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The theory of elasticity has been a well-established domain of engineering science for 
over a century, and solutions exist for many particular problems. It is not the aim of this 
contribution to extend the scope of the theory, but instead to draw attention to a specific 
way to formulate problems. So this contribution touches upon didactics in mechanics 
or, if you like, systematics; one may regard it as an educational section in a valedictory 
volume dedicated to a devoted teacher. 

Though the method and message is valid generally, we shall here confine ourselves, 
to solids of revolution which are subj ected to axisymmetric loads. The states of stress 
and strain will also be axisymmetric in this case. We will discuss in more detail plates 
which are stretched (load in-plane) or loaded in bending (load normal to plane), and 
which behave linear-elastically. It is quite usual to consider such plates as special cases 
of general two-dimensional formulations in which the biharmonic differential equation 
plays its role, either for Airy's stress function or for the deflection. The fourth-order 
partial differential equation in coordinates x and y is then transformed mathematically 
into a fourth-order differential equation in the radial coordinate r. This approach has 
serious disadvantages, at least for plates loaded in-plane. It is more advantageous to 
define the problem immediately form the very basis ofaxisymmetry. 

The basic quantities and relations in axisymmetric plates have been assembled in 
Fig. 1. As shown in this diagram, they reflect the conventional representation of the 
strains (curvatures), stresses (moments), kinematic relations, equilibrium conditions 
and the constitutive relations [1,2]. We will demonstrate that this representation must 
be modified to reach our goal. 

In general an elastic state under static loading is determined by a continuous field of 
displacements {u}. Each component of this field corresponds to a component of the 
volume forces {Pl. Stresses {a} and strains {e} occur which are related by Hooke's law. 
The surface S ofthe elastic solid consists of a part Sp on which the surface loads {p } have 
been specified and a part Su on which the displacements {u} have been specified. In the 
volume Vofthe solid the displacements, strains, stresses and volume forces are inter­
related by kinematic equations, constitutive relations and equilibrium conditions. This 
is indicated schematically in Fig. 2. The symbols [D] and [D*] denote differential 
matrix-operators; [S,] is the rigidity matrix in the stiffness relation and [F,,] is the 
compliance matrix in the flexibility relation. It can be shown that [D] and [D*] are 
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Fig. 1. Conventional formulation of axisymmetric plate problems. 

"transposed" to each other; in the case of differentiations of even order the transposed 
terms have the same sign, and in the case of odd order the signs are opposite [3]. 

We have at our disposal two major strategies to solve elasticity problems, namely, 
the stiffness method and the flexibility method. In the stiffness method we start with con­
tinuous displacements and we so substitute the equations into each other that we end 
up with equilibrium equations, Fig. 2. The degrees of freedom are the displacements 
{u}. In the flexibility method we select a solution which a priori satisfies equilibrium 

----------. ------------ ----------. -- {u} {e} {a} {P} --
boundaJuj boundaJtlj 
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STIFFNESS 
/ {a} = [S£J {e} ~ L>METHOV 
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{e} = [oJ {u} [v*J {a} = {p} 

METHOD 
~ {e} = [FaJ {a} / 

Fig. 2. Schematic representation of quantities and relations in theory of elasticity. 
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and we so substitute that we end up with compatibility equations, with stress functions 
as unknowns. It is the essence of a rigorous and consistent formulation that the stresses 
{a} and {e } are so chosen that their inner product determines the strain energy E' stored 
in a unit volume of the solid. Besides, the differential matrix-operators must be each 
other's transpose as defined before. These requirements have to be satisfied in the 
following Chapter 2. After that some applications will be shown in Chapters 3 and 4. 

2 Energy-based definition ofaxisymmetry 

In order to avoid any influence of the conventional approach, we choose a truly in­
dependent system of definitions. In the case of general axisymmetry a unit volume is a 
ring element of unit cross-section and a sector angle of one radial. The strain energy 
stored in it is called E'. To derive this energy density we compute the strain energy E 
which is stored in a ring with cross-sectional dimensions dr and dz, Fig. 3. 

We make use of the rule that the stored strain energy equals the work done by the 
external load. The ring element considered is loaded by stresses arr, azz, azr and a rz and 
by volume forces Pr and Pz. The work done by arr on the outer face ofthe ring element 
is H2nr. arr · ur)dz. On the inner face a similar energy term applies, but with an 
opposite sign. The total work of arr is the sum of these two terms, which reads 

Fig. 3. Loads and stresses acting on a ring element with dimensions dr, dz and dB. 
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~ :r (mrr · ur)dr. dz· 2n:. Likewise we can compute the work on all faces by all stresses. 

