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ARTICLE INFO ABSTRACT

Ferrofluid bearings have been demonstrated to be very interesting for precision positioning systems. The friction
of these bearings is free of stick-slip which results in an increase of precision. More knowledge on the friction
behaviour of these bearings is important for there application in precision positioning systems. This paper de-
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M_ag“etizs ) monstrates that the friction of a ferrofluid bearing can be modelled by a viscous damper model and provides a
ﬁ;iizllllsingampmg basic model to predict the friction behaviour of a bearing design. The model consists of a summation of a Couette

flow with a Poiseuille flow such that there is no net fluid transport under the bearing pads. The model is
experimentally validated on a six degrees of freedom stage using ferrofluid bearings. A stiffness in the form of a
closed-loop control gain is introduced in the system to create a resonance peak at the desired frequency. The
damping coefficient can be identified from the peak height of the resonance, since the peak height is the ratio of
total energy to dissipated energy in the system. The results show that the newly derived model can be used to
make an estimate of the damping coefficient for small(~ 1 mm) stroke translations. Furthermore, the model

shows that the load capacity of a ferrofluid pocket bearing is affected during sliding.

1. Introduction

The repeatability of precision positioning systems can be improved
by reducing the effects of stick-slip in system [1]. Stick-slip is the result
of a spontaneous jerking motion which is introduced when overcoming
the static friction coefficient between two sliding contacts. Bearing
concepts like magnetic bearings, fluids bearings and flexures don't have
this stick-slip effect but have other drawbacks like complexity, cost, or
the storage of energy while moving.

Ferrofluid bearings, first proposed by Rosensweig et al. [2], provide
a cost-effective alternative to these more conventional bearing systems.
The bearing consist of a magnet and a ferrofluid that are attracted to
each other forming a thin layer of ferrofluid inbetween the permanent
magnet and the opposing bearing surface (Fig. 1).

The permanent magnet makes it a natural candidate for combina-
tion with Lorentz actuators, as demonstrated in various systems [3-15].
The result is a bearing that has distinct advantages for precision posi-
tioning systems, such as inherent stability, viscous friction, linear ac-
tuation, absence of external equipment, and no discernible stick slip
effects. Furthermore, the carrier fluid can be chosen to suit the oper-
ating environment and the design allows for a compact, lightweight and
cost effective solution.

Ferrofluid bearings have been successfully incorporated in precision
positioning systems. Cafe [9,10] has built a six degrees of freedom(DoF)
stage with nanometer accuracy, demonstrating that the bearing can be
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used in high precision positioning systems. Mok [13], Habib [11] and
van Moorsel [15] have successfully implemented ferrofluid bearings in
combination with low-cost sensor solutions, to capitalize on the cost-
effectiveness.

Ferrofluid bearings can be divided into pressure bearings and pocket
bearings. The load capacity of a ferrofluid pressure bearing is solely
developed by the pressure in the fluid developed by the magnetic
bodyforce [16]. The load capacity and stiffness behaviour of ferrofluid
pocket bearings have recently been described in Refs. [17-19]. Though,
this previous work does not yet include the effect of translating the
bearing, nor does it describe the friction of the bearing. Due to this
uncertainty that is introduced in the model, Café [9] and Habib [11]
have put a large safety factor on the friction forces during the design of
the system, resulting in a situation where the friction forces are dom-
inating the disturbance forces.

This paper describes and experimentally validates a basic model of
the in-plane friction behaviour of a ferrofluid bearing. It will do so by
deriving a model describing the viscous damping forces of a ferrofluid
bearing. The model will be experimentally validated on a demonstrator
stage.

2. Theoretical bearing model

The forces that act on a ferrofluid bearing are found by deriving the
flow field between two surfaces from the general Navier-Stokes
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(a) The cross-section of a ferrofluid bearing.
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b) Actuator forces and friction forces.

Fig. 1. a shows how a load bearing ring is created by the permanent magnet
and ferrofluid, while the iron top-plate increases the magnetic field intensity a
the underside. b shows the actuation force and counteracting friction forces for
a constant speed.

equation. The flow field is then used to determine the shear stresses in
the system which can be related to the friction forces. An analysis of the
viscosity of ferrofluids is added to verify the used viscosity model.

