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Abstract

An anti-pattern is a commonly occurring solution that wilvays have negative
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symptoms of anti-patterns and occur at source code levellifgspan of code smells
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repository. As a case study, this tool is applied on seven sperce systems in order to
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behaviour of developers. The results of this study reveal #mgineers are aware
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Preface

From the very first time | set foot on the holy grounds of infation and communication
technology, | knew - albeit subconsciously - that | wantegucsue a career in this field.

Throughout the years | learned that being a software engised but trivial. You can
see it daily: those tiny programming obstacles that turrnt@téke more time than planned
or even invalidate a part of your initial design, the massm@mmunities in which colleagues
around the world seek solutions to their problems and the Init pressing reactions of your
customers who forgive you for misinterpreting their regoients.

Spawned from the areas of mathematics and electrical esjjiige computer science
has grown into a mature scientific discipline with its owndiulsions and continues to grow
beyond our imagination. |, for one, feel proud and privilege be part of that development.
A development that is also recognised by my parents, whoyahadowed me to find my
own path - both inside and outside the walls of the facultyd smpported me all the way.
A written commendation is not enough to describe the valubisfpositive attitude.

As a graduate student at the Delft University of Technologya$ constantly surrounded
and inspired by capable lecturers and likeminded and metiveeers, who valued the idea
of a good education as much as | did. My professional and petstevelopment would
not only have been boring without them, but also less frlitfuthere is one thing | learned
from them is that you don’t hope for anything, but make it hedpMoreover, one tends
to forget those people operating in the shadows, but alwaygsgrofessional and helpful
manner. The contributions of teaching assistants, systbmingstrators and facility staff
members are only noticed when they themselves are not seambile, at which point it
becomes clear how essential their work is. To these peopleed to express my sincere
thanks for all their assistance.

After many years of learning, the crown of my academic lifesw@ady to be created.
This thesis is the end result of that strenuous challenge.eXpertise and flexible guidance
of Andy Zaidman as my daily supervisor throughout the doratf this graduation project
ensured its successful outcome. Thank you, Andy! The agjiic built for this project
integrates external tools, developed at other univessiti&® big box of gratitude goes to
Nikolaos Tsantalis and his team for their work on JDeodoaat for letting me use it. The
same applies to Yann-Gaél Guéhéneuc and his willingieeissmediately fix bugs in Ptidej
on my request.



PREFACE

So now the time has come for me to say goodbye to my life as difodl student. |
have always believed in the virtues of hard work, clear comigation and mutual respect
for contradicting perspectives to obtain the best residtaraengineer. Honesty compels
me to say - virtues are still ideals after all - that | have sected in upholding that attitude
most of the time, but also not at times.

In conclusion, it has all been a mind-blowing and mind-bowgglexperience. | wish
strength, wisdom and courage to everybody who made thisirepbssible and to the ones
who still need to embark on that journey.

Ralph Peters
Delft, the Netherlands
June 28, 2011
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Chapter 1

Introduction

Evolutioncan be defined as the natural process of change in all lifesfawar successive
generations [23]. It is based on the belief that all orgasigwolve by means of natural
selection, mutation and genetic drift [19]. They reprodteenake offspring, which have
slightly different genetic structures than their pareMsreover, spontaneous mutation can
introduce random genetic traits to an individual. Depegdin the external circumstances,
these genetic differences may increase the chances ofshert#ants to survive and repro-
duce. This means that more members of the next generatidhisawe the advantageous
variations, which will eventually result in permanent chas within the entire population
of organisms. Over time, populations branch off to devefp hew species as they become
geographically separated or genetically isolated fronotiiginal population.

Software evolutiogan be loosely defined as the study and management of thesprafce
repeatedly making changes to software over time for vatieasons [32]. Change, whether
accidental or intentional, is inevitable in a software syst The successful evolution of
software is becoming increasingly critical, given the girggvdependence on software at
all levels of society and economy [34] [40]. Software apgiicns that were developed
using new programming paradigms, suchGigect-Oriented ProgrammingOOP), will
eventually render most monolithic programs obsolete. Hewedhese old legacy systems
still exist in industry. Given the fact that technology arsburequirements advance every
day, the question arises how long it takes before a partisoffware system starts to decay
and show negative results in its behaviour. The discipliheaftware evolution tries to
provide theoretical knowledge and a set of best practicesdar to understand the causes
and consequences of this deterioration and take actiorutateothe negative effects.

Strictly speaking, “software evolution” is an ill-choseame. The word “evolution”
implies that subsets of software systems branch off andrbedodependent applications,
which are analogous in biological evolution to populati@m&l new species, respectively
[43]. Naturally, this phenomenon occurs on occasion invgié development, but it is not
within the scope of this graduation project. Given its déifim, software ageingvould be
a better alternative. According to Bombardieri et al. [1dg]ftware ageing can be defined
as a process that progressively reduces the capabilityaffwase product to satisfy stated
or implied user requirements and makes software changes expensive and error-prone.
After all, a software system usually starts small and expamdier many influences, before
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1. INTRODUCTION

it eventually starts to grow old and shows a greatly incréasemplexity and a significant
performance reduction. Nevertheless, the majority of tfevare engineering community
considers software evolution to be every change to a systemits initial development,
which includes software ageing. Therefore, the term so#vexolution will be used in this
thesis rather than software ageing.

Parnas [40] identified two main aspects that lead the softweolution process:

1. lack of movementunless software is frequently updated according to copteary
standards, its users will become dissatisfied over time laeygwill change to a new
product as soon as the benefits outweigh the costs of swgtcivier and retraining;

2. ignorant surgery changes to software are made by people who do not understand

the original design concept. This usually causes the streicif the software system
to degrade, because the modifications often invalidatenitialidesign. Software
that has been repeatedly changed and maintained in thissmarumderstood by less
people over time and becomes very expensive to update. Ebaalge longer and are
more likely to introduce new bugs.

The subject of this graduation project finds its origin in #eeond aspect. There are
many types of changes that introduce inconsistencies lietd&haviour or the source code
of a software program. Examples include unforeseen exaregtises, conflicting naming
conventions andnti-patterns Code smellare identified as symptoms of anti-patterns [36].
This graduation project deals with the lifespan of certgpes of code smells, which can
be revealed bynining software repositoriesin the following sections, the terminology,
context, goals and structure of this thesis and the reseprestions are outlined.

1.1 Terminology

1.1.1 About Anti-patterns

The termanti-patternis defined by Brown et al. [16] as a commonly occurring solutio
that will always generate negative consequences whenpiplkeal to a recurring problem.
Nevertheless, people use anti-patterns because theyrappea the right approach. As
such, they are closely related design patternswhich are reusable solutions that do not
cause counterproductive results when applied to recupmiaglems [24].

An anti-pattern always has two key features:

1. Repeated patterraf actions, processes or structures can be found thatlyijppear
to be useful, but ultimately produce more bad consequehegsiieneficial results;

2. Arefactoredsolution is available that is clearly documented, repdatabd proven
in practice.

In software development, anti-patterns occur in the soootke of a software system.
Examples of anti-patterns in software design and OOP acelair dependencies between
software modules, using design patterns in the wrong plagereking objects so powerful
that they are very difficult to implement.
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Terminology

1.1.2 About Code Smells

How can anti-patterns be found in a software program? Brugvsource code is never an
easy task for developers, regardless of their knowledgbesystem. One would expect
something out of the ordinary with regard to the adopted r@mgning standards. In other
words, there must be parts of the code that “smell” bad. Hahese indicators have been
given the nameode smellby Beck and Fowler [22].

Code smells are related to anti-patterns in the same seaferibezing is related to a
cold. In general, if there are several symptoms, then a dgepblem is usually the cause.
Thus, when a developer wants to refactor an anti-patteepaly has to find certain code
smells and start looking for the issue that caused it. Inraimeolve the problem, it is not
the code smells that must be refactored, but the anomalg#hses them.

Examples of code smells are large methods, classes withraspage of information
hiding and code inheritance that is hardly used in practi®eftware entities like classes,
methods and variables that suffer from a code smell are aleak ascode smell instances
[14]. Code duplication can be considered as a special casedaf smell, since it is one
of the most pervasive smells that can be found in any softwgseem [22]. This led to
extensive research, solely dedicated to duplicated cotle[2Z] [30]. This type of code
smell is outside the scope of this thesis.

1.1.3 About Software Repositories and MSR

In most cases, the source code of a software system is stodecha@intained in &oftware
repository which takes the form of a public of private server. In a saftsvdevelopment
process that requires working in teams, project membedsttechoose for &ersion control
system(VCS), such aSubversior{SVN) [7]. AVCS allows them to store multiple versions
of the software product they are developing and work on nésases without concurrency
problems.

The main concept is as follows. Whenever developer A wantgoltx on a part of the
software system, hehecks outhe source code from the VCS. That is, he downloads a copy
of the source code onto his local workstation. This copy $® a@ialled thevorking copy
After developer A has made his changes to the source codegdus o check it back in
into the repository, which is known a®mmitting This causes the VCS to create a new
revision which is the state of the contents of the repository at sooire p1 time. The latest
revision is also called theeadrevision. After developer A committed his work, the head
revision can be checked out by developer B, which contaimslianges made by developer
A. However, developer B can also choose to check out an eaelgsion for historical
reasons or compare its contents with those of another oevidlaturally, a project team has
to adopt certain conventions to be able to work effectiveiyha VCS.

Next to holding the source code of a software applicationC&\Vimplicitly stores data
about its contents and the commits. Thesetadataexist for the entire duration of the
project and mainly provide administrative information¢lsas the filenames of the contents
that have been changed between two versions, how and whemvére changed and the
developer that made the changes. Research has been devdmdse methods to extract
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1. INTRODUCTION

this information and uncover evolutionary relationshigispilar to the field of data mining
[26]. Hence, this approach has been given the nishiming Software Repositorigd/ISR).
This technique has been operationalised to allow softwageeers to obtain the metadata
of a VCS. An example iSVNKIit[8]: a Java library that provides functions, which access
a VCS and return metadata to the user. SVNKIit has been usdtidbpurpose in this
graduation project.

1.2 Problem Statement

Like humans, software grows old and will start to show moregularities at some point
in time. The disproportionally growing presence of antitgans and code smells into a
software system is a common characteristic of the ageingepsoand is usually the result
of changing requirements, pressing deadlines and origesigners leaving the project over
time [13]. However, there are a number of practices availablslow down or reverse the
ageing process, like redocumentation and refactoring [40]

Studying the evolution of a software project usually estéiloking into the past and
comparing it to a future situation. This can be achieved biimgi a software repository,
which can lead to the discovery tafgical coupling Ambros et al. [18] describe this kind
of coupling as implicit and evolutionary dependencies leefwthe artifacts of a system
which, although potentially not structurally related, eotogether and are therefore linked
to each other from an evolutionary point of view. As suchjdagcoupling might not be
immediately clear from the source code, but has a meaningrtieless.

The lifespan of code smells in a software repository is shingtthat can be deduced,
based on the results of mining software repositories. A @dell infection may occur
up to a particular revision, after which its underlying caus refactored by a software
engineer and thus no longer be present in the next versianpfibrity that is attached to a
refactoring effort depends on a number of factors, suchesdlture of the code smell, the
developer’s insight and deadline pressures. This leadwtotlowing research question:

RQ1 Are some types of code smells refactored more and quickeratimer smell types?

An implicit sub-question isHow long (i.e. in terms of time and number of revisions) do
certain code smells live inside a software systéfmanswer these questions, a trend among
several distinct software repositories needs to be fouhwldsn the instances of a particular
code smell and their lifespans. For example, if multiplewafe entities infected by code
smell X exist in more than fifty revisions and instances itdddoy code smell Y exist in
less than twenty revisions of a VCS, then this may be evidendbe general attitude of
developers towards the severity of both smells. The stydtetpke here is to compute the
average lifespans of multiple code smells in various safiveystems and compare them
with each other.

A related issue is the point in a system’s life cycle at whiodessmells are refactored.
The corresponding research question is as follows:

4



Problem Statement

RQ2 Are code smells refactored more at an early or a later stage ©fstem'’s life cycle?

Again, a pattern must be discovered among different repiest. The only difference
is that the occurrence of a code smell is considered at apkatipoint in the development
life cycle. For example, if there are instances of the sande amell present in the earlier
versions as well as in the later versions of a system, it ex@sting to know how many
revisions the instances survive. The same strategy for R&@lapplies here, except it only
considers a subset of revisions. The average lifespansvefaecode smells within the
early and later revisions in a software system must be datedrand compared with each
other. This must then be repeated for other software pmojdtte nature of the life cycle of
all investigated systems must be taken into account, beaanisevery project team starts
using a VCS before the system reaches a certain state ofitpatur

Of course, not every software developer has the same knge/iaad experience. What
one engineer sees as a bad coding practice may be perceiibd byher as a necessity.
However, it is interesting to find out if one developer solaesertain type of smell quicker
than the other, which leads to the next research question:

RQ3 Do some developers refactor more code smells than othertoamntiat extent?

To give a fair answer to this question, it is useful to detemnihe common commit
behaviour of developers. Do they commit changes per tasle@rAire the changes small or
do they comprise the entire refactored solution? In genetaénever an infected instance
stops being a code smell in a particular revision, the naminefdeveloper who made
the commit has to be retrieved. This approach must be takeallfmstances in multiple
software repositories and will result in a list of develapealong with the number of code
smell instances they resolved. Of course, their projectlui@ment and the rationale behind
the smell removal must also be taken into account.

Finally, there are a number of reasons for refactoring codells. The corresponding
research question is:

RQ4 What refactoring rationales for code smells can be idemtfie

For example, a code smell needs to be refactored in orderd@matést functionality.
Also, a dedicated refactoring phase in the developmentyitée may be introduced. This
is where the logical coupling plays a role. For instance eifesal code smells cease to
exist within a low number of consecutive versions, then thight hint towards a planned
refactoring stage. Next to this, if a change commit actieitgurs almost immediately after
the removal of a code smell, then this may indicate a refangjaactivity to accommodate
new functionality. The focus here lies on code smells thatigtentionally refactored and
not accidentally.



