
Evaluating the Lifespan of Code Smells
in a Software System using Software

Repository Mining

Master’s Thesis — June 28, 2011

Ralph Peters





Evaluating the Lifespan of Code Smells
in a Software System using Software

Repository Mining

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Ralph Peters
born in Dordrecht, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl


c© 2011 Ralph Peters.

Cover picture: The evolution of code smells.



Evaluating the Lifespan of Code Smells
in a Software System using Software

Repository Mining

Author: Ralph Peters
Student id: 1524771
Email: ralphpeters85@gmail.com

Abstract

An anti-pattern is a commonly occurring solution that will always have negative
consequences, when applied to a recurring problem. Code smells are considered to be
symptoms of anti-patterns and occur at source code level. The lifespan of code smells
in a software system can be determined by mining the softwarerepository on which the
system is stored. This provides insight into the behaviour of software developers with
regard to resolving code smells and anti-patterns. This thesis presents a custom built
application that computes the lifespans of certain types ofcode smells in a software
repository. As a case study, this tool is applied on seven open source systems in order to
answer research questions concerning the lifespan of code smells and the refactoring
behaviour of developers. The results of this study reveal that engineers are aware
of code smells, but not very concerned with their impact, given the low refactoring
activity. Finally, several suggestions are given to further develop the application and to
extend the work done in this thesis.
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Preface

From the very first time I set foot on the holy grounds of information and communication
technology, I knew - albeit subconsciously - that I wanted topursue a career in this field.

Throughout the years I learned that being a software engineer is all but trivial. You can
see it daily: those tiny programming obstacles that turn outto take more time than planned
or even invalidate a part of your initial design, the massivecommunities in which colleagues
around the world seek solutions to their problems and the mild but pressing reactions of your
customers who forgive you for misinterpreting their requirements.

Spawned from the areas of mathematics and electrical engineering, computer science
has grown into a mature scientific discipline with its own subdivisions and continues to grow
beyond our imagination. I, for one, feel proud and privileged to be part of that development.
A development that is also recognised by my parents, who always allowed me to find my
own path - both inside and outside the walls of the faculty - and supported me all the way.
A written commendation is not enough to describe the value ofthis positive attitude.

As a graduate student at the Delft University of Technology Iwas constantly surrounded
and inspired by capable lecturers and likeminded and motivated peers, who valued the idea
of a good education as much as I did. My professional and personal development would
not only have been boring without them, but also less fruitful. If there is one thing I learned
from them is that you don’t hope for anything, but make it happen! Moreover, one tends
to forget those people operating in the shadows, but always in a professional and helpful
manner. The contributions of teaching assistants, system administrators and facility staff
members are only noticed when they themselves are not seen for a while, at which point it
becomes clear how essential their work is. To these people, Ineed to express my sincere
thanks for all their assistance.

After many years of learning, the crown of my academic life was ready to be created.
This thesis is the end result of that strenuous challenge. The expertise and flexible guidance
of Andy Zaidman as my daily supervisor throughout the duration of this graduation project
ensured its successful outcome. Thank you, Andy! The application built for this project
integrates external tools, developed at other universities. A big box of gratitude goes to
Nikolaos Tsantalis and his team for their work on JDeodorantand for letting me use it. The
same applies to Yann-Gaël Guéhéneuc and his willingnessto immediately fix bugs in Ptidej
on my request.
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PREFACE

So now the time has come for me to say goodbye to my life as a full-time student. I
have always believed in the virtues of hard work, clear communication and mutual respect
for contradicting perspectives to obtain the best results as an engineer. Honesty compels
me to say - virtues are still ideals after all - that I have succeeded in upholding that attitude
most of the time, but also not at times.

In conclusion, it has all been a mind-blowing and mind-boggling experience. I wish
strength, wisdom and courage to everybody who made this venture possible and to the ones
who still need to embark on that journey.

Ralph Peters
Delft, the Netherlands

June 28, 2011
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Chapter 1

Introduction

Evolutioncan be defined as the natural process of change in all life forms over successive
generations [23]. It is based on the belief that all organisms evolve by means of natural
selection, mutation and genetic drift [19]. They reproduceto make offspring, which have
slightly different genetic structures than their parents.Moreover, spontaneous mutation can
introduce random genetic traits to an individual. Depending on the external circumstances,
these genetic differences may increase the chances of the descendants to survive and repro-
duce. This means that more members of the next generations will have the advantageous
variations, which will eventually result in permanent changes within the entire population
of organisms. Over time, populations branch off to develop into new species as they become
geographically separated or genetically isolated from theoriginal population.

Software evolutioncan be loosely defined as the study and management of the process of
repeatedly making changes to software over time for variousreasons [32]. Change, whether
accidental or intentional, is inevitable in a software system. The successful evolution of
software is becoming increasingly critical, given the growing dependence on software at
all levels of society and economy [34] [40]. Software applications that were developed
using new programming paradigms, such asObject-Oriented Programming(OOP), will
eventually render most monolithic programs obsolete. However, these old legacy systems
still exist in industry. Given the fact that technology and user requirements advance every
day, the question arises how long it takes before a particular software system starts to decay
and show negative results in its behaviour. The discipline of software evolution tries to
provide theoretical knowledge and a set of best practices inorder to understand the causes
and consequences of this deterioration and take action to counter the negative effects.

Strictly speaking, “software evolution” is an ill-chosen name. The word “evolution”
implies that subsets of software systems branch off and become independent applications,
which are analogous in biological evolution to populationsand new species, respectively
[43]. Naturally, this phenomenon occurs on occasion in software development, but it is not
within the scope of this graduation project. Given its definition, software ageingwould be
a better alternative. According to Bombardieri et al. [15],software ageing can be defined
as a process that progressively reduces the capability of a software product to satisfy stated
or implied user requirements and makes software changes more expensive and error-prone.
After all, a software system usually starts small and expands under many influences, before
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1. INTRODUCTION

it eventually starts to grow old and shows a greatly increased complexity and a significant
performance reduction. Nevertheless, the majority of the software engineering community
considers software evolution to be every change to a system after its initial development,
which includes software ageing. Therefore, the term software evolution will be used in this
thesis rather than software ageing.

Parnas [40] identified two main aspects that lead the software evolution process:

1. lack of movement: unless software is frequently updated according to contemporary
standards, its users will become dissatisfied over time and they will change to a new
product as soon as the benefits outweigh the costs of switching over and retraining;

2. ignorant surgery: changes to software are made by people who do not understand
the original design concept. This usually causes the structure of the software system
to degrade, because the modifications often invalidate the initial design. Software
that has been repeatedly changed and maintained in this manner is understood by less
people over time and becomes very expensive to update. Changes take longer and are
more likely to introduce new bugs.

The subject of this graduation project finds its origin in thesecond aspect. There are
many types of changes that introduce inconsistencies into the behaviour or the source code
of a software program. Examples include unforeseen exception cases, conflicting naming
conventions andanti-patterns. Code smellsare identified as symptoms of anti-patterns [36].
This graduation project deals with the lifespan of certain types of code smells, which can
be revealed bymining software repositories. In the following sections, the terminology,
context, goals and structure of this thesis and the researchquestions are outlined.

1.1 Terminology

1.1.1 About Anti-patterns

The termanti-pattern is defined by Brown et al. [16] as a commonly occurring solution
that will always generate negative consequences when it is applied to a recurring problem.
Nevertheless, people use anti-patterns because they appear to be the right approach. As
such, they are closely related todesign patterns, which are reusable solutions that do not
cause counterproductive results when applied to recurringproblems [24].

An anti-pattern always has two key features:

1. Repeated patternsof actions, processes or structures can be found that initially appear
to be useful, but ultimately produce more bad consequences than beneficial results;

2. A refactoredsolution is available that is clearly documented, repeatable and proven
in practice.

In software development, anti-patterns occur in the sourcecode of a software system.
Examples of anti-patterns in software design and OOP are circular dependencies between
software modules, using design patterns in the wrong place and making objects so powerful
that they are very difficult to implement.

2



Terminology

1.1.2 About Code Smells

How can anti-patterns be found in a software program? Browsing source code is never an
easy task for developers, regardless of their knowledge of the system. One would expect
something out of the ordinary with regard to the adopted programming standards. In other
words, there must be parts of the code that “smell” bad. Hence, these indicators have been
given the namecode smellsby Beck and Fowler [22].

Code smells are related to anti-patterns in the same sense that sneezing is related to a
cold. In general, if there are several symptoms, then a deeper problem is usually the cause.
Thus, when a developer wants to refactor an anti-pattern, she only has to find certain code
smells and start looking for the issue that caused it. In order to solve the problem, it is not
the code smells that must be refactored, but the anomaly thatcauses them.

Examples of code smells are large methods, classes with a poor sense of information
hiding and code inheritance that is hardly used in practice.Software entities like classes,
methods and variables that suffer from a code smell are also known ascode smell instances
[14]. Code duplication can be considered as a special case ofcode smell, since it is one
of the most pervasive smells that can be found in any softwaresystem [22]. This led to
extensive research, solely dedicated to duplicated code [21] [27] [30]. This type of code
smell is outside the scope of this thesis.

1.1.3 About Software Repositories and MSR

In most cases, the source code of a software system is stored and maintained in asoftware
repository, which takes the form of a public of private server. In a software development
process that requires working in teams, project members tend to choose for aversion control
system(VCS), such asSubversion(SVN) [7]. A VCS allows them to store multiple versions
of the software product they are developing and work on new releases without concurrency
problems.

The main concept is as follows. Whenever developer A wants towork on a part of the
software system, hechecks outthe source code from the VCS. That is, he downloads a copy
of the source code onto his local workstation. This copy is also called theworking copy.
After developer A has made his changes to the source code, he needs to check it back in
into the repository, which is known ascommitting. This causes the VCS to create a new
revision, which is the state of the contents of the repository at some point in time. The latest
revision is also called theheadrevision. After developer A committed his work, the head
revision can be checked out by developer B, which contains the changes made by developer
A. However, developer B can also choose to check out an earlier revision for historical
reasons or compare its contents with those of another revision. Naturally, a project team has
to adopt certain conventions to be able to work effectively with a VCS.

Next to holding the source code of a software application, a VCS implicitly stores data
about its contents and the commits. Thesemetadataexist for the entire duration of the
project and mainly provide administrative information, such as the filenames of the contents
that have been changed between two versions, how and when they were changed and the
developer that made the changes. Research has been devoted to devise methods to extract

3



1. INTRODUCTION

this information and uncover evolutionary relationships,similar to the field of data mining
[26]. Hence, this approach has been given the nameMining Software Repositories(MSR).
This technique has been operationalised to allow software engineers to obtain the metadata
of a VCS. An example isSVNKit[8]: a Java library that provides functions, which access
a VCS and return metadata to the user. SVNKit has been used forthat purpose in this
graduation project.

1.2 Problem Statement

Like humans, software grows old and will start to show more irregularities at some point
in time. The disproportionally growing presence of anti-patterns and code smells into a
software system is a common characteristic of the ageing process and is usually the result
of changing requirements, pressing deadlines and originaldesigners leaving the project over
time [13]. However, there are a number of practices available to slow down or reverse the
ageing process, like redocumentation and refactoring [40].

Studying the evolution of a software project usually entails looking into the past and
comparing it to a future situation. This can be achieved by mining a software repository,
which can lead to the discovery oflogical coupling. Ambros et al. [18] describe this kind
of coupling as implicit and evolutionary dependencies between the artifacts of a system
which, although potentially not structurally related, evolve together and are therefore linked
to each other from an evolutionary point of view. As such, logical coupling might not be
immediately clear from the source code, but has a meaning nevertheless.

The lifespan of code smells in a software repository is something that can be deduced,
based on the results of mining software repositories. A codesmell infection may occur
up to a particular revision, after which its underlying cause is refactored by a software
engineer and thus no longer be present in the next version. The priority that is attached to a
refactoring effort depends on a number of factors, such as the nature of the code smell, the
developer’s insight and deadline pressures. This leads to the following research question:

RQ1 Are some types of code smells refactored more and quicker than other smell types?

An implicit sub-question is:How long (i.e. in terms of time and number of revisions) do
certain code smells live inside a software system?To answer these questions, a trend among
several distinct software repositories needs to be found between the instances of a particular
code smell and their lifespans. For example, if multiple software entities infected by code
smell X exist in more than fifty revisions and instances infected by code smell Y exist in
less than twenty revisions of a VCS, then this may be evidenceof the general attitude of
developers towards the severity of both smells. The strategy to take here is to compute the
average lifespans of multiple code smells in various software systems and compare them
with each other.

A related issue is the point in a system’s life cycle at which code smells are refactored.
The corresponding research question is as follows:
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RQ2 Are code smells refactored more at an early or a later stage ofa system’s life cycle?

Again, a pattern must be discovered among different repositories. The only difference
is that the occurrence of a code smell is considered at a particular point in the development
life cycle. For example, if there are instances of the same code smell present in the earlier
versions as well as in the later versions of a system, it is interesting to know how many
revisions the instances survive. The same strategy for RQ1 also applies here, except it only
considers a subset of revisions. The average lifespans of several code smells within the
early and later revisions in a software system must be determined and compared with each
other. This must then be repeated for other software projects. The nature of the life cycle of
all investigated systems must be taken into account, because not every project team starts
using a VCS before the system reaches a certain state of maturity.

Of course, not every software developer has the same knowledge and experience. What
one engineer sees as a bad coding practice may be perceived bythe other as a necessity.
However, it is interesting to find out if one developer solvesa certain type of smell quicker
than the other, which leads to the next research question:

RQ3 Do some developers refactor more code smells than others andto what extent?

To give a fair answer to this question, it is useful to determine the common commit
behaviour of developers. Do they commit changes per task or file? Are the changes small or
do they comprise the entire refactored solution? In general, whenever an infected instance
stops being a code smell in a particular revision, the name ofthe developer who made
the commit has to be retrieved. This approach must be taken for all instances in multiple
software repositories and will result in a list of developers, along with the number of code
smell instances they resolved. Of course, their project involvement and the rationale behind
the smell removal must also be taken into account.

Finally, there are a number of reasons for refactoring code smells. The corresponding
research question is:

RQ4 What refactoring rationales for code smells can be identified?

