized by the set of selected sensors K and
specifies the estimation quality. The number of selected sensors K, is assumed to be
known.

The sensor selection problem in (5.2) is combinatorial. However, if F (K) is a sub-
modular function, (5.2) can be solved near-optimally with a lower complexity algo-
rithm. More specifically, the solution of the linear-complexity greedy algorithm is
within (1− 1/e) of the optimal solution, where e is Euler’s number [7].

5.2 Performance Measures

Due to the non-linearity of the problem, any performance measure that specifies the
estimation quality also depends on the unknown θ [16]. Therefore, we grid the known
parameter space to get U = {θ1,θ2, . . . ,θD}. In what follows, the non-linear function
in (5.1) is first linearized around the obtained grid-points. This will enable us to
extend the FP [20], [22], and log-det [17] cost functions to their weighted versions.
These weighted cost functions are reasonable measures to optimize; they are related to
the weighted MSE.

5.2.1 Taylor Approximation

If the first-order derivative of gm(θ) exists ∀θ ∈ U , it can be linearized around every
θd ∈ U using a first-order Taylor approximation of (5.1) to get

ym ≈ gm(θd) +
∂gm(θ)

∂θT

∣∣∣∣
θ=θd

(θ − θd) + nm,m = 1, 2, . . . ,M,
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where nm ∼ N (0, σ2). Stacking ym, nm, and gm(θd) for m = 1, 2, . . . ,M , in vectors y,
n, and g, respectively, we get

y = g + Hd(θ − θd) + n, (5.3)

where Hd ∈ RM×N with ∂gm(θd)/∂θ
T
d being the mth row of Hd.

Assuming the noise in (5.3) is i.i.d. Gaussian and that the unknown θ corresponds to
θd, the MSE (equal to the Cramér-Rao bound) of the least-squares estimate computed
using the sensor subset K, is given by

MSE(K) = E
(
‖θ̂ − θd‖2

2

)
= σ2Tr

(∑
i∈K

hi,dh
T
i,d

)−1

(5.4)

where hTi,d is the ith row of the matrix Hd, and Tr(·) denotes the trace of its argument.

Thus, the MSE of θ̂ depends on the spread of the eigenvalues of HT
d Hd.

5.2.2 Cost Function

For a set of D matrices {Hd}, we may define the weighted MSE, denoted by MSEW(·),
over all the measurement matrices as follows:

MSEW(K) = σ2

D∑
d=1

πdTr

(∑
i∈K

hi,dh
T
i,d

)−1

, (5.5)

where πd is a known positive weight (for example, it could indicate the probability that
the true θ lies on the grid point θd, i.e., Pr(θ = θd) = πd with πd > 0). In practice, the
true parameter might not lie on the assumed grid and might worsen the performance,
but this is due to the fact that we have a non-linear model. We now consider two
functions, namely, the weighted frame potential and weighted log-det as surrogates for
the MSE.

Weighted FP

The frame potential of a matrix Hd is defined as [20]

FP(K) =
∑
i,j∈K

|〈hi,d,hj,d〉|2. (5.6)

Thus, minimizing the frame potential leads to finding the rows that are the most
orthogonal to each other. Since we have linearized the function gm around the points
in the domain U , a joint optimization of the FP for all the measurement matrices is
considered by choosing a weighted FP, denoted by FPW(·), as follows

FPW(K) :=
D∑
d=1

πd
∑
i,j∈K

|〈hi,d,hj,d〉|2. (5.7)
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However, (5.7) is not submodular. In order to develop a greedy algorithm and use the
results of [7], we require the objective to be normalized, monotonically increasing, and
submodular. Therefore, we adapt (5.7) under change of variable K =M\S to obtain

F (S) := FPW(M\S)− FPW(M), (5.8)

where S = M\K, M is the available set of sensors, and FPW(M) is used to ensure
that F (·) is zero for an empty input set. It can be verified that the function −F (·)
is normalized and monotonically increasing, and the proof is shown in Appendix 5.A.
Since −F (·) is a positive linear combination of the submodular cost function of [20], it
is also submodular and can be greedily maximized.

Weighted log-det

Another popular proxy for the MSE is the D-optimality criterion, i.e., the log-volume
of the confidence ellipsoid for a measurement matrix Hd, given by

LD(K) = log det

(∑
i∈K

hi,dh
T
i,d

)−1

.

Similar to the weighted FP, a weighted log-det criterion can be formed as

LDW(K) :=
D∑
d=1

πdlog det

(∑
i∈K

hi,dh
T
i,d

)−1

(5.9)

However, the above function is not defined for an empty set. Hence, we alter the above
cost by adding a regularizer to obtain:

F (K) =
D∑
d=1

πd
(
log det

(∑
i∈K

hi,dh
T
i,d + εIN

)−1

+N logε
)
,

(5.10)

where ε > 0 is a small positive constant, IN is the identity matrix of size N , and N logε
ensures that the function F (·) is zero when the input is an empty set. The negative of
the summand in the above cost is normalized, monotone, and submodular [21]. Conse-
quently, −F (·) is also submodular as it is a positive linear combination of submodular
functions. The proof is shown in Appendix 5.B.

5.3 Proposed Algorithm

The algorithm aims at finding a set of K sensors in {1, 2, . . . ,M}, assuming that the
matrices {Hd, d = 1, 2, . . . , D} are known, and is summarized in Algorithm 2. At each
iteration, the row that maximizes the function G(·) = −F (·), where F (·) is given by
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either (5.8) or (5.10), is selected and assigned to a test set. Since (5.8) gives us the
complement set of K, the complement of the test set is taken to get K.

