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ABSTRACT

Physical activity recognition through wearables has enabled the development of novel applications in
healthcare. Most of the existing studies focus on predicting activities using wearable sensors, either in a
controlled or uncontrolled environment. However, there is not a clear distinction between these two envi-
ronments. Hence, this thesis aimed to answer the research question "How accurately can we classify physical
activity based on wearable accelerometers placed on the wrist and chest in a controlled and in a free-living
environment?".

For the data collection phase, two experiments were conducted in the working environment of imec. 40
participants were recruited and were asked to participate in the Controlled and Free-Living Study. The sub-
jects wore two imec wearables, a wrist-worn and chest-worn accelerometer sensor and performed everyday
activities. These activities include sitting, dynamic sitting, lying with face up and face down, lying to the left
and right, standing, dynamic standing, walking upstairs, walking downstairs, walking, running, and cycling.
The Controlled Study showed that most of these activities could be detected accurately using accelerometer
data from both sensors with 91.83% F1-score. Similarly, the combination of these two sensors achieved the
best performance for the Free-Living Study with 86.98% F1-score. Finally, this work proved that between the
two environments a correlation could be possible only for the activity cycling. Consequently, this research
concludes that the activity recognition should be explicitly investigated in free-living environments, focusing
on real-time activity detection.
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1
INTRODUCTION

Wearable health has become one of the most promising research areas, being capable of tracking med-
ically useful information in order to provide diagnostic and monitoring applications. Cutting-edge health
devices have been used for diagnostic and monitoring applications by recording physiological, biochemical
and motion data [1, 2]. These devices are constantly improving in terms of technology, functionality, and size,
with the focus on real-time applications [3, 4].

The use of motion data through unobtrusive wearables plays an important role in the detection of human
physical activity and, thus, is commonly available in a wide variety of sensors (e.g., wearables, smartphones).
A successful system for human activity recognition aims to monitor and analyze human activities, but also
to interpret ongoing activities, regardless the person or the environment where the activities are performed.
Physical activity recognition is of major importance for many medical, military and security applications [5].
Specifically, there has been an extensive research focusing on the positive effects of physical activity on health
[4]. For instance, Biddle and Asare [6] proved that mental illness is related to physical inactivity. Additionally,
Chodzko-Zajko [7] studied the benefits of being physically active in healthy aging, while he also proved that
physical inactivity could lead to the development of numerous chronic diseases and conditions. Overall,
physical activity has been recommended as a therapeutic intervention for the management and treatment
of many chronic conditions and diseases, such as depression and anxiety disorders [8], dementia [9], type 2
diabetes [10], obesity [11], osteoporosis [12, 13], hypertension [14, 15], and coronary heart disease [16, 17].

Recognizing daily activities, such as running, cycling, walking or sitting, allows physicians and caregivers
to monitor patients’ health and physical behavior. For instance, patients who are advised to be physically
active and follow a healthy lifestyle can receive real-time feedback and coaching services. Furthermore, pa-
tients with chronic conditions and mental pathologies could be monitored to detect abnormal activities and
prevent undesirable behavior. Thus, physical activity recognition has a great number of applications in dif-
ferent areas, such as medical monitoring, assistant living, active living, and rehabilitation, contributing on
human behavior understanding and coaching services [4].

The last two decades, there have been two main approaches for activity recognition [18, 19]. The first
one is vision-based and requires the use of video cameras as a recording tool for visual sensing facility. The
second approach is sensor-based and requires the use of emerging sensor networks. Regarding the vision-
based approach, this demands the continuous monitoring of an actor’s behavior, as well as the detection
of any environmental changes [18]. Hence, this approach lacks portability and may raise privacy concerns.
On the other side, the recent advances in sensor technologies, combined with the significant progress of
wired/wireless communications and data processing techniques, have enabled the research to shift from a
low-level quality of data acquisition and processing towards a high-level quality of integrated information
[18]. As a result, there is a growing interest in the field of activity recognition through wearables and there
have been many studies related to this research.
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2 1. INTRODUCTION

The recent technological advances led to the arrival of new pioneer wireless devices, such as wearable sen-
sors and mobile devices, enabling the development of novel applications for activity recognition. The latest
wearables that have been designed for activity detection consist of different sensors, such as accelerometers,
gyroscopes, magnetometers, and GPS [4]. Specifically, accelerometer sensors have been widely used in many
studies for activity recognition, proving that they are adequate for monitoring simple activities, such as walk-
ing, running, sitting, etc. [18, 20, 21]. However, physical activity recognition is still a complicated process with
many challenges that need to be addressed [4, 19].

Based on recent studies, the development of a system for activity recognition demands new methods in
order to improve the accuracy under more realistic conditions [4, 5, 18]. These methods include the following
tasks: 1) Selection of necessary attributes for recording data; 2) Selection of appropriate sensors for develop-
ing the data acquisition system; the optimal devices should be portable, light-weight, and unobtrusive, with a
sufficient memory capacity and low power consumption; 3) Protocol design for acquiring data; 4) Selection of
appropriate methods and tools for enhancing the classification performance; this task also involves the pro-
cessing and analysis of the collected data; 5) Software implementation, considering energy and processing
requirements; and 6) System flexibility, by supporting new users without retraining the system.

Most of the existing systems in activity recognition vary on the number of sensors and their placement,
the number of subjects who participate in the data collection, the settings where the activities are performed,
the number of computed features and the number and type of detected activities [22]. Thus, it is difficult to
compare a new proposed method to other existing approaches. Furthermore, there is not a clear investigation
for detecting activities in both controlled and uncontrolled environments, examining for instance if data from
controlled settings can be used to predict activities in uncontrolled environments.

The purpose of this thesis report is to develop a model for activity recognition, using accelerometer data
from wearable devices, placed on the wrist and chest, and answer the following research question: "How ac-
curately can we classify physical activity based on wearable accelerometers placed on the wrist and chest in a
controlled and in a free-living environment?". Trying to answer this research question, we will conduct two
experiments in both controlled and uncontrolled environments, after reviewing the current trends in activity
recognition. It is worth mentioning that the literature review will emphasize on the optimal placement of
wearable sensors, trying to find the most significant parameters for data acquisition, and examine the pro-
cessing and classification techniques that are currently used for activity recognition.

The succeeding chapters will be structured in the following way. Chapter 2 will present the state-of-the-art
research in activity recognition, focusing on wearable sensors placed on the user’s wrist and chest. Chapter 3
will elaborate our methodology for collecting and analyzing accelerometer data in a controlled and uncon-
trolled environment. Chapter 4 will evaluate the activities performed in a controlled environment and will
present the results for the Controlled Study. Chapter 5 will investigate the activity recognition in uncontrolled
settings, providing the related results for the Free-Living Study. Finally, the thesis will conclude with a sum-
mary and future recommendations in chapter 6.



2
RELATED WORK

This chapter elaborates the methodology for conducting the literature research and presents the results
related to activity recognition through wearable accelerometers.

2.1. METHODS FOR LITERATURE RESEARCH

The literature review is based on three of the most popular web search engines for scientific and aca-
demic articles; ‘Web of Science’, ‘Scopus’ and ‘Google Scholar’. ‘Web of Science’ is a web subscription-based
scientific citation indexing service, which gives access to multiple databases for cross-disciplinary research
[23]. Its editors have been monitoring all these databases in order to evaluate and collect journals, without
any conflict of interest. Thus, many benefits are provided to the users of this service, such as information
about the content, the number of citations and self-citations of the journals. Similarly, ‘Scopus’ database re-
quires a subscription and covers three main types of sources; book series, journals, and trade journals through
high-quality standards [24]. In contrast, ‘Google Scholar’ is a web search engine that gives access to its bibli-
ographic database without a subscription. Based on its automatic crawler, the user can adjust the query and
search among online academic literature, including journals and books, conference papers, theses, technical
reports and patents [25].

The literature research was divided into four main categories. First, the use of wearable sensors, as well as
their optimal placement on the body, was reviewed. Second, the activity recognition based on accelerometer
data was thoroughly examined. According to the results, the activity recognition can be significantly accurate
and less obtrusive by placing the sensors on the wrist and the chest. Hence, the third part of the literature
research focused on activity recognition using accelerometer wearables on the wrist and the chest. Finally,
different preprocessing and classification techniques were examined.

The primary keywords used for searching in the abovementioned search engines were the following: ‘ac-
tivit*’, ‘activity recognition’, ‘activity detection’, ‘physical activity recognition’, ‘wearable sensors’, ‘wearables’, ‘sen-
sors’, ‘specifications’, ‘placement’, ‘optimal placement’, ‘physiological data’, ‘bio-signals’, ‘motion data’, ‘acceler*’,
‘accelerometer’, ‘wrist*’, ‘wrist sensor’, ‘smartwatch*’, ’chest*’, ‘chest sensor’. The secondary keywords were the fol-
lowing: ‘experiment’, ‘data collection’, ‘data acquisition’, ‘protocol’, ‘control experiment’, ‘laboratory experiment’,
‘free-living experiment’, ‘signal processing’, ‘features’, ‘feature extraction’, ‘feature selection’, ‘window segmenta-
tion’, ‘window size’, ‘overlap’, ‘classification performance’, ‘classification algorithm’, and ‘metrics’. Additionally,
the combination of some keywords was also used (see Table 2.1). Based on the four main categories of this
literature research, the results were reviewed giving priority to the most highly ‘cited by’ articles.

A significant number of published articles, journals, papers and other reports exist already in the field of
activity recognition. Thus, it is important to select the most relevant search queries. For instance, the search
query “acceler*” (including keywords such as accelerometer, accelerometers, acceleration, etc.) returns arti-
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Table 2.1: Different search queries on ‘Web-of-Science’ are presented for the literature research on activity recognition. The range of the
publication year is up to 27 February 2017.

Search Query on Web-of-Science
Publication Year:

1900 - 2017
Publication Year:

2000 - 2017
acceler* 515.196 405.717

accelerometer 27.146 24.725
activit* 3.437.773 2.494.631

‘activity recognition’ 63.416 51.938
activit* AND acceler* 55.108 46.238

‘activity recognition’ AND accelerometer 949 949
activit* AND (chest* OR (wrist* OR (smart AND watch*) OR smartwatch*)) 11.400 8.915

‘activity recognition’ AND (chest OR wrist) 311 286
activit* AND chest* 6.392 4.726

activit* AND (wrist* OR (smart AND watch*) OR smartwatch*) 5.068 4.245
activit* AND (chest* AND (wrist* OR (smart AND watch*) OR smartwatch*)) 60 56
acceler* AND (chest* AND (wrist* OR (smart AND watch*) OR smartwatch*)) 44 43

activit* AND acceler* AND (chest* AND (wrist* OR (smart AND watch*) OR smartwatch*)) 24 24

cles related not only to activity recognition but also to other studies such as fall detection, stress detection,
eating habits, gestures recognition, etc. Table 2.1 describes the returned results based on different search
queries, using for instance the ‘Web of Science’ search engine. Finally, the selected search query is “activit*
AND acceler* AND (chest* AND (wrist* OR (smart AND watch*) OR smartwatch*))”.

The initially yielded results were 118 articles, journals, and papers, including duplicates and no-related
fields such as economics, chemistry, and environmental studies. The process of reviewing and excluding the
results from the three web-search engines, is presented in Figure 2.1. In total, 13 articles were related to the
purpose of this literature review and will be discussed in the following sections. An overview of this articles is
presented in Table 2.2.

2.2. WEARABLE SENSORS

During the last decade, the rapid advancement of microelectronics and micromechanics enabled the de-
velopment of state-of-the-art sensors, which can sense and measure data in a fast and efficient way by using
minimum processing resources and energy consumption. Sensor technologies have been progressively ad-
vanced to miniaturized, low power and cost and high capacity wearable sensors, with the main focus on
health and fitness applications [26].

There is a significant number of electronic wearable devices, already used for commercial and research
purposes, varying from smartwatches and phones, to activity trackers and heart rate monitors. These devices
are implemented with different types of sensors, according to the task of monitoring. As a result, wearable
sensors, which are sensors positioned directly or indirectly on the human body, can be used for instance
to record information related to heart rate, pulse, skin temperature, skin conductance, body position, and
movement [27].

Activity recognition is mainly based on motion and physiological sensing technologies, by recording the
movement and the physiological state of a person when different activities are performed. Motion signals
contain information from inertial sensors, such as accelerometer, gyroscope and magnetometer, and location
sensors such as GPS trackers. On the other side, physiological signals contain information based on vital signs
data, such as temperature, skin conductivity, respiration rate, heart rate, ECG, EEG, etc.

2.2.1. MOTION SENSORS

The rapid development of MEMS (Micro-Electro-Mechanical Systems) enabled the design of small-size,
light-weight and low-cost inertial sensors, being capable of monitoring the movement of the human body in
every dimension. However, the number and the location of the inertial sensors on the body varies based on
the task and the performed activities [19].
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Figure 2.1: Prisma flow chart diagram. Presenting the process of screening the records identified from the Web-of-Science, Scopus
and Google Scholar search engines, based on the selected search query. Overall, 126 initially yielded results were limited to 13 for the
definitive review.

Accelerometers are the most commonly used wearable sensors for activity detection and are used to mea-
sure acceleration by computing changes in position and velocity along a sensitive axis and over a range of
frequencies [18, 26]. Three main types of accelerometers, that are used to convert mechanical motion to an
electrical signal, are piezoelectric, piezoresistive and capacitive accelerometers [26]. Each one of them fol-
lows the same principle where the accelerometer operates as a damped mass on a spring and acceleration is
caused by stretching or compressing the spring proportionally. Accelerometers are frequently used to moni-
tor activities such as sitting, standing, walking, climbing stairs, running and cycling [18, 27].

Gyroscopes provide angular rate information and are used to measure changes either in orientation or
rotational velocity, while magnetometers determine the absolute orientation, by measuring magnetic fields
[28]. Leutheuser et al. [29] proposed a system based on tri-axial accelerometer and gyroscope sensors, placed
on wrist, chest, hip and ankle, in order to recognize thirteen activities, including household activities (e.g.,
washing dishes, sweeping), postures (e.g., sitting, standing, lying), walking behaviors (e.g., walking, running,
stairs climbing) and sports activities (e.g., bicycling, rope jumping). They managed to obtain a mean clas-
sification rate of 85.8%, and complex activities such as ascending and descending stairs were distinguished
successfully. Altun et al. [28] used a tri-axial accelerometer, magnetometer and gyroscope sensors, placed on
the users’ arm, chest, and leg, and managed to recognize nineteen activities (e.g., standing, lying, climbing
stairs, walking, running, cycling, playing basketball) with 87% accuracy.

GPS sensors are widely used for monitoring location-based activities. Specifically, Ashbrook and Starner
[30] proposed a system based on GPS data to automatically detect meaningful locations and predict move-
ment in a multi-user scenario. Liao et al. [31] used GPS data logs to detect normal user’s behavior (preferable
destination and mode of transportation per user) or abnormal behaviors (such as taking a wrong bus). Sim-
ilarly, Patterson et al. [32] used GPS sensor stream to detect user’s behavior by predicting the location and
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transportation mode (such as traveling and boarding from a specific bus stop). Additionally, Riboni and Bet-
tini [33] studied a system based on accelerometer sensors, placed on the wrist and on phone, combined with
GPS data from the user’s phone in order to recognize everyday activities (such as walking, jogging, brushing
teeth, writing on the blackboard, etc.). They concluded that the use of GPS led to a moderate energy effi-
cient system with a total accuracy above 90%, while some activities such as standing – writing and hiking up
– hiking down were misclassified.

