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Multivariate piecewise polynomial functions (or splines) 
on polyhedral complexes have been extensively studied 
over the past decades and find applications in diverse 
areas of applied mathematics including numerical analysis, 
approximation theory, and computer aided geometric design. 
In this paper we address various challenges arising in the study 
of splines with enhanced mixed (super-)smoothness conditions 
at the vertices and across interior faces of the partition. 
Such supersmoothness can be imposed but can also appear 
unexpectedly on certain splines depending on the geometry 
of the underlying polyhedral partition. Using algebraic tools, 
a generalization of the Billera–Schenck–Stillman complex 
that includes the effect of additional smoothness constraints 
leads to a construction which requires the analysis of ideals 
generated by products of powers of linear forms in several 
variables. Specializing to the case of planar triangulations, 
a combinatorial lower bound on the dimension of splines 
with supersmoothness at the vertices is presented, and we 
also show that this lower bound gives the exact dimension in 
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high degree. The methods are further illustrated with several 
examples.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A multivariate spline is a piecewise polynomial function defined on a partition Δ of a 
domain in Ω ⊆ Rn such that, as a function on Ω, it is continuously differentiable up to a 
fixed order r � 0. A more general definition arises when additional smoothness conditions 
are imposed on specific faces of the partition Δ. Such splines are called supersmooth 
splines or supersplines, and in this article we study them using algebraic tools.

Spline spaces with supersmoothness are used for spline-based finite elements or isogeo-
metric analysis applications [18]. On a general planar triangulation, the dimension of the 
space of Cr-continuous splines of polynomial degree at most d may depend on the geom-
etry of the partition for small d. This is undesirable for finite elements as it complicates, 
for instance, the efficient construction of locally supported basis functions. However, en-
hanced supersmoothness can be employed to eliminate this geometric-dependence and 
yield more tractable spline spaces; e.g., see Speleers [34] and Grošelj and Speleers [17]. 
Given this, developing an understanding of spline spaces with (enhanced) supersmooth-
ness has both theoretical and practical relevance. In this article, we present an application 
of homological methods toward this task.

Classically, splines have been studied using Bernstein–Bézier representations and the 
construction of minimal determining sets, see [20] and the references therein. These 
methods were first applied to superspline spaces on triangulations by Chui in [7], where 
a special order of supersmoothness r + �(d − 2r − 1)/2� was imposed on the vertices of 
the partition for Cr-spline spaces of degree d � 3r+ 2. The motivation to construct this 
spline space came from the construction of locally supported basis functions and opti-
mal finite element approximation. Splines with arbitrary uniform supersmoothness were 
introduced by Schumaker in [29]; and splines with varying orders of supersmoothness at 
the vertices by Ibrahim and Schumaker in [19]. See also [20, Chapter 5] where Bernstein–
Bézier methods for splines on triangulation and well-known results on superspline spaces 
have been collected and summarized. Alfeld and Schumaker in [2] introduced the notion 
of smoothness functionals and provided lower and upper bounds for bivariate spline 
spaces with enhanced smoothness conditions across interior edges of the underlying tri-
angulation. This led to a more general notion of supersmoothness, which can also be 
found in [20, Chapter 9].

Supersmoothness properties can be imposed but they can also appear unexpectedly 
on certain splines with only uniform global smoothness constraints. Splines with such 
unexpected smoothness are said to have intrinsic supersmoothness. This feature was first 
observed by Farin in [13] in the case of cubic C1-continuous splines on the Clough–Tocher 

http://creativecommons.org/licenses/by/4.0/
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split, which is the triangulation of a triangle with a single interior vertex and three interior 
edges. Farin observed that the second order derivatives of the C1-splines supported on 
this triangulation are also continuous at the interior vertex. A detailed proof of this case 
as well as its trivariate analog can be found in [1]. It is now known that on a given 
triangulation, for certain combinations of degrees and global smoothness, the dimension 
of a spline space can be determined combinatorially if additional smoothness constraints 
on the faces of the partition are revealed and appropriately addressed. The latter has 
been studied via Bernstein–Bézier methods to prove results on dimension of spline spaces 
by Sorokina in [31,32], and Shekhtman and Sorokina in [30]. Recently, in this direction, 
Floater and Hu in [14] determine the maximal order of intrinsic supersmoothness at 
vertices for various simplicial complexes with a single interior vertex.

Algebraic methods developed for studying Cr-continuous splines [3,4,23,25,26] on 
polyhedral complexes were explored by Geramita and Schenck in [15] to study spline 
spaces with varying order of smoothness across the codimension-1 faces of a simplicial 
complex in Rn. In this approach, the connection between spline functions and fat point 
ideals is used to derive a dimension formula for mixed spline spaces on planar trian-
gulations in sufficiently high polynomial degree. This connection is further explored by 
DiPasquale in [9] for splines on polytopal complexes, and for splines with mixed super-
smoothness conditions on the edges of planar quadrangular and T-meshes in [35,36].

The application of algebraic methods to the study of splines with mixed smoothness 
(i.e., with differing orders of smoothness across different codimension-1 faces of an n-
dimensional complex) are the ones closest in spirit to the focus of this article. We extend 
these algebraic methods to the setting where supersmoothness can be imposed at any 
arbitrary i-dimensional faces, i � n − 1, of such a complex. This is a very general 
setting which can be used to further our understanding of both superspline and classical 
spline spaces. Indeed, the two are related by the notion of intrinsic supersmoothness, 
identification of which has been shown to yield a better understanding of the dimension 
of classical splines [31,32]. The latter is an open problem in spline theory in general and 
algebraic methods have provided new results, for instance, see the recent developments 
in [10,11,27,38].

The paper is organized as follows. In Section 2 we set up notation, giving the def-
inition of mixed splines and superspline spaces. In Section 3 we present the relevant 
homological and algebraic background to study the dimension of superspline spaces. In 
Section 4 and following we consider the case of splines on planar triangulations. First, we 
study certain ideals that arise when considering mixed supersmoothness conditions at 
edges and vertices of planar domains. Next, we derive a lower bound on the dimension 
of superspline spaces in Section 5 and we prove that the lower bound coincides with 
the exact dimension in large degree. Finally, we devote Section 6 to specific examples 
of superspline spaces that appear in the literature [6,14,21,34] before concluding. All 
examples utilize Macaulay2 [16] for computations and the scripts for the same can be 
downloaded from https://github .com /dtoshniwal /M2 _supersmoothness.

https://github.com/dtoshniwal/M2_supersmoothness
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2. Splines with mixed and supersmoothness conditions

In this section we set notation and important definitions concerning the spline spaces 
that we will study in the rest of the paper.

We denote by Δ an n-dimensional simplicial complex embedded in Rn. We will assume 
that Δ is pure, i.e., each simplex in Δ is the face of an n-simplex in Δ. If there is no 
confusion about the embedding, we identify Δ with its embedding and write Δ ⊆ Rn. If 
n = 2 we refer to Δ as a triangulation, and as a tetrahedral complex if n = 3. We write 
Δ◦ and ∂Δ = Δ \Δ◦ for the collection of interior and boundary faces of Δ, respectively. 
The set of i-dimensional faces of Δ, also called i-faces, is denoted Δi, and Δ◦

i ⊆ Δi is 
the set of the interior i-faces, for i = 0, . . . , n − 1. The number of elements of Δi and Δ◦

i

is denoted fi and f◦
i , respectively.

Denote by R = R[x1, . . . , xn] the polynomial ring in n-variables, and by R�d the vector 
space of polynomials in R of total degree at most d. We write Cr(Δ) for the set of all 
functions F : Δ → R which are continuously differentiable of order r on Δ. We call these 
functions Cr-continuous, or Cr-smooth, on Δ.

Definition 2.1. Let Δ ⊆ Rn be a simplicial complex, and 0 � r � d be integers. The set 
Sr
d(Δ) of Cr-continuous splines on Δ is defined as the set of all piecewise polynomial 

functions on Δ of degree at most d that are continuously differentiable up to order r on 
Δ. More precisely,

Sr
d(Δ) =

{
f ∈ Cr(Δ): f |σ ∈ R�d for all σ ∈ Δn

}
.

If f ∈ Sr
d(Δ) we say that f is a Cr-spline, or a Cr-continuous (or -smooth) spline, on 

Δ. The collection of all Cr-splines on Δ is denoted Sr(Δ) =
⋃

d�0 S
r
d(Δ).

For a given simplicial complex Δ, we extend Definition 2.1 and consider spline func-
tions with variable smoothness conditions at the vertices or across the interior faces of 
Δ. If β ∈ Δ◦

i , let us denote by Δβ the star of β in Δ, that is the simplicial complex 
composed of all simplices σ of Δ which satisfy either β ⊂ σ or there is a simplex σ′ so 
that σ, β ⊂ σ′. Following the notation in [20] and [15], we first define the space of splines 
with mixed smoothness conditions across the interior codimension-1 faces of Δ.

Definition 2.2 (Spline functions with mixed smoothness). For a simplicial complex Δ ⊆
Rn and a non-negative integer d, let r = {rτ : τ ∈ Δ◦

n−1
}

be a set of integers, 0 �
max

{
rτ : τ ∈ Δ◦

n−1
}
� d. The space Sr

d (Δ) of splines with mixed smoothness r on Δ is 
defined as the set of all C0-continuous functions on Δ which are splines with smoothness 
rτ across the face τ for each τ ∈ Δ◦

n−1. Namely,

Sr
d (Δ) =

{
f ∈ C0(Δ): f |Δτ

∈ Srτ
d (Δτ ) for all τ ∈ Δ◦

n−1
}
,
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where Δτ is the star of the face τ in Δ. Similarly as before, we denote Sr(Δ) =⋃
d�0 S

r
d (Δ). If rτ = r ∈ Z�0 for all τ ∈ Δ◦

n−1, then Sr
d (Δ) coincides with Sr

d(Δ)
in Definition 2.1. In this case we write Sr

d (Δ) = Sr
d(Δ).

We now define spline functions with variable order of smoothness at the i-faces in Δi

for i = 0, . . . , n − 2. We follow the notation in [20] for planar Δ and call the sets of these 
functions superspline spaces. We say that a spline f ∈ S0

d(Δ) is Cs-continuous at a face 
β ∈ Δi provided that, for all σ ∈ Δn such that β is a face of σ, all polynomials f |σ have 
common derivatives up to order s on β. In this case we say that f has supersmoothness s

at β and, following the convention introduced in [20] for a simplex β, write f |Δβ
∈ Cs(β), 

or simply f ∈ Cs(β).

Definition 2.3 (Superspline functions). Suppose Δ ⊆ Rn is a simplicial complex and rτ , 
τ ∈ Δ◦

n−1 and d are integers such that 0 � rτ � d for each τ ∈ Δ◦
n−1. For a fixed 

0 � i � n − 2, let s =
{
sβ : β ∈ Δi

}
be a sequence of integers sβ with 0 � sβ � d. The 

superspline space Sr,s
d (Δ) is defined as the set of all Cr-continuous splines on Δ with 

supersmoothness sβ at β for each face β ∈ Δi i.e.,

Sr,s
d (Δ) =

{
f ∈ Sr

d (Δ): f ∈ Csβ (β) for all β ∈ Δi

}
.

We denote Sr,s(Δ) =
⋃

d�0 S
r,s
d (Δ). If sβ = s ∈ Z�0 for all β ∈ Δi, we write Sr,s

d (Δ) =
Sr,s
d (Δ); if rτ = r ∈ Z�0 for all τ ∈ Δ◦

n−1 we simply write Sr,s
d (Δ), and if s = r then we 

write Sr,s
d (Δ) = Sr

d(Δ).

Remark 2.1. Notice that if γ ∈ Δi for 0 � i � n −2 is a face of τ ∈ Δn−1 and f ∈ Sr
d(Δ), 

then f ∈ Cs(γ) does not necessarily imply f |Δτ
∈ Ss

d(Δτ ). Conversely, if f |Δτ
∈ Ss

d(Δτ )
holds for all (n − 1)-face τ ∈ Δγ then f ∈ Cs(γ) for each face γ ⊆ τ .

Note that in the following we will fix an index 0 � i � n − 2 and only consider 
supersplines that posses enhanced smoothness at the i-faces of the simplicial complex. 
Therefore, in the case n = 2 (which will also comprise the majority of our discussion), 
the only superspline space will be that of splines with supersmoothness at the vertices of 
the triangulation. Similarly, in the case n = 3, we can consider two superspline spaces, 
one composed of splines with supersmoothness across the edges and the other of splines 
with supersmoothness at the vertices of the given tetrahedral partition.

3. Supersplines as the homology of a chain complex

In this section we review the necessary results from [3,4,15,26], and extend these 
results to the setting of superspline spaces Sr,s(Δ) introduced in Section 2.