Since the functions in (5.8) and (5.10) are normalized, monotone submodular functions,
we can use a classic result of [7] to bound the performance of the greedy algorithm with
respect to the solution obtained from an exhaustive search. More specifically, a result
of [7] for submodular functions gives us the following:

F (K) ≤
(

1− 1

e

)
F (OPT), (5.11)

where F (OPT) is the optimal value of the function given by F (OPT) =
minA⊂M,|A|=K F (A), and OPT is the optimal set of elements. The result of (5.11)
shows that the solution of the greedy algorithm is always close to the optimal one with
respect to the chosen cost function.

Algorithm 2 Greedy Algorithm

1: Input:
D matrices {Hd}, number of sensors K, function G(·) = −F (·), with F (·) from (5.8)

or (5.10).
2: Initialize:

Test sensor set T = ∅.
3: Repeat:

1. Find the row r∗ = arg maxr/∈T G(T ∪ r).
2. T ← T ∪ r∗.
3. For weighted FP cost:

(a) If |T | = M −K, stop.

(b) Assign set of selected sensors K =M\T .

4. For weighted log-det cost:

(a) If |T | = K, stop.

(b) Assign set of selected sensors K = T .

5.4 Greedy vs. Convex Optimization

In comparison to greedy algorithms, state-of-the-art methods based on convex opti-
mization for non-linear models can ensure that the performance constraints are met for
every θd ∈ U [16]. Thus, they generally have a better performance. Constraining the
performance for every θd ∈ U using the greedy algorithm is, however, not straightfor-
ward. Therefore, we chose comparatively weaker measures, viz., the weighted FP and
weighted log-det, which are simply the cost functions averaged over the related points
{θd}.
For convex optimization based sensor selection, the computational complexity depends
on the convex solver used. For example, the complexity of the interior-point solvers
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is typically cubic in M . To alleviate the computational complexity due to gridding,
a weighted measure similar to the measures considered in this paper can be used, or
the performance due to the worst case θd ∈ U can be constrained [16]. On the other
hand, a greedy algorithm like the one in Algorithm 1 to optimize a weighted measure
has a much lower complexity. That is, with convex optimization based sensor selection,
worst-case, and average performance measures can be considered, whereas the greedy
algorithm proposed here can handle only a weighted measure.

We evaluate the complexity of Algorithm 1. Consider the weighted log-det cost. The
complexity of evaluating the determinant of an N ×N matrix is O(N3) and there are
O(M) such matrices. Then, the determinant is summed for D grid points. Since Al-
gorithm 1 has K steps, the total complexity of the greedy algorithm for the weighted
log-det performance measure is O(MDKN3). Similarly, for the weighted FP, the inner
product of an N × 1 vector with another vector of the same size requires O(N) opera-
tions. Over D points and M −K steps of the greedy algorithm, the total complexity of
the algorithm is O(M2NKD). On the other hand, convex solvers such as SeDuMi [18]
have a complexity which is cubic in M [16].

5.5 Numerical Example

An example of sensor selection for source localization is considered. The performance of
Algorithm 1 in terms of the root mean-squared error (RMSE) is compared with the so-
lutions provided by convex optimization, using D- and E-optimality related constraints
given in [16]. We assume that each sensor measures the distance to the target with
coordinates θ corrupted with additive Gaussian noise so that the model in (5.1) can be
written as

ym =

gm(θ)︷ ︸︸ ︷
‖θ − am‖2 +nm, m = 1, 2, . . . ,M (5.12)

where am is the location of the mth sensor and nm ∼ N (0, σ2).

The domain U where the target is expected (i.e., the surveillance area) is gridded to
obtain D = 81 points and we use σ2 = 1. The measurement setup with M = 80 sensors
is shown in Fig. 5.1. Further, we consider equal combining weights, i.e., πd = 1 for
d = 1, 2, . . . , D.

Fig. 5.1a shows the sensors selected by the greedy algorithm for the weighted FP cost
and Fig. 5.1b shows the sensors selected by the greedy algorithm for the weighted log-
det cost for K = 4. It can be noticed that the sensor indices selected by the algorithm

for the two costs are approximately the same. The RMSE of the estimated vector θ̂
is plotted in Fig. 5.2b. To evaluate the RMSE, the target position at each iteration
was generated so that each component of θ was drawn from a uniform distribution in
[15, 29], and the squared error was averaged over 1000 Monte-Carlo simulations.

It is seen that the greedy algorithm performs nearly as well as the convex optimization
based approaches. Although the true parameter in this example might not lie exactly
on the grid, the algorithm provides satisfactory results for both cost functions.
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Figure 5.1: Sensor placement for localization. (a.) Placement based on the weighted FP cost.
(b.) Placement based on the weighted log-det cost.

To illustrate the sensor placement with different costs, we also plot the selected sensors
in Fig. 5.2a for K = 4. The threshold for the E-optimality related constraint in [16]
is selected by fixing Re = 2.82cm, and Pe = 0.95 where Re and Pe specify a certain
accuracy constraint. Similarly, for the D-optimality related constraint in [16], the
threshold is selected by fixing R̄e = 7.74cm and Pe = 0.95.
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Figure 5.2: (a.) Sensor selection for the different costs for K = 4. (b.) Computational time
versus K from an available set of M = 80 sensors. (c.) RMSE versus the number of selected
sensors.

