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Abstract 

In all networks that provide a service to the consumer, 
one of the main performance indicators is availability. The 
consumer, the user of the service, wants to be able to use 
the service for at least X% of the time. In order to be able to 
make such guarantees and commit to them in Service Level 
Agreements, network operators need to know their network 
availability. In this paper, we discuss how network 
availability can be algorithmically computed and we derive 
analytical expressions for several different network 
topologies. Finally we show how these results can be used 
to compute availability of real-life networks, such as 
SURFnet – a high-speed Dutch national network. 

Introduction 
Businesses today depend more on network 

communications than a few years ago. As business 
applications become more critical to a company’s success, 
so does the availability of the underlying network. 

Two main factors determine the availability of the 
underlying network:  

A first factor is the availability of the individual network 
elements. During the lifetime of a network element, it may 
endure periods in which it is out of service either because of 
a malfunctioning, maintenance or repair work. 

If we denote the mean time to failure by MTBF and the 
mean repair time by MTTR, the availability of a network 
element (or more formally, the probability that the element 
is working properly) is defined as 

MTTRMTBF
MTBFA

+
=  and 

the unavailability as U = 1 - A. 
A second factor is the topology of the network. 

Obviously, higher redundancy in the network (e.g. more 
links connecting network switches) will lead to higher 
availability, but also to higher investment costs. 

For the traditional telephony service often a five nines 
(99.999%) availability is guaranteed. Network operators 
that offer other services need to be able to make similar 
claims. In order to make such claims, an unambiguous 
definition of network availability is needed. In this paper 
we propose a definition based upon connectivity of the 
network.  
 
The remainder of the paper is organized as follows. In the 
following section we discuss several network availability 
definitions.  The algorithmic computation of network 
availability is discussed subsequently. Then we determine 
analytic expressions for a number of simple network 
topologies. Finally, we apply these results to obtain the 
availability for the real-world SURFnet network. 

 

Network availability definitions  
We consider a network represented as a graph G(V,E) 

consisting of a set of nodes V and a set of links E. |V| = N 
denotes the number of nodes while the number of links is 
|E| = L. Nodes represent routers or switches and links 
represent communication links (e.g., optical fibers). Both 
links and nodes have a certain availability. In our study we 
assume that the nodes are always available, i.e. only the 
links can fail. This assumption is based on the fact that node 
failures occur much less frequent than link failures, which 
occur e.g. when fibers are unintentionally broken by means 
of shovels. In addition we assume that failures occur 
independently.  

 
Path availability 
Let us first examine network availability in its strictest 

form. Assume that each user has precisely one path over 
which (s)he can communicate with another user. If this path 
fails the communication is precluded. Since a path consists 
of a serial concatenation of nodes and links, its availability 
is simply computed as the product of the availabilities of the 
nodes and links that constitute that path. Network 
availability can then be derived as the minimum path 
availability over all node pairs. Since all paths are known 
(or can be computed via a simple shortest paths algorithm), 
the network availability is easily computed. 

 
Let pij denote the availability probability of link (i,j), 

which connects nodes i and j. To gain the highest possible 
network availability (defined in its strictest form), the 
minimum path availability over all node pairs should be 
maximized. If we assign the weight -log (pij) to each link 
(i,j) ∈ E, then the same goal is achieved by using the 
shortest paths (given the new weights) between the source-
destination (s-d) pairs. The shortest path with the highest 
weight has the lowest path availability and determines the 
optimal network availability that can be gained. 

 
Unloaded network availability 
The other extreme case is where communication can 

take place over all possible paths. This closely resembles 
routing in the Internet where, in case a failure takes place, 
routing protocols automatically reconfigure the routing 
tables to direct traffic over alternative working paths 
towards their destinations. Network unavailability is in this 
case determined by the probability that between a particular 
source-destination pair, no path is available (i.e., the 
network is disconnected).  
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The maximum probability over all s-d pairs determines 
the network unavailability and hence also the network 
availability. 

 
Loaded network availability 
The computation of network availability in the previous 

subsection is actually too optimistic in practice, since it 
assumes that when paths fail the alternate paths have 
enough resources available to handle the traffic of the failed 
path(s). Since resources are limited, this may not always be 
the case. If we consider the example in Figure 1, half of the 
subgraphs are disconnected - let us call this unloaded 
network unavailability. However, the three subgraphs (l1,l2), 
(l2,l3) and (l1,l3)  may also not be able to take over the traffic 
of the failed link - we refer to such case as loaded network 
unavailability. We will not consider loaded network 
availability in this paper. 