For example, a code smell needs to be refactored in order to add or test functionality.
Also, a dedicated refactoring phase in the development lifecycle may be introduced. This
is where the logical coupling plays a role. For instance, if several code smells cease to
exist within a low number of consecutive versions, then thismight hint towards a planned
refactoring stage. Next to this, if a change commit activityoccurs almost immediately after
the removal of a code smell, then this may indicate a refactoring activity to accommodate
new functionality. The focus here lies on code smells that are intentionally refactored and
not accidentally.
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1. INTRODUCTION

1.3 Thesis Project

1.3.1 Project Goals

The goals of this graduation project are as follows. A Java application namedSACSEAis
developed, which is then applied to seven software projectsin order to answer the research
questions. This tool is built using the Eclipse IDE. Its mainfeature is that it searches for
code smell instances within a user-specified range of revisions of a software repository and
computes their lifespans. The output will be a visual reportcontaining the lifespans of the
infected instances and the corresponding revisions. Also,metadata regarding the committed
changes will be returned. To answer the research questions,experiments are devised and
performed. These will consist of applying SACSEA on the source code of seven distinct
Java systems, processing the results and drawing conclusions from them.

1.3.2 Relevance for the Faculty

The contribution of this research is to provide insight intothe perspective and awareness of
software developers on the severity of different code smells. The outcomes of this project
can be used as a stepping stone for further work in the field of software evolution.

1.4 Thesis Structure

The outline of this thesis is as follows. The next chapter presents background information on
the code smells and techniques involved in this graduation project. As mentioned before,
the approach for obtaining an answer to the research questions includes determining the
lifespan of code smell instances in different software systems. This is done using a custom
built tool, which is described in full detail in chapter 3. Upon completion of this application,
it can be used to retrieve the desired data from SVN repositories. Chapter 4 reports on
the setup and the results of the experiments that are devisedto help answer the research
questions. Threats to the validity of this study can also be found in that chapter. Naturally,
similar work has been done in the field of software evolution and the investigation of code
smells and anti-patterns. The contributions that are most related to this graduation project
are outlined in chapter 5. Conclusions are drawn from the results of the experiments in
chapter 6, which also considers the research questions in retrospect and answers them by
referring to the results. Next to this, the contribution of this graduation project to the field
of software evolution is given, along with recommendationsfor future work.
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Chapter 2

Background

This chapter provides theoretical background informationand a deeper understanding on the
subjects related to this graduation project. In section 2.1, a basic description ofcode smells
in general is given and the specific types of code smells used in this graduation project are
elaborated on. Special techniques operationalised as software applications exist in order to
find code smells and anti-patterns. Section 2.2 shows the nature and origin of these so-called
code smell detection toolsthat were used for the application developed in this graduation
project. Finding information about the lifespan of code smells in software projects was
made possible bymining software repositories. Section 2.3 explains this technique and the
utility SVNKit [8] through which MSR can be applied.

2.1 Code Smells

There is no widely accepted definition of code smells. In the previous chapter, code smells
are described as symptoms of a deeper problem, also known as an anti-pattern. In fact,
code smells can be considered anti-patterns at programminglevel rather than design level.
Smells such as large classes and methods, poor information hiding and redundant message
passing are regarded as bad practices by many software engineers. However, there is some
subjectivity to this determination. What developer A sees as a code smell may be considered
by developer B as a valuable solution with acceptable negative side effects. Naturally, this
also depends on the context, the programming language and the development methodology.

The interpretation most widely used in literature is the oneby Beck and Fowler [22].
They see a code smell as a structure that needs to be removed from the source code through
refactoring to improve the maintainability of the software. They also claim that informed
human intuition is the best tool to label a piece of source code as a code smell and measure
its intensity. This is a plausible statement, but it does notrender automatic measurement
impossible or redundant. Most code smells can be measured byusingsoftware metrics. For
example, a large class is bound to have manylines of code(LOC), a metric whose value
can easily be computed by an automated code smell detection utility. The specific detection
of code smells by such tools is usually based on a collection of metrics who each have
a certain threshold. If enough thresholds are exceeded, then the detection tool marks the
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code fragment under investigation as a code smell, which canthen be resolved by applying
a suitable refactoring. Beck and Fowler also provide a detailed instruction set for various
code smells on how to refactor them.

The following subsections describe the code smell types that were considered in this
graduation project, along with their commonly accepted refactorings and metrics.

2.1.1 God Class

In object-oriented programming, a class should usually encompass only one design concern.
However, when a system grows over time, this principle can easily be violated. This results
in large, complex, inelegant and low-cohesive classes thatare difficult to understand and
maintain. In other words, a class is aGod Class, if it implements more than the concept it
was originally designed for.

There are basically two types of God Classes:

1. A class that contains many of the system’s data as attributes without implementing
much logic is called aData Class;

2. A class that implements a large part of the functionality of a software system. This
is typically characterised by a great number of complex methods and possibly also
many attributes. This kind of God Class is called aBehavioural God Class.

Whenever a God Class is mentioned in this thesis, a class of the second type is meant.
Data Classes form a specific type of code smell on their own. They are considered as a
separate smell in this thesis and will be introduced in subsection 2.1.3.

Demeyer et al. [20] mention several criteria for identifying a Behavioural God Class and
how to refactor it. It is typically a procedural giant that assumes too many responsibilities.
The infected instance can be a single class implementing an entire subsystem, consisting
of hundreds of variables and methods, as well as duplicated code. Due to its size and
complexity, a God Class often takes a long time to compile anduses a lot of memory.
Almost every change to the software application may also necessitate a change to this class.
Since it covers so many design concepts, it is difficult to reuse, test and maintain it. Usually,
developers can not give a clear and concise answer on its purpose. God Classes often occur
in combination with Data Classes. In such cases, a God Class is in charge of handling a
large part of the system and treats multiple Data Classes as glorified data structures.

The most natural refactoring methods for God Classes rely onmoving behaviour and
responsibilities away from the infected class. This implies that functionality is moved to
collaborating classes and that new classes can also be extracted from the God Class as
cohesive and independent pieces of functionality. The latter is a refactoring method called
Extract Class. If the component makes more sense as a subclass, then this isalso possible.
Next to this, redundancy such as duplicated code should be minimised, which can be done
by extracting methods that implement this code once and calling those methods whenever
it is needed.

Lanza and Marinescu [31] present a method to identify God Classes, based on three
main characteristics and the use of metrics:

8



Code Smells

1. The infected class uses more than a few attributes of othersimpler classes. TheAccess
To Foreign Data(ATFD) metric is used to measure this aspect and counts the number
of accesses of a class to foreign data.

2. The infected class is large and complex. This is expressedusing theWeighted Method
Count (WMC) metric, which represents the sum of the cyclomatic complexities of
the methods of a class. The cyclomatic complexity can be defined as the number of
linearly independent execution paths in a program’s sourcecode.

3. The infected class has much non-communicative behaviour, i.e. there is low cohesion
between the methods of that class. TheTight Class Cohesion(TCC) metric is used,
which measures the relative number of methods accessing thesame data field.

The rationale behind the first metric is that a strong dependence on data of other classes
is the most significant symptom of a God Class. As for the othertwo metrics, small classes
are discarded because they are less relevant and cohesive classes are ignored because high
cohesion indicates internal harmony between the parts of the class.

The values of all three metrics have to exceed a certain threshold before a class can
be labelled as a God Class. The ATFD value is directly proportional to the probability
that a class is or will become a God Class. Therefore, the threshold has been set to a few
accesses to foreign data. In other words, a God Class uses more than a few attributes of
other classes. The WMC metric has a minimum limit of “Very High”, as God Classes have
an exceedingly high complexity. This value usually dependson the context, but a trained
software engineer can easily estimate the cyclomatic complexity by finding an extremely
high amount of (nested) conditional and iteration statements. Lanza and Marinescu provide
a statistical WMC threshold of 47 in their study based on 45 Java projects. The value of
the TCC metric ranges from zero (no cohesion) to one (fully cohesive). A threshold of one
third is sufficient for the detection of a God Class. It indicates that in an infected class less
than a third of the method pairs have the usage of the same attribute in common.

2.1.2 Feature Envy

The idea behind object-oriented programming is that data and the processing operations
on those data are kept together in objects as much as possible. This implies that a system
typically should have lowcoupling, which is the dependence between classes. A method
violates that concept if it is more interested in a class other than the one it is actually in.
In other words, the method isenvious of featuresprovided by a foreign module and suffers
from Feature Envy. As such, this code smell represents a form of high coupling.

As with God Classes, the most significant aspect of Feature Envy is that it is a sign of
a poor distribution of a system’s intelligence. The most common focus of the envy is data,
which are usually accessed directly or through accessor methods. Detection is based on
counting the number of foreign data attributes that are usedby a method. Excessive use of
remote data while ignoring local data results in methods that are implemented at the wrong
place. A change in those methods triggers changes in other methods. The same applies to
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bugs, as they will also be propagated and ripple through the call chains. This is also called
theripple effect[31].

Since this smell falls into the category of an improper intelligence distribution, any
infected method would benefit from being moved closer to the data it is so interested in, as
proposed by Beck and Fowler [22]. This refactoring is also called Move Method. Sometimes
only a part of the method suffers from envy. For example, thiscan occur if the accessed data
belong to more than a few foreign classes. In that case, it is wise to first extract that portion
as a separate method (Extract Method) and then move it to the class of its interest. If there
is still confusion on where to place the envious method, thenthe class with the most data
should be chosen as the destination. Moving operations closer to the data can help minimise
ripple effects and maximise cohesion.

Distinguishing Feature Envy Methods from other methods canbe difficult to do through
code inspection. Lanza and Marinescu [31] propose three characteristic symptoms of this
smell, as well as three metrics with appropriate thresholds:

1. The method uses more than a few foreign attributes. TheAccess To Foreign Data
(ATFD) metric is the most suitable to measure this aspect andcounts the number of
accesses of a method to foreign data.

2. The method accesses more foreign than local attributes. The Locality of Attribute
Accesses(LAA) metric relates the ATFD metric to the total number of accessed data
in the analysed method.

3. The accessed foreign attributes belong to only a few otherclasses. TheForeign Data
Providers(FDP) metric reflects this and counts the number of unrelatedclasses that
contain the accessed foreign data.

The third condition is introduced because a distinction hasto be made between a method
that uses data from many different classes and a method that only envies two or three classes
specifically. In the first case, the method acts like a controller operation, implementing
more functionality than it was originally designed for. Thesecond case identifies more pure
Feature Envy Methods, as those operations are simply misplaced. This is reflected by a
narrowly targeted dependency on the data of another class.

Finally, all three metrics have appropriate thresholds, which are all exceeded if a method
suffers from Feature Envy. Such a method has an ATFD value that is greater than a few
(about two to five) used data members. Its LAA limit is one third. This metric ranges from
zero (all used attributes are foreign) to one (all used attributes belong to the enclosing class).
The FDP threshold is set to a few (about two to five) foreign classes, which is not exceeded
if a method is envious.

2.1.3 Data Class

According to Beck and Fowler [22], aData Classis a class that only contains fields and
corresponding getting and setting methods. They also claimthat each class requires effort
to maintain and understand. When a class is not doing enough,it needs to be removed
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or its responsibility needs to be increased. As explained previously, Data Classes are a
type of God Class, except that they do not contain complex functionality. Such classes are
dumb data holders, but are almost certainly being manipulated in far too much detail by
other classes. The maintainability, testability and understandability of a software system is
reduced due to the presence of this code smell.

The lack of functionally relevant operations in a Data Classmay indicate that related
data and behaviour are kept in separate places [31]. This is possibly an indication of a design
that is not object-oriented. Like Feature Envy Methods, Data Classes are the manifestation
of a poor data-operation proximity. Encapsulation and datahiding of attributes may also
lack in such classes, while these are fundamental principles to obtain a good object-oriented
design. Data Classes break these concepts, because they letother classes see and possibly
manipulate their data, leading to a fragile design.

Beck and Fowler [22] mention several ways to help refactor a Data Class. In its early
stages, the class may have public fields, which should be madeprivate or protected as soon
as possible using the refactoringEncapsulate Field. Collection attributes should also be
properly encapsulated.Remove Setting Methodhas to be applied to any field that should
not be changed. A more important refactoring method is to findout where accessor and
mutator methods are used by other classes. The designer can then move functionality from
those classes into the Data Class by usingMove Method, preceded byExtract Methodif
necessary. This will increase data-operation proximity.

Lanza and Marinescu [31] try to identify classes that provide almost no functionality
through their interfaces, as well as classes that define many(public) data fields and getting
and setting methods. There are two aspects that can help withthe detection of Data Classes:

1. A large part of the interface of the infected class shows data rather than operations.
This is measured by theWeight Of Class(WOC) metric and represents the ratio of
the number of non-accessor methods to the total number of interface members.

2. The class reveals many attributes and is not complex. The absolute number of data
and getting and setting methods should be high. There are twocases:

(a) The classical Data Class is not very big, has almost no functionality and only
provides some data, accessors and mutators. Here, there is bound to be little
public data and the class does not have a highWeighted Method Count(WMC)
value. Therefore, the only requirement is that the class hasmore than a few public
data holders, expressed by the sum of theNumber Of Public Attributes(NOPA)
andNumber Of Accessor Methods(NOAM) metrics.

(b) The class is rather large and looks “normal”. It defines some functionality, but
its public interface contains a significantly high number ofdata, accessors and
mutators, apart from the provided services. In this case, ifthe class is to be
considered a Data Class, it needs to provide a lot of public data. At the same
time, the complexity of the class (WMC) may be considerably high, up to the
limit of excessively high. If the complexity exceeds this limit, then the class does
not conceptually fit the Data Class definition.
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In each of the two cases, it holds that a low WOC value is needed, since it indicates low
functionality in a class. This metric ranges from zero (all methods are accessors or mutators)
to one (all operations are non-accessor methods). The threshold is set to one third. The two
cases represent the distinction between small and large Data Classes. On the one hand, if a
class implements little functionality, then it does not have to define many data attributes and
corresponding accessors and mutators. The WMC value can be at most “High” (statistically,
31 according to Lanza’s and Marinescu’s study based on 45 Java projects), while the sum
of the NOPA and NOAM values should be at least more than a few. On the other hand, if
a class contains more than little functionality, the numberof data and getting and setting
methods needs to be large as well. Here, the WMC threshold canbe slightly higher, as it is
set to “Very High” (statistically 47). The sum of the NOPA andNOAM values should then
be at least more than many.

2.1.4 Message Chain Class

Khomh et al. [29] state that aMessage Chain Classoccurs when its (data access) func-
tionality is implemented using a long chain of method invocations or temporary variables
between different classes. A Message Chain Class may impactchange- and fault-proneness
due to the high number of indirections. This makes the code dependent on relationships
between many potentially unrelated objects and reduces a developer’s view of the context,
which may lead to more defects.

