

BroadBand Europe Antwerp, Belgium
 3-6 December 2007

ISBN : 9789076546094 Paper Tu3A3 – Zou Page 1 of 6

On the availability of networks

Wenzhu Zou 1, Milena Janic2, Robert Kooij1,2, Fernando Kuipers1
¹ Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science,

f.a.kuipers@tudelft.nl
² TNO Information and Communication Technology, Delft, The Netherlands, {milena.janic, robert.kooij}@ tno.nl

Abstract

In all networks that provide a service to the consumer,
one of the main performance indicators is availability. The
consumer, the user of the service, wants to be able to use
the service for at least X% of the time. In order to be able to
make such guarantees and commit to them in Service Level
Agreements, network operators need to know their network
availability. In this paper, we discuss how network
availability can be algorithmically computed and we derive
analytical expressions for several different network
topologies. Finally we show how these results can be used
to compute availability of real-life networks, such as
SURFnet – a high-speed Dutch national network.

Introduction
Businesses today depend more on network

communications than a few years ago. As business
applications become more critical to a company’s success,
so does the availability of the underlying network.

Two main factors determine the availability of the
underlying network:

A first factor is the availability of the individual network
elements. During the lifetime of a network element, it may
endure periods in which it is out of service either because of
a malfunctioning, maintenance or repair work.

If we denote the mean time to failure by MTBF and the
mean repair time by MTTR, the availability of a network
element (or more formally, the probability that the element
is working properly) is defined as

MTTRMTBF
MTBFA

+
= and

the unavailability as U = 1 - A.
A second factor is the topology of the network.

Obviously, higher redundancy in the network (e.g. more
links connecting network switches) will lead to higher
availability, but also to higher investment costs.

For the traditional telephony service often a five nines
(99.999%) availability is guaranteed. Network operators
that offer other services need to be able to make similar
claims. In order to make such claims, an unambiguous
definition of network availability is needed. In this paper
we propose a definition based upon connectivity of the
network.

The remainder of the paper is organized as follows. In the
following section we discuss several network availability
definitions. The algorithmic computation of network
availability is discussed subsequently. Then we determine
analytic expressions for a number of simple network
topologies. Finally, we apply these results to obtain the
availability for the real-world SURFnet network.

Network availability definitions
We consider a network represented as a graph G(V,E)

consisting of a set of nodes V and a set of links E. |V| = N
denotes the number of nodes while the number of links is
|E| = L. Nodes represent routers or switches and links
represent communication links (e.g., optical fibers). Both
links and nodes have a certain availability. In our study we
assume that the nodes are always available, i.e. only the
links can fail. This assumption is based on the fact that node
failures occur much less frequent than link failures, which
occur e.g. when fibers are unintentionally broken by means
of shovels. In addition we assume that failures occur
independently.

Path availability
Let us first examine network availability in its strictest

form. Assume that each user has precisely one path over
which (s)he can communicate with another user. If this path
fails the communication is precluded. Since a path consists
of a serial concatenation of nodes and links, its availability
is simply computed as the product of the availabilities of the
nodes and links that constitute that path. Network
availability can then be derived as the minimum path
availability over all node pairs. Since all paths are known
(or can be computed via a simple shortest paths algorithm),
the network availability is easily computed.

Let pij denote the availability probability of link (i,j),

which connects nodes i and j. To gain the highest possible
network availability (defined in its strictest form), the
minimum path availability over all node pairs should be
maximized. If we assign the weight -log (pij) to each link
(i,j) ∈ E, then the same goal is achieved by using the
shortest paths (given the new weights) between the source-
destination (s-d) pairs. The shortest path with the highest
weight has the lowest path availability and determines the
optimal network availability that can be gained.

Unloaded network availability
The other extreme case is where communication can

take place over all possible paths. This closely resembles
routing in the Internet where, in case a failure takes place,
routing protocols automatically reconfigure the routing
tables to direct traffic over alternative working paths
towards their destinations. Network unavailability is in this
case determined by the probability that between a particular
source-destination pair, no path is available (i.e., the
network is disconnected).

