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A B S T R A C T

While Model Predictive Control (MPC) is a promising approach for network-wide control of urban traffic,
the computational complexity of the, often nonlinear, online optimization procedure is too high for real-
time implementations. In order to make MPC computationally efficient, this paper introduces a parameterized
MPC (PMPC) approach for urban traffic networks that uses Grammatical Evolution to construct continuous
parameterized control laws using an effective simulation-based training framework. Furthermore, a projection-
based method is proposed to remove the nonlinear constraints that are imposed on the parameters of the
parameterized control laws and to guarantee the feasibility of the solution of the MPC optimization problem.
The performance and computational efficiency of the constructed parameterized control laws are compared
to those of a conventional MPC controller in an extensive simulation-based case study. The results show that
the parameterized control laws, which are automatically constructed using Grammatical Evolution, decrease
the computational complexity of the online optimization problem by more than 80% with a decrease in
performance by less than 10%.
. Introduction

Over the past decades, a growing demand for urban mobility has led
o congested urban areas. Various control strategies have been proposed
o meet this growing demand and to increase the traffic flow in urban
raffic networks. Next we briefly discuss about traffic signal control and
PC for urban traffic networks.

.1. Traffic signal control

Traffic signal control has evolved over the years. Webster (1958)
roposed one of the first traffic signal control methods for minimizing
he delay per vehicle. From there, different controllers were designed
or single intersections, while they did not interact with adjacent in-
ersections. This resulted in optimized control strategies for single
ntersections, where it could lead to congestion in other intersections
n the traffic network. To address this issue, fixed-time strategies (Little
t al., 1981; Robertson, 1986) were proposed to control multiple inter-
ections at the same time. Fixed-time control strategies determine the
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control inputs offline based on historical traffic flow data. One of the
disadvantages of fixed-time controllers is that they do not respond to
real-time traffic fluctuations, e.g., when an accident occurs. To tackle
this issue, traffic-responsive controllers were introduced (Hunt et al.,
1982; Sims, 1979). Such controllers take the current traffic conditions
that are measured by loop detectors into account and change the green
times of the traffic lights accordingly.

Model-based control strategies (Gartner, 1983; Henry et al., 1984;
Mirchandani & Head, 2001) are traffic-responsive methods that use a
mathematical model to predict future traffic conditions and to calculate
an optimized control input sequence for the traffic network. Model-
based control approaches consist of a prediction model, an online
optimization procedure, and a rolling horizon principle. By using fu-
ture predictions, non-myopic control inputs can be obtained. Model
Predictive Control (MPC) (Rawlings & Mayne, 2009) is a model-based
control method that is widely used in different industrial areas (Afram
& Janabi-Sharifi, 2014; Qin & Badgwell, 2003), and it has shown to be
promising for urban traffic signal control (Ye et al., 2019).
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1.2. Model Predictive Control for urban traffic networks

In MPC, a mathematical model is used to predict future states of
the controlled traffic network over a prediction horizon of size 𝑁p
and to calculate an optimized control sequence at every control time
step within the prediction window. MPC can simultaneously optimize
multiple control objectives, e.g., the total time spent by the vehicles in
the traffic network and the total emissions of the vehicles. Moreover,
due to its rolling horizon approach, MPC can work based on real-
time feedback from the traffic network, and thus quickly respond to
changing traffic demands. Additionally, queue lengths on the roads
and green times of the traffic lights can be constrained since MPC
takes input and state constraints explicitly into account. Finally, the
prediction model of MPC can easily be updated or replaced by another
model in order to provide a desired trade-off between accuracy of the
predictions and complexity of computing them. On the one hand, a
more precise model will in general be computationally more complex
(due to considering more state variables or incorporating nonlinear-
ities), which results in a more complex online optimization problem
that may be intractable in real time. On the other hand, while a less
accurate model is computationally more efficient, the corresponding
predictions are prone to larger errors. This can result in significant
cumulative errors across the MPC prediction horizon, and thus in a
degraded performance for the controlled system.

A major drawback of MPC especially for urban traffic networks,
is the need for performing an online optimization procedure per con-
trol time step. Due to the nonlinear behavior of traffic and thus the
need for nonlinear prediction models (Jamshidnejad et al., 2019; Lin
et al., 2012; Lin & Xi, 2008; Ye et al., 2015), the resulting MPC
optimization problem is nonlinear and nonconvex, with a large number
of optimization variables (which correspond to the number of traffic
signals/intersection within the traffic network). Therefore, a computa-
tionally complex optimization problem should be solved online, which
makes MPC intractable for real-time implementation for urban traffic
networks.

Different approaches have been proposed to lower the computa-
tional complexity of the online MPC optimization problem for urban
traffic. In Ye et al. (2016, 2015) for instance, the traffic network is
divided into multiple subnetworks, each corresponding to one local
optimization problem that takes the interactions with the neighboring
subnetworks into account. In Remmerswaal et al. (2022), MPC is
combined with reinforcement learning for urban traffic signal control.
Since reinforcement learning can deal with uncertainties and provide
extra optimality, MPC can operate with a less accurate model or
act at a lower control frequency, in order to reduce computational
complexity. Lin et al. (2011) reformulate the nonlinear and nonconvex
MPC optimization problem as a computationally efficient mixed-integer
linear optimization problem (MILP). In this paper, we focus on reducing
the computational complexity by parameterizing the decision variables
of the MPC optimization problem.

In PMPC the decision variables are parameterized, which results in
fewer decision variables and potentially lower computation time for
the online optimization problem (Goulart et al., 2006; Lofberg, 2003;
Pippia et al., 2018; Zegeye et al., 2012). PMPC has shown promising
results regarding computational efficiency in control of urban and
freeway traffic networks (Jeschke & De Schutter, 2021; van Kooten
et al., 2017; Zegeye et al., 2012), via substantially reducing the number
of optimization decision variables with limited decrease in the perfor-
mance. However, the parameterized control laws in Jeschke and De
Schutter (2021), van Kooten et al. (2017), and Zegeye et al. (2012)
are handcrafted based on expert knowledge and experiences and are

therefore difficult to design.

2

1.3. Main contributions

The main contributions of this paper include:

1. We use Grammatical Evolution (GE) to automatically construct
continuous parameterized control laws based only on limited
knowledge of the system. More specifically, two training frame-
works, called Framework-1 and Framework-2, are proposed and
investigated to automatically generate the parameterized control
laws. While Framework-1 is similar to the one used in Jeschke
and De Schutter (2021), the newly proposed Framework-2,
which is shown to outperform Framework-1 in terms of per-
formance measurements and training efficiency, is able to train
multiple parameterized control laws at the same time.

2. An effective projection-based method is proposed to remove
nonlinear constraints on the parameters of the PMPC prob-
lem in order to guarantee the feasibility and to reduce the
computational complexity of the optimization problem.

3. We show the effectiveness of the GE-based PMPC controllers in
a case study and compared to a conventional MPC controller, a
fixed-time controller, and the handcrafted parameterized control
laws from Jeschke and De Schutter (2021).

This paper significantly extends the work of Jeschke and De Schut-
ter (2021) by proposing a new training framework for parameter-
ized control laws that improves the performance, and by proposing a
projection-based method to more efficiently deal with the constraints
in PMPC.

1.4. Outline of the paper

The remainder of this paper is organized as follows. First, in Sec-
tion 2 we discuss the principles behind conventional MPC and PMPC
and provide the necessary background on the urban traffic model that
is used. In Section 3, an overview of Grammatical Evolution (GE)
is presented, followed by the newly proposed training frameworks
for the parameterized control laws with GE and the projection-based
method in Section 4. In Section 5 we present, compare, and discuss
the effectiveness of the proposed training frameworks and the result-
ing parameterized control laws. Finally, in Section 6 we draw final
conclusions and provide some suggestions for future work.

2. Parameterized model predictive urban traffic control

In this section we describe the principles behind PMPC in urban
traffic control, as well as the mathematical constraints in model-based
urban traffic control. Moreover, we shortly discuss the baseline param-
eterized control law (for the PMPC controller) that will be used in the
case study. First, we introduce the mathematical urban traffic model
that is used in the MPC controllers.

2.1. Urban traffic prediction model

We use the S-model (Jamshidnejad et al., 2019; Lin et al., 2012) as
the prediction model for the PMPC controllers since this model provides
a suitable balance between accuracy and computational complexity.
The S-model is a macroscopic, nonlinear, and discrete-time urban traffic
model that considers the cycle time of the downstream intersection of
a link to update the traffic states, i.e., the number of vehicles and the
queue lengths of that link. We give only the main equations of the
model that are needed to understand the remainder of the paper. For
more details, we refer the reader to Lin et al. (2012) and Jamshidnejad
et al. (2019).