1. INTRODUCTION

1.3 Thesis Project

1.3.1 Project Goals

The goals of this graduation project are as follows. A Jaydiegtion namedSACSEAS
developed, which is then applied to seven software projaatsder to answer the research
questions. This tool is built using the Eclipse IDE. Its m&gature is that it searches for
code smell instances within a user-specified range of mgsof a software repository and
computes their lifespans. The output will be a visual reporttaining the lifespans of the
infected instances and the corresponding revisions. Aistadata regarding the committed
changes will be returned. To answer the research questapsriments are devised and
performed. These will consist of applying SACSEA on the sewode of seven distinct
Java systems, processing the results and drawing concsufsimm them.

1.3.2 Relevance for the Faculty

The contribution of this research is to provide insight itite perspective and awareness of
software developers on the severity of different code sndlhe outcomes of this project
can be used as a stepping stone for further work in the fieldfofare evolution.

1.4 Thesis Structure

The outline of this thesis is as follows. The next chaptes@nés background information on
the code smells and techniques involved in this graduatiojegt. As mentioned before,

the approach for obtaining an answer to the research qoesticludes determining the

lifespan of code smell instances in different softwareayst This is done using a custom
built tool, which is described in full detail in chapter 3. dlpcompletion of this application,

it can be used to retrieve the desired data from SVN repasstorChapter 4 reports on

the setup and the results of the experiments that are detaskelp answer the research
questions. Threats to the validity of this study can alsodumd in that chapter. Naturally,

similar work has been done in the field of software evolutiod the investigation of code

smells and anti-patterns. The contributions that are nedated to this graduation project
are outlined in chapter 5. Conclusions are drawn from theltesf the experiments in

chapter 6, which also considers the research questiongrospect and answers them by
referring to the results. Next to this, the contribution libtgraduation project to the field

of software evolution is given, along with recommendatitarsfuture work.



Chapter 2

Background

This chapter provides theoretical background informadind a deeper understanding on the
subjects related to this graduation project. In section&Mdasic description afode smells

in general is given and the specific types of code smells us#uds graduation project are
elaborated on. Special technigues operationalised asaseftapplications exist in order to
find code smells and anti-patterns. Section 2.2 shows tlueenand origin of these so-called
code smell detection toothat were used for the application developed in this gradoat
project. Finding information about the lifespan of code Bsnen software projects was
made possible bynining software repositoriesSection 2.3 explains this technique and the
utility SVNK:it [8] through which MSR can be applied.

2.1 Code Smells

There is no widely accepted definition of code smells. In tfewipus chapter, code smells
are described as symptoms of a deeper problem, also known astigpattern. In fact,
code smells can be considered anti-patterns at programmiagrather than design level.
Smells such as large classes and methods, poor informatlimgfand redundant message
passing are regarded as bad practices by many softwaresengjirHowever, there is some
subjectivity to this determination. What developer A seea aode smell may be considered
by developer B as a valuable solution with acceptable nagjatde effects. Naturally, this
also depends on the context, the programming language antktelopment methodology.
The interpretation most widely used in literature is the bgeBeck and Fowler [22].
They see a code smell as a structure that needs to be removethie source code through
refactoring to improve the maintainability of the softwarehey also claim that informed
human intuition is the best tool to label a piece of sourcee@sla code smell and measure
its intensity. This is a plausible statement, but it doesreatler automatic measurement
impossible or redundant. Most code smells can be measuresifysoftware metricsFor
example, a large class is bound to have mimys of codg(LOC), a metric whose value
can easily be computed by an automated code smell detedtiibn The specific detection
of code smells by such tools is usually based on a collectfomairics who each have
a certain threshold. If enough thresholds are exceeded,ttigedetection tool marks the

7
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code fragment under investigation as a code smell, whichtembe resolved by applying
a suitable refactoring. Beck and Fowler also provide a Wetanstruction set for various
code smells on how to refactor them.

The following subsections describe the code smell typeswieae considered in this
graduation project, along with their commonly acceptedgctefrings and metrics.

2.1.1 God Class

In object-oriented programming, a class should usuallpemass only one design concern.
However, when a system grows over time, this principle cailyebe violated. This results
in large, complex, inelegant and low-cohesive classesateatifficult to understand and
maintain. In other words, a class i<zd Classif it implements more than the concept it
was originally designed for.

There are basically two types of God Classes:

1. A class that contains many of the system’s data as agsbaithout implementing
much logic is called ®ata Class

2. A class that implements a large part of the functionality software system. This
is typically characterised by a great number of complex wathand possibly also
many attributes. This kind of God Class is calleBehavioural God Class

Whenever a God Class is mentioned in this thesis, a claseaedtond type is meant.
Data Classes form a specific type of code smell on their owrey&re considered as a
separate smell in this thesis and will be introduced in sttimme 2.1.3.

Demeyer et al. [20] mention several criteria for identityimBehavioural God Class and
how to refactor it. It is typically a procedural giant thasames too many responsibilities.
The infected instance can be a single class implementinghire esubsystem, consisting
of hundreds of variables and methods, as well as duplicabelé.c Due to its size and
complexity, a God Class often takes a long time to compile as®s a lot of memory.
Almost every change to the software application may alses&tate a change to this class.
Since it covers so many design concepts, it is difficult teegtiest and maintain it. Usually,
developers can not give a clear and concise answer on itegeirGod Classes often occur
in combination with Data Classes. In such cases, a God Jasscharge of handling a
large part of the system and treats multiple Data Classewafiagl data structures.

The most natural refactoring methods for God Classes relgnoving behaviour and
responsibilities away from the infected class. This inmgplileat functionality is moved to
collaborating classes and that new classes can also betextritom the God Class as
cohesive and independent pieces of functionality. Theragta refactoring method called
Extract Class If the component makes more sense as a subclass, thendlss jgsossible.
Next to this, redundancy such as duplicated code should bienised, which can be done
by extracting methods that implement this code once anthgathose methods whenever
it is needed.

Lanza and Marinescu [31] present a method to identify Gogsels, based on three
main characteristics and the use of metrics:
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1. Theinfected class uses more than a few attributes of simgler classes. Thiccess
To Foreign Data(ATFD) metric is used to measure this aspect and counts timbau
of accesses of a class to foreign data.

2. Theinfected class is large and complex. This is expressied theWeighted Method
Count (WMC) metric, which represents the sum of the cyclomatic plaxities of
the methods of a class. The cyclomatic complexity can be edf@s the number of
linearly independent execution paths in a program’s sococe.

3. The infected class has much non-communicative behavieuthere is low cohesion
between the methods of that class. Tght Class CohesiofirCC) metric is used,
which measures the relative number of methods accessirgathe data field.

The rationale behind the first metric is that a strong depecelen data of other classes
is the most significant symptom of a God Class. As for the diliermetrics, small classes
are discarded because they are less relevant and cohemsge<slare ignored because high
cohesion indicates internal harmony between the partseofltss.

The values of all three metrics have to exceed a certainhblgédefore a class can
be labelled as a God Class. The ATFD value is directly promuat to the probability
that a class is or will become a God Class. Therefore, thelibid has been set to a few
accesses to foreign data. In other words, a God Class usesth@or a few attributes of
other classes. The WMC metric has a minimum limit of “Very Rligas God Classes have
an exceedingly high complexity. This value usually depemalshe context, but a trained
software engineer can easily estimate the cyclomatic cexiiplby finding an extremely
high amount of (nested) conditional and iteration statedmdranza and Marinescu provide
a statistical WMC threshold of 47 in their study based on 4& jaojects. The value of
the TCC metric ranges from zero (no cohesion) to one (fullyesive). A threshold of one
third is sufficient for the detection of a God Class. It ind@sathat in an infected class less
than a third of the method pairs have the usage of the sanigiggtin common.

2.1.2 Feature Envy

The idea behind object-oriented programming is that daththe processing operations
on those data are kept together in objects as much as possiikimplies that a system
typically should have lowcoupling which is the dependence between classes. A method
violates that concept if it is more interested in a classothan the one it is actually in.
In other words, the method @nvious of featureprovided by a foreign module and suffers
from Feature EnvyAs such, this code smell represents a form of high coupling.

As with God Classes, the most significant aspect of Featug Brthat it is a sign of
a poor distribution of a system’s intelligence. The most own focus of the envy is data,
which are usually accessed directly or through accessadnadst Detection is based on
counting the number of foreign data attributes that are byeal method. Excessive use of
remote data while ignoring local data results in methodsahaimplemented at the wrong
place. A change in those methods triggers changes in othiiod®e The same applies to
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bugs, as they will also be propagated and ripple throughdhelgains. This is also called
theripple effect[31].

Since this smell falls into the category of an improper iigehce distribution, any
infected method would benefit from being moved closer to #ta it is so interested in, as
proposed by Beck and Fowler [22]. This refactoring is aldieddove Method Sometimes
only a part of the method suffers from envy. For example,¢aisoccur if the accessed data
belong to more than a few foreign classes. In that case, iisis te first extract that portion
as a separate metholxtract Methodl and then move it to the class of its interest. If there
is still confusion on where to place the envious method, thenclass with the most data
should be chosen as the destination. Moving operationsicioshe data can help minimise
ripple effects and maximise cohesion.

Distinguishing Feature Envy Methods from other methodsbeadifficult to do through
code inspection. Lanza and Marinescu [31] propose threectaistic symptoms of this
smell, as well as three metrics with appropriate thresholds

1. The method uses more than a few foreign attributes. Ademss To Foreign Data
(ATFD) metric is the most suitable to measure this aspectcancdts the number of
accesses of a method to foreign data.

2. The method accesses more foreign than local attributee Ldcality of Attribute
Accesse$LAA) metric relates the ATFD metric to the total number otassed data
in the analysed method.

3. The accessed foreign attributes belong to only a few atlasses. Th€&oreign Data
Providers(FDP) metric reflects this and counts the number of unreleleskes that
contain the accessed foreign data.

The third condition is introduced because a distinctiontbd® made between a method
that uses data from many different classes and a methodrlyatiovies two or three classes
specifically. In the first case, the method acts like a coletraperation, implementing
more functionality than it was originally designed for. T$exond case identifies more pure
Feature Envy Methods, as those operations are simply raeghlaThis is reflected by a
narrowly targeted dependency on the data of another class.

Finally, all three metrics have appropriate thresholddctvhre all exceeded if a method
suffers from Feature Envy. Such a method has an ATFD valuedlgeater than a few
(about two to five) used data members. Its LAA limit is onedhifhis metric ranges from
zero (all used attributes are foreign) to one (all usedaatteis belong to the enclosing class).
The FDP threshold is set to a few (about two to five) foreigissds, which is not exceeded
if a method is envious.

2.1.3 Data Class

According to Beck and Fowler [22], Bata Classis a class that only contains fields and
corresponding getting and setting methods. They also dla@theach class requires effort
to maintain and understand. When a class is not doing enaugkeds to be removed
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or its responsibility needs to be increased. As explainewipusly, Data Classes are a
type of God Class, except that they do not contain complestiomality. Such classes are
dumb data holders, but are almost certainly being manigdlat far too much detail by
other classes. The maintainability, testability and us@erdability of a software system is
reduced due to the presence of this code smell.

The lack of functionally relevant operations in a Data Classy indicate that related
data and behaviour are kept in separate places [31]. Thisshdy an indication of a design
that is not object-oriented. Like Feature Envy Methods aB@lkasses are the manifestation
of a poor data-operation proximity. Encapsulation and tiédiang of attributes may also
lack in such classes, while these are fundamental prirectplebtain a good object-oriented
design. Data Classes break these concepts, because tb#yeletlasses see and possibly
manipulate their data, leading to a fragile design.

Beck and Fowler [22] mention several ways to help refactomgallass. In its early
stages, the class may have public fields, which should be pradee or protected as soon
as possible using the refactoriligncapsulate Field Collection attributes should also be
properly encapsulatedremove Setting Methdtas to be applied to any field that should
not be changed. A more important refactoring method is to dindwhere accessor and
mutator methods are used by other classes. The designdrarambve functionality from
those classes into the Data Class by usigye Method preceded byExtract Methodif
necessary. This will increase data-operation proximity.

Lanza and Marinescu [31] try to identify classes that prevédimost no functionality
through their interfaces, as well as classes that define ifparfic) data fields and getting
and setting methods. There are two aspects that can helpheittetection of Data Classes:

1. Alarge part of the interface of the infected class showa dather than operations.
This is measured by thé/eight Of ClasgWOC) metric and represents the ratio of
the number of non-accessor methods to the total numberesface members.

2. The class reveals many attributes and is not complex. bbel@e number of data
and getting and setting methods should be high. There aredses:

(&) The classical Data Class is not very big, has almost nctifumality and only
provides some data, accessors and mutators. Here, theoairisl ho be little
public data and the class does not have a Mdighted Method CourfitvVMC)
value. Therefore, the only requirement is that the classriwae than a few public
data holders, expressed by the sum offthenber Of Public Attribute§NOPA)
andNumber Of Accessor Metho@@®dOAM) metrics.

(b) The class is rather large and looks “normal”. It definemedunctionality, but
its public interface contains a significantly high numberdata, accessors and
mutators, apart from the provided services. In this caséhefclass is to be
considered a Data Class, it needs to provide a lot of publia. daAt the same
time, the complexity of the class (WMC) may be considerabighhup to the
limit of excessively high. If the complexity exceeds thiwi, then the class does
not conceptually fit the Data Class definition.
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In each of the two cases, it holds that a low WOC value is neesiece it indicates low
functionality in a class. This metric ranges from zero (adthods are accessors or mutators)
to one (all operations are non-accessor methods). Thehtticeis set to one third. The two
cases represent the distinction between small and large@lasses. On the one hand, if a
class implements little functionality, then it does noté &y define many data attributes and
corresponding accessors and mutators. The WMC value camimesa“High” (statistically,
31 according to Lanza’s and Marinescu’s study based on 4b giajects), while the sum
of the NOPA and NOAM values should be at least more than a fewth® other hand, if
a class contains more than little functionality, the numbledata and getting and setting
methods needs to be large as well. Here, the WMC thresholteatightly higher, as it is
set to “Very High” (statistically 47). The sum of the NOPA aN®AM values should then
be at least more than many.