2.2.2. PHYSIOLOGICAL SENSORS

Physiological signals (also known as bio-signals) refer to vital signals and have been considered on a few
works for activity recognition. For instance, ECG sensors can be related to activity recognition systems, while
they are mainly used to extract useful information about the rate and the regularity of heartbeats, contribut-
ing to the short-time diagnosis of cardiovascular diseases and stress detection. Tapia et al. [34] proposed a
system for activity recognition based on five triaxial accelerometers (placed on the user’s ankle, hip, thigh,
dominant arm, and dominant wrist) combined with a heart rate monitor placed on the chest (leading to an
obtrusive system with high energy consumption). However, they found that heart rate does not contribute to
activity recognition systems significantly (80% averaged accuracy), since dynamic activities, such as running,
may lead to an increased heart rate level even when the subject is resting (lying or sitting after the activity).
Furthermore, Lara et al. [35] studied the use of a chest strap, measuring acceleration and physiological signals
(such as heart rate, respiration rate, skin temperature, etc.) in order to recognize five activities (sitting, run-
ning, walking, ascending and descending stairs) with 95.7% overall accuracy and 92.8% accuracy considering
only accelerometer data.

2.3. OPTIMAL PLACEMENT OF SENSORS

There is a large variety of experiments studying the use of multiple wearables on different parts of the
human body, such as the chest, the wrist, the arm, the hip, the thigh, the knee and the foot (see Figure 2.2).
It was proved that activity recognition is related to the placement of wearable sensors and can be affected by
the location where a sensor is placed on the body, or the way that the sensor is attached to the body [36]. The
majority of these studies focused on the placement of multiple wearables, mainly based on accelerometers,
on different parts on the body in order to discover the most optimal number of sensors and their suitable
placement [5, 36].

Cleland et al. [37] studied everyday activities, such as walking, jogging, sitting, lying, standing and climb-
ing on stairs, based on accelerometer data from six wearables placed on the chest, wrist, hip, thigh, foot and
waist, and they concluded that the hip-attached sensor enhanced the classification performance. Pannurat
et al. [38] investigated activities such as lying, sitting, standing and walking, by placing accelerometers on the
chest, wrist, waist, thigh, head, upper arm and ankle. They concluded that placing the wearables on the thigh
and chest can significantly enhance the classification performance.

Gjoreski at al. [39] studied the optimal placement of four accelerometers on the chest, waist, ankle, and
thigh for fall detection, indicating that the best results were obtained by combining sensors placed at the
chest and ankle, or at the waist and ankle. In a later work, they also studied the detection of activities such as
walking, standing, sitting, lying, bending, kneeling, cycling and running and they proved that accelerometers
placed on the ankle and thigh perform slightly better than placing on the wrist and chest [40]. Olguin and
Pentland [41] evaluated the accuracy of monitoring everyday activities, such as sitting, running, walking,
standing, lying and crawling, and proved that accelerometer sensors placed on the wrist, chest and hip could
lead to an accurate model for activity recognition. Similarly, Chamroukhi et al. [42] proved that combining
accelerometers located at the upper and lower parts of the body, such as chest, thigh, and ankle, can improve
activity recognition significantly.

Additionally, many studies demonstrated that wearables placed on the waist could detect everyday ac-
tivities, such as sitting, standing, lying, climbing stairs, walking and running since the sensors monitor the
center of body mass [43–46]. Wrist-worn accelerometers were used to identify activities, such as walking,
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running, climbing stairs [47–51], to detect fall [40], and to estimate activity levels during sleep [52]. Ankle-
attached wearables were used to identify steps, travel distance, velocity, and energy expenditure [53], while
head-attached wearables were used to estimate balance during walking [54]. Furthermore, rapid develop-
ment in technology enabled the researchers to put a spotlight on activity recognition using data acquired
from smartphones, where smartphones are placed in different locations on the body (e.g., trouser pocket,
t-shirt pocket, belt, etc.) being capable of monitoring simple everyday activities [55].

Overall, it is proved that the chest, wrist, hip, thigh, and waist are optimal locations for wearing accelerom-
eters on the body and can identify everyday activities, such as sitting, lying, walking, running and cycling
[36, 41, 56]. Despite the enhanced contextual information, wearing multiple sensors can be obtrusive and
uncomfortable for the users. On the one hand, the classification performance could not be enhanced by in-
creasing the number of sensors [37, 41, 58]. On the other hand, the use of a single accelerometer decreases
the number of activities that can be predicted [37, 57]. Consequently, many researchers recommend using
only two accelerometers, being worn in an unobtrusive location and firmly attached to the body, for detecting
different activities accurately.

Figure 2.2: Wearable sensors placement [36].

2.4. ACTIVITY RECOGNITION BASED ON ACCELEROMETERS PLACED ON THE

WRIST AND CHEST

There is a significant research on activity recognition using accelerometers placed on the wrist and the
chest, either separately or in combination with other sensors (see Table 2.2). However, only a few studies are
focusing on the combination of solely these two sensing locations.

Chernbumroong et al. [49] examined the activity classification using a single accelerometer on the wrist,
detecting five basic daily activities in a controlled environment and using seven subjects, with a total 94.13%
accuracy. Similarly, Yang et al. [50] studied the placement of a single accelerometer on the dominant wrist in
order to detect eight daily activities in a controlled experiment, with an overall accuracy of 95%. Garcia-Ceja
et al. [59] used a smartwatch to record accelerometer data for six long-term activities in a partially free-living
environment (user-based annotation; some of the activities were not annotated appropriately), using only
two subjects and achieving an overall accuracy of 91.8% (with 88.47% precision).
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Lara et al. [35] measured chest-worn acceleration in order to recognize five activities in a free-living ex-
periment (user-based annotation using a mobile application), recruiting eight subjects and achieving 92.8%
accuracy. Khan et al. [60] recorded chest-worn accelerometers data to detect fifteen activities from six sub-
jects, in an uncontrolled environment (user-based annotation using a Bluetooth headset), with an average
accuracy of 97.9%.

Olguin and Pentland [41] evaluated the accuracy of monitoring three subjects, performing eight everyday
activities in a controlled environment and wearing accelerometer sensors on the wrist, chest, and hip, with
a 92.13% classification performance. It is worth mentioning that the chest-worn sensor gave 62.45% average
accuracy, while a second accelerometer on the hip or the wrist improved the performance by approximately
20%. Arif and Kattan [21] monitored nine subjects performing twelve activities and indicated that accelerom-
eters worn on the chest, wrist, and ankle, can result in 98% (F-score). This dataset (PAMAP2) was studied
further from Xu et al. [61] with 93% accuracy. Their study aimed to examine activity data with properties
such as nonlinearity and non-stationarity, by investigating the characteristics of the Hilbert-Huang trans-
form (HHT). Furthermore, Kikhia et al. [62] evaluated the accelerometer placement on the wrist, chest, and
thigh in a controlled environment, based on ten subjects, and they recognized different everyday activities
with an average 85% accuracy performance.

Parkka et al. [20] is the only study focusing on activity recognition based on two accelerometers, one worn
on the chest and one on the wrist, in a free-living environment (researcher-based activity annotation using a
mobile application). Sixteen subjects participated in the experiment, performing different tasks in different
locations, such as lying, sitting, standing, walking, Nordic walking, rowing, running, and cycling. The overall
classification was 83.3%, using decision trees. Besides, other signals such as magnetometer, heart rate, and
respiration rate were recorded. However, they found that accelerometers provided the most valuable context
information and were considered as the most accurate sensors for activity recognition. A limitation of this
study was the use of a rucksack strap to place the chest sensor, which was not firmly attached to the body
leading to a misclassification on activities such as sitting and standing. Additionally, data were collected only
for two hours which could be a limitation for performing activities in realistic conditions.

2.5. ANALYSIS ON SENSOR DATA

Activity recognition is a classification problem and requires processing techniques in order to extract use-
ful information from raw data [4, 63]. For this reason, different steps are involved, such as data acquisition,
processing, classification, and evaluation.

2.5.1. DATA ACQUISITION

Depending on the application and the task of monitoring, multiple signals can be recorded. Hence, it
is crucial to select the most relevant sensors and their attributes. Garcia-Ceja et al. [59] mentioned that
sampling rate could affect the system performance; a sampling rate of 5 Hz decreases the accuracy, while
sampling rates above or equal to 10 Hz enhance the activity classification [64].

Furthermore, it is important to consider an effective data collection system which consists of portable,
light-weight, unobtrusive, affordable wearable sensors, with sufficient memory capacity and low power con-
sumption [18]. Based on the literature, the experiments for activity recognition can take place either un-
der controlled conditions (also known as the laboratory experiment) or under uncontrolled conditions (also
known as the free-living experiment). The former takes place in a controlled environment, where the sub-
jects receive specific instructions and act respectively. The latter takes place in an uncontrolled environment,
where the subjects perform different tasks during their daily life, without receiving any instructions. A lim-
itation of the existing studies in uncontrolled environments is the limited amount of collected data and the
use of self-reported activity annotation as ground truth [35, 59, 60]. Specifically, the participants are asked to
annotate the performed activities by themselves, which might result in wrong labeling and activity misclas-
sification. Overall, most models for activity recognition are validated in controlled settings, while only a few
studies focus on uncontrolled environments.
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2.5.2. DATA PROCESSING

Raw data are processed in order to synchronize, filter and replace missing values, and extract important
features. Extracting features from raw data involve dividing sensor signals into smaller window segments,
using different window segmentation techniques. The most widely used windowing technique for real-time
applications is the one of window sliding, where signals are divided into fixed-length windows [36]. Accord-
ing to Garcia-Ceja et al. [59], long-term activities are characterized by a sequence of primitives, which can
be obtained by dividing data into fixed length windows. Long-sized window segments affect the detection of
short-duration movements, such as the transition between sitting and standing [60], and thus, using smaller
window sizes with a fixed 50% overlap is recommended [5, 58, 65]. Furthermore, most of the existing activity
recognition systems calculate and extract features from raw accelerometer signals based on time and fre-
quency domain features [62, 66]. These features provide information related to body posture, motion shape,
motion variation, and motion similarity (correlation). An overview of these features is presented in the fol-
lowing picture (Figure 2.3).

Time-domain features contain basic waveform characteristics and statistical properties of the raw data
and aim to differentiate dynamic from static movements [62]. These features include mean, median, min,
max, variance, standard deviation, skewness, kurtosis, magnitude, area, and correlation between axes and
are proved sufficient for activity recognition systems [21, 35].

Frequency-domain features contribute in distinguishing moderate from vigorous movements, by identi-
fying essential patterns on raw signals [62]. Frequency domain features focus on the periodic structure of the
signal and include features such as energy, entropy, peak frequency, Power Spectral Density (PSD), Discrete
Fourier Transform (DFT), and other coefficients of the Fourier transform [41, 61].

Inappropriate or redundant features could decrease the classification performance. For this reason, fea-
ture selection reduces the number of features, based on the optimal discriminative power between classes,
by selecting features that contribute most to the prediction. Other techniques used for features reduction
are Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Discrete Cosine Transform
(SCT) [5, 36].

2.5.3. CLASSIFICATION

There are two main approaches for classification problems in activity recognition systems, related to su-
pervised and unsupervised algorithms [36]. Supervised learning approaches require annotation of the activ-
ities and include algorithms, such as Support Vector Machines (SVM) [62], Artificial Neural Networks [50, 61]
(also found in unsupervised problems), naïve Bayes [38], nearest neighbor [38], and tree-based modeling like
Decision Trees [20, 49] and Random Forests [62]. Unsupervised learning approaches enable activities anno-
tation automatically and include algorithms such as Hidden Markov Models (HMMs) [41, 59]. Overall, su-
pervised classification is mainly used in controlled settings, while unsupervised is preferred in uncontrolled
settings where the labels annotation is insufficient.

Kikhia et al. [62] showed that the classification algorithms should be considered wisely in activity recog-
nition systems since their selection depends on the task of monitoring (target activities) and the placement
of the sensors on the body. For instance, they proved that the wrist-worn sensor is the best location for classi-
fying various body movements using the Random Forest classifier. Similarly, Pannurat et al. [38] proved that
the classification algorithm should depend on the sensor placement. They studied different algorithms, and
they found that the nearest neighbor performs better for sensors placed on the thigh, wrist, and arm, while
naïve Bayes is preferred for chest, waist, head and ankle worn sensors. Some of the most frequently used
algorithms for activity recognition systems are decision tree [20, 49], random forest [40, 62], neural networks
[50], SVM [37], naïve Bayes [38], and nearest neighbor [38].
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Figure 2.3: A schematic overview of feature extraction.

2.6. DISCUSSION

Activity recognition is a classification problem, which depends on the application and the task of mon-
itoring [4]. Various studies have been already done in this research area. However, it is difficult to compare
their performance since different type of sensors (accelerometers, gyroscopes, etc.) are placed on different
locations on the body. Even though wearable accelerometers are adequate for activity recognition systems,
their placement should be related to the targeted type of activity [62]. For instance, multiple sensors have
been used to recognize everyday activities [21, 41, 61, 62], low-intensity activities [66], sports activities [67],
stress detection [68] and energy expenditure [69]; hand and wrist-worn sensors have been used to recognize
daily hand gestures [70], to detect fall [40] and to estimate activity levels during sleep [52]. However, the data
collection of each study is based on different experimental protocols, which vary concerning the nature and
the number of the detected activities, the number of recruited subjects, and the total duration of the activ-
ities recording. Additionally, different algorithms are trained, using different evaluation criteria (accuracy,
precision, recall, f-measure, etc.) and following different validation procedures (P-fold, leave-one-out, etc.).

There is a significant number of studies that proved that accelerometers worn on the wrist, chest, thigh,
and hip are adequate when the activities are performed under controlled conditions [21, 41, 49, 61, 62]. Only
a few studies have been performed under uncontrolled conditions (free-living experiments), using a limited
number of subjects (the average number of recruited subjects is less than twenty), and insufficient recording
time of activities [20, 35, 59, 60]. Additionally, the labels annotation in several uncontrolled studies depends
on the recruited subjects, who are requested to annotate the performed activities during the experiment,
using subjective criteria. The most common method for activity annotation in a free-living environment is
based on a mobile application, causing several limitations to the evaluation of the system’s performance.
For instance, some subjects may annotate the activities inaccurately, while other subjects may not annotate
all the performed activities. Nevertheless, a wrong activity annotation could lead to a misclassification of
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the system. Furthermore, it is questionable if models developed based on controlled experiments can be
translated to uncontrolled environments. Hence, activity recognition between controlled and uncontrolled
environments needs further investigation.

Considering that the classification performance could not be further enhanced by using more than two
wearables, many researchers recommend acquiring accelerometer data from maximum two wearables [37,
41, 58]. Even though wearables placed on the wrist and the chest provide an accurate system for activity
recognition [35, 49], only a few studies focus on the combination of these two sensing locations [20], either in
controlled or uncontrolled conditions. Consequently, the following research question was generated; "How
accurately can we classify physical activity based on wearable accelerometers placed on the wrist and chest in a
controlled and in a free-living environment?". This graduation project aims to answer the research question by
evaluating accelerometer data for everyday activities, performed both in a controlled and in an uncontrolled
environment.

In order to give a complete answer to the above research question, we will also investigate the following
sub-questions:

1. Can 3-axial accelerometer data, from a single wrist-worn or chest-worn sensor, be used to detect simple
everyday activities?

2. How does combining accelerometer sensors, placed on the wrist and chest, affect the accuracy of activity
recognition? Does the classification performance improve for predicting certain types of activity?

3. How well does a sensor contribute to detecting both static and dynamic activities, such as static sitting
and dynamic sitting, by recording accelerometer data from a single sensor?

4. Is it possible to detect activities performed in uncontrolled settings, through a classification model that
was trained with data from a controlled environment?
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3
METHODOLOGY

This chapter describes a sequence of steps for developing and evaluating an activity recognition system
(see Figure 3.1). These steps include data acquisition, signal preprocessing, signal segmentation, feature
extraction/selection and classification. Thus, different state-of-the-art machine learning techniques are pre-
sented in order to enhance the classification performance. Specifically, the data collection phase, based on
the investigational protocol is described. Furthermore, the proposed methodology for data analysis, includ-
ing data processing techniques and classification models, is elaborated.

Figure 3.1: Steps involved in activity recognition systems [4].

