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Abstract
In recent years, applications have started using
geo-distributed databases, even though their be-
havior under different workloads remains com-
plex. Therefore, this project analyses how several
databases handle transactional workloads using the
SmallBank benchmark. We implement and adapt
an already existent benchmark, previously used for
non-distribuited databases. Furthermore, we use it
to evaluate multiple geo-distributed databases high-
lighting their strengths and weaknesses through-
out multiple scenarios designed to stress different
parts of the system. We observe that in most sce-
narios Detock performs slightly better than SLOG,
and both outperform Calvin. This aligns with the
fact that Detock builds upon SLOG, which itself
improves on Calvin. On the other hand, Janus’s
performance is significantly behind the others due
to its communication overhead. However, while
the SmallBank benchmark provides an insightful
comparison, providing specific advantages com-
pared to previous benchmarks, its adaptation to
geo-distributed databases limits its ability to com-
pare scenarios with higher percentages of multi-
home and multi-partition transactions.

1 Introduction
Distributed and geo-distributed databases form the backbone
of countless critical applications, from global e-commerce
stores (Amazon [1]) to finance and banking institutions (A
top 5 US Bank [2]) or Social Media platforms (Facebook [3]).
However, they come with great complexity regarding design,
especially when it comes to their trade-offs between consis-
tency, scalability, and latency. Because the distance between
nodes raises latency and slows communication, they require
more complex coordination to maintain consistency. More-
over, uneven user distribution across the database nodes leads
to further congestion and latency. As a result, we still lack
clarity on which system performs best under specific work-
loads or scales effectively across the globe.

Researchers have previously developed two workloads for
benchmarking: TPC-C [4] and YCSB-T [5]. However, be-
sides their limited scope, the differences between academic
and industry benchmarks make them less representative of
real-world workloads. For instance, YCSB-T focuses on too
simple key-value operations, with half involving access to
a single row [6]. Its transactions are simple reads and up-
dates over a flat data model, which does not represent the
complex workloads that the industry uses. TPC-C is a more
complex workload than YCSB-T, which assumes a central-
ized warehouse model, less common in the real world. More-
over, it cannot create data hotspots, making it unsuitable for
evaluating system performance under high-contention work-
loads [6].

Although some papers use SmallBank, a transactional
workload that simulates banking operations, to investigate the
end-to-end performance of non-distributed systems [7], there

is a lack of detailed assessments concerning latency, through-
put, and byte transfers for geo-distributed databases. There-
fore, in this paper, we aim to evaluate how geo-distributed
databases perform under the SmallBank benchmark in terms
of throughput, latency, and bytes transferred, as well as their
operational cost. Specifically, it assesses the strengths and
weaknesses of existing modern geo-distributed systems such
as Calvin [8], SLOG [9], Detock [10], and Janus [11].

This paper makes the following contributions: an imple-
mentation of the SmallBank benchmark in the Detock code-
base, a series of design modifications we applied to Small-
Bank to support its transition from a non-distributed to a dis-
tributed database architecture workload, and an assessment of
the performance of each database across multiple experimen-
tal scenarios, each designed to stress different aspects of the
system.

Subsequent to this introduction, Section 2 presents the
background information, including an overview of the
databases we evaluate and a description of the benchmark. In
Section 3 we describe how we implemented the benchmark
and outline the design choices made to adapt SmallBank for
geo-partitioned systems. Next, in Section 4, we define the
dataset, the scenarios, and the setup used for the experiments.
We discuss the results in Section 5, while in Section 6 we
provide some highlights, including SmallBank’s advantages
and limitations. Section 7 presents the responsible research
principles and details our data collection. Lastly, Section 9
highlights our conclusions.

2 Background
This section provides relevant information regarding the
properties of the databases, whose performance will be eval-
uated in the next sections. Moreover, we explain the bench-
mark used for evaluation and define the composing transac-
tions.

2.1 Systems under evaluation
This paper focuses on evaluating four different modern
databases, which aim to minimize the cummunication be-
tween regions, and thus improving performance in geo-
distribuited settings: Calvin[8], SLOG[9], Detock[10] and
Janus[11].

