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ABSTRACT ARTICLE HISTORY

The baseball pitch is a repetitive, full-body throwing motion that Received 29 March 2023
exposes the elbow to significant loads, leading to a high incidence Accepted 25 January 2024
of elbow injuries. Elbow injuries in pitching are often attributed to KEYWORDS

high external valgus torques as these are generally.considered to pe External valgus torque;

a good proxy for the load on the Ulnar Collateral Ligament. The aim baseball; injury prevention;
of the study is to contribute to elbow load monitoring by developing UCL injuries; kinetic chain
a prediction model based on the pelvis and trunk peak angular

velocities and their separation time. Eleven male youth elite baseball

pitchers (age 17 £ 2.2 years) threw 25 fastballs at full effort off

a mound. Two-level varying-intercept, varying-slope Bayesian mod-

els were used to predict external valgus torque based on (inter)

segmental rotation in fastball pitching with pitcher’s weight and

height added to strengthen the individualisation of the prediction.

The results revealed the high predictive performance of the models

including a set of kinematic parameters trunk peak angular velocity

and the separation time between the pelvis and trunk peak angular

velocities. Such an approach allows individualised prediction of the

external valgus torque for each pitcher, which has a great practical

advantage compared to group-based predictions in terms of injury

assessment and injury prevention.

Introduction

The baseball pitch is a full-body throwing motion that, due to its repetitive nature,
exposes the elbow to significant loads (Fleisig et al., 1995; Seroyer, Nho, Bach, Bush-
Joseph, et al., 2010b). This leads to a high incidence of overused elbow injuries among
baseball pitchers at all levels of play (Chen et al., 2001; Erickson et al., 2015; Fleisig &
Andrews, 2012). The injury aetiology seen in youth and adult pitchers has been linked to
high elbow external valgus torques (Aguinaldo & Chambers, 2009; Chen et al., 2001;
Wilson et al.,, 1983). The external valgus torque imparts a tensile force to the medial
elbow structures (Cain et al., 2003; Safran et al., 2005), which in combination with
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repetitive loading results in injuries to the medially located ulnar collateral ligament
(UCL). This indicates that external valgus torque can be used as a proxy of elbow load
(Anz et al,, 2010; Fortenbaugh et al., 2009). Thus, continuous and prospective elbow load
monitoring, both in training and in game, plays an essential role in pitchers’ performance
enhancement whilst minimising the risk of elbow injuries (Vanrenterghem et al., 2017).

To assess the external valgus torque, it is important to understand pitching mechanics.
Pitching mechanics can be described by the two well-known biomechanical principles;
the summation of speed principle, also known as the kinetic chain, and the principle of
optimal coordination of partial momenta (Putnam, 1993). Both principles consider the
human body as a linked segment model and explain the biomechanics of pitching in
terms of peak angular velocities of body segments and their intersegmental timing.
Overhead throwing motion, such as baseball pitching, is more likely to follow the kinetic
chain (Putnam, 1993). Regardless of the principle, the high end-point velocities imparted
to the ball depend on the contribution of all segments (Leenen et al., 2022).

In the pitching motion, energy is generated in the driving leg and transferred through
the stride leg to the pelvis (de Swart et al., 2022). While part of the energy in the pelvis is
transferred back to the stride leg to form a stable base around which the pelvis and trunk
can rotate (A. Aguinaldo & Nicholson, 2022), most energy is transferred via the trunk up
to the throwing arm (Seroyer, Nho, Bach, Bush-joseph, et al., 2010a). In such complex
sequential movement, pelvic and trunk kinematics play an essential role in transferring
the momentum generated by the lower extremities to the upper extremity. Optimal
proximal-to-distal timing between the pelvis and trunk results in the maximised ball
velocity at the most distal end (Putnam, 1993; Seroyer, Nho, Bach, Bush-Joseph, et al.,
2010b). The timing between the pelvis and trunk peak angular velocities is also referred
to as separation time. If this kinematic sequencing or timing is not optimal, energy is
dissipated into the upper extremity which results not only in decreased ball velocity
(Putnam, 1993; van der Graaff et al., 2018), but also the potentially increased risk of
injuries (Urbin et al., 2013).