The S-model represents an urban traffic network by a set of nodes
𝑁 , a set of links 𝐿, and a set of controlled intersections 𝐽 ⊆ 𝑁 (see
Fig. 1). A link (𝑢, 𝑑) ∈ 𝐿 is defined by its upstream node 𝑢 ∈ 𝑁 and

downstream node 𝑑 ∈ 𝑁 , and corresponds to a set 𝐼𝑢,𝑑 of input nodes
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Fig. 1. A link in the S-model connecting two traffic-signal-controlled intersections, based on Lin et al. (2012).
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nd a set 𝑂𝑢,𝑑 of output nodes. The cycle times of the upstream and
ownstream node are given by 𝑐𝑢 and 𝑐𝑑 , respectively. For simplicity, in

this paper, the cycle time for all the intersections are considered equal.
Furthermore, the control time interval and simulation time interval of
the network are equal, resulting in one common time step counter 𝑘.

The state variables of the S-model are the total number of vehicles
𝑢,𝑑 (𝑘) and the queue length 𝑞𝑢,𝑑 (𝑘) on each link (𝑢, 𝑑) per simulation

time step 𝑘. The queue lengths can be further divided into queue
lengths 𝑞𝑢,𝑑,𝑜(𝑘) corresponding to vehicles that move towards a specific
output node 𝑜 ∈ 𝑂𝑢,𝑑 . The number of vehicles and the queue lengths
are updated every simulation time step 𝑘 by

𝑛𝑢,𝑑 (𝑘 + 1) = 𝑛𝑢,𝑑 (𝑘) +
(

𝛼ent
𝑢,𝑑 (𝑘) − 𝛼leave

𝑢,𝑑 (𝑘)
)

⋅ 𝑐𝑑 , (1)

𝑞𝑢,𝑑,𝑜(𝑘 + 1) = 𝑞𝑢,𝑑,𝑜(𝑘) +
(

𝛼arr
𝑢,𝑑,𝑜(𝑘) − 𝛼leave

𝑢,𝑑,𝑜 (𝑘)
)

⋅ 𝑐𝑑 , (2)

𝑞𝑢,𝑑 (𝑘) =
∑

𝑜∈𝑂𝑢,𝑑

𝑞𝑢,𝑑,𝑜(𝑘), (3)

where 𝛼ent
𝑢,𝑑 (𝑘) and 𝛼leave

𝑢,𝑑 (𝑘) are the average entering and leaving flow
rates of link (𝑢, 𝑑), 𝛼arr

𝑢,𝑑,𝑜(𝑘) is the average arriving flow rate at the
tail of the queue on link (𝑢, 𝑑) that intends to move towards node 𝑜,
and 𝛼leave

𝑢,𝑑,𝑜 (𝑘) is the average leaving flow rate of the sub-stream on link
(𝑢, 𝑑) that intends to move towards node 𝑜, during the time interval
[𝑘𝑐𝑑 , (𝑘 + 1)𝑐𝑑 ). The leaving flow rates are nonlinear functions of the
states and the green time of the traffic lights, i.e.,

𝛼leave
𝑢,𝑑,𝑜 (𝑘) = ℎ(𝒙(𝑘), 𝑔𝑢,𝑑,𝑜(𝑘)), (4)

with ℎ(⋅, ⋅) a nonlinear function taking different traffic conditions into
account (see Lin et al., 2012 for more details), 𝑔𝑢,𝑑,𝑜(𝑘) the green time
duration for the vehicles on link (𝑢, 𝑑) that intend to turn towards node
o during the time interval [𝑘𝑐𝑑 , (𝑘 + 1)𝑐𝑑 ), and 𝒙(𝑘) a column vector
containing 𝑛𝑢,𝑑 (𝑘) and 𝑞𝑢,𝑑 (𝑘) for all (𝑢, 𝑑) ∈ 𝐿 (i.e., the number of
vehicles and queue lengths of all the links).

To prevent collisions and to regulate the traffic, the cycle time
per intersection is divided into phases for which certain lanes have
right-of-way (i.e., a green light). For example, during one phase, two
perpendicular incoming lanes do not have right-of-way to go straight
over the intersection in the same phase. The green time duration for the
individual lanes is linked to the phase times, while grouping the green
times of the individual traffic lights into phases reduces the number of
inputs that should be processed by the model per simulation time step,
it imposes a constraint, i.e., the phase times at an intersection should
add up to the cycle time of that intersection minus the yellow time of
the traffic lights. Thus, for every simulation time step 𝑘 we should have:

𝑐𝑑 = 𝑦𝑑 +
𝑁ph

𝑑
∑

𝑖=1
𝑔𝑑,𝑖(𝑘), (5)

in which 𝑦𝑑 is the total yellow time for intersection 𝑑 during a cycle,
𝑔𝑑,𝑖(𝑘) is the green time of phase 𝑖 at intersection 𝑑 for simulation time

ph
step 𝑘, and 𝑁𝑑 is the number of phases for intersection 𝑑. d

3

2.2. Parameterized Model Predictive Control

The MPC optimization problem that is solved at every control time
step for an urban traffic network is given by:

min
𝒈(𝑘)

(

𝑤TTS𝐽TTS(𝑘) +𝑤D D(𝒈(𝑘)) +𝑤(𝑘)
)

(6)

s.t. 𝒙(𝑘 + 𝑗 + 1) = 𝑓 (𝒙(𝑘 + 𝑗), 𝒈(𝑘 + 𝑗)),

𝒈𝑑,min ≤ 𝒈𝑑 (𝑘) ≤ 𝒈𝑑,max ∀𝑑 ∈ 𝐽 ,

(5),

holds for 𝑗 = 0,… , 𝑁p − 1 and where 𝐽TTS(𝑘) stands for the total
time spent (by the vehicles in the traffic network) predicted within
the prediction window of size 𝑁p for control time step 𝑘. Moreover,
D(𝒈(𝑘)) and (𝑘) represent, respectively, a cost on the control input
increments computed within the entire prediction window of size 𝑁p
to prevent high fluctuations in consecutive control time steps, and
a cost to take the longest queue per intersection at every control
time step into account in order to avoid long queues that congest the
downstream intersections. The formulations of these terms are specified
in more detail in Section 5.1. Furthermore, 𝑓 (⋅, ⋅) is the prediction
model (i.e., the S-model explained in Section 2.1), 𝒙(𝑘) is the state
vector of the model as defined in Section 2.1, 𝒈𝑑 (𝑘) contains the phase
times at intersection 𝑑 at time step 𝑘, 𝒈(𝑘) is a column vector containing
𝒈𝑑 (𝑘), 𝒈𝑑 (𝑘 + 1),… , 𝒈𝑑 (𝑘 + 𝑁p − 1) for all 𝑑 ∈ 𝐽 , 𝒈𝑑,min and 𝒈𝑑,max
vectors of appropriate size with the minimum and maximum green
times of the phase times at intersection 𝑑, respectively, for which
‘≤’ is considered element-wise, 𝑤TTS, 𝑤D , and 𝑤 the weights that
describe the importance of the different control objectives, and (5) is
the equality constraint on the phase times.

In order to reformulate (6) as a PMPC problem, the original control
inputs are replaced by a parameterized control law that is added to the
constraints of the MPC optimization problem, and the parameters of
this control law are then optimized. We have:

min
𝜽

(

𝑤TTS𝐽TTS(𝑘) +𝑤D D(𝒈(𝑘,𝜽)) +𝑤(𝑘)
)

. (7)

which in addition to the constraints given by (6) is also subjected to
the parameterized control law that calculates the phase times, i.e., for
𝑗 = 0,… , 𝑁p − 1:

𝒈𝑑 (𝑘 + 𝑗,𝜽𝑑 ) = 𝜇𝑑 (𝒙(𝑘 + 𝑗),𝜽𝑑 ) (8)

where 𝜇𝑑 (⋅, ⋅) is the parameterized control law of intersection 𝑑 and
𝜽𝑑 is a vector that includes the parameters of that control law. While

ultiple intersections can use the same parameterized control law, the
arameters for every intersection are independent. Moreover, 𝜽𝑑 =
𝜃1,… , 𝜃𝑁𝜃

𝑑
]⊤, where 𝑁𝜃

𝑑 is the number of parameters for the control
aw of intersection 𝑑 and 𝜽 is a column vector containing 𝜽𝑑 for all
∈ 𝐽 .

If the number of parameters is lower than the original number of

ecision variables, the optimization should in general run faster. There
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are two main challenges in PMPC. The first one is finding a parameter-
ized control law that results in faster optimization without degrading
the performance significantly. Secondly, as the parameterized control
law is added to the constraints of the PMPC optimization problem, one
need to ensure that the solution to this optimization problem remains
feasible with the extra constraints.

Please note that since the control inputs become a function of the
states in PMPC, the parameters do not necessarily have to be updated
every control time step, as future control inputs can be calculated
with future states and parameters from the previous control time step.
Keeping 𝜽 constant over the prediction horizon reduces the number of
decision variables in the optimization problem. However, one could
make use of time-dependent parameters or use the idea of move-
blocking MPC (Cagienard et al., 2007) in which the decision variables
are held constant over several time steps to reduce the number of
decision variables. This yields a trade-off between performance and
computational complexity.