 

Computation of network availability 
When looking at a network, one could say that links are 

either available (a) or unavailable (u). By pruning the 
unavailable links from the graph, we are left with a 
subgraph which may either be connected or disconnected. 
In the latter case, for at least one s-d pair, the network is 
unavailable. By computing the connectivity of all possible 
subgraphs, one can precisely determine the network 
(un)availability. We will illustrate this for the three-node 
network in Figure 
1.
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Figure 1: Example of a three-node network. 
Links l1(1,2), l2 (1,3), and l3 (2,3) are available (a) or 

not (u) and the network is available (A) or not (U) 
 

Given the individual link availabilities, we can compute for 
each subgraph the probability of occurrence and 
consequently also the network availability. For instance, 
assume that each link has the same availability p. The 
network availability NA is then computed as 

)1(
1
3 23 pppNA −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=  and the network unavailability 

NApppNU −=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= 1)1(

1
3

)1( 23 .  

Obviously, in general, computing the connectivity of all 2L 
possible subgraphs is too complex. Therefore we suggest a 
number of heuristics. 
 

Heuristic 1. The probability that many links fail 
simultaneously is considered to be very small, therefore a 
heuristic approach to the method described above would be 
to only consider the subgraphs in which at most k links have 
failed. The number of connectivity computations now 
reduces from 2L to ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛k

i i
L

0

. Since k is a given constant, this 

complexity is polynomial (O(Lk)), but nonetheless still 
considered excessive, for large k. 
 
Heuristic 2. A cut of a network identifies a set of links 
whose removal disconnects the network. In this paper, a 
network cut is considered from the perspective of an s-d 
pair. In this case a cut disconnects the network into two 
subgraphs, with the source in one subgraph and the 
destination in the other. A minimum cut is the cut which has 
the lowest weight over all possible cuts between an s-d pair. 
Finding the min-cut is solvable in polynomial time. 
 
By using a min-cut algorithm (e.g., see [1]) we can compute 
a lower bound on the network unavailability. Let qij denote 
the unavailability of link (i,j). Thus, the higher qij, the more 
likely that the link becomes unavailable. We assign to each 
link (i,j) ∈ E the weight -log (qij). The minimum cut based 
on these weights gives the highest (but not only) probability 
to disconnect the source and destination. The set of all min-
cuts for all s-d pairs (excluding duplicates) provides us with 
a lower bound on the network unavailability (and an upper 
bound on the network availability). One can improve on 
this bound by considering multiple cuts. Nagamochi et al. 
[3] present an algorithm for computing all cuts for which 
their weights do not exceed kw(C*), where w(C*) is the 
weight of the minimum cut and k  ≥ 1. The complexity of 
this algorithm is O(L2N + N2kL) and O(N2k)  is an upper 
bound on the number of cuts with weights not exceeding 
kw(C*). This complexity is polynomial, but nonetheless still 
considered excessive for large k. 
 
Heuristic 3. Heuristics 1 and 2 gave upper bounds on the 
network availability, whereas lower bounds are more 
insightful. One lower bound has been discussed for path 
availability, when only one path between source and 
destination is available. By computing link-disjoint paths 
we can improve upon this lower bound. For instance, 
consider two link-disjoint paths P1 and P2. Their individual 
path availability is easily computed. Since both paths are 
disjoint, their joint availability is computed as 1-(1-
A(P1))((1-A(P2)), where A(P) denotes the availability of 
path P. The more disjoint paths we take into account, the 
higher the computed availability will be between a pair of 
nodes. Note that there cannot exists more disjoint paths than 
links present in the minimum cut (where minimum in this 
case refers to minimum number of links, i.e. all links have 
equal weight). Bhandari [2] presents an algorithm for 
computing k link-disjoint paths, which has a complexity of 
O(kN2) - k  executions of a modified Dijkstra algorithm. 
The complexity is much lower than that of the previous 
heuristics, but the price is paid in tightness of the bound. 
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Network availability for simple network topologies 
As stated in the previous section, network availability 

depends on both availability of network elements and 
network topology. In this section we derive analytical 
expressions for the unloaded network availability of some 
simple networks. Throughout this section we assume that 
the availability per link is independent from other links and 
that all links have the same availability p. 

 
Tree 
A tree is a connected graph with no cycles. A tree on N 

nodes has N-1 links and is only connected when all links are 
available.  

Assuming independence, the network availability of a 
tree has the following form: 

1−= Np
tree

NA , 

where N is the number of nodes, and p is the link 
availability. 

 
 
Unicyclic graph 
A unicyclic graph is a connected graph which contains 

only one cycle, as illustrated in Figure 2. A unicyclic graph 
of N nodes has N  links. 