Manipulation of biomechanical parameters within the kinetic chain may affect the
external valgus torque and help in managing the risk of excessive UCL loading. By
increasing trunk peak angular velocity, pitchers may throw faster, but with an increased
external valgus torque (Cohen et al., 2019). There is likely a threshold above which the
exceeded external valgus torque represents a significant injury risk. The efficiency of the
kinetic chain may contribute to the reduction of external valgus torque levels at this
critical point while still maintaining high levels of ball speed and overall pitching
performance (Anz et al., 2010).

We expect that the levels of external valgus torque will differ between pitchers
due to variations in anthropometric measures, pitching technique, level of play,
and within-individual load variability (Fleisig et al., 1999; Van Trigt et al., 2022).
Multilevel modelling is well-suited for the analysis of repeated measurements that
are considered to be ‘clustered’ within individual pitchers (Gomaz et al., 2021).
Such measurements are assumed to be independent as the observations within
a cluster are more likely to be similar than observations from different clusters.
Since regression- and ANOVA-based techniques do not meet this assumption,
they are not fully appropriate for dealing with this type of data structure.
Multilevel modelling techniques for repeated measurements allow us to analyse
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the relationships between data collected at the pitcher- or group-level, and data
collected on variables that change with trials at the unit- or individual-level
(Cornelius et al., 2007).

The aim of the study is to contribute to monitoring the external valgus torque in
baseball pitching by developing a prediction model based on the pelvis and trunk peak
angular velocities and their separation time. It is hypothesised that external valgus torque
for an individual pitcher can be predicted based on the pelvis and trunk peak angular
velocity and separation time between them. In addition, we expect that the model
including both pelvis and trunk peak angular velocity and their separation time will
have the best predictive performance.

Materials and methods
Participants

Eleven male Dutch national (AAA) youth elite baseball pitchers participated in the study,
with a mean age of 17.4 (+2.2) years, mean body mass of 80.6 (£11.7) kg, mean body
height of 1.86 (+6.3) m and mean ball speed was 34.0 + 1.4 m/s (76.6 + 3.2 mph). Only
participants without present musculoskeletal injuries and who did not have musculos-
keletal injuries in the last 6 months were included in this study. Participants gave written
consent to use the data information for analysis and publication after being fully
informed. If participants were under 16 years, their parents or guardians were informed
about the study and required to sign an informed consent form. This research was
conducted as part of a larger study (Van Trigt et al., 2022) and was performed in
accordance with the Declaration of Helsinki and the local ethics committee. The local
ethics committee of the Faculty of Behavioral and Movement Sciences (VCWE)
approved the study protocol (reference number: VCWE2019-033).

Procedure

Data collection was performed in an indoor movement laboratory at the Royal
Netherlands Football Association. The participants wore sneakers, athletic stretch shorts,
catching gloves, and no shirts. Forty-three reflective markers were attached with double-
sided tape on the bony landmarks. Participants performed their regular warming-up,
which contained stretching, drills, and several warming-up pitches. Subsequently, they
threw several pitches from the mound to become familiar with the research setup. The
participants were instructed to throw 25 fastball pitches at full effort towards a squared
strike zone (height 0.64 m; width 0.38 m). The pitching rubber was attached to the top of
the mound at 0.55 m above the ground and had a distance of 18.44 m to the home plate.
The time between each pitch was not controlled but regulated by the pitcher himself, like
in a normal game.

Data acquisition

Full body position data of the pitchers were collected with a VICON eight-camera
motion capture system. Data were sampled at 400 Hz (model V5; Vicon Motion
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Systems Ltd., Yarnton, UK). The ball speed was measured with a radar gun positioned
next to the strike zone (Stalker Radar, Plano, TX, USA).

Data processing

Three-dimensional position data of the fourteen bony landmarks were used in this study
(Table 1). The position data were interpolated with a third-order cubic spline polynomial
and filtered with a fourth-order Butterworth filter with a cut-off frequency of 12.5 Hz. To
calculate the segment angular velocities and the elbow valgus torque an anatomical
coordinate system was constructed for the pelvis, trunk, upper arm, forearm, and hand
according to the ISB recommendations (Wu et al., 2005).