2.1. Viscosity

The viscosity of a ferrofluid changes when subjected to a magnetic
field [20]. This happens due to two different effects: rotational viscosity
and particle chain formation. The following section discusses the im-
pact of these effects on the rheology of the fluid.

2.1.1. Rotational viscosity

The effect of rotational viscosity is caused by the alignment of the
particles to the magnetic field. This results in a larger effective viscosity
when the vorticity is perpendicular to the magnetic field. The viscosity
of the fluid using spherical particles can be modelled with the following
relation that uses 7), for carrier viscosity, ¢ for volumetric concentra-
tion, B for the angle between magnetic field and vorticity, u, for
magnetic permeability of vacuum, m for magnetic moment of a ferro-
fluid particle, H for magnetic field intensity, k for Boltzmann constant
and T for temperature [21].

_ 5 3 a—tanha . o
n= 770(1 + 2¢ + 2¢a+tanhoc81n ﬁ)
_ HomH

kT

(€)]

The first term of this equation presents the viscosity of the carrier
fluid, the second term presents the increase in viscosity due to the
suspension of particles and the third term presents the change in visc-
osity due to the magnetic field. For large values of a this relation has a
maximum value of:

- S+ 3s)=
77max - 77c(1 + 2¢ + 2¢) _775(1 +4¢) (2)

The viscosity of a ferrofluid is often given in the absence of a
magnetic field, the relation for the viscosity then reduces to the Einstein
formula [22]:

5

A typical value for the increase in viscosity caused by the effect of
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rotational viscosity can be calculated by combining relation (2) and (3)

and assuming a typical concentration of about ¢ = 8%vol.

Dmae _ 1+4¢ 1+ 4x008
o 1+3¢ 1+ 2008

=11
4

This relation shows that the increase in viscosity due to the mag-
netic attraction is in the order of 10%.

2.1.2. Particle chain formation

The particle chain formation, often referred to as the magneto-
viscous effect [23], is the formation of chain like structures in the fluid
due to the magnetic interaction between the particles. These structures
are more difficult to rotate in the fluid resulting in a larger resistance to
shear which results in an increase in effective viscosity [24]. Applying a
magnetic field on the fluid increases the resistance to rotation even
more resulting in an even further increase in viscosity. Shear forces in
fluid might break the chains in the fluid resulting in a shear thinning
effect. The formation of chains can be investigated by analysing the
dipolar interaction parameter A which is given with the following re-
lation that uses M, for particle magnetization strength and V for particle
volume.

_ Mo =ﬂ0M02V°<d3
Ak Td? 24kT

()

Chain like structures will develop in the fluid when this parameter
becomes larger than one. Increasing this parameter results in longer
chains in the fluid [25]. The formula shows that A increases with the
diameter d of the particles resulting in only the larger particles con-
tributing to the formation of chains. It has been shown that even a small
concentration of large particles in the fluid can cause a high increase of
viscosity [26]. For the models presented in this paper, it is key to choose
a ferrofluid at which the dipolar interaction parameter is lower than
one for all suspended magnetic particles.

2.2. Flow field

The geometry of the ferrofluid seal consists of a thin layer of fluid
which is held fixed on the magnet against a moving counter surface (see
Figs. 1 and 2). The derivation of the flow field starts with the general
Navier-Stokes equations for incompressible Newtonian fluids, with an
additional term (u,M;\/H) describing the magnetic body forces. The
assumption of an Newtonian fluid is reasonable for magnetic fluids with
a small effect of rotational viscosity and a small dipolar interaction
parameter A. The relation uses u for fluid velocity, p for pressure, , for

viscosity and ? for body forces.
p(ﬁ + E)-VE)) =-Vp + V% + u,M,VH +f
v ()

For a typical bearing application, the Reynolds number in the flow
can be shown to be small as is done in the following relation that uses L
for the length of the bearing, U for its speed and p is the density of the
ferrofluid.

ferrofluid

e
/S S S s

L

Fig. 2. Two large plates(L > h) moving with respect to each other with velo-
city u and separated with a ferrofluid film with height h.
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PUL _ 1380 x 1073 x 102
n 0.15

Re = =009x1

7

This demonstrates that it is reasonable to neglect the inertial terms.
This leads to the Stokes equation given in equation (8) where the
magnetic body force is the only body force.