5.6 Conclusions

Sensor selection for a non-linear measurement model in additive noise was considered.
The performance measure for non-linear models generally depends on the unknown
parameter. In the proposed approach, the non-linear model was linearized around a set
of points in the domain where the true parameter is assumed to reside. Two submod-
ular costs, namely, the weighted frame potential and weighted log-det function were
formulated. To optimize these costs, a near-optimal greedy algorithm was presented.
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The proposed linear-complexity greedy algorithm is computationally attractive as com-
pared to the state-of-the-art sensor selection solvers for non-linear models. Since the
proposed cost functions are normalized, monotone and submodular, the solution of the
greedy algorithm is always within (1− 1/e) of the optimal one.
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Appendix

5.A Submodularity of the cost function - weighted FP

The set function GFP given by

GFP(S) = FPW(M)− FPW(M\S),

is a normalized, monotone submodular function.

Proof. Before submodularity, we first show that GFP(·) is normalized and non-
decreasing. It can be seen easily that it is normalized since GFP(∅) = 0. To show
that it is monotonic, we show that the increment of GFP(·) with regard to set A due
to adding index i /∈ A is positive. Assigning A ∪ i = Ā,

GFP(A ∪ i)−GFP(A)

=
D∑
d=1

πdFPW(M\A)−
D∑
d=1

πdFPW(M\(A ∪ i))

=
D∑
d=1

πd
∑

n,m∈Ā∪i

|〈hn,d,hm,d〉|2 −
D∑
d=1

πd
∑
n,m∈Ā

|〈hn,d,hm,d〉|2

=
D∑
d=1

πd(
∑
n,m∈Ā

|〈hn,d,hm,d〉|2 + 2
∑
n∈Ā

|〈hn,d,hi,d〉|2 + |〈hi,d,hi,d〉|2)

−
D∑
d=1

πd
∑
n,m∈Ā

|〈hn,d,hm,d〉|2

= 2
D∑
d=1

πd
∑
n∈Ā

|〈hn,d,hi,d〉|2 + |〈hi,d,hi,d〉|2

≥ 0

To show submodularity, we consider the difference in gain between adding an index to
set A and to a set B. Without loss of generality, we assume B = A ∪ j.
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GFP(A ∪ i)−GFP(A)−GFP(B ∪ i) + GFP(B)

=
D∑
d=1

πd{FPW(M\(A ∪ {i, j})) + FPW(M\A)

− FPW(M\(A ∪ j))− FPW(M\(A ∪ i))}

=
D∑
d=1

πd(
∑

n,m∈A∪{i,j}

|〈hn,d,hm,d〉|2 +
∑
n,m∈A

|〈hn,d,hm,d〉|2

−
∑

n,m∈A∪j

|〈hn,d,hm,d〉|2)−
∑

n,m∈A∪i

|〈hn,d,hm,d〉|2)

= 2|〈hi,d,hj,d〉|2

≥ 0

�

5.B Submodularity of the cost function - weighted log-det

The set function GWD(·) given by

GWD(K) =
D∑
d=1

πd

(
log det(

∑
i∈K

hi,dh
T
i,d + εIN)−N logε

)
.

is a normalized, monotone submodular function.

Proof. Before submodularity, we first show that GWD(·) is normalized and non-
decreasing. It can be seen easily that it is normalized since GWD(∅) = 0. To show
that it is monotonic, we show that the increment of GWD(·) with regard to set X due
to adding index i /∈ A is positive.

GWD(A ∪ i)−GWD(A)

=
D∑
d=1

πd log det

( ∑
n∈A∪i

hn,dh
T
n,d + εIN

)
−

D∑
d=1

πd log det

(∑
n∈A

hn,dh
T
n,d + εIN

)

=
D∑
d=1

πd

(
log det{(HAd )THAd + (Hi

d)THi
d + εIN} − log det{(HAd )THAd + εIN}

)
.

In the above equations, we have used HAd to denote the matrix selected by the sensor

subset A, i.e., HAd =
∑

n∈A hn,dh
T
n,d. Let {(HAd )THAd +εIN} = H̃Ad . Since H̃Ad is positive

semidefinite and non-singular,
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GWD(A ∪ i)−GWD(A) =
D∑
d=1

πdlog det{IN + (H̃Ad )−1(Hi
d)THi

d} ≥ 0

where the last inequality follows due to the fact that (Hi
d)THi

d is positive semidefinite.

To show submodularity, we consider the difference in gain between adding an index to
set A and to a set B. Without loss of generality, we assume B = A ∪ j and A ⊂ B.

GWD(A ∪ i)−GWD(A)−GWD(B ∪ i) + GWD(B)

=
D∑
d=1

πd

[
log det

( ∑
n∈A∪i

hn,dh
T
n,d + εIN

)
− log det

(∑
n∈A

hn,dh
T
n,d + εIN

)]

−
D∑
d=1

πd

log det

 ∑
n∈A∪{i,j}

hn,dh
T
n,d + εIN

− log det

( ∑
n∈A∪j

hn,dh
T
n,d + εIN

)
=

D∑
d=1

πd
(
log det{(HAd )THAd + (Hi

d)THi
d + εIN} − log det{(HAd )THAd + εIN}

)
−

D∑
d=1

πd

(
log det{(HA∪jd )THA∪jd + (Hi

d)THi
d + εIN} − log det{(HA∪jd )THA∪jd + εIN}

)
.

