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Using the charge representation, we calculate the ground state energy and the critical current of a small
two-dimensional Josephson junction array subject to both charge and magnetic frustration. In the quantum
regime the ground state of the array is a superposition of charge states, allowing a supercurrent to flow through
the circuit. Both the ground state energy and the critical current can be tuned by the two frustrations. We show
that the notion of a vortex is compatible with a charge representation of the array.@S0163-1829~96!00933-2#

Recent experiments1–4 have demonstrated the effects of
the competition between tunable Josephson and charging ef-
fects in small arrays of superconducting tunnel junctions.
The interplay of these phenomena is a direct consequence of
the conjugation relation between phase and number-of-
particle variables in a superconductor. The two characteristic
energies involved are the Josephson coupling energyEJ and
the charging energyEc5e2/2C, whereC is the junction ca-
pacitance. In the quantum regime, they are comparable and
therefore both the charge and phase degrees of freedom of
the array are quantum variables. The dynamics of a quantum
array can be described either in terms of vortices or in terms
of Cooper pairs. Implications of this duality have been inves-
tigated in the limit of infinite arrays.5,6 However, for small
two-dimensional arrays,7 the link between the two descrip-
tions is not clearly established and a quantum description is
needed.

In this paper we consider the small two-dimensional array
depicted in Fig. 1. It consists of two superconducting elec-
trodes, or islands, connected to each other and to the leads by
small Josephson junctions withEJ&Ec . From the phase

point of view, this circuit can be seen as an array made of
two loops. This is indeed the simplest array, exhibiting in a
symmetric way the characteristic features of the quantum
regime. The Josephson coupling across the junctions, which
can be tuned by an applied magnetic flux, tends to fix the
phase of the superconducting wave function of the islands
and allows a supercurrent to flow through the device. On the
other hand, the electrostatic energy reduces the fluctuations
of the charge on the islands. By means of a gate voltage one
can vary the electrostatic energy required to change the num-
ber of Cooper pairs on the islands and therefore the critical
current. The presence of only two islands makes it experi-
mentally feasible to apply a uniform gate-induced charge to
the array, unlike in a larger array where it is practically im-
possible to compensate for all the random offset charges
caused by impurities in the underlying substrate or in the
tunnel barrier. Experiments in small arrays are usually de-
scribed in terms of vortex motion while the charge represen-
tation has been used so far only for treating the circuit made
of two small Josephson junctions in series. The latter has
been extensively studied both theoretically8–10 and
experimentally2,3,11–14 and its behavior is now well
understood.15 Here, we extend the charge representation de-
veloped for the double junction to the case of a small two-
dimensional array. We compute the ground state energy and
the critical current as a function of induced charge and ap-
plied magnetic flux.

All the junctions in the array are identical with a Joseph-
son coupling energyEJ and a capacitanceC. It has been
shown that, at zero temperature, the charge of a small super-
conducting island is quantized in units of 2e if the supercon-
ducting energy gapD is larger than the charging
energy.10,16–18In this paper, we restrict ourselves to the case
whereD.Ec so that quasiparticles can be neglected and the
island charges can be expressed in terms of the number of
excess Cooper pairs. A uniform gate voltageVg is applied to
the islands by means of gate capacitors with capacitance
Cg . AssumingCg!C, the applied voltage induces a charge
CgVg on each island. In analogy with the magnetic frustra-
tion, we define a dimensionless charge frustration
ng5CgVg/2e that describes the influence of the gate voltage.
The two loops are subject to an externally applied fluxF and

FIG. 1. Schematic of the small Josephson junction array. The
two islands are subject to a gate-induced chargeCgVg and the two
loops to a magnetic fluxF. The junctions connecting the islands to
the leads are labeled from 1~upper left! to 4 ~lower right!. The
middle junction connecting the two islands is junction 5.
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the magnetic frustration isf 5F/F0, whereF0 is the su-
perconducting flux quantum. The sample is thus symmetric
with respect to charge and magnetic frustration. The Joseph-
son energyEJ may be renormalized because of the electro-
magnetic environment and the finite charging energy of the
islands.10,15