Vp = 9\V*U + M,V H
Vu=0 ®

The flow field between the bearing pads is modelled as a fluid be-
tween two large parallel plates (L > h) that slide relative to each other,
as shown in Fig. 2. Equation (8) can be further reduced to equation (9)
by noting that the flow is parallel to the x-axis and by assuming that
both the pressure and magnetic field are constant across the film height.

Equation (9) shows that the pressure is the result of the viscous
forces and magnetic body forces.

Fuc_10
9z2 nox

— u MH
(P — ueMH) 10)

For the sake of simplicity, the magnetic body force and the pressure
are replaced by the following substitution.
Fue _ 100

8z 73 ax

1D

Integrating relation (11) twice over the height and introducing the
no slip boundary conditions at z = 0, u = 0, and z = h, u = U results in
the following relation for the velocity profile:

1o

U
= 22— hz) + —z
2776x( )

Ux
h

12)

Translating the bearing causes no net fluid transport under the
bearing pads due to the magnetic body force that keeps the ferrofluid in
place. This can be used to calculate a value for %* by setting the in-
tegral of the fluid velocity over the fly height h to zero.

N «
f u dz = _Laipp + Ez =0

0 127 ox h (13)
and thus:
" _ U

ox a4

Which, after substituting in (12), results in the flow field:
2(z 2

x=3U—-| - — =<
3 h (h 3) as)

The resulting flow field presented in equation (15) is plotted in
Fig. 3. The flow field shows a summation of a Couette flow with a
Poiseuille in such a way that there is no net fluid transport. The Couette
flow is caused by the translational motion and the Poiseuille flow is the
result of the magnetic body force.

2.3. Friction force

The friction force can be calculated by integrating the shear stress of
the fluid on the bearing surface. The shear stress in the fluid is defined
by the velocity gradient between the bearing surfaces and can be de-
termined using the flow field given by relation (15).

. ouy
“T Ve (16)
-3
=n— 3—— - =
oz ho3 a”n
—6 2(5 _ 1)
RAAVEEE 18)
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Fig. 3. This figure presents the modelled flow field of a ferrofluid bearing
during a translational motion, as described in (15). A Couette flow is combined
with a counteracting Pouiseuille flow. The flow-field is normalized with respect
to the velocity at z = h.
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Fig. 4. This figure presents the normalized shear stress profile in-between the

two bearing surfaces of a ferrofluid bearing, as described in (18). The shear
Th

stress is normalized for 7" = U
A graphical representation of the shear force in-between the two
bearing pads is given by Fig. 4. The shear force at the surface of the
moving bearing is defining the force on the moving surface. The value
of this shear force can be calculated for a value of z = h.
U

Tox = 49—

h (19)

The magnetic body force retaining the ferrofluid at the magnet is
found in the factor four, describing the additional forces introduced.
The friction at the moving surface can be calculated by integrating the
shear stress over the area of the bearing surface.

P}"ric = szdA
'[ (20)
UA
=42
Th (1)
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From equation (21) it is apparent that a ferrofluid bearing behaves
like a linear viscous bearing. So the damping coefficient can be de-
termined by dividing the friction force by the velocity.
n2

h

c= F}"ric
U

(22)

2.4. Sealing capacity during translation

According to equation (11) the pressure distribution across a seal is
influenced by the viscous effect during translation. A model of this ef-
fect can be developed by combining this relation with relation (14).

ny

9
—p - u,MH) =6
o ® — Ko ) w2

(23)

Based on the work presented in Ref. [17], the pressure difference
across a seal can now be calculated the following relation where I, is
the width of the seal in the sliding direction.

v

hzdx

lseal
Ap = u,MAH — -/(; 6 24

= kgMOH = 62 e 25)

In the case of a pocket bearing as introduced in Ref. [17], the
maximum load capacity can be modelled with equation (26) where A,
stands for the surface area of the enclosed and pressurised pocket of air
carrying the load. The relation shows that shows that the load capacity
reduces during a translational motion.

nu
F, = uyMAHA, — 6WIMIAP 26)
This relation for the load capacity of a ferrofluid pocket bearing is
an extension of the relation presented in Ref. [17] for situations where
the bearing is sliding with a velocity U.