 
Figure 2 Unicyclic graph (with 4-node cycle) 
 
The network availability of the unicyclic graph has the 

following form: 
)1(1 pmppNA NN

uni −+= − , 
where N is the number of nodes, m is the number of 

links on the cycle, and p is the link availability. 
 

Explanation: When all links are available, the 
network is obviously connected. The probability of this case 
is Np . When one link that belongs to the cycle is 
unavailable, the network remains connected. The 

corresponding probability is )1(
1

1 pp
m N −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ − . For all 

remaining cases the network becomes disconnected.  
 

Double star 
A double star is a connected graph that consists of two 

central nodes that both are connected to all other nodes in 
the network, but not to each other, as illustrated in Figure 3. 
The double star occurs very often in telecommunication 
networks, because it offers a high level of redundancy. For 
example, the Amsterdam Internet Exchange (AMS-IX), one 
of the largest public Internet exchanges in the world, uses 

the double star topology to connect its four locations in 
Amsterdam to two high-density Ethernet switches1. 

 

 
 

Figure 3 Double star 
 
The network availability of a double star has the 

following form: 
( )mmmm

DS pppNA )1(2)2( −−−= , 

where m is the number of nodes connected to the two 
central nodes, and p is the link availability.  

 
Explanation:  Assume exactly i links from central node 

N1 are unavailable, with 0 ≤ i ≤ m. Then, the remaining m-i 
links from N1 are available. In order to prevent the i nodes 
that are not connected to N1 to become isolated, they have 
to be connected to the central node N2 , see Figure 4. 

 
Figure 4 Double star with i unavailable links from N1 
 
The probability that the configuration depicted in Figure 

4 occurs is iimi ppp
i
m −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)1( . In order to make this 

network connected, of the remaining m-i links from N2, at 
least one link should be available. The corresponding 
probability is imp −−− )1(1 .  Summing over all possible 
values of i we obtain 
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1 http://www.ams-ix.net 
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Crown 
A crown is a connected graph that consists of two 

central nodes that both are connected to all other nodes in 
the network, and to each other, see Figure 5.  

 
Figure 5 Crown 

 
The network availability of a crown has the following 

form: 
( )1)1(2)2( +−−−= mmmm

crown pppNA , 

The formula can be explained in the same way as for the 
double star. The only difference is that there are m-i+1 links 
remaining from N2, because of the existence of a link 
between N1 and N2. 

 
Triple star 
A triple star is a connected graph that consists of three 

central nodes that are connected to all other nodes in the 
network, but not to each other, see Figure 6.  

 
Figure 6 Triple star 

 
The network availability of a triple star satisfies: 

mm
TS pppNA )33(( 2+−=

))1(32)23()1(3 2mmmm ppp −⋅+−−− , 
where m is the number of nodes connected to the three 

central nodes, and p is the link availability.  
 
The formula is derived with the same reasoning as in the 

case of the double star. 
 
Figure 7 shows the comparison of the network 

availability for the double star and triple star for 8 non-
central nodes. Clearly, the triple star provides a significantly 
higher network availability than the double star. 
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Figure 7 Network availability for double star and 

triple star with 8 non-central nodes 

 

Availability of the SURFnet network 
In this section we determine the network availability of 

a real-life network, using results from the previous section. 
SURFnet2 is a high speed computer network 
interconnecting higher research institutes and universities in 
The Netherlands. Staff and students of connected 
organizations can communicate through SURFnet with 
other Internet users all over the world. SURFnet has linked 
its network to the Amsterdam Internet Exchange (AMS-IX) 
for ‘regular’ Internet traffic. SURFnet also has links to 
GÉANT2, the coordinating European research network, and 
the research networks of, for instance, the United States, 
Canada, Japan, etc. 

Figure 8 depicts the SURFnet topology, Release 5 
(currently the SURFnet topology already has been enhanced 
to Release 6). 

  
Amsterdam  Enschede  Groningen  Hilversum  Utrecht  Wageningen  Zwolle 

Delft  Den Haag  Eindhoven  Leiden  Maastricht  Nijmegen  Rotterdam  Tilburg

core L2L1

Amsterdam  Enschede  Groningen  Hilversum  Utrecht  Wageningen  Zwolle 

Delft  Den Haag  Eindhoven  Leiden  Maastricht  Nijmegen  Rotterdam  Tilburg

Amsterdam  Enschede  Groningen  Hilversum  Utrecht  Wageningen  Zwolle 

Delft  Den Haag  Eindhoven  Leiden  Maastricht  Nijmegen  Rotterdam  Tilburg

core L2L1

 
Figure 8 The SURFnet topology, Release 5 
 
From Figure 8 we observe that the SURFnet topology 

consists of two crown networks, which are connected to 
each other by two links L1 and L2. The upper-crown 

                                                 
2 http://www.surfnet.nl 
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contains 7+2 nodes, while the lower-crown consists of 8+2 
nodes. 