The segment angular velocities were computed directly from the rotation matrices
following the method described in the study of Zatsiorsky (Zatsiorsky, 2002).
Subsequently, the Euclidean norm was calculated over all three different axes. The
exact moments of peak angular velocities were found analytically by fitting a second-
order polynomial function to 11 measured data points. These data points included five
samples before and after the samples closest to the maximum angular velocity. The
separation time was calculated as the time interval between the pelvis and trunk peak
angular velocities (van der Graaff et al., 2018).

Elbow joint torques were calculated based on the top-down method using the
Newton-Euler equation of motion, starting in the hand of the throwing arm. The
segment centre of mass position and the moments of inertia were estimated according
to Zatsiorsky (2002) and de Leva, (1996). The baseball was modelled with a mass of 0.145
kg attached to the hand. The mass linearly reduced by 10% over the last ten samples
(0.025 s) before ball release. Ball release was defined as the moment the wrist exceeded the
position of the elbow in the forward direction. The elbow joint coordinate system was
expressed in the anatomical coordinate system of the forearm, located in the middle
between the medial and lateral humeral epicondyle. The time series of external elbow
valgus torque was determined for each individual pitch, covering the duration from foot
contact to ball release. Subsequently, the peak external valgus torque was derived from
this time series data. The time series of the segment angular velocities and external valgus
torque were visually checked for errors and mistakes.

Table 1. Bony landmarks used in the study.
Marker number Bony landmarks

Third proximal interphalangeal*

Ulnar process styloid

Radial process styloid

Lateral humeral epicondyle**

Medial humeral epicondyle

Acromion

Xiphoid process

Incisura jugularis

7th cervical vertebrae

8th thoracal vertebrae

1M& 12 Left and right anterior superior iliac spine
13 &14 Left and right posterior superior iliac spine

LooNOTULED WN =

—-
o
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Statistical methods and modelling

For the i-th throw, let y;, xi;, Xi2, Xi3, X4 and x;s denote the external valgus torque, pelvis
peak angular velocity, trunk peak angular velocity, separation time, weight and height
respectively. Set x; = (Xi1, Xi2, xi3) and u; = (X4, x;5). We aim to model the relationship
between y; and (x;, 4;). The simplest type of model for this is the linear model given by

ilBy, B, 0 iridj\/'(ﬁo + B'xi + y'ui, 0%) (1)

where the symbol 9 denotes ‘independently distributed as’.

However, note that the data from repeated measurements such as in this study have
the structure in which observations on an individual level (pelvis and trunk peak angular
velocities, separation time, external valgus torque) are nested within baseball pitchers on
a group level. As such, a simple linear model like Equation (1) will not be able to take into
account that throws by the same pitcher tend to be more similar than throws by different
pitchers. This phenomenon is illustrated in Figure 1, where we have also included weight
and height to see how external valgus torque is affected by these characteristics.

This figure strongly suggests a two-level linear model, with both varying intercepts and
varying slopes. The need for such a model is most easily seen from the panel with “Trunk
PAV’. If we would fit a single line through the data, this would imply a negative relation-
ship between external valgus torque and trunk peak angular velocity (Trunk PAV),
whereas for each individual player, this relationship is positive. This can be seen as an
instance of Simpson’s paradox, well known in statistics. Specifically, we propose the
following model:

Pelvis PAV [deg/s] Trunk PAV [deg/s] Separation time [ms]
70 70 70
60 / 60 22— 60 —
g2 g Bt C—3% o ¢
» e ——
50 50 — 50 A
—_—— T e
Z'40 40 40
= ®
230 30 30
» 500 600 700 800 800 900 1000 1100 ~ -50 0 50 100
3
i Weight [kg] Height [m]
©
% player
c70 70 P1
% P10
P11
Weo 60 ! - p2
1 ? 1 : P3
50{ | 50 g i
]| | -~ P6
40 40 P7
| | -k
] [ P9
30 30
70 80 90 100 180 185 190

Figure 1. Exploratory data analysis for the relation between external valgus torque and pelvis peak
angular velocity (Pelvis PAV), trunk peak angular velocity (Trunk PAV) and Separation time. In each
subpanel, the influence of one predictor on external valgus torque is displayed. In the upper three
panels, least-squares fits have been superimposed (separately, for each player).