2.1.4 Message Chain Class

Khomh et al. [29] state that Blessage Chain Classccurs when its (data access) func-
tionality is implemented using a long chain of method indmoes or temporary variables
between different classes. A Message Chain Class may impaonge- and fault-proneness
due to the high number of indirections. This makes the cogemnident on relationships
between many potentially unrelated objects and reducesedager’s view of the context,
which may lead to more defects.

Beck and Fowler [22] propose that this smell can be refadtbyeusingHide Delegate
This makes the caller depend solely on the object at the hietiee @whain. For example,
rather thara.b().c().d() methodd() is placed on objeca and possibly also on objects
andc. In principle, this can be done on every object in the chain this often turns each
intermediate object into a middle man. A better alternasviinding out what the resulting
object is used forExtract Methodmay then be used to extract a piece of the code that uses
it, after whichMove Methods used to push it down the message chain.

The use of metrics for finding Message Chain Classes is uasagg since they can be
detected by computing the number of transitive calls of ascta other classes. Naturally,
a threshold of this number is needed. The code smell detetttiml Ptidej used in this
graduation project upholds a limit of three invocations. other words, if four or more
invocations are made, then the original calling class isicmied a Message Chain Class.

2.1.5 Long Parameter List

In the procedural programming era, it was a common conventigpass all data needed by
routines as parameters [22]. The alternative was to uselgiiaita, which was an unfavoured
practice. With the arrival of object-oriented programmitagal and foreign objects can be
used for data access. The host class of the method usualigim®the majority of what

is needed and only the data that are highly essential to amtipe need to be passed as
parameters. This implies that the size of parameter lisibject-oriented programs is much
smaller than in traditional programs. In object-orientedgpams, operations with more
than three parameters are generally considered to sufifertfiis smell, taking exceptional
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cases into account. That threshold is assumed in this giadyaroject. Long Parameter
Lists tend to become inconsistent and difficult to use anccanstantly updated as more
data are needed. This makes them hard to understand andimaint

The refactoringReplace Parameter with Methazhn be applied when data from one
parameter can be obtained by making a request to an exidtjegto This object may be
a field or another parameter. Furthermdeeeserve Whole Objeatan be used to gather
a bunch of data from one object and replace these data witbhjleet itself. If there are
several parameters with no logical object, a new dedicab@tbcan be created through the
refactoringintroduce Parameter Objectvhich is then passed as a parameter.

There is one important exception to such refactorings. Egeddency from the called
object to the larger object is unfavoured, then unpacking fields and sending them along
as parameters is reasonable with the negative consequanoéex.

2.2 Code Smell Detection Tools

Code smells can be detected manually, but this requiresadfiv@ase engineer to have an
experienced eye and usually a deeper knowledge of the syEtamsmsive research has been
devoted to develop several techniques and utilities to idatitomatically. Most code smell
detection tools depend on the use of software metrics amdspnding thresholds.

Because no application yields perfect results, humartiotushould never be replaced.
However, the approach proposed in this graduation progmtires that all code smells
in a software project are found over multiple revisions. sTimplies that the results are
very data-intensive and the process of finding them is tiovesaming. For an efficient
and thorough study, these results have to be structuredtaretisn an appropriate way.
Therefore, it is better that code smell instances are foutohaatically, so that they can be
forwarded to a logging layer immediately.

The following subsections provide background informatorthe detection utilities that
were used in this graduation project. These tools were chioseause of their availability,
their high effectiveness and their relatively favouraldenputation time and memory usage.

2.2.1 JDeodorant

JDeodorantis an Eclipse plug-in that employs a variety of novel methadd techniques
in order to identify code smells in Java programs and to sstgggepropriate refactorings
that resolve them [44]. Moreover, the tool pre-evaluatesdfiect on design quality of
all refactoring suggestions, assisting the user to deterriie most effective sequence of
refactoring applications. JDeodorant has been developdéideaDepartment of Applied
Informatics of the University of Macedonia in Greece. ltsi®@ code is available upon
request for researchers and academics after agreeing ¢emdel Agreement for Academic
Use.

In order to control the number and the quality of the repor&ddctoring opportunities,
JDeodorant provides a preference page where the user cage dafious threshold values.
For example, the minimum number of statements that a metimdd consist of in order to
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be examined for potential refactoring opportunities cacuomised. For this graduation
project, the default values were used.

JDeodorant mainly employs APIs belonging to the Eclipsea Jagvelopment Tools
(JDT) Core, which defines the non-Ul infrastructure. Thegghuuses théASTParserclass
to analyse the relationships between system entities gulgl egfactorings on source code.
Next to this, it employs théASTRewriteclass to apply the refactorings and provide undo
functionality. As such, JDeodorant depends heavily on thion of anabstract syntax
tree (AST). Information from the AST may be reused on several sicees for a different
purpose. Therefore, the architecture of JDeodorant stpfiwe reuse of this information
without permanently storing it in memory. This is achievedpooviding an intermediate
representation of the required Java elements and a meohé#ras enables the recovery of
AST nodes in a quick and efficient manner.

Currently, the tool can detect four kinds of code smells, elsgnGod Classes, Feature
Envy Methods, Type Checking code and Long Methods. Moredvenmediately deter-
mines possible refactorings and presents them to the usercan decide to let JDeodorant
apply them or not. God Classes are resolved through apptefktract Clasgefactorings.
Feature Envy Methods are fixed by suggesting appropiaie Methodefactorings. Type
Checking problems can be rectified throughplace Conditional with Polymorphisamd
Replace Type Code with State/Strategfactorings. Finally, Long Methods are resolved by
suggesting appropriatextract Methodrefactorings.

2.2.2 Ptidej

Ptidej [5] stands forPattern Trace Identification, Detection and Enhancemerdavaand
is a set of tools to evaluate and enhance the quality of cbjéented programs, promoting
the use of patterns at language level, design level andtecthial level. Design patterns,
anti-patterns and code smells can be detected in any Javeescode using this utility.
The development of Ptidej started in 2001 at the Departm&@omputer Science and
Operations Research of the University of Montréal in Canaiad the tool is currently still
being improved. Its original goal was to study code genenaind identification of patterns.
Since then, it has evolved into a complete reverse-endimgtrol suite that includes several
identification algorithms. It includes the modulEECOR (DEtection and CORrection),
which allows the detection of design defects. Through it&s ugerface, the user can create
a model of a program from its source code and identify micohigectures similar to a
design pattern or call various generators, analyses aednaxtools on the program model.
Ptidej consists at least of the following relevant moduls |

e Caffeine a dynamic analyser for Java based on a Prolog engine ané@thedébug
interface to define relationships among classes precisely.

e Ptidej Ul: a library of graphic widgets to display models of programd dynamic
data from Caffeine.

e PADL (Pattern and Abstract-level Description Language): a rmaidel to describe
the structure of object-oriented programs.

14



Mining Software Repositories

e POM (Primitives, Operators, Metrics): a library of softwaretnes to compute well-
known metrics on program models.

e Ptidej Solver an explanation-based constraint solver to identify merchitectures
similar to motif models in program models.

e Alibrary of generators and analyses to be applied on prognaatels.

e A library of design motifs from design patterns, includingan of Responsibility,
Composite, Observer and Visitor.

e Various parsers to build models of programs from differepresentations of source
code, including C++ files and Java class files.

e Several Uls to access the functionalities provided by tidePtool suite:

Parse and create models of programs.
Enhance models of programs with dynamic data from progragoigions.

Visualise created models.
Identify micro-architectures similar to a design motif nebth a program model.

— Visualise the identified micro-architectures.
— Call generators, analyses and external tools on models.

As of 2007, Ptidej includes algorithms for idioms, micratpaens, design patterns and
design defects [35]. Idioms are low-level patterns spetifisome programming languages
and to the implementation of particular characteristicxlagses or their relationships.
Micro-patterns are well-defined idioms pertaining to thsige of classes in object-oriented
programming. To identify design defects Dammain-Specific Languag®SL) is used to
specify and automatically generate detection algorithsingutemplates. A DSL offers
greater flexibility than ad hoc algorithms because domapeds and software engineers
can manually specify and modify the detection rules usimgntével abstractions, taking
the context, environment and characteristics of the aadlggstems into account.

2.3 Mining Software Repositories

The termMining Software Repositorie@SR) has been coined to describe a broad class
of investigations into the examination of software repw##s. This includes sources such
as the information stored in source code version contrdkays (e.g. SVN), requirements
and bug-tracking systems (e.g. Bugzilla) and communinatichives (e.g. e-mail) [26].
Such repositories contain a wealth of information and te\a unique view of the actual
evolutionary path taken to realise a software system. Ttat® often exist for the entire
duration of a project and can represent thousands of versidth years of details about
the development process. These details include propdikedndividual versions of the
system, the changes and metadata about the changes (e.gnaslbdhe change, why was

it made and when was it made).
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Software engineering researchers have developed andaga@lvarious approaches to
extract relevant information and uncover relationshipd @ands from repositories in the
context of software evolution. For example, Begel et al.] [d&eloped Codebook. This
framework can discover transitive relationships betweeopfe, source code, test cases,
defects, documentation and related artifacts by miningiatls of software repositories.

One may be interested in the growth of a system, the charatéorethip between source
code entities or components reuse. This activity is analsgbut not limited to the field
of data mining and knowledge discovery, hence the term MirSoftware Repositories.
The premise of MSR is that empirical and systematic invatitigs of repositories will
shed new light on the process of software evolution and tlaa@és that occur over time
by uncovering pertinent information, relationships ontte about a particular evolutionary
characteristic of the system.

Researchers utilise software repositories in multiple svayhe most straightforward
one is to directly use the facilities of source code repasisoto get a particular version of
the code. The individual versions and corresponding medackn then be used to answer
questions of interest using the adopted methodology. Sesearchers limit their study to
the metadata that are directly available from the repdsi&orThese metadata are analysed
to filter the differences and source code in a semantic manfRer example, the SVN
comments and the textual description of a related bug répdBugzilla can be used to
categorize the source code changes as an attribute of hegretaintenance activity. Going
a step further, the data and metadata directly availabta 8abversion can be processed to
facilitate fine-grained source code difference analysmudlly, raw data from the repository
are transformed into a format that can be processed eadilg. pfocessing module then
typically performs some mining algorithm on the retrievedad after which the results are
presented to the user.

The purpose of MSR reduces to the questions that can be atwiéh it. Two classes
of suchMSR questionsan be distinguished:

e The market-basket questiofMBQ): if event A occurs, then how many times do
events B and C occur? The answer is given by using a set of oulgsidelines
describing situations of trends or relationships.

e Prevalence questiorn(®Q): Were certain functions added, modified or removed? How
many and which of the functions are reused?

This graduation project will mainly deal with the seconddyps the point of interest is
the introduction and removal of certain code smell instaricesource code repositories.
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Chapter 3

SACSEA Implementation

This chapter presents the custom developed tool that heldstermine the lifespans of
different code smell instances in a particular softwardesys The application is named
SACSEAwhich is an acronym oBemi-Automatic Code Smell Evolution Assistdhtan
find code smells in multiple revisions of a VCS, use MSR to iwbthe change history
of each smell instance and generate a graphical and texpaitrcontaining the lifespans
of each instance, along with any relevant metadata. Se8tibilescribes the component
decomposition and internal workings of the application étadl. Next to this, section 3.2
outlines design decisions, obstacles and limitations.

3.1 Toolchain Structure and Operation

This section presents the features and components of SACIBEBAwritten in Java as an
Eclipse plug-in. An overview of its operation is depictedigure 3.1.
The operation of SACSEA consists of the following phases:

1. Initialisation: First, the URL of the SVN repository under investigatioreigtered
into the Ul, as well as the type of code smell that has to bedotihen, the numbers
of two revisions are entered. SACSEA will search for codellnire every revision
between these two numbers. In other words, the user speaifsge of revisions
that have to be examined.

2. Detection Each revision within the user-specified range is checkedfrom the
repository and imported into the workspace of Eclipse as/a geoject (and built if
necessary in order to generatdassfiles). Then, the detection modules try to find
code smell instances in that particular project. The resale saved to an XML-
file, after which the project is removed from the workspacimaly, the subsequent
revision is extracted from the VCS and the process repes itntil the end of the
range has been reached.

3. Difference computatiarWhen all revisions have been examined for code smells, the
differences between every two consecutive XML-files areitheined and stored in a
CSV-database, according to a custom format.
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4. Output generation The differences resulting from the previous phase repiebe
beginning or the end of the lifespans of code smell instanBased on the changes,
these lifespans are computed and translated to a visudl &iso, metadata of their
beginning and end revisions are printed in text, such asetieldper responsible for
the commit that introduced or removed the code smell andahendt date.

user enters SVN repository URL,
code smell and revision range XML Database Revision #1

stores code smells XML Database Revision #2

CID XML Database Revision #n
stores changes
SACSEA | between XMLfiles >  cgy patabase
- outputs lifespans

and metadata

\5393 uses v —> Visual Chart
%GDeodorant Modula (Ptidej Modula
retrieves
L=> Textual Report

SVNKit API

retrieves local

revision copies

[ 1

SVN Repository

code smells ‘

Figure 3.1: Overview of the operation of SACSEA.

The following subsections present an elaborate desanijptithe steps outlined above.

3.1.1 Initialisation

SACSEA can be started by running it from source code as a figligation. This initialises
a new Eclipse instance. Once SACSEA has started up, the G@hiecvisible outside this
new instance. As can be seen in figure 3.2, it consists of aletext input fields, radio
buttons and click buttons.