3.1. DATA ACQUISITION

Triaxial accelerometer data (x-, y-, and z-axes) were collected using two IMEC wearable sensors, one worn
on the subjects’ wrist and one on the subjects’ chest, both firmly attached to the body. According to Attal et
al. [36], sensors not firmly attached to the body could lead to a small tilt or misplacement of the sensor,
resulting in recording data with large variation. The decision of using exactly two wearable accelerometers
and their specific placement on the body was considered according to the literature review but also based on
the specific activities that needed to be detected.

The first sensor ‘IMEC Health Patch’ is a chest patch for the measurement of triaxial acceleration on the
chest. For this study, the abbreviation ‘SR’ will also be used regarding the chest patch sensor. The sensor is
designed to be worn on the left chest, close to the sternum and three fingers below the collarbone. The SR
consists of a patch and a sensor node, which is designed to record acceleration at 32Hz for seven successive
days, continuously. Additionally, electrocardiogram (ECG) signals are recorded, but they are not considered
for this study. Data are stored on an internal SD card and uploaded on a central data platform at the end of
the experiment. The patch is designed by Delta in Denmark based on a 3M adhesive. It is designed to be
biocompatible for measurements up to 7 days. Additionally, for optimal adhesiveness, men were asked to

17



18 3. METHODOLOGY

shave or trim their chest the night before the start of the experiment.

The second sensor ‘IMEC Chillband’ is a wristband, which is designed to record acceleration at 32Hz
on the wrist. For this study, the abbreviation ‘CB’ will also be used regarding the wristband sensor. Addi-
tionally, Galvanic Skin Response (GSR) and skin temperature are recorded. Similar to the chest sensor, only
accelerometer data are considered for this study, which are stored on an SD card and uploaded at the end of
the recording on the central data platform. Participants were asked to wear this sensor during the experiment
on their dominant hand.

Both sensors have a capacitive MEMS accelerometer that provides acceleration in correlation to the dif-
ferential capacitance. The chest patch weights 20g and the Chillband weights 55g. The sampling frequency
of the accelerometer is 32Hz, and the dynamic range is ±2g. Before the start of every recording, the sensors’
Real Time Clock (RTC) is synchronized to the PC clock.

Additionally, a wearable camera GoPro Hero4 with an extended battery is used for the experiment. The
camera was placed on a strap, which was worn on the chest. The camera was adjusted to time-lapse record-
ings every thirty seconds with 5MP resolution, while the total battery lifetime ensured eight hours of con-
tinuous recording. The camera is used for annotating the performed activities during the Free-Living Study,
which will be further explained in the next sections.

The three aforementioned sensing devices are depicted in the following figure (see Figure 3.2).

Figure 3.2: An overview of the selected sensing devices and their specifications.

3.1.1. EXPERIMENTAL PROTOCOL

During the experimental phase, 40 subjects, consisting of 24 males and 16 females and aged from 19 to
45 years old (average age 26.9 ±5.77 years), were recruited voluntarily through emails. Two of the recruited
subjects were left-handed, and thus, they wore the Chillband sensor on their left wrist. The admission criteria
included employees, interns or other people with a contract at IMEC. During the recruitment phase, all the
participants were informed about the experimental procedure and were asked to sign an informed consent
form. Exclusion criteria involved subjects with acute health problems (e.g., heart failure) or subjects with
physical disabilities (being not able to perform all the activities). Additionally, recruited subjects had the
opportunity to stop the experiment at any given time during its course.

Concerning the measurement protocol for activity recognition, the recruited subjects were asked to com-
plete the experiment in two parts. The first part was accomplished under controlled conditions (laboratory
experiment), where the subjects were asked to perform thirteen consecutive activities, following the specific
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instructions given by the researcher. On the other hand, the second part was performed under uncontrolled
conditions (free-living experiment), where the subjects did not receive any specific instructions.

For the Controlled Study, forty recruited subjects wore the wristband and the chest patch and were asked
to perform a series of thirteen consecutive activities based on the following order:

1. static sitting on a chair,
2. dynamic sitting; including tasks like working on a computer and handwriting,
3. lying with face up,
4. lying with face down,
5. lying to the left side,
6. lying to the right side,
7. static standing,
8. dynamic standing; including tasks like using a mobile phone and writing on a whiteboard,
9. walking upstairs,

10. walking downstairs,
11. walking,
12. running,
13. cycling.

Each activity was performed for four minutes. The dynamic activities, running, and cycling, were performed
outdoors. Instructions about the intensity of the dynamic activities, the hand movements or the way of using
a mobile phone were not provided. Thus, participants performed all the activities at their own pace and in
the most realistic way. However, if a subject struggled to complete any of the aforementioned activities, such
as running or walking upstairs/downstairs, these activities were divided into lower time sessions with some
repetitions to reach the total mentioned time per activity (four minutes). It is worth mentioning that the
researcher was present during the whole recording time in order to annotate the performed activities, but
also to provide each participant with the necessary guidance and supervision. At the end of the first part of
the experiment, the participants were asked to remove and return the sensors.

For the Free-Living Study, thirty-seven subjects accomplished successfully this part. From the forty re-
cruited subjects, three were unavailable to perform the second part of the experiment. Each participant
wore the wristband and the chest patch, as well as the wearable camera, for around eight hours (normal
office hours). The subjects were free to perform the activities as usual. Once the experiment had successfully
ended, all the sensors and the camera were returned to the researcher. The researcher was not present during
this part of the experiment. However, the performed activities were manually annotated by the researcher in
a later phase, based on the recorded pictures.

The experiment lasted two days and the total duration was approximately 10 hours. Specifically, the du-
ration was around 2 hours for the first part (Controlled Study) and 8 hours for the second part (Free-Living
Study).

3.1.2. DATA PRIVACY

Respecting the privacy issues that may arise from wearing the camera and recording participant’s private
life, subjects were allowed to remove the camera when they considered it crucial (for example during the time
of visiting the restroom) and wore it again afterward. Moreover, subjects were asked to browse through all the
taken photos at the end of the experiment and delete those that could be crucial for their privacy, before the
researcher assessed the photos. This part was important to ensure that each participant was aware of the
provided photos for the activity annotation, and avoid the case of sensitive, embarrassing or private images.
Furthermore, it is important to mention that the pictures were assessed only by the researcher. The process
of assessing the images was done manually, using a desktop computer. Photos were used for annotating the
physical activities in the free-living study. Once the activity annotation was completed, the researcher deleted
the recorded photos.

Additionally, the GoPro camera was worn on a chest mount (strap) and was angled at 45 degrees (the
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camera lens focused mostly on the ground surface) in order to avoid the recording of other employees’ faces
who could be captured in the photos. Concerning the resolution of these photos, the photos were taken at
the minimum resolution, which was 5MP based on the GoPro settings. However, all the photos were stored
on a compressed file, where the resolution was downgraded from 2560x1920 to 600x450.

Concerning the acquired data from the wearables, several measures have also been considered to secure
the privacy of the participants. The first measure was to use a unique identification code for each subject
and not identities. Thus, no personal information was used to link sensors to surveys and annotations. The
second measure ensured that the collected data would be stored in a secure data storage, gaining access only
to the authorized researcher.

3.1.3. ACTIVITIES ANNOTATION

Different supervised classification techniques are used to make an accurate model for activity recogni-
tion. An important aspect of the supervised classification, however, is the use of labeled data related to real
annotated activities.

For the Controlled Study, activities were manually annotated by the researcher during the recording ses-
sion. In total, 52 minutes of continuous recording were annotated for each subject. Thus, each activity was
annotated for 160 minutes for all subjects, resulting to a balanced dataset of 9600 samples (160 * 60 = 9600
seconds) per activity.

For the Free-Living Study, the researcher annotated the performed activities manually based on the pic-
tures (taken from the wearable camera). Most of the subjects performed this part of the experiment during
their working time at IMEC, from around 9 am to 5 pm. Approximately, 480 minutes (around eight hours) of
continuously recording were annotated respectively, based on 960 taken pictures per subject (a picture was
taken every 30 seconds). Due to the environment limitations, subjects did not perform the lying activities
(with face up, face down, to the left and to the right). Furthermore, activities such as running and cycling
were performed only by a few subjects, leading to an unbalanced dataset for the free-living study (see Fig-
ure 3.3). Consequently, this problem of imbalanced data should be addressed respectively in the later phase
of classification.

Another significant limitation of the free-living annotation was the case where the taken pictures from
the camera were insufficient for the activities annotation. Indeed, camera’s pictures were sufficient for ac-
tivities annotation such as sitting, standing, walking, ascending and descending stairs, cycling and running.
However, activities such as sitting and dynamic sitting, or standing and dynamic standing were not always
annotated sufficiently (see Figure 3.4). For instance, the camera lens was placed very close to the subject’s
desk, and despite the obvious activity, which was sitting, it could not be significantly differentiated from
static sitting to dynamic sitting (e.g., working on computer or handwriting a document). Additionally, pic-
tures were recorded every thirty seconds. For instance, if a subject was sitting and standing for multiple times
during the thirty seconds, the activity annotation was based on the taken picture, which did not include all
the performed activities.

It is worth mentioning that all the activities performed in the Free-Living Study were annotated based on
the 13 completed activities from the Controlled Study. For instance, activities such as driving, eating (on a ta-
ble) were annotated as dynamic sitting, while activities such as presenting a speech, writing on a whiteboard
and standing on an elevator were annotated as dynamic standing.

An overview of all the performed activities for the Controlled and Free-Living Study is presented in Ta-
ble 3.1.
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Figure 3.3: An overview of the collected data, performed by 37 subjects, in the Free-Living Study. Each type of activity consists of a
different number of samples, while activities such as walking upstairs, walking downstairs and running were sparsely performed.

Figure 3.4: Annotation for sitting activities; (top left) static sitting, (top right) static sitting, (bottom left) dynamic sitting - typing on
keyboard, (bottom right) dynamic sitting -texting on a smartphone.
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Table 3.1: An overview of the performed activities for each subject. All activities as mentioned as (1) static sitting, (2) dynamic sitting, (3)
lying with face up, (4) lying with face down, (5) lying to the left, (6) lying to the right, (7) static standing, (8) dynamic standing, (9) walking
upstairs, (10) walking downstairs, (11) walking, (12) running and (13) cycling.

Participants
Controlled Study Free-Living Study

Activities Time (min) Activities Time (min)
Subject01 all 52 1, 2, 7, 8, 9, 10, 11, 13 453 (∼7.5 hours)
Subject02 all 52 1, 2, 7, 8, 9, 11, 13 418 (∼7 hours)
Subject03 all 52 1, 2, 7, 8, 9, 10, 11, 13 477 (∼8 hours)
Subject04 all 52 1, 2, 7, 8, 9, 10, 11, 13 446 (∼7.5 hours)
Subject05 all 52 1,2, 7, 8, 9, 10, 11, 12 493 (∼8 hours)
Subject06 all 52 1, 2, 7, 8, 9, 10, 11, 13 475 (∼8 hours)
Subject07 all 52 1, 2, 7, 8, 9, 10, 11, 13 475 (∼8 hours)
Subject08 all 52 1, 2, 7, 8, 11, 13 396 (∼6.5 hours)
Subject09 all 52 1, 2, 7, 8, 9, 10, 11, 13 513 (∼8.5 hours)
Subject10 all 52 1, 2, 7, 8, 10, 11 456 (∼7.5 hours)
Subject11 all 52 1, 2, 7, 8, 9, 10, 11, 13 386 (∼6.5 hours)
Subject12 all 52 1, 2, 7, 8, 9, 11 440 (∼7.5 hours)
Subject13 all 52 1, 2, 7, 8, 9, 10, 11, 13 525 (∼9 hours)
Subject14 all 52 1, 2, 7, 8, 9, 10, 11, 13 462 (∼8 hours)
Subject15 all 52 1, 2, 7, 8, 9, 10, 11, 13 466 (∼8 hours)
Subject16 all 52 1, 2, 8, 11 407 (∼7 hours)
Subject17 all 52 1, 2, 7, 8, 9, 11 483 (∼8 hours)
Subject18 all 52 1, 2, 7, 8, 9, 10, 11, 13 462 (∼8 hours)
Subject19 all 52 2, 7, 8, 11, 13 89 (∼1.5 hours)
Subject20 all 52 1, 2, 7, 8, 11, 13 359 (∼6 hours)
Subject21 all 52 1, 2, 7, 8, 11, 13 493 (∼8 hours)
Subject22 all 52 - -
Subject23 all 52 1, 2, 7, 8, 9, 10, 11, 13 418 (∼7 hours)
Subject24 all 52 1, 2, 7, 8, 9, 10, 11 468 (∼8 hours)
Subject25 all 52 1, 2, 7, 8, 9, 10, 11 478 (∼8 hours)
Subject26 all 52 1, 2, 7, 8, 9, 10, 11 467 (∼8 hours)
Subject27 all 52 1, 2, 7, 8, 9, 10, 11 466 (∼8 hours)
Subject28 all 52 1, 2, 7, 8, 9, 10, 11, 13 482 (∼8 hours)
Subject29 all 52 - -
Subject30 all 52 1, 2, 7, 8, 9, 11 465 (∼8 hours)
Subject31 all 52 1, 2, 7, 8, 9, 10, 11 416 (∼7 hours)
Subject32 all 52 1, 2, 7, 8, 9, 10, 11, 13 442 (∼7.5 hours)
Subject33 all 52 1, 2, 7, 8, 9, 10, 11, 13 464 (∼8 hours)
Subject34 all 52 1, 2, 8, 11, 13 472 (∼8 hours)
Subject35 all 52 1, 2, 8, 9, 10, 11, 13 485 (∼8 hours)
Subject36 all 52 1, 2, 8, 9, 10, 11, 13 485 (∼8 hours)
Subject37 all 52 1, 2, 7, 8, 9, 10, 11 543 (∼9 hours)
Subject38 all 52 - -
Subject39 all 52 1, 2, 8, 9, 10, 11 495 (∼8.5 hours)
Subject40 all 52 1, 2, 8, 9, 11 436 (∼7.5 hours)
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3.2. DATA PROCESSING

After data collection, raw data are processed in order to extract relevant features. This phase includes
different steps, such as signal preprocessing, segmentation, feature extraction, and selection. The data pro-
cessing, as well as the whole procedure of analyzing data in this study, is performed using the programming
language Python (version 2.7) and particularly the python library ‘scikit-learn’ [71].

3.2.1. SIGNAL PREPROCESSING

Signal preprocessing is the first important step in data analysis. Different actions are involved in this
phase in order to synchronize the acquired data from the wristband and the chest sensor, based on their
timestamps, but also to filter and remove data that do not correspond to the performed activities from sub-
jects (data not related to the labeled activities were removed).

3.2.2. SIGNAL SEGMENTATION

In order to extract useful information from the collected data, it is important to divide the raw data into
smaller segments using the sliding window approach with overlap. This approach is based on a fixed size
window that moves across the sensor-stream data (see Figure 3.5). By decreasing the window size, a faster
activity detection can be achieved with low computational cost [61]. However, the window segment may
not contain the complete cycle of the performed activity. In contrast, increasing the window size results
in the detection of more complex activities, with the drawback of increasing the computational cost, too.
Thus, increasing the window size is not recommended for real-time applications. According to literature, the
most commonly used window segments in activity recognition systems, are based on smaller window sizes
with a fixed 50% overlap [5, 58, 65]. Thus, eight different window segments with 50% overlap were evaluated
and presented in Figure 3.6. In total, thirteen window segments with varying window size and overlap were
investigated and are elaborated in the next chapter (see chapter 4).

Figure 3.5: Signal segmentation based on a fixed size window with overlap.
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Figure 3.6: Different window sizes with 50% overlap are presented for three sensors; SR dataset represents the stingray sensor, CB dataset
represents the chillband sensor, and SRCB dataset represents the combination of stingray and chillband sensors.

3.2.3. FEATURE EXTRACTION

The process of transforming large input raw data into a reduced set of features is called feature extraction.
The purpose of this processing step is to extract the most important characteristics of a window segment, by
representing accurately the raw data stream. Two of the most widely used types for calculating features in
activity recognition systems are time and frequency domain features. Most of the studies calculate time do-
main features, such as mean, variance and standard deviation [72], since frequency domain features require
extra Fourier transform calculation, resulting to extra computational complexity [73].