6 L. GOMAZ ET AL.
ind
yi|(x1,...,oc],[31,...,[j’j,az“l /\/(yi—i—y’ui,oz) (2)

By = o) + ﬁj[i]xi

We have J =11, the total number of pitchers in the study, and j[i] = k if the i-th throw
corresponds to j-th pitcher in the dataset. We follow the Bayesian approach to statistics,
where unobserved quantities get assigned a prior distribution, reflecting the (lack of)
information we have about their values before collecting the data. We impose

a0 9 N(0,02), By, ... By fid A5 <0,0§I3X3) and y~N(0,0,,). The symbol i

denotes ‘independent and identically distributed as’. We took default values from rsta-
narm (version 2.21.1) (Goodrich et al., 2020), which means o, = 03 = 0, = 2.5. Taking
mean-zero priors is justified as we standardised (i.e., transformed to zero-mean and unit
standard deviation) each of the predictors before fitting the model. Also for g, 0, and o
we took the default prior mean-one Exponential distribution from rstanarm (Goodrich
et al., 2020).

We used leave-one-group-out cross-validation (LOGO-CV) to select the model with
the best predictive performance. LOGO-CV is a specific type of k-fold cross-validation
that utilises data from each individual pitcher as a test set. The number of folds, therefore,
equals the number of pitchers. For every fold, the model is trained on data from J-1
pitchers and tested on the data from the one left-out pitcher. Models were compared
according to their expected log-predictive density (elpd) as described in the work of
Vehtari (Vehtari, Simpson, Gelman, Yao, & Gabry, 2015; Vehtari et al., 2017).

We used posterior predictive distributions to generate data samples whose average is
then compared to the real data. We interpret the generated data as the data sample that
we might collect tomorrow if the data collection process remains the same as it initially
was. Posterior predictive checks were used to test the performance of the model and
visually inspect how much generated data samples match the observed ones.

Results

A total of 240 throws by 11 pitchers were included in the analysis. The number of pitches
varied from 19 to 25 throws per pitcher. Descriptive statistics of included variables are
shown in Table 2.

Expected log-predictive density (elpd) was a chosen measure of model fit and it
was subsequently used to compare models for model selection. The difference in
elpd of the fitted two-level varying-intercept, varying-slope Bayesian models is

Table 2. Descriptive statistics for the variables included in the

analysis.
Variables Mean + Standard Deviation
Pelvis peak angular velocity [deg/s] 669.87 £ 99.06
Trunk peak angular velocity [deg/s] 964.85 + 68.61
Separation time [ms] 32.70 + 22.98
Weight [kg] 80.47 £ 11.11
Height [m] 186.26 + 5.85

External valgus torque [Nm] 52.76 £ 9.59
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elpd difference to model TSWH

20

PWH

elpd difference

PTWH.

SWH

Figure 2. Estimates of absolute elpd difference (dot) using leave-one-group-out cross-validation.
Vertical error bar for each model indicates the standard error of the elpd difference estimates. The
order on the x-axis follows the ranking starting with the model with best predictive performance on
the left. Predictors included in the analysis are pelvis peak angular velocity (P), trunk peak angular
velocity (T), separation time (S), pitcher’s weight (W) and height (H).

shown in Figure 2. Models include various combinations of observed kinematic
predictors (P—pelvis peak angular velocity, T—trunk peak angular velocity, S—
separation time) with the addition of pitcher’s weight (W) and height (H) to all
the models. The ordering of the models in Figure 2 reveals that the model
including a set of predictors TSWH showed the best predictive performance,
and it is therefore the selected model. Table 3 shows parameter estimates from
the selected model TSWH, based on a table generated by shinystan (Gabry, 2018).
The small elpd differences between the selected model TSWH and the second
ranked model TWH indicate almost similar performance in predicting external
valgus torque.