First, the URL of the SVN repository under investigation igezed, after which the
button [LOAD!] is pressed. The application then retrievss mame of the SVN project and
the current number of revisions and shows this informatiotiné non-editable text fields.

The next step is to select a certain code smell by using thie tadtons. SACSEA
can only find one type of code smell per run. As explained irptdra2, the application
currently incorporates two code smell detection tools. he@ade smell can only be found
by one specific detection tool and therefore only one of theatiivated per run, depending
on which smell type is chosen by the user.

Finally, two revision numbers need to be entered. The nurabtred in the text field
“From revision? represents the number of the first revision that is checkeéuod in which
code smells are detected in the next phase. Every subsemuésion is processed in the

18



Toolchain Structure and Operation

same way, where the revision indicated by the number in tkiefigdd “To Revision: is
the final one. The detection process is started by the bu&TECT!] and is described in
detail in the next subsection.

1ol x|
SVN INPUT

SWN root LIRL:

| http: fflocalhost: 8080/ svn frepo? ftrunkf

Project name:

| repa?

Mumber of revisions:

DETECTION INPUT

" God Class (JDeodorant)

" Feature Ervy Method {JDeodorant)
' Data Class (Ptidej)

" Message Chain Class (Pridej)

" Long Parameter Lisk (Pridej)

Fram revision:

| 164

Ta revision:

| 351

| Code smell I Infected class I
DETECT! |

CHANGES! |

RESLULTS! |

Figure 3.2: User Interface of SACSEA.

3.1.2 Detection

Once all the input values are entered in the Ul and the buB&TECT!] has been pressed,
SACSEA checks out the first revision specified by the user filtenSVN repository as a
working copy. This copy is then imported into Eclipse as aJawject using theclasspath
and .projectfiles inside the root directory, to which the entered URL pminf these files
are not present, then the fimm.xmlmust be present. The project is then built by the
utility Maven[4] using the commandnvn eclipse:eclipsewhich automatically generates
the files.classpathand.project Although importing a project using this tool takes slightl
more time, the chance of having compile errors is smallecesMaven resolves any missing
external dependencies. If the root directory does not aoataom.xmfile or a combination
of .classpathand.projectfiles, then the Eclipse instance can not import this as a Jayagb
and the working copy is immediately deleted from the locakdind not considered for
code smell detection. SACSEA will continue with the nextis@an. However, if these
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files are present, then the working copy is imported intogseli Two cases can now be
distinguished:

1. A code smell type was chosen that will be detected by thecten tool JDeodorant.
In this case, an abstract syntax tree is internally createdparsed, which is then
used to find code smell instances. If a Java source file (a filethe extensionjava)
from the SVN repository contains compile errors, then itisleded from detection.
Smells in the remaining compilable source files are tempygrsiored in a custom
array.

2. A code smell type was selected that will be detected by #tection tool Ptidej. In
this case, the imported Java project must first be built. ®hatlassfiles have to be
generated, since Ptidej builds an internal model based esetfiles. If the project
can not be built, it is removed from the Eclipse instance aedtocess will continue
with the next revision. Projects can be built whertlasspatHile and a.projectfile
are present. If the build was successful, then the code shatttion is started and
any smell instances found are temporarily stored in a custoay.

After the detection on a single revision is complete, theltssare stored in an XML-
database. This is done usi®P®M (XML Object Model) [11], an open source API that
provides Java functions for creating, editing and prooesXiML-files.

The XML-database has the following structure:

<root >
<net adat a>
<pr oj ect nane>Fi shHawk</ pr oj ect name>
<projecturl >https://fishhawk.svn. net/svnroot/trunk/</projecturl>
<revi si on>100</ r evi si on>
<snel | >God O ass</snel | >
</ net adat a>
<occur rencesFound>
<cl ass0>f i shhawk. dr aw. Canvas</ cl ass0>
<cl ass1>fi shhawk. gui . Mai nGUI </ cl ass1>
<cl ass2>fi shhawk. run. Gener at or </ cl ass2>
</ occurrencesFound>
</root>

Two major tags can be recognised as data holders withir thet>-tag: <metadata-
and <occurrencesFound. The first can be considered the header of the file, containing
information regarding the project’s name, the URL of its Skéository, a certain revision
and the examined code smell type. The latter representstheal aneat of the investigation
and contains the code smell instances found in that paaticalision of the system. The
fictional example above shows three God Clas§zmnyas MainGUI and Generato) in
revision 100 of project FishHawk.

Once the XML-file has been created, the current Java progeotrmoved from the
Eclipse instance and the detection process repeats itgalhdcking out the subsequent
revision.
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3.1.3 Difference Computation

When all revisions have been examined, there exists an XMhkéhse for each of them,
containing the code smells that were found. If no smell imsta were found in a certain
revision, then it will still have an XML-file. In this case, éh<occurrencesFounsd-tag
has no contents. When the button [CHANGES!] is pressed, tki¢-Kles are sorted in
ascending order of revision number and every pair of corectiles is compared for
differences in code smell instances.

Basically, there are only two types of relevant differences

e A code smell instance is present in the XML-file of revisionbat not in that of
revision n+1. This means that it stopped being a code snaliice in revision n+1
under the influence of the changes of the corresponding commi

e A code smell instance is present in the XML-file of revisiorilp®kut not in that of
revision n. This means that it started being a code smekitst in revision n+1
under the influence of the changes of the corresponding commi

Each of these differences found in the comparison is stosesha line in a CSV-file
according to the following format:

100. xm ; exanpl e. Exanpl ed ass; 101. xni

This says that the code smell instareample.ExampleClassas found in revision
100, but not in revision 101. This corresponds with the fiffecence type (removal of
a smell from the infected instance) described above. In dasimway, the following line
corresponds with the case where a smell is introduced tosdarioe in a certain revision
(i.e. example.ExampleClasgas found in revision 101, but not in revision 100):

101. xn ; exanpl e. Exanpl ed ass; 100. xn

In conclusion, the CSV-file that results from this phase amst all the introductions
and removals of code smells in classes and methods in cegtagions, which respectively
correspond with the beginning and end revisions of thefddiesof an infected instance.

3.1.4 Output Generation

The output generation phase starts when the user pressfREB&JLTS!]-button. Each
smell instance is placed inside a hash map, using its nameedsey and its lifespan as
the corresponding value. This value is made up of rangesrvials of revisions in which
an entity is considered a code smell instance. For exampie,a particular system the
classexample.ExampleClass a God Class from revision 30 to 180 and from revision 240
to 300, the key of the hash mapesample.ExampleClasmnd the corresponding value is
<[30,180] , [240,300}>.

This results in a hash map that contains each smell instarttésalifespan. A textual
report is made of these data, along with metadata, such asih@it date and the developer
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who made the commit. Finally, two Gantt charts are genenaséty the open source Java
API1 JFreeChart[3]. They both show the lifespan of each smell instance, alised by
bars. The only difference between them is that one chart shioevlifespans in terms of
revisions and the other in terms of dates on which the cooregipg revisions were created.
An example of the first type can be seen in figure 3.3.

God Class life-spans

sssssssss
o @ w® = o

Smellinstance

Figure 3.3: Example of a Gantt chart as output.

3.2 Design Decisions, Obstacles and Limitations

SACSEA has been developed in Java as an Eclipse plug-injbetize code smell detection
modules need to operate on revisions that are imported aspiajects in an instance of
Eclipse and also require Java source files to build an intemodel on which the detection
is performed. The detection modules were derived from iegigbols. Writing a custom
utility from scratch can be considered as a whole new projggsuch, it is time-consuming
and out of the scope of this graduation project. Also, SACSA only analyse SVN
repositories. This was not a large limitation, since alhaf included software projects were
developed using SVN. The collection of software systembtwieae eventually not included
in the case study contained a few projects, which were buth @VS. Thecvs2svn[2]
utility was used to convert them to a Subversion repository.

As mentioned in the previous chapter, SACSEA generates datig-intensive results
and its operation takes up much time. Therefore, any formptifrisation that increases
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its efficiency is desirable. One example is to use local S\fidséories rather than remote
systems. This comes down to copying the entire repositam fts hosting location, such
as Sourceforge [6] or Tigris [9]. This can be done by usingutil@ies rsyncor svnsync
In this case, the todVisualSVN Servel0] was used to host several copied repositories on
a local machine. In terms of contents and metadata, thessitefes are exact replicas of
their original remote counterparts. SACSEA can connechésé copies and function just
as it would when the repositories are hosted remotely. Tharddge of this approach is
that any network latency is eliminated. This reduces the timretrieve a working copy
from a certain revision and its metadata. Furthermore, ingrkvith remote repositories
requires a continuous Internet connection, which may berrmpted for various reasons.
Given the long running time of SACSEA on systems with manyaoge revisions, this is
an undesirable side effect, since the application doeshmsatkcfor a connection.

Whenever a revision has been examined for code smells, SACSHiinues with the
subsequent revision. A new working copy is created by cemsig the previous working
copy and performing updates on it rather than deleting thelevbiirectory from the local
disk and downloading the new revision in its entirety. Thisvents unnecessary write
actions and saves time, especially when projects include lébrary files.

SACSEA incorporates a code smell detection tool (JDeodpraith an AST-based
approach, which needs parsable Java source files. Najutahe are software systems
containing classes that can not be analysed by JDeodofasnich a class is encountered,
SACSEA ignores it and continues with the next class. Thisltgesn a partial detection,
meaning that there may be code smell instances in certaisiors that are not shown in
the actual output.

The previous design obstacle also applies to the other codh detection tool (Ptidej),
which needsclassfiles in order to perform detection on the contents of a rewis The
entire revision as a Java project must be able to build torgémé¢heseclassfiles. If a
project is unable to build (e.g. due to compile errors or asing external dependency),
then no.classfiles are created and the entire revision is skipped foratiete Furthermore,
Ptidej can only return classes as code smell instanceg&euhlieodorant that can also return
methods suffering from code smells. The limited operatibbaih code smell detection
tools is a threat to validity, which is described in detaikaction 4.3.

SACSEA and its source code will be made publicly availableheyfaculty of EEMCS
of the Delft University of Technology. It may only be used fmrademic purposes, due to
the external code smell detection tools, which are incataatin the source code. However,
reusing and extending its functionality is allowed and josg as future work in chapter 6.
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Chapter 4

Case Study

This chapter presents the case study that was performedamiex the lifespans of five
types of code smells. Seven software projects were selecsarding to several criteria
and analysed using SACSEA. In section 4.1, the setup andagpiof the experiments are
described, including an introduction of the systems unuerstigation. Section 4.2 presents
and discusses the results. Threats to the validity of tisisanreh are reported in section 4.3.

4.1 Experiment Setup

The ultimate objective of this graduation project is to aesvesearch questions related to
the evolution of code smells. As mentioned in chapter 1, #meegal approach to achieve
this goal is to develop a software application, which is theed to mine empirical data

from seven software projects. These data are analysed atistiss are derived from them

to help answer the research questions. This section reportse seven systems and the
adopted approach.

4.1.1 Approach

The research questions must be dealt with through obsengatiln other words, clear-
cut answers can not be given, since they are based on erhpgigtza These data must
come from reliable sources. Finding these sources is midltrbecause they have to fulfil
certain criteria and may still not be fully justified for usethe case study. Furthermore, the
data retrieved in this graduation project are not exhagistig the use of more sources will
undoubtedly result in answers that are more polished. Heryéis not desirable to gather
an excessive amount of sources in this graduation projiexte she analysis by SACSEA
takes a long time in terms of days depending on its input. ysaiiad) more software systems
is proposed as future work in section 6.3.

In this case study, the aforementioned data sources aretisdeen Java projects with a
substantial development history, each stored in a vergiotral system. These projects will
be introduced in the next subsection. SACSEA determinefifédspans of any code smell
instances found in each of these software systems. Somd ssatistics are derived from
these data, which are then used to help answer the reseagstioms. Chapter 1 already
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touches upon these statistics per research question, ateclepeated here and described
in detail.

RQ1 Are some types of code smells refactored more and quickeratmer smell types?

The lifespan of one infected class or method in a system isapoésentative for the pri-
ority that is attached to resolving a certain code smell typéetter approach would be to
take the lifespans of all detected code smell instances@tpacific smell type in the soft-
ware project and compute the average lifespan within thenerexd revisions. Next to this,
the collection of individual lifespans per system is alsedit determine the five-number
summary for a clear view of the distribution of the data. Ehesmmaries are visualised as
boxplots in Appendix D. Because the amount of investigaesions differs per system,
the average lifespan is also expressed as a percentagthé.average lifespan expressed
in number of revisions divided by the total number of exardinevisions, multiplied by
100%). This calculation is repeated for all other subjestesys, which results in a percent-
age for each of them. To form a fair indication of the averafgspan in all systems, the
average of these percentages is calculated. Naturaltyatlerage value is also expressed
as a percentage and represents the average lifespan ofemificspode smell type over all
subject systems. These calculations are then repeatell dther code smell types investi-
gated in the case study. Itis not possible to compute the@geeamount of time that a code
smell instance exists inside a system, because the timeahteetween any two commits
varies greatly. For example, a system can have five commitsierday at an early stage of
the development life cycle or only one commit per week ater lame.

RQ2 Are code smells refactored more at an early or a later stage fstem'’s life cycle?

Here, the same approach as mentioned for RQ1 applies. Theddfdrence is that
only the first 20% and the last 20% of the examined revisiorth@foftware projects are
considered. Thus, each system will have two percentagesnpelt type, representing the
average lifespan of smell instances in the earliest andtlatgestigated revisions. The
average of the percentages of all systems is calculatedltingsin two percentages per
smell type: the average lifespan of the earliest revisions the average lifespan of the
latest revisions over all subject systems.

RQ3 Do some developers refactor more code smells than othertoantiat extent?