First we recall that for any pair of integers r, d � 0, the study of the splines Sr
d(Δ) on 

Δ of degree at most d and global smoothness r can be reduced to the study of splines on 
a simplicial complex whose polynomial pieces are homogeneous polynomials of degree d.
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In fact, if Δ ⊆ Rn is the star of a vertex (i.e., if all simplices in Δ share a common 
vertex), then

Sr(Δ) ∼=
⊕
i≥0

Sr(Δ)i, and Sr
d(Δ) ∼=

d⊕
i=0

Sr(Δ)i, (1)

where Sr(Δ)i denotes the splines on Δ of degree exactly i, and the isomorphism is as 
R-vector spaces.

If Δ ⊆ Rn is not the star of a vertex, then the isomorphism (1) does not hold for Sr(Δ), 
but one can associate to Δ a star of a vertex Δ̂ ⊆ Rn+1 and (1) will still be valid for Δ̂. 
This new complex Δ̂ can be constructed as follows. If x1, . . . , xn are the coordinates of 
Rn, consider the embedding φ : Rn → Rn+1 in the hyperplane {x0 = 1} ⊆ Rn+1 given 
by φ(x1, . . . , xn) = (1, x1, . . . , xn). If σ is a simplex in Rn, the cone over σ, denoted σ̂, is 
the simplex in Rn+1 which is the convex hull of the origin in Rn+1 and φ(σ). If Δ ⊆ Rn is 
a simplicial complex, the cone over Δ, denoted Δ̂, is the simplicial complex consisting of 
the simplices 

{
β̂ : β ∈ Δ

}
along with the origin in Rn. Then, by construction, Δ̂ ⊆ Rn+1

is the star of the origin and (1) yields Sr(Δ̂) ∼=
⊕
i≥0

Sr(Δ̂)i and Sr
d(Δ̂) ∼=

d⊕
i=0

Sr(Δ̂)i. The 

following result from Billera and Rose [4] links these two spline spaces.

Theorem 3.1 ([4, Theorem 2.6]). If Δ ⊆ Rn is a simplicial complex and Δ̂ is the cone 
over Δ in Rn+1 then Sr

d(Δ) ∼= Sr(Δ̂)d.

In the following we extend Theorem 3.1 to the superspline functions introduced in 
Definition 2.3.

3.1. Superspline ideals

Suppose Δ ⊆ Rn is an n-dimensional simplicial complex. As defined above, let 
Δ̂ ⊆ Rn+1 be the cone over Δ, and denote by S = R[x0, x1, . . . , xn] the polynomial 
ring associated to Δ̂. Given a polynomial f ∈ R = R[x1, . . . , xn] of degree d, its homog-
enization in S is defined as

f̂(x0, x1, . . . , xn) = xd
0f

(
x1

x0
, . . . ,

xn

x0

)
.

Conversely, if f ∈ S, its dehomogenized counterpart in R is defined by taking x0 = 1 and 
will be denoted by f̌ ∈ R.

For homogeneous polynomials f1, . . . , fk ∈ S, we denote by 〈fi〉 ⊆ S the ideal gen-
erated by fi and 〈f1, . . . , fk〉 =

∑k
i=1〈fi〉 the ideal of S generated by f1, . . . , fk. We 

write V(f1, . . . , fk) ⊆ Rn+1 for the set of points p ∈ Rn+1 such that fi(p) = 0 for all 
i = 1, . . . , k. Similarly, we define V(f̌1, . . . , f̌k) ⊆ Rn for f̌i ∈ R.
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Fix 0 � i � n −2, and take two sets of integers r = {rτ : τ ∈ Δ◦
n−1
}

and s =
{
sβ : β ∈

Δi

}
such that rτ , sβ � 0 for each τ ∈ Δ◦

n−1 and β ∈ Δi. To each face of Δ we associate 
an (homogeneous) ideal in S as follows.

� If σ ∈ Δn define J(σ) = 0.
� If τ ∈ Δ◦

n−1, let �τ ∈ S be (a choice of) a linear form vanishing on τ̂ . For each i-face 
β ⊂ τ let mβ =

{
f̂ ∈ S : f ∈ m̌β

}
, where m̌β ⊆ R is the ideal of all polynomials 

vanishing at β. In other words, mβ is the ideal of all polynomials vanishing on β̂. We 
define

J(τ) =
〈
�rτ+1
τ

〉
∩

⎛⎝ ⋂
β∈Δi, β⊂τ

m
sβ+1
β

⎞⎠ . (2)

� If γ ∈ Δj for 0 � j � n − 2, take

J(γ) =
∑

τ�γ, τ∈Δ◦
n−1

J(τ). (3)

Additionally, we denote by J̌(τ) the ideal in R corresponding to the edge τ ∈ Δ◦
1, namely

J̌(τ) =
〈
�̌rτ+1
τ

〉
∩

⎛⎝ ⋂
β∈Δi, β⊂τ

m̌
sβ+1
β

⎞⎠ ,

where �̌τ ∈ R is a linear polynomial vanishing at τ . The ideal J(τ) can be equivalently 
defined as the homogenization of J̌(τ) in S.

Note that, if rτ = sβ for all i-faces β ⊂ τ , the ideal J(τ) associated to τ ∈ Δ◦
n−1

reduces to J(τ) = 〈�rτ+1
τ 〉, and we recover the ideals defined by Schenck and Stillman in 

[26].

3.2. A chain complex of supersplines

Recall that a simplicial complex Δ ⊆ Rn is pure if all its maximal faces (with respect 
to inclusion) are of dimension n; and it is hereditary if for all pairs of faces σ, σ′ ∈ Δn

such that σ ∩ σ′ = β ∈ Δi there is a sequence of n-faces σ = σ0, σ1, . . . , σm−1, σm = σ′

such that β ∈ σi for all i and σi−1 ∩ σi ∈ Δ◦
n−1 for each i = 1, . . . , m.

For a pure and hereditary n-dimensional simplicial complex Δ, Billera proved in [3] the 
following algebraic criterion for a piecewise polynomial function on a simplicial complex 
Δ to be Cr-smooth on Δ.

Theorem 3.2 ([3, Theorem 2.4]). Suppose Δ ⊆ Rn is a pure and hereditary simplicial 
complex and r � 0 is an integer. Then f ∈ Sr(Δ) if and only if f̂ |σ̂ − f̂ |σ̂′ ∈ J(τ)
or, equivalently, if and only if f |σ − f |σ′ ∈ 〈�̌r+1

τ 〉, for every pair σ, σ′ ∈ Δn satisfying 
σ ∩ σ′ = τ ∈ Δ◦

n−1.
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Remark 3.1. In the case Δ ⊆ R2, Wang in [37] and Chui in [5, Theorem 4.2] provided 
earlier proofs of Theorem 3.2.

An alternate proof of Theorem 3.2 given in [4, Proposition 1.2] yields an analogous 
criterion for supersmoothness at the i-faces of Δ for all i < n. We combine these results 
into the following statement for splines with smoothness r across the codimension-1 faces 
and supersmoothness s at the i-faces of the partition.

Theorem 3.3. Suppose Δ ⊆ Rn is a pure and hereditary simplicial complex and Sr,s(Δ)
denotes the set of splines with smoothness r = {rτ : τ ∈ Δ◦

n−1} at the codimension-1 
faces and supersmoothness s = {sβ : β ∈ Δi} across all the i-faces of Δ, for a fixed 
0 � i � n − 2. Then f ∈ Sr,s(Δ) if and only if f̂ |σ̂ − f̂ |σ̂′ ∈ J(τ) or, equivalently, if and 
only if f |σ − f |σ′ ∈ J̌(τ), for all τ ∈ Δ◦

n−1 and σ, σ′ ∈ Δn satisfying σ ∩ σ′ = τ .

Proof. Let σ, σ′ ∈ Δn such that σ ∩ σ′ = τ ∈ Δ◦
n−1. Suppose f |σ − f |σ′ ∈ J̌(τ). In 

particular, f |σ − f |σ′ ∈
〈
�̌rτ+1
τ 〉 and clearly the restriction of the derivatives up to order 

rτ of f |σ̂ − f |σ̂′ to the edge τ̂ are zero. On the other hand, f |σ − f |σ′ ∈ m̌
sβ+1
β for each 

β ∈ Δi such that β ⊂ τ , so the polynomial f |σ − f |σ′ , and all its derivatives up to order 
sβ , vanish at β.

By hypothesis Δ is hereditary, then there is a sequence of n-faces σ0, σ1, . . . , σm such 
that σj ⊃ β for all j and σj−1∩σj ∈ Δ◦

n−1. Applying the previous argument to each pair 
of faces σj−1 and σj , we get that all the derivatives up to order sβ of f |σj−1 and f |σj

coincide at β for every j = 1, . . . , m, and hence f ∈ Csβ (β) for each β ∈ Δi. It follows 
that f ∈ Sr,s(Δ).

Conversely, if f ∈ Sr,s(Δ) then by Theorem 3.2 f |σ−f |σ′ ∈
〈
�̌rτ+1
τ

〉
for all τ ∈ Δ◦

n−1. 
Let β be one of the i-faces of τ . The ideal m̌β = {g ∈ R : g(β) = 0} is generated by n − i

linearly independent linear polynomials, each of them vanishing at β. By hypothesis, 
the function f |σ − f |σ′ , and all its derivatives up to order sβ, are zero when restricted 
to β. If follows f |σ − f |σ′ ∈ m̌β , and by induction (on the order of the derivatives) we 
get that f |σ − f |σ′ ∈ m̌

sβ+1
β . This argument applies to every i-face β ⊂ τ and leads to 

f |σ − f |σ′ ∈ J̌(τ) for each τ ∈ Δ◦
n−1, as required. �

We now extend the construction by Billera [3] and refined by Schenck and Stillman 
in [26] to the context of superspline spaces.

If Δ ⊆ Rn is a simplicial complex, let 
⊕

β∈Δi
S be the direct sum of the polynomial 

ring S. If ∂i is the simplicial boundary map relative to the boundary ∂Δ, we denote by 
R the chain complex

R : 0 →
⊕
σ∈Δn

S ∂n−→ · · · ∂i+1−−−→
⊕
β∈Δ◦

i

S ∂i−→ · · · ∂1−→
⊕
γ∈Δ◦

0

S → 0 .

The restriction of the maps ∂i to the ideals 
⊕

β∈Δi
J(β) yields the subcomplex J given 

by
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J : 0 →
⊕

τ∈Δ◦
n−1

J(τ) ∂n−1−−−→ · · · ∂1−→
⊕
γ∈Δ◦

0

J(γ) → 0 ; (4)

and taking the quotient leads to chain complex R/J given by

R/J : 0 →
⊕
σ∈Δn

S ∂n−−→ · · · ∂i+1−−−→
⊕
β∈Δ◦

i

S/J(β) ∂i−→ · · · ∂1−→
⊕
γ∈Δ◦

0

S/J(γ) → 0 . (5)

If we take sβ = rτ = r, for some r ∈ Z�0, for all i-faces β and all codimension-1 faces τ , 
the complex R/J reduces to that in [26].

We recall that for a chain complex C with boundary maps ∂i, the i-th homology 
module Hi(C) is defined as Hi(C) = ker(∂i)/im(∂i−1). It was shown by Billera in [3] that 
Sr(Δ̂) ∼= Hn(R/J ) = ker ∂n. This isomorphism also holds in our setting by the algebraic 
criterion in Theorem 3.3. However, in contrast to the case of splines with uniform global 
smoothness conditions r = s, in our setting we need to specify the superspline space we 
consider on Δ and the corresponding one on Δ̂. Namely, if we take the set Sr,s(Δ) of Cr-
continuous splines on Δ with supersmoothness s on the i-faces β ∈ Δi, the corresponding 
spline space on Δ̂, denoted Sr,s(Δ̂), is the set of Cr-splines on Δ̂ with supersmoothness 
s at the (i + 1)-faces β̂ of Δ̂. Following this notation we have the following two results.

Corollary 3.4. Let Δ ⊆ Rn be a pure and hereditary simplicial complex and let 0 �
rτ � sβ be integers for each τ ∈ Δ◦

n−1 and β ∈ Δ◦
i , for a fixed 0 � i � n − 2. Then, 

Sr,s(Δ̂) ∼= ker
(
∂n

)
, where Sr,s(Δ̂) is the set of Cr-splines with supersmoothness s at the 

(i + 1)-faces β̂, and ∂n is the differential map in the chain complex R/J in Equation 
(5).