The performance of the final model TSWH was tested through a posterior
predictive check. In Figure 3 the average of the data samples generated from the
posterior predictive distributions is compared to the observed data. If the model is
a good fit for the data, then observed and simulated data should be aligned. The
posterior predictive check shows that the observed data are more dispersed com-
pared to the average of the generated data samples from the posterior predictive
distributions. Bayesian conditional R? value is 0.916 (95% CI [0.899, 0.931]), and
marginal R? value 0.927 (95% CI [0.847, 0.969]), where CI is a confidence interval.
The marginal R considers only the variance of the fixed effects, while the condi-
tional R* takes both the fixed and random effects into account (Gelman et al.,
2019).
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Posterior predictive check for the final model TSWH
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Figure 3. Posterior predictive checks compare the observed outcome variable y to the average of
simulated datasets y_rep from the posterior predictive distribution for the selected model TSWH. The
model includes a set of predictors of trunk peak angular velocity (T), separation time (S), pitcher’s
weight (W), and height (H). Bayesian conditional R? value is 0.916 (95% Cl [0.899, 0.931]), and the
marginal R? value 0.927 (95% Cl [0.847, 0.969]), where Cl is a confidence interval. The marginal R?
considers only the variance of the fixed effects, while the conditional R? takes both the fixed and
random effects into account (Gelman et al., 2019).

Discussion and implications

Poor pitching mechanics (Davis et al., 2009) and overloading of the pitching arm can
negatively affect pitching performance and at the same time put the elbow joint at great
risk of injuries (Fleisig et al., 2006; Fortenbaugh et al., 2009). Therefore, estimation of the
external valgus torque based on pitching mechanics is an important step towards
monitoring the elbow load in the field. This study shows promising results of Bayesian
hierarchical models in the prediction of the external valgus torque, used as a proxy of
elbow load, based on (inter)segmental rotation in fastball pitching.

The results show that it is possible to predict the elbow external valgus torque based on
the pelvis and trunk kinematics and separation time. Although it was hypothesised that
the model including all three parameters would have the best performance, according to
LOGO-CV the best predictive model is TSWH which includes peak trunk angular
velocity, separation time, weight, and height (Bayesian conditional R* value is 0.916,
marginal R value is 0.927). The reason why the pelvis angular velocity was not included
in the final model might be explained by the fact that the trunk angular velocity contains
information from the proximal pelvis segment according to the proximal-to-distal
sequence. The contribution of the separation time to the prediction of the external valgus
torque indicates the importance of optimal timing between the pelvis and trunk segments
in the kinetic chain for safe and efficient pitching. However, it is yet unknown what the
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‘optimal’ separation time is. The results in this study showed that certain pitchers
exhibited a positive correlation between separation time and external valgus torque,
while others demonstrated a negative or no correlation (Figure 1). Oyama et al. (2014)
did not find a relationship between the separation time and external valgus torque on
group level. This might indicate that the optimal timing is individually depended, with
the proviso that the pelvis and trunk are in sequence. The trunk can produce a lot of
power due to its segmental mass, although proper timing is needed for optimal con-
tribution to the ball speed (A. Aguinaldo & Escamilla, 2019; Naito et al., 2014). The
increase in trunk rotation does not only increase the ball speed, but it increases the
external valgus torque as well (Cohen et al., 2019). In line with our results, several studies
showed a relationship between trunk kinematics and the external valgus torque
(A. L. Aguinaldo & Chambers, 2009; A. Aguinaldo & Escamilla, 2019; Cohen et al,,
2019). In addition, we showed that it is possible to predict the external valgus torque for
individual pitchers based on their trunk peak angular velocity and the separation time.

Predictions of the external valgus torque based on the trunk peak angular velocity and
the separation time are important in relation to elbow injuries. Manipulation of these
biomechanical parameters with training increases the ball speed (van der Graaff, 2019)
and may decrease the external valgus torque (Cohen et al., 2019). However, a pitcher
throwing according to an optimal kinetic chain, with a reduced level of external valgus
torque is still at risk of sustaining an injury due to repetitive pitching. Therefore,
monitoring the external valgus torque is important for managing the risk of excessive
elbow loading. Taking into account that the values of external valgus torque vary among
pitchers of different ages, levels of play (Fleisig et al., 1999), and the variability within-
individual pitchers (Van Trigt et al., 2022), understanding the elbow loading for each
pitcher based on his individual characteristics and pitching mechanics may be the base
for the development of an ‘early warning system’ for safe and efficient pitching.