2.2.1. Relative queue lengths parameterized control law
Later on, in the case study, we will use the best performing param-

eterized control law of Jeschke and De Schutter (2021), to show the
effectiveness of this approach on a larger traffic network and to use it
as a baseline for the other PMPC controllers considered in this paper.
This control law was designed using expert knowledge of the system.
Here, we will only give the formulation of the parameterized control
law for the clarity of this paper. For more details, we refer the reader
to Jeschke and De Schutter (2021).

The parameterized control law uses the mean queue length 𝑞ph
𝑑,𝑗 (𝑘)

and the mean arriving flow rate 𝛼ph,arr
𝑑,𝑗 (𝑘) on the lanes that have right-

of-way in the 𝑗th phase at intersection 𝑑 at control time step 𝑘. The
mean of the mean queue lengths of all the phases at intersection 𝑑
is denoted by 𝑞ph

𝑑 (𝑘) and the mean of the mean arriving flow rates of
all the phases at intersection 𝑑 is denoted by 𝛼ph,arr

𝑑 (𝑘). The parame-
terized control law that calculates the green time 𝑔𝑑,𝑗 (𝑘) of phase 𝑗 at
intersection 𝑑 is given by

𝑔𝑑,𝑗 = 𝑔𝑑 +
𝑞ph
𝑑,𝑗 − 𝑞ph

𝑑

∑𝑁ph
𝑑

𝑖=1 𝑞ph
𝑑,𝑖 + 𝜅𝑞

⋅ 𝜃𝑑,1 +
𝛼ph,arr
𝑑,𝑗 − 𝛼ph,arr

𝑑

∑𝑁ph
𝑑

𝑖=1 𝛼ph,arr
𝑑,𝑖 + 𝜅𝛼

⋅ 𝜃𝑑,2 (9)

where 𝑔𝑑 is the mean green time during one cycle at intersection 𝑑, 𝑁ph
𝑑

s the number of phases at intersection 𝑑, 𝜅𝑞 and 𝜅𝛼 are small positive
alues to prevent division by zero, and 𝜃𝑑,1 and 𝜃𝑑,2 are independent
arameters for intersection 𝑑.

. Grammatical Evolution

Grammatical Evolution is a form of genetic programming that pro-
uces functions based on a user-defined context-free grammar (O’Neill
Ryan, 2001) and an evolutionary algorithm for evolving the func-

ions (Nicolau & Agapitos, 2018).

.1. Genetic programming

Techniques that are used for the evolvement of functions with
volutionary algorithms are called genetic programming (Koza, 1994).
enetic programming uses a (derivation) tree-based structure to repre-

ent the functions, where these trees can be evaluated in a recursive
anner (see Fig. 2). The resulting functions can consist of complex
rogramming languages or can be more simple curve-fitting models
r symbolic regressions (Poli et al., 2008). For our application, the
roduced functions are parameterized control laws.

The basic genetic programming algorithm (Poli et al., 2008) works
ith a function set and a terminal set. The function set often consists of
athematical operators, logical operators, and user-defined functions,

nd the terminal set consists of the operands, e.g. the dependent vari-
bles or constants. The genetic programming algorithm is initialized
4

Fig. 2. Tree representation of genetic programming for a symbolic regression problem.
Here, the function set contains the mathematical operators and the terminal set contains
𝑥0 and 𝑥1.

with an initial population of functions. Then a selection process is
performed to choose the best a few functions according to a given
criterion, such as a fitness function that evaluates the performance
(see Section 3.3). Based on the selected functions, a new population of
functions is generated using sub-tree crossover and sub-tree mutation.
In sub-tree crossover, two functions are combined to create two new
functions by interchanging parts of the trees. In sub-tree mutation,
single nodes in the tree are replaced by other nodes from their re-
spective set (i.e. the function and terminal set). In particular, in each
tree a node is selected, and the successive branches of these nodes are
interchanged.

Genetic programming is especially useful when the exact form of the
function is not known in advance (Poli et al., 2008) as no constraints
are set on the output of the algorithm. However, in PMPC of urban
traffic networks, there is some information about the solution of the op-
timization problem, i.e., the sum of the green times for an intersection
should add up to the cycle time of the intersection minus the yellow
time (see (5)). When genetic programming is used to find a function
that generates the phase times of an intersection, it is very unlikely that
these phase times add up to the cycle time of the intersection. Thus
the algorithm may not return a valid function due to the phase time
constraint. Moreover, since the search space of genetic programming
is generally very large, it is helpful to steer the algorithm in the right
direction.

To reduce the search space and to guarantee the feasibility of the
created programs, we can use Grammatical Evolution (GE) with a
context-free grammar to generate the functions. The grammar describes
how the functions should be constructed and imposes constraints on the
search space.

3.2. GE with context-free grammars

Context-free grammars have a recursive notation and describe how
functions can be constructed from an existing list of variables and
functions (Hopcroft et al., 2006). Context-free grammars are often
defined in Backus–Naur form Ryan et al. (2018), considering four basic
components: a finite set of terminals, a finite set of non-terminals, a
start symbol, and a finite set of production rules. The production rules
represent the recursive behavior of the context-free grammar and define
how a non-terminal evaluates to another non-terminal, a terminal, or
a combination of the two. The non-terminals give structure to the
grammar and the terminals end up in the resulting function. A set of
production rules for a context-free grammar that could be used for
symbolic regression is shown in Fig. 3. The top production rule contains
the start symbol 𝑆, which is replaced by an expression. All the non-

terminals are defined between angle brackets and all the terminals (i.e.,
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Fig. 3. The production rules of a context-free grammar in Backus–Naur form, based
n Tsoulos et al. (2008), where the words enclosed by angle brackets are the non-
erminals, ∶∶= indicates replacement of the left-hand side symbol with the right-hand

side expression, and the vertical bar is used for separation of the different options
a non-terminal can evaluate to. Furthermore, the resulting function will consist of
the terminals sin, cos, exp and log, representing the sinus, cosine, exponential and
logarithmic functions, respectively, and the variables 𝑥1, 𝑥2, 𝑥3 and the numbers 0 to
9.

the arithmetic operators, the variables 𝑥, and the numbers) are in the
production rules of some of the non-terminals.

The grammar in Fig. 3 can be used for symbolic regression pur-
poses, but more advanced grammars can be used for, e.g., solving
the Sante Fe ant trail problem (Nicolau et al., 2012), the control
of femtocell network coverage (Hemberg et al., 2013), and finance
and economics (Brabazon, 2018). In these grammars, user-defined ‘‘if’’
statements are used to check which action should be taken and ‘‘then’’
statements are used to perform specific actions. For example, in the
Sante Fe ant trail problem (in which artificial ants try to find pallets of
food), user-defined actions, such as turn left and turn right, are used if
the ants sense the food.

A grammar is called context-free if the non-terminals can be mapped
using the production rules no matter the expressions around it. For
example, if we use a grammar to create a mathematical function and we
have two production rules that map a non-terminal to a single opening
or closing parentheses, we could create functions where the parenthesis
do not come in pairs (i.e. more opening than closing parenthesis or vice
versa), and therefore the grammar is not context-free. One could make
this grammar context-free by creating production rules that map to
expressions between a pair of parentheses (e.g. a rule that evaluates to
a non-terminal between parentheses: (non-terminal)). This is also done
in the second production rule of the grammar in Fig. 3.

One of the main advantages of GE over conventional genetic pro-
gramming is that the search space can be restricted and knowledge
of the system can be incorporated into the production rules of the
context-free grammar. For example, in Jeschke and De Schutter (2021)
the production rules are used to ensure that the parameters of the
parameterized control laws appear in the conditions of if-statements,
which leads to an efficient optimization step during the training of the
parameterized control laws.

3.3. Training of parameterized control laws

GE uses a set of input–output pairs to train the functions (i.e. the
parameterized control laws) that map the inputs to outputs. In Jeschke
and De Schutter (2021), input and output data is generated by simulat-
ing an MPC-controlled urban traffic network in a traffic simulator. The
5

input data are the states of the prediction model per control time step
and the outputs are the optimal phase times for every intersection and
every control time step as determined by the MPC controller.

The training step of one generation of parameterized control laws
consists of two parts. First, a new generation of parameterized control
laws is generated using genetic operators (i.e., crossover and mutation),
and secondly, for every parameterized control law, the parameters
in that control law should be optimized on the training data. This
means that for every data point and every parameterized control law,
we need to optimize the parameters of the control law to estimate
the output as closely as possible to the control inputs generated by
conventional MPC. Note that this optimization process can be per-
formed in a computationally efficient way, by selecting a faster solver
or approximating the global optimum roughly. After the parameters
are optimized for every parameterized control law, the fitness of the
parameterized control laws is calculated based on an error between
the outputs (based on the data collected via the traffic simulator) and
the outputs computed via the parameterized control law. Based on this
fitness, a percentage of the best-performing control laws are kept and
new control laws are created for the rest of the population using genetic
operators.

