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Preface

This thesis was written as part of the Master’s programme in Robotics at Delft University of Technology.
It explores how variations in reward function design can lead to diverse and sometimes unexpected
behaviors in robotic reinforcement learning, using a simulated precision pouring task as a case study.

The topic proved to be a strong match for my interests, combining the structured nature of robotics and
control with the experimental and often surprising dynamics of reinforcement learning. | particularly
enjoyed working in a space where small changes in system design could lead to meaningful differences
in behavior—making the project both technically challenging and intellectually engaging.

I would like to express my sincere gratitude to my supervisor, Luka Peternel, for his clear guidance, con-
structive feedback, and continued support throughout the project. | also want to thank Roberto Giglio
from Polytechnic University of Milan for the valuable discussions and for his help with the simulation
environment and the liquid pouring extension in Isaac Lab.Lastly, | thank my friends for their support
and encouragement throughout the more challenging moments of this thesis.

J. van Buuren
Delft, June 2025
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Exploring the Impact of PPO Cost Functions on
Skill Mutation in Robotic Pouring Tasks

Jannick van Buuren

Supervised by: Luka Peternel

Abstract—This paper explores how deliberate modifications to
reward function design in the reinforcement learning can induce
skill mutations in robotic reinforcement learning, specifically
within a precision pouring task. Using a simulated Franka Emika
Panda robot in NVIDIA Isaac Lab, we evaluate 25 distinct
reward configurations composed of weighted terms for effort,
accuracy, and velocity. The resulting policies exhibit a wide range
of behaviors—from fast and efficient pours to novel skills such
as rim cleaning, mixing, and watering—demonstrating that small
adjustments in reward structure can yield significant variations
in learned strategies. Our analysis demonstrates that even small
changes in reward structure can lead to significant shifts in policy
behavior, facilitating both task-optimal and creative, potentially
transferable strategies. To validate this concept, we implement
it using the Proximal Policy Optimization (PPO) algorithm,
showing that reward design alone—without altering the learning
architecture—can drive meaningful skill diversification. This ap-
proach offers promising directions for adaptive control, transfer
learning, and multi-objective optimization in robotic systems.

Index Terms—Reinforcement learning, Robotic manipulation,
Proximal policy optimization, Reward function design, Simula-
tion

I. INTRODUCTION

In recent years, the quest for more intelligent, adaptive,
and efficient robotic systems has intensified, driven by the
growing demand for automation across manufacturing [1, 2,
3], healthcare [4, 5], and other sectors [6, 7, 8]. Reinforcement
Learning (RL) has emerged as one of the most important
parts of this effort: by framing control problems as sequential
decision-making under uncertainty, RL enables agents to learn
complex behaviors through trial-and-error interaction with
their environment [9, 10]. At each timestep, the agent observes
the current state, executes an action according to its policy, and
receives a scalar reward. Over many episodes, it refines its
policy to maximize the expected sum of discounted rewards,
thereby acquiring skills optimized for long-term success.

To effectively model these decision-making scenarios, RL
commonly employs the framework of a Markov Decision
Process (MDP), which provides a mathematical structure to
describe problems where outcomes are partly random and
partly under the control of the decision maker [11]. An MDP
is defined by a set of states representing all possible config-
urations of the environment, a set of actions constituting the
various decisions available to the agent, a transition function
specifying the probability of moving from one state to another
given a particular action, and a reward function assigning
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Fig. 1: Reward Mutation Framework. A Gaussian distribution (left) samples
weight configurations for the reward function (effort, accuracy, velocity),
which are used to train PPO policies. The resulting policies exhibit diverse
skill mutations (right), including fast/slow pouring, rim cleaning, mixing,
and watering behaviors. This illustrates how deliberate reward variations
systematically induce behavioral diversification.

numerical values to these transitions. A critical aspect of
this framework is the discount factor, which balances the
significance of immediate versus future rewards.

A carefully crafted reward function can foster the emergence
of precise, high-performance behaviors—such as those needed
for robotic manipulation—by reinforcing incremental progress
toward complex goals. Reward shaping techniques, which
augment the base reward with auxiliary incentives, often
accelerate convergence. Yet, if these additional rewards are
not properly balanced, agents may adopt suboptimal or overly
greedy strategies that maximize short-term gain at the expense
of robustness and generalization [10]. Thus, understanding
how variations in reward design influence learned behaviors
is critical for deploying RL in real-world, safety-critical ap-
plications.

Robotic systems have successfully leveraged RL to solve
a diverse range of tasks, from discrete control problems such
as pick-and-place and stacking to more complex continuous
control challenges like robotic assembly [12], air hockey [13,
14], and dexterous object manipulation[15, 16, 17]. These
examples underscore RL’s ability to generate robust, high-
performing behaviors through trial-and-error learning. High-
profile demonstrations, including OpenAI’s robotic hand solv-
ing a Rubik’s cube [16] and RL systems for precision pouring



[15] highlight RL’s potential for tasks that demand fine motor
control and adaptive coordination. Within this context, the
pouring task stands out as an especially compelling benchmark
for investigating the role of reward function design in shaping
learned behaviors. Unlike binary success criteria seen in stack-
ing or placement tasks, pouring involves balancing multiple
continuous objectives—such as avoiding spillage, reducing
effort, and maximizing efficiency—making it highly sensitive
to how learning is incentivized.

Although RL has achieved impressive results in robotic
tasks, ranging from pick-and-place and assembly to dexterous
in-hand manipulation [18, 16, 15], most prior work evaluates
performance under a single, fixed reward structure. This leaves
unexplored the question of whether and how deliberate mod-
ifications to the reward function might induce qualitatively
different skills or “mutations” of behavior. In biological sys-
tems, mutations drive adaptation and diversification. In RL,
we hypothesize that reward mutations can similarly produce
a spectrum of control strategies, each suited to different
trade-offs among efficiency, speed, precision, and safety.

RL methods traditionally assume a predefined reward func-
tion and treat the policy as a black box, requiring agents to
learn through interaction with the environment to discover
which behaviors yield high returns. This often results in
sample-inefficient learning, especially in complex tasks where
rewards are sparse or delayed. However, in many practical
applications, reward functions are hand-crafted by users, which
opens the door to exposing their internal structure to the learn-
ing agent. Rather than relying solely on environmental feed-
back, an agent can benefit from understanding the reward logic
itself—such as temporal dependencies, conditional sequences,
or subgoals—thereby improving learning efficiency and policy
quality [10, 19, 20]. By leveraging structured reward represen-
tations, agents can more effectively sequence and reuse behav-
iors, enabling them to adjust previously learned skills to new
or modified tasks. This structured approach facilitates faster
adaptation, as agents can generalize from prior experience
rather than starting from scratch each time [21]. Furthermore,
exposing the structure of reward functions allows for enhanced
learning strategies such as automated reward shaping, task
decomposition, and off-policy reasoning. Collectively, these
strategies enable reinforcement learning agents to accelerate
skill acquisition by using mutations from earlier training.