As before, we assign {(HAd )THAd + εIN} = H̃Ad and {(HA∪jd )THA∪jd + εIN} = H̃A∪jd .
Substituting in the above equation, we get

GWD(A ∪ i)−GWD(A)−GWD(B ∪ i) + GWD(B)

=
D∑
d=1

πdlog det{IN + (H̃Ad )−1(Hi
d)THi

d} −
D∑
d=1

πdlog det{IN + (H̃A∪jd )−1(Hi
d)THi

d}.

We notice that H̃A∪jd = H̃Ad + (Hj
d)THj

d. We use Sherman-Morrison’s identity to relate

(H̃A∪jd )−1 and (H̃Ad )−1 [23]. That is,

(H̃A∪jd )−1 = (H̃Ad )−1 − (H̃Ad )−1(Hj
d)THj

d(H̃Ad )−1

1 + Hj
d(H̃Ad )−1(Hj

d)T
. (5.13)

It can be verified that the term on the right of (5.13) is positive semidefinite. Then,
using Corollary 2 of [24], we get

det(IN + (H̃Ad )−1(Hi
d)THi

d) ≥ det(IN + (H̃A∪jd )−1(Hi
d)THi

d). (5.14)

Therefore,
GWD(A ∪ i)−GWD(A)−GWD(B ∪ i) + GWD(B) ≥ 0.

�
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Conclusions and Future Work 6
6.1 Conclusion

Traditionally, the problem of direction of arrival (DOA) estimation has been studied
using scalar sensors. The increasing need to measure more information has coincided
with the development of acoustic vector sensors, which measure acoustic particle ve-
locity in addition to the acoustic pressure. Additionally, a surge in the work on sparse
scalar sensor arrays has resulted in the estimation of a much higher number of source
DOAs than that possible with uniform linear arrays. This problem is also a subject of
covariance sensing. Since a sparse linear array has a higher array aperture than that
of a ULA with the same number of sensor elements, the sparse array also has a better
resolution performance. In applications involving the AVSs, a sparse AVS array would
be highly beneficial since it can be expected to localize even more source DOAs com-
pared to that possible with an AVS-ULA of the same number of elements. Moreover,
critical military applications require a much higher performance in parameter estima-
tion accuracy. This is the classical sensor selection problem where one can specify a
desired performance criterion to select a subset of the candidate sensor set. Although
we do not consider an example of sensor selection for the AVS data model, the proposed
framework can be extended to applications of source localization and DOA estimation
using AVSs.

In this thesis, we addressed the following two questions:

• Covariance sensing using sparse AVS arrays - The upper bound on the number of
source DOAs that could be identified using sparse AVS arrays was established. We
considered two kinds of sources, namely, quasi-stationary and stationary sources.

• Greedy sensor placement for non-linear measurement models- Two submodular
cost functions were formulated and a greedy algorithm to optimize these functions
was presented.

In Chapter 3, we investigated DOA estimation of quasi-stationary sources. The time-
variant nature of the source covariance matrix for quasi-stationary sources was leveraged
in order to construct a covariance matrix on which subspace based techniques could
be used. Further, the available degrees of freedom of the AVS- coarray was studied
and the number of sources that could be identified was upper bounded using the linear
independence of steering vectors of the coarray. Using the KR subspace approach, the
maximum number of DOAs that can be identified is upper-bounded by 5α−1, where α
is the degrees of freedom of the sparse scalar sensor array. Furthermore, the resolution
and detection performance of the sparse AVS arrays were very close to that of the longer
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AVS-ULAs with an equivalent number of measurements. For instance, the AVS-MRA
of a mere 6 elements has a performance which is very similar to that of a much longer
AVS-ULA of 45 elements.

In Chapter 4, an alternative method for DOA estimation of stationary sources was
proposed. This method was based on a spatial-velocity based smoothing to construct
a rank-D covariance matrix, where D is the number of sources. The basic principle
was to construct subarrays from the longer coarray and average the different resulting
covariance matrices of these subarrays. However, the number of sources that could be
identified was found to be lesser than that possible with the quasi-stationary assumption
of Chapter 3. Using MUSIC on the coarray, the maximum number of source DOAs that
could be uniquely identified was shown theoretically to be 3(α+1)/2−1. However, the
approach could handle the time-invariant nature of covariance matrices of stationary
sources. Hence, the quasi-stationary assumption is not a pre-requisite for this approach.
Similar to the results of Chapter 3, the error, resolution and detection performance
using SV smoothing on the coarray of the sparse AVS array was very close to that of
a longer AVS-ULA.

The second part of the thesis considered the problem of sensor selection. Recall that
this problem was interesting because, in several applications, it is important to guar-
antee a certain estimation accuracy on the parameter of interest. Using the concept
of submodularity, we proposed two cost functions- one based on the frame potential,
called the weighted frame potential, and the other based on the log − det function,
or the weighted D-optimal criterion. In order to formulate these costs, the non-linear
function was first linearized using a first order Taylor approximation. Further, a greedy
algorithm to maximize the two submodular costs was proposed in Chapter 5. Using
Theorem 4, it was shown that the output of the greedy algorithm is (1 − 1/e) within
the optimal solution. The proposed approach was applied to an example of source
localization and the performance of the greedy algorithm was compared with convex
optimization based approaches. The results show that the error performance of the
submodular costs comes close to that convex optimization based approaches while con-
suming substantially lower computational time. Moreover, convex optimization based
costs have complexity which is cubic in the size of the problem but the greedy algorithm
has only linear complexity. In the next section, we discuss the possible directions for
future research.