The Hamiltonian of the arrayH5Hel1HJ is the sum of
the electrostatic Hamiltonian and the Josephson Hamiltonian.
We consider here only the internal degrees of freedom of the
array and do not take into account the bias circuit. The
charge variables describing the state of the system are the
numbersni of excess Cooper pairs on the islands and the
number k of Cooper pairs having passed through the
circuit.19 These numbers can themselves be expressed as a
function of the set$kl% describing the number of Cooper
pairs having tunneled through each junctionl of the circuit.
Herek5(k11k21k31k4)/2 where the junctions are labeled
according to the notations introduced in Fig. 1. The set of
n5(n1 ,n2) and k forms the so-called charge configuration
of the array. The number of Cooper pairs,ni , and the phase
f i of the superconducting wave function of the islands are
conjugate variables that satisfy@f i ,ni #5 i . Similarly, the
differenced between the superconducting phases of the leads
and the charge flow indexk do not commute,@d,k#5 i . Ex-
perimentally, arrays withEJ;Ec are usually dc-current bi-
ased with a low-impedance electromagnetic environment.
Therefore the phase differenced is a classical variable20

while the phasesf i and the numbersni are quantum vari-
ables. Note that the role of the external phase difference and
the flux in the two cells may be described in the same way by
connecting the leads of the array and applying a magnetic
flux to the loop formed in this way. We assume that the array
will be probed by a current source, and following Ref. 2 we
choose the basis of statesun,d& to describe the array.

If the offset charges are compensated, the electrostatic
energy of the array at zero bias voltage is given by

Eel~n!5
1

2
~2e!2(

i , j
~ni2ng!Ci j

21~nj2ng!, ~1!

whereCi j
21 denotes the matrix element of the inverse capaci-

tance matrix. On the other hand, the Josephson Hamiltonian
couples states with different charge configurations but it is
usually written in terms of the island phases as
HJ52EJ( (pq)cos(fp2fq2Apq), where the sum is over
nearest-neighbor sites including the leads, and where
Apq52p/F0*p

qA•dl, A being the vector potential. The Jo-
sephson Hamiltonian can be written in the charge represen-
tation in the following way. Each term of the sum in the
Hamiltonian HJ describes the tunneling of Cooper pairs
across one junction. Tunneling of one Cooper pair across
junction l is described bykl→kl1e l , wheree l561, and
has two effects on the charge degrees of freedomn andk of
the array. It changes the charge configurationn(kl) into
n(kl1e l) but it also shifts the charge flow indexk ~see
above! by a quantity e l(Dk) l given by e l(Dk) l
5k(kl1e l)2k(kl). We describe the first effect by a transi-
tion between two states while the change ink is described by
a phase factor exp@2iel(Dk)ld#. In the charge representation
the Josephson Hamiltonian becomes

HJ52(
l
EJ/2$un~kl1e l !,d&^n~kl !,duexp@2 i e l~Dk! ld#

3exp~2 i e lAl !1H.c.%, ~2!

where the sum is over the junctions and wheree lAl is the
line integral of the vector potential over junctionl associated
with the tunnel eventkl→kl1e l . Expressing the Josephson
HamiltonianHJ in the basis of charge statesun,d&, the full
Hamiltonian reads

H5(
n
Eel~n!un,d&^n,du

2 (
^n,m&

EJ/2F um,d&^n,du S ($ l %nm
e2 iF l D1H.c.G .

~3!

Here(^n,m& denotes a sum over configurations which differ
by the tunneling of one Cooper pair and$ l %nm is the set of all
the single Cooper pair tunnel events which change the charge
configuration fromn to m. The effect of the magnetic
frustration is contained in the phase component
F l5e l(Dk) ld1e lAl .

The eigenvectorsuc& of the HamiltonianH are superpo-
sitions of charge statesuc&5(nan(ng , f ,d)un,d& and the
eigenenergies form bands that are 2p periodic in d. As a
consequence of the charge quantization on the islands and
the flux quantization in the loops, the ground state energy is
periodic in bothng and f with period 1. We restrict ourselves
to the intervals 0<ng<1, 0< f<1 and we perform the cal-
culation numerically using five possible numbers of Cooper
pairs per island, i.e.,ni50,61,62. With a typical value
EJ /Ec50.2, taking into account more charge configurations
does not significantly change the results. The critical current
I c of the array follows from the derivative of the ground state
energyEgr with respect to the phase difference of the leads
asI c5(2p/F0)max$]Egr /]d%. The shape and the amplitude
of the bands depend on the induced charge and the applied
flux and so does the critical current.