In this study, 52 features are calculated based on time and frequency domain and are summarized in
Table 3.2. Hence, 52 features are extracted for the Stingray (SR) dataset, 52 features for the Chillband (CB)
dataset, and 104 for the Stingray- Chillband (SRCB) dataset. Features related to body posture measurements
are represented by the mean, median, area, and meandistance; features related to motion shape measure-
ments are represented by absmean, absarea, magnitude, entropy, skewness and kurtosis; features related to
motion variation measurements are represented by variance, std, amplituderange and interquartilerange;
and features related to motion spectral content measurements are represented by signalpower and fftfreq
[74].

3.2.4. FEATURE SELECTION

Once features are extracted, the phase of feature selection aims to filter the feature set and remove any re-
dundant features, reducing the dimensionality and improving the overall classification performance. The use
of redundant or inappropriate features could decrease the classification performance. Thus, feature selection
is defined as a process of searching a subset of informative features from the original feature set, resulting to
less computation time and complexity during the classification phase, while enhancing the estimators’ per-
formance [36].
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Table 3.2: Overview of the calculated features.

Feature Name Number Domain Description

mean (x,y,z) 3 time
computes the mean; the average of all
sample values in a sample window [73]

absmean (x,y,z) 3 time
computes the absolute mean; the absolute

average of all sample values in a
sample window [73]

median (x,y,z) 3 time
computes the median; the value

that divides the higher half from the lower
half in a sample window [73]

variance (x,y,z) 3 time
computes the variance; the average of the
squared differences of the sample values
from the mean in a sample window [73]

std (x,y,z) 3 time
computes the standard deviation; the

square root of variance in a sample window [73]

max (x,y,z) 3 time
computes the min; the lowest number of

all sample values in a sample window [36]

min (x,y,z) 3 time
computes the max; the highest number of
all sample values in a sample window [36]

magnitude 1 time
computes the magnitude; by adding

each one of the squared axes in a sample window,
and calculating the square root of the sum [74]

skewness (x,y,z) 3 time
computes the skewness; the asymmetry
of the distribution of the sample values

around the mean in a sample window [74]

kurtosis (x,y,z) 3 time
computes the kurtosis; the shape description

of the distribution of the sample values
in a sample window [74]

meandistance (x-y, x-z, y-z) 3 time
computes the mean distance; the differences

between the mean values of the x-y, x-z
and y-z in a sample window [74]

amplituderange (x,y,z) 3 time
computes the amplitude range; the difference

between the maximum and minimum
sample values in a sample window [74]

interquartilerange (x,y,z) 3 time
computes inter quartile range; the difference
between quartiles1Q3 and Q1, and describes
the dispersion of the acceleration signal [74]

area (x,y,z) 3 time
computes the area; the sum of the

sample values in a sample window [74]

absarea (x,y,z) 3 time
computes the absolute area; the sum

of the absolute sample values in a sample
window [74]

entropy (x,y,z) 3 frequency

computes the entropy; the degree of
distortion in a sample window (discriminate activities

that have the same Power Spectral Density2

but different patterns of movement) [36]

signalpower (x,y,z) 3 frequency
computes the signal power; the

non-normalized sum of the Power Spectral
Density in a sample window [36]

fftfreq (x,y,z) 3 frequency

computes the Fast Fourier Transform peaks;
the frequency related to the highest
computed Power Spectral Density

in a sample window [36]
1 Quartiles are calculated by partitioning the sample values of a sample window into four quarters, each one

contains 25% of data, with Q1=25%, Q2=50% and Q3=75% [72].
2 Power Spectral Density (PSD): the squared sum of its spectral coefficients, normalized by the number of the

window slide [36].
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By transforming high-dimensional data into a meaningful representation of lower dimensionality, feature
selection phase provides three main benefits:

• enhanced accuracy: misleading features are removed, resulting to a better classification performance,
• less training time: training based on fewer data results to a faster learning model, and
• less overfitting: redundant features are removed, resulting in less prediction due to noise.

In this study, feature selection is achieved through a two-phase process. At first, highly correlated features
are removed based on the Pearson’s correlation coefficient, which measures a linear correlation between fea-
tures. For each feature, the correlation coefficients are calculated and ranked according to the other features,
starting from the lowest graded feature. Hence, if the selected feature has a correlation coefficient higher than
the threshold (the threshold is equivalent to the absolute value of 0.80) with at least one feature, then the fea-
tures are removed. For instance, the ‘mean’ features are correlated with the ‘median’ features, and thus, only
one of these two is kept.

Secondly, non-informative features, with low information gain, are removed. Each feature is ranked based
on the gain ratio, which is measured respecting the contribution of each feature to the accurate prediction.
For this phase, low information gain is calculated based on four main methods; removing features with low
variance, removing features based on univariate statistical tests, removing features recursively and removing
unnecessary features [75].

‘Removing features with low variance’ is based on features with identical or almost the same value in all
samples. ‘Univariate feature selection’ keeps features that contribute the most to the target variable, using
the classification estimator f_classif to calculate univariate scores and p-values. ‘Recursive feature elimina-
tion’ assigns weights to the features and recursively removes the attributes that do not contribute to the target
attribute’s prediction. ‘Feature selection using SelectFromModel’ keeps highly important features either us-
ing linear estimators, such as linear SVC (Support Vector Classifier) or using tree-based estimators, such as
Random Forest Classifier. These techniques are evaluated and presented in the following chapter.

3.3. CLASSIFICATION

After data processing, the dataset is divided into training and test set. Supervised classification techniques
are used to build a learning model based on the training set and detect the labels (activities) accurately on
unseen data. During the learning phase, different supervised algorithms are evaluated in order to select the
classifier that contributes the most to the model’s performance. In this study, four classification algorithms
will be investigated. Each algorithm uses a different classification method related to either distance-based
approach (e.g., k-nearest neighbors), or statistical approach (e.g., naïve Bayes), or kernel approach (e.g., SVC)
or decision-tree based approach (e.g., as Random Forest).

kNN (k-nearest neighbors) algorithm is based on the assumption that data can be grouped into different
classes, respecting their similarities and their geometric properties [4]. This algorithm detects the class labels
by measuring the distance from a new instance to the instances of the training set, in order to assign the new
instance to the class label that is closest to the k neighboring instances [40].

Naïve Bayes is a probabilistic classifier that uses estimated conditional probabilities from the training
set to calculate posterior probabilities and assign the highest one to every class on the test set. Following a
naïve assumption that all features are conditionally independent of each other, it applies the Bayes’ theorem
to detect the class labels [4, 40]. However, this assumption is not always sufficient due to the high correla-
tion among features. For instance, acceleration data produce highly correlated features that may affect the
classifier’s performance [5].

Support Vector Machines (SVM) algorithms, which are also known as Support Vector Classifiers (SVC),
depend on kernel functions to project all instances to a higher dimensional space. Trying to define decision
boundaries and detect class labels, they produce hyperplanes that categorize data into different parts [40].

Random Forest classifier follows the main principle of Decision-Trees algorithms using a sequence of de-
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cisions to classify labels, in which attributes are equivalent to edges and nodes, while branches represent
feature values and leaves represent class labels [4, 5]. Random Forest consists of several weighted decision
trees, randomly constructed from different subject of features, combining the majority of the various predic-
tions made by the decision trees to predict the class labels [40].

3.4. EVALUATION

Our model for activity recognition is evaluated based on the Leave-One-Subject-Out Cross Validation
(LOSOCV). This technique is used in order to avoid overfitting, by excluding data from subjects that were used
for training the classifier (learning model), and include only unseen data for validating our model. In order
to measure the classification performance, different metrics are used. The most commonly used metrics
in activity recognition problems are the classification accuracy, F-score, precision (also known as positive
predictive value), recall (also known as sensitivity, hit rate, or true positive rate), specificity (also known as
true negative rate) and the Cohen’s kappa. Additionally, F1-score can be calculated as a weighted average of
precision and recall and refers to the balanced F-score.

These metrics can be easily calculated through a confusion matrix. A confusion matrix is a summary of
correct and incorrect predictions classified for each class, compared to the actual labels. Specifically, the el-
ements at the main diagonal represent correct classifications, while the other elements represent incorrect
classifications. A confusion matrix consists of true positives (correct classifications of positive examples),
true negatives (correct classifications of negative examples), false positives (incorrect classifications of nega-
tive examples to positive class), and false negatives (incorrect classifications of positive examples to negative
class). In a multi-class problem, the true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN) can be calculated based on Figure 3.7.

Figure 3.7: Example of a confusion matrix [76].

For this study, the following metrics are calculated:

Accur ac y = T P +T N

T P +F P +F N +T N
(3.1)
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Pr eci si on = T P

T P +F P
(3.2)

Recal l = T P

T P +F N
(3.3)

F 1− scor e = 2∗ pr eci si on ∗ r ecal l

pr eci si on + r ecal l
(3.4)

Speci f i ci t y = T N

T N +F P
(3.5)

B al anced Accur ac y = Sensi t i vi t y +Speci f i ci t y

2
(3.6)

Cohen′skappa = Po −Pe

1−Pe
(3.7)

where:

Po = accuracy
Pe = (T P+F N )∗(T P+F P )+(F P+T N )∗(F N+T N )

(T P+T N+F P+F N )2

Cohen’s kappa refers to a score that measures the level of agreement between two annotators on a clas-
sification problem. This score is recommended as a metric, especially, for unbalanced data [77, 78]. Po rep-
resents the probability of overall agreement, over the label assignments between the classifier and the real
labels, and is equal to accuracy. Pe represents the chance agreement over the random assignment of labels.
Pe is defined as the sum of the proportion of examples assigned to a class times the proportion of true labels
of that class in the data set.

On balanced data, all the metrics mentioned above perform significantly well and are essential for the
evaluation of the classification model. However, on imbalanced data, some of these metrics perform poorly
due to their dependence on how rare some labels are. For instance, classification accuracy can be a mis-
leading metric on the free-living study (imbalanced dataset) when an unusual activity (e.g., running) appears
in 1% of the test set and a trivial classifier always declines the prediction of this activity. In that case, the
classification accuracy will misleadingly be 99%. Additionally, averaging precision over many labels (e.g., 13
activities) can be misleading when specific activities unfairly dominate the score [79].

Trying to overcome the problem of the imbalanced dataset, the balanced accuracy, instead of the classi-
fication accuracy, will be used for models’ evaluation. It will be calculated through the confusion matrixes.
Furthermore, the weighted F1-score, precision, and recall from sklearn [80] will be used to calculate the score
for each label and find their average, weighted by support (the number of true instances for each label), and
respecting the label’s imbalance.
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3.5. DISCUSSION

This chapter elaborates our methodology for collecting and analyzing data, focusing on developing a
model for activity recognition, in order to answer the research question. A further explanation of these meth-
ods, combined with the results from the Controlled and Free-Living Study, is presented in the chapter 4 &
chapter 5.

It is worth mentioning that the answer to our research question can be given without performing power or
sensitivity analysis (in order to calculate the recommended number of participants). Overall, activity recog-
nition, as a classification problem, demands a sufficient amount of data in order to train the classifier. Thus,
our decision to recruit and collect data from forty subjects exceeds the current trends in activity recognition
systems, where few participants are recruited, and focuses on enhancing the classification performance. In
the following figure (Figure 4.1), we present the impact of the number of subjects (training set) on the overall
classification performance, and we show that an increase of the training set enhances the performance in
activity recognition.

Figure 3.8: The effect on classification performance by increasing the training set. The classifier is trained for detecting 13 activities
based on the Controlled Study for a different number of subjects. Overall, 39 subjects are used for the training set, while the last subject
is used for the test set. SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB dataset represents
the combination of stingray and chillband sensors.





4
CONTROLLED STUDY

In this chapter, the dataset from the Controlled Study will be investigated in order to implement a classifi-
cation model for activity recognition systems in a controlled (laboratory) environment. This dataset consists
of raw accelerometer data from 40 subjects, in a controlled environment, performing 13 different activities.
The acquired accelerometer dataset includes data from the stingray (SR) sensor, the chillband (CB) sensor
and the combination of these two stingray-chillband sensors (SRCB), and are investigated separately.

In order to evaluate our activity recognition system, data from 15 subjects are used for optimizing the
learning model, while data from the other 25 subjects are used to validate the classification performance. In
addition to recognizing 13 activities, we will also evaluate the model for predicting 7 main activities, including
sitting (both static and dynamic sitting), standing (both static and dynamic standing), lying (with face up, face
down, to the left and to the right side), walking on stairs (both ascending and descending stairs), walking,
cycling and running.

4.1. LEARNING MODEL

Data from 15 subjects are analyzed, focusing on enhancing the performance of the classification model.
These subjects will be used in order to define the window segment, the features, and the classification al-
gorithm. Based on these parameters of the learning model, the classification model will be validated for
predicting the activities accurately on unseen data (the other 25 subjects). For the evaluation of the learning
model, two different approaches will be investigated. The first is based on predicting 13 activities and the
second on predicting 7 activities.

4.1.1. DATA PROCESSING

Since different activities have different periodic signals, the procedure of determining the best window
segment is challenging. Trying to define the most optimal window segment for the current study, different
window sizes with different window slides were evaluated. In total, thirteen different window segments were
evaluated and are presented in the following figure. The validation was performed on fifteen subjects of the
controlled study, using Random Forest as the default classifier, and based on the Leave-One-Subject-Out
Cross Validation (LOSOCV). The best classification accuracy was found for the window size of 5 seconds with
1 second window slide and 4 seconds overlap.

It can be seen in Figure 4.1 that classification performance is significant the same for more window seg-
ments, with varying window sizes from 4 to 10 seconds. The decision of selecting the window segment of
5 seconds length with 1 second step (which is equal to 4 seconds overlap), was based on literature where
smaller window sizes are recommended, but also on the fact that the selected window segment performed
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better when the predicted activities were limited to 7, including sitting, standing, walking, walking on stairs,
lying, running and cycling.

Figure 4.1: Thirteen window segments, with different window sizes and different overlap, are evaluated for the SR, CB and SRCB datasets.
The top figure represents the classification performance for predicting 13 activities, while the bottom figure represents the classification
performance for predicting 7 activities. The validation is based on LOSOCV for 15 subjects (detect 13 activities based on the Controlled
Study). SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB dataset represents the combina-
tion of stingray and chillband sensors.

Figure 4.2: An overview of the methods used for the second phase of feature selection. These methods include removing features with
low variance, removing features based on univariate statistical tests, removing features recursively and removing unimportant features.
The validation is based on LOSOCV for 15 subjects (detect 13 activities based on the Controlled Study). SR dataset represents the stingray
sensor, CB dataset represents the chillband sensor, and SRCB dataset represents the combination of stingray and chillband sensors.
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After calculating and extracting the features based on the selected window segment, the phase of feature
selection takes place. This step aims to filter the feature set and remove any redundant features. Specifically,
highly correlated features are removed based on the Pearson’s correlation coefficient, while features with low
information gain are subsequently removed. For calculating low information gain, five methods are exam-
ined and presented in Figure 4.2. It can be seen through this figure that Linear SVC estimator gives the best
classification accuracy, and thus, it is preferred for the second phase of feature selection. It is worth men-
tioning that linear SVC, similar to support vector machines (SVM), might perform better if the features have
roughly the same magnitude. Thus, all the features were normalized per dataset for enhancing the classifica-
tion performance.

Initially, 52 features are calculated for the SR and the CB dataset, while the SRCB dataset contains 104
features (including features from both the SR and CB dataset). After selecting the most relevant features, it is
noticeable that the dimensionality reduction varies for the SR, CB and SRCB datasets. Specifically, 62% of the
features are removed from the SR dataset, 54% of the features are removed from the CB dataset and 64% of
the features are removed from the SRCB dataset. Figure 4.3 represents the number of returned features after
each phase of feature selection for the three datasets. The selected features and their distribution is presented
at Appendix A.1 Features Distribution in page 82.