Skill mutation in robotics has been observed when external
factors—such as changes in joint stiffness, friction, or task
dynamics—force adaptation [22, 23]. For example, increasing
stroke length in a sawing task improved force manipulabil-
ity and reduced energy consumption, whereas overlapping
stiffness profiles between collaborating robots introduced in-
efficiencies. These studies underscore that small changes in
system parameters can yield significant shifts in behavior.
However, they do not investigate how intentional variations
in the reward function itself might serve as a systematic
mechanism for inducing such mutations.

To address the challenge of skill generalization and adapta-
tion, we introduce a reward mutation framework that treats the
reward function as a tunable mechanism for skill diversifica-
tion. Specifically, we study a precision pouring task performed
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by a Franka Emika Panda arm in NVIDIA Isaac Lab, where
the reward is composed of three weighted terms: effort, force
accuracy, and pour velocity. By training Proximal Policy
Optimization (PPO) [24] agents under 25 distinct reward
configurations, and evaluating each policy across multiple
trials, we systematically explore how shifting reward priorities
induces the emergence of diverse control strategies—from
slow, cautious pours to fast, high throughput motions [25].

The remainder of this thesis is structured as follows. Section
II reviews RL fundamentals and the PPO algorithm. Section
IIT details our experiment design, including simulation setup,
reward function design, and evaluation protocol. Section IV
presents the results, mapping the relationship between reward
weights and skill variations. Section V discusses the implica-
tions for adaptive robotic learning, and Section VI concludes
with directions for future work.

II. METHOD

To develop an effective reinforcement learning framework
for robotic manipulation, it is essential to understand the
underlying principles of RL and to select an algorithm that
balances stability, performance, and implementation practi-
cality—qualities that make PPO particularly well-suited for
this work. This section provides an in-depth discussion of RL
fundamentals used in this research, including policy learning,
reward functions, and the MDP framework. Furthermore, it
explores different RL algorithms, highlighting why PPO is
particularly suited for continuous control tasks such as robotic
pouring. By examining the theoretical foundations and prior
applications of RL in robotics, this section lays the ground-
work for the methodology used in this study.

RL provides a framework in which autonomous agents learn
to make decisions through trial and error, optimizing their
actions based on the received rewards. To mathematically
formalize decision making, RL often relies on MDPs that
provide a structured representation of environments where
outcomes are both stochastic and controllable [9].

A. Reinforcement Learning Framework: MDP and PPO

Reinforcement Learning operates within the framework of
a Markov Decision Process, which mathematically models
decision making problems where outcomes are both stochastic
and dependent on the agent’s actions [9]. An MDP is defined
as a tuple:

M:(S,A,P,T’,"}/), (1)

where:

o S represents the set of possible states,

o A is the set of available actions,

e P(s'|s,a) is the transition probability from state s to s’
given action a,

e 7(s,a) is the reward function that provides feedback for
taking action a in state s,

e v €[0,1] is the discount factor, which balances immedi-
ate and future rewards.
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Fig. 2: PPO-MDP Interaction Framework. The PPO agent (blue blocks)
interacts with the MDP environment (green), which includes state transitions,
actions, and observations. The custom reward structure (orange) integrates the
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systematically varied to induce skill mutations.
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The objective in RL is to learn a policy 7(a|s) that maxi-
mizes the expected cumulative reward, defined as the return:

oo
k
Gt = Z’y T4k
k=0

Traditional policy optimization methods, such as policy gra-
dient methods, directly optimize the policy mp(als) through
gradient ascent on the expected return. However, these meth-
ods often suffer from high variance and instability.

PPO builds on the strengths of policy gradient methods
while ensuring more stable and reliable learning. PPO is
designed to perform multiple epochs of stochastic gradient
ascent on a surrogate objective function, which provides a
lower bound on policy performance improvements. In this
section, we describe PPO’s core concepts, the mathematical
formulation behind it, and provide examples to illustrate how
it functions in practice [24].

1) Policy Gradient Background: In standard policy gradient
methods, the goal is to maximize the expected cumulative
reward by directly adjusting the policy parameters, 6. The
policy gradient is estimated using the following expression:

3

2)

At Vo 108;7T0((lt \ St)x‘it} ,

where:
o mp(a; | s¢) is the stochastic policy,
o A, is an estimator of the advantage function at timestep
t, which quantifies how much better taking action a; in
state s; is compared to the baseline (typically the value
function V' (sy)).
A simple objective that one might consider is:

LG (0) = By [logmo(ar | s0) ] )

However, using this objective directly in multiple gradient
steps on the same batch of data can lead to excessively large
policy updates, which destabilize learning.

2) From TRPO to PPO: Trust Region Policy Optimization
(TRPO) was introduced to address this issue by constraining
policy updates via a trust region. TRPO maximizes the surro-
gate objective:

LEP(9) = B, {”9(“ L At} : 5)
Toa(at | 5¢)
subject to a constraint on the average KL-divergence:
By [KL (0, (- | 0) || mo(- | 50))] < 6. (©)

Although TRPO is effective, its constrained optimization ap-
proach is complex to implement and computationally expen-
sive.

PPO simplifies this process by introducing a clipped surro-
gate objective, which achieves many of the benefits of TRPO
using only first-order optimization methods.

3) Clipped Surrogate Objective: Define the probability
ratio:

mo(ag | st)
TOoia (at | 515)7
which is equal to 1 when 8 = 6,4. The unclipped surrogate
objective is:

() = )

®)

To prevent large updates that push r;(f) far from 1, PPO
modifies this objective by clipping 7:(6) within a range
[1 —€,1+ €]. The clipped objective is defined as:

LEPI(9) = &, [rt(e)jxt} .

LCLIP(9) = E, [min (rt(O)At7 clip (r(6),1 — e,1 + ¢) At)}
®)
where € is a hyperparameter. This formulation means that if the
policy update would improve the objective by moving 7.(6)
outside the interval, the improvement is ignored, thus provid-
ing a pessimistic (lower bound) estimate of the improvement.
4) Combined Objective with Value Function and Entropy
Bonus: To further stabilize training and encourage exploration,
PPO also incorporates a value function loss and an entropy
bonus. The combined objective is:

LCLIP+VF+S(9) [LCLIP(H) _ ClLYF(e) + CZS [Wg] (St)] ,
(10)
where:
o LYF(0) = (Vo(se) — Vttarget)2 is the squared-error loss

for the value function,
e Smy](s¢) is an entropy bonus that encourages explo-
ration,
e c1 and co are coefficients balancing the contributions of
the value loss and entropy bonus.
This full objective enables simultaneous policy improvement
and value function learning, making PPO both efficient and
robust [24].