The work done by the volume forces is HPrur + Pzuz)2n:r. dr· dz. The total work done 
by all the loads on the ring element is: 

I{a a a a 
E = 2 ar (mrr • Ur) + az (mzz · Uz) + ar (mrz · Uz) + az (mzr · Ur) + 

+ rPr· Ur + rPz· Uz} 2n:drdz 

In this stage it is convenient to introduce generalized stresses and loads as follows 

1:rr = r arr 

1:zz = razz 
1:rz = r arz 
1:zr = r azr 

The energy E' per unit volume now becomes 

'l{a a a a } E = 2 ar (1:rrur) + az (1:zzUz) + ar (1:rzUz) + az (1:zrUr) + PrUr + PzUz 

Here a unit volume is defined by unit dimensions in r-, z- and e-direction. Performing 
the differentiations yields 

, I {( a1:rr a1:zr ) (a1:rz a1:zz ) E =2 a,+Tz+Pr Ur + a,+Tz+Pz Uz + 

This specific energy can be rewritten using the three equilibrium conditions of a ring 
segment with dimensions rde, dr, dz. They are 

a a 
ar (arr • rde· dz)dr+ az (azr· rde· dr)dz- (a88· dr· dz)de + Pr • rde· dr· dz= 0 

a 8 
ar (arz · rde· dz)dr+ az (azz • rde· dr)dz+ pz· rde· dr· dz= 0 

(arz · rde· dz)dr= (azr· rde· dr)dz 

We can divide by de· dr· dz and introduce the generalized stresses and loads, which 
transforms the equilibrium equations into 

81:rr a1:zr P 0 
Tr+Tz-a88+ r= 
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These equations are now introduced into the expression E', which yields 

From this inner product we deduce the definition of the generalized stress vector {a} 
and related generalized strain vector {e} : 

{a}T = { I:rr I:zz I:rz agg 

{e}T = { 
aUr auz : auz aUr 
ar az '~+- Ur : ar aZ 

For the generalized strains we introduce the designations err, ezz, Yrz and Egg. They are 
related respectively to the generalized stresses I:rr , I:zz, I:rz and agg. The equilibrium 
conditions and the kinematic relations now are 

a a 
I:rr 1 = {Pr} ar 0 az 
Lu I P, 

a a I:rz 
0 az ar 0 agg 

[D*]{a} = {P} 

r err a 
0 {~J r ar 

Yrz a 
Egg 0 az 

{e} = [D]{u} 

a a 
az ar 
1 0 

The corresponding rigidity matrix is, using the conventional stiffnesses from Hooke's 
law: 

I:rr r vr 0 v err 

I:zz vr r 0 v ezz 
E 

{a} = [Se]{e} = 1 _v2 I-v 
I:rz 0 0 --r 0 Yrz 2 

agg v v 0 Egg} r 

We conclude that the resulting generalized stresses and strains satisfy the requirements 
stated earlier. The differential matrix operators in the equilibrium conditions and 
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kinematic relations are transposed to each other in the required manner, and the inner 
product of {(J} and {e} determines the strain energy per unit volume. The derivation did 
not naturally oblige us to replace (Jee by a generalized stress Lee as was done for the 
other stresses. On the contrary, no need at all exists to do so. As a consequence, we end 
up with a corresponding generalized strain Eee which is unconventional, and the rigidity 
matrix needs proper attention. 

If one prefers, however, to introduce Lee instead of (Jee, one can do so. This brings us 
back to the conventional strain eee = urlr to define E' properly. The complete set of 
definitions then becomes 

o 
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eee 

:Err 

I r.ee 
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ar 
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Yrz I 
eee 

ur 
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[D*]{(J} = {P} 

{e} = [D]{(J} 

{(J} = [Se ]{e} 

This definition set is slightly closer to what we are accustomed to. For the rest, however, 
it offers no advantages. Besides that, it is not possible for plates loaded in bending, 
Chapter 4. In the following chapters we will use the definition set based on (J ee and Eee. 
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Fig. 4. Axisymmetric plate loaded in-plane. 

3 Axisymmetric plate loaded in-plane 

Consider the state of plane stress in which azz and arz do not occur. So we only consider 
the stresses arr and aee and a volume force P, see Fig. 4. The definition set is 

Strain energy: 

Equilibrium: 

E' = ~ {Lrrerr + a ee Eee } 

dLrr 
---+aee=P 

dr 

Constitutive equations: err = ~ (~Lrr - vaee ) 

1 
Eee = E (Lrr + mee) 

Lrr = ~ (re rr + vEee ) I I-v 

aee = ~ (verr +! Eee) 
1 -v r J 

Kinematic relations: 
du 
dr 

Eee=u 

flexibility method 

stiffness method 

We will solve the general problem of a plate with edges at rl and r2. Either the radial ex­
ternal edge loads PI and P2 in the r-direction are known, or the displacements UJ and U2. 