As shown in Fig. 2, the two frustrations have a dual in-
fluence on the critical current, reflecting the duality between
charge and flux in the array and the symmetry of the circuit.
In fact, they act separately on the ground state of the system.
The charge frustrationng affects the diagonal terms in the
HamiltonianH by changing the electrostatic energy spec-
trum while the magnetic frustrationf affects the off-diagonal
terms by modifying the coupling energy between the charge
states. The lowest critical current as a function ofng is ob-
tained atng50 when the difference in electrostatic energy
between the energetically most probable configuration and
the other configurations is maximum. As a result the ampli-
tude of the energy band associated with the ground state is
minimized. At finite charge frustration, the energy difference
between the charge states building the ground state of the
system becomes smaller and the critical current is higher. At
zero magnetic flux, the critical current as a function ofng
displays two peaks due to the presence of two islands. This is
reminiscent of the charge frustration dependence of the elec-
trostatic energy which mainly defines the ground state en-
ergy whenEJ!Ec . Here the position of the maxima of the
critical current is not only set by the fundamental symmetries
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of the circuit like in a superconducting double junction but
reflects the quantum nature of the ground state. If no charge
frustration is applied@see Fig. 2~b!#, the largest critical cur-
rent is reached atf50 when the coupling energy is maxi-
mized for all the transitions between charge states. In terms
of Cooper pair tunneling, at small magnetic frustration the
symmetry between the upper and lower island of the circuit
is broken and the critical current is reduced.

Nevertheless, the critical current versusf clearly re-
sembles the magnetic diffraction pattern of a classical Jo-
sephson junction array. In an array withEJ@Ec , the dips in
the diffraction pattern correspond to the entrance of a vortex.
Classically, the definition of a vortex is that following a
closed contour around the center of the vortex the sum of the
phase differences should be 2p, when the phase differences
are restricted to the interval@2p,p#. Due to the quantum
fluctuations of the island phases, a vortex center can no
longer be defined in a quantum array. In order to compare
our circuit with its classical counterpart, we plot the ground
state energy of the whole system as a function of the phase
differenced and the magnetic frustrationf as shown in Fig.
3. In the f ,d plane the ground state energy displays a local
minimum centered atf50.5 andd5p. When sweepingf
from 0 to 0.5 the minimum ofEgr jumps once fromd50 to

d5p as it does when a vortex enters the array in the classi-
cal limit. More precisely, this discrete step occurs when the
ground state energyEgr crosses a saddle point in thef ,d
plane. Similarly, the dips in the critical current@see Fig. 2~b!#
correspond to a discontinuous change in the value ofd giv-
ing the maximum supercurrent. The ground state energy of
the system exhibits the same structure as the one associated
with the presence of a vortex in a classical array. The Jo-
sephson coupling energy that builds the supercurrent is also
strong enough to build local minima in the ground state en-
ergy of the system despite the presence of charging effects.
Further calculations, which we have performed on a quantum
array consisting of four cells, confirm this result.

To address the relevance of a quantum vortex description
of our circuit, we also calculate the expectation values of the
current through the junctions. A vortex in a classical Joseph-
son junction array is indeed characterized by a circulating
current. To do so we set the net current to zero and compute
^I i&52e^]ki /]t& for each junction of the circuit. In Fig. 4,
we plot the current in one cell of the array as a function of

FIG. 2. ~a! Critical current vs charge frustration for different
values of the magnetic frustration,f50 ~solid line!, f50.3 ~dash-
dotted!, f50.4 ~long dashed line!, and f50.5 ~short dashed line!.
~b! Critical current versus magnetic frustration for different values
of the charge frustration,ng50 ~solid line!, ng50.4 ~long dashed
line!, andng50.5 ~short dashed line!. The ratio of the Josephson
coupling energyEJ and the charging energyEc is EJ /Ec50.2. The
current is normalized toI C05(2e/\)EJ .