B. Reward Function

The reward function is a fundamental element in RL,
dictating the incentives that shape the learned policy. Different
formulations of the reward function significantly impact the
skill adaptation process in robotic learning [26]. In robotic
tasks such as pouring, designing a robust reward function is



critical because it must balance competing objectives: task
completion (efficiency), energy expenditure (effort), and mo-
tion precision (velocity).

In PPO, the reward function directly influences both policy
updates and value function approximation. The agent’s advan-
tage function:

At = Q(St, at) — V(St), (11)

which relies on reward signals to estimate the benefit of action
a; over the baseline expected return V (s, ). Similarly, the value
function:

V(St) =E [Rt + FYV(StJrl)] (12)

is trained to predict cumulative rewards, making reward design
pivotal for stable learning. Poorly structured rewards may
lead to suboptimal behaviors (e.g., excessive movements or
task failure), while well-shaped rewards accelerate policy
improvement.

For the pouring task, we decompose the reward R(s, a) into
three weighted terms:

R(s,a) = et ©ws - Ry — we - Re (13)

Time penalty discount Scale accuracy — Effort penalty

1. Time Penalty Discount (67%)2 This term exponentially
decays the reward as a function of task duration R;, where
w; scales the penalty’s severity [Fig. 3]. The exponential form
ensures that:
« Short-duration pours (faster task completion) are incen-
tivized, aligning with efficiency goals
o The discount smooths reward gradients during early
training, avoiding premature convergence to slow, overly
cautious policies
2. Scale Accuracy (ws - Rs): The scale reward R, measures
force accuracy (liquid mass transferred into the container) and
is weighted by w;. This term is kept fixed across experiments
because:

Time Penalty Discount for Different w;

1.0
0.8 1
Discount Rate
¢ 064 —— W=l
§ we=13
[ — =25
V047 — w=37
— Wy =49
N ¥
0.0 1
0 2 4 6 8 10 12

R
Fig. 3: Time Penalty Discount Curve. The exponential decay function e 17: is
plotted against task duration R; (x-axis) for varying values of w; (line colors).
Larger w; values produce gentler decay, allowing longer task durations before
significant penalty, while smaller w; impose stricter time constraints. This
non-linear discounting preserves gradient signals for early termination while
smoothly penalizing inefficient behaviors.
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o It directly encodes the primary task objective (successful
pouring)

« Empirical tests showed that varying w; disproportionately
destabilizes learning, as the agent loses a reliable signal
for goal achievement

3. Effort Penalty (w. - R.): The effort term R. penalizes
excessive joint torques or energy usage, scaled by we. This
term:

« Encourages energy-efficient motions, reducing wear on
physical hardware

« Mitigates “jittery” policies that exploit simulator dynam-
ics (e.g. high-frequency oscillations to accelerate pouring)

To systematically explore how changes in the reward func-
tion influence learned behavior, we introduce controlled varia-
tions into the reward configuration by applying Gaussian noise
to selected reward weights. Starting from a baseline reward
function that yields a well-performing pouring strategy, we
vary the weights for velocity (w;) and effort (w.) by sampling
from a Gaussian distribution centered on their respective
baseline values. The accuracy-related weight (ws) remains
fixed to ensure that the agent consistently completes the core
task.

Formally, each varied reward weight w} is defined as:

e ~ N(0,0?)

/
Wi = Wi + €4,

where w; is the baseline value and o controls the strength of
the mutation.

Rather than relying on random sampling, we selected four
representative values for each varied weight—two below and
two above the baseline—based on their positions along the
Gaussian distribution. This structured approach ensures broad
yet controlled coverage of the reward mutation space, enabling
interpretable and consistent comparisons across policies. These
variations support the identification of meaningful skill muta-
tions, as detailed in Section IV.

III. EXPERIMENT DESIGN

As outlined in the introduction, this research investigates
how deliberate alterations to the reward function in reinforce-
ment learning can lead to functional mutations in robotic skills.
The objective of the experiments was to demonstrate that
such reward modifications could induce meaningful behavioral
variations in a trained agent. To explore this, we designed a
custom simulation environment featuring a robotic precision
pouring task, in which a simulated robotic arm pours liquid
from a glass into a container placed on a scale. The agent
was trained using the PPO algorithm to evaluate how different
reward configurations influence the emergence of distinct
pouring strategies.

A. Task Setup

The robotic pouring task is implemented using IsaacLab, a
reinforcement learning environment built on top of NVIDIA
Isaac Sim. The simulation features a Franka Emika Panda
robotic arm holding a glass of liquid, with a fixed container
placed on a digital scale (Fig. 4). The simulated environment
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models realistic physical dynamics, including gravity, contact
forces, and fluid like behavior during the pouring process. The
task requires the robot to pour a controlled amount of liquid
into the container by coordinating its end effector’s position
and orientation, regulating both tilt and velocity. Success
depends on the robot’s ability to avoid spillage, minimize
energy usage, and perform the task efficiently—making it
an ideal benchmark for evaluating how variations in reward
functions influence policy behavior and skill adaptation.

B. Training Procedure

As described in Section II, the agent is trained using PPO.
The core of the learning process is a reward function composed
of three weighted terms: effort minimization, force accuracy
on the scale, and control over pouring velocity. A total of
25 distinct weight configurations were designed to explore
how shifting emphasis across these components influences the
resulting policy behavior.

Each reward configuration used in the experiments was se-
lected from a Gaussian distribution centered around a baseline
pouring strategy, as explained in Section II and illustrated in
Fig. 5. In this distribution, the x-axis represents deviations in
reward weights and the y-axis indicates the probability density
of each configuration. To allow for systematic analysis, we did
not rely on random sampling alone. Instead, we chose a set
of representative configurations from across the distribution,
providing broad coverage of the mutation space while ensuring
consistency in evaluation. This approach enables a systematic
exploration of how skill variations can emerge from reward
design choices. For every weight setting, three policies are
trained, then evaluated across ten simulations. We do this
three times per setting to account for stochasticity in learning
resulting in 75 trained policies and 750 total simulations.

Robot Endpoi

e

Robot Base

Fig. 4: Simulation Training Setup. The Franka Emika Panda robotic arm
performs a precision pouring task in NVIDIA Isaac Lab, transferring liquid
from a glass into a target container placed on a digital scale. The scale
measures poured mass (force accuracy), while sim tracking captures end-
effector position and effort metrics.

Tested Weights plotted on Gaussian Distribution

baseline
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Fig. 5: Gaussian Distribution of Reward Weight Sampling. The graph depicts
the probability density (y-axis) of reward weight configurations (x-axis)
sampled from a Gaussian distribution centered on the baseline weights. Five
experimentally tested weight sets are shown, illustrating deliberate variations
in effort, accuracy, and velocity terms to probe the reward-function sensitivity.