A constant volume force P is present (P= rP). The flexibility method and the stiffness 
method will both be applied. 

3.1 Flexibility method 

We introduce a stress function cjJ. A solution for Lrr and aoe which satisfies equilibrium 
is 

dB 
aee = dr + rP 
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Using the constitutive equations we find the generalized strains 

r/J v dr/J v 
err = rE-I; dr -I; rP 

vr/J r dr/J r2 
Eee=--+--+-P 

E E dr E 

This result is substituted into the compatibility condition which results from the kine­
matic relations by elimination of the displacement u: 

dEee 
-err+~=O 

This substitution yields the differential equation 

Or 

d dr/J 1 
-r--- r/J=-(2+v)rP 
dr dr r 

I Lr/J = - (2 + v)rP I 

in which L is the following differential operator 

d d 1 
L=- r--­

dr dr r 

The reader easily can check that this operator also can be put in the following form 

dId 
L=r---r 

dr r dr 

The differential equation is of the second order. The general solution of the homo­
geneous equation Lr/J = 0 is 

1 
r/J=A -+Br 

r 

In the case of given edge loads PI at rl and P2 at r2 and no volume load P we can solve 

rf - ri 
A = -2--2 (P2 - PI) 

r2 - rl 

The stresses then become 

1 r/J A 
0" rr = - Lrr = - = 2 + B 

r r r 

dr/J A 
O"ee=-=--+B 

dr r2 
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Fig. 5. Results of tick-walled tube under internal pressure. 

If we take P2 = 0 we get the solution of a thickwalled tube under inner pressure, see 
Fig. 5. 

Note 1: 
Ifwe use Airy's biharmonic equation we get a fourth-order differential equation with a 
general solution: 

¢ Airy = A + Br2 + C In r + Dr2 In r 

Now we need four boundary conditions, but we have only two. So additional considera­
tion of displacements is needed [l]. It is clear that the direct approach advocated in this 
paper has considerable advantages. A much simpler differential equation has to be 
solved, which requires only two boundary conditions. 

Note 2: 
The derivation given here also applies to states in plane strain. The same operator Lthen 
occurs in the homogeneous equation. 

3.2 Stiffness method 

First we substitute the kinematic relations into the constitutive equations: 

E (dU ) :Err =~-2 r -+vu 
I -v dr 

and this is fed into the equilibrium equation, yielding: 

E 
-~-2 Lu=rP 

I-v 

The same operator L appears which was found in the flexibility method! The homo­
geneous equation is now: 

Lu=O 

with a similar general solution for u as was found for ¢ in the flexibility method 

41 



A 
u=-+Br 

r 

From this we find stresses 

E { 1- v } A' I arr =-1--2 --2-A+(v+1)B =2.+B 
-v r r 

E {1- v } A' I 
a Og = -1 -2 -2- A + (1 + v)B = - 2. + B 

-v r r 

This corresponds to the solution which was found in the flexibility method. The stiff­
ness method also applies when displacements Uj and U2 are specified. So it is more 
general than the flexibility method. The operator L also appears in cases of plane strain. 

4 Axisymmetric plate loaded in bending 

Consider a plate as shown in Fig. 5. The load consists of a uniformly distributed load p 
per unit area. Bending moments tnn and mgO occur, and an accompanying shear force qr, 
all defined per unit length. Similarly to in-plane loading we introduce generalized 
quantities: 

Mrr = rmrr 
Or = rqr 
P =rp 

The strain energy E' per unit area, i.e. the work done by all loads on the plate ring 
element, is now 

E' = 1 {:r (Orw) + :r (MrrqJ) + Pw} 

in which qJ denotes the rotation. The definition of qJ is 

dw 
qJ=-­

dr 

Performing the derivations in E' we arrive at 

The vertical and rotational equilibrium conditions become 

So we can rewrite E' as follows 
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Fig. 6. Axisymmetric plate loaded in bending. 

E' 1 {drp } = '1 Mer dr + mee rp 

which is very similar to the expression for in-plane loading. The rotation rp now takes the 
place of u there. For the generalized strains drpj dr and rp we introduce the designations 
Xrr and Kee . 

The resulting definition set is found to be 

Equilibrium: d2Mrr dmee 
-dT+&=P 

Constitut;ve equat;ons, x" ~~ (~M" - ,m,,) } 
Kee= & (-vMrr+rmee) 

Kinematic relations: 

Mer = K(rxrr + vKee) 

mee = K(VXrr +~ Kee) 

Xrr = (drp =) _ d2~ 
dr dr 

dw 
Kef) = (rp =) - ~ dr 

} 

flexibility method 

( Eh3) 
&=12 

stiffness method 

( Eh 3
) 

K= 12(1- v2) 

Here the equilibrium equation was obtained by substitution of Qr from the rotational 
equation into the vertical equation. It can easily be checked that this definition set 
yields a [D] and [D*] which are "transposed" to each other. 