The most used genetic operators in GE are crossover and muta-
tion (Ahmadizar et al., 2015; O’Neill & Ryan, 2001). Since the pa-
rameterized control laws generated with GE have an underlying de-
cision tree representation, standard tree-based crossover and muta-
tion from conventional genetic programming are used to evolve the
population (Fenton et al., 2017).

3.4. Continuous grammars

In the grammar of Jeschke and De Schutter (2021), the parameters
of the parameterized control laws appear in the if- and else-statements
of the grammar, resulting in a discontinuous parameterized control law.
In the second part of the training step (i.e./ optimizing the param-
eters in the control law for every data point), a simple grid search
can then be used as only a limited number of combinations of the
parameters are possible, resulting in different outcomes of the control
law. The parameterized control law could thus be simply evaluated
for every combination. A downside of the discontinuous control laws
is that it also results in discontinuities in the optimization step of the
parameterized MPC controller.

Therefore, in this work, we propose a grammar that determines
parameterized control laws that are continuous functions of the traffic
states and parameters. Defining the grammar as a set of production
rules that determine a continuous parameterized control law can have
negative consequences for the training time of the algorithm as a
grid search will probably not result in the optimal performance of
the constructed control laws. For every data point, a more complex
optimization problem has to be solved to calculate the performance
for that data point, which will most likely increase the training time.
However, since the training process is offline and PMPC lowers the
number of optimization variables, the optimization problem that has
to be solved for every data point is expected to be computationally
tractable. In addition, the optimization process can be accelerated as
mentioned in previous section. Furthermore, as all the parameterized
control laws in a generation are independent of each other, the fitness
of a whole generation can be calculated in parallel. In the next section,
we propose a grammar to create the continuous control laws and two
training frameworks to train them.

4. GE-based parameterized control laws

In this section, the process of constructing a parameterized control
law using GE is described. In particular, a grammar for creating con-
tinuous parameterized control laws and two training frameworks are
proposed. Moreover, a projection-based saturation method is proposed
to guarantee the constraints on the control inputs (i.e., constraints on

the phase times of the intersection).
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Fig. 4. The GE-based grammar used to obtain the score of each phase based on (11).

4.1. Score-based green time allocation

As it was discussed earlier, several constraints should be enforced
when applying the GE-based controller for traffic signal control. We
propose a score-based structure to allocate the green length of each
phase for control time step 𝑘, such that constraint (5) can be implicitly
satisfied. We have:

𝑔𝑑,𝑗 (𝑘) =
𝑦𝑑,𝑗

∑𝑁ph
𝑑

𝑗=1 𝑦𝑑,𝑗

⋅ 𝑔𝑑,tot(𝑘), (10)

where 𝑦𝑑,𝑗 is a score for the 𝑗th phase of intersection 𝑑 that describes
the importance of a certain phase with respect to the other phases,
and 𝑔𝑑,tot is the total green time length of intersection 𝑑 at each cycle
(i.e., the cycle time minus the total yellow time). GE-based grammars
are used to construct a, generally nonlinear, function to evaluate the
score 𝑦𝑑,𝑗 , such that:

𝑦𝑑,𝑗 = 𝑓s

(

𝑛ph
𝑑,𝑗 , 𝑞

ph
𝑑,𝑗 , 𝛼

ph,ent
𝑑,𝑗 , 𝛼ph,arr

𝑑,𝑗 , 𝜃𝑑,1, 𝜃𝑑,2
)

+ 𝜅𝑦, (11)

where 𝜅𝑦 is a positive constant used to avoid a zero score, 𝑛ph
𝑑,𝑗 , 𝑞

ph
𝑑,𝑗 ,

𝛼ph,ent
𝑑,𝑗 , 𝛼ph,arr

𝑑,𝑗 are respectively the total number of vehicles, queue
lengths, and number of entering vehicles and arriving vehicles on the
lanes that correspond to the 𝑗th phase of intersection 𝑑. In addition,
𝜃𝑑,1 and 𝜃𝑑,2 are the parameters that are present in the parameterized
control law for corresponding intersection 𝑑. Here a maximum number
of two parameters are used in the GE-based control law, but the number
of parameters can be adjusted if needed. Note that the state values
in (11) are the sums of the states corresponding to all the links for
the same phase, instead of the average values used in Jeschke and De
Schutter (2021). This is because the numbers of lanes of the different
phases are not necessarily the same, and comparing the mean value of
states may underestimate the congestion degree of the phase with more
lanes.

The grammar shown in Fig. 4 is designed to train the score function.
In the grammar, the starting tree indicates that the outcome of this
grammar is a generally nonlinear function represented by ⟨expr⟩, and
the production rule of ⟨expr⟩ has recursive elements, which enable a
flexible structure of the outcome and a larger solution space. Thus
the outcome function can either be a complex expression or a simple
function. The non-terminal ⟨var⟩ includes all the available traffic states
that are used to generate function 𝑓s(⋅) in (11), while the non-terminal
⟨theta⟩ represents the parameters in the parameterized control law. The
elements of the non-terminal ⟨op⟩ are the basic operators to construct
the function, where div(⋅) is a modified division function that is used
to avoid a zero division. We have

div(𝑥) = 1
𝑥 + 1

, (12)

here 𝑥 is assumed to be non-negative. The entries of the non-terminal
func⟩ are used to introduce nonlinearity to the score function (11).
6

In contrast to the grammar in Jeschke and De Schutter (2021) that
also exploits the score-based structure to decide green time length, the
grammar used in this paper introduces more information, i.e., more
states of the links, and the grammar can choose the states that are
useful to construct the function. For example, any combination of the
state variables 𝑛ph

𝑑,𝑗 , 𝑞
ph
𝑑,𝑗 , 𝛼

ph,ent
𝑑,𝑗 , 𝛼ph,arr

𝑑,𝑗 can be realized by the grammar
due to the second recursive rule in Fig. 4. Moreover, the parameters
𝜃𝑑,1 and 𝜃𝑑,2 are also present in the grammar, which means that
the number of parameters (maximum 2 here) and the position of
the parameters in the final expression are all adjustable during the
learning process. These changes make the grammar in this paper more
flexible than the one in Jeschke and De Schutter (2021) and allow
for more diversity in the formulation of the score function, and thus
a higher chance to generate a well-performing parameterized control
law. To obtain a good result, the fitness function used to evaluate the
parameterized control laws during training is also important and should
be designed properly. Based on different formulations of the fitness
function, two different training frameworks are proposed.

4.2. Framework-1: MPC-mimicking

The scheme of Framework-1 is shown in Fig. 5. The framework
consists of two modules: the MPC module and the training module. The
main idea is to train a parameterized control law that generates the
control inputs that are as close as possible to the MPC controller. This
is similar to the idea in Jeschke and De Schutter (2021). To start the
training process, conventional MPC is first implemented on the target
traffic network to generate an extensive data set. Each data point of the
data set consists of a traffic state vector 𝒙train

𝑑 (𝑘) and a green time vector
𝒈train
𝑑 (𝑘) of a single intersection 𝑑 at time step 𝑘, which are defined as:

𝒙train
𝑑 (𝑘) =

[

𝒏ph
𝑑 (𝑘)

⊤
, 𝒒ph

𝑑 (𝑘)
⊤
,𝜶ph,ent

𝑑 (𝑘)
⊤
,𝜶ph,arr

𝑑 (𝑘)
⊤]⊤

, (13)

train
𝑑 (𝑘) =

[

𝑔𝑑,1(𝑘),… , 𝑔
𝑑,𝑁ph

𝑑
(𝑘)

]⊤
, (14)

here 𝒏ph
𝑑 (𝑘) =

[

𝑛ph
𝑑,1(𝑘),… , 𝑛ph

𝑑,𝑁ph
𝑑

(𝑘)
]⊤

, 𝒒ph
𝑑 (𝑘) =

[

𝑞ph
𝑑,1(𝑘),… ,

𝑞ph
𝑑,𝑁ph

𝑑

(𝑘)
]⊤

, 𝜶ph,ent
𝑑 (𝑘) =

[

𝛼ph,ent
𝑑,1 (𝑘),… , 𝛼ph,ent

𝑑,𝑁ph
𝑑

(𝑘)
]⊤

, 𝜶ph,arr
𝑑 (𝑘) =

𝛼ph,arr
𝑑,1 (𝑘),… , 𝛼ph,arr

𝑑,𝑁ph
𝑑

(𝑘)
]⊤

, and 𝑁ph
𝑑 is the number of phases of inter-

ection 𝑑. A data point 𝒙train
𝑑 (𝑘) is extracted from an intersection 𝑑 at

ontrol time step 𝑘, and 𝒈train
𝑑 (𝑘) includes the corresponding green phase

imes generated by the conventional MPC controller. The data points
orresponding to all the intersections in the traffic network during a
imulation interval [0, 𝑘s𝑡s) form the training data set that is expressed
s:
=
{(

𝒙train
1 (1), 𝒈train

1 (1)
)

,… ,
(

𝒙train
1 (𝑘s), 𝒈train

1 (𝑘s)
)

,… ,
(

𝒙train
|𝐽 | (1), 𝒈train

|𝐽 | (1)
)

,… ,
(

𝒙train
|𝐽 | (𝑘s), 𝒈train

|𝐽 | (𝑘s)
)}

,
(15)

where 𝑡s is the simulation sampling time and 𝑘s corresponds to the last
control time step. Note that the dimensions of the data point vectors
𝒙train
𝑑 (𝑘) and 𝒈train

𝑑 (𝑘) may vary per intersection 𝑑 if the intersections
have different number of phases. This means different types of intersec-
tions should be trained separately, i.e., different types of intersections
have different parameterized control laws.