C. Data Evaluation

During both training and evaluation, key performance met-
rics were recorded: the position and orientation of the end
effector, the Z-axis force on the container’s scale (used to infer
volume poured), the time taken to reach the pouring target,
and the actuator effort at each timestep. This data was stored
and organized using Microsoft Excel, and the end effector
trajectories were normalized relative to the robot’s initial pose
to ensure consistency across trials.

Each policy was manually classified based on observed
behavior:

« No Policy: No effective learning observed.

« Goal Reached: Labeled as slow, base, or fast, depending
on the time taken to complete the task.

« Partial Skills: Policies that failed to complete the task but
demonstrated meaningful behavior patterns (e.g., smooth
but cautious motion, oscillatory control).

Simulations in which the pouring process was still ongoing
when the evaluation period ended are excluded from the
analysis, as goal completion could not be conclusively deter-
mined. This combination of quantitative metrics and qualita-
tive labeling supports a nuanced understanding of how reward
configurations drive behavioral diversity and skill mutation in
robotic reinforcement learning.

IV. RESULTS

The results of our experiments reveal a diverse range of
learned pouring behaviors, influenced by variations in the
reward function. Starting from a baseline pouring policy, we
observed three distinct subcategories based on task execution
speed: slow, base, and fast pours. In addition to these, several
policies exhibited novel or mutated skills not explicitly trained
for, including rim cleaning—where the robot follows the edge
of the container, mixing—where the liquid is swirled within the
container, and watering—where the robot distributes the liquid
in a spreading motion similar to watering plants. Out of the 25
trained configurations, 16 policies successfully completed the



Overview plot of the weights used for the pouring task
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Fig. 6: Skill Classification by Reward Weight Pairs. Effort-weight vs. time-
weight combinations (x/y-axes) are mapped to their resulting skill labels:
pouring (slow/base/fast), no policy, shaker, and watering. Points are color-
coded by task performance—blue (goal achieved), green (novel skill but goal
missed), and red (no viable policy).

task, with some exhibiting slight mutations from the baseline
pouring behavior. Five configurations resulted in no mean-
ingful policy being learned, while four produced distinctly
new skills, highlighting the sensitivity of learned behaviors
to reward design. In the following sections, we describe
and evaluate the different types of policies that emerged,
examining both successful goal-directed behaviors and novel
skill mutations in response to reward function variations.

A. Fast pouring

The fast pouring policy is characterized by a rapid and effi-
cient transfer of liquid into the container, completed in a short
time span with assertive yet controlled motion. As illustrated
in the storyboard sequence (Fig 7), the robot initiates the task
with a swift tilting movement that accelerates the flow of
liquid early in the trial. The end-effector trajectory (Fig. 7, first
graph) shows that along the x-axis, the robot moves toward
the base of the arm (negative direction) after 2 seconds, while
on the y-axis, it first shifts right (negative) and then after
about 3 seconds arcs back to the left (positive), suggesting a
lateral correction during pouring. The z-axis position gradually
increases, indicating a slight lifting motion throughout the
execution.

In terms of orientation (Fig. 7, second graph), the x-axis re-
mains relatively stable, while the y-axis tilts forward up to ap-
proximately 20°, and the z-axis rotates significantly—reaching
around 40°—which together reflect the pouring motion. The
force data from the scale (Fig. 7, third graph) provides insight
into the liquid transfer: pouring begins around the 2-second
mark and reaches the desired weight at approximately 5.5
seconds. Notably, the graph displays a brief force peak at the
onset of pouring, likely caused by the inertia of the initial
fluid release. This is followed by a deceleration as the robot
stabilizes and approaches the goal, demonstrating that the
policy achieves speed without excessive overshoot. This skill
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Fig. 7: Fast Pouring Skill Analysis. Storyboard sequence showing the initial,
middle, and final stages of the fast pour. End-effector position (X, y, z).
End-effector orientation (roll, pitch, yaw). Color coding: red (x/roll), green
(y/pitch), blue (z/yaw). The last graph shows net liquid transfer force measured
by the scale.

prioritizes rapid goal completion while maintaining enough
control to avoid spillage, making it a clear deviation from
the baseline behavior in terms of both timing and movement
dynamics.

B. Slow pouring

The slow pouring policy is marked by a cautious and
controlled execution, where the liquid is transferred gradually
with smooth, deliberate motions. As shown in the storyboard
(Fig. 8), the robot performs the task with a steady and precise
trajectory, maintaining a stable posture throughout most of
the movement. The end-effector position plot (Fig. 8, first
graph) reveals that along the x-axis, the robot initially moves
away from the base (positive direction), then gradually returns
toward the base near the end of the pour in between 7 and
8 seconds. The y-axis shows minimal displacement until the
final phase, when it shifts slightly to the right. On the z-
axis, the robot lowers the end-effector at the start of the pour
and then slowly lifts it during the final phase. Together, these
movements form an elliptical trajectory, and by the end of
the task, the end-effector returns close to its original position,
though with a different orientation.

The orientation data (Fig. 8, second graph) show some
initial turbulence at the start of the motion, after which the
Xx-axis rotation stabilizes around 200°, and the z-axis settles
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Fig. 8: Slow pouring Skill Analysis. Storyboard sequence showing the initial,
middle, and final stages of the slow pour. End-effector position (X, y, z) relative
to the starting point. End-effector orientation (roll, pitch, yaw). Color coding:
red (x/roll), green (y/pitch), blue (z/yaw). The last graph shows net liquid
transfer force measured by the scale.

at -200°, while the y-axis remains relatively constant near 0°.
This pattern suggests that the robot tips the glass firmly to
one side, maintaining this orientation consistently while slowly
guiding the liquid toward the container. The resulting behavior
creates a side-pouring motion that avoids abrupt adjustments.
The corresponding force graph on the scale (Fig. 8, third
graph) indicates that pouring begins almost immediately in
the first second, with a gradual and steady increase in weight.
Unlike the fast pouring strategy, there are fewer high-inertia
peaks, and the liquid enters the container in a more controlled
flow. In particular, after more than half of the liquid has
been transferred, the remaining portion is delivered in smaller,
more measured gulps (3 to 8 seconds). This strategy reflects a
policy optimized for low risk of spillage and precise dosing,
distinguishing itself from both the baseline and fast pouring
behaviors through its smooth dynamics and stable execution.

C. Rim cleaner

The rim cleaner policy exhibits a distinct deviation from
the originally intended pouring task by interacting with the
edge of the container in a manner that appears to “clean”
or trace the rim during liquid transfer. As illustrated in the
storyboard (Fig. 9), the robot begins in a position similar to
the slow pouring configuration, positioning the end-effector
away from the base of the arm. According to the position data
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o
!