BroadBand Europe Antwerp, Belgium
 3-6 December 2007

ISBN : 9789076546094 Paper Tu3A3 – Zou Page 2 of 6

The maximum probability over all s-d pairs determines
the network unavailability and hence also the network
availability.

Loaded network availability
The computation of network availability in the previous

subsection is actually too optimistic in practice, since it
assumes that when paths fail the alternate paths have
enough resources available to handle the traffic of the failed
path(s). Since resources are limited, this may not always be
the case. If we consider the example in Figure 1, half of the
subgraphs are disconnected - let us call this unloaded
network unavailability. However, the three subgraphs (l1,l2),
(l2,l3) and (l1,l3) may also not be able to take over the traffic
of the failed link - we refer to such case as loaded network
unavailability. We will not consider loaded network
availability in this paper.

Computation of network availability
When looking at a network, one could say that links are

either available (a) or unavailable (u). By pruning the
unavailable links from the graph, we are left with a
subgraph which may either be connected or disconnected.
In the latter case, for at least one s-d pair, the network is
unavailable. By computing the connectivity of all possible
subgraphs, one can precisely determine the network
(un)availability. We will illustrate this for the three-node
network in Figure
1.

1

2

3

Uuuu
Uuua
Uuau
Uauu
Auaa
Aaua
Aaau
Aaaa

A/U(2,3)(1,3)(1,2)

Uuuu
Uuua
Uuau
Uauu
Auaa
Aaua
Aaau
Aaaa

A/U(2,3)(1,3)(1,2)

Figure 1: Example of a three-node network.
Links l1(1,2), l2 (1,3), and l3 (2,3) are available (a) or

not (u) and the network is available (A) or not (U)

Given the individual link availabilities, we can compute for
each subgraph the probability of occurrence and
consequently also the network availability. For instance,
assume that each link has the same availability p. The
network availability NA is then computed as

)1(
1
3 23 pppNA −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= and the network unavailability

NApppNU −=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= 1)1(

1
3

)1(23 .

Obviously, in general, computing the connectivity of all 2L
possible subgraphs is too complex. Therefore we suggest a
number of heuristics.

Heuristic 1. The probability that many links fail
simultaneously is considered to be very small, therefore a
heuristic approach to the method described above would be
to only consider the subgraphs in which at most k links have
failed. The number of connectivity computations now
reduces from 2L to ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛k

i i
L

0

. Since k is a given constant, this

complexity is polynomial (O(Lk)), but nonetheless still
considered excessive, for large k.

Heuristic 2. A cut of a network identifies a set of links
whose removal disconnects the network. In this paper, a
network cut is considered from the perspective of an s-d
pair. In this case a cut disconnects the network into two
subgraphs, with the source in one subgraph and the
destination in the other. A minimum cut is the cut which has
the lowest weight over all possible cuts between an s-d pair.
Finding the min-cut is solvable in polynomial time.

By using a min-cut algorithm (e.g., see [1]) we can compute
a lower bound on the network unavailability. Let qij denote
the unavailability of link (i,j). Thus, the higher qij, the more
likely that the link becomes unavailable. We assign to each
link (i,j) ∈ E the weight -log (qij). The minimum cut based
on these weights gives the highest (but not only) probability
to disconnect the source and destination. The set of all min-
cuts for all s-d pairs (excluding duplicates) provides us with
a lower bound on the network unavailability (and an upper
bound on the network availability). One can improve on
this bound by considering multiple cuts. Nagamochi et al.
[3] present an algorithm for computing all cuts for which
their weights do not exceed kw(C*), where w(C*) is the
weight of the minimum cut and k ≥ 1. The complexity of
this algorithm is O(L2N + N2kL) and O(N2k) is an upper
bound on the number of cuts with weights not exceeding
kw(C*). This complexity is polynomial, but nonetheless still
considered excessive for large k.