Beck and Fowler [22] propose that this smell can be refactored by usingHide Delegate.
This makes the caller depend solely on the object at the head of the chain. For example,
rather thana.b().c().d(), methodd() is placed on objecta and possibly also on objectsb
andc. In principle, this can be done on every object in the chain, but this often turns each
intermediate object into a middle man. A better alternativeis finding out what the resulting
object is used for.Extract Methodmay then be used to extract a piece of the code that uses
it, after whichMove Methodis used to push it down the message chain.

The use of metrics for finding Message Chain Classes is unnecessary, since they can be
detected by computing the number of transitive calls of a class to other classes. Naturally,
a threshold of this number is needed. The code smell detection tool Ptidej used in this
graduation project upholds a limit of three invocations. Inother words, if four or more
invocations are made, then the original calling class is considered a Message Chain Class.

2.1.5 Long Parameter List

In the procedural programming era, it was a common convention to pass all data needed by
routines as parameters [22]. The alternative was to use global data, which was an unfavoured
practice. With the arrival of object-oriented programming, local and foreign objects can be
used for data access. The host class of the method usually contains the majority of what
is needed and only the data that are highly essential to an operation need to be passed as
parameters. This implies that the size of parameter lists inobject-oriented programs is much
smaller than in traditional programs. In object-oriented programs, operations with more
than three parameters are generally considered to suffer from this smell, taking exceptional
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cases into account. That threshold is assumed in this graduation project. Long Parameter
Lists tend to become inconsistent and difficult to use and areconstantly updated as more
data are needed. This makes them hard to understand and maintain.

The refactoringReplace Parameter with Methodcan be applied when data from one
parameter can be obtained by making a request to an existing object. This object may be
a field or another parameter. Furthermore,Preserve Whole Objectcan be used to gather
a bunch of data from one object and replace these data with theobject itself. If there are
several parameters with no logical object, a new dedicated object can be created through the
refactoringIntroduce Parameter Object, which is then passed as a parameter.

There is one important exception to such refactorings. If a dependency from the called
object to the larger object is unfavoured, then unpacking data fields and sending them along
as parameters is reasonable with the negative consequencesin mind.

2.2 Code Smell Detection Tools

Code smells can be detected manually, but this requires the software engineer to have an
experienced eye and usually a deeper knowledge of the system. Extensive research has been
devoted to develop several techniques and utilities to do this automatically. Most code smell
detection tools depend on the use of software metrics and corresponding thresholds.

Because no application yields perfect results, human intuition should never be replaced.
However, the approach proposed in this graduation project requires that all code smells
in a software project are found over multiple revisions. This implies that the results are
very data-intensive and the process of finding them is time-consuming. For an efficient
and thorough study, these results have to be structured and stored in an appropriate way.
Therefore, it is better that code smell instances are found automatically, so that they can be
forwarded to a logging layer immediately.

The following subsections provide background informationon the detection utilities that
were used in this graduation project. These tools were chosen because of their availability,
their high effectiveness and their relatively favourable computation time and memory usage.

2.2.1 JDeodorant

JDeodorantis an Eclipse plug-in that employs a variety of novel methodsand techniques
in order to identify code smells in Java programs and to suggest appropriate refactorings
that resolve them [44]. Moreover, the tool pre-evaluates the effect on design quality of
all refactoring suggestions, assisting the user to determine the most effective sequence of
refactoring applications. JDeodorant has been developed at the Department of Applied
Informatics of the University of Macedonia in Greece. Its source code is available upon
request for researchers and academics after agreeing to a Licence Agreement for Academic
Use.

In order to control the number and the quality of the reportedrefactoring opportunities,
JDeodorant provides a preference page where the user can define various threshold values.
For example, the minimum number of statements that a method should consist of in order to
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be examined for potential refactoring opportunities can becustomised. For this graduation
project, the default values were used.

JDeodorant mainly employs APIs belonging to the Eclipse Java Development Tools
(JDT) Core, which defines the non-UI infrastructure. The plug-in uses theASTParserclass
to analyse the relationships between system entities and apply refactorings on source code.
Next to this, it employs theASTRewriteclass to apply the refactorings and provide undo
functionality. As such, JDeodorant depends heavily on the notion of anabstract syntax
tree (AST). Information from the AST may be reused on several occasions for a different
purpose. Therefore, the architecture of JDeodorant supports the reuse of this information
without permanently storing it in memory. This is achieved by providing an intermediate
representation of the required Java elements and a mechanism that enables the recovery of
AST nodes in a quick and efficient manner.

Currently, the tool can detect four kinds of code smells, namely God Classes, Feature
Envy Methods, Type Checking code and Long Methods. Moreover, it immediately deter-
mines possible refactorings and presents them to the user, who can decide to let JDeodorant
apply them or not. God Classes are resolved through appropriateExtract Classrefactorings.
Feature Envy Methods are fixed by suggesting appropriateMove Methodrefactorings. Type
Checking problems can be rectified throughReplace Conditional with Polymorphismand
Replace Type Code with State/Strategyrefactorings. Finally, Long Methods are resolved by
suggesting appropriateExtract Methodrefactorings.

2.2.2 Ptidej

Ptidej [5] stands forPattern Trace Identification, Detection and Enhancement inJavaand
is a set of tools to evaluate and enhance the quality of object-oriented programs, promoting
the use of patterns at language level, design level and architectural level. Design patterns,
anti-patterns and code smells can be detected in any Java source code using this utility.
The development of Ptidej started in 2001 at the Department of Computer Science and
Operations Research of the University of Montréal in Canada and the tool is currently still
being improved. Its original goal was to study code generation and identification of patterns.
Since then, it has evolved into a complete reverse-engineering tool suite that includes several
identification algorithms. It includes the moduleDECOR(DEtection and CORrection),
which allows the detection of design defects. Through its user interface, the user can create
a model of a program from its source code and identify micro-architectures similar to a
design pattern or call various generators, analyses and external tools on the program model.

Ptidej consists at least of the following relevant modules [25]:

• Caffeine: a dynamic analyser for Java based on a Prolog engine and the Java debug
interface to define relationships among classes precisely.

• Ptidej UI: a library of graphic widgets to display models of programs and dynamic
data from Caffeine.

• PADL (Pattern and Abstract-level Description Language): a meta-model to describe
the structure of object-oriented programs.
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• POM (Primitives, Operators, Metrics): a library of software metrics to compute well-
known metrics on program models.

• Ptidej Solver: an explanation-based constraint solver to identify micro-architectures
similar to motif models in program models.

• A library of generators and analyses to be applied on programmodels.

• A library of design motifs from design patterns, including Chain of Responsibility,
Composite, Observer and Visitor.

• Various parsers to build models of programs from different representations of source
code, including C++ files and Java class files.

• Several UIs to access the functionalities provided by the Ptidej tool suite:

– Parse and create models of programs.

– Enhance models of programs with dynamic data from program executions.

– Visualise created models.

– Identify micro-architectures similar to a design motif model in a program model.

– Visualise the identified micro-architectures.

– Call generators, analyses and external tools on models.

As of 2007, Ptidej includes algorithms for idioms, micro-patterns, design patterns and
design defects [35]. Idioms are low-level patterns specificto some programming languages
and to the implementation of particular characteristics ofclasses or their relationships.
Micro-patterns are well-defined idioms pertaining to the design of classes in object-oriented
programming. To identify design defects, aDomain-Specific Language(DSL) is used to
specify and automatically generate detection algorithms using templates. A DSL offers
greater flexibility than ad hoc algorithms because domain experts and software engineers
can manually specify and modify the detection rules using high-level abstractions, taking
the context, environment and characteristics of the analysed systems into account.

2.3 Mining Software Repositories

The termMining Software Repositories(MSR) has been coined to describe a broad class
of investigations into the examination of software repositories. This includes sources such
as the information stored in source code version control systems (e.g. SVN), requirements
and bug-tracking systems (e.g. Bugzilla) and communication archives (e.g. e-mail) [26].
Such repositories contain a wealth of information and provide a unique view of the actual
evolutionary path taken to realise a software system. Thesedata often exist for the entire
duration of a project and can represent thousands of versions with years of details about
the development process. These details include propertieslike individual versions of the
system, the changes and metadata about the changes (e.g. whomade the change, why was
it made and when was it made).
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Software engineering researchers have developed and evaluated various approaches to
extract relevant information and uncover relationships and trends from repositories in the
context of software evolution. For example, Begel et al. [12] developed Codebook. This
framework can discover transitive relationships between people, source code, test cases,
defects, documentation and related artifacts by mining allkinds of software repositories.

One may be interested in the growth of a system, the change relationship between source
code entities or components reuse. This activity is analogous, but not limited to the field
of data mining and knowledge discovery, hence the term Mining Software Repositories.
The premise of MSR is that empirical and systematic investigations of repositories will
shed new light on the process of software evolution and the changes that occur over time
by uncovering pertinent information, relationships or trends about a particular evolutionary
characteristic of the system.

Researchers utilise software repositories in multiple ways. The most straightforward
one is to directly use the facilities of source code repositories to get a particular version of
the code. The individual versions and corresponding metadata can then be used to answer
questions of interest using the adopted methodology. Some researchers limit their study to
the metadata that are directly available from the repositories. These metadata are analysed
to filter the differences and source code in a semantic manner. For example, the SVN
comments and the textual description of a related bug reportin Bugzilla can be used to
categorize the source code changes as an attribute of corrective-maintenance activity. Going
a step further, the data and metadata directly available from Subversion can be processed to
facilitate fine-grained source code difference analysis. Usually, raw data from the repository
are transformed into a format that can be processed easily. The processing module then
typically performs some mining algorithm on the retrieved data, after which the results are
presented to the user.

The purpose of MSR reduces to the questions that can be answered with it. Two classes
of suchMSR questionscan be distinguished:

• The market-basket question(MBQ): if event A occurs, then how many times do
events B and C occur? The answer is given by using a set of rulesor guidelines
describing situations of trends or relationships.

• Prevalence questions(PQ): Were certain functions added, modified or removed? How
many and which of the functions are reused?

This graduation project will mainly deal with the second type, as the point of interest is
the introduction and removal of certain code smell instances in source code repositories.
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Chapter 3

SACSEA Implementation

This chapter presents the custom developed tool that helps to determine the lifespans of
different code smell instances in a particular software system. The application is named
SACSEA, which is an acronym ofSemi-Automatic Code Smell Evolution Assistant. It can
find code smells in multiple revisions of a VCS, use MSR to obtain the change history
of each smell instance and generate a graphical and textual report containing the lifespans
of each instance, along with any relevant metadata. Section3.1 describes the component
decomposition and internal workings of the application in detail. Next to this, section 3.2
outlines design decisions, obstacles and limitations.

3.1 Toolchain Structure and Operation

This section presents the features and components of SACSEA. It is written in Java as an
Eclipse plug-in. An overview of its operation is depicted infigure 3.1.

The operation of SACSEA consists of the following phases:

1. Initialisation: First, the URL of the SVN repository under investigation isentered
into the UI, as well as the type of code smell that has to be found. Then, the numbers
of two revisions are entered. SACSEA will search for code smells in every revision
between these two numbers. In other words, the user specifiesa range of revisions
that have to be examined.

2. Detection: Each revision within the user-specified range is checked out from the
repository and imported into the workspace of Eclipse as a Java project (and built if
necessary in order to generate.class-files). Then, the detection modules try to find
code smell instances in that particular project. The results are saved to an XML-
file, after which the project is removed from the workspace. Finally, the subsequent
revision is extracted from the VCS and the process repeats itself until the end of the
range has been reached.

3. Difference computation: When all revisions have been examined for code smells, the
differences between every two consecutive XML-files are determined and stored in a
CSV-database, according to a custom format.
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3. SACSEA IMPLEMENTATION

4. Output generation: The differences resulting from the previous phase represent the
beginning or the end of the lifespans of code smell instances. Based on the changes,
these lifespans are computed and translated to a visual chart. Also, metadata of their
beginning and end revisions are printed in text, such as the developer responsible for
the commit that introduced or removed the code smell and the commit date.

UI

SACSEA

SVNKit API

JDeodorant Module

user enters SVN repository URL  , 

code smell and revision range

Ptidej Module

XML Database Revision   #1

retrieves local 

revision copies

uses

uses uses

retrieves 

code smells

stores code smells XML Database Revision   #2

XML Database Revision   #n

CSV Database

stores changes 

between XML-files

Visual Chart

outputs lifespans

and metadata
SVN Repository

Textual Report

Figure 3.1: Overview of the operation of SACSEA.

The following subsections present an elaborate description of the steps outlined above.

3.1.1 Initialisation

SACSEA can be started by running it from source code as a Java application. This initialises
a new Eclipse instance. Once SACSEA has started up, the UI becomes visible outside this
new instance. As can be seen in figure 3.2, it consists of several text input fields, radio
buttons and click buttons.

First, the URL of the SVN repository under investigation is entered, after which the
button [LOAD!] is pressed. The application then retrieves the name of the SVN project and
the current number of revisions and shows this information in the non-editable text fields.

The next step is to select a certain code smell by using the radio buttons. SACSEA
can only find one type of code smell per run. As explained in chapter 2, the application
currently incorporates two code smell detection tools. Each code smell can only be found
by one specific detection tool and therefore only one of them is activated per run, depending
on which smell type is chosen by the user.

Finally, two revision numbers need to be entered. The numberentered in the text field
“From revision:” represents the number of the first revision that is checked out and in which
code smells are detected in the next phase. Every subsequentrevision is processed in the
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same way, where the revision indicated by the number in the text field “To Revision:” is
the final one. The detection process is started by the button [DETECT!] and is described in
detail in the next subsection.

Figure 3.2: User Interface of SACSEA.

3.1.2 Detection

Once all the input values are entered in the UI and the button [DETECT!] has been pressed,
SACSEA checks out the first revision specified by the user fromthe SVN repository as a
working copy. This copy is then imported into Eclipse as a Java project using the.classpath
and .project files inside the root directory, to which the entered URL points. If these files
are not present, then the filepom.xmlmust be present. The project is then built by the
utility Maven[4] using the commandmvn eclipse:eclipse, which automatically generates
the files.classpathand.project. Although importing a project using this tool takes slightly
more time, the chance of having compile errors is smaller, since Maven resolves any missing
external dependencies. If the root directory does not contain apom.xmlfile or a combination
of .classpathand.projectfiles, then the Eclipse instance can not import this as a Java project
and the working copy is immediately deleted from the local disk and not considered for
code smell detection. SACSEA will continue with the next revision. However, if these
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files are present, then the working copy is imported into Eclipse. Two cases can now be
distinguished:

1. A code smell type was chosen that will be detected by the detection tool JDeodorant.
In this case, an abstract syntax tree is internally created and parsed, which is then
used to find code smell instances. If a Java source file (a file with the extension.java)
from the SVN repository contains compile errors, then it is excluded from detection.
Smells in the remaining compilable source files are temporarily stored in a custom
array.