Proof. By Theorem 3.3, we have that f ∈ Sr,s(Δ̂) if and only if ∂n(f)|τ = f |σ̂ − f |σ̂′ ∈
J(τ) for each τ ∈ Δ◦

n−1, or equivalently, if and only if f ∈ ker(∂n), as required. �
Proposition 3.5. If Δ ⊆ Rn is a pure and hereditary simplicial complex, then Sr,s

d (Δ) ∼=
Sr,s(Δ̂)d, as real vector spaces.

Proof. We follow the argument used to prove the corresponding statement for Sr
d(Δ)

in [4, Theorem 2.6]. We define the map ϕ : Sr,s(Δ̂)d → Sr,s
d (Δ) by ϕ(f)|σ̂ = f̌ |σ for 

each σ ∈ Δn, where f̌ |σ is the dehomogenization of f |σ and σ̂ is the cone over σ. It 
is easy to see that ϕ is an R-linear map. Theorem 3.3 applied to both Sr,s(Δ) (with 
supersmoothness s at the i-faces β of Δ) and Sr,s(Δ̂) (with supersmothness s at the 
(i + 1)-faces β̂ of Δ̂) implies that ϕ is an isomorphism of real vector spaces. �

Let C : 0 → Cn
∂n−→ Cn−1

∂n−1−−−→ · · · ∂1−→ C0 → 0 be a chain complex of graded 
modules Ci with boundary maps ∂i. Denoting the homology modules as Hi(C), the Euler–
Poincaré characteristic of C at degree d is denoted by χ(C, d) =

∑n
i=0(−1)i dim(Cn−i)d =∑n

i=0(−1)i dimHn−i(C)d. (This result from homological algebra can be found in [33, 
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§4], for instance.) We apply this equality to the complex R/J , which together with 
Corollary 3.4 and Proposition 3.5, leads to

dimSr,s
d (Δ) =

n∑
i=0

(−1)i dim
⊕

β∈Δ◦
n−i

S/J(β)d −
n∑

i=1
(−1)i dimHn−i(R/J )d . (6)

In Equation (6), we consider all maximal n-faces of Δ to be interior, so Δ◦
n = Δn.

4. Supersmooth ideals at edges and vertices in planar domains

In this section we assume Δ is a simplicial complex in R2, and study the dimension 
of the modules on the right hand side of Equation (6). The objective is to get an explicit 
formula for dimSr,s

d (Δ) for special cases of Δ, which we use in Section 5 to prove a lower 
bound on dimSr,s

d (Δ) for arbitrary triangulations homeomorphic to a disk.
If Δ ⊆ R2, Equation (6) simplifies to

dimSr,s
d (Δ) = dim

⊕
σ∈Δ2

Sd − dim
⊕
τ∈Δ◦

1

S/J(τ)d + dim
⊕
γ∈Δ◦

0

S/J(γ)d

+ dimH1(R/J )d − dimH0(R/J )d. (7)

The short exact sequence of complexes 0 → J → R → R/J → 0 leads to a long exact 
sequence of homology modules Hi(J ), Hi(R) and Hi(R/J ). In particular, if Δ ⊆ R2 is 
homeomorphic to a disk then f2 − f◦

1 − f◦
0 = 1, and so dim⊕σ∈Δ2Sd − dim⊕σ∈Δ◦

1Sd +
dim⊕σ∈Δ◦

0Sd = dim Sd. Moreover, because modulo the image of ∂1 (respectively, ∂2), 
every vertex of Δ is equivalent to a boundary vertex (respectively, every cycle of edges 
of Δ is equivalent to a cycle formed by the boundary edges of Δ), then H0(R) = 0
(respectively, H1(R) = 0). The latter implies H0(R/J ) = 0 and H1(R/J ) ∼= H0(J ), 
respectively. Therefore, in the case Δ ⊆ R2 is homeomorphic to a disk, Equation (7) can 
be written as

dimSr,s
d (Δ) =

(
d + 2

2

)
+
∑
τ∈Δ◦

1

dim J(τ)d −
∑
γ∈Δ◦

0

dim J(γ)d + dimH0(J )d . (8)

4.1. Ideals of edges and vertices

If τ = [γ, γ′] ∈ Δ◦
1 is an interior edge of Δ with vertices γ and γ′, we write J(τ) ⊆ S

for the ideal of τ defined in (2). We start by discussing the generators of this ideal.

Lemma 4.1. Let [γ, γ′] = τ ∈ Δ◦
1 be an edge with vertices γ and γ′, and let integers rτ

and sγ , sγ′ � rτ denote the desired orders of smoothness and supersmoothness from τ

and γ, γ′, respectively. Then, J(τ) =
〈
�rτ+1
τ

〉
∩m

sγ+1
γ ∩m

sγ′+1
γ′ , as defined in (2), can be 

expressed as
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J(τ) =
〈
�iτ �

j
τ,γ �

k
τ,γ′ : i, j, k � 0 , i � rτ + 1 , i + j � sγ + 1 , i + k � sγ′ + 1

〉
,

for any linear forms �τ,γ and �τ,γ′ such that V(�τ , �τ,γ) and V(�τ , �τ,γ′) are the lines (in 
R3) containing the faces γ̂ and γ̂′ of Δ̂, respectively.

Proof. Choose �τ and �τ,γ as the generators of mγ =
〈
�τ , �τ,γ

〉
, and similarly mγ′ =〈

�τ , �τ,γ′
〉
. Then, by a change of coordinates so that �τ = x, �τ,γ = y and �τ,γ′ = z, we 

have

J(τ) =
〈
xrτ+1〉 ∩ 〈x, y〉sγ+1 ∩

〈
x, z
〉sγ′+1

.

The claim follows and, in particular, it does not depend on a specific choice of �τ,γ and 
�τ,γ′ . Indeed, if �τ , �τ,γ and � are three distinct linear forms vanishing at γ̂, then it is 
easy to see that � can be written as a linear combination � = a�τ + b�τ,γ , for a, b ∈ R. A 

generator of the ideal mk
γ =

〈
�τ , �τ,γ

〉k, for some k � 1, has the form �iτ�
j
τ,γ , with i +j = k, 

and �iτ �
j = �iτ (a�τ + b�τ,γ)j , which is clearly an element of mk

γ . Hence 〈�τ , �
〉k ⊆ mk

γ , and 
the converse trivially follows writing �τ,γ in terms of �τ and �. A similar argument shows 
the corresponding statement for the ideal mγ′ . �

From the above description of J(τ), a dimension formula for the graded pieces J(τ)d
follows immediately, this is shown in the next lemma. In the following lemmas, and 
throughout this paper, we define 

(
a
b

)
= 0 whenever a < b.

Lemma 4.2. Let [γ, γ′] = τ ∈ Δ◦
1 be an edge with vertices γ and γ′, and let integers r

and sγ , sγ′ � rτ denote the desired orders of smoothness and supersmoothness from τ
and γ, γ′, respectively. If d � max {sγ , sγ′} then J(τ)d = 0, and else

dim J(τ)d =
(
d− rτ + 1

2

)
−
(
sγ + 1 − rτ

2

)
−
(
sγ′ + 1 − rτ

2

)
+
(
sγ + sγ′ + 1 − d− rτ

2

)
.

Proof. By a change of coordinates in R3 we can assume that the linear polynomial 
vanishing at τ̂ is �τ = x, and the ideals of polynomials vanishing at γ̂ and γ̂′ are mγ =
〈x, y〉 and mγ′ = 〈x, z〉, respectively. Then J(τ) =

〈
xrτ+1〉∩〈x, y〉sγ+1∩〈x, z〉sγ′+1. Since 

this is a monomial ideal, J(τ)d is the span of the monomials m = xiyjzk so that i, j, k
are non-negative integers satisfying all of the following conditions:

� i + j + k = d,
� i � rτ + 1,
� i + j � sγ + 1, and
� i + k � sγ′ + 1.

The claim follows by simply counting the number of such triplets (i, j, k). �
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Remark 4.1. In the previous result, two specific simplifications may be of interest in 
applications. One is when the supersmoothness at both vertices of τ is the same and the 
other is when only one of the vertices has supersmoothness. For the first case, if sγ = sγ′

and d > sγ � rτ , then

dim
(
S/J(τ)

)
d

=
(
d + 2

2

)
+
(
d− 2sγ + rτ

2

)
− (d− sγ)2 . (9)

Similarly, for the second case, if sγ′ = rτ and d > sγ � rτ , we get

dim
(
S/J(τ)

)
d

=
(
d + 2

2

)
− (sγ − rτ + 1)

(
d− sγ + 1

2

)
+ (sγ − rτ )

(
d− sγ

2

)
. (10)

If γ ∈ Δ0 is a vertex in Δ, we write J(γ) for the ideal of γ defined in (3); in our case, 
Δ ⊆ R2 and

J(γ) =
∑

τ⊃γ,τ∈Δ◦
1

J(τ) =
∑

γ′∈Δ0 ,τ=[γ,γ′]∈Δ1

〈�rτ+1
τ 〉 ∩msγ+1

γ ∩m
sγ′+1
γ′ . (11)

Moreover, if there is supersmoothness only at γ, i.e., s′γ = rτ in (11), then we will denote 
this ideal as

J(γ) =
∑

τ�γ , τ∈Δ◦
1

(〈
�rτ+1
τ 〉 ∩msγ+1

γ

)
. (12)

We introduce this different notation for this special case because it will be useful for 
obtaining explicit bounds on the superspline space dimension. The reason is that, in 
general, it is not clear how to compute dim J(γ) as defined in Equation (11) while an 
explicit dimension formula for the simpler ideal J(γ) can be found. We show this in the 
following results and use it in Section 4.2 to compute the dimension of supersplines on 
triangulations with only one interior vertex, and in Section 5 to compute bounds on 
the dimension of Sr,s

d (Δ) for any triangulation Δ homeomorphic to a planar disk (see 
Theorem 5.4).

Lemma 4.3. Let m̌ be the maximal ideal in R of all polynomials vanishing at γ, and for 
each edge τ ∈ Δ◦

1 let �τ be a linear form vanishing at τ̂ . Given sγ � max {rτ : τ � γ}, 
we get ∑

τ�γ

(
msγ+1 ∩ 〈�rτ+1

τ 〉
)

= msγ+1 ∩
∑
τ�γ

〈�rτ+1
τ 〉 .

Proof. Let f ∈ msγ+1 ∩
∑

τ�γ〈�rτ+1
τ 〉. Then, there exist gτ ∈ S such that f =∑

τ�γ gτ �
rτ+1
τ . Notice that �rτ+1

τ ∈ mrτ+1 for all edges τ containing γ. Since f ∈ msγ+1, 
then we may assume gτ ∈ msγ−rτ . Indeed, we may write f =

∑
τ�γ gτ �

rτ+1
τ =
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∑
τ�γ

(
hτ �

rτ+1
τ + qτ �

rτ+1
τ

)
with hτ ∈ msγ−rτ and either qτ = 0 or qτ /∈ msγ−rτ ; but 

then f ∈ msγ+1 implies 
∑

τ�γ qτ �
rτ+1
τ = 0. In particular, for each τ � γ we have 

gτ �
rτ+1
τ ∈ msγ+1 ∩ 〈�rτ+1

τ 〉. It implies f ∈
∑

τ�γ

(
msγ+1 ∩ 〈�rτ+1

τ 〉
)
.

Conversely, if f =
∑

τ�γ fτ , with fτ ∈ msγ+1∩〈�rτ+1
τ 〉, then fτ ∈ msγ+1 for each edge 

τ � γ, and so f ∈ msγ+1 ∩
∑

τ�γ〈�rτ+1
τ 〉. So the containment follows, and this proves the 

equality. �
Corollary 4.4. Let Δ ⊆ R2, γ ∈ Δ◦

0, and take �τ and m as in Lemma 4.3. Define 
Eγ = {(τ, rτ ) : γ ∈ τ} and let Eγ ⊂ Eγ be the largest subset such that all linear forms 
�τ associated to (τ, ·) ∈ Eγ are distinct, and such that (τ, rτ ) ∈ Eγ implies that rτ � rτ ′

for any (τ ′, rτ ′) ∈ Eγ if �τ ′ = �τ . Let t be the cardinality of Eγ . Then,

sγ � Ω − 1 =
⌊∑

(·,rτ )∈Eγ
rτ

t− 1

⌋
=⇒ J(γ) =

∑
τ�γ

(
〈�rτ+1

τ 〉 ∩msγ+1) = msγ+1 .

Proof. Assume, without loss of generality, that γ is at the origin of R2. Thus, the linear 
forms �τ are polynomials in two variables in m̌. By Lemma 4.3 we have J(γ) = msγ+1 ∩
〈�rτ+1

τ : τ � γ, τ ∈ Δ◦
1〉. If I(γ) =

〈
�rτ+1
τ : τ � γ, τ ∈ Δ◦

1
〉
⊆ R[x, y], then we can write 

J(γ) =
(
m̌sγ+1 ∩ I(γ)

)
⊗R R[z]. By [15, Theorem 2.6], the socle degree of R[x, y]/I(γ)

is Ω − 1 =
⌊∑

(·,rτ )∈Eγ
rτ

t− 1

⌋
. Thus, if sγ � Ω − 1 then m̌sγ+1 ⊆ I(γ), and so J(γ) =

msγ+1. �
We now compute the dimension of the ideal J(γ) in (12) at degree d for any d � 0.