The goal is to count the number of times a code smell instaheecertain smell type
is resolved. The name of the responsible developer is stonedever he or she performs a
corresponding activity. This will result in a list of develers and per smell type the number
of instances they refactored. However, there are varioasores for removing a smell.
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Intentional refactorings must be distinguished from reat®\that were the side effect of
bug fixes or the renaming or deletion of entire classes or oaksth

RQ4 What refactoring rationales for code smells can be idemtffie

To answer this question, the log messages of each commitrsie for the removal of
a smell are examined. Similar to the approach for RQ3, daltbeefactoring activities must
be identified. Ideally, the log messages are clear and reqiegs/e for the actual changes.
Naturally, this is not always the case and therefore infianit refactoring rationales, like
dead code elimination, are also included in the answer soréfsiearch question.

4.1.2 Subject Systems

Over ten software systems have been analysed using SACStehalsessing the usability
of the output, the following seven projects were selectedHe experiments:

e CalDAV4j CalDAV4j is a protocol library that extends the WebDAV clidibrary
(which itself is an extension of the Apache HttpClient lityjato allow high level
manipulation of CalDAV calendar collections as well as loesel CalDAV protocol
interactions.

e Evolution ChamberThis optimisation program helps players of the video gatae-S
Craft 2 to find the fastest time and best ordering to creatgapla units with certain
characteristics. It does so by applying a genetic algorithm

e JDiveLog JDivelLog is an open source diver’'s logbook for logging scdives. It
manages all important dive data, as well as the picturestdi4gng the dive.

e jGnash jGnash is a cross platform personal finance manager thabsigpusers in
tracking their finances. Itis a double entry system with supfor multiple currencies
and can import Gnucash and QIF files.

e Saros (Distributed Party Programmingparos is an Eclipse plug-in for distributed
collaborative text editing that can support arbitrarilynmaparticipants at once. All
members of a session have an identical copy of an Eclipseqirapd Saros keeps
these copies in sync as editing progresses.

e VLCJ This project provides Java bindings to allow an instancz rdtive VideoLAN
VLC media player to be embedded in a Java AWT Window or Swirrgrdie.

e Vrapper. This Eclipse plug-in acts as a wrapper for Eclipse textaediand provides
a Vim-like input scheme for editing text and moving it arouffévo branches of this
project are examined in this case study, which significadiffier in content. Before
revision 116, there was a singteunk branch which has been analysed from the
beginning of the project until that revision. Then, a reaiigation in the structure of
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the VCS was made, resulting in several branches.cbine branchhas been analysed
from revision 121 until one of the latest revisions.

The selection of these projects was subject to multipleat First, the systems need
to be written in Java, because the detection modules of SAC&HE not process other
programming languages. Moreover, they should allow framss to their repository on
Subversion. A project also has to be in a mature developniege smeaning that it has to
contain enough analysable revisions from which code siifetidans of significant size can
be determined. Diversity among the projects needed to leeprdéo avoid bias. This was
achieved by keeping the following aspects in mind duringsilection process:

Nature Was the software system originally created as a commeuciak an open
source project? In this study, only open source projectcansidered. Evaluating
industrial systems is an activity that is proposed as fuoek.

Domain For what problem or purpose was the system built and whateisontext?

Strength Is the software system just a humble open source projegi€imonal use
or does it have the potential to be effectively used in ing®st

Strictness of the development proceBle extent to which developers have to abide
by development rules, such as guidelines for programminigcammitting. Usually,
this is reflected by development manuals displayed on theard repository and by
revisions without compile errors.

Number of analysable revision# revision is considered analysable if at least one
of the used code smell detection tools is able to extractrafgignt amount of code
smell instances from the classes inside that revision.

Number of active developerBevelopers are considered active if they committed on
a regular basis, regardless of their activity at any poinh@development life cycle.
Roughly, this means that a developer either participateasignally throughout the
entire range of investigated revisions or is responsiti@flarge part of the commits
in a certain period of the life cycle.

Size The number of classes to be analysed per revision in thechrahinterest.
Because a project grows over time, the number of classesitathst revision is
meant here. Typically, the number of classes in the previevsions is smaller.

Age When was the project first committed on Subversion and whas the last
commit made? Note that a project can already be mature iraiteest revisions,
since developers may not have used SVN when developmetadstar

Table 4.1 provides an overview of these aspects. Per systeshows the domain,
the strength, the strictness of the development processtotal number of investigated
revisions, the approximate number of active developerstaadsize, i.e. the number of
analysable classes in the latest revision. Because theerushlexamined revisions differs
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CalDAV4j Protocol Industrial | Strict | 318 | 5 | 125 | Oct 2007 -
Library Mar 2011
Evolution Genetic Open Strict | 282 | 11 | 481 | Oct 2010 -
Chamber Algorithm | Source Mar 2011
JDivelLog Dive log | Open Loose| 872 | 13| 331 | Mar 2005 -
manager | Source Mar 2011
jGnash Finance Open Loose| 1493 | 1 | 466 | Dec 2007 -
manager | Source Feb 2011
Saros Distr. pro- | Industrial | Strict | 2482 | 26 | 821 | Sep 2006 -
gramming Sep 2010
VLCJ Java bind-| Industrial | Loose| 1502 | 1 | 241 | May 2009 -
ings Apr 2011
Vrapper Text editor | Open Loose 115 | 2 | 119 | Dec 2008 -
(Base) wrapper Source Apr 2009
Vrapper 231 | 2 | 229 | Apr 2009 -
(Core branch) Apr 2010

Table 4.1: Overview of the systems under investigation.

per smell type for some projects, the value per subject systgown in the table is the
largest number of revisions that were analysed. The inyetsdin period of a system consists
of the dates of the first and last revisions that were examimé#te case study.

As can be seen in the table, there is some diversity betweesuibject systems with
regard to strength, strictness of the development processber of revisions, number of
classes and investigation period. Naturally, all value®mito these aspects are open to
discussion and they may deviate in reality. However, it likety that this greatly threatens
the diversity.

4.2 Results

This section presents and discusses the results of thetodse Bor each research question,
the corresponding statistics described in the previousoseare displayed for each subject
system per code smell type. Due to the functional limitagiohthe detection utility Ptidej,

instances of the smell Long Parameter List are expressethsses and not as methods.
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In other words, infected instances are classes that coatd@ast one method using more
than three parameters. Furthermore, some smell types Hdifferant number of analysed
revisions than other types in the same subject system, dte tdifferences between the
detection tools and their limited capabilities at times.efdiore, average lifespans have
been expressed in number of revisions as well as percenkdge detailed results of all
the experiments can be found in Appendix B, C and D.

For convenience, the different code smell types have bebreabted in the tables as
follows:

e God Class GC

e Feature Envy FEM

e Data Class BC

e Message Chain ClassvCC

e Long Parameter List Clasd.PLC

421 RQ1

This research question was defined ase'some types of code smells refactored more and
quicker than other smell types7and is answered by comparing the average lifespans of
different code smell types found in the subject systems. sRwll type, table 4.2 shows
the average lifespan: the sum of the lifespans of all coddl snségances detected in each
system divided by the total number of these instances. Allegare expressed in number of
revisions and have been rounded to the nearest integerugztze analysis of some smell
types included a different number of revisions than othpesyin the same subject system,
table 4.3 presents this average lifespan expressed asenfzge. This percentage is the
average lifespan in terms of revisions divided by the totahber of analysed revisions
per smell type, multiplied by 100%. This table also displags smell type the average
percentage over all systems and the corresponding stadegiation. Appendix B contains
the total number of analysed revisions for each system pell $ype.

GC FEM DC MCC LPLC

CalDAV4j 135| 71 173 | 167 212
Evolution Chamber 145| 85 78 84 130
JDivelLog 419 | 320 | 447 | 313 372
jGnash 883| 792 | 810 | 669 | 1025
Saros 680 | 566 | 602 | 643 851
VLCJ 533 | 421 | 1007 | 474 541
Vrapper (Base) 70 55 84 84 62

Vrapper (Core branch) | 113 | 160 | 153 | 132 110

Table 4.2: Average lifespans in terms of revisions.

30



Results

GC FEM DC MCC  LPLC
CalDAV4j 42.38% | 22.39% | 54.55% | 52.52% | 66.52%
Evolution Chamber 51.40%/| 30.27% | 27.52% | 29.68% | 46.08%
JDivelog 54.37% | 36.71%| 51.28% | 35.91% | 42.67%
jGnash 67.81%/| 60.83% | 81.97%| 70.78% | 68.66%
Saros 32.56% | 24.31%| 24.24%| 26% | 34.29%
VLCJ 35.46% | 29.11%| 67.03% | 31.58% | 35.98%
Vrapper (Base) 60.82% | 47.58% | 72.92% | 72.73% | 53.48%
Vrapper (Core branch) | 48.79% | 71.90% | 66.02% | 57.14% | 47.62%
Total average 49.20% | 40.39% | 55.69% | 47.04% | 49.41%
Standard deviation 12.10% | 18.08% | 20.79% | 18.76%| 12.81%

Table 4.3: Average lifespans in percentage.

Feature Envy life-spans

% a5 s @ 72 8 w0 00 108 17 1w 138

Smellinstance

Figure 4.1: Lifespans of Feature Envy Methods in Evolutidra@ber.

As can be seen in table 4.3, the differences between thegw/fiespans over all subject
systems are not large. Nevertheless, something can stidhloeabout the results. The
Feature Envy Method smell instances have the shortespdifesn average. The highest
lifespan can be found in the core branch of Vrapper, howavexs only three Feature Envy
Methods. Looking at the Gantt charts per system, most iefeatethods start suffering
from this smell after several revisions. Also, the majowfythe instances are removed
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relatively quickly. An example of this phenomenon can bensieefigure 4.1. Next to
this, the boxplot in figure 4.2 is one example of a system ¢oimg individual lifespans
being concentrated in the lower range of revisions, meattiag most infected instances
have a short existence. The cause of this dynamic behaviaint fpe that a method can
easily be refactored or removed, either intentionally dncidentally as a side effect of
a maintenance activity. This is plausible as the commitparsible for removals include
contents and log messages that contain changes to methddtaases with the intent to
implement new functionality.

350
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God Class Feature Envy Data Class Message Chain Long Parameter
Method Class List Class

Figure 4.2: Boxplot of lifespan distribution in CalDAV4;.

The God Class and Long Parameter List Class are almostédémtith regard to the
total average and standard deviation. Compared to Featwg Methods, the refactoring
behaviour of these two code smells is more static. In othedsyamnce a smell instance of
these two smell types is introduced, it has a lower chancesioigoremoved quickly. This
could be an indication of the notorious difficulty of refadgity a God Class [31] and the
carelessness of developers of having many parametersiimtibthods. Especially Long
Parameter Lists are coincidentally removed rather thabetaitely.

The analysis on Data Classes shows that this type has thestdggal average, but the
average lifespans of most systems also deviate greatly thatmvalue. According to the
Gantt charts, a clear trend can be seen: the number of DasseSlancreases over time
and refactoring takes place seldom. The classes that doehatfactored are typically
created to be dedicated data holders or small libraries.ifdtances that do get removed
are scarce and have a very short lifespan. Usually, thessedare renamed and live on as
other instances or, more importantly, are created withritent to add functionality a few
revisions later.

Message Chain Class is the only smell type of which relatif@l instances have been
found in many projects. Also, there is no clear pattern ofIsmi&oduction and removal.
The Gantt charts of most subject systems show that manyténfedasses have a lifespan
of approximately 50% of the investigated revisions. Mosthef time, these instances are
either removed at random points in the life cycle or intraetliin the latest revisions and

32



Results

not refactored at all. Figure 4.3 shows an example of thisodisry. This suggests that
there is little deliberate refactoring activity and thay amtroductions or removals are the
consequence of other development activities.

Message Chain Class life-spans

Figure 4.3: Lifespans of Message Chain Classes in Saros.

Concluding remarks

In most analysed software projects, code smell instances &a average lifespan of
about 50% of the examined revisions. Feature Envy Methaglw $e be resolved the most,
due to the fact that they are more susceptible to accidentigliberate refactoring activities.
Also, God Classes are known in literature for being hard fiacter [31], which may be the
reason why they live longer in the subject systems. Givernrtieasing introduction and
scarce removal of infected instances over time, Data Cdaase Long Parameter Lists are
not regarded as a liability to the overall reliability of dteware system by many developers.

The results imply that software developers do not priaitlee removal of code smells,
even if they are aware of the risks. Some smell types arevesdgjuicker than other types,
but the question remains if these refactorings are alwagational or the consequence of
other maintenance activities. The answers to the followasgarch questions will provide
better insight into this matter.
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422 RQ2

The definition of this research question walré code smells refactored more at an early or
a later stage of a system’s life cycle&nd is answered by determining the average lifespan
in the first 20% and the last 20% of the examined revisions|afddject systems. Similar
to table 4.2, the average lifespans of smell instancesmiid youngest versions are shown
in terms of revisions and in percentage in table 4.4 and ddpactively. The same applies
to the data from the oldest revisions, which are presentedbie 4.6 and 4.7. Again, the
total average is computed, along with the correspondingdsia deviation. Note that these
average values are based on the lifespans of code smelfidastéhat may exist outside the
subsets of 20% of the revisions. For example, if 500 versarasexamined and a smell
instance exists in the first 200 versions, then its lifespahimthe first 20% of the analysed
revisions is considered to be 100 revisions.

GC FEM DC MCC LPLC

CalDAV4j 52 0 0 0 0

Evolution Chamber 49 32 1 25 26
JDivelLog 102| 94 73 73 99
jGnash 134| 138 | 72 60 173
Saros 226 | 208 | 246 | 192 298
VLCJ 107 | 115 | 194 | 173 0

Vrapper (Base) 18 14 | 20 19 12
Vrapper (Core branch) | 27 0 40 38 a7

Table 4.4: Average lifespans within the youngest 20% in seofirevisions.