3. Experimental method

The damping is both predicted based on the theory presented in the
previous chapter and measured using an experimental set-up.
Validation of the predicted damping coefficient with the experimental
set-up is used to demonstrate that the proposed model is reasonable to
predict the friction of a ferrofluid bearing or seal.

3.1. Damping coefficient prediction

Based on the theory presented in the previous chapter, the damping
coefficient can be predicted by measuring the viscosity, contact surface
area and fly height of the bearing. The fly height is measured by taking
a foto of the air-gap with a scale next to it. The known scale length is
used as a reference in the photograph and related to the length of a
single pixel. Then by using a pixel counter the air-gap is measured at
several points. The contact area is measured by resting the moving mass
against two endstops on a white acrylic sheet. The mass is removed and
the imprint left by the bearings is photographed next to a known scale.
The length of a pixel is derived from the scale and the resulting surface
area is measured using the software ImageJ.

3.2. Experimental set-up

The experimental validation will be performed on an improved
version of the (2 + 4) degrees of freedom stage of Cafe et al. [9,10].
This is a system that can do large translational motions in x- and y-
direction while having the other four degrees of freedom constrained
through closed-loop control (Fig. 5). The system is chosen because the
different parameters defining the dynamic behaviour (mass, damping
and stiffness) are properly defined. The mass is solely defined by the
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Printed Circuit Board

Capacitive Sensor

Plane mirror

Support frame

10cm
Fig. 5. An overview of the general layout of the demonstrator stage on which
the experimental validation will be performed. In this figure the moving mass is
opaque to better showcase the internal components. The magnets are mounted
on the moving mass and are used as a ferrofluid bearing and magnetic field
source for actuation. The PCB contains the force generating coils. The in-plane
measurements are done with three laser interferometers and the out-of-plane
measurements are done with three capacitive sensors underneath the moving
mass. The plane mirrors are used as a reference for the laser interferometer and
mounted on the moving mass. The support frame is mounted on a vibration
isolation table.

moving mass of the system, the damping is solely defined by the friction
of the ferrofluid bearings and the stiffness is solely defined by the ap-
plied control stiffness.

The moving mass is used as a reference for the sensors and contains
three square magnets, as shown in Fig. 5. The magnets provide the
magnetic field both for the ferrofluid bearing and Lorentz actuation.
The stage has an in-plane movement range of 10mmx10 mm and the
rotation is constrained through control action.

The system has six sensors to sense the principal degrees of freedom
of a rigid body. The in-plane motions and rotation are measured by
interferometers and the out-of-plane motion and tilts are measured by
capacitive sensors. The in-plane position is limited by the sensor re-
solution of 10 nm. The position is controlled with a bandwidth of
200Hz, while the rotation is controlled with 100Hz. The out-of-plane
motions and tilts are measured by three capacitive sensors limited by
the noise level of 2.54 nm at a sampling frequency of 10 kHz. They are
constrained through closed-loop control using three out-of-plane
Lorentz actuators and with a bandwidth of 200 Hz.

The actuation is performed by two sets of three Lorentz actuators
embedded in a multi-layered PCB. Fig. 6 shows how the coils are con-
figured to create resultant in-plane and out-of-plane forces for a non-
uniform magnetic field. The in-plane control actuation has a motor
constant of 0.145 NA!, The motor-constant of the experimental set-up is
determined with a load-cell test in the direction of the movement. The
test is conducted by applying a current to the in-plane coils, such that
the moving mass enacts a force in line with the load cell. The current is
increased to map the data points, which are then fitted to find the motor
constant.

The closed-loop system is identified by supplying a pseudo random
white noise signal with an amplitude of 1 to 10 um at the input. The
input and output signals are measured for 300s and used to construct the
FRF according to Welch's method [27].

The moving mass has a fly height of 0.18 + 0.05mm corresponding
to a volume of 0.2 mm ferrofluid per bearing and a total weight of
0.185kg. It is supported by three square ferrofluid bearings using the
magnet Q-20-20-05-N from Supermagnete.
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(a) Cross-section of a ferrofluid bearing.
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(c) Cross-section of a ferrofluid bearing (d) Top view of

coils
Fig. 6. The coils create a resultant out-of-plane(6a) and in-plane(6c) force as a
result of the Lorentz forces and designed coil configuration. Fig. 6d and b shows
the coil configuration from a top-view, with the three coil-sets corresponding to
three ferrofluid bearings.