Remark 1. Note that the data points in the training data set are
assumed to be independent from each other for the training process,
i.e., traffic at other intersections is assumed not to contribute to the
phase times of the intersection considered in the data point. However,
this is unrealistic in a real-world traffic network where the intersections
have to coordinate and communicate with their neighbors to obtain a
globally optimal performance. Training the control laws with only local
data points may in general not result in a global optimum for the entire
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traffic network. Therefore, it is necessary to include parameters in the
local control laws, such that the parameters can be optimized to capture
global information during the training process. This makes it possible to
train the local controllers independently while mimicking the behavior
of the centralized MPC controller.

The training data set is then given to the training module (see
Fig. 5). First the state vector 𝒙train

𝑑 (𝑘) is fed into the GE-based controller
block, where the score function is used to evaluate each phase based
on the states and to determine the green time length according to
(10). The output of this block is the estimated green time vector
𝒈est
𝑑 (𝑘) = [𝑔est

𝑑,1(𝑘),… , 𝑔est
𝑑,𝑁ph

𝑑

(𝑘)]⊤. The fitness function is defined as the

ean square error between the true green time vector 𝒈train
𝑑 (𝑘) and the

estimated green time vector 𝒈est
𝑑 (𝑘). As mentioned in Remark 1, the

parameters in the control law need to be optimized to minimize the
fitness value for every single data point, where the fitness value is given
by:

1
𝑁t

∑

𝑑∈𝐽

𝑘s−1
∑

𝑘=0

[

min
𝜽𝑑

‖

‖

‖

𝒈train
𝑑 (𝑘) − 𝒈est

𝑑 (𝑘)‖‖
‖

2

2

]

, (16)

where 𝜽𝑑 = [𝜃𝑑,1, 𝜃𝑑,2]⊤ that is included in 𝒈est
𝑑 (𝑘) implicitly, and 𝑁t is

the total number of data points. The mean of the fitness values of all
the data points is the fitness value of the parameterized control laws.
Note that multi-start points are used to find the global optimum due to
the nonconvexity of the optimization problem.

The remaining training process is similar to genetic programming as
described in Section 3. The evaluation and selection will continue until
the last generation of parameterized control laws is generated, and the
best parameterized control law will be selected. If there are multiple
types of intersections (i.e., the intersections with different number of
phases), the training process is repeated for different intersections with
different training data sets.

The trained parameterized control laws will be used in the PMPC
formulation (7), where only parameters that appear in the obtained GE-
based control laws need to be optimized online by the PMPC controller.
This training framework basically involves a regression problem, where
the parameterized control laws are trained to mimic the behavior of a
conventional MPC controller. Thus the training process is sensitive to
the data set, which should be extensive enough to cover all kinds of
traffic scenarios, but also compact enough to avoid a computationally
expensive training.

Since the sum constraint (5) on the green time length is implicitly
satisfied by the score-based allocation function (10), only the lower
bound and upper bound constraints on the phase time lengths will be

considered by the online PMPC controller. Note that during the training m

7

in Framework-1, no constraints on the control inputs are enforced. As
long as the final mean square errors between 𝒈train

𝑑 (𝑘) and 𝒈est
𝑑 (𝑘) ∀𝑑 ∈

𝐽 and ∀𝑘 ∈ {0, 1,… , 𝑘s − 1} are small enough, it is considered that
the bound constraints on the estimated control inputs are satisfied.
The constraints on control inputs during implementation of the PMPC
controller can be enforced when solving optimization problem (7).

4.3. Framework-2: Prediction-based learning

Instead of mimicking the behavior of conventional MPC and training
the control laws of different intersections independently, in Framework-
2 we propose to directly optimize the global objective function for the
entire traffic network during the training. The scheme of Framework-2
is shown in Fig. 6. In contrast to Framework-1, Framework-2 requires
a data set including the state information only. The data set contains
data points �̃�train(𝑘) that is a column vector containing 𝒏ph

𝑑 (𝑘), 𝒒ph
𝑑 (𝑘),

𝜶ph,ent
𝑑 (𝑘),𝜶ph,arr

𝑑 (𝑘) for all 𝑑 ∈ 𝐽 and the control time step 𝑘, i.e.

�̃�train(𝑘) =
[

𝒏ph
1 (𝑘)

⊤
, 𝒒ph

1 (𝑘)
⊤
,𝜶ph,ent

1 (𝑘)
⊤
,𝜶ph,arr

1 (𝑘)
⊤
, … ,

𝒏ph
|𝐽 |(𝑘)

⊤
, 𝒒ph

|𝐽 |(𝑘)
⊤
,𝜶ph,ent

|𝐽 | (𝑘)
⊤
,𝜶ph,arr

|𝐽 | (𝑘)
⊤
, 𝑘
]⊤

.
(17)

he data points can be extracted from an open-loop simulation of the
raffic network model, for the simulation interval [0, 𝑘s𝑡s). Since each
ata point is used as the initial state of the traffic network during the
raining, any controller can be used to generate the data set. Note that
he state information of all the intersections in the traffic network per
ontrol time step is included in each data point, and the parameterized
ontrol laws for all the intersections are trained simultaneously. The
orresponding grammar should be slightly adjusted here. For example,
f there are two types of intersections in a network, the starting tree
eeds to be changed to 𝑆 ∶∶= ⟨expr⟩; ⟨expr⟩, which implies that the
utput of the grammar includes two functions, i.e., two parameterized
ontrol laws are trained at the same time.

Each data point �̃�train is given to the inner iteration module in Fig. 6
s the initial state, and an MPC procedure is conducted based on the GE-
ased parameterized control law and the traffic model. The objective
alue is calculated over the prediction horizon 𝑁p according to (7).
hen this objective function is optimized for each data point, and used
s the fitness value. Fitness value for each parameterized control law is
iven by:

1
𝑘s

𝑘s−1
∑

𝑘=0

[

min
𝜽

(

𝑤TTS𝐽TTS(𝑘) +𝑤D D(𝒈(𝑘,𝜽)) +𝑤(𝑘)
)

]

. (18)

n addition to the fact that the data points in Framework-2 contain
ore information, the built-in state evolution process within the inner
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Fig. 6. The diagram of Framework-2, where 𝑢p is the control input generated by the parameterized control law, 𝒙p is the vector containing all the state information and control
inputs that are used in the objective function (18), and 𝐽F2 is the optimized objective value of (18).
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iteration module allows an initial state to generate a sequence of
successive states, which makes Framework-2 more data-efficient and
requiring a lower amount of training data points.

Remark 2. The MPC procedure in Framework-2 can be implemented
in a rough way instead of a detailed way, in order to accelerate the
training process without influencing the evaluation of the parameter-
ized control laws. For example, the maximum number of iterations
in the optimization can be set to a smaller value, or the number
of multi-start points can be reduced for the nonconvex optimization
problem.

Remark 3. Note that the number of parameters in the parameterized
control law is adjustable for both Framework-1 and Framework-2.
A larger number of parameters may lead to a better fitness value,
while resulting in a higher computational complexity. In practice, it
is recommended to choose a suitable number of parameters so that a
balance between the complexity of the grammar and the fitness value
is reached.

During the MPC procedure of the training process, the parameter-
ized control laws for all intersections work together in a centralized
way. However, optimizing all the parameters together also means a
more complex optimization problem, which results in a longer training
time. So the training process can be accelerated as mentioned in Re-
mark 2. In addition, since the GE-based parameterized control laws are
implemented directly on the traffic model, it is necessary to consider
the lower bound and upper bound constraints on the control inputs
explicitly. Therefore, in the next section, we propose a projection-based
method to guarantee the bound constraints on the phase times.