Calvin is a geo-distributed database that supports disk-
based storage designed without a single point of failure.
Calvin sequences all transactions to ensure serializability and
supports two replication modes. In synchronous replication,
Calvin uses Paxos to ensure all sequencers in a replica group
agree on each transaction batch before execution, providing
strong consistency, but with higher latency. In contrast, asyn-
chronous replication designates a master sequencer to imme-
diately process and forward transaction batches to replicas,
reducing latency, but complicating failover. Both replica-
tion modes preserve Calvin’s deterministic execution through
consistent transaction ordering.

SLOG, implemented on Calvin, avoids the trade-off be-
tween strict serializability, low latency writes, and high trans-
actional throughput for workloads that contain physical re-
gion locality in data access. In SLOG, each stored data is



assigned a home region and executes single-home transac-
tions without global coordination, achieving low latency and
high throughput. However, SLOG employs a global order-
ing system for multi-home transactions to prevent deadlocks,
adding additional latency which could result in serializability
violations, OCC aborts, or deadlock [9].

Detock, an improvement of SLOG, guarantees that each
transaction, regardless of its type, only needs a single round
trip from the initiating region to the participating region. By
replacing the global ordering layer with a graph-based con-
currency control protocol, Detock resolves deadlocks with-
out aborting transactions, achieving high throughput for high
contention workloads.

Similar to Detock, Janus implements a reordering tech-
nique over a dependency graph. It then executes transactions
across all replicas and shards deterministically following the
graph order. However, Janus synchronously replicates data to
every region, so it needs at least one round-trip to all regions
to commit, making it slower than Detock.

2.2 SmallBank benchmark
SmallBank replicates a bank environment, where transactions
perform simple operations on customers accounts [12]. As
shown in Figure 1, its schema consists of three core tables:
Account (Name, CustomerID), Savings (CustomerID, Bal-
ance), and Checking (CustomerID, Balance), and of five dis-
tinct transaction types. Its functionality can be briefly sum-
marized by the following core methods:

1. Balance(Name): Returns the sum of the customer’s sav-
ings and checking account balances.

2. DepositChecking(Name, Value): Deposits the speci-
fied value into the customer’s checking account. It adds
or subtracts the value from the savings balance of the
specified customer.

3. TransactSaving(Name, Value): Performs a deposit or
withdrawal operation on the customer’s savings account.
It adds or substracts the value for the given customer
from the savings balance.

4. Amalgamate(Name1, Name2): Transfers all funds
from the first customer to the second. Firstly, it com-
putes the sum between the balance of the savings and
checking account of Name1. Then, it zeros them out,
and adds the previous to the checking balance of Name2.

5. WriteCheck(Name, Value): Writes a check against
the customer’s combined account balance and applies
an overdraft penalty if needed. If this total amount of
checking and savings is below the value, it takes money
out of the checking by value + 1 (as a $1 overdraft
penalty).

3 Implementation
Although multiple SmallBank implementations are available
for non-partitioned centralized databases, no information is
available on how to adapt SmallBank for evaluating geo-
distributed systems. As a result, we made a set of design
choices to integrate SmallBank into the Detock framework.

Figure 1: SmallBank’s entity relationship diagram (ERD)

3.1 Adapting SmallBank to Detock

The SmallBank workload consists of five distinct transactions
whose read or write sets cannot be determined statically as
they depend on values from their execution. For example,
as shown in Figure 2, the balance transaction needs the Cus-
tomerID associated with the CustomerName before retrieving
its account balance. Since Detock does not support depen-
dent transactions [10], we have divided each transaction into
multiple phases: one or more helper phases that perform the
required reads and a final phase that performs the actual trans-
action logic. As shown in Table 1, Amalgamate is a three-
phase transaction, while the rest are now two-phase transac-
tions. In order to make this possible, we now define each
transaction by its type and phase. Firstly, the workload sends
a random first phase and binds this information to it. Af-
ter execution, the system injects the result key into the client
(see Listing 1). Then, when sending the next transaction, the
client checks for any injected information and sends the sec-
ond phase if present (see Listing 2). If not, it starts again
from the first step. The client repeats this process until the
time elapses or an error occurs.

Since both CustomerIDs and CustomerNames remain con-
stant throughout the workload, the helper phases access only
stable rows. Therefore, this does not trigger aborts, a behav-
ior not generally guaranteed in multi-phase transactions, as
interleaving with other transactions can lead to conflicts.

Table 1: Phase breakdown of SmallBank transactions in Detock

Txn Phase Description
Bal • Retrieve customer ID from name.