Heuristic 3. Heuristics 1 and 2 gave upper bounds on the
network availability, whereas lower bounds are more
insightful. One lower bound has been discussed for path
availability, when only one path between source and
destination is available. By computing link-disjoint paths
we can improve upon this lower bound. For instance,
consider two link-disjoint paths P1 and P2. Their individual
path availability is easily computed. Since both paths are
disjoint, their joint availability is computed as 1-(1-
A(P1))((1-A(P2)), where A(P) denotes the availability of
path P. The more disjoint paths we take into account, the
higher the computed availability will be between a pair of
nodes. Note that there cannot exists more disjoint paths than
links present in the minimum cut (where minimum in this
case refers to minimum number of links, i.e. all links have
equal weight). Bhandari [2] presents an algorithm for
computing k link-disjoint paths, which has a complexity of
O(kN2) - k executions of a modified Dijkstra algorithm.
The complexity is much lower than that of the previous
heuristics, but the price is paid in tightness of the bound.

BroadBand Europe Antwerp, Belgium
 3-6 December 2007

ISBN : 9789076546094 Paper Tu3A3 – Zou Page 3 of 6

Network availability for simple network topologies
As stated in the previous section, network availability

depends on both availability of network elements and
network topology. In this section we derive analytical
expressions for the unloaded network availability of some
simple networks. Throughout this section we assume that
the availability per link is independent from other links and
that all links have the same availability p.

Tree
A tree is a connected graph with no cycles. A tree on N

nodes has N-1 links and is only connected when all links are
available.

Assuming independence, the network availability of a
tree has the following form:

1−= Np
tree

NA ,

where N is the number of nodes, and p is the link
availability.

Unicyclic graph
A unicyclic graph is a connected graph which contains

only one cycle, as illustrated in Figure 2. A unicyclic graph
of N nodes has N links.

Figure 2 Unicyclic graph (with 4-node cycle)

The network availability of the unicyclic graph has the

following form:
)1(1 pmppNA NN

uni −+= − ,
where N is the number of nodes, m is the number of

links on the cycle, and p is the link availability.

Explanation: When all links are available, the
network is obviously connected. The probability of this case
is Np . When one link that belongs to the cycle is
unavailable, the network remains connected. The

corresponding probability is)1(
1

1 pp
m N −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ − . For all

remaining cases the network becomes disconnected.

Double star
A double star is a connected graph that consists of two

central nodes that both are connected to all other nodes in
the network, but not to each other, as illustrated in Figure 3.
The double star occurs very often in telecommunication
networks, because it offers a high level of redundancy. For
example, the Amsterdam Internet Exchange (AMS-IX), one
of the largest public Internet exchanges in the world, uses

the double star topology to connect its four locations in
Amsterdam to two high-density Ethernet switches1.

Figure 3 Double star

The network availability of a double star has the

following form:
()mmmm

DS pppNA)1(2)2(−−−= ,

where m is the number of nodes connected to the two
central nodes, and p is the link availability.

Explanation: Assume exactly i links from central node

N1 are unavailable, with 0 ≤ i ≤ m. Then, the remaining m-i
links from N1 are available. In order to prevent the i nodes
that are not connected to N1 to become isolated, they have
to be connected to the central node N2 , see Figure 4.

Figure 4 Double star with i unavailable links from N1

The probability that the configuration depicted in Figure

4 occurs is iimi ppp
i
m −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)1(. In order to make this

network connected, of the remaining m-i links from N2, at
least one link should be available. The corresponding
probability is imp −−−)1(1 . Summing over all possible
values of i we obtain

))1(1()1(
0

im
m

i

iimi
DS pppp

i
m

NA −

=

− −−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

))1(1()1(
0

im
m

i

im pp
i
m

p −

=

−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

{ ∑
=

−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

m

i

imim qq
i
m

p
0qp-1

)1(

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∑∑
==

m

i

m
m

i

im

i
m

qq
i
m

p
00

= ()mmmm qqp 2)1(−+ = ()mmmm ppp)1(2)2(−−− .