6.2 Suggestions for Future Research

The following could be topics of future research:

• Wideband source localization: While our development for DOA estimation is
primarily based on the narrowband array processing model, the proposed frame-
works for quasi-stationary and stationary sources can be extended to the wide-
band scenario using the frequency domain approaches [25] [26]. The main idea
of frequency domain processing is to divide the entire wide frequency band into
several narrow frequency bands on which the spatial-velocity smoothing or the
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KR-subspace method could be used. The subspaces at various frequencies can be
combined using the incoherent signal subspace method (ISSM) of [25].

• 2D-DOA estimation using AVS arrays: In this work, we focused on 1D-
DOA estimation using sparse linear arrays, but sparse arrays such as the two
dimensional nested array can be constructed [27] [28]. Moreover, since a single
AVS is capable of measuring of both the azimuth and elevation angles, a one-
dimensional linear array can also be used for 2D-DOA estimation. Preliminary
results show that both approaches to 2D-DOA estimation, the spatial-velocity
smoothing and Khatri-Rao subspace approach for quasi-stationary sources, pro-
vide satisfactory results. However, the upper bound on the number of sources that
can be identified uniquely is more complicated. For identification of both azimuth
and elevation angles, the conditions for full rank of the array manifold, A, are
harder to derive since linearly dependent columns taking two parameters θ and φ
are easier to construct. However, stochastic characterizations for full-rank of A
can be used [29] [30]. Furthermore, for unique identifiability using subspace based
approaches like MUSIC in two dimensions, it is neither necessary nor sufficient for
A to be full column rank [28] [31]. Thus, it would be interesting to investigate the
necessary, sufficient and well-posed conditions for unique 2D-source identifiability.

• Compressive sensing: It is known from compressive sensing theory that recov-
ery of parameters from sparse measurements is possible. For recovery of source
DOAs which are sparse in the DOA-space using the `1-norm, the sensing ma-
trix is expected to satisfy certain properties. Similar to [32], a correlation-aware
recovery method can be formulated on the correlation domain data model. By
gridding the angular space at a pre-determined resolution, the source DOAs can
be uniquely recovered from z in (3.4) provided that certain properties like the
restricted isometry property (RIP) and the mutual incoherence of A∗ ◦ A are
satisfied [33].

• Other submodular costs for sensor selection: In the context of sensor se-
lection, there are other information theoretic costs like mutual information and
entropy [19] [34] which assume a probabilistic model on the measurements. Costs
similar to the weighted frame potential can be formulated since these costs are
submodular. Greedy algorithms to optimize these functions could be used and
it would be interesting to compare their performance to the weighted frame po-
tential and the weighted D-optimal criterion, as well as the convex optimization
based methods.
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Preliminaries of Covariance
Sensing A
In this chapter, we provide the background for the first part thesis. We briefly describe
the concept of sparse rulers, and spatial smoothing.

A.1 Sparse Arrays

In recent work, the problem of detecting more sources than the number of physical
scalar sensors has been studied by considering non-uniform linear arrays [5], [4], [6].
The basic concept is to increase the spacing between certain antenna elements so that
the number of redundant spacings in the co-domain, called the co-array, are reduced.
We call the resulting array a sparse array. By constructing such sparse arrays smartly,
a significant increase in the degrees of freedom (DOF) can be attained. all integer
differences 0 to α − 1 using only M marks where M < α. The DOF is the number of
unique measurements available, and this directly affects the number of source DOAs
that can be estimated. More specifically, consider an array of M sensors. Let ri denote
the position of the ith element. The co-array set is defined by taking the distinct values
from the difference set S = {ri − rj}, ∀i, j ∈ {1, 2, . . . ,M}. Thus, each element in the
difference co-array set corresponds to the spatial correlation lag between an element
pair with that separation. The DOF, denoted by α, is essentially the length of the
co-array. However, the difference set may have some redundancies due to the fact that
some of the spatial lags between array elements may be repeated. By reducing the
number of redundant spacings in the difference set, the DOF can be increased. A hole
in the co-array set refers to a missing lag. Thus, the aim is to design the array such that
the co-array set does not contain any holes so that the co-array is a filled ULA and has
minimal/no repeating correlation lags. The maximum number of sources that can be
detected is then limited by the highest marking present in the co-array set. The role of
the difference or co-array set naturally arises in several signal processing applications
such as the computation of second-order moments as we will see in Chapters 3 and 4.
We consider the following two non-linear arrays:

• Minimum Redundancy Array (MRA): The minimum redundancy arrays (MRAs)
or minimum sparse rulers, first introduced in [4], form a class of arrays which
achieve the largest aperture with the constraint that the co-array is a ULA. That
is, the MRA consists of the minimum number of non-uniformly spaced sensors
such that the distinct elements of difference set S forms a ULA. In other words,
for an MRA with a given DOF, α, the co-array set is a ULA with the spatial lags
ranging from −(α − 1)/2 to (α − 1)/2. They have the lowest redundancy for a
given number of antennas M and have no holes in the co-array. Unfortunately,

55



a closed-form expression for the MRA topology and the achievable DOF for a
given M is not available. These values can only be obtained through an expensive
exhaustive search. Figure A.1a shows an illustration of one such MRA consisting
of M = 6 elements. Here, rm,m = 1, 2, . . . ,M refers to the position of the mth
array element. The DOF for this array is equal to 25. Table A.1 lists some
MRA configurations and their DOF compiled from [35]. The separations between
the array elements are explicitly represented by the numbers in the configuration
column of the table.