3.3. Damping coefficient by dynamic response

The system can be described as a mass-spring-damper system with
transfer function (27), using the results from section 2.3 that a ferro-
fluid bearing behaves like a linear viscous damper. Where the mass is
denoted as m, the damping coefficient as c and the stiffness value as k.

X,(s) _ 1
F(s) ms®2+cs+k

(27)

Fig. 7 shows the response of the system discribed by equation (27)
in the case of an over- and underdamped mass-damper-spring system.
At low frequencies the stiffness of the system will determine the dy-
namic behaviour, while at high frequencies the inertia of the moving
mass will dominate. The damper-line limits the resonance peak height,
by dissipating energy as a result of the damping forces.

The value of system parameters can be determined by finding the
pole locations in the frequency response function(FRF). According to
equation (27), the pole location of the damping is described by equation
(28).

WDem =

m (28)

However, the ferrofluid bearing system is underdamped, with a pole
expected at approximately 0.5Hz. The identification through a FRF
suffers from limits in exposure time and assumptions made in the signal
processing, leading to inaccurate measurements at low frequencies.
Therefore a control stiffness k is added to the system expanding it to a
mass-spring-damper system as presented in Fig. 7.

The damping coefficient can be expressed in system parameters
according to (29). It is now expressed in one known parameter, mass;
one chosen parameter, stiffness; and one unknown parameter, damping
ratio.

¢ =2¢0Vkm

The damping ratio can be related to the Q-factor, which can be
defined as the ratio of stored energy to dissipated energy.

(29)

1
2Q
Combining (29) and (30) gives:

¢= (30)
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Fig. 7. This figure shows a typical response for an underdamped (¢ < 1) and an
overdamped (¢ > 1) mass-spring-damper system. At low frequencies the stiff-
ness of the system dominates, while at high frequencies the inertia dominates.
The amplitude of the resonance is related to the dissipated energy of the system,
a result of the damping forces.

Jiem
Q

(€8]

For measurement purposes the Q-factor can be defined as the fre-
quency-to-bandwidth ratio of the resonator, where f, is the resonant
frequency and /\f is the full width at half maximum(FWHM) band-
width.

5
Af

In the system used for this research, stiffness is created by adding a
control gain(K},) in the closed-loop control scheme. Fig. 8 shows the
block diagram of a typical closed-loop feedback controller, where G (s)
is the plant model and K, the control stiffness. The transfer function
describing the response of this system is shown in (33).

Q= (32)

Xo(s)
Xi(s)

G(s)C(s)
1+ G(s)C(s)

(33)

The plant of a ferrofluid bearing can be modelled as a mass-damper
system and the closed-loop transfer function becomes (34).

Kp

ms? + cs + K,

Xo(s) _
Xi(s)

(34

Which can be rewritten in the form of (27), by noting that
F(s) = K, X;(s).

Xj +~ E

Xo

Y

>

C(s) G(s)

Fig. 8. The block diagram of closed-loop feedback control, with plant model
G (s) and controller gain K,,. X;(s) is the reference signal, E (s) is the error signal,
F(s) is the plant input signal and X, (s) is the output signal.
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Table 1

This table shows the measured parameters and modelled in-plane damping
coefficient of a ferrofluid bearing. The damping coefficient is calculated ac-
cording to (22).

Quantity Value

System: 7 [kgm~1s] 150 + 15x 1073
A [m?] 220 + 10x 1076
h [m] 0.18 + 0.05x 1073
¢ [Nsm™!] 22+08

’IIIIIIIII'IHHI
10

F

1

0.5

Fig. 9. The imprint left by the ferrofluid bearings on a smooth surface com-
pared to a 1:0.5 mm scale. In this image the red and green has been filtered out
to increase contrast between the ferrofluid and background.

X,(s) _ X, (5) _ 1
F(s) K, Xi(s) T oms?+ s + K,

(35)

The Q-factor can now be measured according to (32).

4. Results

The damping coefficient that is calculated using equation (22), is
presented in Table 1 together with the different values that are used to
calculate the coefficient (see Fig. 9 for surface area). The predicted
damping coefficient for the three bearings in the system is
2.2 + 0.8Nsm~.