It is easy to see that the SURFnet network is connected 
in either one of the following three cases: 

Case 1: Both crowns are connected and at least one of 
the two connecting links is available. Because we derived 
the network availability of a crown already, we can derive 
the probability Pcase1 that Case 1 occurs: 

 
( )( )⋅−−−−−= 28777

1 )1(1)1(2)2( ppppPcase  

 ( )⋅−−− 9888 )1(2)2( ppp  
 
Case 2: The upper-crown is disconnected but all 

locations connect to exactly one of the two central nodes in 
the upper-crown. If the two connecting links are available 
and the lower-crown is connected, then also the SURFnet 
network is connected, as depicted in Figure 9. 

  

                 
Figure 9 Connected SURFnet with disconnected 

upper-crown 
 
Denoting the probability that Case 2 occurs by Pcase2, it 

is straightforward to show that: 
 

( ) ( ) ⋅−−= 27
2 1)1(2 ppppPcase  

 ( )⋅−−− 9888 )1(2)2( ppp  
 
Case 3: The difference between Case 3 and Case 2 is 

that in Case 3 the upper-crown is connected while the 
lower-crown is not. The probability Pcase3 that Case 3 occurs 
is given by: 

 
( ) ( ) ⋅−−= 28

3 1)1(2 ppppPcase  

 ( )⋅−−− 8777 )1(2)2( ppp  
 
The network availability for SURFnet is obtained by 

summing the probabilities corresponding to the three cases, 
i.e. 

 
321 casecasecaseSURF PPPNA ++= . 

 

Figure 10 shows the network availability for SURFnet 
as a function of the link availability p. 
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Figure 10 Availability for the SURFnet network 
 
It should be noted that the contribution to the SURFnet 

network availability due to Cases 2 and 3, is negligible. For 
instance, for p = 0.9, NASURF =  0.85146, while Pcase2 + 
Pcase3 ≈ 10-6. Upon further increasing p, the sum Pcase2 + 
Pcase3 will become even smaller, until it reaches zero, as p 
tends to 1. 

 
Tools for computing availability in more complex 

networks 
 
In more complex network topologies with large number 

of nodes, it is difficult to derive analytical expressions for 
their network availabilities. Therefore, we have developed a 
tool that implements both the exact algorithm and as well as 
heuristic 1 described in the section on computation of 
network availability. This tool can be used to calculate the 
network availability of any given topology. 

However, even when the heuristic is used, the 
computation time can increase beyond the acceptable level. 
For this reason, for very large networks (dense networks 
with more than 100 nodes) we have developed a Network 
Availability Simulator (NAS).  NAS is an event-driven 
simulator that, for a given network topology and link 
availability, generates the failure and repair events, and 
subsequently checks for network connectivity. As a large 
number of simulation runs ( 510 ) is performed, results 
obtained are statistically valid, leading to an accurate 
estimate of the network availability. 

To evaluate these two tools, we compare the network 
availability results derived analytically, with the results 
obtained with the algorithm tool and the NAS tool. For the 
SURFnet topology, assuming a link availability p = 0.9, 
these results are listed in Table 1. 

 
 



 

BroadBand Europe Antwerp, Belgium 
 3-6 December 2007 

 

ISBN : 9789076546094 Paper Tu3A3 – Zou Page 6 of 6 

 
The results in Table 1 demonstrate that both tools 

generate mutually almost identical results that are also very 
close to the analytical ones. This indicates that the 
developed tools can be deployed for computing network 
availability in topologies to which analytical methods 
cannot be applied.  

 

Conclusions 
In this paper we first discussed different network 

availability definitions and proposed network connectivity 
as the unambiguous one. Further we discussed algorithmic 
methods to obtain network availability values in a given 
network. The analytical expressions for various (simple) 
network topologies have been derived and explained. The 
utility of these results has been indicated by their 
application to the real-world SURFnet topology. Finally, 
two tools for computation of network availability in large 
and complex networks have been presented. We have 
shown that results obtained with these tools match the 
analytically derived results remarkably well.  
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Analysis Algorithm  
tool 

NAS tool 

Both crowns 
connected 

0.85146 

One crown 
connected 

7104.5 −×  

  

SURFnet 0.85146 0.85146 0.85086 

Table 1 Comparison between network availabilities 
derived analytically, with the algorithm tool and with 
the NAS simulator 