• Fetch balance using ID.
DC • Retrieve customer ID from name.

• Update checking with deposit.
TS • Retrieve customer ID from name.

• Update savings with amount.
Amg • Retrieve source customer ID from name.

• Retrieve destination customer ID from name.
• Fetch balances and transfer amount.

WC • Retrieve customer ID from name.
• Deduct amount and apply penalty if needed.



Figure 2: Example of Dependent Transaction Separation

3.2 Partitioning and tables initialization
Multi-partitioned geo-distribuited databases rely on deter-
ministic sharding algorithms to distribute records across par-
titions and geographic location. The primary keys are sharded
as follows:

• CustomerName: We shard using the murmurhash3 hash
algorithm [13], a non-cryptographic hash function suit-
able for general hash-based lookup which produces de-
terministic results. This enables the benchmark to deter-
mine and store each entry’s partition, accurately tracing
both single-partition and multi-partition transactions.

• CustomerID: We shard using the simple-hashing algo-
rithm already available in the Detock codebase, also
used by TPC-C. Simple-hashing computes the modulo
between the integer value of the ID and the number of
partitions per region.

This way, during initialization, each partition uses the
sharding scheme described above to add only the elements
that match the partition ID.

3.3 Transaction distribution
Although the original paper [12] does not address this issue, a
random uniform distribution of transactions will not reflect a
real-world bank environment, which usually has skewed op-
eration mixes. To address this, as shown in Table 2, we set
specific weights for each transaction type. Now, we aim to
achieve a more realistic representation and provide a more
sensible result.

Table 2: Transaction mix and associated probabilities in the Small-
Bank benchmark

Transaction Probability Max
Multi-
Home

Max
Multi-
Partition

Balance 40% 50% 50%
WriteCheck 25% 50% 50%
DepositChecking 15% 50% 50%
TransactionSaving 15% 50% 50%
Amalgamate 5% 33% 33%

3.4 Multi-home and Multi-partition
In geo-distributed databases, data is distributed across mul-
tiple geographic regions, referred to as homes. Each home
is then further divided into multiple partitions. Therefore,
we define a multi-home transaction as a transaction that
accesses or modifies data that the system stores in multiple
homes. In contrast, a multi-partition transaction is a trans-
action that accesses or modifies data that the system stores in
multiple partitions. As a result, we classify transactions into
four types based on the data they access:

1.Single-home and Single-partition
2.Single-home and Multi-partition
3.Multi-home and Single-partition
4.Multi-home and Multi-partition

However, since the first phase of the Balance, WriteCheck,
DepositChecking, TransactionSaving transactions, as well as
the first two phases of the Amalgamate transaction only per-
form single reads on the accounts table, the system always
classifies them as Single-home and Single-partition. Unlike
those before, the final phase can be configured. Balance,
WriteCheck, DepositChecking, and TransactionSaving trans-
actions, checking, and savings accounts can be placed in dif-
ferent regions and/or partitions. Similarly, the system can se-
lect the two customers from separate regions and/or partitions
for Amalgamate transactions. This allows for configurable
multi-home and multi-partition ratios, with upper bounds of
50% and 33%, respectively. As a result, Table 3 shows that
evaluations are limited to at most 49.15% multi-home and
multi-partition transactions.

Table 3: Configurable bounds for transaction types in the SmallBank
benchmark

Type Minimum Maximum
Single-Partition 0% 100%
Single-Home 0% 100%
Multi-Home 0% 49.15%
Multi-Partition 0% 49.15%

4 Experimental Setup
In this section, we present the experimental setup and the sce-
narios in which we perform the benchmarks, as well as the
dataset.

4.1 Scenarios
To obtain a comprehensive evaluation, we have designed mul-
tiple scenarios that should provide insight into their perfor-
mance and potential limitations. Each scenario tests a differ-
ent aspect of the system, such as high contention, network
changes, resource use, and workload distribution.

We considered six scenarios, grouped into two categories:
Workload Variability and System Conditions.

4.1.1 Workload Variability
In this section, we consider three scenarios. They all assess
changes in user behavior patterns and test their potential im-
pact on database performance.