GC FEM DC MCC  LPLC

CalDAV4j 81.25%| 0% 0% 0% 0%

Evolution Chamber 85.96% | 56.76% | 2.19% | 49.86% | 46.20%
JDivelLog 66.01% | 53.43% | 41.45% | 41.71% | 56.33%
jGnash 51.28%| 52.77%| 36.36% | 31.60% | 57.86%
Saros 54.04% | 44.62% | 49.42% | 38.75% | 59.94%
VLCJ 35.62%| 39.71% | 64.37% | 57.48%| 0%

Vrapper (Base) 78.62% | 58.70% | 86.34% | 84.06% | 52.17%
Vrapper (Core branch) | 56.74%| 0% 84.04%| 81.21%| 100%
Total average 63.69% | 38.25% | 45.52% | 47.33% | 46.56%
Standard deviation 17.39% | 24.41% | 32.89% | 27.27% | 33.01%

Table 4.5: Average lifespans within the youngest 20% in gratiage.

According to table 4.4, CalDAV4j seems to have no smell insts for almost all smell
types in its early revisions. This is due to the fact that ¢havisions were unexpectedly
not analysable. Nevertheless, the overall results showear gattern for all smell types.
The younger revisions have a significantly lower total agerenan the latest versions. As
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can be seen in the Gantt charts, the main cause is that theenwhlong-living code
smell instances increases over time. Figure 4.3 happef®woan example of that growth.
Naturally, as a system expands, it will contain more classesmethods that may or may
not get infected. The results hint towards the lack of camcerawareness of the developers
regarding code smells. A more thorough investigation igladen order to strengthen the
validity of this presumption.

GC FEM DC MCC LPLC

CalDAV4j 56 45 64 64 64
Evolution Chamber 54 51 55 57 52
JDivelLog 132 151 | 165 | 154 166
jGnash 250 | 249 | 197 | 176 280
Saros 274 | 343 | 401 | 417 414
VLCJ 230| 205 | 301 | 203 301
Vrapper (Base) 20 23 21 23 23
Vrapper (Core branch) | 35 45 46 46 39

Table 4.6: Average lifespans within the latest 20% in terfm&waisions.

GC FEM DC MCC  LPLC

CalDAV4j 86.96% | 69.85% | 100% | 100% | 100%
Evolution Chamber 94.32%| 89.38% | 96.07%| 100% | 91.81%
JDivelLog 85.43%| 86.31% | 94.49% | 88.22% | 94.71%
jGnash 95.72%| 95.51% | 99.34% | 93.37% | 93.81%
Saros 65.57%| 73.59% | 80.71% | 84.18% | 83.20%
VLCJ 76.26% | 71.08% | 100% | 67.44% | 100%
Vrapper (Base) 84.95%| 100% | 89.57%| 100% | 100%
Vrapper (Core branch) | 74.47%| 100% | 98.45%| 97.66% | 82.55%
Total average 82.96% | 85.72% | 94.83% | 91.36% | 93.26%
Standard deviation 10.26% | 12.71%| 6.71% | 11.35%| 7.14%

Table 4.7: Average lifespans within the latest 20% in peiags

The standard deviation for the early revisions is highentfa the latest revisions.
This is mainly due to the fact that the youngest examinedsi@vs of some systems are
already at a mature point in the development life cycle and thitially contain more code
smells (and removals) than revisions that actually markttib of a project. The latter type
will usually contain very few code smell instances that aserefactored quickly, causing
the average lifespan to be high for systems with relativigtie lexamined revisions like
Evolution Chamber and Vrapper.

Concluding remarks
For all subject systems and smell types, the first 20% of tlaenixed revisions reveal
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a substantially lower average lifespan than the last 20%.m&in cause is the introduction
of more code smell instances over time. Every software prgjpows as time progresses.
However, an increasing number of smell instances may bediaiiion of little refactoring
activity throughout the development life cycle.

The results of the case study show that most infected instaatthe beginning of a
system'’s life cycle are bound to be refactored within a fevisiens. However, the number
of long-living infected instances increases over time. @arad to the earlier revisions of
a system, the latest versions show significantly less m@fiact activities. This implies that
the willingness to resolve code smells decreases over time.

423 RQ3

The question was posed asdDd some developers refactor more code smells than others
and to what extent? The approach here is to count the number of refactored coudl s
instances per developer. Table 4.8 shows the names of tledogevs participating in the
subject systems with the number of all infected instancaswtiere removed at some point,
according to SACSEA. These values also include erroneonsvas, due to the occasional
faulty behaviour of the integrated smell detection toolsté\that one commit can contain
multiple removed smell instances, which can be the conseguef moving functionality
across classes and methods.

However, not all removals are the result of dedicated refagy activities. The number
of resolved instances in table 4.8 must be reduced by the eupnfltimes a coincidental
refactoring occurred. For this, the log messages of all citssnresponsible for a smell
removal have been manually examined and categorised bagsbé cause of the removal.
Signal words like Refactored], “ Extracted classand “Clean-ug are usually indications
of true refactoring activities. Naturally, these words ateguarantee and a developer’s
perspective on the manifestation of code smells may diffemfthe ones assumed by the
detection tools used in this graduation project. Table H@vws the names of the developers
with the approximate amount of resolved instances that thereonsequence of deliberate
refactoring per code smell. Also, the last column in bothasishows the total number of
relevant commits per developer within the range of analyseiions.

There seems to be very little intentional refactoring digstiin all subject systems. No
useful refactoring activities were found in JDiveLog. Aoting to the commit logs, the
values shown in table 4.8 mainly consist of smell removaég there the side effect of
maintenance work, such as moving and renaming infectedrinss, but also of bug fixes
and the implementation of new functionality. Some remowadee part of a larger, unrelated
refactoring and are therefore not included in table 4.9. [Bhemessages also reveal that
most changes are committed per task. Exceptions includeatmms to previous commits
and small changes.

Table 4.9 does show that some developers refactor more tharso This varies from
systems in which only one engineer resolves code smells @aipPAV4)) to projects in
which more developers refactor and only one does so moradraly (e.g. Evolution
Chamber). Moreover, the systems jGnash and VLCJ that hdyeooe software engineer
provide an indication on how concerned that developer ik wade smells.
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Developer GC FEM DC MCC LPLC Commits
.| bobbyrullo 7 1 1 1 78

CalDAVAl — Shipoli 8| 17 [ 2 | 1 1 111
nafets.st 8 61 6 15
bdurrer 2 8 2 1 15

. domagala.lukas 1 4 1 52 4 36

Evolution :

Chamber mlke.angstadt 3 41
fritley 3 3 1 70
brendan.speer 1 1 1 4
netprobe 1 16
onlinervolker 13 49 2 93
andreschenk 5 8 4 1 107
vkorecky 12 37 3 48

JDiveLog | sjomik 1 2
szdavidl 3 1 1 52
pellmont 46 53 3 3 1 456
Levtraru 2 3

jGnash ccavanaugh 196 | 246 | 2 26 17 1355
sotitas 6 4 1 1 1 7
chrisfu 13 15 3 4 7 141
coezbek 108 | 128 | 4 19 13 784
Arbosh 1 6
k_beecher 2 7 1 2 31
woijtus 1 13 6 1
hstaib 1 9
marrin 33 58 3 25 4 130

Saros orieger 19 20 2 7 3 119
ahaferburg 10 | 55 1 69
s-ziller 8 5 63
starkmann 1 3
testvogel 1 4
szuecs 5 2 1 1 14
Idohrmann 7 2 15
djemili 1 1 43
marcus-fu 1 3
ornis 2 1 27

VLCJ wm.mark.lee 39 15 13 4 2 878

Vrapper weissi 2 6

(Base) waweee 9 2 3 5 1 102

Vrapper kgoj 6 4 1 1 75

(Core) waweee 15 2 7 81

Table 4.8: Number of code smell removals, as found by SACSEA.
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Developer GC FEM DC MCC LPLC Commits
.| bobbyrullo 78

CalDAVAl — Shipoli 2 1 111
nafets.st 1 15
bdurrer 2 7 2 15

. domagala.lukag 1 36

Evolution .

Chamber mlke.angstadt 41
fritley 1 70
brendan.speer 4
netprobe 16
onlinervolker 93
andreschenk 107
vkorecky 48

JDiveLog | sjomik 2
szdavidl 52
pellmont 456
Levtraru 3

jGnash ccavanaugh 1 1355
sotitas 7
chrisfu 1 141
coezbek 3 1 1 784
Arbosh 6
k_beecher 7 1 31
woijtus 1
hstaib 9
marrin 1 130
orieger 119

Saros ahaferburg 69
s-ziller 1 63
starkmann 3
testvogel 4
szuecs 14
Idohrmann 15
djemili 43
marcus-fu 3
ornis 27

VLCJ wm.mark.lee 3 3 1 878

Vrapper weissi 6

(Base) waweee 1 2 102

Vrapper kgoj 1 75

(Core) waweee 81

Table 4.9: Number of code smell removals, caused by inteatigefactorings.
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Concluding remarks

Table 4.9 reveals that there is sporadic refactoring agtigompared to the numerous
amount of smell instances found in each subject systeml, &tilmost two developers
per subject system refactor more smell instances than trersot Some of them are the
only ones within the project responsible for an occasioaalaval. Others refactor a few
more infected instances than other developers. As mermtibeéore, the majority of the
code smell instances found in the experiments were resasea consequence of other
maintenance activities or the implementation of new fuorality. Most developers do not
seem to recognise the added value of refactoring in a systiémhigh commit activity,
implying low awareness or concern regarding code smells.

424 RQ4

This research question was stated as folloA®hat refactoring rationales for code smells
can be identified? Chapter 1 mentioned examples of refactoring rationalash ss the
introduction of a dedicated refactoring phase and the anumgation of new functionality.
The logs and contents of the corresponding commit and itghbeuring commits must be
examined to find some evidence of such motives. However,dlilretscarcity of intentional
refactoring activities in the subject systems, findingarailes will be difficult. Therefore,
code styling rationales are also considered here, suchaasabele elimination. The most
common rationales for resolving the smells considered igahse study are listed below.
These rationales have been derived from the log messagemara code inspection.

e Cleaning up dead or obsolete coddany subject systems contain a few revisions in
which duplicate, unused or old classes and methods are egEin@ccasionally, this
results in the removal of a smell instance, albeit accidef®ame of these activities
may not be considered as true refactorings, but the undgrlyiotives are usually
not subject to a larger refactoring. In other words, somesiilevelopers just see and
grab an opportunity to clean up.

e Dedicated refactoring Similar to dead code elimination, there are some cases in
which developers refactor for the sole purpose of refaagprThis often comes down
to restructuring libraries (Data Classes) or generalitange classes through the use
of interfaces. The question arises whether the developeraware of the specific
code smell that infects a certain software entity. The answéhis question remains
unknown, however it is reasonable to assume that their fproging instinct” tells
them when a class is growing out of proportion, for instance.

e Maintenance activitiesThe majority of the refactorings are coincidental, as & sid
effect of intentional bug fixes or implementing new functtity. This causes many
classes and methods to be removed for that purpose, ingltitininfected instances.
Whether these activities also integrate an implicit refdng activity is uncertain,
though some smell instances are indeed resolved by the ehaNgxt to this, many
software entities are renamed in these activities. SACS#eA ¢his phenomenon as
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the removal of one infected instance and the immediatedottion of another, while
they are in fact one and the same instance. This is not carsi@derefactoring in this
study.

Although the list above does not include very exciting megivthere are some commits
in which more explicit refactorings have been performede Tarresponding log messages
mention rationales like the accommodation of new functibngerformance enhancement
and readability improvement. However, these commits docootain refactorings that
actually resolve code smell instances found by SACSEA. gt imply a plausible flaw
in the detection modules, the different perspectives oélbgers on code smells or the fact
that the refactored instance was not really infected in tts¢ filace, in which case it was
only resolved with the original goal in mind.

Concluding remarks

Within the limits of the case study, it seems that the act fafatering has always been
done on a small scale and not for a higher purpose. Howewere tre some cases in
which this higher purpose is present, but fall outside thepscof the case study, since
these refactorings did not cause the removal of a code smdiizcted by SACSEA. The
rationales briefly mentioned in chapter 1 have not been fourike case study. However,
there were various other rationales to be recognised, sucbde clean-up and deliberately
resolving code smells. Motives with regard to performanue @eadability were found in
commits that were not marked by SACSEA as responsible foll semovals and therefore
fall outside the scope of the case study. This hints towardefiaite awareness of code
smells among developers, although infected instancessadyn to be removed when the
time is convenient, which explains why there is little réfming activity in the subject
systems. The intent to refactor is there, when there is timdeedfort to spare.

4.3 Threats to Validity

Much effort was spent to perform the research in this gradugtroject in a structured and
correct manner. However, the case study was subject torceaaditions, which could
influence the eventual outcome. This section describesdpects that may threaten the
validity of this study.

4.3.1 Internal Validity

Threats to internal validity concern aspects that can inftaethe observations. First, no
causal relationship among the investigated variables (eayle smell types, refactoring
rationales and number of active developers) is claimedsrgitaduation project. The results
were discussed, while taking the characteristics of aljesuitsystems and developers into
account and trying to come up with interpretations to theiffigsl

The code smell detection tools used for the case study wagimally designed for a
limited academic purpose. This means that the developéra bartain goal in mind during
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development and as such, they built their applications tdwlat goal. The disadvantage
of that approach is that the tools may not extend well to otjoals, like the ones set in
this graduation project. This limitation is reflected byasige and unpredictable behaviour,
that prevents the emission of flawless results. For exanipdeapplications may identify
code smell instances, which are not considered as such bynarhexpert. As a result,
code smells may not be subject to a refactoring activity fanynrevisions. False negatives
may also occur for similar reasons, in which case the coddl amstance is not shown in
the results at all. By using two tools with different detentiapproaches and investigating
subject systems that have relatively little unparsable&si@ns, this threat is slightly reduced.
In order to nullify it, this research has to be replicatedhgsine or more detection tools that
are considered (functionally and commercially) mature alfmv the user to enter custom
code smell definitions. However, such definitions will alwde subject to discussion.