M DOF(αMRA) Configuration

2 3 ·1·
3 7 ·1·2·
4 13 ·1·3·2·
5 19 ·1·3·3·2·
6 27 ·1·5·3·2·2·

Table A.1: Some MRA configurations.

• Nested Array : Nested arrays are another class of non-uniform arrays which are
also capable of increasing the degrees of freedom [5]. Similar to MRAs, the coarray
set is a ULA with spatial lags ranging from −(α − 1)/2 to (α − 1)/2. They are
constructed by nesting two or more ULAs and provide up to O(M2) degrees of
freedom using only M elements. More specifically, a two-level nested array is
constructed by the union of two sets, namely, Sinner containing M1 elements and
Souter containing M2 elements. The sets Sinner and Souter are given by

Sinner ={md,m = 1, 2, . . . ,M1},
Souter ={m(M1 + 1)d,m = 1, 2, . . . ,M2},

(A.1)

where d is the spacing of the inner array and M1 + M2 = M . The optimal
distribution of the sensors for a two-level nested array to maximize the DOF is
summarized in Table A.2 [5].

M M1,M2 DOF(αnested)

Even M M1 = M2 = M
2

M2

2 +M − 1

Odd M M1 = M−1
2 , M2 = M+1

2
M2−1

2 +M

Table A.2: Optimal two-level nested array configurations for even and odd M .

Unlike the MRAs, a closed-form expression can be obtained for the degrees of
freedom of the proposed array as well as for the sensor locations. This is ad-
vantageous for large-scale arrays since the array is easily constructed. However,
extending the nesting beyond two levels fails to produce a co-array which is a
filled ULA, i.e. it has holes. For a given number of physical sensors, the MRA
offers more DOF than the nested array. Figure A.1b shows an illustration of a
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r1=0 r2=1 r3=2 r4=3 r5 =10 r6=13

(a) Minimum Sparse Ruler Array, M = 6 DOF = αMRA = 27.

Level 1 Level 2

r1=0 r2=1 r3=2 r4=3 r5=7 r6=11

(b) Two-level Nested Array, M = 6, DOF = αnested = M2

2 + M − 1 =
23.

r1=0 r2=2 r3=4

r4=3 r5=6 r6=9

(c) Coprime Array, J = 2, B = 3, M = B + 2J − 1 = 6,DOF =
αcoprime = 2JB + 1 = 13.

Figure A.1: Sparse Arrays.

two-level nested array of M = 6 elements. In the subsequent sections, these array
topologies are extended to AVS arrays and the increase in the degrees of freedom
is studied.

• Coprime Arrays : Another approach to increase the degrees of freedom is presented
in [6] which uses a pair of coprime samplers. More specifically, two uniform linear
arrays with spacings Jd and Bd, where J and B are coprime. Moreover, coprime
numbers have a unique property: if J and B are coprime with J < B, there exist
integers 0 ≤ j ≤ 2J − 1 and 0 ≤ b ≤ B − 1 such that Bj − Jb = p where p is
an integer such that 0 ≤ p ≤ JB. Thus by varying j and b, all integers in the
range [−JB, JB] can be produced. An example of a coprime array with J = 2
and B = 3 is shown in Figure A.1c.

A.2 Spatial Smoothing

Spatial Smoothing was first introduced by Shan et al. in [13] to circumvent problems
encountered in DOA estimation. For correlated sources, the source covariance matrix
Rs is non-diagonal. Furthermore, if any two sources are fully coherent, the array
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manifold and Rz are also rank deficient. Hence, they propose a method to divide the
ULA into overlapping subarrays. Then, a smoothed covariance matrix is constructed
by averaging over the covariance matrices of the smaller subarrays. More specifically, if
the underlying ULA is divided into Ntot subarrays, each having Nsub physical sensors,
then the smoothed covariance matrix is given by

R̄z =
1

Ntot

Ntot∑
i=1

Ri,

where Ri is the Nsub×Nsub covariance matrix of the ith subarray. Since the number of
sensors available is fixed and the number of coherent sources that can be identified is
limited by the size of the subarray, there is evidently a trade-off between the size of each
subarray and the number of such subarrays that can be averaged. An improvement
of the above technique in [36], called the forward-backward spatial smoothing, further
increases the number of coherent sources that can be identified. The spatial smoothing
technique has also been in [5,6,37] since the underlying coarray for the nested, coprime
and the MRA are ULAs. As we will see in the next chapters, these coarrays naturally
occur from taking the second order statistics.

A.3 Related Work

Acoustic vector sensors have been shown to outperform the traditional scalar sensors in
source localization [38]. The vector sensors also allow the construction of smaller array
apertures while providing a high accuracy and a high resolution as well as resolving
the left/right ambiguity in source localization. Some practical works on AVSs deal
with, for example, the localization of wideband sources using a single AVS [39] and
electromagnetic source localization [40].

A lot of theoretical work exists on acoustic vector sensors. In [41], a general expression
for the Cramér-Rao bound (CRB) for DOA estimation using an AVS-array is derived.
Conventional and Capon (MVDR) beamforming for a vector-sensor array are considered
and advantages over a scalar-sensor array are presented in [38]. Root-MUSIC and
ESPRIT have been applied to 1-D and 2-D arrays of velocity sensors in [42] and [43],
respectively. It has been shown that a maximum of two sources can be identified
using a single AVS [31] as compared to a single source that can be identified using
a 2-element scalar-sensor array. DOA estimation of quasi-stationarity sources using a
single AVS has been studied in [12]. However, no generalization exists for an array of
AVSs. Further, DOA estimation using nested AVSs has been studied using the concept
of tensor modeling in [44]. For 1D sources, the maximum number of DOAs that is
identifiable with an AVS array of M sensors is shown theoretically to be 3M−1 in [14].
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Preliminaries of Sensor
Selection B
In this chapter, we discuss the state-of-the art sensor selection. The non-linear measure-
ment model is briefly introduced followed by a discussion on the performance measures
for non-linear models.