Baseline: This scenario models users performing transac-
tions that require data from multiple regions. To achieve this,
we add two configurable parameters: multi-home (MH) and
multi-partition (MP). MP is consistently set to 25% (50% of
the maximum configurable MP transactions). We run mul-
tiple workloads, starting with those containing only single-
home transactions (MH = 0%) and gradually increasing to the
maximum of multi-home ones (MH = 49.15%). This leads to
global coordination, which increases the latency of the trans-
action.

Skew: This scenario models users performing transactions
on a subset of records. To achieve this, we add a configura-
tion parameter named HOT, which simulates a non-uniform
access pattern by concentrating the workload transactions on
smaller records. We perform experiments ranging from a low
contention workload (HOT = 0.0) to a high contention work-
load(HOT = 1.0), leading to an imbalanced load.

Sunflower: This scenario models users shifting from their
usual region to a remote one. We configured clients to tar-
get specific regions based on a controllable probability. This
experiment uses Region 0 as the target region, with hit prob-
abilities ranging from 10% to 100%. As a result, as the hit
probability increases, the client in Region 1 sends more trans-
actions to its remote region (Region 0). In contrast, the client
in Region 0 will still target the local region since it is the near-
est. To model this behavior, we introduced two configuration
parameters:

• SUNFLOWER TARGET REGIONS: A list of target re-
gions to be shifted to, with each region becoming active
for a duration of elapsed time

number of target regions .

• SUNFLOWER HIT PROBABILITY: A list of percent-
ages specifying the fraction of transactions to send to
each target region.

4.1.2 System Conditions
In this section, we consider three scenarios. They all assess
changes in the setup’s performance and test their potential
impact on database performance.

Scalability: This scenario evaluates the system’s ability
to sustain multiple simultaneous clients. We assess how the
number of simultaneous clients impacts total throughput and
latency. To achieve this, we run multiple experiments with
increasing clients for each region.

Packet loss: This scenario evaluates the resilience of each
system to packet loss by measuring transaction performance
under varying loss rates. We use a Netem [14], a Linux traffic
control tool, to introduce artificial packet loss between the
nodes of the setup.

Latency: This scenario evaluates the resilience of each
system to network latency by measuring transaction perfor-
mance under varying latency rates. We use a Netem [14], a
Linux traffic control tool, to introduce artificial network la-
tency between the nodes of the setup.

4.2 Dataset
We perform each experiment on the same dataset to ensure
consistency and comparability. As shown in Table 4, the
dataset consists of three tables, each containing 100K rows
and two columns.

Table 4: Schema and size of SmallBank tables in Detock

Table Rows Schema
Accounts 100K Name (24-char), ClientID (0–100K)
Checking 100K ClientID (0–100K), Balance (0–10K)
Savings 100K ClientID (0–100K), Balance (0–10K)

4.3 Metrics Considered
Each scenario result consists of a plot containing the database
under evaluation compared to four performance metrics, de-
fined as follows:

Throughput: The total number of transactions sent by the
workload processesed by the database.

Latency: The 50th (P50) and 90th (P90) percentile laten-
cies across all transactions. P50 represents the median per-
formance, while the P90 captures high-tail performance.

Bytes: The volume of data (in bytes) transmitted between
the database nodes.

Cost: The cost of executing the workload’s transactions.
We calculate the estimated communication cost using a cost
model that combines the fixed cost of keeping servers running
with the extra cost of sending data between regions [15].

4.4 Setup
The benchmarks are performed using four machines, each
featuring 512 GiB (Gigabytes) of RAM and two × AMD
EPYC 7H12, each with 64 physical cores.

To simulate a geo-distributed setup with four machines in
the same geographical region, we divide them into two logical
regions, each having two partitions. In order to replicate the
cross-regional delays geo-distributed databases encounter, we
introduce an artificial latency of 50 milliseconds between
the two logical regions above the already-existent latencies
shown in Table 5. Now, we observe a 100ms round-trip la-
tency between regions, closely matching the average P50 la-
tency of 101.29ms reported over the past 365 days between
AWS us-west-2 (Oregon) and ap-northeast-1 (Japan) [16].

Furthermore, we deploy the benchmark workload in both
logical regions. This reflects real-world usage in which
clients access services from both available regions. To sim-
ulate locality-aware behavior, each client sends single-home
transactions to its nearest region and can send multi-home
transactions across regions. This configuration further en-
ables multi-partition transactions, as each region has two par-
titions.