Two code smell detection tools were chosen for this gradngioject to avoid potential
bias in detection, since both of them have a different ambraa detecting code smells.
Both tools are responsible for a set of smells to detect, lwisidisjoint from the set of the
other. The question arises whether and to what extent éiftesmell instances were to be
found if one tool were to be responsible for the set of theradhe vice versa. This is part of
a larger question: How would the results be influenced if otietection approaches were
used for the same code smells? A study that addresses thesisgsroposed as future work
in section 6.3.

SACSEA was thoroughly tested, but it remains an academioiyme. The toolchain
may contain unforeseen defects. It must be mentioned teantégrated code smell detec-
tion tools also form a liability, regardless of their applion in other research. For instance,
JDeodorant uses an AST-based approach, which needs gadsablsource files. There are
some revisions in the subject systems, in which source cattemissing dependencies
and compile errors has been committed. Depending on thensipe detection utility, the
source file or the entire revision is skipped for detectioong2quently, there is no useful
data available for some revisions of four systems. The pgage of unparsable revisions
varies from 1% to 25%. This affects the results in two wayshétithe lifespan of some
long-living code smell instances in unparsable revisi@sat shown in the visual reports,
which causes the average lifespan in a system to be loweitthatually is. On the other
hand, some instances that only exist in the range of thossiors may not be shown at
all, causing the average lifespan in a system to be higherittztually is. This threat also
affects the information about refactoring activities. gk has been kept to a minimum by
analysing a selection of revisions of several softwareqatsjand selecting those systems
with the least data loss.

Selection criteria were devised to ensure diversity ambagtibject systems and avoid
bias. However, it is highly likely that these requirementaymmot be fully justified or
there are other aspects that were not taken into consideratiso, the initial development
steps of some systems may not be present in a VCS, becaudepagseprobably start
using a repository when the project is mature enough. Thisagcle has been countered
by including some software repositories in the case studiydb contain this information,
taking the primary selection criteria into account.

Renaming classes and methods is a common practice in seftgselopment, but it is
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considered a nuisance in this study. SACSEA is unable tordete if an entity in revision
n has been renamed in revision n+1. This will usually be shimathe output as a smell
instance ceasing to exist at one revision and another snstdirice being introduced in the
subsequent revision. This phenomenon had to be recogniagedaity and not mistaken for
a refactoring.

4.3.2 External Validity

External validity threats deal with the generalisationhaf tesults. The most obvious threats
are in this case the number of subject systems and their séogreat amount of effort has
been spent on achieving diversity among the subject systeditifi, the case study was
performed with seven open source projects written in Javzerdfore, it is possible that
the results will not fully hold for other similar projectsidustrial systems or applications
developed in other programming languages or paradigmsinvhstigation of this issue is
proposed as future work.

4.3.3 Construct Validity

Threats to construct validity concern the relation betwthery and observation. A serious
threat lies in the identification of refactorings, which &skd on the commit logs of the
VCS. Indeed, the commit log of the revision in which a smedlagipears can be retrieved.
However, they may not accurately reflect the commits reltdesi smell removal, because
developers show different behaviour for committing théiaeges, e.g. periodically or task-
based. Also, deliberate refactorings must be distingdistan other coding activities that

coincidentally result in the removal of a code smell. Log sages have to be inspected
manually to make this distinction, which is usually cleakinhg the aforementioned threat
into account.

The subjective nature of identifying code smells is alsar@ahto validity. This activity
is captured in the detection tools, which make differentagsions than other developers.
This risk is minimised by choosing detection utilities, winibase their smell identification
on definitions from literature.
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Related Work

Software maintenance plays a significant role in the deveéon process. Several studies,
among them the work of Beck and Fowler [22], show that codellsraed anti-patterns
have a negative influence on software quality. If no actidaken in a timely manner, then
a software system will deteriorate over time. There are maosexamples available of the
study and development of code smell detection techniquEs[43]. However, there are
also contributions to the investigation of the evolutiorcofle smells and anti-patterns [33]
[39]. This chapter presents some examples of these cotitrilsy which are closely related
to this graduation project.

5.1 CodeVizard

Zazworka and Ackerman developed a framework calledieVizard[1] [45], which can
mine data from source code repositories at source file lewcchance reveal the evolution
of those systems. The tool focuses on areas of risk, suclti@asing software complexity,
degrading architectures, process violations and also sogdls. CodeVizard also offers
various visualisations for examining the infected erditid their change history.

CodeVizard’s main workflow starts with reading and conveytilata from CVS or SVN
repositories and storing them into a relational databastesyfor rapid access. Then it
facilitates processing these data (e.g. computing moretfaoftware metrics for Java and
C# code). It also provides a set of interconnected views &tyaa the processed data:

e The System Viewisualises repository contents over time and allows thpdogon
of software metrics. The visualisation is similar to thegriaal output of SACSEA:
the lifespans of code smell instances are represented byreal bars. This view also
shows small coloured change bars that represent metadgtawben components
were modified and by whom). SACSEA only provides this infotioraas text.

e The Code Viewgives insight into the development and evolution of a sirigeby
displaying its source code over a certain time period.

e TheMetric Viewpresents various software metrics, such as lines of cods.igalso
a feature that SACSEA lacks, since it was not necessary ledadhis information
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in order to answer the research questions of this graduatioject. However, the
implementation of such functionality is proposed as futuozk.

CodeVizard has been used to support several empiricalestudih different research
goals, including the evolution of code smells. One of thesetridbutions was made by
Olbrich et al. [38], who were interested in the number of ceniells that change over time
and in the effect of code smells on component developmemring of frequency and size
of changes. They performed a case study in the same mannes aggderiments carried
out in this graduation project. They selected two Java systéucene and Xerces, which
had to meet multiple criteria. CodeVizard was applied orse¢happlications and returned
information on the evolution of the code smells God Class@matgun Surgery. The results
showed that entities infected with these code smells hawghehchange frequency. Such
classes seem to need more maintenance than non-infecsseé<la

5.2 The Impact of Smells and Anti-patterns on Software
Change-proneness

Similar to Olbrich et al. [38], Khomh et al. performed a sty@g] regarding the same
research question:Atre classes with code smells more change-prone than clagfesut
smells? For this, they used their own solution DECOR [36] to speeifyd find code smells
in the systems Azureus and Eclipse. The analysis was basetkases rather than revisions
of the VCS. 29 code smell detection algorithms, provided BCIOR, were applied on a few
releases to obtain the sets of infected classes. The redutie study provided empirical
evidence that classes with code smells are more subjecatgeththan others in almost all
considered releases of both systems and that specific smeltsore correlated than others
to change-proneness.

A study with the same approach was done by Khomh et al. [2%9Jaibtirpatterns were
the target of interest in this case. Using DECOR, thirtedir@atterns in several releases
of the systems ArgoUML, Eclipse, Mylyn and Rhino were detddh order to investigate
the correlation with change- and fault-proneness. Theaasitthowed that in almost all
releases of each system, classes participating in arnérpatare more change- and fault-
prone than other classes and that certain kinds of antpatthave a higher impact than
other types. Moreover, class size alone can not explain igieeh change-proneness of
infected instances. Finally, structural changes seenfeatahore classes with anti-patterns
than other classes. Qualitative explanations of the isered change- and fault-proneness
in infected classes were given using release notes and pagse

5.3 The Evolution of Smells in Object-Oriented Programs

Chatzigeorgiou and Manakos [17] explore the presence amldt@n of three code smells
by analysing past releases of two open-source systems. nlmasb to other studies that
mainly focused on the identification of refactorings, thésearch focuses on findings and
assumptions regarding the problems themselves and theabds behind their introduction
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and removal during software evolution. The authors atteémpain insight into the number
of design problems over time, whether the evolution of avgafe system removes some of
its code smells or only after targeted maintenance aasyithe time of smell introduction in
a system and the frequency and urgency of refactoring tieiviThe code smell detection
tool JDeodorant is employed for the identification of codelsnwhich is also used in this
graduation project. They state that the tool offers theipdig to detect non-trivial smells,
which require a systematic and elaborate refactoring ictiv

The results showed that the design problems persist up tatést examined version in
most cases, accumulating as the project matures. Moreg@nificant percentage of the
code smells were introduced at the time when the method iohwthiey reside was added
to the system. Only a few smells were removed from the pr@adtin the vast majority
of these cases their disappearance was not the result etddrgefactoring activities but
rather a side effect of adaptive maintenance. Even thougltdle study was performed
under slightly different conditions, its outcome is veryngar to the results found in this
graduation project and therefore supports the assumptancbde smells increase over
time.

5.4 The Evolution of Smells in Aspect-Oriented Programs

Aspect-oriented programmin@OP) is a programming paradigm, which aims to increase
modularity through the separation of cross-cutting comeerSome code smells specific
for AOP have already been introduced in literature [42]. Maat al. [14] performed an
exploratory study of code smells in evolving aspect-ogdnsystems. They investigated
if and how code smells evolve in such software projects affilett new smells as a side
effect. Due to the lack of automated detection techniquediriding smells in programs
developed using this paradigm, the detection was done rfiantie investigation focused
on 18 releases of three aspect-oriented systems fromatdiffdomains. The outcome of the
study suggested that previously-documented smells mighbecur as often as claimed.
The analysis also revealed that newly-discovered codesméht occur more often than
well-known ones and that the unknown smells seemed to bastently associated with
non-trivial refactorings and corrective changes.

5.5 Measuring Refactoring Effort through MSR

Refactoring of code smell and anti-patterns is supposetipodave the structure of existing
source code in the long run in order to increase the changgabid maintainability of a
software system. To analyse the impact of refactoring otwsoé maintenance, Moser et
al. [37] tried to find out how much refactoring software erggirs do. In some cases, this
information is directly available from the log messages MGS. A model is proposed on
how to mine software repositories in order to obtain quatii information on refactoring
effort throughout the evolution of a software system. Nexthis, the authors developed a
prototype that implements the model and validated theutsmi by applying the tool to one
close-to industrial software project and one open souroggt. Judging from the results,
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the authors were able to distinguish refactoring effortrfrother forms of maintenance
activities fairly well in most cases. This information idwable for identifying the amount
of refactoring done during maintenance, the developersrefaactor and those who do not,
the parts of a system that are not refactored and the impaefaaftoring.
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Chapter 6

Conclusions and Future Work

The first section of this chapter contains conclusions basettie results of the case study
and presents answers to the research questions definecpterchaFurthermore, the work
carried out in this graduation project contributes to thecigiline of software evolution,
particularly on the subject of code smells. A list of thesetdbutions is provided in section
6.2. Finally, since this project is just a small step in tt@seaarch field, some proposals for
future work are described in section 6.3.

6.1 Conclusions

In this graduation project, a tool called SACSEA was devetbivat computes the lifespans
of code smell instances in a software repaository. As a casly,SEACSEA has been applied
to seven software projects in order to answer four researehtipns regarding the lifespan
of code smells and the refactoring behaviour of softwarenemsgs. The application is

currently still a research prototype and requires furtleetbpment if the work done in this

graduation project is to be extended. Within the threatstioliy, some useful results have
emerged from the case study and are described below, aldh@wbncluding answer per
research question:

RQ1 Are some types of code smells refactored more and quickerdtieer smell types?

The first research question focuses on the overall averfagpdins per code smell type,
which could be an indication of the priority that developattach to refactoring certain
code smells. To this end, SACSEA was used to analyse sevarpdajects over as many
revisions as possible. The original intent was to deterrthiedifespan of code smells from
the beginning revision until the head revision. Becausé sularge range of revisions was
not feasible for some systems, a subset of reasonably stibbtsize was examined per
software project. The average lifespan per smell type ih egstem was determined, based
on the lifespans of individual code smell instances.

a7



6. CONCLUSIONS ANDFUTURE WORK

The initial expectations were that software engineersidensefactoring to be of less
importance than actually programming new functionalithisTwas somehow reflected in
the results. On average, code smell instances seem to h#es@ah of approximately
50% of the examined revisions. However, there were somd diffalences per code smell
type, where Feature Envy Methods seem to be refactored rhare@od Classes, Data
Classes and Long Parameter List Classes. On first sight,atirgecof this phenomenon
seems to lie in the fact that Feature Envy Methods are easrefactor, either by accident
or intentionally. Also, God Classes are proven to be difficefactoring candidates [31],
while Data Classes and Long Parameter Lists do not form ahbéat in the eyes of many
developers.

Overall, this implies that software engineers are not veunghminterested in refactoring
code smells most of the time. In conclusion, some smell typesresolved more than
others, but the results do not show whether these refagtoere always deliberate.

RQ2 Are code smells refactored more at an early or a later stage fstem’s life cycle?

The question posed here concerns the point in the develdpifeesycle at which a
code smell is resolved. The approach for obtaining usefullte required the first 20% and
the last 20% of the revisions analysed for answering RQ1.alkeage lifespans per code
smell type in these subsets of revisions were computed igairee manner as for RQL1.

Before the experiments were performed, it was presumedbaarlier revisions would
show a lower average lifespan than the latest revisionsgsitore code smell instances are
usually present in the latter subset. This hypothesis wasddo be correct for the very
same reason, holding for all code smell types. It is only rztilnat a system grows over
time, but if the number of infected instances grows alondpitjtthen this may be a sign of
little refactoring activity throughout the entire life ofsgstem.

According to the results, the majority of the smell instanicethe early revisions subset
of any subject system are resolved within a few revisionswéier, their numbers do not
outweigh the increasing number of infected instances tkiat éor a long period of time.
Relative to the first 20% of the revisions of a system, thestatevisions do not contain
many smell removals. This is also a sign that refactoringecardells is of little relevance
to a developer.

RQ3 Do some developers refactor more code smells than othertoantiat extent?

This research question deals with the behaviour of devedomgarding code smells.
Are they familiar with the notion of code smells and if so, #ney concerned with the
infected instances in their own system? To shed some lighihisnissue, SACSEA was
used on the seven subject systems to retrieve the numbeenfional refactoring activities
per developer within the examined revisions.