Fig. 9: Rim Cleaner Skill Analysis. Storyboard sequence showing the initial,
middle, and final stages of the rim cleaner behavior. End-effector position (x,
y, z). End-effector orientation (roll, pitch, yaw). Color coding: red (x/roll),
green (y/pitch), blue (z/yaw). The last graph shows net liquid transfer force
measured by the scale.

(Fig. 9, first graph), the x-axis shows a gradual movement
back toward the robot base, while the y-axis initially shifts to
the left before correcting toward the right during pouring (1 to
6 seconds). The z-axis remains relatively constant, indicating
that the pouring occurs at a fixed height. Notably, there is
considerable turbulence throughout the positional graph during
the pouring phase, reflecting unstable micro-movements or
oscillations that likely stem from physical interactions with
the container’s rim.

The orientation plot (Fig. 9, second graph) closely mirrors
that of the slow pouring behavior: after some early turbulence,
the x-axis rotation stabilizes around 200°, the y-axis remains
centered near 0°, and the z-axis holds at approximately -200°.
This consistency in tilt suggests that the key distinguishing fac-
tor for the rim cleaner skill lies more in the trajectory pattern
than in the orientation itself. In the weight data (Fig. 9, third
graph), a noticeable fluctuation is observed during the pouring
process. The graph shows erratic force readings caused by
intermittent contact with the container’s rim, which induces
movement in the container itself. Around the 5-second mark,
a distinct peak occurs, after which the force reading stabilizes
slightly above the goal threshold. However, it is important to
note that this skill does not consistently reach the goal: in some
trials, the robot poured partially or entirely on the outer edge
of the container, leading to reduced pouring efficiency. Despite
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Fig. 10: Mixing/Shaker Skill Analysis. Storyboard sequence showing the
initial, middle, and final stages of the mixing/shaking behavior. End-effector
position (x, y, z). End-effector orientation (roll, pitch, yaw). Color coding: red
(x/roll), green (y/pitch), blue (z/yaw). The last graph shows net liquid transfer
force measured by the scale.

this, the rim cleaner policy demonstrates a potentially valuable
and adaptable skill that could be repurposed for tasks involving
targeted surface interaction or cleaning motions, even if it falls
short in terms of raw performance metrics.

D. Mixing/Shaker Behavior

The mixing or shaker policy demonstrates a unique pouring
strategy characterized by rhythmic shaking movements during
liquid transfer, resulting in a pulsed flow into the container. As
illustrated in the storyboard and accompanying plots (Fig. 10),
the robot begins by moving the end-effector away from
the base of the arm along the x-axis before returning back
toward its starting position during the pouring phase. The y-
axis position decreases steadily, indicating a rightward shift,
but with noticeable oscillations during pouring, suggesting a
shaking motion layered on top of a gradual lateral movement.
On the z-axis, the end-effector initially lowers and then after
the first second gradually lifts during the pour, again with
small fluctuations visible in the trajectory, reinforcing the
interpretation of a deliberate vibratory motion.

The orientation data closely resembles the rim cleaner and
slow pouring behaviors. After some minor initial turbulence,
the x-axis stabilizes near 200°, the y-axis remains around 0°,
and the z-axis settles near -200°, with the key difference being
a visible vibration along all axes throughout the pouring phase.
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Fig. 11: Watering Skill Analysis. Storyboard sequence showing the initial,
middle, and final stages of the watering behavior. End-effector position (x,
y, z). End-effector orientation (roll, pitch, yaw). Color coding: red (x/roll),
green (y/pitch), blue (z/yaw). The last graph shows net liquid transfer force
measured by the scale.

These small but consistent oscillations result in a dynamic
motion that can effectively stir or mix the liquid as it is poured.
In the weight data (Fig 10, third graph), the shaking behavior
produces a stepped or pulsed increase in the force reading
on the scale, indicating that the liquid enters the container in
bursts rather than a continuous stream. Despite this unsteady
pattern, the robot successfully reaches the pouring goal in
this instance, with only a small amount of spillage. However,
across multiple trials, this skill was more prone to overshoot
or spill due to the inherent instability of the shaking motion.
Still, this behavior demonstrates an interesting and potentially
valuable mutation of the baseline pouring skill, especially
for applications where simultaneous mixing and pouring are
desired.

E. Watering behavior

The watering policy represents the most distinct deviation
from the baseline pouring behavior observed in this study.
Rather than focusing on efficient and accurate transfer of liquid
into the container, this skill disperses the liquid broadly across
an area, resembling the motion one might use to water a
garden bed or rinse a surface. As shown in the storyboard
and trajectory plots (Fig 11), the robot’s end-effector follows
a sweeping motion that fails to concentrate the pour over the
container. The x-axis position indicates movement toward the
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base of the arm, while the y-axis shifts steadily to the right
until it reaches a mechanical limit, by which point the glass
has already been emptied. The z-axis shows a gentle rise and
fall, adding vertical variation to the trajectory.

The orientation data further highlights the dynamic nature
of this skill. The x-axis rotates up to 20° and then gradually
decreases to around -20°, while the z-axis follows the opposite
pattern, forming a coordinated twisting motion during the
pour. The y-axis orientation remains near its initial position,
indicating that the shaking motion is confined to a single plane.
This twisting trajectory causes the robot to begin pouring
outside of the container’s bounds and continue moving away
from it during execution. In the scale force data (Fig 11, third
graph), a small negative dip is visible just after 2 seconds,
caused by the tilting force temporarily lifting the container off
the sensor. This is followed by a sharp spike at the 2.5 second
mark as the container slams back down under the impact of
liquid flow. The force reading then stabilizes around 1 N,
insufficient to meet the pouring goal. None of the rollouts for
this skill achieved the task’s success threshold, yet the behavior
itself remains notable. It reflects a form of exploratory policy
that, while unsuitable for precision pouring, may be applicable
in tasks requiring broad liquid distribution, such as rinsing
surfaces or distributing cleaning agents over a wide area. The
emergence of such a skill highlights the diversity of behavior
that can be induced through reward variation, even in the
absence of explicit goal completion.

V. DISCUSSION

The experiments demonstrate that even minor adjustments
to the reward function can produce a wide range of dis-
tinct pouring behaviors. Some optimized for task success
and others that represent creative but unintended mutations.
This diversity of outcomes validates the reward mutation
framework as a mechanism for inducing and studying skill
variation in RL, especially in continuous control domains like
robotic manipulation. While much prior work has focused on
refining singular, optimal behaviors for well-defined tasks, our
approach emphasizes the discovery of alternative, potentially
useful strategies that emerge from subtle shifts in learning
incentives.