2. A code smell type was selected that will be detected by the detection tool Ptidej. In
this case, the imported Java project must first be built. Thatis, .class-files have to be
generated, since Ptidej builds an internal model based on these files. If the project
can not be built, it is removed from the Eclipse instance and the process will continue
with the next revision. Projects can be built when a.classpath-file and a.project-file
are present. If the build was successful, then the code smelldetection is started and
any smell instances found are temporarily stored in a customarray.

After the detection on a single revision is complete, the results are stored in an XML-
database. This is done usingXOM (XML Object Model) [11], an open source API that
provides Java functions for creating, editing and processing XML-files.

The XML-database has the following structure:

<root>
<metadata>
<projectname>FishHawk</projectname>
<projecturl>https://fishhawk.svn.net/svnroot/trunk/</projecturl>
<revision>100</revision>
<smell>God Class</smell>

</metadata>
<occurrencesFound>
<class0>fishhawk.draw.Canvas</class0>
<class1>fishhawk.gui.MainGUI</class1>
<class2>fishhawk.run.Generator</class2>

</occurrencesFound>
</root>

Two major tags can be recognised as data holders within the<root>-tag:<metadata>
and<occurrencesFound>. The first can be considered the header of the file, containing
information regarding the project’s name, the URL of its SVNrepository, a certain revision
and the examined code smell type. The latter represents the actual meat of the investigation
and contains the code smell instances found in that particular revision of the system. The
fictional example above shows three God Classes (Canvas, MainGUI and Generator) in
revision 100 of project FishHawk.

Once the XML-file has been created, the current Java project is removed from the
Eclipse instance and the detection process repeats itself by checking out the subsequent
revision.
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3.1.3 Difference Computation

When all revisions have been examined, there exists an XML-database for each of them,
containing the code smells that were found. If no smell instances were found in a certain
revision, then it will still have an XML-file. In this case, the <occurrencesFound>-tag
has no contents. When the button [CHANGES!] is pressed, the XML-files are sorted in
ascending order of revision number and every pair of consecutive files is compared for
differences in code smell instances.

Basically, there are only two types of relevant differences:

• A code smell instance is present in the XML-file of revision n,but not in that of
revision n+1. This means that it stopped being a code smell instance in revision n+1
under the influence of the changes of the corresponding commit.

• A code smell instance is present in the XML-file of revision n+1, but not in that of
revision n. This means that it started being a code smell instance in revision n+1
under the influence of the changes of the corresponding commit.

Each of these differences found in the comparison is stored as one line in a CSV-file
according to the following format:

100.xml;example.ExampleClass;101.xml

This says that the code smell instanceexample.ExampleClasswas found in revision
100, but not in revision 101. This corresponds with the first difference type (removal of
a smell from the infected instance) described above. In a similar way, the following line
corresponds with the case where a smell is introduced to an instance in a certain revision
(i.e. example.ExampleClasswas found in revision 101, but not in revision 100):

101.xml;example.ExampleClass;100.xml

In conclusion, the CSV-file that results from this phase contains all the introductions
and removals of code smells in classes and methods in certainrevisions, which respectively
correspond with the beginning and end revisions of the lifespan of an infected instance.

3.1.4 Output Generation

The output generation phase starts when the user presses the[RESULTS!]-button. Each
smell instance is placed inside a hash map, using its name as the key and its lifespan as
the corresponding value. This value is made up of ranges: intervals of revisions in which
an entity is considered a code smell instance. For example, if in a particular system the
classexample.ExampleClassis a God Class from revision 30 to 180 and from revision 240
to 300, the key of the hash map isexample.ExampleClassand the corresponding value is
<[30,180] , [240,300]>.

This results in a hash map that contains each smell instance and its lifespan. A textual
report is made of these data, along with metadata, such as thecommit date and the developer
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who made the commit. Finally, two Gantt charts are generatedusing the open source Java
API JFreeChart[3]. They both show the lifespan of each smell instance, visualised by
bars. The only difference between them is that one chart shows the lifespans in terms of
revisions and the other in terms of dates on which the corresponding revisions were created.
An example of the first type can be seen in figure 3.3.

Figure 3.3: Example of a Gantt chart as output.

3.2 Design Decisions, Obstacles and Limitations

SACSEA has been developed in Java as an Eclipse plug-in, because the code smell detection
modules need to operate on revisions that are imported as Java projects in an instance of
Eclipse and also require Java source files to build an internal model on which the detection
is performed. The detection modules were derived from existing tools. Writing a custom
utility from scratch can be considered as a whole new project. As such, it is time-consuming
and out of the scope of this graduation project. Also, SACSEAcan only analyse SVN
repositories. This was not a large limitation, since all of the included software projects were
developed using SVN. The collection of software systems that were eventually not included
in the case study contained a few projects, which were built with CVS. Thecvs2svn[2]
utility was used to convert them to a Subversion repository.

As mentioned in the previous chapter, SACSEA generates verydata-intensive results
and its operation takes up much time. Therefore, any form of optimisation that increases
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its efficiency is desirable. One example is to use local SVN repositories rather than remote
systems. This comes down to copying the entire repository from its hosting location, such
as Sourceforge [6] or Tigris [9]. This can be done by using theutilities rsyncor svnsync.
In this case, the toolVisualSVN Server[10] was used to host several copied repositories on
a local machine. In terms of contents and metadata, these repositories are exact replicas of
their original remote counterparts. SACSEA can connect to these copies and function just
as it would when the repositories are hosted remotely. The advantage of this approach is
that any network latency is eliminated. This reduces the time to retrieve a working copy
from a certain revision and its metadata. Furthermore, working with remote repositories
requires a continuous Internet connection, which may be interrupted for various reasons.
Given the long running time of SACSEA on systems with many or large revisions, this is
an undesirable side effect, since the application does not check for a connection.

Whenever a revision has been examined for code smells, SACSEA continues with the
subsequent revision. A new working copy is created by considering the previous working
copy and performing updates on it rather than deleting the whole directory from the local
disk and downloading the new revision in its entirety. This prevents unnecessary write
actions and saves time, especially when projects include large library files.

SACSEA incorporates a code smell detection tool (JDeodorant) with an AST-based
approach, which needs parsable Java source files. Naturally, there are software systems
containing classes that can not be analysed by JDeodorant. If such a class is encountered,
SACSEA ignores it and continues with the next class. This results in a partial detection,
meaning that there may be code smell instances in certain revisions that are not shown in
the actual output.

The previous design obstacle also applies to the other code smell detection tool (Ptidej),
which needs.class-files in order to perform detection on the contents of a revision. The
entire revision as a Java project must be able to build to generate these.class-files. If a
project is unable to build (e.g. due to compile errors or a missing external dependency),
then no.class-files are created and the entire revision is skipped for detection. Furthermore,
Ptidej can only return classes as code smell instances, unlike JDeodorant that can also return
methods suffering from code smells. The limited operation of both code smell detection
tools is a threat to validity, which is described in detail insection 4.3.

SACSEA and its source code will be made publicly available bythe faculty of EEMCS
of the Delft University of Technology. It may only be used foracademic purposes, due to
the external code smell detection tools, which are incorporated in the source code. However,
reusing and extending its functionality is allowed and proposed as future work in chapter 6.
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Chapter 4

Case Study

This chapter presents the case study that was performed to examine the lifespans of five
types of code smells. Seven software projects were selectedaccording to several criteria
and analysed using SACSEA. In section 4.1, the setup and approach of the experiments are
described, including an introduction of the systems under investigation. Section 4.2 presents
and discusses the results. Threats to the validity of this research are reported in section 4.3.

4.1 Experiment Setup

The ultimate objective of this graduation project is to answer research questions related to
the evolution of code smells. As mentioned in chapter 1, the general approach to achieve
this goal is to develop a software application, which is thenused to mine empirical data
from seven software projects. These data are analysed and statistics are derived from them
to help answer the research questions. This section reportson the seven systems and the
adopted approach.

4.1.1 Approach

The research questions must be dealt with through observations. In other words, clear-
cut answers can not be given, since they are based on empirical data. These data must
come from reliable sources. Finding these sources is not trivial, because they have to fulfil
certain criteria and may still not be fully justified for use in the case study. Furthermore, the
data retrieved in this graduation project are not exhaustive, as the use of more sources will
undoubtedly result in answers that are more polished. However, it is not desirable to gather
an excessive amount of sources in this graduation project, since the analysis by SACSEA
takes a long time in terms of days depending on its input. Analysing more software systems
is proposed as future work in section 6.3.

In this case study, the aforementioned data sources are in fact seven Java projects with a
substantial development history, each stored in a version control system. These projects will
be introduced in the next subsection. SACSEA determines thelifespans of any code smell
instances found in each of these software systems. Some useful statistics are derived from
these data, which are then used to help answer the research questions. Chapter 1 already
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touches upon these statistics per research question, whichare repeated here and described
in detail.

RQ1 Are some types of code smells refactored more and quicker than other smell types?

The lifespan of one infected class or method in a system is notrepresentative for the pri-
ority that is attached to resolving a certain code smell type. A better approach would be to
take the lifespans of all detected code smell instances of one specific smell type in the soft-
ware project and compute the average lifespan within the examined revisions. Next to this,
the collection of individual lifespans per system is also used to determine the five-number
summary for a clear view of the distribution of the data. These summaries are visualised as
boxplots in Appendix D. Because the amount of investigated revisions differs per system,
the average lifespan is also expressed as a percentage (i.e.the average lifespan expressed
in number of revisions divided by the total number of examined revisions, multiplied by
100%). This calculation is repeated for all other subject systems, which results in a percent-
age for each of them. To form a fair indication of the average lifespan in all systems, the
average of these percentages is calculated. Naturally, this average value is also expressed
as a percentage and represents the average lifespan of one specific code smell type over all
subject systems. These calculations are then repeated for all other code smell types investi-
gated in the case study. It is not possible to compute the average amount of time that a code
smell instance exists inside a system, because the time interval between any two commits
varies greatly. For example, a system can have five commits onone day at an early stage of
the development life cycle or only one commit per week at a later time.

RQ2 Are code smells refactored more at an early or a later stage ofa system’s life cycle?

Here, the same approach as mentioned for RQ1 applies. The only difference is that
only the first 20% and the last 20% of the examined revisions ofthe software projects are
considered. Thus, each system will have two percentages persmell type, representing the
average lifespan of smell instances in the earliest and latest investigated revisions. The
average of the percentages of all systems is calculated, resulting in two percentages per
smell type: the average lifespan of the earliest revisions and the average lifespan of the
latest revisions over all subject systems.

RQ3 Do some developers refactor more code smells than others andto what extent?

The goal is to count the number of times a code smell instance of a certain smell type
is resolved. The name of the responsible developer is storedwhenever he or she performs a
corresponding activity. This will result in a list of developers and per smell type the number
of instances they refactored. However, there are various reasons for removing a smell.
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Intentional refactorings must be distinguished from removals that were the side effect of
bug fixes or the renaming or deletion of entire classes or methods.

RQ4 What refactoring rationales for code smells can be identified?

To answer this question, the log messages of each commit responsible for the removal of
a smell are examined. Similar to the approach for RQ3, deliberate refactoring activities must
be identified. Ideally, the log messages are clear and representative for the actual changes.
Naturally, this is not always the case and therefore insignificant refactoring rationales, like
dead code elimination, are also included in the answer to this research question.

4.1.2 Subject Systems

Over ten software systems have been analysed using SACSEA. After assessing the usability
of the output, the following seven projects were selected for the experiments:

• CalDAV4j: CalDAV4j is a protocol library that extends the WebDAV client library
(which itself is an extension of the Apache HttpClient library) to allow high level
manipulation of CalDAV calendar collections as well as lower level CalDAV protocol
interactions.

• Evolution Chamber: This optimisation program helps players of the video game Star-
Craft 2 to find the fastest time and best ordering to create playable units with certain
characteristics. It does so by applying a genetic algorithm.

• JDiveLog: JDiveLog is an open source diver’s logbook for logging scuba dives. It
manages all important dive data, as well as the pictures taken during the dive.

• jGnash: jGnash is a cross platform personal finance manager that supports users in
tracking their finances. It is a double entry system with support for multiple currencies
and can import Gnucash and QIF files.

• Saros (Distributed Party Programming): Saros is an Eclipse plug-in for distributed
collaborative text editing that can support arbitrarily many participants at once. All
members of a session have an identical copy of an Eclipse project and Saros keeps
these copies in sync as editing progresses.

• VLCJ: This project provides Java bindings to allow an instance ofa native VideoLAN
VLC media player to be embedded in a Java AWT Window or Swing JFrame.

• Vrapper: This Eclipse plug-in acts as a wrapper for Eclipse text editors and provides
a Vim-like input scheme for editing text and moving it around. Two branches of this
project are examined in this case study, which significantlydiffer in content. Before
revision 116, there was a singletrunk branch, which has been analysed from the
beginning of the project until that revision. Then, a reorganisation in the structure of
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the VCS was made, resulting in several branches. Thecore branchhas been analysed
from revision 121 until one of the latest revisions.

The selection of these projects was subject to multiple criteria. First, the systems need
to be written in Java, because the detection modules of SACSEA can not process other
programming languages. Moreover, they should allow free access to their repository on
Subversion. A project also has to be in a mature development stage, meaning that it has to
contain enough analysable revisions from which code smell lifespans of significant size can
be determined. Diversity among the projects needed to be present to avoid bias. This was
achieved by keeping the following aspects in mind during theselection process:

• Nature: Was the software system originally created as a commercialor as an open
source project? In this study, only open source projects areconsidered. Evaluating
industrial systems is an activity that is proposed as futurework.

• Domain: For what problem or purpose was the system built and what is the context?

• Strength: Is the software system just a humble open source project forpersonal use
or does it have the potential to be effectively used in industry?

• Strictness of the development process: The extent to which developers have to abide
by development rules, such as guidelines for programming and committing. Usually,
this is reflected by development manuals displayed on the software repository and by
revisions without compile errors.

• Number of analysable revisions: A revision is considered analysable if at least one
of the used code smell detection tools is able to extract a significant amount of code
smell instances from the classes inside that revision.

• Number of active developers: Developers are considered active if they committed on
a regular basis, regardless of their activity at any point inthe development life cycle.
Roughly, this means that a developer either participates occasionally throughout the
entire range of investigated revisions or is responsible for a large part of the commits
in a certain period of the life cycle.

• Size: The number of classes to be analysed per revision in the branch of interest.
Because a project grows over time, the number of classes in the latest revision is
meant here. Typically, the number of classes in the previousrevisions is smaller.