Table 5: Measured round-trip times between partitions (ms). Inter-
region artificial latency ≈ 50ms.

Source \ Target R1P1 R1P0 R0P1
R0P0 100 + 0.092 100 + 0.377 0.395
R0P1 100 + 0.375 100 + 0.094 –
R1P0 0.096 – –

5 Experimental Results and Discussion
In this section, we present the results of our experiments
and highlight the differences between the geo-distributed



Figure 3: Baseline Scenario Results

Figure 4: Skew Scenario Results

databases under evaluation.

5.1 Baseline Scenario
Figure 3 shows that Calvin and Janus maintain constant
throughput during the experiment, as they do not differentiate
between SH and MH transactions. By comparison, Detock
and SLOG can benefit from single-home transactions by pro-
cessing them in parallel in the local regions. Detock, com-
pared to SLOG, achieves a slightly better throughput at al-
most all MH% levels due to its dependency graphs mecha-
nism and deadlock detection and resolution technique. How-
ever, as the MH % sharply increases, an unlikely scenario in a
real setting, they incur additional overhead (i.e., dividing the
transaction into its region-local components and inserting in
the local log of each region), and their advantage disappears,
performing even worse than Calvin.

Regarding latency, Janus shows around 100ms, which is
equal to the time it takes to complete a full cross-region
round-trip. This is due to Janus’s biggest weakness: an
RTT(Round-Trip Time) for each transaction, regardless of its
type. Calvin uses asynchronous replication to achieve a lower
P50 latency of about 50ms when transactions remain in a sin-
gle region. However, the P90 latency increases to around
100ms when cross-region coordination becomes necessary.
SLOG performs similarly to Detock, with low latency at low
MH% levels, thanks to parallel execution within regions and
no need for coordination across regions. As the percentage
of multi-home transactions rises above 35%, their latency in-
creases, matching the round-trip time as the system begins
coordinating with other regions.

In terms of bytes size and cost, Detock transfers the most
bytes per transaction, which is, therefore, more costly, with
SLOG being slightly cheaper. In contrast, Calvin and Janus
transfer a constant number of bytes, incurring steady costs

due to low communication with high latency.

5.2 Skew Scenario
Figure 4 compares the performance of Detock, SLOG, and
Janus on a dataset with different percentages of data skew.
All databases show constant throughput due to their order-
ing mechanisms, which ensures high throughput even in high
contention settings. Detock, compared to SLOG, shows
slightly better throughput due to its deadlock detection and
resolution technique. Calvin and Janus perform similarly to
the baseline scenario, suffering from the cross-region delays.

In terms of P50 latency, Janus records the highest value at
100ms, corresponding to a full cross-region round-trip, while
Calvin follows with a lower latency of approximately 50ms.
Detock and SLOG show lower latency due to their ability to
process some transactions locally, without requiring commu-
nication with the other region.

Detock and SLOG transfer the most bytes per second. On
the other hand, Calvin and Janus transfer fewer bytes, achiev-
ing lower communication costs. While Calvin and Janus
rely on less communication but incur higher latency, Detock
and SLOG avoid global coordination for single-home trans-
actions, communicating more within their local partitions.

5.3 Sunflower Scenario
Figure 5 shows that Detock and SLOG perform almost the
same in this scenario. At the start, Client 0 and Client 1 send
single-home transactions to the region closest to them, simu-
lating users accessing data from their home regions. When
the target region hit probability is low, both systems out-
perform Calvin because they can run transactions in paral-
lel without coordinating across regions, which keeps latency
low.

As the hit probability increases, Client 1 sends more trans-
actions to a remote region, while Client 0 sends to its local



Figure 5: Sunflower Scenario Results

Figure 6: Scalability Scenario Results

region. This setup simulates users from Region 0 traveling to
Region 1 and accessing their data from there. Because of the
extra communication required, Client 1 handles fewer trans-
actions, which lowers overall throughput. Meanwhile, Client
0 maintains steady performance since it keeps accessing local
data. As a result, Region 0 processes more transactions than
Region 1, causing an uneven (skewed) load.

However, Janus and Calvin maintain constant performance
across all hit probabilities because they treat the system as
a single logical region without geographic distinction. As
the hit probability reaches 80%, Calvin overtakes Detock and
SLOG in throughput. At this point, Client 1 sends all its
single-home transactions to what is considered a remote re-
gion by SLOG and Detock, introducing cross-region over-
head for them. In contrast, Calvin remains unaffected due to
its centralized architecture. Janus continues to underperform
throughout, reaching only about half the throughput of the
other systems because of its high communication overhead.