One of the most surprising outcomes of the study was
the repeated emergence of the “rim cleaner” policy. From a
task-oriented perspective, this behavior is suboptimal. Pouring
along the rim does not reliably maximize the amount of liquid
that enters the container. However, the consistent recurrence
of this skill across different training runs suggests that it is
not a random artifact, but rather a viable behavioral attractor
under certain reward configurations. This raises an important
point: just because a policy does not directly meet the primary
task objective, does not mean it is without merit. Given more
training time or slightly altered reward shaping, such behaviors
could potentially evolve into more efficient task completions.
More importantly, these kinds of mutated behaviors may have
value in other contexts, such as surface cleaning, targeted
rinsing, or preparing a secondary step in a multi-part task. This
perspective shifts the RL focus from narrow success metrics
to broader notions of behavioral utility.

Reward weightings played a central role in shaping the na-
ture of the skills that emerged. Low weights on effort and time
penalties typically resulted in high-speed pouring behaviors.
Some of these fast policies completed the pouring task in under
three seconds, which was significantly faster than expected
considering the simplicity of the control framework and the
simulated physics. On the other hand, increasing the weight
of these penalties led to a steep rise in failed training runs
where no usable policy was discovered. This is likely due to
two compounding effects: first, higher effort penalties restrict
the robot’s willingness to explore energetic movements, which
can prevent it from discovering effective trajectories; second,
a heavier time penalty reduces the agent’s incentive to experi-
ment late in a rollout, which diminishes long-term exploration.
Together, these pressures create a learning environment where
policy convergence becomes increasingly unlikely. Notably,
the weight configuration at w; = 25,w,. = 0.15 resulted in
consistent failure despite being near the baseline, suggesting
the reward landscape in this region is particularly sensitive.

Even within the set of goal-reaching policies, we observed a
range of distinct execution styles. Some followed direct, high-
speed paths (fast pour), while others moved more cautiously,
distributing liquid in intermittent gulps (slow pour). These
variations were most evident in the orientation and position
trajectories, where even slight differences in timing or end-
effector tilt produced significantly different force profiles on
the container. Interestingly, although the path to the goal often
varied, the orientation of the glass during pouring remained
relatively consistent across many successful trials, suggesting
that some aspects of the skill are more robust than others. This
consistency may reflect the inherent structure of the pouring
task, where achieving a suitable tilt angle is essential for
initiating flow, regardless of how the rest of the trajectory is
composed.

Policies trained with reward weights closer to the base-
line configuration consistently demonstrated more robust and
reproducible behavior. This aligns with the expectation that
near-optimal reward structures produce a smoother gradient
landscape for the agent to learn from. In contrast, large
deviations in reward composition—especially those far from
the baseline—often led to either unstable learning or the emer-
gence of highly specialized behaviors such as shaking, rim
cleaning, or watering. These behaviors, although not aligned
with the original goal, represent meaningful skill mutations
that may be useful in transfer learning settings, multi-objective
tasks, or as initialization strategies in curriculum learning
pipelines.

The decision to limit the reward function to three weighted
components, effort, force accuracy, and velocity, was made
to strike a balance between simplicity and expressiveness.
While this reward structure sufficed to generate a rich behav-
ioral landscape, future work could explore adding more task-
specific terms, such as penalizing spillage or measuring pour
accuracy as a function of distance from the container center.
Another promising direction would be to modify the reward
function in real-time based on online feedback, enabling adap-
tive reward tuning that evolves with the agent’s competence.
Moreover, The use of Gaussian sampling to select reward



weights proved effective in systematically mapping the space
around the baseline policy. Compared to random sampling,
this method allowed us to achieve a structured exploration with
fewer training runs, although random or active sampling could
still be valuable in broader or more sparse reward landscapes.

The behaviors we discovered bear an interesting resem-
blance to concepts in evolutionary learning, where random
mutations to policies or environments lead to the emergence
of novel strategies. However, a key difference is that while
evolutionary methods typically mutate the policy or action
space directly, our approach introduces mutations at the level
of the objective function—specifically, the reward structure.
This provides not only a fundamentally different mechanism
for driving behavioral diversity but also offers interpretable
and targeted control over the mutation process. This makes it
especially relevant for domains where understanding and shap-
ing behavior is just as important as achieving raw performance
metrics. By making the reward function visible and tunable,
we encourage the development of agents whose skills can be
intentionally directed, diversified, and repurposed offering a
more nuanced and constructive use of RL in robotic systems.

Of course, the study is not without limitations. The fluid
dynamics used in our simulation environment (Isaac Sim via
IsaacLab) do not perfectly replicate real-world liquids. Our
implementation required the development of a custom liquid
approximation and a stabilization delay at the beginning of
each rollout to counteract sensor noise and physical insta-
bility. This was particularly evident in the container’s scale
sensor, which frequently produced erroneous readings during
the first few seconds of contact. Although we addressed this
by discarding early data and pausing rollout initialization,
it introduces a level of uncertainty that must be considered
when interpreting performance metrics. Additionally, while
we normalized motion data and applied consistent labeling
criteria, all policy classifications were ultimately based on
manual observation and interpretation, making them subject
to human bias.

Another challenge arose in labeling multi-modal or hybrid
policies. Some training configurations produced different be-
haviors across the three repeated runs, likely due to minor
stochastic differences in initialization or learning updates. In
these cases, we assigned multiple labels, but this reveals a
deeper issue: the same reward setting can lead to different local
optima, highlighting the non-deterministic nature of policy
learning even under fixed conditions. Such variability suggests
that robustness and reproducibility must be key considerations
in future reward mutation studies, particularly if they are to
be deployed in safety-critical domains.

Despite these challenges, the broader implications of this
work are significant. By showing how reward variation can
systematically produce policy diversity, we provide a frame-
work that supports skill discovery, task generalization, and
adaptive learning. This has promising applications in fields
such as automated packaging, pharmaceutical fluid handling,
and even creative robotics domains where discovering unex-
pected yet useful behaviors is as valuable as refining perfor-
mance on a single metric. Moreover, these results reinforce the
idea that reward functions are not just performance signals,
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but design tools that shape the behavioral character of agents.
Carefully designing or tuning reward terms opens the door
to intentional skill sculpting, where specific styles of task
execution can be promoted or discouraged through parameter
selection.

Our results empirically validate the trade-offs highlighted
in Section I: unbalanced reward formulations indeed pro-
duced suboptimal policies for the original task that maximized
short-term gains at the expense of robustness. However, our
reward mutation framework also revealed a counterintuitive
insight: some unbalanced configurations yielded behaviors
that diverged from the original task objective yet exhibited
coherent and potentially useful skills—such as rim cleaning
or watering behavior—that reflect alternative forms of task
utility. While these behaviors did not maximize the primary
task reward, their structured emergence indicates that reward
configurations considered “suboptimal” for the original task
can nonetheless produce functionally useful strategies relevant
to related tasks. This challenges the common assumption that
reward imbalance inevitably results in degenerate or useless
policies and highlights the potential of such mutations for
transfer learning applications.