Figure 4.3: The final number of features per dataset is presented, after the process of feature selection. Feature extraction represents
the number of initially calculated features, feature selection (correlation) represents the reduction of highly correlated features, and the
feature selection (linear SVC) represents the reduction due to low information gain. The validation is based on LOSOCV for 15 subjects
(detect 13 activities based on Controlled Study). SR dataset represents the stingray sensor, CB dataset represents the chillband sensor,
and SRCB dataset represents the combination of stingray and chillband sensors.

Each dataset contains different features, and each feature has a different weight in the classification per-
formance. Thus, the contribution of these features to the total classification performance varies. For in-
stance, the mean distance of axes y and z is the most highly scored feature (SR_meandistance_y-z) for the SR
and SRCB datasets, while the mean value of axis y (CB_mean_y) is the most highly scored feature for the CB
dataset. The 15 most highly scored features for each dataset are depicted in the following figure (Figure 4.4).
Regarding the SR dataset, 15 out of 20 features contribute to the total classification performance with an over-
all accuracy above 90%, while 15 out of 24 features contribute to the total classification performance with an
overall score 85% for the CB dataset. On the other hand, 15 out of 98 features contribute to the total classifica-
tion performance with an overall accuracy below 70% for the SRCB dataset. Hence, it is clear that the features
on the SRCB dataset have different weights and all the selected features (38 in total) are required for better
classification results.
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Figure 4.4: The 15 most highly scored features are depicted for each dataset in the Controlled Study. In addition to the score of each fea-
ture, the total contribution of the first 15 features to the classification performance is presented as well in the right axis (accuracy score).
SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB dataset represents the combination of
stingray and chillband sensors.
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4.1.2. CLASSIFICATION

After data processing, the learning model (which consists of 15 out of 40 subjects from the Controlled
Study) is divided into training and test set for classifying and predicting the activities. In order to split the
dataset into training and test set, the method of Leave-One-Subject-Out Cross Validation (LOSOCV) is used.
For this reason, the training set consists of 14 subjects and the test set consists of one single subject. This
validation method is repeating 15 times, where the test set contains data from a unique subject every time,
and the averaged classification performance is calculated.

The classification is examined based on four algorithms; kNN, naïve Bayes, SVC, and Random Forest. The
algorithms are compared based on their performance in predicting the 13 activities on the Controlled Study
and are presented in the following figure. As Figure 4.5 shows, the Random Forest classifier outperforms the
other three classifiers. Specifically, Random Forest performs significantly better compared to kNN and naïve
Bayes and slightly improved compared to SVC. Thus, the Random Forest algorithm will be used in this study
for classifying the activities.

Figure 4.5: Four algorithms are compared based on their classification performance (accuracy score). The validation is based on LOSOCV
for 15 subjects (detect 13 activities based on Controlled Study). SR dataset represents the stingray sensor, CB dataset represents the
chillband sensor, and SRCB dataset represents the combination of stingray and chillband sensors.

The algorithms mentioned above have been compared based on their default parameters and hyper-
parameters, and the Random Forest has been selected for the classification model. Additionally, the per-
formance of this model is further enhanced though hyperparameter tuning using the Scikit-Learn tools in
Python. The default Random Forest algorithm is compared with the optimized algorithm after the hyperpa-
rameter tuning in Figure 4.6.

Generally, Scikit-Learn implements a classification model with default hyperparameters without ensur-
ing the optimization of the classification problem. Regarding Random Forest algorithms, hyperparameters
include for instance the number of decision trees in the forest (n_estimators), the number of features con-
sidered by each tree when splitting a node (max_features), the number of levels in each decision tree (max_-
depth), while parameters include variables and thresholds used to split each node learned during training
[81]. In order to define what are the best hyperparameters for the classification problem, a wide range of val-
ues is evaluated (for every hyperparameter) using the Scikit-Learn RandomizedSearchCV method [82]. Try-
ing to avoid overfitting issues, the LOSOCV cross validation was used. Finally, the following hyperparameters
were chosen for the classification model.

model = RandomForestClassifier ( n_estimators =600 , c r i t e r i o n = ’ g i n i ’ ,
max_depth=18 , max_features = "auto" , min_samples_leaf = 40 ,
oob_score = True , n_jobs = −1)



36 4. CONTROLLED STUDY

As can be seen in Figure 4.6, the hyperparameter tuning has slightly enhanced the overall classification
performance of the Random Forest algorithm. Specifically, the performance for the SR dataset has been in-
creased by 1%, while the CB and SRCB classified datasets have been improved by 1.96% and 0.79%, respec-
tively. Nevertheless, the Random Forest combined with the hyperparameters, as mentioned above, will be
used as the classification algorithm for this activity recognition model.

Figure 4.6: The performance of Random Forest classifier is compared by using either default or tuned hyperparameters (GridSearchCV).
The validation is based on LOSOCV for 15 subjects (detect 13 activities based on Controlled Study). SR dataset represents the stingray
sensor, CB dataset represents the chillband sensor, and SRCB dataset represents the combination of stingray and chillband sensors.

4.1.3. EVALUATION LOSOCV-15 FOR 13 ACTIVITIES

After splitting the learning dataset into training and test set, the evaluation of predicting activities on
the test set takes place. In this section, the learning model is evaluated for predicting 13 activities based on
LOSOCV for 15 subjects, for both SR, CB and SRCB datasets in the Controlled Study. The training set consists
of data from 14 subjects, while the test set consists of 1 subject, repeating the validation for 15 times and
calculating the average metric values. The evaluation is based on the confusion matrixes and the calculated
metrics. The overall performance is presented in Figure 4.7.

Figure 4.7: The learning model is evaluated for predicting 13 activities through different metrics. The validation is based on LOSOCV for
15 subjects from the Controlled Study. SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB
dataset represents the combination of stingray and chillband sensors.
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Concerning the stingray (SR) dataset, the overall classification performance for predicting 13 activities
accurately is 70.28% (F1-score). Based on the confusion matrix (see Confusion Matrix at Appendix A.2 in
page 84), it is clear that activities such as lying with face up, lying with face down, running and cycling are
predicted accurately with a true positive score above 90%. On the other hand, activities such as sitting and
dynamic sitting are misclassified (44% and 53%, respectively). Similarly, the activities standing and dynamic
standing (50% and 77%, respectively) have been misclassified with each other but also with sitting and dy-
namic sitting. Furthermore, walking and walking on stairs have been misclassified as well (62% and 64%,
respectively).

For the chillband (CB) dataset, the overall classification performance for predicting 13 activities is 64.94%
(F1-score). Similar to SR dataset, activities such as running and cycling can be predicted accurately (96% and
94%, respectively), while the classification performance for sitting (49%), dynamic sitting (86%), standing
(84%) and dynamic standing (87%) has been improved. However, the lying and walking activities have been
misclassified compared to SR dataset. In particular, the average true positive score for predicting the four
lying activities is 54.75%, the walking is 54% and the average score for walking on stairs is 75%.

By combining accelerometer data from the stingray and chillband sensors, the classification performance
is enhanced. For the SRCB dataset, the overall classification performance for predicting 13 activities is 81.03%
(F1-score). Even though the overall prediction score is better for this dataset, there are still some activities that
are misclassified, including the activities sitting (70%), dynamic sitting (87%), lying to the left (74%), lying to
the right (85%), walking upstairs (60%), walking downstairs (73%), and walking (61%). For the rest activities,
the true positive score is significantly better: lying with face up (100%), lying with face down (92%), standing
(93%), dynamic standing (94%), running (97%) and cycling (97%).

4.1.4. EVALUATION LOSOCV-15 FOR 7 ACTIVITIES

According to the evaluation for predicting 13 activities, some activities, such as sitting, dynamic sitting,
lying to the left, lying to the right, walking upstairs and walking downstairs, cannot be predicted significantly.
For this reason, we will also investigate the activity recognition system for predicting 7 main activities, af-
ter merging the similar ones. These 7 activities include sitting, lying, standing, walking on stairs, walking,
running and cycling. Consequently, the learning model is also evaluated for predicting 7 activities based on
LOSOCV for 15 subjects, for both SR, CB and SRCB datasets in the Controlled Study. The overall performance
is presented in Figure 4.8 (see also Confusion Matrix at Appendix A.2 in page 84).

Figure 4.8: The learning model is evaluated for predicting 7 activities through different metrics. The validation is based on LOSOCV for
15 subjects from the Controlled Study. SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB
dataset represents the combination of stingray and chillband sensors.
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Regarding the stingray (SR) dataset, the overall classification performance for predicting 7 activities ac-
curately is 82.09% (F1-score). Overall, the performance for lying, running and cycling is significant accurate
(81%, 96% and 94%, respectively). However, the activity sitting is misclassified with standing (64% and 73%,
respectively), and the activity walking on stairs is misclassified with walking (83% and 62%, respectively).

For the chillband (CB) dataset, the overall classification performance for predicting 7 activities is 80%
(F1-score). Similar to SR dataset, activities such as running and cycling can be predicted accurately (96%
and 94%, respectively), while the walking on stairs and walking are also misclassified (81% and 54%, respec-
tively). In contrast to SR, the recognition of activities sitting and standing has been improved (75% and 86%,
respectively); however, they are misclassified with the activity lying (81%).

Compared to SR and CB, the classification performance for the SRCB is significantly enhanced to 90.57%
(F1-score) for recognizing 7 activities. Most of the activities can be detected accurately (sitting: 89%, lying:
98%, standing: 94%, running: 97% and cycling: 97%), despite the walking on stairs and walking which have a
score 86% and 61%, respectively.
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4.2. VALIDATION MODEL

The validation model for the Controlled Study consists of accelerometer data from the additional 25 sub-
jects (15 out of 40 subjects have been used for the learning model). This model is divided into training and
test set, based on LOSOCV for 25 subjects, in order to evaluate the system’s performance for recognizing the
unseen activities of the test set. Thus, the training set consists of data from 24 subjects, while the test set
consists of 1 subject, repeating the validation for 25 times and calculating the average metrics. Furthermore,
data from the learning model (15 subjects) are added to the training set in order to enhance the training (39
subjects in total). For the final validation of our system, two different approaches will be investigated for rec-
ognizing activities in a controlled environment. The first is based on predicting 13 activities and the second
one is based on predicting 7 activities. The results for the validation of the system are presented in Figure 4.9.
For further understanding, see also the actual versus predicted activities for the activity recognition model at
Appendix B in page 91 (the plot is made based on the most highly scored feature for each sensor).

Figure 4.9: The validation model is evaluated for predicting 13 activities (top graph) and 7 activities (bottom graph) through different
metrics. The validation is based on LOSOCV for 25 subjects from the Controlled Study. SR dataset represents the stingray sensor, CB
dataset represents the chillband sensor, and SRCB dataset represents the combination of stingray and chillband sensors.
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4.2.1. STINGRAY

Regarding the stingray (SR) sensor, the overall classification performance for predicting 13 activities is
68.05% (F1-score). Similar to the results from the learning model, the activities sitting and dynamic sitting
have been misclassified with standing and dynamic standing. Furthermore, lying to the left is misclassified
with lying to the right, while walking is misclassified with walking on stairs. Based on the confusion matrix
(see Figure 4.10), the true positive score for the predicted activities is: sitting (36%), dynamic sitting (64%),
lying with face up (94%), lying with face down (92%), lying to the left (67%), lying to the right (65%), standing
(35%), dynamic standing (75%), walking upstairs (63%), walking downstairs (78%), walking (66%), running
(94%) and cycling (85%).

Figure 4.10: The confusion matrix for the stingray (SR) sensor is presented. The validation is based on LOSOCV-25 from the Controlled
Study, by detecting 13 activities.
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The overall classification performance for predicting 7 activities is 80.62% (F1-score). Based on the con-
fusion matrix (see Figure 4.11), the true positive score for the predicted activities is: sitting (59%), lying (96%),
standing (69%), walking on stairs (85%), walking (66%), running (94%) and cycling (85%).

Figure 4.11: The confusion matrix for the stingray (SR) sensor is presented. The validation is based on LOSOCV-25 from the Controlled
Study, by detecting 7 activities.
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4.2.2. CHILLBAND

Regarding the chillband (CB) sensor, the overall classification performance for predicting 13 activities is
66.87% (F1-score). It can be seen from the confusion matrix (see Figure 4.12), that the activity sitting has been
misclassified with lying down, the activity lying to the left has been misclassified with lying to the right, and
the walking has been misclassified with walking on stairs. The true positive score for the predicted activities
is: sitting (65%), dynamic sitting (92%), lying with face up (59%), lying with face down (55%), lying to the
left (46%), lying to the right (47%), standing (94%), dynamic standing (91%), walking upstairs (61%), walking
downstairs (50%), walking (64%), running (95%) and cycling (92%). Compared to the SR sensor, the CB per-
forms significantly better on predicting the sitting, dynamic sitting, standing, dynamic standing, and cycling.
On the other hand, CB performs worst for all the lying activities, as well as the walking downstairs activity.

Figure 4.12: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-25 from the Controlled
Study, by detecting 13 activities.
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The overall classification performance for predicting 7 activities is 84.08% (F1-score). Based on the con-
fusion matrix (see Figure 4.13), the score for the predicted activities is: sitting (83%), lying (81%), standing
(93%), walking on stairs (84%), walking (64%), running (95%) and cycling (92%). It is noticeable that the ac-
tivity recognition through CB for the activities sitting, standing and cycling has been significantly enhanced.
Furthermore, it is worth mentioning that the CB outperforms the SR sensor for predicting the aforementioned
7 activities (compared to the learning model).

Figure 4.13: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-25 from the Controlled
Study, by detecting 7 activities.
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4.2.3. STINGRAY & CHILLBAND

The activity recognition based on the stingray-chillband (SRCB) sensor achieves the best classification
performance for predicting 13 activities, which is 82.81% (F1-score). In particular, wearing both sensors in-
stead of wearing accelerometers either on the wrist or on the chest, results to an increase of the classification
performance by 15%. However, the activity lying to the left is misclassified with lying to the right, and the
activity walking is misclassified with walking on stairs. Based on the confusion matrix (see Figure 4.14), the
true positive score for the predicted activities is: sitting (93%), dynamic sitting (93%), lying with face up (96%),
lying with face down (90%), lying to the left (66%), lying to the right (66%), standing (94%), dynamic standing
(91%), walking upstairs (71%), walking downstairs (75%), walking (71%), running (92%) and cycling (92%).

Figure 4.14: The confusion matrix for the stingray-chillband (SRCB) sensors is presented. The validation is based on LOSOCV-25 from
the Controlled Study, by detecting 13 activities.
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The overall classification performance for predicting 7 activities is 91.83% (F1-score). The SRCB accelerom-
eter outperforms the SR and CB. Based on the confusion matrix (see Figure 4.15), the score for the predicted
activities is: sitting (96%), lying (96%), standing (94%), walking on stairs (89%), walking (71%), running (92%)
and cycling (92%). It is worth mentioning that our system for predicting the 7 activities has been significantly
improved, by combining accelerometer data worn on the chest and on the wrist. Thus, the SRCB contributes
sufficiently to recognizing most of the activities with a score above 90%, except the walking activity.

Figure 4.15: The confusion matrix for the stingray-chillband (SRCB) sensors is presented. The validation is based on LOSOCV-25 from
the Controlled Study, by detecting 7 activities.
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4.3. DISCUSSION

The Controlled Study includes data from 40 Subjects. In particular, data from 15 subjects were used for
optimizing the learning model, while data from the other 25 subjects were used to validate the classification
performance.

Based on the results from the learning model, we decided to implement the activity recognition system
with the following parameters. The features extraction was performed based on 5 seconds window size and 4
seconds overlap. It is worth mentioning that we found some additional window segments that might have a
similar classification performance (e.g., 6sec window size and 3sec overlap, and 10sec window size and 5sec
overlap) with the one we selected to perform the data processing. However, these window segments need
further investigation. Concerning the features selection, the calculated features were reduced to the ones
that contribute the most to the classification performance. The most significant features are the mean, ab-
solute mean, mean distance, standard deviation, max, min, and entropy. Nevertheless, each one of these
features has a different weight in the classification, which varies per sensor. Additionally, we examined differ-
ent classification algorithms and we concluded that the Random Forest performs significantly better in our
classification problem, followed by the SVC.