Fig. 10 shows the frequency response for closed-loop control stiff-
ness values, ranging from 5 X 103 up to 30 X 10°Nm~L. Fig. 11 shows the
different damping coefficients corresponding to the different control
stiffnesses shown in of Fig. 10. Fig. 12 shows the effect of different input
amplitudes on the damping coefficient for a constant stiffness. The
measured damping coefficient of the complete system based on the
dynamic response is found to be 2.97 + 0.45Nsm~".

5. Discussion

From the measured dynamic behaviour of the system presented in
Fig. 10, it has been shown that the system can be considered to be a
perfect mass-spring-damper system. At low frequencies the response
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Fig. 10. The frequency response of the closed-loop system with added control
stiffness Kj,. The black dotted line resembles the modelled damping coefficient.
The peaks being close to the black dotted lines demonstrates that the model is in
line with the measurements.

5 -

O Cryyrm
—-—-0.95 confidence bounds

O3

40
f, Hz

45 50 55 60 65 70

Fig. 11. The damping coefficient determined via FWHM are displayed as a
function of the resonance bandwidth. The dotted line represent the 0.95 con-
fidence bound of the model. The numbers correspond with the measurement
labels of Fig. 10.

converges to the applied control stiffness, while at high frequencies the
responses converge to the inertia of the mass. In-between, a resonance
peak is present of which the peak height decays as would be expected
from a viscous damper model.

The uncertainty of the modelled damping coefficient presented in
Fig. 11 is the result of multiple measurement uncertainties. The figure
furthermore shows no non-linearities in the trend or magnitude of the
damping coefficients. Some differences can be explained by the as-
sumed constant viscosity, which is not necessarily the case for a fer-
rofluid [20]. Fig. 12 shows that the damping coefficient stays constant
for constant stiffness and varying input amplitude and therefore varying
input sliding velocity. This altogether demonstrates that the assumption
of a constant viscosity for a ferrofluid bearing is fair under these con-
ditions.

The peak heights in Fig. 10 scales with the stiffness as expected over
the measured region. This implies that the damping coefficient stays
constant for the used input amplitudes and stiffness. However, the
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Fig. 12. The effect of a variation in the input signal amplitude on the frequency

response with a constant stiffness of K, = 10 x 10°. The amplitude varies from 1
up to 10 um. This proves the linearity for 1-10 pm.

measured damping constant is systematically higher than the modelled
coefficient. This implies that a systematic error or another undescribed
effect occurs in the method of determining the modelling parameters. A
likely candidate for a systematic error is the fluid film thickness, due to
the small distance and lack of stiff connection.

The results are measured for stroke lengths up to ~ 1 m, as a result
the maximal input amplitude of 10 um with a maximal Q-factor of
~ 100. So for large stroke(¢ > 1mm) additional experiments need to be
performed.

The theoretical bearing model presented in this paper requires that
the magnetic body force is strong enough to keep the ferrofluid in place.
For large speeds, it might be possible that the body force is not large
enough to pull back the fluid. In the case of a ferrofluid pocket bearing,
this results in leakage of air through the seal, resulting in a permanent
change in fly height.

6. Conclusion

A ferrofluid bearing is a low-cost, relatively simple, concept that has
been proven to have no discernible stick-slip effects and is therefore
well suited for precision positioning systems.

The model as presented in Ref. [17] is expanded to include the
magnetic body force, ensuring a Pouiseuille flow counteracting the
Couette flow resulting in no significant fluid-loss during motion. The
resulting flow field is used to derive the in-plane damping coefficient of
a ferrofluid bearing. A ferrofluid bearing has no in-plane stiffness, by
adding a control stiffness it's dynamic behaviour can be modelled as a
mass-damper-spring system.

The ferrofluid bearings in the identified system behave like a linear
viscous damper for the utilized input amplitudes. Although the viscosity
is non-linear as a function of the speed, the expanded model proves a
valid approach at quantifying the damping coefficient of a ferrofluid
bearing.

The validity of the friction model demonstrates that the load ca-
pacity is affected by the translational motion of the bearing. The
magnetic body force used for creating load capacity is then additionally
used for keeping the fluid in place. This results in a lower net load
capacity during translation. It is important to take this effect into ac-
count during the design of the bearing.

The presented model allows for better design of precision posi-
tioning systems using FF bearings.
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