This paper introduces the application of Bayesian hierarchical models to repeated
measurements of pitching kinematic and temporal parameters. Such models account for
the within-pitcher similarity and at the same time allow for the gradation of differences
between the pitchers in the prediction of the external valgus torque. The small difference
in elpd between the selected model TSWH and the model TWH ranked second in terms
of LOGO-CV refers to their similar predictive performance (Figure 2). In addition,
posterior predictive checks reveal similar model fit for the TWH model compared to
the TSWH model. From the practical point of view, this means that monitoring external
valgus torque is already possible based on the single kinematic variable (trunk peak
angular velocity). However, the separation time is related to the efficiency of the kinetic
chain and its breakdown may be an indicator of the fatigue (Erickson et al., 2016).
Therefore, considering the practical relevance of both parameters for elbow load mon-
itoring over a longer period, we select the predictive model including trunk peak angular
velocity and separation time as the final one. The comparison between the Bayesian and
frequentist approach to multilevel analysis and fitting the final TSWH model is discussed
in the Appendix.

One of the limitations of this study is the inclusion of only fastball pitches.
Studies have shown that the elbow load is lower in the change-up or breaking
balls (Fleisig et al., 2016); however, the link between the torso kinematics and
elbow load has not been investigated yet. Furthermore, the current study had
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a very low sample size (n=11) and included repeated measurements from a single
data collection event. The low sample size could affect Bayesian mixed models in
terms of overfitting and imprecise inferences. However, the selected model per-
formance criteria based on elpd can help mitigate these issues. The lack of long-
itudinal data collection limits the detection of patterns in elbow loading based on
pitching mechanics. A larger data sample including a wider range of age groups
and levels of play may improve the predictive performance and lower the uncer-
tainty in predicted external valgus torque. Collecting longitudinal data, including
reported injuries, would allow us to link the loading on the elbow joint to injury
occurrence in individual pitchers. This information can be used as a base for
setting a pitcher’s injury threshold. If the elbow loading exceeds the estimated
threshold, the pitcher will likely have increased injury risk. Such information may
help coaches in training subscription and modification of the pitching technique
that leads to reducing the external valgus torque and therefore the risk of elbow
injury.

The final model proposed in this paper considered the practical relevance of
trunk kinematics and separation time between the pelvis and trunk in managing
injury risk and shows its potential utilisation for elbow load monitoring on the
field. Trunk peak angular velocity and the separation time can be recorded with
wearable sensors, like inertial measurement units (Gomaz et al., 2021; Lapinski
et al., 2019). Such data recorded with sensors may be used as input for the
proposed model and provide actionable insight for injury prevention in baseball
pitching.

Conclusion

In this study, a model has been proposed to predict elbow load based on the
pelvis and trunk peak angular velocities and separation time between them.
Application of Bayesian hierarchical models on data including the trunk peak
angular velocity and the separation time between the pelvis and trunk peak
angular velocities show promising results for the prediction of the external valgus
torque in fastball pitching. Such an approach allows individualised prediction of
the external valgus torque for each pitcher, which has a great practical advantage
compared to group-based predictions in terms of injury assessment and injury
prevention.
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Appendix

In the Appendix we compare the outcome of the multilevel linear model fitted within
frequentist framework with the outcome of the Bayesian hierarchical model presented in the
paper.

We used a frequentist approach to fit the final model (TSWH) including trunk peak angular
velocity, separation time, pitcher’s weight, and height as predictors. The analysis was performed
using the Ime4 R package (version 1.1.26). When fitting a multilevel model within the frequentist
framework using the Ime4 package, parameter estimation is done by performing restricted
maximum likelihood (REML) estimation. The extended summary including corresponding
p-values from the ImerTest R package is listed in Figure Al.

The residual within-pitcher standard deviation is estimated as 0.28620. The estimated standard
deviations of the pitcher intercepts are 0.58907. The estimated standard deviations of the pitcher
slope for Trunk_PAV and Separation_Pelvis_Trunk are 0.37041 and 0.03299 respectively. The
fixed regression slopes for Weight and Height are significant, meaning taller and heavier pitchers
have higher external valgus torque. The error term (Variance) for the slope of Trunk_PAYV is
0.137205 and for the slope of Separation_Pelvis_Trunk is 0.001088.