• Age: When was the project first committed on Subversion and when was the last
commit made? Note that a project can already be mature in its earliest revisions,
since developers may not have used SVN when development started.

Table 4.1 provides an overview of these aspects. Per system,it shows the domain,
the strength, the strictness of the development process, the total number of investigated
revisions, the approximate number of active developers andthe size, i.e. the number of
analysable classes in the latest revision. Because the number of examined revisions differs
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CalDAV4j Protocol
Library

Industrial Strict 318 5 125 Oct 2007 -
Mar 2011

Evolution
Chamber

Genetic
Algorithm

Open
Source

Strict 282 11 481 Oct 2010 -
Mar 2011

JDiveLog Dive log
manager

Open
Source

Loose 872 13 331 Mar 2005 -
Mar 2011

jGnash Finance
manager

Open
Source

Loose 1493 1 466 Dec 2007 -
Feb 2011

Saros Distr. pro-
gramming

Industrial Strict 2482 26 821 Sep 2006 -
Sep 2010

VLCJ Java bind-
ings

Industrial Loose 1502 1 241 May 2009 -
Apr 2011

Vrapper
(Base)

Text editor
wrapper

Open
Source

Loose
115 2 119 Dec 2008 -

Apr 2009
Vrapper
(Core branch)

231 2 229 Apr 2009 -
Apr 2010

Table 4.1: Overview of the systems under investigation.

per smell type for some projects, the value per subject system shown in the table is the
largest number of revisions that were analysed. The investigation period of a system consists
of the dates of the first and last revisions that were examinedin the case study.

As can be seen in the table, there is some diversity between the subject systems with
regard to strength, strictness of the development process,number of revisions, number of
classes and investigation period. Naturally, all values given to these aspects are open to
discussion and they may deviate in reality. However, it is unlikely that this greatly threatens
the diversity.

4.2 Results

This section presents and discusses the results of the case study. For each research question,
the corresponding statistics described in the previous section are displayed for each subject
system per code smell type. Due to the functional limitations of the detection utility Ptidej,
instances of the smell Long Parameter List are expressed as classes and not as methods.

29



4. CASE STUDY

In other words, infected instances are classes that containat least one method using more
than three parameters. Furthermore, some smell types have adifferent number of analysed
revisions than other types in the same subject system, due tothe differences between the
detection tools and their limited capabilities at times. Therefore, average lifespans have
been expressed in number of revisions as well as percentage.More detailed results of all
the experiments can be found in Appendix B, C and D.

For convenience, the different code smell types have been abbreviated in the tables as
follows:

• God Class -GC

• Feature Envy -FEM

• Data Class -DC

• Message Chain Class -MCC

• Long Parameter List Class -LPLC

4.2.1 RQ1

This research question was defined as: “Are some types of code smells refactored more and
quicker than other smell types?” and is answered by comparing the average lifespans of
different code smell types found in the subject systems. Persmell type, table 4.2 shows
the average lifespan: the sum of the lifespans of all code smell instances detected in each
system divided by the total number of these instances. All values are expressed in number of
revisions and have been rounded to the nearest integer. Because the analysis of some smell
types included a different number of revisions than other types in the same subject system,
table 4.3 presents this average lifespan expressed as a percentage. This percentage is the
average lifespan in terms of revisions divided by the total number of analysed revisions
per smell type, multiplied by 100%. This table also displaysper smell type the average
percentage over all systems and the corresponding standarddeviation. Appendix B contains
the total number of analysed revisions for each system per smell type.

GC FEM DC MCC LPLC
CalDAV4j 135 71 173 167 212
Evolution Chamber 145 85 78 84 130
JDiveLog 419 320 447 313 372
jGnash 883 792 810 669 1025
Saros 680 566 602 643 851
VLCJ 533 421 1007 474 541
Vrapper (Base) 70 55 84 84 62
Vrapper (Core branch) 113 160 153 132 110

Table 4.2: Average lifespans in terms of revisions.
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GC FEM DC MCC LPLC
CalDAV4j 42.38% 22.39% 54.55% 52.52% 66.52%
Evolution Chamber 51.40% 30.27% 27.52% 29.68% 46.08%
JDiveLog 54.37% 36.71% 51.28% 35.91% 42.67%
jGnash 67.81% 60.83% 81.97% 70.78% 68.66%
Saros 32.56% 24.31% 24.24% 26% 34.29%
VLCJ 35.46% 29.11% 67.03% 31.58% 35.98%
Vrapper (Base) 60.82% 47.58% 72.92% 72.73% 53.48%
Vrapper (Core branch) 48.79% 71.90% 66.02% 57.14% 47.62%

Total average 49.20% 40.39% 55.69% 47.04% 49.41%
Standard deviation 12.10% 18.08% 20.79% 18.76% 12.81%

Table 4.3: Average lifespans in percentage.

Figure 4.1: Lifespans of Feature Envy Methods in Evolution Chamber.

As can be seen in table 4.3, the differences between the average lifespans over all subject
systems are not large. Nevertheless, something can still besaid about the results. The
Feature Envy Method smell instances have the shortest lifespan on average. The highest
lifespan can be found in the core branch of Vrapper, however it has only three Feature Envy
Methods. Looking at the Gantt charts per system, most infected methods start suffering
from this smell after several revisions. Also, the majorityof the instances are removed
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relatively quickly. An example of this phenomenon can be seen in figure 4.1. Next to
this, the boxplot in figure 4.2 is one example of a system containing individual lifespans
being concentrated in the lower range of revisions, meaningthat most infected instances
have a short existence. The cause of this dynamic behaviour might be that a method can
easily be refactored or removed, either intentionally or coincidentally as a side effect of
a maintenance activity. This is plausible as the commits responsible for removals include
contents and log messages that contain changes to methods and classes with the intent to
implement new functionality.

Figure 4.2: Boxplot of lifespan distribution in CalDAV4j.

The God Class and Long Parameter List Class are almost identical with regard to the
total average and standard deviation. Compared to Feature Envy Methods, the refactoring
behaviour of these two code smells is more static. In other words, once a smell instance of
these two smell types is introduced, it has a lower chance of being removed quickly. This
could be an indication of the notorious difficulty of refactoring a God Class [31] and the
carelessness of developers of having many parameters in their methods. Especially Long
Parameter Lists are coincidentally removed rather than deliberately.

The analysis on Data Classes shows that this type has the largest total average, but the
average lifespans of most systems also deviate greatly fromthat value. According to the
Gantt charts, a clear trend can be seen: the number of Data Classes increases over time
and refactoring takes place seldom. The classes that do not get refactored are typically
created to be dedicated data holders or small libraries. Theinstances that do get removed
are scarce and have a very short lifespan. Usually, these classes are renamed and live on as
other instances or, more importantly, are created with the intent to add functionality a few
revisions later.

Message Chain Class is the only smell type of which relatively few instances have been
found in many projects. Also, there is no clear pattern of smell introduction and removal.
The Gantt charts of most subject systems show that many infected classes have a lifespan
of approximately 50% of the investigated revisions. Most ofthe time, these instances are
either removed at random points in the life cycle or introduced in the latest revisions and
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not refactored at all. Figure 4.3 shows an example of this discovery. This suggests that
there is little deliberate refactoring activity and that any introductions or removals are the
consequence of other development activities.

Figure 4.3: Lifespans of Message Chain Classes in Saros.

Concluding remarks

In most analysed software projects, code smell instances have an average lifespan of
about 50% of the examined revisions. Feature Envy Methods seem to be resolved the most,
due to the fact that they are more susceptible to accidental or deliberate refactoring activities.
Also, God Classes are known in literature for being hard to refactor [31], which may be the
reason why they live longer in the subject systems. Given theincreasing introduction and
scarce removal of infected instances over time, Data Classes and Long Parameter Lists are
not regarded as a liability to the overall reliability of a software system by many developers.

The results imply that software developers do not prioritise the removal of code smells,
even if they are aware of the risks. Some smell types are resolved quicker than other types,
but the question remains if these refactorings are always intentional or the consequence of
other maintenance activities. The answers to the followingresearch questions will provide
better insight into this matter.
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4.2.2 RQ2

The definition of this research question was: “Are code smells refactored more at an early or
a later stage of a system’s life cycle?” and is answered by determining the average lifespan
in the first 20% and the last 20% of the examined revisions of all subject systems. Similar
to table 4.2, the average lifespans of smell instances within the youngest versions are shown
in terms of revisions and in percentage in table 4.4 and 4.5, respectively. The same applies
to the data from the oldest revisions, which are presented intable 4.6 and 4.7. Again, the
total average is computed, along with the corresponding standard deviation. Note that these
average values are based on the lifespans of code smell instances that may exist outside the
subsets of 20% of the revisions. For example, if 500 versionsare examined and a smell
instance exists in the first 200 versions, then its lifespan within the first 20% of the analysed
revisions is considered to be 100 revisions.

GC FEM DC MCC LPLC
CalDAV4j 52 0 0 0 0
Evolution Chamber 49 32 1 25 26
JDiveLog 102 94 73 73 99
jGnash 134 138 72 60 173
Saros 226 208 246 192 298
VLCJ 107 115 194 173 0
Vrapper (Base) 18 14 20 19 12
Vrapper (Core branch) 27 0 40 38 47

Table 4.4: Average lifespans within the youngest 20% in terms of revisions.

GC FEM DC MCC LPLC
CalDAV4j 81.25% 0% 0% 0% 0%
Evolution Chamber 85.96% 56.76% 2.19% 49.86% 46.20%
JDiveLog 66.01% 53.43% 41.45% 41.71% 56.33%
jGnash 51.28% 52.77% 36.36% 31.60% 57.86%
Saros 54.04% 44.62% 49.42% 38.75% 59.94%
VLCJ 35.62% 39.71% 64.37% 57.48% 0%
Vrapper (Base) 78.62% 58.70% 86.34% 84.06% 52.17%
Vrapper (Core branch) 56.74% 0% 84.04% 81.21% 100%

Total average 63.69% 38.25% 45.52% 47.33% 46.56%
Standard deviation 17.39% 24.41% 32.89% 27.27% 33.01%

Table 4.5: Average lifespans within the youngest 20% in percentage.

According to table 4.4, CalDAV4j seems to have no smell instances for almost all smell
types in its early revisions. This is due to the fact that those revisions were unexpectedly
not analysable. Nevertheless, the overall results show a clear pattern for all smell types.
The younger revisions have a significantly lower total average than the latest versions. As
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can be seen in the Gantt charts, the main cause is that the number of long-living code
smell instances increases over time. Figure 4.3 happens to show an example of that growth.
Naturally, as a system expands, it will contain more classesand methods that may or may
not get infected. The results hint towards the lack of concern or awareness of the developers
regarding code smells. A more thorough investigation is needed in order to strengthen the
validity of this presumption.

GC FEM DC MCC LPLC
CalDAV4j 56 45 64 64 64
Evolution Chamber 54 51 55 57 52
JDiveLog 132 151 165 154 166
jGnash 250 249 197 176 280
Saros 274 343 401 417 414
VLCJ 230 205 301 203 301
Vrapper (Base) 20 23 21 23 23
Vrapper (Core branch) 35 45 46 46 39

Table 4.6: Average lifespans within the latest 20% in terms of revisions.

GC FEM DC MCC LPLC
CalDAV4j 86.96% 69.85% 100% 100% 100%
Evolution Chamber 94.32% 89.38% 96.07% 100% 91.81%
JDiveLog 85.43% 86.31% 94.49% 88.22% 94.71%
jGnash 95.72% 95.51% 99.34% 93.37% 93.81%
Saros 65.57% 73.59% 80.71% 84.18% 83.20%
VLCJ 76.26% 71.08% 100% 67.44% 100%
Vrapper (Base) 84.95% 100% 89.57% 100% 100%
Vrapper (Core branch) 74.47% 100% 98.45% 97.66% 82.55%

Total average 82.96% 85.72% 94.83% 91.36% 93.26%
Standard deviation 10.26% 12.71% 6.71% 11.35% 7.14%

Table 4.7: Average lifespans within the latest 20% in percentage.

The standard deviation for the early revisions is higher than for the latest revisions.
This is mainly due to the fact that the youngest examined revisions of some systems are
already at a mature point in the development life cycle and thus initially contain more code
smells (and removals) than revisions that actually mark thebirth of a project. The latter type
will usually contain very few code smell instances that are not refactored quickly, causing
the average lifespan to be high for systems with relatively little examined revisions like
Evolution Chamber and Vrapper.

Concluding remarks

For all subject systems and smell types, the first 20% of the examined revisions reveal
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a substantially lower average lifespan than the last 20%. The main cause is the introduction
of more code smell instances over time. Every software project grows as time progresses.
However, an increasing number of smell instances may be an indication of little refactoring
activity throughout the development life cycle.

The results of the case study show that most infected instances at the beginning of a
system’s life cycle are bound to be refactored within a few revisions. However, the number
of long-living infected instances increases over time. Compared to the earlier revisions of
a system, the latest versions show significantly less refactoring activities. This implies that
the willingness to resolve code smells decreases over time.

4.2.3 RQ3

The question was posed as: “Do some developers refactor more code smells than others
and to what extent?” The approach here is to count the number of refactored code smell
instances per developer. Table 4.8 shows the names of the developers participating in the
subject systems with the number of all infected instances that were removed at some point,
according to SACSEA. These values also include erroneous removals, due to the occasional
faulty behaviour of the integrated smell detection tools. Note that one commit can contain
multiple removed smell instances, which can be the consequence of moving functionality
across classes and methods.

However, not all removals are the result of dedicated refactoring activities. The number
of resolved instances in table 4.8 must be reduced by the number of times a coincidental
refactoring occurred. For this, the log messages of all commits responsible for a smell
removal have been manually examined and categorised based on the cause of the removal.
Signal words like “Refactored”, “ Extracted class” and “Clean-up” are usually indications
of true refactoring activities. Naturally, these words areno guarantee and a developer’s
perspective on the manifestation of code smells may differ from the ones assumed by the
detection tools used in this graduation project. Table 4.9 shows the names of the developers
with the approximate amount of resolved instances that werethe consequence of deliberate
refactoring per code smell. Also, the last column in both tables shows the total number of
relevant commits per developer within the range of analysedrevisions.

There seems to be very little intentional refactoring activity in all subject systems. No
useful refactoring activities were found in JDiveLog. According to the commit logs, the
values shown in table 4.8 mainly consist of smell removals that were the side effect of
maintenance work, such as moving and renaming infected instances, but also of bug fixes
and the implementation of new functionality. Some removalswere part of a larger, unrelated
refactoring and are therefore not included in table 4.9. Thelog messages also reveal that
most changes are committed per task. Exceptions include corrections to previous commits
and small changes.