Reward design should balance two objectives:

o Task-Optimality: For target applications where perfor-
mance is critical (e.g., industrial pouring)

o Controlled Imbalance: To discover auxiliary skills that
may serve secondary use cases (e.g., surface cleaning)

In future work, this framework could be extended with
multi-objective reinforcement learning techniques to better
balance trade-offs across competing goals. Alternatively, with
human-in-the-loop feedback mechanisms to guide behavior
toward socially or operationally preferable solutions. Applying
this reward mutation concept to new tasks such as stirring,
scooping, or tool use would help generalize the methodology,
while transitioning to physical robots would validate the
approach under real-world dynamics and constraints.

In summary, this study illustrates how deliberate manipula-
tion of reward functions can yield a wide spectrum of robotic
skills, including both expected and surprising behaviors. By
treating the reward function as a tunable interface rather than
a fixed target, we enable new possibilities for skill adaptation,
behavioral discovery, and policy diversification in robotic
reinforcement learning.

VI. CONCLUSION

This thesis has investigated how variations in reward func-
tion design within PPO can systematically induce distinct
skill mutations in a robotic pouring task. By constructing a
controlled experimental setup with a simulated Franka Emika
Panda robot, we demonstrated that tuning the relative weights
of efficiency, effort, and pouring velocity yields a wide spec-
trum of learned behaviors from efficient, high-speed pouring
to novel, unintended yet structured skills such as rim cleaning,
shaking, and watering.

Our results confirm that even subtle changes to the reward
function can reshape the policy landscape and produce behav-
iors with meaningful variation. This sensitivity underscores
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the dual role of reward functions, not only as optimization
targets but also as behavioral design tools. While some policies
deviated from task-specific goals, their emergence suggests
potential for broader applicability in robotic tasks involving
multi-step procedures, cleaning, or exploratory manipulation.

The findings support the concept of reward mutation as a
viable mechanism for robotic skill diversification. Moreover,
by using a Gaussian-based sampling strategy, we achieved
structured exploration of reward space, enabling more in-
terpretable and reproducible insights into policy variability.
While limitations such as simulation fidelity and manual
behavior classification were present, the methodology provides
a foundation for future work in multi-objective reinforcement
learning, adaptive reward shaping, and real-world deployment.

Ultimately, this research contributes to the growing body
of evidence that reinforcement learning can benefit from
more nuanced reward engineering, not just for performance
maximization, but for enabling rich, adaptive, and transferable
robotic behaviors.
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Appendix - Simulation Setup

This appendix provides a visual overview of the simulated robotic pouring environment used in this
research. The images below illustrate different perspectives of the simulation setup built in IsaacLab,
showecasing the positioning of the robot, the container, and the liquid scale system.

Robot Setup

Figure A.1: Perspective view of the simulated pouring setup. The Franka Emika Panda arm holds a glass above a container
placed on a scale. This view illustrates the full environment, including the robot, table, and liquid objects.

Figure A.1 presents an angled, 3D perspective of the simulation. It shows the spatial relationship be-

tween the robot, glass, container, and table. This perspective helps visualize how the robot maneuvers
in relation to its surroundings.
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Figure A.2: Top-down view of the simulation environment. This view highlights the planar positions of the robot base, glass,
and container, providing insight into horizontal trajectory planning.

Figure A.2 offers a bird’s-eye view of the setup, useful for analyzing the robot’s lateral movement paths
during pouring. It is particularly valuable for understanding motion planning in the XY-plane.

Figure A.3: Front view of the pouring task. This view shows the robot’s alignment with the container and helps assess vertical
pouring motion and the tilt angle of the glass.

In Figure A.3, the robot is viewed head-on, showing how it adjusts its end-effector height and tilt during
pouring. This helps evaluate how accurately the robot aligns the glass with the container mouth.
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Figure A.4: Side view of the robot and container. This angle emphasizes the depth-wise movement and rotation of the
end-effector during pouring.

Figure A.4 displays the setup from the side, giving insight into the Z-axis pouring trajectory and the
dynamics of wrist rotation. It's especially useful for understanding the timing and coordination required

for accurate pouring.

Weight Scale

Figure A.5: Close-up view of the container and digital scale. The container sits on a simulated force-sensitive cube that
records the weight of the poured liquid.

To measure the quantity of liquid poured into the container, a digital scale is emulated using two rigid
square plates equipped with a ContactSensor from Isaac Lab (Figure A.5). This simulated scale allows
the robot to receive feedback on the amount of liquid collected, forming a critical part of the reward signal
for reinforcement learning.
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The sensor is configured to return the **net contact force** acting on one of the plates. This is accom-
plished by stacking two cuboid primitives vertically: the upper plate interacts with the container, while
the lower plate is grounded and equipped with a contact sensor. The sensor is defined with a filtering
expression to isolate contact forces coming only from the object of interest—namely, the upper plate.

* The upper plate supports the container and receives liquid during the pouring task.

» The lower plate is static and includes a contact sensor configured to capture Z-axis forces exerted
by the upper plate.

+ Filtering is enabled through the filter_prim_paths_expr parameter to ensure the sensor only
measures forces due to the target rigid body.

A simplified configuration snippet:

contact_forces = ContactSensorCfg(
prim_path="/World/envs/env_.*/Cube2",
update_period=0.0,
debug_vis=True,
history_length=1,
filter_prim_paths_expr=["/World/envs/env_.*/Cube"],
)

In this setup:

* Cube represents the upper dynamic plate that receives contact from the container.
* Cube2 is the lower, sensor-equipped plate.

At each timestep, the simulation queries the vertical component of the net contact force:
scene["contact_forces"] .data.net_forces_w

The Z-component of this tensor reflects the cumulative weight applied by the container and any addi-
tional liquid. A temporalfilter is used to detect when the force reading stabilizes—indicating that pouring
is complete and the scale is ready to be sampled. This stable reading becomes the primary metric for
the "scale reward” term in the reinforcement learning algorithm.

Although Isaac Lab’s contact sensors can introduce noise and drift, they provide sufficiently accurate
and fast feedback for learning-based control. Filtering and averaging over multiple timesteps help
mitigate this issue.

This approach enables physically grounded, real-time feedback on liquid transfer without requiring
explicit volume tracking—making it ideal for simulation-based skill learning in pouring and other liquid
manipulation tasks.

Fluid Simulation Extension
To simulate realistic liquid behavior during the pouring task, an extension was implemented using
NVIDIA PhysX particle-based fluid simulation within the IsaacLab framework. This system enables
the modeling of fluid dynamics as a set of physically interacting particles governed by attributes such
as cohesion, viscosity, and density.

The fluid is spawned using a grid of particles defined by the configuration class F1luidObjectCfg, which
sets the number of particles along each axis (numParticlesX, Y, Z), spacing between them, and fluid-
specific properties such as particle mass and density.