4.4. Projection-based method for constraint satisfaction

Unlike conventional MPC, where bound constraints on the phase
time can be addressed directly during optimization, in PMPC the bound
constraint on the phase time introduces nonlinear constraint functions
on the parameters 𝜽. This increases the computational complexity
of the resulting optimization problem. Therefore a projection-based
method is used together with the phase time allocation function (10).
After the phase times are calculated through (10), all the phase time
values are projected into the feasible region where the constraints are
ensured. Thus the phase times generated by the parameterized control
law satisfy the bound constraints inherently, and the nonlinear con-
straint function is eliminated in the optimization problem. Therefore,
the parameterized control law with projection-based method can be
8

Fig. 7. Illustration of the projection-based method for a three-phase intersection to
guarantee the phase time constraint: the gray plane is the area where the sum constraint
is satisfied, while the blue region is where both the bound constraints and the sum
constraint are satisfied. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

considered as a modified parameterized control law, for which the
constraints on control inputs are always satisfied by construction.

To illustrate the projection-based method, we consider a three-phase
intersection. Assume the total green time length within one cycle is 𝑔tot,
then the calculated phase times 𝑔1, 𝑔2, 𝑔3 satisfy the sum constraint:

𝑔1 + 𝑔2 + 𝑔3 = 𝑔tot. (19)

o further enforce the bound constraints on the phase time, the points
𝑔1, 𝑔2, 𝑔3) are projected to the feasible region as shown in Fig. 7 where
he three axes represent 𝑔1, 𝑔2, 𝑔3 respectively, and the gray plane
onsists of all the points that satisfy the sum constraint (19). The blue
egion represents the feasible region where lower and upper bound
onstraints on 𝑔1, 𝑔2, 𝑔3 are satisfied. While all the calculated points
𝑔1, 𝑔2, 𝑔3) are in the gray plane, they are not necessarily within the
lue region, such as the circle points shown in Fig. 7. Therefore, these
oints are projected to the blue region (see the star points shown in
ig. 7), where the points are projected to the corresponding closest
oints within the feasible region. In addition, the Euclidean distance
etween the original point and the projected point is also collected
nd used as a penalty on the constraint violation in the fitness function
18). With a given original point (𝑔1, 𝑔2, 𝑔3), both the projected point
nd the projection distance can be calculated in an analytical way. So
he computational complexity of the projection method is low. Note
hat this method also applies for one intersection with more than three
hases.
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With the projection-based method, the explicit constraints on 𝜽 in
the PMPC optimization problem (7) can therefore be removed. This
accelerates the optimization process and also the training process of the
parameterized control law. In addition, the projection-based method
better than the explicit constraints in problem (7). This is illustrated
next.

Proposition 4.1. For the PMPC optimization problem (7), replacing the
explicit constraints on parameters 𝜽 with the projection-based method results
in equivalent or better performance in terms of the objective function.

Proof. Let 𝑅1 be the set of parameters 𝜽 that yield a feasible solu-
tion of the PMPC problem (7) with explicit constraints. Considering
the projection-based method for a given form of the parameterized
control law with parameters 𝜽 is in fact equivalent to considering a
new modified control law with the same parameters 𝜽 for which the
explicit constraints are always satisfied by construction (due to the
projection). As such, the set 𝑅2 of parameters 𝜽 for which the modified
projection-based control law will yield a feasible solution of (7) will
be a superset of 𝑅1. As a result, optimizing over 𝑅2 will result in an
optimal performance that is not worse than the optimal performance
over 𝑅1. This proves the proposition. □

Note that this projection-based method can be applied for all PMPC
control laws, including the relative-queue-length parameterized control
law, the control law generated by Framework-1 or Framework-2, and
also the training process of Framework-2. In addition, the proposed
schemes can be applied and adjusted easily for the traffic signal control
of any urban network with various layouts and phase settings. The
schemes are designed for centralized control of the whole network
(i.e., coordinating the local traffic signal controllers) to minimize the
total time spent by the vehicles on the entire network. Nonetheless, the
schemes can also be used for the training of a single intersection or a
set of intersections of a sub-network, as well as for other performance
criteria (e.g., minimization of emission or fuel/energy consumption).
Furthermore, the idea behind the proposed methods, using GE to learn
a state-feedback function for parameterized MPC, can be generalized to
many other applications besides the field of traffic control.

5. Case study

In this section we compare the performance of the proposed GE-
based PMPC controllers to the conventional MPC and the handcrafted
PMPC controllers. The controllers are programmed using Matlab
R2021a. The case study is carried out based on simulations in the traffic
simulator SUMO (Lopez et al., 2018), and the interface TraCI (Wegener
et al., 2008) is used to communicate between SUMO and Matlab. The
measurements of the performance include the Total Time Spent (TTS)
by the vehicles in the network and the computational complexity of the
control methods. All the simulations run on a PC with an Intel Xeon
Quad-Core E5- 1620 V3 CPU with a clock speed of 3.5 GHz.

5.1. Setup

An urban traffic network is considered as shown in Fig. 8 where
the lengths of all the links are given. This network consists of 6
intersections denoted as A-E, and 6 source and sink nodes denoted by
1–6. There are two types of intersections: 2 (A and F) with 4 phases, and
4 (B,C,D,E) with 3 phases. The phases for different types of intersections
are presented in Figs. 9 and 10. The cycle times for all the intersections
are the same and set to 1 min. All 88 parameters of the traffic model,
including the length and free-flow speed of each link and the saturation
flow rate of each lane for all links are identified based on data collected
from SUMO. The identified parameter values as well as the turning ratio
values can be found in Appendix .

The traffic flow demand profiles are generated with SUMO’s built-

in route generator, which generates routes based on flow profiles and p

9

Fig. 8. The layout and the link lengths of the urban traffic network.

Fig. 9. The phases of 4-phase intersections.

Fig. 10. The phases of 3-phase intersections.

turning rates. Three different demand profiles (see Fig. 11) are designed
and applied in the traffic network to evaluate the performance of
the controllers under various traffic conditions. All the three demand
scenarios last for one hour. Before applying the demand profiles, the
empty traffic network is initialized by running the network with a
constant traffic flow of 1000 [veh/h] from all the source nodes for
30 min, in order to create a situation with heavy traffic with long
queues on the lanes. The initial queue lengths of all the lanes are
present in Table 1. The prediction horizon of all MPC controllers is
8 min, such that a vehicle that enters the network can leave the network
within the prediction horizon considering the longest path and the red
signal light. The control time step is 1 min. The cost functions for
conventional MPC (6) and for PMPC (7) are identical, and the weights
are 𝑤TTS = 1, 𝑤D = 1, 𝑤 = 2. The cost terms are defined as:

𝐽TTS(𝑘) =
∑

(𝑢,𝑑)∈𝐿

𝑁p
∑

𝑗=1
𝑐𝑑 ⋅ 𝑛𝑢,𝑑 (𝑘 + 𝑗), (20)

D(𝐠(𝑘)) =
‖

‖

‖

‖

[

(𝐠(𝑘) − 𝐠(𝑘 − 1))⊤, (𝐠(𝑘 + 1) − 𝐠(𝑘))⊤,… ,

(𝐠(𝑘 +𝑁p) − 𝐠(𝑘 +𝑁p − 1))⊤
]⊤

‖

‖

‖

‖

2

2
,

(21)

(𝑘) =
𝑁p
∑

𝑗=1

∑

𝑑∈𝐽
max

(𝑢,𝑑,𝑜)∈𝐿𝑑
𝑞𝑢,𝑑,𝑜(𝑘 + 𝑗), (22)

here 𝐿𝑑 is the set of lanes that arrive at intersection 𝑑. For the PMPC
ontrollers using projection-based method, an extra penalty term is
dded on the constraint violations of the control inputs:

(𝐠(𝑘)) = 𝑑(𝐠(𝑘)) + 𝑑(𝐠(𝑘 + 1)) +⋯ + 𝑑(𝐠(𝑘 +𝑁p − 1)), (23)

here 𝑑(𝐠(𝑘)) =
∑

𝑑∈𝐽
‖

‖

‖

𝐠𝑑 (𝑘) − 𝐠pro
𝑑 (𝑘)‖‖

‖2
with 𝐠pro

𝑑 (𝑘) the projected

hase times of 𝐠𝑑 (𝑘). The weight of the penalty term is 𝑤V = 1.
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Table 1
The initialized queue lengths of all the lanes, where the queue values are given respectively in the order of left-turning, straight-going, and right-turning directions for each link,
and the notation ‘−’ means that term is not applicable for the corresponding direction.

link(1,A) link(2,A) link(B,A) link(D,A) link(A,B) link(C,B) link(E,B) link(B,C) link(6,C) link(F,C)

Queue [veh] (35,39,44) (40,35,44) (45,53,52) (27,40,46) (−,79,63) (61,81,−) (47,−,21) (−,51,34) (16,27,−) (12,−,4)
link(A,D) link(E,D) link(3,D) link(B,E) link(D,E) link(F,E) link(C,F) link(E,F) link(4,F) link(5,F)

Queue [veh] (12,43,−) (40,−,28) (−,27,21) (62,61,−) (52,−,34) (−,50,55) (44,42,49) (48,50,37) (35,48,35) (39,51,28)
Fig. 11. Demand profiles of the three scenarios used in the case study.
5.2. Controllers

We compare the performance of five different controllers: fixed-time
controller, conventional MPC controller, relative-queue-length (RQL)
PMPC controller, GE-based Framework-1 (GE-F1) PMPC controller,
and GE-based Framework-2 (GE-F2) PMPC controller. In addition, the
RQL-PMPC controller is further divided into two methods: RQL-PMPC
with explicit constraints in the optimization and RQL-PMPC with the
projection-based method. With a cycle time of 1 min, the yellow time
length after each green time phase is selected as 2 s. Therefore, the total
green time within one cycle for the 3-phase intersections is 54 s, and
the lower bound and upper bound on the phase times are 6 s and 42 s,
respectively. For the 4-phase intersections, the total green time within
one cycle is 52 s, and the lower bound and upper bound on the phase
times are 6 s and 34 s.