Unlike the frequentist approach, the Bayesian approach accounts for all the uncertainty in the
parameter estimates when predicting varying intercepts and slopes. We used rstanarm R package
(version 2.21.1) to obtain simulations that summarize uncertainty about coefficients and predic-
tions. Bayesian estimation is performed via Markov Chain Monte Carlo (MCMC) estimation
approach whose each step involves random draws from the parameter space.

The summary of the final TSWH model whose parameter estimates are listed in Table 3 is
shown in Figure A2.

The estimated standard deviations of the pitcher intercepts are 0.626, which is larger than the
ML estimate (0.58907). The estimated standard deviations of the pitcher slopes for Trunk_PAV
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Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: Elbow_Adduction_MER ~ @ + (1 | Participant) + (@ + Trunk_PAV +
Separation_Pelvis_Trunk | Participant) + Weight + Height
Data: dT

REML criterion at convergence: 148.5
Scaled residuals:

Min 10 Median 30 Max
-3.5323 -0.5629 ©.0464 ©.5520 3.5031

Random effects:

Groups Name Variance Std.Dev. Corr
Participant (Intercept) @.347006 ©.58907
Participant.l Trunk_PAV @.137205 @.37041
Separation_Pelvis_Trunk ©.001088 ©.83299 -1.00
Residual @.081509 0.28620

Number of obs: 24@, groups: Participant, 11

Fixed effects:

Estimate Std. Error df t value Pr(=1tl)
Weight ©@.8200 9.2114 1@.1735 3.879 0.00297 **
Height ©.3935 B.2087 8.6233 1.886 @.89337 .

Signif. codes: @ “***’ 9.001 “**' 0.01 ‘*’' .05 ‘.’ 9.1 * ' 1

Correlation of Fixed Effects:
Weight
Height -0.408

Figure A1. Outcome of the linear mixed-effects TSWH model using R package Ime4. TSWH model
includes following set of predictors: trunk peak angular velocity, separation time between pelvis and
trunk peak angular velocity, pitcher's weight and height.

and Separation_Pelvis_Trunk are 0.353 and 0.092, both larger than the ML estimates (0.37041 and
0.03299 respectively).

The difference in estimates between frequentist and Bayesian approaches lies in the difference in
estimation approaches. While Ime4 uses in this case restricted maximum likelihood (REML)
estimation, rstanarm performs full Bayesian inference via MCMC. REML tends to underestimate
uncertainties due to relying on point estimates of hyperparameters. On the other hand, the
Bayesian approach propagates the uncertainty in the hyperparameters throughout all levels of
the model (Goodrich et al., 2020).

The advantage of multilevel models fitted within the Bayesian framework is a specification of
prior distributions over the regression coefficients and any unknown covariance matrices. This can
help in stabilizing computation as well as in incorporating important information into the analysis
that is not included in the data.

One of the limitations of multilevel models fitted with rstanarm compared to lme4 is the
computation speed. Fitting models with REML tends to be much faster than fitting a similar
model using MCMC.
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Table 3. Parameter estimates for the final model TSWH. Predictors are trunk peak angular velocity
(Trunk_pav), separation time (separation), pitcher’s weight (weight) and height (height). The standard
deviation of the errors is called sigma and the variance-covariance matrix of the pitcher-specific
deviations from the common parameters is called sigma.

mean sd 2.5% 25% 50% 75% 97.5%

Weight 0.8 0.2 0.3 0.6 0.8 0.9 1.2
Height 0.4 0.2 0 0.3 04 0.5 0.8
b [(Intercept) Participant: P1] -0.3 03 -0.8 -0.4 -0.3 -0.1 0.3
b [(Intercept) Participant: P10] 0.3 0.5 -0.6 0 0.3 0.6 1.2
b [(Intercept) Participant: P11] 0.2 0.1 -0.1 0.1 0.2 0.2 0.4
b [(Intercept) Participant: P2] 0.6 0.4 -0.1 0.4 0.6 0.9 14
b [(Intercept) Participant: P3] -0.8 0.4 -1.5 -1 -0.8 -0.6 -0.1
b [(Intercept) Participant: P4] 0.1 0.2 -0.4 -0.1 0.1 0.2 0.5
b [(Intercept) Participant: P5] 0.1 0.3 -0.5 -0.1 0.1 0.3 0.8
b [(Intercept) Participant: P6] 0 0.2 -0.5 -0.2 -0.1 0.1 0.4
b [(Intercept) Participant: P7] -04 0.2 -0.9 -0.6 -0.4 -0.3 0