The actual instantiation of the liquid is handled by the F1uid0Object class. When the method spawn_fluid_direct ()
is called, the following steps are executed:

» A PhysX particle system is created and bound to the simulation scene.

+ Particle material attributes (e.g., cohesion, viscosity, and surface tension) are configured to mimic
water-like behavior.

* A random jitter is applied to the particle grid to break symmetry and produce more natural fluid
motion.
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» An anisotropy filter and surface smoothing parameters are applied to enhance visual and physical
fidelity.

* Isosurface extraction parameters are defined to enable mesh reconstruction of the liquid body for
rendering and analysis.

» The particles are positioned in 3D space above the glass using a uniform grid, and their initial
velocities are set to zero.

Each fluid particle acts as a discrete mass unit that can collide, flow, and accumulate within the container.
The scale beneath the container detects vertical force changes, allowing the system to infer the volume
of liquid poured over time. This setup forms the basis for reward computation in reinforcement learning,
where the agent is incentivized to maximize pouring accuracy and minimize spillage or wasted motion.

This modular fluid extension enables reproducible fluid dynamics across simulation environments and
supports deterministic reset functionality via the methods get_particles_position() and
set_particles_position(), making it compatible with episodic reinforcement learning loops.



Appendix - PPO Algorithm

Proximal Policy Optimization (PPO) is a widely used reinforcement learning algorithm that offers a
balanced trade-off between sample efficiency and ease of implementation. It belongs to the family of
policy gradient methods and is particularly well-suited for continuous control tasks in robotics due to its
stability and scalability.

Unlike traditional policy gradient techniques, which may suffer from large and destabilizing updates,
PPO introduces a clipped surrogate objective that restricts the deviation between the new and old
policies during optimization. This clipping ensures that policy updates stay within a bounded region—
preventing catastrophic performance drops while maintaining the flexibility to improve the policy incre-
mentally.

In the context of this research, PPO serves as the backbone of the learning system used to train a
simulated Franka Emika Panda robot on a precision pouring task. The algorithm optimizes two func-
tion approximators: a policy network my(a|s) and a value network V(s), both updated using mini-batch
stochastic gradient descent. The learning process involves computing advantage estimates using Gen-
eralized Advantage Estimation (GAE), updating the policy using a clipped surrogate loss, and refining
the value function via a regression loss on the estimated returns.

This chapter presents a functional view of PPO as implemented through the skrl library,” with a detailed
breakdown of the algorithmic steps. The pseudocode below illustrates how returns and advantages
are computed using GAE, followed by the main training loop, including KL-divergence-based early
stopping, entropy regularization, policy clipping, and value clipping. These components collectively
enhance PPQO'’s performance, making it robust for robotic learning scenarios where safety and stability
are essential.

def fG’AE(Tada‘/a‘/Llast) — RaA:

adv <+ 0
A + zeros(r)
# advantages computation
for each reverse iteration i up to the number of rows in r do
if i is not the last row of r then
Vi=Viq
else
Vie V.,
end if
adv < r; — V; + discount_factor —d;(V;— lambda adv)
A; + adv
end for

"https://skrl.readthedocs.io/en/latest/api/agents/ppo.html
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# returns computation
R+ A4V
# normalize advantages
A—-A
< A, +10-8

_update(...)
#compute returns and advantages
Ve, e Vols)
R7 A« fGAE (7"7 d v dtimeout ’ ‘/7 ‘/l;st)
# sample mini-batches from memory
s,a,logp, V, R, A < states, actions, log,rob, values, returns, advantages
# learning epochs
for each learning epoch up to learning_epochs do
# mini-batches loop
for each mini-batch s, a,logp, V, R, A up to mini_batches do
logp’ < my(s,a)
# compute approximate KL divergence
ratio < logp’ — logp
KLdivergence — % Zij\il((eratio - 1) - Tatio)
# early stopping with KL divergence
if KL, gence > kl:hreshold then
BREAk
end if
# compute entropy loss
if entropy computation is enabled then
Lentropy < —entropy_loss_scaleﬁ Zf\;1 o
else
Lentropy 0
end if
# compute policy loss
ratio « elogr’ —logp
L, rogare < Aratio
stivped surrogare < A Clip(ratio, 1 —¢,1+ ) with ¢ as ratio_clip
Léir o« LS min(L
# compute value loss

end

entropy

surrogate? clipped surrogate)

‘/pre.dicted — V¢(S)
if clip_predicted_values is enabled then

V. etiorea &V AClip(V 0o —Vi—c,0) with ¢ as value_clip
end if

Ly, < value_loss_scale £ 3Y (R—V, ... >
# optimization step
reset optimizer, ,
V@, (b(Lgrl;p + Lentropy + LV¢,)
clip(||Ve,¢||) with grad_norm_clip
step optimizer, ,

end for

# update learning rate

if there is a learning_rate_scheduler then
step scheduler, 4(optimizer, ,)

end if

end for



Appendix - Markov Decision Process
Formulation

The robotic pouring task using Proximal Policy Optimization (PPO) in the IsaacLab simulation environ-
ment is modeled as a Markov Decision Process (MDP) defined by the tuple:

M = (S? ‘A7 P? 7/.7 PY)

where:

+ S is the set of states, representing the configuration of the robot and environment. A state s € S
consists of:

— Normalized joint positions and velocities of the Franka Panda arm,
— End-effector pose (position and quaternion orientation),
— External force readings from the container scale.

» Ais the set of actions. An action a € A is a 6-dimensional vector:

a = (A$7 Ay7 AZ’ Aa? Aﬂ? AFY)

where Ax, Ay, Az are Cartesian displacements, and Aa, A3, Ay are Euler-angle-based rotation
increments, which are converted to quaternions and applied to the end-effector orientation.

* P(s'|s,a) is the transition probability, defined implicitly by the simulation physics engine (Isaac
Sim) and the dynamics of the robot-environment interaction.

* r(s,a) is the reward function composed of three terms:

4
T‘(S,CL) = €xp (_> cWs - Rs + We - Re

Wt

where:

R, is the scale accuracy term, proportional to the additional Z-force detected on the con-
tainer,

R, is the negative of the total absolute joint torque (effort penalty),

t is the elapsed time,
- ws, we, wy are user-defined weights for scale, effort, and time respectively.
* v € [0, 1] is the discount factor, used in PPO to optimize for long-term rewards (typically v = 0.99).
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The simulation runs at a timestep of At = 1/120 seconds with action decimation set to 30, resulting in
an effective control rate of 4 Hz.

The agent learns to maximize the expected cumulative reward:

T
E lz yhr (s, at)]
t=0

through trial-and-error using PPO, with reward shaping encouraging behaviors such as precise pouring,
low energy expenditure, and fast task completion. The interplay between reward weights w,, w,., and
wy directly influences the emergence of distinct skill strategies, such as fast pouring, rim cleaning, or
shaking.
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