Lemma 4.5. Following the notation in Corollary 4.4, take d > sγ . If sγ < Ω − 1, then

dim(S/J(γ))d =(
d + 2

2

)
−

∑
(·,rτ )∈Eγ

1
2(d− sγ)(d + sγ − 2rτ + 1) + b

(
d + 2 − Ω

2

)
+ a

(
d + 1 − Ω

2

)
,

where

a =
∑

(·,rτ )∈Eγ

(rτ + 1) + (1 − t)Ω, and b = t− a− 1.

If sγ � Ω − 1, then dim(S/J(γ))d =
(
sγ+2

2
)
. In the case 0 � d � sγ , we have

dim(S/J(γ))d =
(
d + 2

)
.
2
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Proof. If d � sγ , then the ideal J(γ) is trivial and the dimension is dim Sd. Therefore, 
let d > sγ and assume without loss of generality that γ is at the origin of R2. As in 
proof of Corollary 4.8, take I(γ) =

〈
�rτ+1
τ : τ � γ, τ ∈ Δ◦

1
〉
⊆ R[x, y], then m̌ = 〈x, y〉

and I(γ) ⊆ m̌. Since, J(γ) =
(
I(γ) ∩ m̌sγ+1) ⊗R R[z], then dim(S/J(γ))d = dim Sd −∑d

k=sγ+1 dim I(γ)k = dim Sd − dim(I(γ) ⊗R R[z])d + dim(I(γ) ⊗R R[z])sγ . From [15, 
Theorem 2.7] we know the dimension of I(γ)k for any k � max {rτ : τ � γ}, and we have

dim
(
S/I(γ) ⊗R R[z]

)
k

=(
k + 2

2

)
−

∑
(·,rτ )∈Eγ

(
k − rτ + 1

2

)
+ b

(
k + 2 − Ω

2

)
+ a

(
k − Ω + 1

2

)
. (13)

The statement follows directly by applying (13) with k = d and k = sγ . Notice that if 
sγ = k < Ω − 1 the binomial coefficients 

(
sγ+2−Ω

2
)

and 
(
sγ+1−Ω

2
)

in (13) vanish; if sγ �
Ω − 1, by Corollary 4.4 we have J(γ) = msγ+1, and dim (msγ+1)d =

(
d+2
2
)
−
(
sγ+2

2
)
. �

The following lemma relates dimension of the ideals J(γ) and J(γ) in degree d. We 
show this result following the ideas in the proof of [26, Lemma 3.2]. Recall that the link
of a vertex γ in Δ ⊆ R2, denoted Lk(γ), is the set of all edges (and their vertices) in 
star(γ) which do not contain γ.

Lemma 4.6. Let Δ ⊆ R2, and γ ∈ Δ◦
0. Then, dim J(γ)d � dim J(γ)d for every d � 0, 

equality holds if d � 0.

Proof. If γ ∈ Δ◦
0, the ideal J(γ) in (11) can be written as

J(γ) =
∑

τ=[γ,ν]

〈�rτ+1
τ 〉 ∩msγ+1

γ ∩msν+1
ν , (14)

where mγ and mν are the ideals in S of polynomials vanishing on γ̂ and ν̂, respectively, 
for every vertex ν ∈ Lk(γ). Then, clearly, for any set of non-negative integers r =
{rτ : τ ∈ star(γ)◦1} and s = {sγ : γ ∈ star(γ)◦0} we have J(γ) ⊆ J(γ) proving the first 
claim.

The second claim can be proved by showing that 〈x, y, z〉N annihilates J(γ)/J(γ) for a 
large enough N . Let s = max {sν , rτ : ν, τ ∈ star(γ)} and let τ ′ = [γ, γ′] and τ ′′ = [γ, γ′′]
be two edges with distinct slope that contain the vertex γ. Take p =

∏
τ∈Lk(γ) �τ , where �τ

denotes a choice of a linear form in S vanishing on τ̂ . Since �τ ′ ∈ mγ∩mγ′ , �τ ′′ ∈ mγ∩mγ′′ , 
and p ∈ mν for any ν ∈ Lk(γ), then for any f ∈ J(γ) we have

�s+1
τ ′ f, �s+1

τ ′′ f, ps+1f ∈ J(γ) .

But 〈x, y, z〉N ⊆
〈
�s+1
τ ′ , �s+1

τ ′′ , ps+1〉 for some N � 0, and the claim follows. �
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4.2. Supersplines on vertex stars

We devote this section to triangulations Δ ⊆ R2 which are the star of a vertex i.e., 
all the triangles σ ∈ Δ share a common vertex γ. In this case, we write Δ = star(γ) and 
say that Δ is a vertex star, or the star of the vertex γ.

Definition 4.1. Let Δ ⊆ R2 be the star of the vertex γ, with interior edges τ ∈ Δ◦
1, and 

take integers 0 � rτ � d, and sγ � max{rτ : τ ∈ Δ◦
1}. We write r = {rτ : τ ∈ Δ◦

1} and 
define Sr,sγ

d (Δ◦) as the set of splines of degree at most d on a vertex star Δ = star(γ)
with smoothness rτ across the edge τ , and supersmoothness sγ at the vertex γ.

In terms of Definition 2.3, we have Sr,sγ
d (Δ◦) = Sr,s

d (Δ) where s assigns supersmooth-
ness sγ to γ and smoothness sγ′ = rτ to γ′ for τ = [γ, γ′] and γ′ ∈ ∂Δ. In particular, the 
ideal J(τ) = 〈�rττ + 1〉 ∩m

sγ+1
γ ∩m

rτ+1
γ′ = 〈�rττ + 1〉 ∩m

sγ+1
γ , as in Remark 4.1, Equation 

(10).

Theorem 4.7. Let Δ = star(γ) ⊆ R2 for an interior vertex γ and interior edges τ ∈ Δ◦
1. 

If 0 � rτ � d and sγ � max{rτ : τ ∈ Δ◦
1} are integers, then

dimSr,sγ
d (Δ◦) =(

d + 2
2

)
+
∑
τ∈Δ◦

1

[
(sγ − rτ + 1)

(
d− sγ + 1

2

)
− (sγ − rτ )

(
d− sγ

2

)]
− dim J(γ)d,

where dim J(γ)d is given by the formula in Lemma 4.5.

Proof. Put J(τ) = 〈�rτ+1
τ 〉 ∩msγ+1 and J(γ) =

∑
τ∈Δ◦

1

J(τ)d. Consider the complex

0 →
⊕
σ∈Δ2

S ∂2−→
⊕
τ∈Δ◦

1

S/J(τ) ∂1−→ S/J(γ) → 0 . (15)

Using similar arguments to those in Corollary 3.4 and Proposition 3.5, we get 
dimSr,sγ

d (Δ◦) = ker(∂2)d. The Euler–Poincaré characteristic of the complex (15) leads 
to dimSr,sγ

d (Δ◦) =
(
d+2
2
)

+ dim
∑

τ∈Δ◦
1
J(τ)d − dim J(γ)d. Notice that in this case, 

J(γ) = J(γ) as defined in (12). Thus, the formula in the statement follows by applying 
Lemma 4.2 and Lemma 4.5 to the previous equality. �
Corollary 4.8. Let Δ be as in Theorem 4.7, and t be the number of edges with different 
slopes containing γ as a vertex. If rτ = r for all τ ∈ Δ◦

1, and d > sγ � r + � r
t−1�, then

dimSr,sγ
d (Δ◦) = f◦

1 (sγ − r + 1)
(
d− sγ + 1

)
− f◦

1 (sγ − r)
(
d− sγ

)
+
(
sγ + 2

)

2 2 2
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= f◦
1 (sγ − r + 1)

[(
d− r + 1

2

)
−
(
sγ − r + 1

2

)]
+
(
sγ + 2

2

)
,

where f◦
1 is the number of interior edges of Δ; if d � sγ then dimSr,s

d (Δ◦) =
(
d+2
2
)
.

Proof. Following the notation in Corollary 4.8, if rτ = r for all τ ∈ Δ◦
1, then Ω − 1 =

� tr
t−1� = r + � r

t−1�. The statement follows by Theorem 4.7 and the case sγ � Ω − 1
in Lemma 4.5. If d � sγ then the only splines in the space are those which are global 
polynomials of degree � d. �
5. A lower bound on the dimension of superspline spaces on triangulations

Throughout this section we assume Δ is a pure and hereditary simplicial complex in 
R2 isomorphic to a disk.

Since dimH0(J )d � 0 for any degree d � 0, then by Equation (8) for any choice of 
smoothness r = {rτ : τ ∈ Δ◦

1} and supersmoothness s = {sγ : γ ∈ Δ0} we have

dimSr,s
d (Δ) �

(
d + 2

2

)
+
∑
τ∈Δ◦

1

dim J(τ)d −
∑
γ∈Δ◦

0

dim J(γ)d . (16)

In fact, it can be shown that the homology module H0(J ) has finite length, i.e., 
H0(J )d = 0 for degree d � 0. The proof of this result follows by a slight modifica-
tion of the proof by Schenck and Stillman in [26, Lemma 3.2] which considered the case 
of splines with global uniform smoothness. We include here the proof of this result for 
completeness. First, we recall the following lemma.

Lemma 5.1 ([26, Lemma 3.3]). If Δ ⊆ R2 is a triangulation, then there exists a total 
order � on Δ0 such that for every γ ∈ Δ◦

0 there exist vertices γ′ and γ′′ adjacent to γ, 
with γ � γ′, γ′′ and such that the edges τ ′ = [γ, γ′] and τ ′′ = [γ, γ′′] have different slopes.

Lemma 5.2. Let Δ ⊆ R2 and J be the complex of ideals associated to r = {rτ : τ ∈ Δ◦
1}

and s = {sγ : γ ∈ Δ0}. Then, H0(J )d = 0 for all d � 0.

Proof. We show the claim by proving that H0(J ) has finite length. For a vertex γ ∈ Δ◦
0

and f ∈ J(γ), we denote by f [γ] the corresponding element in H0(J ), where J is the 
complex of ideals defined in (4). If γ is a boundary vertex we write f [γ] = 0 for any 
f ∈ S. We prove that H0(J ) has finite length by showing that there exist a sufficiently 
large integer M such that 〈x, y, z〉Mf [γ] = 0 in H0(J ) for all γ ∈ Δ◦

0 and f ∈ J(γ).
First, fix a total ordering � on the vertices of Δ as in Lemma 5.1, i.e., such that for 

each vertex γ ∈ Δ◦
0 there are two edges τ ′ = [γ, γ′] and τ ′′ = [γ, γ′′] with different slopes 

such that each of the vertices γ′ and γ′′ is either on the boundary of Δ or is ≺ than γ. 
Take such a vertex γ ∈ Δ◦

0, and suppose 〈x, y, z〉Ng[ν] = 0 for all vertices ν ≺ γ and 
g ∈ J(ν), for some integer N > 0.
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If τ ′ = [γ, γ′], let s = max{sγ′ , sγ , rτ ′}. By Equation (2), the ideal associated to the 

edge τ ′ is given by J(τ ′) = 〈�rτ′+1
τ ′ 〉 ∩ m

sγ+1
γ ∩ m

sγ′+1
γ′ , where mγ and mγ′ are the ideals 

of polynomials in S vanishing at γ̂ and γ̂′, respectively. In particular, �s+1
τ ′ ∈ J(τ ′) and 

thus

�s+1
τ ′ f [γ] = �s+1

τ ′ f [γ′] (17)

in H0(J ). Since �τ ′ is a linear form in S and γ′ ∈ ∂Δ or γ′ ≺ γ, by Equation (17) it 
follows that �Nτ ′ annihilates f [γ]. Similarly, some power of �τ ′′ annihilates f [γ].