FIG. 3. Ground state energy vs frustrationf and phase differ-
ence of the leadsd at ng50 andEJ /Ec50.2.

FIG. 4. Expectation value of the current through the upper left
junction of the circuit as a function of the magnetic frustrationf for
EJ /Ec50.2 ~solid line! and forEJ@Ec ~dotted line!. The net cur-
rent through the circuit is set to zero.
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the magnetic frustrationf in both the quantum and classical
regimes. In the latter case, a low magnetic field induces the
same current in the two loops. Atf50.365, a vortex enters
the array and breaks the symmetry of the current distribution
between the two cells. The ground state is then doubly de-
generate for a vortex in the left-hand cell or in the right-hand
cell. In the quantum regime, this degeneracy is lifted and the
expectation value of the loop current is the same in both cells
as shown in Fig. 4. Consequently, the expectation value of
the current through the middle junction of the array is zero as
we find numerically. The loop current^I 1&, however, still
exhibits two sudden changes in sign occurring at defined
values of the frustration. One can interpret such a discrete
event as the entrance of a quantum vortex in the array and
the current distribution in the quantum regime as a superpo-
sition of the two current distributions associated with the two
classical degenerate states. An important feature here is that
the current steps are not rounded in the quantum regime.
This is directly related to the presence of a local minimum in
the ground state energy~see Fig. 3! and to the classical dy-
namics of the phase differenced. It implies that there is no
quantum coherent coupling between the state without a vor-
tex and the states with one vortex. In other words, in this
model, a vacuum cannot play the role of a reservoir of vor-
tices. Note that the case of charges is different since the
superconducting leads play the role of reservoirs of Cooper
pairs.

At f50, we notice indeed that the charge frustrationng
does not shift the value ofd at which the ground state energy
is minimum. The peaks in the critical current as a function of
ng are not associated with a discontinuity ofd. In the pres-
ence of both charge and magnetic frustration the behavior of
the critical current becomes more complex. The shape and
depth of the well appearing in thef ,d plane depend on the
charge frustration, yielding a gate voltage dependence of the
magnetic diffraction pattern. When applying a magnetic frus-
tration, the distance between the two peaks of the critical
current as a function ofng becomes smaller as shown in Fig.
2~a!. By breaking the symmetry between the upper and lower
islands of the array, the magnetic frustration reduces the
number of charge configurations involved in the ground state
at low and highng and shifts the peaks towardsng50.5.

We would like to point out that the critical current is a
probe of the equilibrium properties of the array regardless of
the bias circuitry. In practice, theI-V characteristic and there-
fore the maximum supercurrent of a small Josephson junc-
tion array are determined by both the internal properties of
the system and the electromagnetic environment. In the case
of a double junction, the relationship between the maximum
measured supercurrent and the critical current is complicated
and strongly dependent on the impedance of the electromag-

netic environment. Nevertheless, they both present qualita-
tively the same gate voltage dependence.2,4 Moreover, non-
equilibrium measurements, i.e., at finite voltage,3,15 also
reveal the quantum nature of the device. If the quantum array
is current biased, the voltage is set by the dynamics of the
phase difference of the leads that is influenced by the elec-
tromagnetic environment of the circuit. Since the static prop-
erties of the phased depend on the two frustrationsng and
f , it is likely that its dynamics would exhibit the same fea-
tures despite the effect of the environment. For small volt-
ages, theI-V characteristic of the quantum array would be
2e periodic in the gate-induced charge and this modulation
would be larger if the magnetic frustrationf is such that the
system lies in a dip of the magnetic frustration pattern. In the
phase description of a quantum array, the measured voltage
across the circuit reflects the dynamics of quantum vortices
in the array. The gate voltage dependence predicted by the
charge description is therefore formally equivalent to the de-
scription in terms of vortex interference. In terms of Cooper
pairs, theI-V characteristic at low voltages observed in quan-
tum arrays would be described as overlapping resonances
occurring at finite voltages. The width of the resonances due
to higher-order resonant Cooper pair tunneling depends on
the Josephson coupling energy. The bias voltage at which
these resonances occur depends on the gate voltage. Other
resonances that can occur at finite voltage are the self-
induced Shapiro steps. The bias voltage at which these reso-
nances occur does not depend on the gate voltage. The Sha-
piro steps appear when the Josephson frequency coincides
with a resonant frequency of the impedance of the electro-
magnetic environment.22 For large arrays the number of
resonances will also be large, closely spaced, and the indi-
vidual structure of the resonances in theI-V characteristic
will be invisible. However, for smaller arrays in the quantum
regime the individual resonances can be observed
again.3,15,21