Our classification model for activity recognition was evaluated based on data from the validation model
(25 Subjects). One of the outcomes of this study is that combining chest-worn (SR) and wrist-worn (CB)
sensors, instead of using standalone accelerometer sensors (either SR or CB), enhances the classification
performance. Overall, the total classification performance for chest-worn sensors is approximately the same
with wrist-worn sensors; however, the accuracy on detecting different activities varies per sensor.

For predicting 13 activities, the SR achieves a total 68.05% F1-score, while the CB achieves 66.87% F1-
score. In particular, the SR performs better for detecting the lying (including lying with face up, lying with
face down, lying to the left and lying to the right), and walking downstairs. On the other hand, the CB per-
forms better for detecting the activities sitting, dynamic sitting, standing, dynamic standing, and cycling.
The running activity can be predicted significantly well for both the wrist and chest worn sensors, while the
prediction for the activities walking and walking on stairs is not always accurate. A possible reason for that
could be that the walking activity recognition relies not only on accelerometers but also to other inertial sen-
sors, such as gyroscopes. Compared to the activity recognition through standalone SR and CB sensors, the
combination of these two sensors can significantly increase the model’s prediction (82.81% F1-score). Con-
sequently, our model can predict most of the activities of the Controlled Study accurately, except the lying
to the left, lying to the right, walking and walking on stairs. A possible solution to this could be the use of
additional inertial sensors or the placement of these sensors to other parts on the body.

To overcome the misclassification due to the similarity of some performed activities, we have also exam-
ined our activity recognition model for detecting 7 activities, after merging the similar ones (e.g., lying to the
left, lying to the right, walking upstairs and walking downstairs). For predicting 7 activities, the SR receives
a total 80.62% F1-score, the CB achieves 84.08% F1-score, while the SRCB outperforms the SR and CB, and
achieves 91.83% F1-score. In particular, the SRCB can predict almost all the activities with a higher score,
compared to SR and CB. However, it is worth mentioning that the running activity performs better with the
accelerometer placed on the wrist (CB: 95%), followed by the chest-worn sensor (SR: 94%) and the combina-
tion of these two (SRCB: 92%).

Even though our activity recognition model is highly scored for predicting 7 activities through SRCB ac-
celerometer data, we conclude that the accuracy of our system depends on the purpose of the application
that will be used. For instance, if the aim is to recognize the running activity, a sensor placed on the wrist or
the chest is sufficient. Otherwise, the system is significantly more accurate by recording accelerometer data,
placed on both the wrist and the chest. Specifically, the SRCB contributes adequately to recognize most of the
activities of the controlled study, except the walking activity, which is misclassified with the walking on stairs
activity. However, if these activities are merged to walking, including both walking and walking on stairs, then
the classification performance will be significantly improved.



5
FREE-LIVING STUDY

In this chapter, we will analyze data from the Free-Living Study in order to implement a classification
model for detecting activities, performed in an uncontrolled environment. The free-living experiment is also
mentioned as uncontrolled or ambulatory experiment in this report. This dataset consists of raw accelerom-
eter data performed from 37 subjects, in an uncontrolled environment. The acquired accelerometer dataset
includes data from the stingray (SR) sensor, the chillband (CB) sensor and the combination of these two
stingray-chillband sensors (SRCB), and will be investigated separately. It is worth mentioning that the total
number of activities in this study is not balanced since subjects performed the activities without following
any instructions. Compared to the Controlled Study, the activities lying with face up, lying with face down,
lying to the left, lying to the right were not performed. Additionally, only one subject performed the activity
running, but only for a few seconds, and thus, we decided to exclude it from the dataset. Consequently, 8
activities in total will be investigated, including sitting, dynamic sitting, standing, dynamic standing, walking
upstairs, walking downstairs, walking and cycling. In addition to recognizing 8 activities, we will also evaluate
the model for predicting 5 main activities, after merging the similar ones. These activities include sitting (both
static and dynamic sitting), standing (both static and dynamic standing), walking on stairs (both ascending
and descending stairs), walking, and cycling.

We evaluate the performance of our activity recognition system for uncontrolled settings using data from
22 subjects (test set) and based on the following three methods. Concerning the first method Validation A,
data from 15 subjects of the Free-Living Study are used to train the classification model. For the Validation B,
data from subjects of the Controlled Study are used for the learning model and for the Validation C, data from
both the Controlled and Free-Living Study are used to train the model.

5.1. LEARNING MODEL

The learning model consists of data from the Free-Living Study, based on 15 subjects. In order to compare
the results of this study with the Controlled Study, we decided to use the same parameters that we selected
in the latter. Thus, we did not investigate further what window segment, features, and classification algo-
rithm might perform better for this dataset. Briefly, we use 5 seconds window size with 4 seconds overlap,
following the same procedure for the features extraction and selection, and classifying the model based on
GridSearchCV Random Forest. Similar to the Controlled Study, the evaluation of the learning model is based
on predicting 8 (all the activities) and 5 (after merging the similar ones) activities, subsequently.

5.1.1. DATA PROCESSING

After extracting the features based on 5 seconds window size and 4 seconds overlap, the phase of fea-
tures selection takes place. Similar to the procedure that we followed on processing data in Controlled Study,
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highly correlated features are removed based on the Pearson’s correlation coefficient, while features with low
information gain are subsequently removed through the Linear SVC estimator.

Initially, 52 features are calculated for the SR and the CB dataset, while the SRCB dataset contains 104
features (including features from both the SR and CB dataset). After selecting the most relevant features, it is
noticeable that the dimensionality reduction varies for the SR, CB and SRCB datasets. Specifically, 60% of the
features are removed from the SR dataset, 58% of the features are removed from the CB dataset and 60% of
the features are removed from the SRCB dataset. Figure 5.1 represents the number of returned features after
each phase of feature selection for the three datasets. The selected features and their distribution is presented
at Appendix C.1 Features Distribution in page 100.

Figure 5.1: The final number of features per dataset is presented, after the process of feature selection. Feature extraction represents
the number of initially calculated features, feature selection (correlation) represents the reduction of highly correlated features, and the
feature selection (linear SVC) represents the reduction due to low information gain. The validation is based on LOSOCV for 15 subjects
(detect 8 activities based on Free-Living Study). SR dataset represents the stingray sensor, CB dataset represents the chillband sensor,
and SRCB dataset represents the combination of stingray and chillband sensors.

It is clear that each dataset contains different features, and each feature has a different weight in the clas-
sification performance. For instance, the magnitude of the axes x, y and z is the most highly scored feature
(SR_magnitude_xyz) for the SR dataset. The score for this feature is 12.64%, while the feature SR_meandis-
tance_y-z achieves the best score (12.1%) in the Controlled Study. Similar to the Controlled Study, the mean
values of axis y (CB_mean_y) is the most highly scored feature for the CB, but also for the SRCB. This feature
achieves the highest score 9.8% in the SRCB dataset for the Free-Living Study, while in the Controlled Study
achieves 5.6%. Thus, the contribution of these features to the total classification performance varies and es-
pecially for the SR and SRCB datasets, which differentiates from the Controlled Study. The 15 most highly
scored features for each dataset are depicted in the following figure (Figure 5.2).

Additionally, during the data processing phase, we examined three different types of annotation for the
activities in the Free-Living Study. As mentioned in chapter 3, the activities are annotated every 30 seconds
based on a taken picture through a wearable camera, and thus, an activity can be annotated only for two
times per minute. Annotation type A refers to annotate activities for the last 15 seconds of every taken picture.
Hence, we labeled the activity not only for the corresponding timestamp of the taken picture, but also for the
previous 14 seconds, and we linked them with the timestamps of the SR, CB and SRCB dataset. Annotation
type B refers to 30 seconds, including 14 seconds before and 14 seconds after a taken picture. Annotation
type C is related to the exact second of every taken picture. Based on Figure 5.3, we can see that the type A
outweighs the other types, and thus, will be used for this study.
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Figure 5.2: The 15 most highly scored features are depicted for each dataset in the Free-Living Study. In addition to the score of each fea-
ture, the total contribution of the first 15 features to the classification performance is presented as well in the right axis (accuracy score).
SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB dataset represents the combination of
stingray and chillband sensors.



50 5. FREE-LIVING STUDY

Figure 5.3: The performance of the three types of activities annotation for the Free-Living Study. F1-score is used to evaluate the perfor-
mance for predicting 5 activities. SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB dataset
represents the combination of stingray and chillband sensors.

Figure 5.4: The performance of the learning model in the Free-Living Study with and without the oversampling method SMOTE. F1-
score is used to evaluate the performance for predicting 5 activities. SR dataset represents the stingray sensor, CB dataset represents the
chillband sensor, and SRCB dataset represents the combination of stingray and chillband sensors.
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For the last step in data processing, we tested the oversampling method based on SMOTE (Synthetic Mi-
nority Oversampling Technique) algorithm, trying to address the imbalanced data. Overall, oversampling
the minority class observations can significantly enhance the classification performance. SMOTE creates
synthetic observations of the minority classes (e.g., walking upstairs and walking downstairs) by finding sim-
ilar observations based on the k-nearest-neighbors for minority class observations [83]. Specifically, it ran-
domly chooses one of the k-nearest neighbors and uses this to create a similar new observation (but randomly
tweaked). The SMOTE performance for the learning model is presented in Figure 5.4. As it can be seen, the
oversampling method does not improve the classification performance, and thus, is not preferred for this
study. A problem for that could be that all the performed activities, except standing and dynamic standing,
are considered as minority classes, leading to poor observations (see also Figure 3.3 in page 21). Additionally,
it is worth mentioning that oversampling methods demands long time and computational complexity.

5.1.2. CLASSIFICATION

Regarding the classification algorithm, the GridSearchCV Random Forest was selected based on the re-
sults from the Controlled Study.

model = RandomForestClassifier ( n_estimators =600 , c r i t e r i o n = ’ g i n i ’ ,
max_depth=18 , max_features = "auto" , min_samples_leaf = 40 ,
oob_score = True , n_jobs = −1)

5.1.3. EVALUATION LOSOCV-15 FOR 8 ACTIVITIES

After splitting the learning dataset into training and test set, the evaluation of predicting activities on
the test set takes place. In this section, the learning model is evaluated for predicting 8 activities based on
LOSOCV for 15 subjects, for both SR, CB and SRCB datasets in the Free-Living Study. Thus, the training
set consists of data from 14 subjects, while the test set consists of 1 subject, repeating the validation for 15
times and calculating the average metric values. The evaluation is based on the confusion matrixes and the
calculated metrics. The results for the validation of the system are presented in Figure 5.5.

Figure 5.5: The learning model is evaluated for predicting 8 activities through different metrics. The validation is based on LOSOCV for
15 subjects from the Free-Living Study. SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB
dataset represents the combination of stingray and chillband sensors.

Concerning the stingray (SR) dataset, the overall classification performance for predicting 8 activities is
56.33% (F1-score). Based on the confusion matrix (see Confusion Matrix at Appendix C.2 in page 102), we can
see that many activities are misclassified. The dynamic sitting achieves the best prediction (85%) among all
the activities. However, sitting (17%), standing (0%) and dynamic standing (11%) are misclassified with dy-
namic sitting. The reason for overfitting the dynamic sitting is due to the imbalanced dataset. Furthermore,
walking (67%) is misclassified with walking upstairs and walking downstairs. Similarly, the insufficient num-
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ber of data for the activities walking upstairs and downstairs affects the prediction model. Finally, cycling has
a true positive score 71%.

For the chillband (CB) dataset, the overall classification performance for predicting 8 activities is 61.61%
(F1-score). Similar to SR dataset, some activities are misclassified and due to imbalanced data the dynamic
sitting and walking cause overfitting. However, among all the activities, the prediction model for the dynamic
sitting performs significantly well with 90%. Based on the confusion matrix, the true positive score for sitting
is 22%, standing 19%, dynamic standing 17%, walking upstairs 0%, walking downstairs 0%, walking 55%, and
cycling 67%.

For the stingray-chillband (SRCB) dataset, the overall classification performance for predicting 8 activi-
ties is 61.78% (F1-score). Similar to SR and CB datasets, some activities are misclassified due to imbalanced
data. However, the activities walking (68%) and cycling (73%) receive a better score compared to SR and CB
datasets.

5.1.4. EVALUATION LOSOCV-15 FOR 5 ACTIVITIES

According to the evaluation for recognizing 8 activities, some activities, such as standing, dynamic stand-
ing, walking upstairs and walking downstairs, cannot be predicted accurately. For this reason, we will also
investigate the activity recognition system for predicting 5 main activities, after merging the similar ones.
These 5 activities consist of sitting, standing, walking on stairs, walking, and cycling. Consequently, the learn-
ing model is also evaluated for predicting 5 activities based on LOSOCV for 15 subjects, for both SR, CB and
SRCB datasets in the Free-Living Study. The results for the validation of the system are presented in Figure 5.6.
See also Confusion Matrix at Appendix C.2 in page 102).

Figure 5.6: The learning model is evaluated for predicting 5 activities through different metrics. The validation is based on LOSOCV for
15 subjects from the Free-Living Study. SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB
dataset represents the combination of stingray and chillband sensors.

Regarding the stingray (SR) dataset, the overall classification performance for predicting 5 activities ac-
curately is 82.9% (F1-score). The performance for sitting is significant accurate with 98% true positive score.
However, the activity standing (11%) is misclassified with sitting, and the activity walking on stairs is misclas-
sified with walking (0% and 67%, respectively). Finally, the score for cycling is 71%.

For the chillband (CB) dataset, the overall classification performance for predicting 5 activities is 84.87%
(F1-score). Similar to SR dataset, the activity sitting can be predicted accurately with 97% score, while stand-
ing (29%) is misclassified to sitting. The activity walking on stairs is misclassified to walking (55%) and cycling
receives a 67% score. In contrast to SR, the prediction score for walking and cycling is reduced.

Compared to SR and CB, the classification performance for the SRCB is enhanced to 86.98% (F1-score) for
recognizing all the 5 activities. Similar to SR and CB, standing has been misclassified to sitting, and walking
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on stairs has been wrongly predicted as walking.

5.2. VALIDATION MODEL A

The validation model A for the Free-Living Study consists of data from the additional 22 subjects (15 out
of 37 subjects have been used for the learning model). This model is divided into training and test set, based
on LOSOCV for 22 subjects, in order to evaluate the system’s performance for recognizing the unseen activ-
ities of the test set. Thus, the training set consists of data from 21 subjects, while the test set consists of 1
subject, repeating the validation for 22 times and calculating the average metrics. Furthermore, data from
the learning model (15 subjects) are added to the training set in order to enhance the training (36 subjects
in total). For the final validation of our system, two different approaches will be investigated for recognizing
activities in an uncontrolled environment. The first is based on predicting 8 activities and the second one is
based on predicting 5 activities. The results of the validation model A are presented in Figure 5.7. For further
understanding, see also the actual versus predicted activities for the activity recognition model at Appendix
D in page 109 (the plot is made based on the most highly scored feature for each sensor).

Figure 5.7: The validation model A is evaluated for predicting 8 activities (top graph) and 5 activities (bottom graph) through different
metrics. The validation is based on LOSOCV for 22 subjects from the Free-Living Study. SR dataset represents the stingray sensor, CB
dataset represents the chillband sensor, and SRCB dataset represents the combination of stingray and chillband sensors.
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5.2.1. STINGRAY

Regarding the stingray (SR) sensor, the overall classification performance for predicting 8 activities is
47.61% (F1-score). Similar to the learning model, many activities are misclassified due to the imbalanced
data. Based on the confusion matrix (see Figure 5.8), the three most highly predicted classes are the activity
walking (74%), cycling (66%) and dynamic sitting (61%).