For a general non-linear model with additive Gaussian noise as,

yi = fi(θ) + ni, i = 1, 2, . . . ,M, (B.1)

where yi denotes the ith sensor measurement, and the function fi(·) is non-linear in
general. The noise process is denoted by ni and we assume that it is additive and white
with a variance σ2. We consider the problem of estimating an unknown parameter
θ ∈ RN from a subset K sensors from the available number of sensors M . Let its
estimate be denoted by θ̂. Further, we use w ∈ {0, 1}M to denote the sensor selection
vector, where wi encodes whether the ith measurement is selected from the available
set of measurements. Let E(w) be the estimation error covariance matrix given by

E(w) = E((θ̂ − θ)(θ̂ − θ)T ). (B.2)

The sensor selection problem is formulated as the following optimization problem:
Mathematically, the optimization problem is formulated as

arg min
w

f(E(w))

subject to ‖w‖0 = K, wi ∈ {0, 1}, i = 1, 2, . . . ,M,
(B.3)

where ‖·‖0 represents the l0-norm, K is the number of sensors to be selected and f(·)
is a scalar function on E. Thus, it is desired to design w so that a measure of E is
optimized. Thus, it is desired to design w so that a measure of E is optimized. This
problem has been called the experiment design problem. Usually, scalarizations of the
experiment design problem use a measure related to the η-confidence ellipsoid. The
η-confidence ellipsoid of θ is defined as

ξ = {z | (z− θ̂)TE−1(z− θ̂) ≤ β} (B.4)

where β is a constant that depends on the confidence level η. The following scalarization
choices could be adopted: [15]:

1. D-optimal design- The determinant of the error confidence ellipsoid is minimized.
This amounts to minimizing the volume of ξ for a certain confidence level. That
is, f(E(w)) = det(E(w)).
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2. E-optimal design- The norm of E, or the maximum eigenvalue of E is minimized.
This is equivalent to minimizing the major axis of ξ since the major axis is pro-

portional to ‖E‖1/2
2 . That is, f(E(w)) = λmax(E(w)).

3. A-optimal design- The trace of the error covariance matrix E is minimized. This is
equivalent to minimizing the arithmetic mean of the radii of ξ. That is, f(E(w)) =
tr(E(w)).

The problem in (B.3) is essentially combinatorial in nature since an exhaustive search
is intractable for large values of M and K. A lot of literature exists on solving the
above problem with approximations.

B.1 Existing Art

There is a lot of literature on the subject of sensor selection when the function fi in
(B.1) is linear. A method based on convex optimization for linear measurement models
is studied in [17]. By relaxing the non-convex Boolean constraint {0, 1}M to a convex
box constraint [0, 1]M , the optimization is solved efficiently. However, the complexity
of the convex optimization i.e., O(M3).

In [16], a general non-linear measurement model has been considered and the Cramér-
Rao bound (CRB) is adopted as a performance measure. The additive property of the
Fisher Information Matrix (FIM) for independent observations is exploited to derive
the performance constraints. A number of convex solvers to alleviate the computational
complexity of the optimization have been proposed.

Alternately, one may consider directly minimizing the mean squared error (MSE). How-
ever, since the MSE has several local minima, proxies to the MSE are often considered.
Some information-theoretic measures are entropy [34] [45], mutual information [19] and
cross entropy [46] [47] [48]. A number of sensor selection objectives also satisfy submod-
ularity, which is intuitively related to the concept of diminishing returns. For example,
adding a sensor to an existing set is less beneficial than adding the same sensor to a sub-
set of the existing set. The MSE is not submodular in general. A large volume of work
on minimizing submodular functions exists [49] [50]. However, a fundamental result
by Nemhauser et al. [7] shows that a greedy algorithm which maximizes a submodular
function is near-optimal in terms of the MSE. In the purview of submodularity and lin-
ear measurement models, an approach based on minimization of a measure related to
orthogonality of the rows of a sensing matrix, called frame potential (FP), is proposed
in [20]. A greedy algorithm to maximize a submodular function related to the frame
potential is presented in [20]. For certain assumptions on the sampling matrix, it is also
shown to be near-optimal in terms of the MSE. An extension of this work in [22] uses
a weighted frame potential measure for a signal lying in a Union of Subspaces (UoS).

In [19], the sensor observations are modeled as Gaussian Processes. Mutual Informa-
tion, another submodular function, is used as a design criterion to choose the sensors
which are the most informative about unsensed locations. both entropy and mutual
information are submodular. Since mutual information is also monotonic, guarantees
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on the performance can be provided. However, entropy is not (even approximately)
monotonic, thus prohibiting the use of the results of [7]. Maximizing the mutual in-
formation between sensor measurements results in a selection of the most informative
sensors.

B.2 Performance Measures and Convex Optimization

The main result of the discussion on Fisher Information Matrix (FIM) from [16] is
stated here for the sake of completeness. Given that the regularity condition holds for
y, the covariance of an unbiased estimator θ̂ satisfies

E[(θ̂ − θ)(θ̂ − θ)T ] � C(θ) = F−1(θ) (B.5)

where C(θ) is the CRB matrix and F(θ) is the N ×N FIM matrix. The FIM is given
by

F(θ) =
M∑
i=1

Fi(θ) =
M∑
i=1

1

σ2

(
∂fi(θ)

∂θ

)(
∂fi(θ)

∂θ

)T
(B.6)

where Fi(θ) is the FIM of the ith measurement.