On the other hand, if f ∈ J(γ) is given by f =
∑

τ�γ fτ for fτ ∈ J(τ), we have

f [γ] =
∑

τ=[γ,θ(τ)]

fτ [θ(τ)] ,

in H0(J ), where θ(τ) ∈ τ denotes the vertex adjacent to γ on the edge τ . For an edge 
τ ∈ Lk(γ), denote by �τ a choice of a linear form vanishing on τ̂ . Define

p =
∏

τ∈Lk(γ)

�τ ,

and s′ = max {sν , rτ : ν, τ ∈ star(γ)}. Then, by construction p(γ) �= 0 and ps
′+1f [γ] =

ps
′+1f [ν] in H0(J ) for any vertex ν ∈ Lk(γ). In particular, if ν = θ(τ ′) = γ′ we have 

pNf [γ′] = 0, and therefore pNf [γ] = 0.
Hence, some power of �τ ′ , �τ ′′ , and p annihilate f [γ]. But 〈x, y, z〉M ⊆ 〈�Nτ ′ , �Nτ ′′ , pN 〉

for a sufficiently large integer M , and thus it follows 〈x, y, z〉Mf [γ] = 0. �
Lemma 5.2 and Equation (8) lead directly to the following theorem.

Theorem 5.3. If Δ ⊆ R2, and d � 0, equality holds in (16), i.e.,

dimSr,s
d (Δ) =

(
d + 2

2

)
+
∑
τ∈Δ◦

1

dim J(τ)d −
∑
γ∈Δ◦

0

dim J(γ)d .

We now use the results on vertex stars in Section 4.2, and prove a lower bound formula 
on dimSr,s

d (Δ) for any d � 0. As before, for a vertex γ ∈ Δ◦
0, we put

J(γ) =
∑
τ�γ

〈�rτ+1
τ 〉 ∩msγ+1

γ ,

where mγ ⊆ S is the ideal of polynomials vanishing at γ̂.

Theorem 5.4. Let Δ ⊆ R2 be a simplicial complex homeomorphic to a disk, then

dimSr,s
d (Δ) �

(
d + 2

2

)
+
∑

◦

dim J(τ)d −
∑

◦

dim J(γ)d , (18)

τ∈Δ1 γ∈Δ0
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for every d � 0, and equality holds if d � 0. The dimension of J(τ)d follows from 
Lemma 4.2 and that of J(γ)d follows from Lemma 4.5.

Proof. The claim follows from Theorem 5.3 and Lemma 4.6. �
In the examples in Section 6 we compare the lower bounds (16) and (18) for specific 

triangulations; we also consider the homology modules H0(J ) and give their explicit 
description.

We briefly comment that an upper bound can be proved on dimSr,s
d (Δ) following a 

similar argument to that used in the case of splines Sr
d(Δ) with global uniform smooth-

ness r by Mourrain and Villamizar in [22]. Namely, we fix a numbering γ1, . . . , γf◦
0 on the 

interior vertices of Δ. For each vertex γi, denote by N(γi) the set of edges that connect 
γi to any of the first i − 1 vertices in the list or to a vertex on the boundary, and define 
the ideal J̃(γi) =

∑
τ∈N(γi) J(τ).

Proposition 5.5. The dimension of Sr,s
d (Δ) is bounded above by

dimSr,s
d (Δ) �

(
d + 2

2

)
+
∑
τ∈Δ◦

1

dim J(τ)d −
f◦
0∑

i=1
dim J̃(γi)d . (19)

Proof. The argument used in [22, Theorem 2] is independent of the ideals J(τ) associated 
to the edges τ ∈ Δ◦

1, and therefore it immediately leads to the upper bound in Equation 
(19). �

An explicit upper bound formula requires the computation of dim J̃(γ), but the fol-
lowing result follows immediately by comparing the lower and the upper bound in (16)
and (19), respectively.

Corollary 5.6. If Δ ⊆ R2 is a simplicial complex homeomorphic to a disk such that 
dim J(γ)d = dim J̃(γ)d for all γ ∈ Δ◦

0 then equality holds in (16). In particular, this 
implies that H0(J )d = 0.

Example 1 (Optimality of lower bounds). We generate a random triangulation Δ, shown 
in Fig. 1, for r = 2 we consider the space Sr,s

d (Δ) of Cr-continuous splines on Δ with 
supersmoothness s = {sγ : γ ∈ Δ◦

0} with sγ ∈ {2, 3, 4}. We compare the lower bound 
(18) in Theorem 5.4 with the exact dimension of Sr,s

d (Δ) which is a subspace of S2
d(Δ). 

In particular, we randomly assign supersmoothness sγ ∈ {2, 3, 4} to vertices γ ∈ Δ0. 
With reference to Fig. 1, the colored vertices correspond to sγ = 3, the ones colored 
and encircled correspond to sγ = 4, and the others correspond to sγ = 2. As shown in 
Table 1, the explicit bound from Theorem 5.4 coincides with the lower bound in Equation 
(16) as well as the dimension of Sr,s

d (Δ) in large degree. In fact, in this case the equality 
between the dimension of the vertex ideals (12) and (14) in Lemma 4.5 holds for every 
d � 6.
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Fig. 1. A randomly generated triangulation, the smoothness across all edges is r = 2, and additional smooth-
ness s −r ∈ {0, 1, 2} is assigned randomly to all vertices. Above, sγ −r = 1 for vertices with only a red disk 
on them, sγ − r = 2 for vertices with an encircled red disk on them, and sγ − r = 0 otherwise. The exact 
dimensions of Sr,s

d and the lower bounds LB(16) and LB(18) are given in Table 1 for different choices of d. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1
Lower bounds and dimension for the superspline space S2,s

d (Δ) in Example 1, where 
Δ is the triangulation shown in Fig. 1. Here, LB(16) and LB(18) are the lower bounds 
from (16) and (18), respectively.

d dimH0(J )d max
((d+2

2
)
,LB(18)

)
max

((d+2
2
)
,LB(16)

)
dimS2,s

d (Δ)

4 4 15 15 15
5 0 30 31 31
6 0 108 108 108
7 0 223 223 223

6. Examples

6.1. Argyris superspline space

Let Δ ⊆ R2 be a triangulation homeomorphic to a disk, and r � 0 an integer. In this 
example we compute the dimension of the superspline space Sr,2r

4r+1(Δ). The particular 
case of r = 1 is called the Argyris element S1,2

5 (Δ) and was introduced in the finite-
element literature in [39,40]. A description of the Argyris space, and the general case 
Sr,2r

4r+1(Δ) using Bernstein–Bézier techniques is included in [20, Chapter 6–8].
Following Definition 2.3, the space Sr,2r

4r+1(Δ) corresponds to the set

Sr,2r
4r+1(Δ) =

{
f ∈ Sr

4r+1(Δ): f ∈ C2r(γ) for all γ ∈ Δ0
}
.

If γ ∈ Δ◦
0 is an interior vertex, then there are at least three edges having γ as one of their 

vertices, and at least two of them, say τ and τ ′, have different slopes. Let � be a linear 
form vanishing on the plane containing γ̂ and γ̂′. After a suitable change of coordinates 
we can write

J(γ) ⊇ J(τ) + J(τ ′) =
〈
�2r+1−i
τ �iτ ′�i , �2r+1−i

τ ′ �iτ �
i : 0 � i � r

〉
= 〈x2r+1−iyizi , xiy2r+1−izi : 0 � i � r〉 .
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Then, every monomial xaybzc ∈ S, with a + b + c = 4r + 1 and 0 � c � 2r, is contained 
in J(γ)4r+1. Thus

J(γ)4r+1 ∼= S4r+1/〈z2r+1〉4r+1, (20)

and dim J(γ)4r+1 =
(4r+3

2
)
−
(2r+2

2
)

= (2r + 1)(3r + 2).
By [26, Lemma 3.3] (see Lemma 5.1), we know that there exists a numbering of the 

vertices of Δ such that every interior vertex γ ∈ Δ◦
0 is connected to two vertices with 

smaller index by edges which have distinct slopes. Taking such an ordering on the vertices 
of Δ, if γ ∈ Δ◦

0, denote by ̃J(γ) the sum of ideals J(τ) associated to the edges τ containing 
γ and whose other vertex is of smaller index than γ. Since the number of those edges 
with different slope is at least two, then J̃(γ)4r+1 = J(γ)4r+1. Thus, Corollary 5.6 implies 
dimH0(J )4r+1 = 0.

On the other hand, for any edge τ ∈ Δ◦
1, the edge ideal J can be written as 

J(τ) = 〈x2r+1−iyizi : 0 � i � r〉. Then dim J(τ)4r+1 is given in Lemma 4.2. Since Δ
is homeomophic to a disk, then f2 − f◦

1 − f◦
0 = 1, and applying the dimension formula 

(8), together with (9) and (20), we get

dimSr,2r
4r+1(Δ) =

(
4r + 3

2

)
+ f◦

1 (2r + 1)2 − f◦
1

(
r + 1

2

)
− f◦

0 (2r + 1)(3r + 2) (21)

=
(

2r + 2
2

)
f0 +

(
r + 1

2

)
f1 +

(
r

2

)
f2 .

The last equality follows by the Euler relation 3f2 = f1 + f◦
1 . A proof of (21) using 

Bernstein–Bézier methods is in [20, Theorem 8.1].

6.2. Intrinsic supersmoothness and degenerate spaces on vertex stars

Let us consider Δ = star(γ) ⊆ R2 be the star of the vertex γ. For any pair of integers 
0 � r � d we have

dimSr
d(Δ) =

(
d + 2

2

)
+ (f◦

1 − t)
(
d− r + 1

2

)
+ b

(
d + 2 − Ω

2

)
+ a

(
d− Ω + 1

2

)
, (22)

where t is the number of different slopes of the edges containing γ, Ω = � tr
t−1� + 1, 

a = t(r + 1) + (1 − t)Ω, and b = t − a − 1.
The dimension formula (22) was proved by Schumaker [28]. The notation we use here 

follows the algebraic approach to prove this formula by Schenck and Stillman in [25] and 
Mourrain and Villamizar in [22].

Notice that for any sγ � r, we have Sr,sγ
d (Δ) ⊆ Sr,sγ

d (Δ◦) ⊆ Sr
d(Δ), where as before, 

Sr,sγ
d (Δ◦) is the set of Cr-splines on Δ with supersmoothness sγ at γ. It is clear that 

the set Sr,sγ
d (Δ) contains all trivial splines, also called global polynomials, on Δ, i.e., the 

splines F on Δ whose restriction F |σ = f to each face σ ∈ Δ is the same polynomial 
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f ∈ R. Therefore if dimSr
d(Δ) =

(
d+2
2
)

then both Sr,sγ
d (Δ) and Sr,sγ

d (Δ◦) only contain 
trivial splines. From (22) it is easy to see that dimSr

d(Δ) =
(
d+2
2
)

for all d � Ω when 
f◦
1 > t, and for all d � r in the generic case.

The dimension formula for supersplines spaces proved in Section 3 can be used to 
identify unexpected (also called intrinsic) supersmoothness in spaces of Cr-splines. For 
example, by computing the exact dimension of the spaces we can provide a short alter-
native proof of the result by Sorokina in [31, Theorem 3.1]. Namely, we will show that 
the Cr-splines on any generic vertex star all possess supersmoothness � r+1

t−1 � + r at the 
interior vertex.

Suppose f◦
1 = t, and take sγ = � r+1

t−1 � + r. Following the notation in Equation (22), 
we have that sγ = Ω if r+1

t−1 ∈ Z, and sγ = Ω − 1 otherwise. By Corollary 4.8, if d > sγ
we get

dimSr,sγ
d (Δ◦) =

⎧⎨⎩t(Ω − r + 1)
(
d−Ω+1

2
)
− t(Ω − r)

(
d−Ω

2
)

+
(Ω+2

2
)
; if r+1

t−1 ∈ Z

t(Ω − r)
(
d−Ω+2

2
)
− t(Ω − 1 − r)

(
d−Ω+1

2
)

+
(Ω+1

2
)
; otherwise .

(23)
If d � sγ , then dimSr,sγ

d (Δ◦) =
(
d+2
2
)
.

On the other hand, if r+1
t−1 ∈ Z we have a = t − 1, b = 0, and Equation (22) leads to

dimSr
d(Δ) =

⎧⎨⎩
(
d+2
2
)

+ (t− 1)
(
d−Ω+1

2
)
; if r+1

t−1 ∈ Z(
d+2
2
)

+ (t− a− 1)
(
d+2−Ω

2
)

+ a
(
d−Ω+1

2
)
; otherwise .

(24)

A straightforward computation shows that dimSr
d(Δ) = Sr,sγ

d (Δ◦) in both cases in (23)
and (24), and also when d � sγ .

Similarly, we can show that for vertex stars Sr,s(Δ◦) = Sr(Δ) if and only if 
dimSr

s (Δ) =
(
s+2
2
)
. This criterion corresponds to the planar case of the result proved by 

Floater and Hu in [14, Theorem 1] for vertex stars in Rn, n � 2; they call such trivial 
spline spaces degenerated.