The plate has edges at r1 and r2. At an edge in general the normal moment, the trans­
verse shear force, the rotation or the vertical displacement can be specified. In the 
following we assume p to be constant. Again the flexibility method and stiffness method 
will both be applied. 
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4.1 Flexibility method 

We introduce a stress function if; such that 

AIrr = if; 

dif; 1 2 
mee = dr +"ipr 

This solution satisfies the equilibrium condition in which P= pro Substitution into the 
constitutive relations yields: 

x =~ (t-v dif; _~pr2) 
rr ~ r dr 2 

Kee = ~ ( - vif; + r 1, + !pr3 ) 

This result is fed into the compatibility condition which is found by elimination of w 
(or rp) from the kinematic relations: 

dKee 
- Xrr + ---ctr = 0 

So we obtain a differential equation for if; 

[ 3 +v 2[ Lif;= --2- pr 

Surprisingly, we again find the operator L which is also valid for in-plane loading. 
The general solution of if; is 

A 3 +v 3 
if;=,+Br---r6 pr 

Hence the moments are 

if; A 3+v 2 
mrr =-=2+B---pr 

r r 16 

dif; 1 2 A 1 +3v 2 
mee = dr + "ipr = - r2 + B -16 pr 

This yields all well-known solutions which can be found from boundary conditions 
where moments are specified. For instance, we consider a plate with r1 = 0 and r2 = a 
which is simply supported at r2 = a, see Fig. 7. In this case A vanishes and 
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p 

Fig. 7. Simply supported plate and homogeneously distributed load. 

3 +v 2 2 
=~(a -r)p 

3+V( 2 1+3v 2) 
moo = ~ a - 3 + v r p 

4.2 Stiffness method 

Substitution of the kinematic relations into the constitutive equations yields: 

Mr =K(/t +v{O) 

( d{O (O) 
moo=K v dr +r 

Next, we substitute this into the equilibrium condition. As we shall see later on, it is 
advantageous to do this in two steps. First we use the rotational equilibrium condition, 
which results in: 

Notice herein again the ever repeating operator L: 

We introduce this into the vertical equilibrium condition, and simultaneously we 
replace {O by - dwJdr. The differential equation for w becomes: 

d d 
K-L-w=P 

dr dr 

Note that P equals rp. The differential equation is of the fourth order, and the general 
solution in the case of constant p is as follows: 

pr4 

w=A+Br2 + Cln r+Dr2ln r+ 64K 
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This approach allows for all possible boundary conditions. 

Note 1: 
From Qr = KLcp we can derive how to express qr into w. Using Qr = rqr, cp = - dw/drand 

we find: 

dId 
L=r---r 

dr r dr 

dId d 
q=-K---r-w 

r dr,r dr dr 

The underlined part of the right hand member can be expanded into 

d2w 1 dw 
dr2 + ~ dr 

This is the sum of the curvatures in the radial and the circumferential direction, apart of 
the sign. We can designate this sum with the Laplace operator "P. SO we find the well­
known expression for the shear force: 

Note 2: 

d 2 
qr= -K dr V w 

The fourth-order differential equation, written in full and divided by r, is for constant K: 

Id dId d 
K--r---r-w=p 

r dr dr r dr dr 
1.-----1 L-.----l 

Herein we easily identify a repetition of the Laplace operator V2, so the differential 
equation is the well-known biharmonic equation: 

KV2V2W=p 

5 Summary and final remark 

Axisymmetric states of elasticity can be tackled either by the flexibility method or by 
the stiffness method. The dual approach requires a careful definition of generalized 
stresses and strains. The choice which has been made is based on an energy concept. 
Next, the theory has been applied to simple axisymmetric plates loaded in-plane and 
loaded in bending. In all the resulting differential equations the same second-order 
differential operator appears 
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The respective homogeneous equations are: 

In-plane: Lrp=O (flexibility method) 

Lu =0 (stiffness method) 

Bending: Lrp =0 (flexibility method) 
d d 
-L-w=O 
dr dr 

(stiffness method) 

The theory set forth here does not produce any new and hitherto unknown solutions. 
The aim of this paper is to present a simple and straightforward way to obtain the 
results. Its objects are, firstly, to demonstrate systematic features and, secondly, to 
highlight the surprise of the major analogy in the several formulations. 

Finally it is remarked that a consistent definition of the generalized stresses and 
strains is indispensable and essential for correct finite element analyses. This is partic­
ularly true for equilibrium models and hybrid formulations. 
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