Performance Measures

The constrained optimization problem in (B.3) may also be cast as:

arg min
w

‖w‖0

subject to f(E(w)) ≤ λ

wi ∈ {0, 1}, i = 1, 2, . . . ,M

(B.7)

where the l0-norm represents the number of non-zero elements in w. The CRB is used
in [16] to bound the performance of the estimator. Since the subset of sensors that
yield a lower CRB also yield a lower MSE. To estimate the unknown parameter θ with
sufficiently high accuracy, we require the estimation error e = θ̂ − θ to fall within an
origin-centered circle of radius Re with probability greater than Pe i.e., ∀θ, Pr(‖e‖2 ≤
Re) ≥ Pe. Although several performance measures based on the accuracy requirement
are possible, two popular measures are:

• E-optimal Related Design: To satisfy the accuracy requirement at θ, one of the
conditions is λmin{F(w,θ)} ≥ λg where λmin refers to the minimum eigenvalue of
F(w,θ) and λg is translated from the accuracy requirement defined by Re and
Pe [16], [51]. By ensuring a lower bound on each eigenvalue of the matrix F, it is
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ensured that the semi-major axis of the η-confidence ellipsoid is restricted to λg.
This can be expressed as an equivalent Linear Matrix Inequality (LMI) [16] as

M∑
i=1

wiFi(θ)− λgIN � 0N , ∀θ. (B.8)

• D-optimal Related Design: Another sufficient constraint, related to the D-
optimal experiment design is the constraint which minimizes the volume of the
η-confidence ellipsoid. More specifically [16]

log det{C(w,θ)} = log det{(
M∑
i=1

wiFi(θ))−1} ≤ λdet (B.9)

where λdet is a threshold derived from [16].

Convex Relaxation

The l0-norm in (B.7) is non-convex and NP-hard. Hence, the l0-norm is substituted by
its best convex surrogate, i.e., the l1-norm. By also relaxing the Boolean constraint in
(B.7) to a convex box constraint, the optimization problem for the E-optimal related
design is [16]

arg min
w

‖w‖1

subject to
M∑
i=1

wiFi − λgIN � 0N ,

wi ∈ [0, 1], i = 1, 2, . . . ,M.

(B.10)

A similar optimization problem can be obtained for a D-optimal related design. In
practice, θ is unknown but is known to take values within a certain domain U . Then,
the domain is assumed to consist of a set of D points obtained by gridding the domain.
If U = {θ1,θ2, . . . ,θD}, then the constraints of (B.8) and (B.9) have to be satisfied for
every θd ∈ U , d = 1, 2, . . . , D.

The above problem is a standard SDP problem which can be solved using interior-point
methods such as CVX [52] and SeDuMi [18]. However, the computational complexity
of the chosen solver depends on the number of grid points. While we may choose a
larger number of grid points to describe the unknown parameter θ more accurately,
the computational burden also increases. Although other convex solvers of [16] may
be used, the computational complexity of the convex optimization using interior-point
methods is O(DM3). Evidently, this method is computationally intensive for large
values of M . In Chapter 5, we propose an approach to alleviate the computational
burden by choosing simpler cost functions. Furthermore, we compare the performance
of the proposed approach to the convex optimization problem of (B.10) and similarly
for the D-optimal related design.
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B.3 Submodular Cost Functions

There are some cost functions, often encountered, which have special properties. As
mentioned earlier, some submodular functions are mutual information, entropy, and
the D-optimal related function log det(·). The principal advantage of greedy algorithms
comes from the fact that they are easy to implement and require less computing
resources. Further, a result of Nemhauser et al. [7] states that for a normalized
monotone submodular function, the solution from the greedy algorithm is always
within (1− 1/e) of the optimal solution. We first define the concept of submodularity
and then introduce the theorem by Nemhauser et. al.

Definition 1 (Submodular Function): Let A and B be two finite sets such that A,B ⊂
M. A real-valued function g(·) defined on the set of the subsets of M is submodular
if:

g(A) + g(B) ≥ g(A ∪ B) + g(A ∩ B) (B.11)

In other words, if A ⊂ B ⊂M for an incremental value j ∈M−B,

g(A+ j)− g(A) ≥ g(B + j)− g(B). (B.12)

Additionally, a function g(·) is non-decreasing if for all A,B ⊂ M, g(A) ≤ g(B) and
normalized if g(∅) = 0. Next, the theorem of [7] is briefly stated.

Theorem 4. [7] Let O be the optimal set of sensors, so that O = maxA⊂M,|A|=K g(A).
If g(·) is a normalized, monotone submodular function over a finite set M and K is
the set of K elements chosen from M by the greedy algorithm, then

g(K) ≥
(

1− 1

e

)
g(O) (B.13)

Thus, if g(·) is a normalized, monotone submodular function, a greedy algorithm
provides a solution which is always near to the optimal solution. An important
difference between the classical design criteria (A-, D- and E- optimal designs [15]) and
information-theoretic measures (such as mutual information and entropy) is that while
the former approaches are tailored to minimize the error of predicting the unknown
parameter at sensor locations, the latter approaches try to decrease the uncertainty
over the entire parameter space.
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