If we assume that Sr(Δ) ⊆ Sr,sγ (Δ◦), by Theorem 4.7 we know that dimSr,sγ
sγ (Δ◦) =(

sγ+2
2
)
. Then Sr

sγ (Δ) is also degenerated. Conversely, if dimSr
sγ (Δ) =

(
sγ+2

2
)

for 0 � r <

sγ , then by (22) we have

dimSr
sγ (Δ) =

(
sγ + 2

2

)
+ (f◦

1 − t)
(
sγ − r + 1

2

)
+ b

(
sγ + 2 − Ω

2

)
+ a

(
sγ − Ω + 1

2

)
,

and this implies that the triangulation is generic i.e., f◦
1 = t, and that sγ + 2 − Ω � 1, 

or sγ + 1 − Ω � 1 and b = 0.
First, suppose that sγ+2 −Ω � 1. It follows Ω � sγ+1, which is equivalent to say that 

the generators of the module of syzygies of the forms {�r+1
τ : τ ∈ Δ◦

1} have degree strictly 
greater than sγ − (r + 1). If we assume γ is at the origin then the linear forms �τ ∈ S, 
and therefore the generators of their module of syzygies, only involve the variables x, y. 
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Fig. 2. Symmetric Morgan–Scott triangulation (left), and the corresponding Powell–Sabin 6-split applied to 
each triangle of this triangulation (center). The notation in the 6-split (right) is used in Example 6.3; in this 
case, the vertices γ′ and γ′′ are assumed to be on the boundary. The smoothness across the edges [Zσ, Bτ ]
and [Zσ, Bτ ′ ] and at the vertices γ, γ′ and γ′′ is s � r.

As a graded module over S = R[x, y, z], the set Sr(Δ) is generated by trivial splines 
and splines of the form G = (g1�

r+1
1 , g1�

r+1
1 + g2�

r+1
2 , . . . , g1�

r+1
1 + · · · + gt�

r+1
t ), where 

g1�
r+1
1 + · · · + gt�

r+1
t = 0 is a syzygy of the forms {�r+1

τ : τ ∈ Δ◦
1}. (An introduction to 

splines as modules over a ring can be found in [8, Chapter 8].) Since all the polynomials gi
are homogeneous in x, y of degree strictly greater than sγ−(r+1), then each polynomial 
(piece) gi�r+1

i is zero up to order sγ at γ. Hence G ∈ Ssγ (γ), which implies that every 
spline in Sr(Δ) is in Ssγ (γ).

Alternatively, if b = 0, then the smallest degree of a syzygy is Ω +1. The condition Ω �
sγ implies deg(gi) � sγ+1 −(r+1), hence also in this case Sr(Δ) ⊆ Csγ (γ) and it follows 
that Sr(Δ) ⊆ Sr,sγ (Δ◦). Therefore Sr(Δ) ⊆ Sr,sγ (Δ◦) if and only if Sr

sγ (Δ) contains 
only trivial splines. In particular, this criterion combined with the result by Sorokina 
[31, Theorem 3.1] implies that sγ = � r+1

t−1 � + r is the largest order of supersmoothness 
such that Sr(Δ) ⊆ Sr,sγ (Δ◦).

6.3. Supersmooth splines on Powell–Sabin 6-split refinements

Let Δ ⊆ R2 be a triangulation, and let Δ	 be a triangulation obtained from Δ via 
a Powell–Sabin six split. Namely, we choose a point Zσ in the interior of each triangle 
σ ∈ Δ so that if two triangles σ, σ′ ∈ Δ share a common edge τ = σ ∩ σ′, then the line 
joining Zσ and Zσ′ intersects τ at a point Bτ that lies at the interior of τ . If τ ∈ Δ1
is an edge on the boundary, we choose an interior point on τ and denote it by Bτ . The 
set of vertices Δ0 of Δ together with the points Zσ and Bτ , for all σ ∈ Δ2 and τ ∈ Δ1, 
are the vertices of the new triangulation Δ	. If σ ∈ Δ2 is a triangle of Δ, we join Zσ

to each vertex of σ, and to each vertex Bτ on the edges τ ∈ σ. Thus, the Powell–Sabin 
triangulation Δ	 is a refinement of Δ, where each triangle in Δ has been subdivided into 
six smaller triangles. An example of a partition along with its Powell–Sabin 6-split is in 
Fig. 2.

In the following, given integers r � 0, s � max{r, 2r − 1} and d � 2s − r + 1, we 
compute dimSr,s

d (Δ	), where r =
{
rτ : τ ∈ (Δ	)◦1

}
and s =

{
sγ : γ ∈ (Δ	)0

}
are defined 

by
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rτ =
{
s if τ = [Zσ, Bβ ] for some σ ∈ Δ2, and σ ⊇ β ∈ Δ1 ,

r otherwise,

sγ =
{
s if γ ∈ Δ0 ∪ {Zσ : σ ∈ Δ2} ,
r if γ ∈ {Bτ : τ ∈ Δ◦

1} .

The specific choice r � 0, s = 2r − 1 and d = 3r − 1 is studied by Speleers in [34] using 
Bernstein–Bézier methods.

In our setting, from the dimension formula in Equation (8) we get

dimSr,s
d (Δ	) =

(
d + 2

2

)
+

∑
τ∈(Δ�)◦1

dim J(τ)d −
∑

γ∈(Δ�)◦0

dim J(γ)d + dimH0(J )d , (25)

where the ideal J(τ), for each τ ∈ (Δ	)◦1, is defined by

J(τ) =

⎧⎪⎪⎨⎪⎪⎩
〈�s+1

τ 〉 if τ = [Zσ, Bβ ] for σ ∈ Δ2, and β ∈ Δ1,

〈�r+1
τ 〉 ∩ms+1

γ ∩m
s+1
Zσ

if τ = [Zσ, γ] for σ ∈ Δ2, and γ ∈ Δ0,

〈�r+1
τ 〉 ∩ms+1

γ if τ = [Bβ , γ] for β ∈ Δ◦
1, and γ ∈ Δ0 ,

(26)

and J(γ) =
∑

τ∈Δ◦
1 ,γ∈τ J(τ), for each vertex γ ∈ (Δ	)◦0. Here, as before, if τ ∈ Δ	

1 and 
γ ∈ Δ	

0, then �τ is a linear form vanishing on τ̂ , and mγ is the ideal of all polynomials 
in S vanishing at γ̂.

Notice that for the ideals J(τ) in (26), we have dim J(τ) =
(
d−s+1

2
)

if τ = [Zσ, Bβ ], and 
dim J(τ) in the other two cases follows directly from Equations (9) and (10), respectively. 
The dimension of the ideal J(γ) associated to the vertices can be computed as follows. 
We consider the three types of vertices separately. Thereafter, we show that H0(J )d = 0
for every polynomial degree d � 2s − r + 1.

Case 1. We show that dim J(Zσ)d =
(
d+2
2
)
−
(
s+2
2
)

for every d � 2s − r + 1, r � 0, 
and s � max{r, 2r − 1}. By construction, J(Zσ) is the sum of three ideals of the form 
〈�s+1

τ : τ = [Zσ, Bβ ]〉 ⊆ m
s+1
Zσ

where Bβ is the vertex on the edge β ⊆ σ, and three ideals 
of the form 〈�r+1

τ 〉 ∩ m
s+1
Zσ

∩ ms+1
ν for the edges τ = [Zσ, ν] for vertices ν ∈ σ, ν ∈ Δ0. 

Then, in particular J(Zσ) ⊆ m
s+1
Zσ

.
By a change of coordinates, we may assume �[Zσ,γ] = x, �[Zσ,γ′] = y, and mγ = 〈x, z〉. 

Then, mZσ
= 〈x, y〉 and mγ′ = 〈y, z〉. We want to show that xiyjzk ∈ J(Zσ) for all 

monomials of degree d = i + j + k for d � 2s − r + 1, such that i + j = s + 1.
Since 〈

�r+1
[Zσ,γ]

〉
∩m

s+1
Zσ

∩ms+1
γ +

〈
�r+1
[Zσ,γ′]

〉
∩m

s+1
Zσ

∩m
s+1
γ′ ⊆ J(Zσ) ,

then xs+1−iyizi and ys+1−ixizi are elements in J(Zσ), for all i = 0, . . . , s − r. Thus, if 
s � 2r− 1 this implies that xiyjzk ∈ J(Zσ) for all i + j = s + 1 in degree d � 2s − r+ 1, 
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except for xryrzk when s = 2r − 1. But in the latter case, since �s+1
[Zσ,Bτ′′ ] ∈ J(Zσ) with 

s + 1 = 2r and �[Zσ,Bτ′′ ] ∈ mZσ
= 〈x, y〉, it follows xryrzk ∈ J(Zγ). Consequently, 

(ms+1
Zσ

)d ⊆ J(Zσ)d and the dimension formula follows.

Case 2. Let γ ∈ Δ◦
0. Similarly as in Case 1, we have dim J(γ)d =

(
d+2
2
)
−
(
s+2
2
)

for 
d � 2s − r + 1. Indeed, the ideal J(γ) is the sum of at least two ideals of the form 
〈�r+1

τ 〉 ∩ ms+1
γ and three of the form 〈�r+1

τ 〉 ∩ ms+1
γ ∩ m

s+1
Zσ

, for at least three linearly 
independent forms �τ , for faces σ ∈ Δ and τ ∈ Δ0

1 containing γ. Then, also in this 
case J(γ) ⊆ ms+1

γ , and the argument used in Case 1 leads to the dimension formula for 
J(Zσ)d.

Case 3. Let Bτ be the vertex on the (interior of the) edge τ ∈ Δ◦
1. The ideal J(Bτ )

is generated by the sum of four ideals, two of the form 〈�s+1
τ 〉 ∩ m

s+1
Zσ

= 〈�s+1
τ 〉, for 

τ = [Bτ , Zσ], and two of the form 〈�r+1
τ 〉 ∩ ms+1

γ , for τ = [Bτ , γ]. By a change of 
coordinates we may assume that �[Bτ ,γ] = x, �[Bτ ,Zσ] = y and �[Zσ,γ′] = z. Then,

J(Bτ ) = 〈ys+1, xs+1−i(y + ax)i, xs+1−izi : 0 � i � s− r〉 , (27)

for some a ∈ R. We use the following lemma to compute the dimension of this ideal in 
degree d � 2s − r + 1.

Lemma 6.1. Let J(Bτ ) be the ideal in (27) and d � 2s − r + 1. Then

J(Bτ ) = 〈ys+1, xs+1−iyi, xs+1−izi : 0 � i � s− r〉 ,

and

dim J(Bτ )d =
(
d + 1 − r

2

)
+
(
d + 1 − s

2

)
−
(
d− s− r

2

)
. (28)

Proof. Let J = 〈ys+1, xs+1−iyi, xs+1−izi : 0 � i � s − r〉. It is clear that J(Bτ ) ⊆ J. By 
induction we show that xs+1−iyi ∈ J(Bτ ) for all i = 0, . . . , s − r. In fact, if i = 0 then 
xs+1 ∈ J(Bτ ), also if i = 1 we have xs(y+ax) ∈ J(Bτ ), but xs+1 ∈ J(Bτ ) so xsy ∈ J(Bτ ). 
Suppose xs+1−iyi ∈ J(Bτ ) for every 0 � i � k < s − r, then xs−k(y + ax)k+1 ∈ J(Bτ ), 
and by induction hypothesis we easily see that xs−kyk+1 ∈ J(Bτ ). Hence J ⊆ J(Bτ ), and 
so J(Bτ ) = J.

Take d � 2s − r + 1 and xr+1(xaybzc
)

∈ Sd, for non-negative integers a, b, c. If 
a + b � s − r then xr+1(xaybzc

)
∈ Sd. Suppose a + b < s − r. Since d � 2s − r + 1

then c = d − r + 1 − (r + 1) − (s − r) � s − r, and so xr+1(xaybzc
)
∈ Jd. This shows 

that Jd = 〈xr+1, ys+1〉d is a complete intersection, and therefore its dimension is given 
by (28). �
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Vanishing homology:
We now prove that H0(J )d = 0 for every d � 2s − r + 1. Recall that by [26, Lemma 

3.3] (see Lemma 5.1) we can always choose a triangle in Δ with two vertices on the 
boundary. Let σ ∈ Δ be such a triangle, we denote its vertices as in Fig. 2 (right), with 
the edge [γ′, γ′′] lying on the boundary of Δ.

First, for each interior vertex of Δ	 contained in σ we select a subset of interior edges 
in Δ	

1 such that the ideal of the vertex in degree d can be generated by the sum of 
these edge ideals in degree d, for every d � 2s − r + 1. Specifically, for the vertex Zσ we 
take the three edges connecting Zσ to the boundary, for γ we choose the edges [Bτ , γ], 
[Bτ ′ , γ] and [Zσ, γ], for Bτ we take the edges [Bτ , γ], [Bτ , γ′], and [Zσ, Bτ ], and the three 
corresponding ones at Bτ ′ . From Case 1, Case 2, and Case 3, we know that J(Zσ)d, 
J(γ)d, J(Bτ )d, and J(Bτ )d can be generated by the ideals of these edges at degree d, for 
every d � 2s − r + 1.