Since the mathematical model of urban traffic networks are highly
nonlinear and non-smooth, we found that the numerical solver fmin-
con function from Matlab optimization toolbox is more suitable to
solve this specific problem. By comparing SQP and interior-point
method, we found that SQP performs better in terms of convergence
performance.2 On the other hand, the main aim of this study is to
show the relative improvement of the proposed methods in terms of
computational efficiency, so we select single shooting to implement the
nonlinear optimization for the sake of simplicity. Therefore, fmincon
with SQP is used to solve the optimization problems for all the MPC
controllers. Due to the non-convex optimization problem, multi-start
optimization is used to approximate the global optimum. For this case
study, our numerical experiments indicated that considering 10 starting
points is enough to approximate the global optimum. So for all the
optimization-based controllers, the optimization problem is solved 10
times with random starting points, and the best result is selected as
the final solution. For the parameters of the convergence criteria of the
solver, we have chosen to tune the tolerance of the objective function,
the search step, and the constraints, respectively. The value 10−3 is
chosen for all three parameters based on our experimental results
such that a balance between computational efficiency and accuracy is
reached.

2 We also conducted experiments by using CasADi. Results showed that it
rovided comparable performance and CPU time to that of fmincon for this

specific problem.
10
5.2.1. Fixed-time controller
For this controller, the total green time is distributed to each phase

equally, and the phase times remain constant during the simulation
interval. Therefore the phase times for the 4-phase and 3-phase inter-
sections are 13 s and 18 s, respectively.

5.2.2. Conventional MPC controller
Since the sum of the phase times is fixed, the linear constraint

(5) can be used to eliminate and substitute one of the phase times
into the objective function. By using this strategy, the number of
decision variables is reduced. Then there are 3 variables for each 4-
phase intersection, and 2 variables for each 3-phase intersection. Since
𝑁p = 8, the number of parameters to be optimized every step of
conventional MPC is reduced from 160 to 112. In addition, the lower
bound and upper bound constraint on the phase times are included
explicitly in the optimization.

5.2.3. RQL-PMPC controller
Using the parameterized control law (9), the parameters for each

intersection 𝑑 ∈ 𝐽 are 𝜃𝑑,1 and 𝜃𝑑,2. Thus the total number of parameters
to be optimized every step of RQL-PMPC is 12, which is reduced
significantly compared with the conventional MPC. To evaluate the
effectiveness of the projection-based method, a comparison between
RQL-PMPC with an explicit constraint (RQL-PMPC-EC) and RQL-PMPC
with the projection-based method (RQL-PMPC-PC) is considered. For
the RQL-PMPC-EC controller, the lower and upper bound constraints
on the generated phase times are included in the optimization, while no
constraints appear in the optimization problem for the RQL-PMPC-PC
controller.

5.2.4. GE-F1 PMPC controller
Since there are two types of intersections in the traffic network, two

parameterized control laws are trained separately using Framework-
1. Conventional MPC is implemented using the S-model to generate
the training data set. Six scenarios covering various traffic situations
are considered, each lasting for 1 h. Thus there are in total 360
control time steps for all the intersections, resulting in 720 data points
for the 4-phase intersections and 1440 data points for the 3-phase
intersections.

For the training of grammar-based parameterized control law, the
toolbox PonyGE2 (Fenton et al., 2017), which is implemented based
on Python and is user-friendly due to its scalability and comprehensive
instruction document, is used. The parameters used for the genetic
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programming are: maximum number of generations = 50, and popu-
lation size = 300. Moreover subtree mutation and crossover are used
as the genetic operators. Another important parameter is the maximum
depth limit for a derivation tree, which decides how complex the
generated grammar will be. In this case, the value is set 10 to avoid a
complex expression of the score function. These parameters are tuned
on the basis of the default values, and are adjusted for this case study
according to the experiments such that satisfying results are obtained
while the training time is acceptable. For more information about the
parameters of GE training, the reader is referred to Fenton et al. (2017).

As mentioned before, the parameters of the parameterized control
law are optimized for each data point to find the optimal fitness
value. The gradient-based algorithm L-BFGS is utilized to solve the
optimization problem for every single data point. With 𝜅𝑦 = 1 in (11),
he final obtained score function for 3-phase intersections is:

3-ph
𝑑,𝑗 = 𝜃𝑑,1

⎛

⎜

⎜

⎝

(

𝑛ph
𝑑,𝑗 − 𝛼ph,arr

𝑑,𝑗

)

⋅
𝑛ph
𝑑,𝑗

2𝛼ph,ent
𝑑,𝑗 + 1

⋅
(

𝛼ph,arr
𝑑,𝑗 + 𝜃𝑑,2𝛼

ph,arr
𝑑,𝑗

)
⎞

⎟

⎟

⎠

+

𝜃𝑑,2
⎛

⎜

⎜

⎝

(

𝛼ph,arr
𝑑,𝑗

)2
+ 𝛼ph,arr

𝑑,𝑗 − 𝜃𝑑,2
𝛼ph,arr
𝑑,𝑗

𝛼ph,arr
𝑑,𝑗 + 1

⎞

⎟

⎟

⎠

+ 1.

(24)

he training fitness value of this control law is 1.46⋅10−8, and the fitness
alue for the test data set is 4.78 ⋅ 10−2, which are low enough fitness
alues for the 3-phase intersections. As mentioned in Remark 3, the
aximum number of parameters is adjustable. For training of the 4-
hase intersections, an extra parameter 𝜃𝑑,3 is added in order to further
educe the fitness value. The obtained GE-based scored function is:

4-ph
𝑑,𝑗 =𝜃𝑑,3𝑛

ph
𝑑,𝑗 + 𝜃𝑑,2𝛼

ph,ent
𝑑,𝑗 − 𝜃2𝑑,3

3
√

𝑛ph
𝑑,𝑗

𝛼ph,arr
𝑑,𝑗 + 𝑛ph

𝑑,𝑗 −
3
√

𝛼ph,ent
𝑑,𝑗 + 1

− 𝜃𝑑,1
(

𝑛ph
𝑑,𝑗 − 𝑞ph

𝑑,𝑗

)

+ 1.

(25)

he training fitness value of this control law is 1.03⋅10−1, and the testing
itness value is 3.69⋅10−2. The control law is well-trained for the 4-phase
ntersections since the fitness values are small enough. Note that in
core function (24) not all the state information is included in the func-
ion, e.g., queue state 𝑞ph

𝑑,𝑗 is not selected by the grammar. In score func-
ion (25), all the parameters are used by the grammar. Therefore, a total
umber of 16 parameters are present in the parameterized control law.
he projection-based method is used together with this control law.

.2.5. GE-F2 PMPC controller
The control laws for the two types of intersections are trained

imultaneously within Framework-2. Thus only one data set is needed.
ince, as mentioned before Framework-2 is more data-efficient than
ramework-1, a limited number of initial points are enough to train
well-performing parameterized control law. A total number of 45

ata points are included in the data set, which is extensive enough to
over most traffic situations. The training setting is similar to that of
he GE-F1 PMPC, except that the population size is reduced to 50 to
educe the training time. Similar to the RQL-PMPC controller, at most
wo parameters are allowed in this grammar for both parameterized
ontrol laws. According to the experiments, Powell’s method is most
fficient among all the available solvers within the toolbox and thus is
sed to optimize the parameters in the control law for each data point.
he projection-based method is employed to remove the constraints
n the parameters during both training and implementation of the
arameterized control laws.

The obtained score function for the 3-phase intersections is:

3-ph
𝑑,𝑗 =

3
√

(

𝑛ph
𝑑,𝑗𝑞

ph
𝑑,𝑗

)2
+ 𝛼ph,arr

𝑑,𝑗 − 𝜃𝑑,1𝛼
ph,arr
𝑑,𝑗 𝛼ph,ent

𝑑,𝑗 + 𝜃𝑑,2𝑛
ph
𝑑,𝑗 + 1, (26)

and the obtained score function for the 4-phase intersections is:

𝑦4-ph
𝑑,𝑗 =

3
√

√

√

√

√𝑞ph
𝑑,𝑗 +

𝜃𝑑,2𝛼
ph,ent
𝑑,𝑗

ph,ent + 1. (27)

𝛼𝑑,𝑗 + 1
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t is worth mentioning that the score function (26) is simpler than (24),
nd (26) is even more compact with only two states 𝑞ph

𝑑,𝑗 and 𝛼ph,ent
𝑑,𝑗 and

one parameter 𝜃𝑑,2. The performance of these controllers is compared
and the results are analyzed in the next section.