The P50 latency for Janus and Calvin remains stable across
all hit probabilities, as both systems treat the entire deploy-
ment as a single logical region, ignoring geographic bound-
aries. In contrast, Detock and SLOG initially achieve lower
P50 latency by executing transactions in parallel within the
closest region. However, Client 1 sends more transactions to
remote regions as the hit probability increases, causing P50
latency to rise due to the added cross-region communication.
Despite this increase, the P90 latency for Detock and SLOG
remains stable because the additional overhead from remote
single-home transactions is comparable to the latency already
introduced by multi-region transactions, which still account
for roughly half of the workload and dominate the upper la-
tency bound.

5.4 Scalability Scenario
Figure 6 shows that SLOG and Detock perform similarly,
significantly better than Janus. On the other hand, Calvin

achieves higher throughput at almost all levels of clients and,
therefore, scales better. Detock, SLOG, and Calvin follow an
increasing trend up to 104 clients, after which it slightly slows
until 105 and then rises again as the number of clients ap-
proaches 106. However, for Janus, the throughput increases
until 103 clients, stays constant until 104, and decreases af-
terward due to its costly cross-region round trip. Detock’s
and SLOG’s throughput slows after achieving 104 clients due
to complex routing that GraphPlacementTxns in Detock and
LockOnlyTxns in SLOG create, serving as a bottleneck until
the clients reach 106.

The latency, the number of bytes transferred, and the cost
all increase as the number of clients and processed transac-
tions increases.

5.5 Packet Loss Scenario
Figure 7 shows that Calvin consistently outperforms Detock,
SLOG, and Janus, which show almost identical performance.
As packet loss becomes common, throughput declines and
latency rises across all the databases we evaluate since coor-
dinating transactions becomes harder, resulting in restarts and
aborts. However, Calvin shows better throughput and lower
latency than the other systems because it requires less com-
munication to perform transactions. With a 10% packet loss,
latency rises to 20,000 ms, making coordination unfesable.
As a result, the system’s throughput and bytes transferred
converge to zero for all the databases. However, as there re-
mains a baseline cost associated with keeping the machine
running, the cost becomes constant.

5.6 Latency Scenario
Figure 8 shows that all the evaluated databases show an ex-
ponentially decreasing throughput with a corresponding in-
crease in latency. At low delay levels, their throughput is
slightly similar to normal conditions. However, as the de-
lay increases, it becomes harder to coordinate transactions



Figure 7: Packet Loss

Figure 8: Latency

with some eventually restarting. Detock, SLOG and Janus
perform almost identically, both their throughput and latency
showing comparable values across all levels while Calvin has
slightly better throughput and lower latency due to its lower
communication. As the additional delay reaches 1,000 ms, all
databases fail to process transactions. Consequently, through-
put and total bytes converge to zero. Even if no bytes are sent,
the cost becomes constant as the machines keep running, and
the baseline cost associated with it remains.

6 Discussion
The previous section presents experimental results that pro-
vide a comparison of performance of Detock, SLOG, Calvin,
and Janus in different scenarios. However, eventhough the
benchmark provides some advantages, it also faces some lim-
itations due to how it handles dependent transactions. There-
fore, in this section, we cover both the advantages and limita-
tions of the SmallBank workload.

6.1 Advantages
Customizable Multi-Home and Multi-Partition Parame-
ters: In the basline scenario, our evaluations show that Small-
Bank’s configurable MH and MP transactions provide a great
comparison. At first, SLOG and Detock outperform Calvin
at low MH levels, but their performance declines as the MH
ratio increases, while Calvin maintains a consistently high
throughput. However, Janus achieves the lowest throughput
with the highest latency, making its required round-trip coor-
dination mechanism its biggest weakness. Although Calvin
achieves the highest throughput at high MH% levels, sur-
passing SLOG and Detock, we rarely encounter such lev-
els in real-world workloads. Under realistic conditions, with
low MH% levels, Calvin’s throughput is slightly lower than
Detock and SLOG. This difference shows the limitations

of Calvin’s replication strategy and supports the view that
Detock and SLOG improve upon its design.