b [(Intercept) Participant: P8] 1.1 0.1 0.9 1.1 1.1 1.2 14
b [(Intercept) Participant: P9] 0.5 0.3 -0.1 0.3 0.5 0.7 1.1
b [Trunk_PAV Participant: P1] 0.7 03 0.2 0.5 0.7 0.8 1.2
b [Separation Participant: P1] 0 0.1 -03 -0.1 0 0 0.2
b [Trunk_PAV Participant: P10] 0.4 0.1 0.1 0.3 04 0.5 0.7
b [Separation Participant: P10] 0 0.1 -0.2 -0.1 0 0 0.1
b [Trunk_PAV Participant: P11] 0.3 0.2 -0.1 0.1 0.3 0.5 0.8
b [Separation Participant: P11] 0 0.1 -0.2 -0.1 0 0 0.2
b [Trunk_PAV Participant: P2] 0.1 0.1 -0.2 0 0.1 0.2 0.4
b [Separation Participant: P2] 0 0.1 -0.2 -0.1 0 0 0

b [Trunk_PAV Participant: P3] 0.3 0.1 0 0.2 0.2 0.3 0.5
b [Separation Participant: P3] 0 0.1 -0.2 0 0 0 0.2
b [Trunk_PAV Participant: P4] 0 0.2 -04 —0.1 0 0.1 0.4
b [Separation Participant: P4] 0 0.1 -0.1 -0.1 0 0 0.1
b [Trunk_PAV Participant: P5] 0.2 0.1 -0.1 0.1 0.2 0.2 0.4
b [Separation Participant: P5] 0 0.1 -0.1 0 0 0.1 0.2
b [Trunk_PAV Participant: P6] 0.1 0.2 -0.3 —0.1 0.1 0.2 0.5
b [Separation Participant: P6] 0 0.1 -0.2 0 0 0 0.1
b [Trunk_PAV Participant: P7] 0.2 0.2 -0.1 0.1 0.2 0.4 0.6
b [Separation Participant: P7] 0 0.1 -0.2 -0.1 0 0 0.1
b [Trunk_PAV Participant: P8] 0 0.2 -0.3 —0.1 0 0.1 0.3
b [Separation Participant: P8] 0 0.1 -0.1 0 0 0 0.2
b [Trunk_PAV Participant: P9] 0.1 0.1 -0.2 0 0.1 0.2 0.4
b [Separation Participant: P9] 0 0 -0.1 0 0 0 0.1
sigma 0.3 0 0.3 0.3 0.3 0.3 0.3
Sigma [Participant:(Intercept),(Intercept)] 0.4 0.2 0.1 0.3 0.3 0.5 0.9
SigmalParticipant:Trunk_PAV,Trunk_PAV] 0.1 0.1 0 0.1 0.1 0.2 0.3

Sigma [Participant:Separation,Trunk_PAV] 0 0 -0.1 0 0 0 0
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stan_lmer
family: gaussian [identity]
formula: Elbow_Adduction_MER ~ @ + (1 | Participant) + (@ + Trunk_PAV +

Separation_Pelvis_Trunk | Participant) + Weight + Height
observations: 240
Median MAD_SD
Weight 0.8 0.2
Height 0.4 8.2

Auxiliary parameter(s):
Median MAD_SD
sigma ©.3 0.@

Error terms:

Groups Name Std.Dev. Corr
Participant (Intercept) @.626
Participant Trunk_PAV ©0.353

Separation_Pelvis_Trunk @.992 -0.20
Residual @.2%9

Num. levels: Participant 11

Figure A2. Outcome of the Bayesian hierarchical TSWH model using R package rstanarm. TSWH model
includes following set of predictors: trunk peak angular velocity, separation time between pelvis and
trunk peak angular velocity, pitcher's weight and height.
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