Figure 5.8: The confusion matrix for the stingray (SR) sensor is presented. The validation is based on LOSOCV-22 for the Free-Living
Study, by detecting 8 activities.
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The overall classification performance for predicting 5 activities is 82.73% (F1-score). After merging sim-
ilar activities, the classification performance has been significantly improved. The class sitting receives the
most accurate prediction. However, standing is still misclassified with sitting, while walking on stairs is totally
misclassified with walking. Based on the confusion matrix (see Figure 5.9), the true positive score for sitting
is 97%, standing 20%, walking on stairs 0%, walking 74%, and cycling 66%.

Figure 5.9: The confusion matrix for the stingray (SR) sensor is presented. The validation is based on LOSOCV-22 for the Free-Living
Study, by detecting 5 activities.
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5.2.2. CHILLBAND

Concerning the chillband (CB) sensor, the overall classification performance for predicting 8 activities is
50.98% (F1-score). Compared to SR, the wrist-worn sensor performs slightly better. However, many activities
are still misclassified due to the imbalanced data. Based on the confusion matrix (see Figure 5.10), the three
most highly predicted classes are the activity dynamic sitting (67%), cycling (66%) and walking (62%).

Figure 5.10: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-22 for the Free-Living
Study, by detecting 8 activities.
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The overall classification performance for predicting 5 activities is 85.29% (F1-score). After merging sim-
ilar activities, the classification performance has been significantly improved. The class sitting receives the
most accurate prediction. However, standing is still misclassified with sitting, while walking on stairs is com-
pletely misclassified with walking. Based on the confusion matrix (see Figure 5.11), the true positive score for
sitting is 96%, standing 40%, walking on stairs 0%, walking 62%, and cycling 66%.

Figure 5.11: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-22 for the Free-Living
Study, by detecting 5 activities.
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5.2.3. STINGRAY & CHILLBAND

The activity recognition based on the stingray-chillband (SRCB) sensor achieves the best classification
performance for predicting 8 activities, which is 53.72% (F-score). Compared to SR and CB, the prediction for
dynamic sitting (71%) and cycling (74%) has been improved. However, many activities are still misclassified
due to the imbalanced data. Based on the confusion matrix (see Figure 5.12), the true positive score for sitting
is 46%, standing 10%, dynamic standing 36%, walking on stairs 0%, and walking 74%.

Figure 5.12: The confusion matrix for the stingray-chillband (SRCB) sensor is presented. The validation is based on LOSOCV-22 for the
Free-Living Study, by detecting 8 activities.
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After merging the similar activities, the overall classification performance for predicting 5 activities is
86.98% (F-score). Thus, SRCB accelerometer outperforms the SR, followed by the CB. Based on the confusion
matrix (see Figure 5.13), the score for the predicted activities is: sitting 97%, standing 43%, walking on stairs
0%, walking 74%, and cycling 74%.

Figure 5.13: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-22 for the Free-Living
Study, by detecting 5 activities.
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5.3. VALIDATION MODEL B

The validation model B will assess the classification performance of the activities performed in the Free-
Living Study from 22 subjects, using data from the Controlled Study for the training model. The training
set consists of data from 40 subjects of the Controlled Study, while the test set consists of 22 subjects from
the Free-Living Study. For the final validation of our system, two different approaches will be investigated
for recognizing activities in an uncontrolled environment. The first is based on predicting 8 activities and
the second one is based on predicting 5 activities. The results for the validation model B are presented in
Figure 5.14.

Figure 5.14: The validation model B is evaluated for predicting 8 activities (top graph) and 5 activities (bottom graph) through different
metrics. The training set consists of 40 subjects from the Controlled Study, while the test set consists of 22 subjects from the Free-
Living Study. SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB dataset represents the
combination of stingray and chillband sensors.
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5.3.1. STINGRAY

Regarding the stingray (SR) sensor, the overall classification performance for predicting 8 activities is
30.33% (F1-score). Compared to validation model A, some classes perform better, such as dynamic stand-
ing (40%), walking downstairs (62%), and cycling 76%, but in total this model performs worse. Despite the
balanced dataset from the Controlled Study that is used for the training set, the performed activities dif-
fer with the ones from the Free-Living Study, resulting in activities misclassification. Based on the confusion
matrix (see Figure 5.15), the prediction score is: sitting (16%), dynamic sitting (43%), standing (17%), dynamic
standing (40%), walking upstairs (24%), walking downstairs (62%), walking (38%) and cycling (76%).

Figure 5.15: The confusion matrix for the stingray (SR) sensor is presented. The training set consists of 40 subjects from the Controlled
Study, while the test set consists of 22 subjects from the Free-Living Study. The validation is for the Free-Living Study, by detecting 8
activities.
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The overall classification performance for predicting 5 activities is 66.94% (F1-score). After merging sim-
ilar activities, the classification performance has been significantly improved. Overall, model B did not out-
perform the model A. However, the activities standing, walking on stairs, and cycling are predicted more
accurately, compared to model A. Based on the confusion matrix (see Figure 5.16), the prediction score is:
sitting (61%), standing (53%), walking on stairs (67%), walking (38%) and cycling (76%).

Figure 5.16: The confusion matrix for the stingray (SR) sensor is presented. The training set consists of 40 subjects from the Controlled
Study, while the test set consists of 22 subjects from the Free-Living Study. The validation is for the Free-Living Study, by detecting 5
activities.
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5.3.2. CHILLBAND

For the chillband (CB) sensor, the overall classification performance for predicting 8 activities is 48.63%
(F1-score). CB performs better than SR. However, compared to validation model A, this model performs
slightly worse (except the activity sitting). Based on the confusion matrix (see Figure 5.17), the prediction
score is: sitting (55%), dynamic sitting (34%), standing (25%), dynamic standing (30%), walking upstairs
(14%), walking downstairs (21%), walking (49%) and cycling (70%).

Figure 5.17: The confusion matrix for the chillband (CB) sensor is presented. The training set consists of 40 subjects from the Controlled
Study, while the test set consists of 22 subjects from the Free-Living Study. The validation is for the Free-Living Study, by detecting 8
activities.
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The overall classification performance for predicting 5 activities is 73.79% (F1-score). After merging simi-
lar activities, the classification performance has been significantly improved. Based on the confusion matrix
(see Figure 5.18), the true positive score for sitting is 73%, standing 43%, walking on stairs 28%, walking 49%,
and cycling 70%.

Figure 5.18: The confusion matrix for the chillband (CB) sensor is presented. The training set consists of 40 subjects from the Controlled
Study, while the test set consists of 22 subjects from the Free-Living Study. The validation is for the Free-Living Study, by detecting 5
activities.
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5.3.3. STINGRAY & CHILLBAND

The activity recognition based on the stingray-chillband (SRCB) sensor achieves 48.19% (F-score), which
is better compared to SR and slightly worse to CB. That means that accelerometer data from the stingray
sensor does not improve the classification performance, while the wrist-worn sensor, as a standalone device,
performs better in predicting activities in the Free-Living environment. Based on the confusion matrix (see
Figure 5.19), the prediction score is: sitting (48%), dynamic sitting (42%), standing (29%), dynamic standing
(37%), walking upstairs (33%), walking downstairs (53%), walking (45%) and cycling (83%).

Figure 5.19: The confusion matrix for the stingray-chillband (SRCB) sensor is presented. The training set consists of 40 subjects from
the Controlled Study, while the test set consists of 22 subjects from the Free-Living Study. The validation is for the Free-Living Study, by
detecting 8 activities.
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The overall classification performance for predicting 5 activities is 77.63% (F-score). Thus, SRCB ac-
celerometer outperforms the SR and CB, however performs worse than model A. Based on the confusion
matrix (see Figure 5.20), the score for the predicted activities is: sitting 77%, standing 53%, walking on stairs
65%, walking 45%, and cycling 83%.

Figure 5.20: The confusion matrix for the stingray-chillband (SRCB) sensor is presented. The training set consists of 40 subjects from
the Controlled Study, while the test set consists of 22 subjects from the Free-Living Study. The validation is for the Free-Living Study, by
detecting 5 activities.
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5.4. VALIDATION MODEL C

The validation model C is a combination of the previous models A and B and uses data from both the
Controlled and Free-Living Study for the training the classifier in order to validate the prediction for the ac-
tivities performed in the uncontrolled environment. Overall, model C performs better compared to model B,
but slightly worse compared to model A. This model is divided into training and test set, based on LOSOCV
for 22 subjects, in order to evaluate the system’s performance for recognizing the unseen activities on the test
set. Thus, the training set consists of data from 21 subjects (Free-Living Study), while the test set consists of 1
subject, repeating the validation for 22 times and calculating the average metrics. Additionally, data from the
learning model (15 subjects from the Free-Living Study) but also data from 40 subjects of the Controlled Study
are added to the training set in order to enhance the training. It is worth mentioning that for every subject of
the test set (22 subjects from the Free-Living Study in total), the similar subject from the training set that be-
longs to the Controlled Study is excluded in order to avoid any correlation issues that may lead to overfitting.
The reason for that is that a subject might have performed the activities in the Controlled and Free-Living
Study in a similar way. For the final validation of our system, two different approaches will be investigated
for recognizing activities in an uncontrolled environment. The first is based on predicting 8 activities and
the second one is based on predicting 5 activities. The results for the validation model C are presented in
Figure 5.21.

Figure 5.21: The validation model C is evaluated for predicting 8 activities (top graph) and 5 activities (bottom graph) through different
metrics. The validation is based on LOSOCV for 22 subjects from the Free-Living Study. The training set consists of 40 subjects from
the Controlled Study and 15 subjects from the Free-Living Study, while the test set consists of 22 subjects from the Free-Living Study.
SR dataset represents the stingray sensor, CB dataset represents the chillband sensor, and SRCB dataset represents the combination of
stingray and chillband sensors.
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5.4.1. STINGRAY

Regarding the stingray (SR) sensor, the overall classification performance for predicting 8 activities is
46.27% (F1-score). Similar to model A, some activities are misclassified. Based on the confusion matrix (see
Figure 5.22), the prediction score is: sitting (46%), dynamic sitting (54%), standing (1%), dynamic standing
(24%), walking upstairs (6%), walking downstairs (18%), walking (62%) and cycling (60%).

Figure 5.22: The confusion matrix for the stingray (SR) sensor is presented. The validation is based on LOSOCV-22 for the Free-Living
Study, by detecting 8 activities. The training set consists of 40 subjects from the Controlled Study and 15 subjects from the Free-Living
Study, while the test set consists of 22 subjects from the Free-Living Study.
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The overall classification performance for predicting 5 activities is 81.16% (F1-score). After merging sim-
ilar activities, the classification performance has been significantly improved. The class sitting receives the
most accurate prediction (93%). However, standing is still misclassified with sitting, while walking on stairs
is misclassified with walking. Based on the confusion matrix (see Figure 5.23), the true positive score for
standing 23%, walking on stairs 15%, walking 62%, and cycling 60%.

Figure 5.23: The confusion matrix for the stingray (SR) sensor is presented. The validation is based on LOSOCV-22 for the Free-Living
Study, by detecting 5 activities. The training set consists of 40 subjects from the Controlled Study and 15 subjects from the Free-Living
Study, while the test set consists of 22 subjects from the Free-Living Study.
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5.4.2. CHILLBAND

Concerning the chillband (CB) sensor, the overall classification performance for predicting 8 activities is
51.33% (F1-score). For this sensor, model C performs slightly better than model A. In particular, the wrist-
worn sensor performs better than the SR. However, some activities are still misclassified. Based on the con-
fusion matrix (see Figure 5.24), the prediction score is: sitting (44%), dynamic sitting (67%), standing (20%),
dynamic standing (31%), walking upstairs (3%), walking downstairs (10%), walking (56%) and cycling (68%).

Figure 5.24: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-22 for the Free-Living
Study, by detecting 8 activities. The training set consists of 40 subjects from the Controlled Study and 15 subjects from the Free-Living
Study, while the test set consists of 22 subjects from the Free-Living Study.
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The overall classification performance for predicting 5 activities is 84.97% (F1-score). After merging sim-
ilar activities, the classification performance has been significantly improved. The class sitting receives the
most accurate prediction (96%). However, standing is still misclassified with sitting, while walking on stairs is
totally misclassified with walking. Based on the confusion matrix (see Figure 5.25), the true positive score for
standing 40%, walking on stairs 9%, walking 56%, and cycling 68%.

Figure 5.25: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-22 for the Free-Living
Study, by detecting 5 activities. The training set consists of 40 subjects from the Controlled Study and 15 subjects from the Free-Living
Study, while the test set consists of 22 subjects from the Free-Living Study.
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5.4.3. STINGRAY & CHILLBAND

The activity recognition based on the stingray-chillband (SRCB) sensor achieves the best classification
performance for predicting 8 activities, which is 53.76% (F-score). Compared to SR and CB, the prediction for
dynamic sitting (71%) and walking (65%) has been improved. Compared to model A, the activities walking
and cycling perform worse. Based on the confusion matrix (see Figure 5.26), the prediction score is: sitting
(46%), dynamic sitting (71%), standing (21%), dynamic standing (35%), walking upstairs (4%), walking down-
stairs (8%), walking (65%) and cycling (67%).

Figure 5.26: The confusion matrix for the stingray-chillband (SRCB) sensor is presented. The validation is based on LOSOCV-22 for the
Free-Living Study, by detecting 8 activities. The training set consists of 40 subjects from the Controlled Study and 15 subjects from the
Free-Living Study, while the test set consists of 22 subjects from the Free-Living Study.
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The overall classification performance for predicting 5 activities is 86.41% (F-score). Thus, SRCB ac-
celerometer outperforms the SR and CB. Based on the confusion matrix (see Figure 5.27), the score for the
predicted activities is: sitting 96%, standing 44%, walking on stairs 8%, walking 65%, and cycling 67%.

Figure 5.27: The confusion matrix for the stingray-chillband (SRCB) sensor is presented. The validation is based on LOSOCV-22 for the
Free-Living Study, by detecting 5 activities. The training set consists of 40 subjects from the Controlled Study and 15 subjects from the
Free-Living Study, while the test set consists of 22 subjects from the Free-Living Study.
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5.5. DISCUSSION

The Free-Living Study includes data from 37 Subjects. Data from 15 subjects were used to train the learn-
ing model. Concerning the data processing, we used the same parameters with the ones from the Controlled
Study. The reason for selecting the same parameters concerning the window segment, feature selection, and
classification algorithm is to make a valid comparison between the two studies. Otherwise, it would be impos-
sible to investigate if there is any correlation between the activities performed in controlled and uncontrolled
environments. However, a further examination of these parameters could enhance the prediction of activities
performed in the Free-Living Study. For instance, the performance might be improved by selecting another
window segment or another classification algorithm. Furthermore, we investigated three different types of
annotation for the performed activities in the Free-Living Study, and we evaluated the oversampling method
SMOTE. We concluded that activity annotation type A (annotating 15 seconds for every performed activity
based on the taken picture) performs best, while the SMOTE method does not contribute to an increase in
the performance.

A limitation of this study is that the number of performed activities is not balanced. According to the
scope of this experiment, the subjects did not receive any instructions on what types of activities to perform
and for how long. As a result, most of the subjects spent the 8 hours of the experiment sitting at their desk.
Compared to the Controlled Study, the activities lying with face up, face down, to the left and to the right were
not performed, while the activity running was performed only from one subject for around 1 minute. Thus,
the activity running was excluded from the dataset of this study. Regarding the distribution of the performed
activities for the Free-Living Study, 38.39% of the data are for sitting, 42.5% for dynamic sitting, 3.03% for
standing, 7.88% for dynamic standing, 0.19% for walking upstairs, 0.18% for walking downstairs, 5.89% for
walking, and 1.92% for cycling. Based on the frequency of the performed activities which could bias the
positive predicted activities, we can estimate that there will be an overfitting for some classes. A solution to
this classification problem is to apply an oversampling method. However, we examined the SMOTE method
and we found that this does not improve the performance. Consequently, the learning model is affected with
overfitting for the activities dynamic sitting, dynamic standing, and walking. For instance, due to the small
amount of labeled data for the activities walking upstairs and walking downstairs, these were misclassified
with the activity walking.