Table 4.9 does show that some developers refactor more than others. This varies from
systems in which only one engineer resolves code smells (e.g. CalDAV4j) to projects in
which more developers refactor and only one does so more frequently (e.g. Evolution
Chamber). Moreover, the systems jGnash and VLCJ that have only one software engineer
provide an indication on how concerned that developer is with code smells.
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Developer GC FEM DC MCC LPLC Commits

CalDAV4j
bobbyrullo 7 1 1 1 78
robipolli 18 17 2 1 1 111

Evolution
Chamber

nafets.st 8 61 6 15
bdurrer 2 8 2 1 15
domagala.lukas 1 4 1 52 4 36
mike.angstadt 3 41
fritley 3 3 1 70
brendan.speer 1 1 1 4
netprobe 1 16

JDiveLog

onlinervolker 13 49 2 93
andreschenk 5 8 4 1 107
vkorecky 12 37 3 48
sjomik 1 2
szdavid1 3 1 1 52
pellmont 46 53 3 3 1 456
Levtraru 2 3

jGnash ccavanaugh 196 246 2 26 17 1355

Saros

sotitas 6 4 1 1 1 7
chris fu 13 15 3 4 7 141
coezbek 108 128 4 19 13 784
Arbosh 1 6
k beecher 2 7 1 2 31
wojtus 1 13 6 1
hstaib 1 9
marrin 33 58 3 25 4 130
orieger 19 20 2 7 3 119
ahaferburg 10 55 1 69
s-ziller 8 5 63
starkmann 1 3
testvogel 1 4
szuecs 5 2 1 1 14
ldohrmann 7 2 15
djemili 1 1 43
marcus-fu 1 3
ornis 2 1 27

VLCJ wm.mark.lee 39 15 13 4 2 878
Vrapper
(Base)

weissi 2 6
waweee 9 2 3 5 1 102

Vrapper
(Core)

kgoj 6 4 1 1 75
waweee 15 2 7 81

Table 4.8: Number of code smell removals, as found by SACSEA.
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Developer GC FEM DC MCC LPLC Commits

CalDAV4j
bobbyrullo 78
robipolli 2 1 111

Evolution
Chamber

nafets.st 1 15
bdurrer 2 7 2 15
domagala.lukas 1 36
mike.angstadt 41
fritley 1 70
brendan.speer 4
netprobe 16

JDiveLog

onlinervolker 93
andreschenk 107
vkorecky 48
sjomik 2
szdavid1 52
pellmont 456
Levtraru 3

jGnash ccavanaugh 1 1355

Saros

sotitas 7
chris fu 1 141
coezbek 3 1 1 784
Arbosh 6
k beecher 7 1 31
wojtus 1
hstaib 9
marrin 1 130
orieger 119
ahaferburg 69
s-ziller 1 63
starkmann 3
testvogel 4
szuecs 14
ldohrmann 15
djemili 43
marcus-fu 3
ornis 27

VLCJ wm.mark.lee 3 3 1 878
Vrapper
(Base)

weissi 6
waweee 1 2 102

Vrapper
(Core)

kgoj 1 75
waweee 81

Table 4.9: Number of code smell removals, caused by intentional refactorings.
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Concluding remarks

Table 4.9 reveals that there is sporadic refactoring activity, compared to the numerous
amount of smell instances found in each subject system. Still, at most two developers
per subject system refactor more smell instances than the others. Some of them are the
only ones within the project responsible for an occasional removal. Others refactor a few
more infected instances than other developers. As mentioned before, the majority of the
code smell instances found in the experiments were resolvedas a consequence of other
maintenance activities or the implementation of new functionality. Most developers do not
seem to recognise the added value of refactoring in a system with high commit activity,
implying low awareness or concern regarding code smells.

4.2.4 RQ4

This research question was stated as follows: “What refactoring rationales for code smells
can be identified?” Chapter 1 mentioned examples of refactoring rationales, such as the
introduction of a dedicated refactoring phase and the accommodation of new functionality.
The logs and contents of the corresponding commit and its neighbouring commits must be
examined to find some evidence of such motives. However, due to the scarcity of intentional
refactoring activities in the subject systems, finding rationales will be difficult. Therefore,
code styling rationales are also considered here, such as dead code elimination. The most
common rationales for resolving the smells considered in this case study are listed below.
These rationales have been derived from the log messages andsource code inspection.

• Cleaning up dead or obsolete code: Many subject systems contain a few revisions in
which duplicate, unused or old classes and methods are removed. Occasionally, this
results in the removal of a smell instance, albeit accidental. Some of these activities
may not be considered as true refactorings, but the underlying motives are usually
not subject to a larger refactoring. In other words, sometimes developers just see and
grab an opportunity to clean up.

• Dedicated refactoring: Similar to dead code elimination, there are some cases in
which developers refactor for the sole purpose of refactoring. This often comes down
to restructuring libraries (Data Classes) or generalisinglarge classes through the use
of interfaces. The question arises whether the developers are aware of the specific
code smell that infects a certain software entity. The answer to this question remains
unknown, however it is reasonable to assume that their “programming instinct” tells
them when a class is growing out of proportion, for instance.

• Maintenance activities: The majority of the refactorings are coincidental, as a side
effect of intentional bug fixes or implementing new functionality. This causes many
classes and methods to be removed for that purpose, including the infected instances.
Whether these activities also integrate an implicit refactoring activity is uncertain,
though some smell instances are indeed resolved by the changes. Next to this, many
software entities are renamed in these activities. SACSEA sees this phenomenon as
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the removal of one infected instance and the immediate introduction of another, while
they are in fact one and the same instance. This is not considered a refactoring in this
study.

Although the list above does not include very exciting motives, there are some commits
in which more explicit refactorings have been performed. The corresponding log messages
mention rationales like the accommodation of new functionality, performance enhancement
and readability improvement. However, these commits do notcontain refactorings that
actually resolve code smell instances found by SACSEA. Thismight imply a plausible flaw
in the detection modules, the different perspectives of developers on code smells or the fact
that the refactored instance was not really infected in the first place, in which case it was
only resolved with the original goal in mind.

Concluding remarks

Within the limits of the case study, it seems that the act of refactoring has always been
done on a small scale and not for a higher purpose. However, there are some cases in
which this higher purpose is present, but fall outside the scope of the case study, since
these refactorings did not cause the removal of a code smell as detected by SACSEA. The
rationales briefly mentioned in chapter 1 have not been foundin the case study. However,
there were various other rationales to be recognised, such as code clean-up and deliberately
resolving code smells. Motives with regard to performance and readability were found in
commits that were not marked by SACSEA as responsible for smell removals and therefore
fall outside the scope of the case study. This hints towards adefinite awareness of code
smells among developers, although infected instances onlyseem to be removed when the
time is convenient, which explains why there is little refactoring activity in the subject
systems. The intent to refactor is there, when there is time and effort to spare.

4.3 Threats to Validity

Much effort was spent to perform the research in this graduation project in a structured and
correct manner. However, the case study was subject to certain conditions, which could
influence the eventual outcome. This section describes the aspects that may threaten the
validity of this study.

4.3.1 Internal Validity

Threats to internal validity concern aspects that can influence the observations. First, no
causal relationship among the investigated variables (e.g. code smell types, refactoring
rationales and number of active developers) is claimed in this graduation project. The results
were discussed, while taking the characteristics of all subject systems and developers into
account and trying to come up with interpretations to the findings.

The code smell detection tools used for the case study were originally designed for a
limited academic purpose. This means that the developers had a certain goal in mind during
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development and as such, they built their applications toward that goal. The disadvantage
of that approach is that the tools may not extend well to othergoals, like the ones set in
this graduation project. This limitation is reflected by strange and unpredictable behaviour,
that prevents the emission of flawless results. For example,the applications may identify
code smell instances, which are not considered as such by a human expert. As a result,
code smells may not be subject to a refactoring activity for many revisions. False negatives
may also occur for similar reasons, in which case the code smell instance is not shown in
the results at all. By using two tools with different detection approaches and investigating
subject systems that have relatively little unparsable revisions, this threat is slightly reduced.
In order to nullify it, this research has to be replicated using one or more detection tools that
are considered (functionally and commercially) mature andallow the user to enter custom
code smell definitions. However, such definitions will always be subject to discussion.

Two code smell detection tools were chosen for this graduation project to avoid potential
bias in detection, since both of them have a different approach in detecting code smells.
Both tools are responsible for a set of smells to detect, which is disjoint from the set of the
other. The question arises whether and to what extent different smell instances were to be
found if one tool were to be responsible for the set of the other and vice versa. This is part of
a larger question: How would the results be influenced if other detection approaches were
used for the same code smells? A study that addresses this issue is proposed as future work
in section 6.3.

SACSEA was thoroughly tested, but it remains an academic prototype. The toolchain
may contain unforeseen defects. It must be mentioned that the integrated code smell detec-
tion tools also form a liability, regardless of their application in other research. For instance,
JDeodorant uses an AST-based approach, which needs parsable Java source files. There are
some revisions in the subject systems, in which source code with missing dependencies
and compile errors has been committed. Depending on the responsible detection utility, the
source file or the entire revision is skipped for detection. Consequently, there is no useful
data available for some revisions of four systems. The percentage of unparsable revisions
varies from 1% to 25%. This affects the results in two ways. Either the lifespan of some
long-living code smell instances in unparsable revisions is not shown in the visual reports,
which causes the average lifespan in a system to be lower thanit actually is. On the other
hand, some instances that only exist in the range of those revisions may not be shown at
all, causing the average lifespan in a system to be higher than it actually is. This threat also
affects the information about refactoring activities. This risk has been kept to a minimum by
analysing a selection of revisions of several software projects and selecting those systems
with the least data loss.

Selection criteria were devised to ensure diversity among the subject systems and avoid
bias. However, it is highly likely that these requirements may not be fully justified or
there are other aspects that were not taken into consideration. Also, the initial development
steps of some systems may not be present in a VCS, because developers probably start
using a repository when the project is mature enough. This obstacle has been countered
by including some software repositories in the case study that do contain this information,
taking the primary selection criteria into account.

Renaming classes and methods is a common practice in software development, but it is
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considered a nuisance in this study. SACSEA is unable to determine if an entity in revision
n has been renamed in revision n+1. This will usually be shownin the output as a smell
instance ceasing to exist at one revision and another smell instance being introduced in the
subsequent revision. This phenomenon had to be recognised manually and not mistaken for
a refactoring.

4.3.2 External Validity

External validity threats deal with the generalisation of the results. The most obvious threats
are in this case the number of subject systems and their scope. A great amount of effort has
been spent on achieving diversity among the subject systems. Still, the case study was
performed with seven open source projects written in Java. Therefore, it is possible that
the results will not fully hold for other similar projects, industrial systems or applications
developed in other programming languages or paradigms. Theinvestigation of this issue is
proposed as future work.

4.3.3 Construct Validity

Threats to construct validity concern the relation betweentheory and observation. A serious
threat lies in the identification of refactorings, which is based on the commit logs of the
VCS. Indeed, the commit log of the revision in which a smell disappears can be retrieved.
However, they may not accurately reflect the commits relatedto a smell removal, because
developers show different behaviour for committing their changes, e.g. periodically or task-
based. Also, deliberate refactorings must be distinguished from other coding activities that
coincidentally result in the removal of a code smell. Log messages have to be inspected
manually to make this distinction, which is usually clear, taking the aforementioned threat
into account.

The subjective nature of identifying code smells is also a threat to validity. This activity
is captured in the detection tools, which make different assumptions than other developers.
This risk is minimised by choosing detection utilities, which base their smell identification
on definitions from literature.
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Related Work

Software maintenance plays a significant role in the development process. Several studies,
among them the work of Beck and Fowler [22], show that code smells and anti-patterns
have a negative influence on software quality. If no action istaken in a timely manner, then
a software system will deteriorate over time. There are numerous examples available of the
study and development of code smell detection techniques [31] [41]. However, there are
also contributions to the investigation of the evolution ofcode smells and anti-patterns [33]
[39]. This chapter presents some examples of these contributions, which are closely related
to this graduation project.

5.1 CodeVizard

Zazworka and Ackerman developed a framework calledCodeVizard[1] [45], which can
mine data from source code repositories at source file level and hence reveal the evolution
of those systems. The tool focuses on areas of risk, such as increasing software complexity,
degrading architectures, process violations and also codesmells. CodeVizard also offers
various visualisations for examining the infected entities and their change history.

CodeVizard’s main workflow starts with reading and converting data from CVS or SVN
repositories and storing them into a relational database system for rapid access. Then it
facilitates processing these data (e.g. computing more than 70 software metrics for Java and
C# code). It also provides a set of interconnected views to analyse the processed data:

• The System Viewvisualises repository contents over time and allows the inspection
of software metrics. The visualisation is similar to the graphical output of SACSEA:
the lifespans of code smell instances are represented by coloured bars. This view also
shows small coloured change bars that represent metadata (e.g. when components
were modified and by whom). SACSEA only provides this information as text.

• The Code Viewgives insight into the development and evolution of a singlefile by
displaying its source code over a certain time period.

• TheMetric Viewpresents various software metrics, such as lines of code. This is also
a feature that SACSEA lacks, since it was not necessary to include this information
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in order to answer the research questions of this graduationproject. However, the
implementation of such functionality is proposed as futurework.

CodeVizard has been used to support several empirical studies with different research
goals, including the evolution of code smells. One of these contributions was made by
Olbrich et al. [38], who were interested in the number of codesmells that change over time
and in the effect of code smells on component development in terms of frequency and size
of changes. They performed a case study in the same manner as the experiments carried
out in this graduation project. They selected two Java systems, Lucene and Xerces, which
had to meet multiple criteria. CodeVizard was applied on these applications and returned
information on the evolution of the code smells God Class andShotgun Surgery. The results
showed that entities infected with these code smells have a higher change frequency. Such
classes seem to need more maintenance than non-infected classes.

5.2 The Impact of Smells and Anti-patterns on Software
Change-proneness

Similar to Olbrich et al. [38], Khomh et al. performed a study[28] regarding the same
research question: “Are classes with code smells more change-prone than classeswithout
smells?” For this, they used their own solution DECOR [36] to specifyand find code smells
in the systems Azureus and Eclipse. The analysis was based onreleases rather than revisions
of the VCS. 29 code smell detection algorithms, provided by DECOR, were applied on a few
releases to obtain the sets of infected classes. The resultsof the study provided empirical
evidence that classes with code smells are more subject to change than others in almost all
considered releases of both systems and that specific smellsare more correlated than others
to change-proneness.