1 http://www.ams-ix.net

N2 N1

i m-i

BroadBand Europe Antwerp, Belgium
 3-6 December 2007

ISBN : 9789076546094 Paper Tu3A3 – Zou Page 4 of 6

Crown
A crown is a connected graph that consists of two

central nodes that both are connected to all other nodes in
the network, and to each other, see Figure 5.

Figure 5 Crown

The network availability of a crown has the following

form:
()1)1(2)2(+−−−= mmmm

crown pppNA ,

The formula can be explained in the same way as for the
double star. The only difference is that there are m-i+1 links
remaining from N2, because of the existence of a link
between N1 and N2.

Triple star
A triple star is a connected graph that consists of three

central nodes that are connected to all other nodes in the
network, but not to each other, see Figure 6.

Figure 6 Triple star

The network availability of a triple star satisfies:

mm
TS pppNA)33((2+−=

))1(32)23()1(3 2mmmm ppp −⋅+−−− ,
where m is the number of nodes connected to the three

central nodes, and p is the link availability.

The formula is derived with the same reasoning as in the

case of the double star.

Figure 7 shows the comparison of the network

availability for the double star and triple star for 8 non-
central nodes. Clearly, the triple star provides a significantly
higher network availability than the double star.

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

0,9 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99 1

link availability p

ne
tw

or
k

av
ai

la
bi

lit
y

double star
triple star

Figure 7 Network availability for double star and

triple star with 8 non-central nodes

Availability of the SURFnet network
In this section we determine the network availability of

a real-life network, using results from the previous section.
SURFnet2 is a high speed computer network
interconnecting higher research institutes and universities in
The Netherlands. Staff and students of connected
organizations can communicate through SURFnet with
other Internet users all over the world. SURFnet has linked
its network to the Amsterdam Internet Exchange (AMS-IX)
for ‘regular’ Internet traffic. SURFnet also has links to
GÉANT2, the coordinating European research network, and
the research networks of, for instance, the United States,
Canada, Japan, etc.

Figure 8 depicts the SURFnet topology, Release 5
(currently the SURFnet topology already has been enhanced
to Release 6).

Amsterdam Enschede Groningen Hilversum Utrecht Wageningen Zwolle

Delft Den Haag Eindhoven Leiden Maastricht Nijmegen Rotterdam Tilburg

core L2L1

Amsterdam Enschede Groningen Hilversum Utrecht Wageningen Zwolle

Delft Den Haag Eindhoven Leiden Maastricht Nijmegen Rotterdam Tilburg

Amsterdam Enschede Groningen Hilversum Utrecht Wageningen Zwolle

Delft Den Haag Eindhoven Leiden Maastricht Nijmegen Rotterdam Tilburg

core L2L1

Figure 8 The SURFnet topology, Release 5

From Figure 8 we observe that the SURFnet topology

consists of two crown networks, which are connected to
each other by two links L1 and L2. The upper-crown

2 http://www.surfnet.nl

BroadBand Europe Antwerp, Belgium
 3-6 December 2007

ISBN : 9789076546094 Paper Tu3A3 – Zou Page 5 of 6

contains 7+2 nodes, while the lower-crown consists of 8+2
nodes.

It is easy to see that the SURFnet network is connected
in either one of the following three cases:

Case 1: Both crowns are connected and at least one of
the two connecting links is available. Because we derived
the network availability of a crown already, we can derive
the probability Pcase1 that Case 1 occurs:

()()⋅−−−−−= 28777

1)1(1)1(2)2(ppppPcase

 ()⋅−−− 9888)1(2)2(ppp

Case 2: The upper-crown is disconnected but all

locations connect to exactly one of the two central nodes in
the upper-crown. If the two connecting links are available
and the lower-crown is connected, then also the SURFnet
network is connected, as depicted in Figure 9.

Figure 9 Connected SURFnet with disconnected

upper-crown

Denoting the probability that Case 2 occurs by Pcase2, it

is straightforward to show that:

() () ⋅−−= 27
2 1)1(2 ppppPcase

 ()⋅−−− 9888)1(2)2(ppp

Case 3: The difference between Case 3 and Case 2 is

that in Case 3 the upper-crown is connected while the
lower-crown is not. The probability Pcase3 that Case 3 occurs
is given by:

() () ⋅−−= 28

3 1)1(2 ppppPcase

 ()⋅−−− 8777)1(2)2(ppp

The network availability for SURFnet is obtained by

summing the probabilities corresponding to the three cases,
i.e.