Another limitation of this study concerns the activity annotation, which is of major importance in the
models for uncontrolled experiments. Even though we annotated sufficiently the real activities based on
pictures taken every 30 seconds (each activity was annotated for the last 15 seconds based on annotation type
A), this could be a misleading factor for the accurate annotation of all the performed activities. For instance,
there is a possibility that during 15 seconds, a subject might have performed more than one activity, such as
sitting on a chair, standing up, walking a bit and again sitting on a chair. During this time only one activity
can be annotated through the taken picture. This could have a great impact on annotating the activities that
might be performed in a similar way, such as sitting and dynamic sitting, but also standing and dynamic
standing. For this reason, we also investigate the activity recognition for classifying 5 activities, after merging
the similar ones.

For validating the prediction on activities performed in uncontrolled settings, we used 22 subjects from
the Free-Living Study for the test set. In particular, we used three validation models with different training
sets. Validation model A trains the classifier based on data from the Free-Living Study, validation model B
trains the model based on data from the Controlled Study, while validation model C trains the classifier using
data from both studies. Based on the evaluation metrics F1-score and Cohen’s kappa, which are commonly
suggested for evaluating imbalanced data, the validation model A performs better in predicting both 8 and 5
activities of the Free-Living Study, followed by the model C. Regarding the model B, even though the overall
performance does not outperform the other two models, it achieves a high score for the balanced accuracy
metric.

For predicting 8 activities, the averaged performance of model A outweighs the other two models. For
the model A, the F1-score for the SR sensor is 47.61%, for the CB is 50.98%, and for the SRCB is 53.72%. The
performance is decreased due to data imbalanced, which lead to activities misclassification. Based on the
SR confusion matrix, dynamic sitting receives 61% and is misclassified with sitting, standing and dynamic
standing. Similarly, walking is misclassified with walking upstairs and downstairs for the SR, but also for the
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CB and SRCB sensors. In contrast to SR, CB sensor performs better for almost all the activities except walking.
On the other hand, SRCB performs slightly better than the CB. That means that the combination of placing
accelerometers on the wrist and the chest can enhance the prediction for all the activities.

Additionally, the model A outweighs the models B and C for predicting 5 activities, after merging sitting
with dynamic sitting, standing with dynamic standing and walking upstairs with walking downstairs. In par-
ticular, the F1-score for the SR is 82.73%, for CB is 85.29% and for SRCB is 86.98%. The activity sitting can be
detected accurately through all the sensors with a score 97%. However, this class label suffers from overfitting
and is misclassified with standing. Similarly, walking is scored with 74% (SR and SRCB) but is misclassified
with walking on stairs. Finally, cycling is improved for the SRCB (74%), due to the combination of significant
features from both SR and CB.

The SRCB-based classification model A performs sufficiently well for predicting the activities performed
in the Free-Living Study. Even though some activities such as standing and walking on stairs cannot be pre-
dicted accurately, it is clear that the activity recognition in uncontrolled environments depends on training
the classifier with data from the free-living environment. Similar to the results of the Controlled Study, the
accuracy of our activity recognition model strictly depends on the purpose of the application. If the aim is to
predict some specific activities, the prediction score varies. For instance, a classifier for the cycling activity
recognition can be trained based on data from the Controlled Study. In particular, cycling receives a true pos-
itive score of 83% through the SRCB sensors for the validation model B. The reason is that cycling is the only
activity performed in a similar way for the controlled and uncontrolled environments, and thus, data from
the Controlled Study can be used to predict the specific activity in an uncontrolled environment. If the aim
of the application is to recognize activities using a single sensor we would suggest the CB for data recording.
Otherwise, the SRCB sensors can provide in general the most accurate activity recognition.

It is worth mentioning that the imbalanced data have significantly biased the prediction. The training
model of this study can be used to detect the activity sitting (including dynamic sitting) accurately. Otherwise,
more experiments have to be conducted in order to enhance the training set, by collecting data for more
activities (such as running and lying) and for a more significant time, for predicting all the activities precisely.
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CONCLUSIONS AND FUTURE

RECOMMENDATIONS

The thesis aims to answer the research question: "How accurately can we classify physical activity based
on wearable accelerometers placed on the wrist and chest in a controlled and in a free-living environment?".
Therefore, we conducted two experiments and we evaluated our model for activity recognition in a controlled
and uncontrolled environment. We recruited forty subjects and we asked them to wear two imec wearables
sensors; the SR (chest-worn) and the CB (wrist-worn) sensors. Both sensors record 3-axial acceleration. The
performance of our model was evaluated using accelerometer data from the SR, the CB and the SRCB (com-
bination of SR and CB) sensors.

Concerning the Controlled Study, we asked the subjects to perform 13 consecutive activities, including the
everyday activities: sitting, dynamic sitting, lying with face up and down, lying to the left and right, standing,
dynamic standing, walking upstairs and downstairs, walking, running and cycling. For the Free-Living Study,
37 subjects participated and performed the activities in an uncontrolled environment, without receiving any
supervision for what activities to perform. In total 8 activities were performed, including sitting, dynamic
sitting, standing, dynamic standing, walking upstairs and downstairs, walking and cycling, during working
hours.

After the data acquisition phase, we performed the data processing in order to extract valuable features
from raw accelerometer. In particular, we used a window segment with 5 seconds window length and 4 sec-
onds overlap and we extracted 52 features based on frequency and time domain. Additionally, we used the
Pearson’s correlation coefficient to remove highly correlated features, and the LinearSVC model to remove
features with low information gain. It is worth mentioning that each feature has a different weight in the
classification and varies per sensor, but also per study. In the Controlled Study, for instance, the calculated
feature for the mean values of y-axis contribute significantly in the performance of the CB, while the mean
distance between the y- and z- axes is the feature that contributes the most for the SR and SRCB sensors. On
the other hand, in the Free-Living Study, the magnitude among the three axes is the most significant feature
for the SR sensor. Overall, the most significant features are the mean, mean distance, magnitude, absolute
mean, standard deviation, max, min, and entropy. After the data processing, we performed the analysis us-
ing the Random Forest classifier. For the validation of our model, we used the Leave-One-Out-Subject Cross
Validation and we tested the prediction on activities before and after merging the similar ones.

In order to answer the research question sufficiently, we have examined the following four sub-questions.
For the first one “Can 3-axial accelerometer data, from a single wrist-worn or chest-worn sensor, be used to de-
tect simple everyday activities?”, we proved that a wrist-worn sensor can detect most of the everyday activities
accurately. For the Controlled Study, the activities sitting, standing, walking on stairs, running, and cycling
were detected accurately with 84.08% F1-score. Similarly, the activities sitting, standing and cycling were de-
tected accurately with 85.29% F1-score in the Free-Living Study. However, a sufficient answer to this question
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also depends on the purpose of the activity recognition and what activities have to be detected. The activities
walking upstairs and walking downstairs were not always predicted accurately and were misclassified with
the activity walking. A solution to this problem could be either the use of an additional sensor placed on a
different location on the body (e.g., thigh), or the recording of additional types of data (e.g., gyroscope). On
the other hand, a chest-worn sensor is recommended if the purpose of the application is to detect the lying
activities.

Regarding the question “How does combining accelerometer sensors, placed on the wrist and chest, affect
the accuracy of activity recognition? Does the classification performance improve for predicting certain types
of activity?”, we proved that accelerometer data recorded by two devices, one placed on the wrist and one on
the chest, can significantly enhance the activity recognition system for both studies. In particular, the SRCB
F1-score for predicting seven main activities in the Controlled Study is 91.83%, which outperforms the SR
(80.62%) and CB (84.08%). It is worth mentioning that the use of the SRCB sensor can significantly improve
the performance of the prediction model for the activity sitting. Additionally, the prediction for the activities
standing and cycling has also been improved in the Free-Living Study through SRCB sensors.

An appropriate answer to the question “How well does a sensor contribute to detecting both static and
dynamic activities, such as static sitting and dynamic sitting, by recording accelerometer data from a single
sensor?” depends on the task of monitoring. Regarding the Controlled Study, we showed that a wrist-worn
sensor could accurately detect the activities sitting and dynamic sitting, and especially, standing and dynamic
standing. However, in the Free-Living Study the prediction model is prone to misclassifying the activities
performed on a similar way, such as standing and dynamic standing, and thus, the SRCB is recommended for
enhancing the performance. It is worth mentioning that by merging the similar activities, the classification
performance can be significantly improved for both SR, CB, and SRCB sensors. Consequently, accelerometer
data from a single sensor are not sufficient enough to detect these types of activity in a real-life environment.

Another important outcome of the current work is our approach to investigate any possible correlation in
the activities performed in both controlled and uncontrolled environments. A clear answer to the question
“Is it possible to detect activities performed in uncontrolled settings, through a classification model that was
trained with data from a controlled environment?” is that most of the investigated activities are performed
on a different way and cannot always be detected. However, the activity cycling is an exception. Based on
the validation model B, cycling was accurately detected through SRCB using a classifier that was trained with
data from the Controlled Study. Thus, a valid answer for the above question depends also on the task of the
monitoring and what activities should be detected. However, an extra study is recommended to investigate
this question. A possible option could be to apply a filter on the raw accelerometer data from the Free-Living
Study, in order to remove any possible noise, and then use data from the Controlled Study to train the classi-
fier.

A limitation of the current work could be the activities performed in the Free-Living Study. Due to imbal-
anced data, it is clear that a further experiment has to be conducted in order to collect data for more activities,
recording data for more than 8 hours or even for multiple days. For instance, the activities performed during
the office hours can significantly differentiate from the activities performed during a weekend. Another limi-
tation is the activity annotation for the Free-Living Study. Even though the labeled activities were annotated
sufficiently based on the taken pictures, we decided to label each activity for 15 seconds (according to the
taken picture). Nevertheless, this approach might not be always accurate. A solution to this problem could
be the use of video recording for annotating all the performed activities, continuously. However, this will
increase the complexity of interpreting the activities.

Data from the Controlled Study were used in order to select the attributes for the data processing. How-
ever, we concluded that data from the Free-Living Study differentiate significantly, and thus, further research
on optimizing the data processing techniques is suggested. Hence, future work and optimization on the
Free-Living Study could potentially enhance the activity recognition even further. For instance, a window
size, more prominent than 5 seconds, could be preferred for extracting features in uncontrolled environ-
ments due to the complexity of the performed activities. Additionally, investigating another classifier might
enhance the prediction model in uncontrolled settings.
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Overall, wearable accelerometers, placed on the wrist and chest, can be significant accurate for predict-
ing everyday activities. For most of the performed activities, a combination of the sensors mentioned above
is recommended in order to enhance the classification performance. It is worth mentioning that the wrist-
worn sensor, as a standalone device, should be highly recommended for any system in activity recognition.
However, this also depends on the task of monitoring and the activities that must be detected. For instance,
the chest-worn sensor should be considered for detecting the activities lying (including lying with face up-
/down and lying to the left/right). Furthermore, the classification performance for predicting the activities
walking and walking on stairs might be increased by placing an additional sensor on the thigh or by combin-
ing accelerometer with gyroscope data. Finally, we conclude that future research should extensively focus on
activity recognition in uncontrolled environments for detecting real-life activities, performed in the wild.
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A. CONTROLLED STUDY:

LEARNING MODEL

A.1. FEATURES DISTRIBUTION

Figure A.1: SR features distribution for the learning model (Controlled Study).
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Figure A.2: CB features distribution for the learning model (Controlled Study).
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LEARNING MODEL

A.2. CONFUSION MATRIX

Figure A.3: The confusion matrix for the stingray (SR) sensor is presented. The validation is based on LOSOCV-15 for Controlled Study,
by detecting 13 activities.
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Figure A.4: The confusion matrix for the stingray (SR) sensor is presented. The validation is based on LOSOCV-15 for Controlled Study,
by detecting 7 activities.
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LEARNING MODEL

Figure A.5: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-15 for Controlled Study,
by detecting 13 activities.
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Figure A.6: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-15 for Controlled Study,
by detecting 7 activities.
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A. CONTROLLED STUDY:

LEARNING MODEL

Figure A.7: The confusion matrix for the stingray-chillband (SRCB) sensor is presented. The validation is based on LOSOCV-15 for
Controlled Study, by detecting 13 activities.
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Figure A.8: The confusion matrix for the stingray-chillband (SRCB) sensor is presented. The validation is based on LOSOCV-15 for
Controlled Study, by detecting 7 activities.
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B. CONTROLLED STUDY:

VALIDATION

B.1. ACTUAL VS PREDICTED: 13 ACTIVITIES

Figure B.1: Actual versus predicted activities for the test set in the Controlled Study. The prediction is based on SR sensor for detecting
13 activities.
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Figure B.2: Actual versus predicted activities for the test set in the Controlled Study. The prediction is based on CB sensor for detecting
13 activities.
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Figure B.3: Actual versus predicted activities for the test set in the Controlled Study. The prediction is based on SRCB sensors for detecting
13 activities.
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B.2. ACTUAL VS PREDICTED: 7 ACTIVITIES

Figure B.4: Actual versus predicted activities for the test set in the Controlled Study. The prediction is based on SR sensor for detecting 7
activities.
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VALIDATION

Figure B.5: Actual versus predicted activities for the test set in the Controlled Study. The prediction is based on CB sensor for detecting 7
activities.
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Figure B.6: Actual versus predicted activities for the test set in the Controlled Study. The prediction is based on SRCB sensors for detecting
7 activities.
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C. FREE-LIVING STUDY:

LEARNING MODEL

C.1. FEATURES DISTRIBUTION

Figure C.1: SR features distribution for the learning model (Free-Living Study).
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Figure C.2: CB features distribution for the learning model (Free-Living Study).
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C. FREE-LIVING STUDY:

LEARNING MODEL

C.2. CONFUSION MATRIX

Figure C.3: The confusion matrix for the stingray (SR) sensor is presented. The validation is based on LOSOCV-15 for Free-Living Study,
by detecting 8 activities.
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Figure C.4: The confusion matrix for the stingray (SR) sensor is presented. The validation is based on LOSOCV-15 for Free-Living Study,
by detecting 5 activities.
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C. FREE-LIVING STUDY:

LEARNING MODEL

Figure C.5: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-15 for Free-Living Study,
by detecting 8 activities.
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Figure C.6: The confusion matrix for the chillband (CB) sensor is presented. The validation is based on LOSOCV-15 for Free-Living Study,
by detecting 5 activities.
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LEARNING MODEL

Figure C.7: The confusion matrix for the stingray-chillband (SRCB) sensor is presented. The validation is based on LOSOCV-15 for Free-
Living Study, by detecting 8 activities.
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Figure C.8: The confusion matrix for the stingray-chillband (SRCB) sensor is presented. The validation is based on LOSOCV-15 for Free-
Living Study, by detecting 5 activities.
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D. FREE-LIVING STUDY:

VALIDATION MODEL A

D.1. ACTUAL VS PREDICTED: 8 ACTIVITIES

Figure D.1: Actual versus predicted activities for the test set in the Free-Living Study. The prediction is based on SR sensor for detecting
8 activities.
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Figure D.2: Actual versus predicted activities for the test set in the Free-Living Study. The prediction is based on CB sensor for detecting
8 activities.
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VALIDATION MODEL A

Figure D.3: Actual versus predicted activities for the test set in the Free-Living Study. The prediction is based on SRCB sensors for
detecting 8 activities.
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D.2. ACTUAL VS PREDICTED: 5 ACTIVITIES

Figure D.4: Actual versus predicted activities for the test set in the Free-Living Study. The prediction is based on SR sensor for detecting
5 activities.

Figure D.5: Actual versus predicted activities for the test set in the Free-Living Study. The prediction is based on CB sensor for detecting
5 activities.
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Figure D.6: Actual versus predicted activities for the test set in the Free-Living Study. The prediction is based on SRCB sensors for
detecting 5 activities.
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