A study with the same approach was done by Khomh et al. [29], but anti-patterns were
the target of interest in this case. Using DECOR, thirteen anti-patterns in several releases
of the systems ArgoUML, Eclipse, Mylyn and Rhino were detected in order to investigate
the correlation with change- and fault-proneness. The authors showed that in almost all
releases of each system, classes participating in anti-patterns are more change- and fault-
prone than other classes and that certain kinds of anti-patterns have a higher impact than
other types. Moreover, class size alone can not explain the higher change-proneness of
infected instances. Finally, structural changes seem to affect more classes with anti-patterns
than other classes. Qualitative explanations of the increase of change- and fault-proneness
in infected classes were given using release notes and bug reports.

5.3 The Evolution of Smells in Object-Oriented Programs

Chatzigeorgiou and Manakos [17] explore the presence and evolution of three code smells
by analysing past releases of two open-source systems. In contrast to other studies that
mainly focused on the identification of refactorings, this research focuses on findings and
assumptions regarding the problems themselves and the rationales behind their introduction
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and removal during software evolution. The authors attemptto gain insight into the number
of design problems over time, whether the evolution of a software system removes some of
its code smells or only after targeted maintenance activities, the time of smell introduction in
a system and the frequency and urgency of refactoring activities. The code smell detection
tool JDeodorant is employed for the identification of code smells, which is also used in this
graduation project. They state that the tool offers the possibility to detect non-trivial smells,
which require a systematic and elaborate refactoring activity.

The results showed that the design problems persist up to thelatest examined version in
most cases, accumulating as the project matures. Moreover,a significant percentage of the
code smells were introduced at the time when the method in which they reside was added
to the system. Only a few smells were removed from the projectand in the vast majority
of these cases their disappearance was not the result of targeted refactoring activities but
rather a side effect of adaptive maintenance. Even though the case study was performed
under slightly different conditions, its outcome is very similar to the results found in this
graduation project and therefore supports the assumption that code smells increase over
time.

5.4 The Evolution of Smells in Aspect-Oriented Programs

Aspect-oriented programming(AOP) is a programming paradigm, which aims to increase
modularity through the separation of cross-cutting concerns. Some code smells specific
for AOP have already been introduced in literature [42]. Macia et al. [14] performed an
exploratory study of code smells in evolving aspect-oriented systems. They investigated
if and how code smells evolve in such software projects and defined new smells as a side
effect. Due to the lack of automated detection techniques for finding smells in programs
developed using this paradigm, the detection was done manually. The investigation focused
on 18 releases of three aspect-oriented systems from different domains. The outcome of the
study suggested that previously-documented smells might not occur as often as claimed.
The analysis also revealed that newly-discovered code smells might occur more often than
well-known ones and that the unknown smells seemed to be consistently associated with
non-trivial refactorings and corrective changes.

5.5 Measuring Refactoring Effort through MSR

Refactoring of code smell and anti-patterns is supposed to improve the structure of existing
source code in the long run in order to increase the changeability and maintainability of a
software system. To analyse the impact of refactoring on software maintenance, Moser et
al. [37] tried to find out how much refactoring software engineers do. In some cases, this
information is directly available from the log messages in aVCS. A model is proposed on
how to mine software repositories in order to obtain quantitative information on refactoring
effort throughout the evolution of a software system. Next to this, the authors developed a
prototype that implements the model and validated their solution by applying the tool to one
close-to industrial software project and one open source project. Judging from the results,
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the authors were able to distinguish refactoring effort from other forms of maintenance
activities fairly well in most cases. This information is valuable for identifying the amount
of refactoring done during maintenance, the developers whorefactor and those who do not,
the parts of a system that are not refactored and the impact ofrefactoring.
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Chapter 6

Conclusions and Future Work

The first section of this chapter contains conclusions basedon the results of the case study
and presents answers to the research questions defined in chapter 1. Furthermore, the work
carried out in this graduation project contributes to the discipline of software evolution,
particularly on the subject of code smells. A list of these contributions is provided in section
6.2. Finally, since this project is just a small step in this research field, some proposals for
future work are described in section 6.3.

6.1 Conclusions

In this graduation project, a tool called SACSEA was developed that computes the lifespans
of code smell instances in a software repository. As a case study, SACSEA has been applied
to seven software projects in order to answer four research questions regarding the lifespan
of code smells and the refactoring behaviour of software engineers. The application is
currently still a research prototype and requires further development if the work done in this
graduation project is to be extended. Within the threats to validity, some useful results have
emerged from the case study and are described below, along with a concluding answer per
research question:

RQ1 Are some types of code smells refactored more and quicker than other smell types?

The first research question focuses on the overall average lifespans per code smell type,
which could be an indication of the priority that developersattach to refactoring certain
code smells. To this end, SACSEA was used to analyse seven Java projects over as many
revisions as possible. The original intent was to determinethe lifespan of code smells from
the beginning revision until the head revision. Because such a large range of revisions was
not feasible for some systems, a subset of reasonably substantial size was examined per
software project. The average lifespan per smell type in each system was determined, based
on the lifespans of individual code smell instances.
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The initial expectations were that software engineers consider refactoring to be of less
importance than actually programming new functionality. This was somehow reflected in
the results. On average, code smell instances seem to have a lifespan of approximately
50% of the examined revisions. However, there were some small differences per code smell
type, where Feature Envy Methods seem to be refactored more than God Classes, Data
Classes and Long Parameter List Classes. On first sight, the cause of this phenomenon
seems to lie in the fact that Feature Envy Methods are easier to refactor, either by accident
or intentionally. Also, God Classes are proven to be difficult refactoring candidates [31],
while Data Classes and Long Parameter Lists do not form a big threat in the eyes of many
developers.

Overall, this implies that software engineers are not very much interested in refactoring
code smells most of the time. In conclusion, some smell typesare resolved more than
others, but the results do not show whether these refactorings are always deliberate.

RQ2 Are code smells refactored more at an early or a later stage ofa system’s life cycle?

The question posed here concerns the point in the development life cycle at which a
code smell is resolved. The approach for obtaining useful results required the first 20% and
the last 20% of the revisions analysed for answering RQ1. Theaverage lifespans per code
smell type in these subsets of revisions were computed in thesame manner as for RQ1.

Before the experiments were performed, it was presumed thatthe earlier revisions would
show a lower average lifespan than the latest revisions, since more code smell instances are
usually present in the latter subset. This hypothesis was found to be correct for the very
same reason, holding for all code smell types. It is only natural that a system grows over
time, but if the number of infected instances grows along with it, then this may be a sign of
little refactoring activity throughout the entire life of asystem.

According to the results, the majority of the smell instances in the early revisions subset
of any subject system are resolved within a few revisions. However, their numbers do not
outweigh the increasing number of infected instances that exist for a long period of time.
Relative to the first 20% of the revisions of a system, the latest revisions do not contain
many smell removals. This is also a sign that refactoring code smells is of little relevance
to a developer.

RQ3 Do some developers refactor more code smells than others andto what extent?

This research question deals with the behaviour of developers regarding code smells.
Are they familiar with the notion of code smells and if so, arethey concerned with the
infected instances in their own system? To shed some light onthis issue, SACSEA was
used on the seven subject systems to retrieve the number of intentional refactoring activities
per developer within the examined revisions.

The initial assumption was that it is near certain that some developers refactor more than
others. However, no assumptions have been made regarding how many refactoring activities
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a developer is responsible for, compared to other software engineers. Within each subject
system, usually one or two developers refactor more than therest of their colleagues. The
differences are not large: most of the time they are either the only ones who resolve smell
instances or either refactor just a few more infected instances than other developers.

Most smell instances found in the case study were removed as aside effect of other
maintenance activities or the implementation of new functionality. Refactoring does not
seem profitable in a system with high commit activity. These results hint towards low
awareness or concern among developers regarding code smells.

RQ4 What refactoring rationales for code smells can be identified?

Similar to RQ3, the subject of interest is the refactoring behaviour of developers. In
this case, the log messages themselves must be retrieved rather than the number of commits
responsible for the removal of a smell instance.

Chapter 1 already mentions a few possible motives. For instance, some infected classes
or methods may need to be refactored before functionality can be added or tested. Another
example is the introduction of a dedicated refactoring phase in the development life cycle.
Finding such motives in the case study was one of the expectations, but was eventually not
fulfilled. However, the commit logs show various other rationales, such as cleaning up dead
or redundant code and refactoring for the purpose of code smell resolution. More rationales
were found regarding performance and readability improvement. However, these motives
were derived from commits that were not marked by SACSEA as responsible for smell
removals and therefore fall outside the scope of the experiments.

This implies that developers are most certainly aware of code smells in their software
projects, although they seem to resolve them for opportunistic reasons, which explains the
relatively low refactoring effort in most subject systems.

6.2 Contributions

The contributions of this graduation project to the field of code smell evolution are listed
below.

• SACSEA.An application that can analyse open source Java systems stored on SVN
repositories, find different types of code smells in them within a user-specified range
of revisions and generate a visual and textual output containing their lifespans and
corresponding metadata. Initially developed to serve one sole purpose, it is also useful
as a stand-alone product and can easily be reused or extended.

• Experiment results.Seven open source Java projects were analysed using SACSEA in
order to give a fair answer to the research questions defined in chapter 1. The results
show that developers are aware of code smells, but do not consider them to be a high
priority during development.
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• Stepping stone for further research.The tool and statistics that both resulted from
this graduation project may be used to pursue further work inthe field of software
evolution.

6.3 Future Work

Since this graduation project is only a tiny step in the field of code smell evolution, more
research is required to strengthen or validate the claims made in this study or broaden the
knowledge by performing more studies using different variables. This section describes
recommendations for future work.

6.3.1 Improve and Extend Functionality of SACSEA

SACSEA was built from scratch and is therefore a prototype. In order to accommodate
future work, the application can be supplemented with more functionality that eases the
recognition and clarity of code smells. An example is the calculation and visualisation of
software metrics. They would have to be extracted from the integrated detection modules
or the detected smell instances themselves. Metrics can help in determining how severe a
software entity suffers from a certain code smell. Another idea for improvement is better
visualisation, such as the multiple views as implemented inCodeVizard [1] [45]. Finally,
SACSEA would also benefit from functionality that allows thenewly obtained information
described above to be logged in a structured way.

6.3.2 Investigating more Code Smells

Only five types of code smells were considered within the scope of this graduation project.
Investigating more code smells would undoubtedly lead to more polished answers to the
same research questions. Within this issue, it might be interesting to vary between popular
smell types and smells that are relatively unknown among thepublic to find out the relation
between coincidental and deliberate refactoring.

6.3.3 Investigating Design Smells and Anti-patterns

Similar to Khomh et al. [28] [29], using the same approach to examine design smells and
anti-patterns, such as the Swiss Army Knife and Spaghetti Code, may be fruitful. Since
design is an activity that engineers have to incorporate in the application, such research
may provide insight into the awareness and concern that is given to design smells and anti-
patterns.

6.3.4 Using other Code Smell Detection Tools or Approaches

As stated in section 4.3, SACSEA integrates external code smell detection utilities that
were developed as prototypes for specific goals. Therefore,they may not extend well to the
goals set in this graduation project and show some unexpected behaviour. As a result, some
revisions can not be processed by SACSEA. The way to resolve this issue is by performing
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this study again, using detection techniques that have proven to be reliable and are more
robust. Besides, it is interesting to discover variations in the results if detection techniques
are used that are different from the ones used in this graduation project.

6.3.5 Analysing Industrial Systems

The software projects investigated in the case study were all developed by the open source
principle. Usually, but not always, this means that developers are not strictly bound by
programming guidelines or deadlines. Although every effort has been spent to find several
subject systems that incorporate a strict development process, no commercial or closed
source projects were used in the case study, due to the limited availability of such systems.
Another idea for future work is to redo this research using industrial projects for the case
study and find out how a rigid development process or pressingdeadlines affect the lifespan
of certain code smells or if dedicated refactoring phases are introduced at some point in the
life cycle. Also, the commit logs of such systems are bound tobe more clear and reliable.

6.3.6 Analysing Projects in other OO-languages or Paradigms

Because SACSEA, or rather its detection modules, can only analyse applications written in
Java, no research has been done using systems that were developed in other object-oriented
languages or programming paradigms. It would be interesting to see how much the average
lifespans in such projects differ from the lifespans that were determined in this graduation
project. If this research were to be performed again with such systems, SACSEA would
definitely have to be extended with functionality to supportthe detection of code smells in
those systems.
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[36] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.F. Le Meur. DECOR: A Method for
the Specification and Detection of Code and Design Smells.Software Engineering,
IEEE Transactions on, 36(1):20–36, 2010. IEEE.Cited on pages 2 and 44.

55



BIBLIOGRAPHY

[37] R. Moser, W. Pedrycz, A. Sillitti, and G. Succi. A Model to Identify Refactoring Effort
during Maintenance by Mining Source Code Repositories.Product-Focused Software
Process Improvement, pages 360–370, 2008. Springer.Cited on page 45.

[38] S.M. Olbrich, D.S. Cruzes, V. Basili, and N. Zazworka. The Evolution and Impact of
Code Smells: A Case Study of Two Open Source Systems.Empirical Software En-
gineering and Measurement, 3rd International Symposium on, pages 390–400, 2009.
IEEE Computer Society.Cited on page 44.

[39] S.M. Olbrich, D.S. Cruzes, and D.I.K. Sjøberg. Are all Code Smells Harmful? A
Study of God Classes and Brain Classes in the Evolution of Three Open Source Sys-
tems. InSoftware Maintenance (ICSM), 2010 IEEE International Conference on,
pages 1–10. IEEE, 2010.Cited on page 43.

[40] D.L. Parnas. Software Aging. InProceedings of the 16th International Conference on
Software Engineering, pages 279–287. IEEE Computer Society Press, 1994.Cited on
pages 1, 2, and 4.

[41] B. Pietrzak and B. Walter. Leveraging Code Smell Detection with Inter-Smell Re-
lations. Extreme Programming and Agile Processes in Software Engineering, pages
75–84, 2006. Springer.Cited on page 43.

[42] E.K. Piveta, M. Hecht, M.S. Pimenta, and R.T. Price. Detecting Bad Smells in AspectJ.
Journal of Universal Computer Science, 12(7):811–827, 2006.Cited on page 45.

[43] W. Scacchi. Understanding Open Source Software Evolution. Software evolution and
feedback: theory and practice, pages 181–206, April 2003.Cited on page 1.

[44] N. Tsantalis.Evaluation and Improvement of Software Architecture: Identification of
Design Problems in Object-Oriented Systems and Resolutionthrough Refactorings.
PhD thesis, University of Macedonia, Thessaloniki, August2010. Cited on page 13.