Denote by σ′ ∈ Δ2 the triangle adjacent to σ such that σ ∩ σ′ = τ , and τ = [γ, γ′]. 
Up to a change of coordinates, we may assume that �τ = x and J(Bτ ) is the sum of the 
ideals

J([Bτ , Zσ]) = J([Bτ , Zσ′ ]) = 〈(y + az)s+1〉, for some a ∈ R, a �= 0,

J([Bτ , γ]) = 〈xs+1−iyi : 0 � i � s− r〉, and

J([Bτ , γ
′]) = 〈xs+1−izi : 0 � i � s− r〉.

By Case 1 and Case 2, we know that J(Zσ)d = m
s+1
Zσ

and J(γ)d = ms+1
γ , respectively. 

For our choice of coordinates, we have mZσ
= 〈y, z〉 and mγ = 〈x, y〉. Also, J([Zσ, γ]) =

〈ys+1−ixizi : 0 � i � s − r〉, and J
(
[Bτ ′ , γ]

)
=
〈
(x + by)r+1〉 ∩ms+1

γ , where �τ ′ = x + by, 
for some b ∈ R, b �= 0.

If g ∈ J(β) for some β ∈
(
Δ	
)◦
i
, we denote by g[β] the element in 

⊕
{J(α)d : α ∈

(Δ	)◦i } such that gβ = g, and gα = 0 for every α �= β. By an abuse of notation, 
for i = 0, 1 and β ∈

(
Δ	
)◦
i
, we will identify J(β)d with the set 

{
g[β] : g ∈ J(β)d

}
⊆⊕{

J(α)d : α ∈ (Δ	)◦i
}
.

Let ∂1 be the boundary map in the complex J of Δ	 i.e.,

∂1 :
⊕

τ∈(Δ�)◦1

J(τ) →
⊕

γ∈(Δ�)◦0

J(γ) .

We need to show that 
(
im ∂1

)
d

=
⊕{

J(γ)d : γ ∈ (Δ	)◦0
}
, or equivalently, that J(γ)d ⊆(

im ∂1
)
d

for every vertex γ ∈
(
Δ	
)◦, and every d � 2s −r+1. First, following the notation 

in Fig. 2, we will show this for the vertices in the triangle σ. Namely, the vertices γ, Zσ, 
Bτ , and Bτ ′ .

Take g = xiyjzk ∈ J(γ)d, then by construction i +j � s +1, and i +j+k = d � 2s −r+1
implies k � s − r. Thus, if i � r + 1 then g ∈ J

(
[Bτ , γ]

)
∩ J
(
[Bτ , γ′]

)
. Since [Bτ , γ]

connects two interior vertices, then ∂1(g[Bτ , γ]) = ±g[γ] ∓ g[Bτ ]. The signs of g[γ] and 
g[Bτ ] depend on the orientation of Δ	, but we can take either g or −g, so without loss 
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of generality, here and henceforth, we may assume that ∂1
(
g[Bτ , γ]

)
= g[γ] − g[Bτ ]. On 

the other hand, the edge [Bτ , γ′] connects Bτ to γ′, and γ′ is a vertex on the boundary 
of Δ	. So ∂1

(
g[Bτ , γ′]

)
has only one non-zero component, namely ∂1

(
g[Bτ , γ′]

)
= g[Bτ ]. 

Therefore, ∂1
(
g[Bτ , γ] + g[Bτ , γ′]

)
= g[γ], which implies g[γ] ∈ im(∂1).

Suppose now i � r−1. Then i + j+k � 2s − r+1 and s � 2r−1 imply j+k � s +1. 
But by construction i +j � s +1, so xiyjzk ∈ J

(
Zσ, γ

)
d
⊆ J
(
Zσ

)
d
. Similarly, if i = r and 

s � 2r, or i = r, s = 2r and j � r + 1, we get j + k � s + 1. The vertex Zσ is connected 
to the boundary by three edges, and the generators of the correspondent ideals to these 
edges (by Case 1) generate J

(
Zσ

)
d
. In particular, there are polynomials f ∈ J

(
[Zσ, γ′]

)
, 

h ∈ J
(
[Zσ, γ′′]

)
, and q ∈ J

(
[Zσ, Bτ ′′ ]

)
, such that f + h + q = g. It follows,

∂1
(
f [Zσ, γ

′] + h[Zσ, γ
′′] + q[Zσ, Bτ ′′ ]

)
= g[Zσ],

and so

∂1
(
g[γ, Zσ] + f [Zσ, γ

′] + h[Zσ, γ
′′] + q[Zσ, Bτ ′′ ]

)
= g[γ].

Thus, also in this case g = xiyjzk ∈ im(∂1).
There only remaining case to be considered is g = xryrzd−2r ∈ J(γ). This monomial 

is one of the terms in f = 1
b (x + by)r+1yr−1zd−2r ∈ J

(
[Bτ ′ , γ]

)
. For any of the other 

monomials xuyvzd−2r in f , either u � r+1 or v � r+1, so they are either in J
(
[Bτ , Zσ]

)
or J

(
[Zσ, γ]

)
. Collecting these monomials we get two polynomials h ∈ J([Bτ , γ]), and 

q ∈ J([Zσ, γ]). Up to taking the appropriate signs (either −h or h, etc.), we get

∂1
(
f [Bτ ′ , γ] + h[Zσ, γ] + q[Bτ , γ]

)
= f [γ] − h[γ] − q[γ] − f [Bτ ′ ] + h[Zσ] + q[Bτ ]

= g[γ] − f [Bτ ′ ] + h[Zσ] + q[Bτ ]. (29)

Similarly as above, notice that f is also a polynomial in J
(
[Bτ ′ , γ′′]

)
, and γ′′ is a vertex on 

the boundary of Δ	. So, we can use ∂1
(
f [Bτ ′ , γ′′]

)
to eliminate f [Bτ ′ ] in (29). Moreover, 

there are polynomials in the ideals of the edges connecting Zσ, and Bτ to the boundary 
which generate h and q, respectively. By applying ∂1 to those polynomials (with the 
appropriate sign) we arrive to g[γ] ∈ im(∂1)d, as required.

This shows that J(γ)d ⊆ im(∂1)d, for every d � 2s −r+1, whenever s � max{r, 2r−1}. 
In fact, we have shown that

J(γ)d ⊆ ∂1
(
⊕{J(τ) : τ ∈ σ ∩ (Δ	)◦1}

)
d
.

Furthermore, if d � 2s − r + 1 and s � max{r, 2r − 1}, from Case 1 we get

J(Zσ)d ⊆ ∂1
(
J([Zσ, γ

′′]) ⊕ J([Zσ, γ
′]) ⊕ J([Zσ, Bτ ′′ ])

)
d
,

and a similar argument as above together with Case 3 lead to
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J(Bτ )d ⊆

∂1
(
J([Zσ, Bτ ]) ⊕ J

(
[Bτ , γ] ⊕ J([Bτ , γ

′] ⊕ J([Zσ, γ
′′]) ⊕ J([Zσ, γ

′]) ⊕ J([Zσ, Bτ ′′ ])
)
d
.

Therefore, for d � 2s − r + 1 the graded piece at degree d of each ideal associated to an 
interior vertex in σ is contained in im(∂1)d.

Notice that if Δ is composed of only one triangle then the only interior vertex is Zσ

and this implies H0(J )d = 0. If not, we take a triangle σ′ ∈ Δ \ {σ} with two vertices 
on the boundary of Δ \ {σ}, and apply the previous argument to the complex Δ	 \ {σ}. 
After f2-steps (equal to the number of triangles in Δ), we will have considered all the 
interior vertices of Δ	. We conclude that H0(J )d = 0 for any simplicial complex Δ with 
a finite number of triangles.

Then, if s � max{r, 2r − 1} and d � 2s − r + 1, the dimension formula in Equation 
(25) can explicitly be written as

dimSr,s
d (Δ	) =

(
d + 2

2

)
+ 3f2

(
d− s + 1

2

)
+ 3f2

[
(d− s)2 −

(
d− 2s + r

2

)]
+ 2f◦

1

[
(s− r + 1)

(
d− s + 1

2

)
− (s− r)

(
d− s

2

)]
(30)

− (f◦
0 + f2)

[(
d + 2

2

)
−
(
s + 2

2

)]
− f◦

1 dim J(Bτ )d ,

where dim J(Bτ )d is given in Equation (28).
In particular, for s = 2r− 1 and d = 3r− 1, the Euler relations f◦

1 = 2f2 − f0 + 1 and 
f◦
0 = f2 − f0 + 2 applied to (30) lead to

dimSr,s
3r−1(Δ	) = 1

2r(r − 1)f2 + r(2r + 1)f0 . (31)

The dimension formula (31) was proved by Speleers in [34, Theorem 5].
In Table 2, for different choices of r, s, and d, we compare the lower bounds from 

Equations (16) and (18) to the exact dimension of the spline space (computed using 
either Equation (30) or Macaulay2). As can be seen, in these cases both lower bounds 
coincide with the exact dimension.

7. Concluding remarks

We have demonstrated how methods from homological algebra can be used to com-
pute the dimension of supersmooth spline spaces on general triangulations; in particular, 
we have proved a combinatorial formula for the dimension of superspline spaces in suf-
ficiently large degree. We also illustrated how homological algebra methods can be used 
to reproduce a variety of results from the literature [6,14,32,34], as well as generalizing 
some of them [34]. This opens several directions for future research.
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Table 2
The triangulation Δ is the Powell–Sabin 6-split shown in Fig. 2. The lower bounds LB(16) and 
LB(18) coincide for the shown choices of (r, s, d), and they both coincide with dim Sr,s

d (Δ�)
for large enough degree. For (r, s) = (3, 4), we compute dimSr,s

d (Δ�) using Macaulay2 [16], 
and for the other cases we use (30) for the same. Note that the dimension of Sr,s

d (Δ�) was 
also computed in [34] for (r, s, d) ∈ {(2, 3, 5), (3, 5, 8)}.

(r, s) d dimH0(J )d max
((d+2

2
)
,LB(18)

)
max

((d+2
2
)
,LB(16)

)
dimSr,s

d (Δ�)

(2, 3) 5 0 67 67 67
6 0 160 160 160

(3, 4) 6 0 54 54 54
7 0 138 138 138

(3, 5) 8 0 147 147 147
9 0 285 285 285

� Supersmoothness can help define spline spaces with both stable dimension and lo-
cally supported basis functions, retaining full approximation power and avoiding 
prohibitively high degrees. Consequently, in the future these methods should be 
combined with constructive approaches to build spline spaces that are useful for the 
finite element method, such as triangulations and T-meshes.

� As was noted by Schenck in [24], the algebraic tools developed for the study of 
spline spaces on polyhedral complexes with uniform global smoothness and mixed 
supersmoothness across the codimension-1 faces had not been extended to the case 
we study in this paper. As we observed, the algebraic approach to the dimension 
problem of splines with mixed supersmoothness at higher codimension faces of the 
partition leads to the consideration of ideals generated by products of powers of 
linear forms in several variables. In the case of generic forms, this type of ideals has 
been recently studied by DiPasquale, Flores, and Peterson in [12] via apolarity. It 
will be interesting to extend this approach to ideals generated by arbitrary products 
of powers of linear forms to study full vertex ideals and derive an improved lower 
bound, as well as deriving an upper bound on the dimension of superspline spaces. 
While we have provided simple and computable lower bounds on the dimension, they 
only consider a simplified version of the vertex ideals at play. Considering the full 
vertex ideals is a first research direction that should be explored.

� The lower bound on dimSr,s
d (Δ) proved in Theorem 5.4 gives the exact dimension 

of the superspline space in large enough degree d and it is also clear that the derived 
bounds can differ from the exact dimension in small degrees, see the first row of 
Table 1 for instance. It would be interesting to find the smallest value of d for which 
the dimension formula holds; for this, results by Ibrahim and Schumaker in [19]
might give a good estimate on the smallest degree for which homology term H0(J )d
vanishes. The analysis of the quotient of the vertex ideals J(γ)/J(γ) relates to the 
study of intrinsic smoothness properties of splines. In fact, if J(γ)d = J(γ)d then 
the supersmoothness conditions at the vertices ν in the link of the vertex γ are 
already satisfied by only imposing supersmoothness at γ. Any result which gives the 
exact dimension of the spline space in a particular degree d will also give an upper 
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bound on the last non-vanishing degree of H0(J) and of J̄(γ)/J(γ). An estimate on 
the smallest degree for which dim J(γ)d = dim J(γ)d will also contribute to a better 
understanding of dimSr,s

d (Δ), and it would be interesting to explore the implications 
of this algebraic approach combined with the results and techniques developed in 
[14,31,32] for intrinsic supersmoothness using Bernstein–Bézier methods.