5.3. Results and discussion

In Table 2 the system performance and computational complexity of
the different controllers are shown for the different demand scenarios.
The performance measurements TTSrel and CTrel are the relative change
f the TTS and of the mean computation time (CT) with respect to

the conventional MPC controller, where the mean computation time
is considered for all the control time steps over the simulation interval.
First, for this case study the experiments indicate that compared to
the conventional MPC controller all the PMPC controllers reduce the
computational complexity of the online optimization with more than
80% for all scenarios, while the system performance decreases only up
to about 1% except for the GE-F1 PMPC controller. Second, all the con-
trollers provide a better TTS than the fixed-time case, except for GE-F1
PMPC in scenario 1, which yields a similar performance as the fixed-
time controller. The reason why GE-F1 PMPC performs relatively worse
is that the training of Framework-1 requires a high-quality training data
set. A proper training data set is necessary to avoid overfitting and to
guarantee the performance of the generated control laws for various
scenarios. However, it is usually difficult to guarantee the quality of
the training data in practice. In contrast, the GE-F2 PMPC controller
performs better than the GE-F1 PMPC controller for all three scenarios,
in terms of both system performance and computation time, with a
much smaller training data set. Compared with conventional MPC, GE-
F2 PMPC can provide a comparable performance with significantly less
CPU time for all the considered scenarios. In view of the advantages of
Framework-2 mentioned before, it is recommended to use GE-F2 PMPC
for further applications, as long as enough training is allowed.

The RQL-PMPC controller using the projection-based method out-
performs the one using the explicit constraint for all the scenarios in
terms of both performance measures, which confirms the effectiveness
of the proposed method. The RQL-PMPC controller performs slightly
better than GE-F2 PMPC, because the former is constructed based on ex-
pert knowledge and has been fine tuned through experiments, whereas
GE-F2 PMPC is created automatically with limited expert knowledge
of the system. Therefore, the differences in the performance are accept-
able. Note that the conventional MPC controller performs slightly worse
than the PMPC controllers for scenario 3. This is most probably due to
the mismatch between the prediction model and the simulator, where
the conventional MPC controller seems to be more sensitive to model
uncertainties. Another possible reason is that for conventional MPC it
might be more difficult to obtain a good approximation of a globally
optimal solution within the same computation time budget as PMPC for
every single optimization process, as the large number of parameters
of conventional MPC makes the corresponding optimization problem
more complex.

6. Conclusions

In this paper efficient parameterized MPC (PMPC) approaches have
been introduced for urban traffic signal control. In addition to the
handcrafted relative-queue-length PMPC, grammatical-evolution (GE)-
based PMPC has been proposed to generate the parameterized control
laws automatically with limited expert knowledge. Therefore, it is
possible to find well-performing parameterized control laws, which
can easily be adjusted to meet specific requirements by changing the
grammar structure. Two training frameworks for GE-based PMPC have
been proposed and compared. Moreover, a projection-based method
for removing the nonlinear constraints on the parameters of PMPC
controllers has been introduced. The SUMO-based simulation results
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Table 2
The TTS, mean and maximum computation time, and the relative change in TTS and mean computation time with respect to the conventional MPC controller for the different
demand scenarios and controllers.

Demand scenario Controller TTS [veh h] TTSrel [%] Mean computation
time [s]

Max computation
time [s]

CTrel [%]

Scenario 1

Fixed-time 1284.6 12.21 – – –
Conventional MPC 1144.8 – 21.35 26.91 –
RQL-PMPC-EC 1146.1 0.11 3.33 5.34 −84.40
RQL-PMPC-PC 1145.2 0.00 1.93 3.22 −90.96
GE-F1 PMPC 1252.4 9.40 3.13 7.72 −85.34
GE-F2 PMPC 1146.0 0.10 2.16 5.06 −89.88

Scenario 2

Fixed-time 1239.3 20.34 – – –
Conventional MPC 1029.9 – 22.36 25.05 –
RQL-PMPC-EC 1034.2 0.42 3.27 5.24 −85.38
RQL-PMPC-PC 1033.4 0.34 1.89 3.08 −91.55
GE-F1 PMPC 1064.8 3.39 3.74 6.31 −83.27
GE-F2 PMPC 1040.4 1.02 2.23 4.26 −90.03

Scenario 3

Fixed-time 1192.3 11.88 – – –
Conventional MPC 1065.7 – 22.37 29.81 –
RQL-PMPC-EC 1051.3 −1.35 4.46 12.39 −80.06
RQL-PMPC-PC 1049.5 −1.52 1.65 4.11 −92.62
GE-F1 PMPC 1075.1 0.88 3.18 5.03 −85.78
GE-F2 PMPC 1054.2 −1.08 2.00 5.02 −91.06
show that PMPC controllers reduce the online computation time sig-
nificantly, and achieve a performance that is comparable with that
of the conventional MPC controller. It is also demonstrated that the
projection-based method further improves the computational efficiency
of PMPC controllers. In our case study, the GE-based PMPC controllers
perform as well as the handcrafted PMPC controller, which outperforms
the GE-based PMPC controller of Jeschke and De Schutter (2021).
Framework-2 proves to be better than Framework-1 by generating a
more concise control law, which improves the computational efficiency
and the system performance.

In the future, the proposed GE-based PMPC approach together with
the projection-based method will also be adapted to more complex
traffic networks that contain more intersection types and also considers
more cost terms (e.g., emissions). In addition, distributed GE-based
PMPC controller will be developed to deal with larger-scale networks.

Learning-based approaches such as reinforcement learning can also

12
be incorporated to deal with model uncertainties and external distur-
bances. Moreover, an in depth comparison study of different solution
methods can be carried out.
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Appendix. Identified parameters

The calibrated parameter values of the urban traffic network as well
as the given turning ratio values in the case study are presented in
Table A.3.
Table A.3
The identified parameters of the traffic network in the case study, where the saturation flow rates and turning ratios are given in the order of left-turning, straight-going, and
right-turning directions for each link, respectively, and the notation ‘−’ means that term is not applicable for the corresponding direction.

link(1,A) link(2,A) link(B,A) link(D,A)

Free speed [m/s] 34.1358 10.1425 74.6448 54.4716
Link length [m] 570.414 277.594 567.736 374.167

Saturation flow rate [veh/h] (2199.4,2390.3,1813.5) (2032.4,2129.3,1851.5) (2530.9,2332.6,1823.6) (2120.2,1926.1,2269.7)
Turning ratio (0.34,0.32,0.34) (0.33,0.34,0.33) (0.36,0.36,0.28) (0.33,0.34,0.33)

link(A,B) link(C,B) link(E,B) link(B,C)

Free speed [m/s] 84.4651 62.0863 72.6384 83.5817
Link length [m] 667.691 732.577 454.815 598.724

Saturation flow rate [veh/h] (-,2411.5,1906.6) (2365.7,2435.9,-) (2300.9,-,1886.6) (-,2229.2,2026.9)
Turning ratio (-,0.57,0.43) (0.51,0.49,-) (0.53,-,0.47) (-,0.53,0.47)

link(6,C) link(F,C) link(A,D) link(E,D)

Free speed [m/s] 22.6800 69.6748 82.6973 78.4553
Link length [m] 757.118 563.404 709.551 785.791

Saturation flow rate [veh/h] (2307.3,2269.0,-) (2557.5,-,1700.8) (2145.9,2402.4,-) (2094.3,-,1860.9)
Turning ratio (0.45,0.55,-) (0.6,-,0.4) (0.5,0.5,-) (0.54,-,0.46)

link(3,D) link(D,E) link(B,E) link(F,E)

Free speed [m/s] 29.5055 59.9165 96.7607 61.3621
Link length [m] 447.165 521.882 605.750 647.780

Saturation flow rate [veh/h] (-,2118.9,1880.4) (2134.5,2462.8,-) (2304.9,-,1914.9) (-,2179.5,2075.1)
Turning ratio (-,0.54,0.46) (0.5,0.5,-) (0.54,-,0.46) (-,0.53,0.47)

link(E,F) link(C,F) link(5,F) link(4,F)

Free speed [m/s] 86.7538 81.4044 14.9533 94.6695
Link length [m] 636.439 666.894 501.306 608.948

Saturation flow rate [veh/h] (2612.8,2111.7,1865.0) (1979.0,2414.5,2221.8) (2469.7,2219.0,1637.1) (2131.2,2461.3,1790.7)
Turning ratio (0.35,0.34,0.31) (0.33,0.34,0.33) (0.34,0.34,0.32) (0.34,0.32,0.34)
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