[45] N. Zazworka and C. Ackermann. CodeVizard: A Tool to Aid the Analysis of Software
Evolution. InProceedings of the 2010 ACM-IEEE International Symposium on Em-
pirical Software Engineering and Measurement, ESEM ’10, page 63:1. ACM, 2010.
Cited on pages 43 and 50.

56



Appendix A

Glossary

Anti-pattern A commonly occurring design solution that will always generate negative
consequences when applied to a recurring problem.

AOP Aspect-Oriented Programming. A programming paradigm thataims to increase the
modularity of a software program through the separation of cross-cutting concerns.

AST Abstract Syntax Tree. A tree representation of the abstractsyntactic structure of a
program. Each node of the tree denotes a construct occurringin the source code. The
syntax is “abstract” in the sense that it does not represent every detail that appears in
the real syntax.

ATFD A software metric that stands for Access To Foreign Data. It counts how many
attributes from foreign classes are accessed directly fromthe considered class.

Checkin SeeCommit.

Checkout The result of creating a local working copy from the repository. A user may
specify a specific revision.

Code refactoring A disciplined way to restructure code, undertaken in order to improve
some of the non-functional attributes of software. Code smells and anti-patterns can
be resolved by applying refactorings: tiny changes in the source code that do not
modify its functional requirements.

Code smell Symptom of anti-patterns. Examples are large classes and methods, redundant
message passing and poor information hiding.

Commit Also known as checkin. The result of checking in a working copy into a software
repository, thus creating a new revision.

Coupling The dependence between classes. According to one of the design principles in
object-oriented programming, coupling must be kept as low as possible.
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CSV Comma-Separated Values. This file format is widely used to store tabular data, which
can be read in plain textual form in a text editor. Lines in thetext file represent table
rows. Commas or semicolons in a line separate the data fields.

CVS Concurrent Versions System, a software revision control system. Some software
repositories used in this graduation project were originally CVS repositories, before
they were converted by the cvs2svn utility to facilitate theoperation of SACSEA.

Cyclomatic complexity A software metric that is used to measure the complexity of a
program. It directly computes the number of linearly independent execution paths
through a program’s source code.

Data Class A class that typically only contains many data attributes and corresponding
accessor methods.

Design pattern A reusable solution to a recurring problem in software design.

DSL Domain-Specific Language. A programming or specification language dedicated to a
particular problem domain, a certain problem representation technique or a specific
solution technique.

Encapsulate Field This refactoring makes a public attribute private and provides accessor
methods for it.

Extract Class A refactoring that creates a new class and moves relevant attributes and
methods to it from an old class.

Extract Method A refactoring that creates a new method from a fragment of another
method.

FDP Foreign Data Providers. This software metric counts the number of unrelated classes
that contain the foreign data that are accessed by a method.

Feature Envy A method suffers from this smell if it is more interested in a foreign class
than its own host class.

God Class A big, complex, inelegant and low-cohesive class that implements a large part
of the system’s functionality, which makes it hard to understand and maintain.

Hide Delegate A refactoring that removes delegate entities from a call chain and makes
the caller depend solely on the object at the head of the chain.

Introduce Parameter Object A refactoring that replaces a group of parameters with a
newly created object.

LAA A software metric that stands for Locality of Attribute Accesses. It is defined as the
result of the number of accessed foreign attributes dividedby the total number of
accessed data in the analysed method.
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LOC Lines Of Code or Source Lines Of Code. A software metric used to measure the size
of a software program by counting the number of lines in its source code.

Logical coupling Implicit and evolutionary dependencies between the artifacts of a system
which, although potentially not structurally related, evolve together and are therefore
linked to each other from an evolutionary point of view.

Long Parameter List A method suffers from this smell if it contains a certain minimum
amount of parameters. In this graduation project, a method is infected if it has four
or more parameters.

Maven A software utility for project management and build automation, mainly used for
Java projects. Essentially, Maven dynamically downloads Java libraries and Maven
plug-ins from one or more repositories. These units are usedby the affected Java
project as dependencies and are described using aProject Object Model, which is
stored in apom.xml-file.

Message Chain ClassA class that implements its (data access) functionality by using a
long chain of method invocations or temporary variables between different classes.

Metric SeeSoftware metric.

Move Method This refactoring creates a new method from another method with a similar
body and moves it into the class it uses the most.

MSR Mining Software Repositories - See Software Repository Mining.

NOAM A software metric that stands for Number Of Accessor Methods. It is defined as
the number of non-inherited accessors of the considered class.

NOPA A software metric that stands for Number Of Public Attributes. It represents the
number of non-inherited attributes that belong to the considered class.

OOP Object-Oriented Programming. A programming paradigm thatemphasises the use of
objects, which are data structures consisting of data fieldsand methods together with
their interactions.

Preserve Whole Object A refactoring that replaces parameters containing data from an
object by passing the object itself as a parameter.

Project Object Model SeeMaven.

Refactoring SeeCode refactoring.

Remove Setting MethodA refactoring that removes a mutator method for a data field that
should not be changed.

Replace Conditional with Polymorphism This refactoring moves each case of a condi-
tional statement to an overriding method in a subclass and makes the original method
abstract.
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Replace Parameter with Method A refactoring that removes a parameter by calling a
method to retrieve the data that were originally passed as that parameter.

Replace Type Code with State/StrategyThis refactoring replaces type code that can not
be subclassed with a state object.

Repository SeeSoftware repository.

Revision The state of the contents of a software repository at some point in time.

Ripple effect The consequence of poor data-operation proximity. Changesin operations
trigger changes in other methods in the same call chain. Thiswill eventually lead to
software defects, as bugs will also be propagated in the samemanner.

SACSEA Acronym of Semi-Automatic Code Smell Evolution Assistant.This is the name
given to the application that was developed for this graduation project and was used
to determine the lifespans of certain code smells in a software repository.

Software evolution A specific discipline of software research that studies and manages the
process of repeatedly making changes to software over time for various reasons. It
tries to provide theoretical knowledge and a set of best practices in order to understand
the causes and consequences of software ageing.

Software metric A measure of some property of source code, such as size, complexity and
amount of reuse.

Software repository The repository is where the current and historical data of files are
stored. More than often, a server is used to manage a softwarerepository.

Software Repository Mining A field in software engineering research that aims to devise
methods that extract metadata from software repositories to uncover evolutionary re-
lationships. It is similar to the field of data mining.

Subversion A software versioning and a revision control system. The software repositories
used in this graduation project are based on Subversion.

SVN Abbreviation of Subversion.

TCC A software metric that stands for Tight Class Cohesion. It counts the relative number
of methods that access the same attribute.

UI User Interface.

VCS Version Control System. A system for managing multiple revisions of a software
project.

Version SeeRevision.

WMC Weighted Method Count. This software metric sums up the cyclomatic complexities
of the methods of a class.
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WOC A software metric that stands for Weight Of Class. It represents the number of non-
accessor methods divided by the total number of interface members.

Working copy The working copy is the local copy of files from a repository ata specific
revision. All work done to the files in a repository is initially done on a working copy.

XML Extensible Markup Language. A standard of W3C for the syntaxof formal markup
languages with which structured data can be represented in the form of text. This
representation is made to be read by machines as well as humans. The XML-format
is widely used to store data and transmit data over the Internet.
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Number of Analysed Revisions

As mentioned in chapter 4, the number of analysed revisions of each software project per
smell type varies due to unparsable revisions and the limited operation of the integrated code
smell detection tools. The two tables below show the number of revisions in each system
per smell type that have been examined. Again, the abbreviations for the code smells used
in section 4.2 are also used here for convenience.

GC FEM DC MCC LPLC
CalDAV4j 318 318 318 318 318
Evolution Chamber 282 282 282 282 282
JDiveLog 770 872 872 872 872
jGnash 1302 1302 988 945 1493
Saros 2090 2326 2482 2472 2482
VLCJ 1502 1445 1502 1502 1502
Vrapper (Base) 115 115 115 115 115
Vrapper (Core branch) 231 223 231 231 231

Table B.1: Number of analysed revisions (RQ1, RQ3 and RQ4).

GC FEM DC MCC LPLC
CalDAV4j 64 64 64 64 64
Evolution Chamber 57 57 57 57 57
JDiveLog 154 175 175 175 175
jGnash 261 261 198 189 299
Saros 418 466 497 495 497
VLCJ 301 289 301 301 301
Vrapper (Base) 23 23 23 23 23
Vrapper (Core branch) 47 45 47 47 47

Table B.2: Number of earliest and latest 20% of the analysed revisions (RQ2).
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Gantt charts

Below, the Gantt charts per code smell type for every subjectsystem are presented.
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C. GANTT CHARTS

Figure C.1: Lifespans of God Classes in CalDAV4j.
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Figure C.2: Lifespans of Feature Envy Methods in CalDAV4j.
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C. GANTT CHARTS

Figure C.3: Lifespans of Data Classes in CalDAV4j.
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Figure C.4: Lifespans of Message Chain Classes in CalDAV4j.
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C. GANTT CHARTS

Figure C.5: Lifespans of Long Parameter List Classes in CalDAV4j.
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Figure C.6: Lifespans of God Classes in Evolution Chamber.
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C. GANTT CHARTS

Figure C.7: Lifespans of Feature Envy Methods in Evolution Chamber.
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Figure C.8: Lifespans of Data Classes in Evolution Chamber.
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C. GANTT CHARTS

Figure C.9: Lifespans of Message Chain Classes in EvolutionChamber.
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Figure C.10: Lifespans of Long Parameter List Classes in Evolution Chamber.
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C. GANTT CHARTS

Figure C.11: Lifespans of God Classes in JDiveLog.
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Figure C.12: Lifespans of Feature Envy Methods in JDiveLog.
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C. GANTT CHARTS

Figure C.13: Lifespans of Data Classes in JDiveLog.
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Figure C.14: Lifespans of Message Chain Classes in JDiveLog.
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C. GANTT CHARTS

Figure C.15: Lifespans of Long Parameter List Classes in JDiveLog.
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Figure C.16: Lifespans of God Classes in jGnash.
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C. GANTT CHARTS

Figure C.17: Lifespans of Feature Envy Methods in jGnash.
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Figure C.18: Lifespans of Data Classes in jGnash.
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C. GANTT CHARTS

Figure C.19: Lifespans of Message Chain Classes in jGnash.
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Figure C.20: Lifespans of Long Parameter List Classes in jGnash.
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C. GANTT CHARTS

Figure C.21: Lifespans of God Classes in Saros.
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Figure C.22: Lifespans of Feature Envy Methods in Saros.
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C. GANTT CHARTS

Figure C.23: Lifespans of Data Classes in Saros.
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Figure C.24: Lifespans of Message Chain Classes in Saros.
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C. GANTT CHARTS

Figure C.25: Lifespans of Long Parameter List Classes in Saros.

90



Figure C.26: Lifespans of God Classes in VLCJ.
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C. GANTT CHARTS

Figure C.27: Lifespans of Feature Envy Methods in VLCJ.

92



Figure C.28: Lifespans of Data Classes in VLCJ.
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C. GANTT CHARTS

Figure C.29: Lifespans of Message Chain Classes in VLCJ.
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Figure C.30: Lifespans of Long Parameter List Classes in VLCJ.
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C. GANTT CHARTS

Figure C.31: Lifespans of God Classes in Vrapper (base).
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Figure C.32: Lifespans of Feature Envy Methods in Vrapper (base).
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C. GANTT CHARTS

Figure C.33: Lifespans of Data Classes in Vrapper (base).
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Figure C.34: Lifespans of Message Chain Classes in Vrapper (base).
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C. GANTT CHARTS

Figure C.35: Lifespans of Long Parameter List Classes in Vrapper (base).
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Figure C.36: Lifespans of God Classes in Vrapper (core).
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C. GANTT CHARTS

Figure C.37: Lifespans of Feature Envy Methods in Vrapper (core).
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Figure C.38: Lifespans of Data Classes in Vrapper (core).
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C. GANTT CHARTS

Figure C.39: Lifespans of Message Chain Classes in Vrapper (core).
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Figure C.40: Lifespans of Long Parameter List Classes in Vrapper (core).
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Appendix D

Boxplots

The boxplots displayed below represent the distribution ofindividual lifespans of code smell
instances per subject system over a range of revisions.

D.1 Overall Lifespans (RQ1)

Figure D.1: Boxplot of lifespan distribution in CalDAV4j.

Figure D.2: Boxplot of lifespan distribution in Evolution Chamber.
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D. BOXPLOTS

Figure D.3: Boxplot of lifespan distribution in JDiveLog.

Figure D.4: Boxplot of lifespan distribution in jGnash.

Figure D.5: Boxplot of lifespan distribution in Saros.

108



Overall Lifespans (RQ1)

Figure D.6: Boxplot of lifespan distribution in VLCJ.

Figure D.7: Boxplot of lifespan distribution in Vrapper (base).

Figure D.8: Boxplot of lifespan distribution in Vrapper (core).
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D. BOXPLOTS

D.2 20% Lifespans (RQ2)

Figure D.9: Boxplot of lifespan distribution in the first 20%of CalDAV4j.

Figure D.10: Boxplot of lifespan distribution in the last 20% of CalDAV4j.

Figure D.11: Boxplot of lifespan distribution in the first 20% of Evolution Chamber.
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20% Lifespans (RQ2)

Figure D.12: Boxplot of lifespan distribution in the last 20% of Evolution Chamber.

Figure D.13: Boxplot of lifespan distribution in the first 20% of JDiveLog.

Figure D.14: Boxplot of lifespan distribution in the last 20% of JDiveLog.
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D. BOXPLOTS

Figure D.15: Boxplot of lifespan distribution in the first 20% of jGnash.

Figure D.16: Boxplot of lifespan distribution in the last 20% of jGnash.

Figure D.17: Boxplot of lifespan distribution in the first 20% of Saros.

112



20% Lifespans (RQ2)

Figure D.18: Boxplot of lifespan distribution in the last 20% of Saros.

Figure D.19: Boxplot of lifespan distribution in the first 20% of VLCJ.

Figure D.20: Boxplot of lifespan distribution in the last 20% of VLCJ.
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D. BOXPLOTS

Figure D.21: Boxplot of lifespan distribution in the first 20% of Vrapper (base).

Figure D.22: Boxplot of lifespan distribution in the last 20% of Vrapper (base).

Figure D.23: Boxplot of lifespan distribution in the first 20% of Vrapper (core).
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20% Lifespans (RQ2)

Figure D.24: Boxplot of lifespan distribution in the last 20% of Vrapper (core).
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