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Relevance

• Usability of massive dataset

• Noise modelling

• 3D reconstruction

• Accurate surface representation

van Rijssel et al. [2020]
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Objective

Seamless, simplified TIN of 8 AHN3 tiles in Zuid-Holland
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Research Questions

• How can a seamless, simplified, Delaunay TIN for all AHN3 points be 

constructed using the streaming geometries paradigm?

– How can simplification be integrated into the streaming creation of a Delaunay TIN?

– Which TIN simplification method produces the best results when used in a 

streaming pipeline?

– How does the streaming creation and simplification of a Delaunay TIN perform in 

comparison to existing methods in terms of execution time, memory usage, and 

accuracy?
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Approach

• Integrate simplification into existing streaming pipeline

• Write algorithms from the ground up

• Iterate on most promising options
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Streaming Simplification
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Streaming Simplification

• Random thinning
– Control method

• Drop-heuristic
– Decimation approach

• MAT
– Simplifies based on points

• Refinement
– Constructive simplification
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Datasets
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Results
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Results

Delft-Small

Delft-Tiny
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Results

• Greedy1
– Low RMSE

– Long runtime

• Greedy5
– Same RMSE as Greedy1

– 2h less runtime vs. Greedy1

• FCFS
– Relatively high RMSE

– Shortest runtime

Eight Tiles
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Results

FCFS – Two Tiles FCFS – Eight Tiles
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Results

• Random simplification
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Artefacts

• Cell borders
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Artefacts

• Roof edges
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Comparison
• Isenburg

– Similar speed, less simplification

– Unknown RMSE

• Hegeman

– Slower

– Better RMSE

• Dukai

– Slightly better RMSE

– Unknown speed comparison
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Conclusions

• How can a seamless, simplified, Delaunay TIN for all AHN3 points be 

constructed using the streaming geometries paradigm?

• Using sst

• Can be done using either Greedy or FCFS refinement

• 86 days for FCFS for entire AHN3

• 107 days when using Greedy5
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Conclusions

• How can TIN simplification be integrated into the streaming creation of a 

Delaunay triangulation?

• At one of three positions

• Preferably at B
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Conclusions

• Which TIN simplification method produces the best results when used in 

a streaming pipeline?

• Greedy methods have the lowest RMSE

• FCFS best overall for speed and relatively low RMSE
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Conclusions

• How does the streaming creation and simplification of a Delaunay TIN 

perform in comparison to existing methods in terms of execution time, 

memory usage, and accuracy?

• Marginally outperforms Dukai

• Is outperformed by Hegeman on speed

• Provides best RMSE of all comparisons
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Contributions

• Statistics on simplification

• Open-source method for simplifying massive TINs

• FCFS streaming simplification method
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Discussion

• Practicality of massive TINs

• Performance of simplification algorithms

• Memory usage
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Future Work

• Improving finalizer initialization

• Expanding FCFS

• Quadric error as simplification

• Further modules
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