Highlights Communication and Throughput Trade-
offs: Excluding Janus, which shows considerably low perfor-
mance compared to others, Calvin transfers the fewest bytes
per transaction across all scenarios, making it the most cost-
efficient system. In almost all scenarios, Detock outperforms
SLOG due to its replacement of the global ordering layer with
a graph-based concurrency control protocol, achieving even
higher throughput under high-contention workloads. How-
ever, even this slightly better performance comes with an av-
erage increase of costs of 10% per workload. Therefore, even
if SLOG and Detock get higher throughput in some condi-
tions, the cost overhead can outweigh these gains, making
Calvin more convenient for cost-efficient setups.

Controlled Data Hotspot Generation: Even if the
throughput is constant for all databases on the skew sce-
nario, Smallbank proves a customizable workload regarding
hot records. Using NURand, a non-uniform Random number
generator, this workload can send transactions to simulate re-
alistic, skewed access patterns.

6.2 Limitations
Dependent transactions: A major limitation of the Small-
Bank benchmark workload is its handling of dependent trans-
actions. In particular, the two-phase workaround reduces
flexibility, as all but the last phase are fixed, non-configurable
both SH and SP transactions. As shown Table in 3, this con-
straint limits the multi-home MH and MP transaction ratio to
a maximum of 49.15%. Even if unrealistic in a real-world set-
ting, this constraint obscures performance differences of geo-
partitioned databases under fully multi-home and/or multi-
partition workloads.

Transaction Simplicity: Although SmallBank consists of



five distinct transaction types, they lack complex logic. For
example, the most common transaction, Balance, performs
only a read on two different tables, while DepositChecking,
Transaction, and Writecheck provide an extra update. As a re-
sult, all the databases show high throughput, allowing them to
process transactions efficiently. While this behavior is com-
mon in a bank environment, it does not fully represent the
more complex workload databases incur.

7 Responsible Research
In this section we reflect on the ethical aspects of the research
and discuss the reproducibility of the results.

7.1 Ethical Impact
We use a dataset containing hard-coded Client Names and
Client IDs with a randomly generated balance. As a result, we
do not use any real customer data or personally identifiable
information. Without data privacy, consent, or bias issues,
this research does not raise any ethical concerns.

7.2 Reproducibility
Our research adheres to the FAIR (Findability, Accessibil-
ity, Interoperability, and Reusability) guidelines for scientific
data management and stewardship [17].

We implemented the SmallBank workload and conducted
all benchmark experiments on top of Detock’s publicly avail-
able GitHub code [18]. Additionally, we published the mod-
ifications and configuration files of each experiment in the
Delftada repository [19], making it findable and accessible to
future fellow researchers who want to pursue more research
on this topic.

Our experimental results are both interoperable and
reusable since our workload employs deterministic functions
to generate transactions with fixed seeds for randomness and
consistent configuration files. We also include documenta-
tion and setup instructions to install the required dependen-
cies, configure the environment, and execute the experiments
as well as a series of scripts to gather the results from the
setup nodes, generating visualizations on the reported mea-
surements.

8 Future work
Additionally, there are paths future researchers can pursue to
improve the work presented in the previous sections. There-
fore, we develop a series of ideas that build upon this re-
search.

Limited Setup Configuration: The setup on which we
applied the workload is limited. However, we could increase
both the number of partitions and the number of regions to
replicate a wider geographic distribution. Having different
inter-region latencies and a more complex setup, we could
analyze behavior under more realistic cloud deployment con-
ditions.

Two-phase transactions: We can implement several im-
provements to the actual work. For example, we can imple-
ment Deneva’s version of Calvin (using the OLLP protocol

to obtain an initial estimate of the access set via a recon-
naissance query) to eliminate the need of multi-phase trans-
actions. Additionally, we could create a comparison of per-
formance between the two-transaction workaround and the
transactions OLLP protocol to asses how this impacts perfor-
mance.

Complex Transaction Logic: Since the Smallbank work-
load is relatively simple, all databases showed high through-
put across the scenarios. As a result, we could increase the
complexity of the existing workload. By introducing a sep-
arate table for accounts for children, we could implement
more transaction types, such as creating accounts, transfer-
ring funds to them, and later deleting them. This extra func-
tionality can evaluate performance in a situation that Small-
Bank lacks, such as handling inserts and deletions.