321 casecasecaseSURF PPPNA ++= .

Figure 10 shows the network availability for SURFnet
as a function of the link availability p.

0,80

0,82

0,84

0,86

0,88

0,90

0,92

0,94

0,96

0,98

1,00

0,9 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99 1

link availability p

av
ai

la
bi

lit
y

SU
RF

NE
T

Figure 10 Availability for the SURFnet network

It should be noted that the contribution to the SURFnet

network availability due to Cases 2 and 3, is negligible. For
instance, for p = 0.9, NASURF = 0.85146, while Pcase2 +
Pcase3 ≈ 10-6. Upon further increasing p, the sum Pcase2 +
Pcase3 will become even smaller, until it reaches zero, as p
tends to 1.

Tools for computing availability in more complex

networks

In more complex network topologies with large number

of nodes, it is difficult to derive analytical expressions for
their network availabilities. Therefore, we have developed a
tool that implements both the exact algorithm and as well as
heuristic 1 described in the section on computation of
network availability. This tool can be used to calculate the
network availability of any given topology.

However, even when the heuristic is used, the
computation time can increase beyond the acceptable level.
For this reason, for very large networks (dense networks
with more than 100 nodes) we have developed a Network
Availability Simulator (NAS). NAS is an event-driven
simulator that, for a given network topology and link
availability, generates the failure and repair events, and
subsequently checks for network connectivity. As a large
number of simulation runs (510) is performed, results
obtained are statistically valid, leading to an accurate
estimate of the network availability.

To evaluate these two tools, we compare the network
availability results derived analytically, with the results
obtained with the algorithm tool and the NAS tool. For the
SURFnet topology, assuming a link availability p = 0.9,
these results are listed in Table 1.

BroadBand Europe Antwerp, Belgium
 3-6 December 2007

ISBN : 9789076546094 Paper Tu3A3 – Zou Page 6 of 6

The results in Table 1 demonstrate that both tools

generate mutually almost identical results that are also very
close to the analytical ones. This indicates that the
developed tools can be deployed for computing network
availability in topologies to which analytical methods
cannot be applied.

Conclusions
In this paper we first discussed different network

availability definitions and proposed network connectivity
as the unambiguous one. Further we discussed algorithmic
methods to obtain network availability values in a given
network. The analytical expressions for various (simple)
network topologies have been derived and explained. The
utility of these results has been indicated by their
application to the real-world SURFnet topology. Finally,
two tools for computation of network availability in large
and complex networks have been presented. We have
shown that results obtained with these tools match the
analytically derived results remarkably well.

Acknowledgments
This work is partially supported by the IST-2004-026600
DESEREC project (Dependability and Security by
Enhanced Reconfigurability), by the Netherlands Orga-
nization for Scientific Research (NWO) under project
number 643.000.503, and by the GigaPort project, which is
led by SURFnet and funded by the Dutch Ministry of
Economic Affairs under grant number BSIK03020.

References
1. R.K. Ahuja, T.L.Magnanti and J.B. Orlin, Network

Flows: Theory, Algorithms and Applications, Prentice
Hall, 1993.

2. R. Bhandari, Survivable Networks: Algorithms for
Diverse Routing, Springer, 1999.

3. H. Nagamochi, K. Nishimura and T. Ibaraki, Computing
all small cuts in an undirected network, SIAM J.
Discrete Math., Vol. 10, no. 3, pp. 469-481, August
1997.

Version: November 2007 Network
availability

Analysis Algorithm
tool

NAS tool

Both crowns
connected

0.85146

One crown
connected

7104.5 −×

SURFnet 0.85146 0.85146 0.85086

Table 1 Comparison between network availabilities
derived analytically, with the algorithm tool and with
the NAS simulator