In conclusion, using the charge representation we have
derived the equilibrium behavior of a small Josephson junc-
tion array as a function of induced charge and applied mag-
netic flux. Our model shows that the coherent superposition
of states forming the ground state of the system and therefore
the critical current can be tuned by both the charge and the
magnetic frustration. We have shown that the notion of a
vortex is compatible with a charge representation and ap-
pears naturally when introducing a finite magnetic frustra-
tion.

We would like to thank D. Esteve for helpful comments.
We would also like to acknowledge the Dutch Foundation
for Research on Matter~F.O.M.! for financial support. One
of us ~P.L.! acknowledges support of the European Eco-
nomic Community under Contract No. ERBCHBICT941052.

1W. J. Elion, J. J. Wachters, L. L. Sohn, and J. E. Mooij, Phys.
Rev. Lett.71, 2311~1993!.

2P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M. H. Devoret,
Phys. Rev. Lett.72, 2458~1994!.

3D. B. Haviland, Y. Harada, P. Delsing, C. D. Chen, and T. Clae-
son, Phys. Rev. Lett.73, 1541~1994!.

4M. Matters, W. J. Elion, and J. E. Mooij, Phys. Rev. Lett.75, 721
~1995!.

5R. Fazio and G. Scho¨n, Phys. Rev. B43, 5307~1991!.
6B. J. van Wees, Phys. Rev. B44, 2264~1991!.
7U. Geigenmuller and G. Scho¨n, Physica B165 & 166, 941

~1990!.

54 7383CHARGE REPRESENTATION OF A SMALL TWO- . . .



8D. V. Averin and K. K. Likharev, inMesoscopic Phenomena in
Solids, edited by B. L. Al’tschuler, P. Lee, and R. Webb
~Elsevier, Amsterdam, 1991!, Chap. 6.

9Alec Maassen van den Brink, Gerd Scho¨n, and L. J. Geerligs,
Phys. Rev. Lett.67, 3030~1991!.

10K. A. Matveev, M. Gisselfa¨lt, L. I. Glazman, M. Jonson, and R. I.
Shekter, Phys. Rev. Lett.70, 994 ~1993!.

11T. A. Fulton, P. L. Gammel, D. J. Bishop, and L. N. Dunkle-
berger, Phys. Rev. Lett.63, 1307~1989!.

12L. J. Geerligs, V. F. Anderegg, J. Romijn, and J. E. Mooij, Phys.
Rev. Lett.65, 377 ~1990!.

13M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M.
Tinkham, Phys. Rev. Lett.69, 1997~1992!.

14T. M. Eiles and J. M. Martinis, Phys. Rev. B50, 627 ~1994!.
15For a review see P. Joyez, Ph.D. thesis, Universite´ Paris 6, 1995.

16D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett.69, 1993
~1992!.

17F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shek-
ter, Phys. Rev. Lett.70, 4138~1993!.

18P. Lafarge, P. Joyez, D. Esteve, C. Urbina, and M. H. Devoret,
Nature365, 422 ~1993!.

19D. Esteve, inSingle Charge Tunneling, edited by H. Grabert and
M. H. Devoret~Plenum, New York, 1992!, Chap. 3.

20G.-L. Ingold, H. Grabert, and U. Eberhardt, Phys. Rev. B50, 395
~1994!.

21W. J. Elion, Ph.D. thesis~Delft University Press, Delft, The Neth-
erlands, 1995!.

22T. Holst, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev.
Lett. 73, 3455~1994!.

7384 54P. LAFARGE, M. MATTERS, AND J. E. MOOIJ