9 Conclusions
In this paper, we investigated the behavior of Detock, SLOG,
Calvin, and Janus, some of the newest modern databases
aimed at minimizing inter-region communication. We studied
their performance across six scenarios designed to stress dif-
ferent system parts. For each configuration, we discussed the
strengths and limitations of the databases. Overall, the Small-
Bank benchmark shows that Detock and SLOG perform best,
having high throughput and low latency. In contrast, Calvin
proves more effective in environments with a high propor-
tion of multi-home transactions and shows a lower operation
cost than Detock and SLOG throughout the experiments. In
contrast, Janus shows the weakest performance across all sce-
narios.

Consequently, we believe that SmallBank offers several ad-
vantages: It can generate a data hotspot and is customizable
for multi-home and multi-partition transactions, which makes
it a valuable comparison for geo-distributed databases. How-
ever, further updates on this workload, such as eliminating the
two-phase transactions, scaling the setup on which we per-
form measurements, or adding more complex transactions,
would better assess the system’s performance.
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A Appendix

Listing 1: Sending a transaction based on the previous one.

Transaction* txn = new Transaction();
if (b_txn != nullptr) {
CHECK(b_txn->keys_size() == 1);
memcpy(&c_id, b_txn.data(),sizeof(int));
Balance(*txn, pro, 2);
}

if (d_txn != nullptr) {
CHECK(d_txn->keys_size() == 1);
memcpy(&c_id, d_txn.data(),sizeof(int));
DepositChecking(*txn, pro, 2);
}

if (t_txn != nullptr) {
CHECK(t_txn->keys_size() == 1);
memcpy(&c_id, t_txn.data(),sizeof(int));
TransactionSaving(*txn, pro, 2);
}

if (w_txn != nullptr) {
CHECK(w_txn->keys_size() == 1);
memcpy(&c_id, w_txn.data(),sizeof(int));
Writecheck(*txn, pro, 2);
}

if (a1_txn!=nullptr && a2_txn==nullptr) {
a2_txn = a1_txn
a1_txn = nullptr;
Amalgamate(*txn, pro, 2);
}

if (a1_txn!=nullptr && a2_txn!=nullptr) {
CHECK(a1_txn->keys_size() == 1);
CHECK(a2_txn->keys_size() == 1);
memcpy(&id1, a1_txn.data(),sizeof(int));
memcpy(&id2, a2_txn.data(),sizeof(int));
Amalgamate(*txn, pro, 3);
}
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Listing 2: Injecting the previous workload for the next transaction.

if (workload_ ->name() == "smallbank") {
if (dependency == FIRST_PHASE) {
// Record results returned by 1st phase.
SBWorkload* workload = workload_.get();
if (trn_type == BALANCE)
workload ->b_txn = txn;

if (trn_type == DEPOSIT_CHECKING)
workload ->d_txn = txn;

if (trn_type == TRANSACTION_SAVING)
workload ->t_txn = txn;

if (trn_type == AMALGAMATE)
workload ->a_txn = txn;

if (trn_type == WRITECHECK)
workload ->w_txn = txn;

}
}

Listing 3: Computing the home

Metadata SBI::Compute(const Key& k) {
int h;
if (k.size() == 26) {
string name = k.data();
h = (murmurhash3(name) / np) % nr;

} else {
int id = k.data();
h = (id / np) % nr;

}
return Metadata(h);
}

Listing 4: Computing the partition

int Sharder::Compute(const Key& k) const{
if (key.size() == 26) {
string name = k.data();
return murmurhash3(name) % np;

} else {
int id = k.data();
return id % np;

}
}

Listing 5: Loading tables for each partition

mt19937 rg;
uniform_int_distribution <> bal(1, 10000);

for (int id = start; id < end; id++) {
string n = "Client" + to_string(id);
n.resize(24, ’ ’); // Pad if shorter
int h = murmurhash3(n);
if (h % np == partition_) {

accounts.Insert({
MakeFixedTextScalar <24>(n),
MakeInt32Scalar(id)

});
}
if (id % np == partition_) {

checkings.Insert({
MakeInt32Scalar(id),
MakeInt32Scalar(bal(rg))

});
savings.Insert({
MakeInt32Scalar(id),
MakeInt32Scalar(bal(rg))

});
}

}
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