Acknowledgments

We would like to thank Michael DiPasquale for providing many helpful comments and 
suggestions.

References

[1] P. Alfeld, A trivariate Clough–Tocher scheme for tetrahedral data, Comput. Aided Geom. Des. 1 (2) 
(1984) 169–181, https://doi .org /10 .1016 /0167 -8396(84 )90029 -3.

[2] P. Alfeld, L. Schumaker, Upper and lower bounds on the dimension of superspline spaces, Constr. 
Approx. 19 (1) (2003) 145–161, https://doi .org /10 .1007 /s00365 -002 -0520 -3.

[3] L. Billera, Homology of smooth splines: generic triangulations and a conjecture of Strang, Trans. 
Am. Math. Soc. 310 (1) (1988) 325–340, https://doi .org /10 .2307 /2001125.

[4] L. Billera, L. Rose, A dimension series for multivariate splines, Discrete Comput. Geom. 6 (2) (1991) 
107–128, https://doi .org /10 .1007 /BF02574678.

[5] C. Chui, Multivariate Splines, Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 1988.

[6] C. Chui, M. Lai, On bivariate vertex splines, in: Multivariate Approximation Theory, III, Oberwol-
fach, 1985, in: Internat. Schriftenreihe Numer. Math., vol. 75, Birkhäuser, Basel, 1985, pp. 84–115.

[7] C. Chui, M. Lai, On bivariate super vertex splines, Constr. Approx. 6 (4) (1990) 399–419, https://
doi .org /10 .1007 /BF01888272.

[8] D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, 2nd edition, Graduate Texts in Mathe-
matics, vol. 185, Springer, New York, 2005.

[9] M. DiPasquale, Dimension of mixed splines on polytopal cells, Math. Comput. 87 (310) (2018) 
905–939, https://doi .org /10 .1090 /mcom /3224.

[10] M. DiPasquale, N. Villamizar, A lower bound for the dimension of tetrahedral splines in large degree, 
arXiv :2007 .12274, 2020.

[11] M. DiPasquale, N. Villamizar, A lower bound for splines on tetrahedral vertex stars, SIAM J. Appl. 
Algebra Geom. 5 (2) (2021) 250–277, https://doi .org /10 .1137 /20M1341118.

[12] M. DiPasquale, Z. Flores, C. Peterson, On the apolar algebra of a product of linear forms, in: Pro-
ceedings of the 45th International Symposium on Symbolic and Algebraic Computation, ISSAC’20, 
2020, pp. 130–137.

[13] G. Farin, Bézier polynomials over triangles and the construction of piecewise Cr polynomials, 
TR/91, Dept. of Mathematics, Brunel University, Uxbridge, UK, 1980.

[14] M. Floater, K. Hu, A characterization of supersmoothness of multivariate splines, Adv. Comput. 
Math. 46 (5) (2020) 70, https://doi .org /10 .1007 /s10444 -020 -09813 -y.

[15] A. Geramita, H. Schenck, Fat points, inverse systems, and piecewise polynomial functions, J. Algebra 
204 (1) (1998) 116–128, https://doi .org /10 .1006 /jabr .1997 .7361.

[16] D. Grayson, M. Stillman, Macaulay2, a software system for research in algebraic geometry, Available 
at http://www .math .uiuc .edu /Macaulay2/.

[17] J. Grošelj, H. Speleers, Super-smooth cubic Powell–Sabin splines on three-directional triangulations: 
B-spline representation and subdivision, J. Comput. Appl. Math. 386 (2021) 113245, https://doi .
org /10 .1016 /j .cam .2020 .113245.

[18] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact 
geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. 194 (39–41) (2005) 4135–4195, 
https://doi .org /10 .1016 /j .cma .2004 .10 .008.

[19] A. Ibrahim, L. Schumaker, Super spline spaces of smoothness r and degree d � 3r + 2, Constr. 
Approx. 7 (3) (1991) 401–423, https://doi .org /10 .1007 /BF01888166.

https://doi.org/10.1016/0167-8396(84)90029-3
https://doi.org/10.1007/s00365-002-0520-3
https://doi.org/10.2307/2001125
https://doi.org/10.1007/BF02574678
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib04A3E47B3BCCE72C3062B1FD1E8E1DE7s1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib04A3E47B3BCCE72C3062B1FD1E8E1DE7s1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib3F7DF87BA4D2499340B4AA175B360FBFs1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib3F7DF87BA4D2499340B4AA175B360FBFs1
https://doi.org/10.1007/BF01888272
https://doi.org/10.1007/BF01888272
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib7291DE91E4B3637BFF05F7CB56B976B2s1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib7291DE91E4B3637BFF05F7CB56B976B2s1
https://doi.org/10.1090/mcom/3224
http://refhub.elsevier.com/S0196-8858(22)00096-3/bibFF97684AFFE3719E0A2BCCDFE1526FD5s1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bibFF97684AFFE3719E0A2BCCDFE1526FD5s1
https://doi.org/10.1137/20M1341118
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib52998B8E45E4588A1C0D8A5A382C30D8s1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib52998B8E45E4588A1C0D8A5A382C30D8s1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib52998B8E45E4588A1C0D8A5A382C30D8s1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bibA4DFB42A9E721AAB6079A53FEBAF351Es1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bibA4DFB42A9E721AAB6079A53FEBAF351Es1
https://doi.org/10.1007/s10444-020-09813-y
https://doi.org/10.1006/jabr.1997.7361
http://www.math.uiuc.edu/Macaulay2/
https://doi.org/10.1016/j.cam.2020.113245
https://doi.org/10.1016/j.cam.2020.113245
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1007/BF01888166


30 D. Toshniwal, N. Villamizar / Advances in Applied Mathematics 142 (2023) 102412
[20] M. Lai, L. Schumaker, Spline Functions on Triangulations, vol. 110, Cambridge University Press, 
2007.

[21] J. Morgan, R. Scott, A nodal basis for C1 piecewise polynomials of degree n � 5, Math. Comput. 
29 (131) (1975) 736–740.

[22] B. Mourrain, N. Villamizar, Homological techniques for the analysis of the dimension of triangular 
spline spaces, J. Symb. Comput. 50 (2013) 564–577, https://doi .org /10 .1016 /j .jsc .2012 .10 .002.

[23] H. Schenck, A spectral sequence for splines, Adv. Appl. Math. 19 (2) (1997) 183–199, https://
doi .org /10 .1006 /aama .1997 .0534.

[24] H. Schenck, Algebraic methods in approximation theory, Comput. Aided Geom. Des. 45 (2016) 
14–31, https://doi .org /10 .1016 /j .cagd .2015 .11 .001.

[25] H. Schenck, M. Stillman, A family of ideals of minimal regularity and the Hilbert series of Cr(δ), 
Adv. Appl. Math. 19 (2) (1997) 169–182, https://doi .org /10 .1006 /aama .1997 .0533.

[26] H. Schenck, M. Stillman, Local cohomology of bivariate splines, J. Pure Appl. Algebra 117 (1997) 
535–548, https://doi .org /10 .1016 /S0022 -4049(97 )00026 -1.

[27] H. Schenck, M. Stillman, B. Yuan, A new bound for smooth spline spaces, J. Comb. Algebra 4 (4) 
(2020) 359–367, https://doi .org /10 .4171 /jca /43.

[28] L. Schumaker, Bounds on the dimension of spaces of multivariate piecewise polynomials, Rocky Mt. 
J. Math. 14 (1) (1984) 251–264, https://doi .org /10 .1216 /RMJ -1984 -14 -1 -251.

[29] L. Schumaker, On super splines and finite elements, SIAM J. Numer. Anal. 26 (4) (1989) 997–1005, 
https://doi .org /10 .1137 /0726055.

[30] B. Shekhtman, T. Sorokina, Intrinsic supermoothness, J. Concr. Appl. Math. 13 (3–4) (2015) 
232–241.

[31] T. Sorokina, Intrinsic supersmoothness of multivariate splines, Numer. Math. 116 (3) (2010) 
421–434, https://doi .org /10 .1007 /s00211 -010 -0306 -7.

[32] T. Sorokina, Redundancy of smoothness conditions and supersmoothness of bivariate splines, IMA 
J. Numer. Anal. 34 (4) (2013) 1701–1714, https://doi .org /10 .1093 /imanum /drt057.

[33] E. Spanier, Algebraic Topology, Springer-Verlag, New York, 1995, Corrected reprint of the 1966 
original.

[34] H. Speleers, Construction of normalized B-splines for a family of smooth spline spaces over Powell-
Sabin triangulations, Constr. Approx. 37 (1) (2013) 41–72, https://doi .org /10 .1007 /s00365 -011 -
9151 -x.

[35] D. Toshniwal, M. DiPasquale, Counting the dimension of splines of mixed smoothness, Adv. Com-
put. Math. 47 (1) (2021) 6, https://doi .org /10 .1007 /s10444 -020 -09830 -x.

[36] D. Toshniwal, N. Villamizar, Dimension of polynomial splines of mixed smoothness on T-meshes, 
Comput. Aided Geom. Des. 80 (2020) 101880, https://doi .org /10 .1016 /j .cagd .2020 .101880, 10.

[37] R. Wang, Structure of multivariate splines, and interpolation, Acta Math. Sin. 18 (2) (1975) 91–106.
[38] B. Yuan, M. Stillman, A counter-example to the Schenck-Stiller “2r + 1” conjecture, Adv. Appl. 

Math. 110 (2019) 33–41, https://doi .org /10 .1016 /j .aam .2019 .04 .004.
[39] A. Ženíšek, Interpolation polynomials on the triangle, Numer. Math. 15 (1970) 283–296, https://

doi .org /10 .1007 /BF02165119.
[40] M. Zlámal, On the finite element method, Numer. Math. 12 (1968) 394–409, https://doi .org /10 .

1007 /BF02161362.

http://refhub.elsevier.com/S0196-8858(22)00096-3/bibC2E028AC36F3AF8EBDBF74FDD922329Bs1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bibC2E028AC36F3AF8EBDBF74FDD922329Bs1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bibBDDEEC3402F7427EB7EE83B6B0DE0DCCs1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bibBDDEEC3402F7427EB7EE83B6B0DE0DCCs1
https://doi.org/10.1016/j.jsc.2012.10.002
https://doi.org/10.1006/aama.1997.0534
https://doi.org/10.1006/aama.1997.0534
https://doi.org/10.1016/j.cagd.2015.11.001
https://doi.org/10.1006/aama.1997.0533
https://doi.org/10.1016/S0022-4049(97)00026-1
https://doi.org/10.4171/jca/43
https://doi.org/10.1216/RMJ-1984-14-1-251
https://doi.org/10.1137/0726055
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib756D0AD35051904700EECB5AA135C12As1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bib756D0AD35051904700EECB5AA135C12As1
https://doi.org/10.1007/s00211-010-0306-7
https://doi.org/10.1093/imanum/drt057
http://refhub.elsevier.com/S0196-8858(22)00096-3/bibF4D07F41783E05E9A946C9A38C4E19C6s1
http://refhub.elsevier.com/S0196-8858(22)00096-3/bibF4D07F41783E05E9A946C9A38C4E19C6s1
https://doi.org/10.1007/s00365-011-9151-x
https://doi.org/10.1007/s00365-011-9151-x
https://doi.org/10.1007/s10444-020-09830-x
https://doi.org/10.1016/j.cagd.2020.101880
http://refhub.elsevier.com/S0196-8858(22)00096-3/bibD3FF880A553307CCC07FB1651504B9DBs1
https://doi.org/10.1016/j.aam.2019.04.004
https://doi.org/10.1007/BF02165119
https://doi.org/10.1007/BF02165119
https://doi.org/10.1007/BF02161362
https://doi.org/10.1007/BF02161362

	Algebraic methods to study the dimension of supersmooth spline spaces
	1 Introduction
	2 Splines with mixed and supersmoothness conditions
	3 Supersplines as the homology of a chain complex
	3.1 Superspline ideals
	3.2 A chain complex of supersplines

	4 Supersmooth ideals at edges and vertices in planar domains
	4.1 Ideals of edges and vertices
	4.2 Supersplines on vertex stars

	5 A lower bound on the dimension of superspline spaces on triangulations
	6 Examples
	6.1 Argyris superspline space
	6.2 Intrinsic supersmoothness and degenerate spaces on vertex stars
	6.3 Supersmooth splines on Powell--Sabin 6-split refinements

	7 Concluding remarks
	Acknowledgments
	References