The initial assumption was that it is near certain that soevelbpers refactor more than
others. However, no assumptions have been made regardingnaoy refactoring activities
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a developer is responsible for, compared to other softwag@eers. Within each subject
system, usually one or two developers refactor more thamnetteof their colleagues. The
differences are not large: most of the time they are eitheiotily ones who resolve smell
instances or either refactor just a few more infected itsanhan other developers.

Most smell instances found in the case study were removedsateaeffect of other
maintenance activities or the implementation of new funmlity. Refactoring does not
seem profitable in a system with high commit activity. Thessults hint towards low
awareness or concern among developers regarding codessmell

RQ4 What refactoring rationales for code smells can be idemtffie

Similar to RQ3, the subject of interest is the refactorinpadgour of developers. In
this case, the log messages themselves must be retrieted ttzn the number of commits
responsible for the removal of a smell instance.

Chapter 1 already mentions a few possible motives. Forrinstasome infected classes
or methods may need to be refactored before functionalitybesadded or tested. Another
example is the introduction of a dedicated refactoring phiaghe development life cycle.
Finding such motives in the case study was one of the expatsabut was eventually not
fulfilled. However, the commit logs show various other rattes, such as cleaning up dead
or redundant code and refactoring for the purpose of codd seselution. More rationales
were found regarding performance and readability imprammHowever, these motives
were derived from commits that were not marked by SACSEA apamsible for smell
removals and therefore fall outside the scope of the exgarisn

This implies that developers are most certainly aware oécadells in their software
projects, although they seem to resolve them for oppotianisasons, which explains the
relatively low refactoring effort in most subject systems.

6.2 Contributions

The contributions of this graduation project to the field ofle smell evolution are listed
below.

e SACSEAAnN application that can analyse open source Java systemesisio SVN
repositories, find different types of code smells in thenhimita user-specified range
of revisions and generate a visual and textual output aaingitheir lifespans and
corresponding metadata. Initially developed to serve ofeemurpose, itis also useful
as a stand-alone product and can easily be reused or extended

e Experiment resultsSeven open source Java projects were analysed using SAGSEA i
order to give a fair answer to the research questions defineldaipter 1. The results
show that developers are aware of code smells, but do noidesrtkem to be a high
priority during development.
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e Stepping stone for further researcfhe tool and statistics that both resulted from
this graduation project may be used to pursue further wotkénfield of software
evolution.

6.3 Future Work

Since this graduation project is only a tiny step in the fidldade smell evolution, more
research is required to strengthen or validate the claingenrathis study or broaden the
knowledge by performing more studies using different J@és. This section describes
recommendations for future work.

6.3.1 Improve and Extend Functionality of SACSEA

SACSEA was built from scratch and is therefore a prototype.order to accommodate
future work, the application can be supplemented with maretionality that eases the
recognition and clarity of code smells. An example is thewaltion and visualisation of
software metrics. They would have to be extracted from thegiated detection modules
or the detected smell instances themselves. Metrics caniteletermining how severe a
software entity suffers from a certain code smell. Anotlueai for improvement is better
visualisation, such as the multiple views as implemente@addeVizard [1] [45]. Finally,
SACSEA would also benefit from functionality that allows tiewly obtained information
described above to be logged in a structured way.

6.3.2 Investigating more Code Smells

Only five types of code smells were considered within the sadhis graduation project.
Investigating more code smells would undoubtedly lead toenpmlished answers to the
same research questions. Within this issue, it might bedastieg to vary between popular
smell types and smells that are relatively unknown amongtitdic to find out the relation

between coincidental and deliberate refactoring.

6.3.3 Investigating Design Smells and Anti-patterns

Similar to Khomh et al. [28] [29], using the same approachxang@ne design smells and
anti-patterns, such as the Swiss Army Knife and SpaghetiieCmay be fruitful. Since
design is an activity that engineers have to incorporatéénapplication, such research
may provide insight into the awareness and concern thavéndo design smells and anti-
patterns.

6.3.4 Using other Code Smell Detection Tools or Approaches

As stated in section 4.3, SACSEA integrates external codell sietection utilities that
were developed as prototypes for specific goals. Therettoeg, may not extend well to the
goals set in this graduation project and show some unexpéeteaviour. As a result, some
revisions can not be processed by SACSEA. The way to redoiwéssue is by performing
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this study again, using detection techniques that haveeprtw be reliable and are more
robust. Besides, it is interesting to discover variationthie results if detection techniques
are used that are different from the ones used in this graxtuptoject.

6.3.5 Analysing Industrial Systems

The software projects investigated in the case study wedee¢loped by the open source
principle. Usually, but not always, this means that devetspare not strictly bound by

programming guidelines or deadlines. Although every éffias been spent to find several
subject systems that incorporate a strict developmenteggycno commercial or closed
source projects were used in the case study, due to thedirit@lability of such systems.

Another idea for future work is to redo this research usirdystrial projects for the case

study and find out how a rigid development process or presi@agdlines affect the lifespan

of certain code smells or if dedicated refactoring phasesmiroduced at some point in the
life cycle. Also, the commit logs of such systems are bourigktonore clear and reliable.

6.3.6 Analysing Projects in other OO-languages or Paradigs

Because SACSEA, or rather its detection modules, can omllysa applications written in
Java, no research has been done using systems that werepaeli other object-oriented
languages or programming paradigms. It would be intergstirsee how much the average
lifespans in such projects differ from the lifespans thatexgetermined in this graduation
project. If this research were to be performed again witthsystems, SACSEA would
definitely have to be extended with functionality to suppbg detection of code smells in
those systems.
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Appendix A

Glossary

Anti-pattern A commonly occurring design solution that will always geaternegative
conseguences when applied to a recurring problem.

AOP Aspect-Oriented Programming. A programming paradigm diats to increase the
modularity of a software program through the separatiorr@ads:cutting concerns.

AST Abstract Syntax Tree. A tree representation of the abstwatactic structure of a
program. Each node of the tree denotes a construct occumrthg source code. The
syntax is “abstract” in the sense that it does not represat eletail that appears in
the real syntax.

ATFD A software metric that stands for Access To Foreign Data.olints how many
attributes from foreign classes are accessed directly thenconsidered class.

Checkin SeeCommit

Checkout The result of creating a local working copy from the repagitoA user may
specify a specific revision.

Code refactoring A disciplined way to restructure code, undertaken in ordemntprove
some of the non-functional attributes of software. Codellsna@d anti-patterns can
be resolved by applying refactorings: tiny changes in thercm code that do not
modify its functional requirements.

Code smell Symptom of anti-patterns. Examples are large classes atiwds redundant
message passing and poor information hiding.

Commit Also known as checkin. The result of checking in a workingyciopo a software
repository, thus creating a new revision.

Coupling The dependence between classes. According to one of thgndasnciples in
object-oriented programming, coupling must be kept as lewassible.
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CSV Comma-Separated Values. This file format is widely usedai@gtbular data, which
can be read in plain textual form in a text editor. Lines intiwd file represent table
rows. Commas or semicolons in a line separate the data fields.

CVS Concurrent Versions System, a software revision contretesy. Some software
repositories used in this graduation project were orifn@VS repositories, before
they were converted by the cvs2svn utility to facilitate tiperation of SACSEA.

Cyclomatic complexity A software metric that is used to measure the complexity of a
program. It directly computes the number of linearly indegent execution paths
through a program'’s source code.

Data Class A class that typically only contains many data attributed aarresponding
accessor methods.

Design pattern A reusable solution to a recurring problem in software desig

DSL Domain-Specific Language. A programming or specificatimglemge dedicated to a
particular problem domain, a certain problem represanta&chnique or a specific
solution technique.

Encapsulate Field This refactoring makes a public attribute private and ptesiaccessor
methods for it.

Extract Class A refactoring that creates a new class and moves relevaitiuagts and
methods to it from an old class.

Extract Method A refactoring that creates a new method from a fragment othemo
method.

FDP Foreign Data Providers. This software metric counts theberof unrelated classes
that contain the foreign data that are accessed by a method.

Feature Envy A method suffers from this smell if it is more interested inoaeign class
than its own host class.

God Class A big, complex, inelegant and low-cohesive class that imglets a large part
of the system’s functionality, which makes it hard to untkerd and maintain.

Hide Delegate A refactoring that removes delegate entities from a calirclaad makes
the caller depend solely on the object at the head of the chain

Introduce Parameter Object A refactoring that replaces a group of parameters with a
newly created object.

LAA A software metric that stands for Locality of Attribute Asses. It is defined as the
result of the number of accessed foreign attributes divisledhe total number of
accessed data in the analysed method.
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LOC Lines Of Code or Source Lines Of Code. A software metric usaddgasure the size
of a software program by counting the number of lines in itg'se code.

Logical coupling Implicit and evolutionary dependencies between the atsfaf a system
which, although potentially not structurally related, eotogether and are therefore
linked to each other from an evolutionary point of view.

Long Parameter List A method suffers from this smell if it contains a certain miaim
amount of parameters. In this graduation project, a methadfécted if it has four
or more parameters.

Maven A software utility for project management and build autaomat mainly used for
Java projects. Essentially, Maven dynamically downloads Jibraries and Maven
plug-ins from one or more repositories. These units are byetthe affected Java
project as dependencies and are described usigjact Object Modelwhich is
stored in gpom.xmfile.

Message Chain ClassA class that implements its (data access) functionality $imgia
long chain of method invocations or temporary variablesvbeh different classes.

Metric SeeSoftware metric

Move Method This refactoring creates a new method from another methtddavsimilar
body and moves it into the class it uses the most.

MSR Mining Software Repositories - See Software Repositoryiijn

NOAM A software metric that stands for Number Of Accessor Methdds defined as
the number of non-inherited accessors of the considersg.cla

NOPA A software metric that stands for Number Of Public Attrilaitdt represents the
number of non-inherited attributes that belong to the a®reid class.

OOP Object-Oriented Programming. A programming paradigm énaphasises the use of
objects, which are data structures consisting of data fesldsmethods together with
their interactions.

Preserve Whole Object A refactoring that replaces parameters containing data fan
object by passing the object itself as a parameter.

Project Object Model SeeMaven
Refactoring SeeCode refactoring

Remove Setting Method A refactoring that removes a mutator method for a data fiedtl th
should not be changed.

Replace Conditional with Polymorphism This refactoring moves each case of a condi-
tional statement to an overriding method in a subclass ark@sithe original method
abstract.
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Replace Parameter with Method A refactoring that removes a parameter by calling a
method to retrieve the data that were originally passedagtirameter.

Replace Type Code with State/StrategyThis refactoring replaces type code that can not
be subclassed with a state object.

Repository SeeSoftware repository
Revision The state of the contents of a software repository at sonré potime.

Ripple effect The consequence of poor data-operation proximity. Chaitgeperations
trigger changes in other methods in the same call chain. Willigventually lead to
software defects, as bugs will also be propagated in the saaneer.

SACSEA Acronym of Semi-Automatic Code Smell Evolution Assistartis is the name
given to the application that was developed for this gradogtroject and was used
to determine the lifespans of certain code smells in a soé&wepository.

Software evolution A specific discipline of software research that studies aadages the
process of repeatedly making changes to software over timeafious reasons. It
tries to provide theoretical knowledge and a set of bestigexcin order to understand
the causes and consequences of software ageing.

Software metric A measure of some property of source code, such as size, epitynd
amount of reuse.

Software repository The repository is where the current and historical data esfére
stored. More than often, a server is used to manage a softefository.

Software Repository Mining A field in software engineering research that aims to devise
methods that extract metadata from software repositaviesi¢over evolutionary re-
lationships. It is similar to the field of data mining.

Subversion A software versioning and a revision control system. Thengok repositories
used in this graduation project are based on Subversion.

SVN Abbreviation of Subversion.

TCC A software metric that stands for Tight Class Cohesion. Uinte the relative number
of methods that access the same attribute.

Ul User Interface.

VCS Version Control System. A system for managing multiple si@ris of a software
project.

Version SeeRevision

WMC Weighted Method Count. This software metric sums up theoryatic complexities
of the methods of a class.
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WOC A software metric that stands for Weight Of Class. It repnesé¢he number of non-
accessor methods divided by the total number of interfacalees.

Working copy The working copy is the local copy of files from a repositoryaatpecific
revision. All work done to the files in a repository is initialone on a working copy.

XML Extensible Markup Language. A standard of W3C for the syofawrmal markup
languages with which structured data can be representdeeifotm of text. This
representation is made to be read by machines as well as Burfihe XML-format
is widely used to store data and transmit data over the letern
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Number of Analysed Revisions

As mentioned in chapter 4, the number of analysed revisibesach software project per
smell type varies due to unparsable revisions and the lihoipeeration of the integrated code
smell detection tools. The two tables below show the numbegwsions in each system
per smell type that have been examined. Again, the abbi@viator the code smells used
in section 4.2 are also used here for convenience.

GC FEM DC MCC LPLC

CalDAV4j 318 | 318 | 318 | 318 318
Evolution Chamber 282 | 282 | 282 | 282 282
JDivelLog 770 | 872 | 872 | 872 872
jGnash 1302 | 1302 | 988 | 945 | 1493
Saros 2090 | 2326 | 2482 | 2472 | 2482
VLCJ 1502 | 1445 | 1502 | 1502 | 1502
Vrapper (Base) 115 | 115 | 115 | 115 115
Vrapper (Core branch) | 231 | 223 | 231 | 231 231

Table B.1: Number of analysed revisions (RQ1, RQ3 and RQ4).

GC FEM DC MCC LPLC

CalDAV4j 64 64 64 64 64
Evolution Chamber 57 57 57 57 57
JDivelLog 154 | 175 | 175| 175 175
jGnash 261 | 261 | 198 | 189 299
Saros 418 | 466 | 497 | 495 497
VLCJ 301| 289 | 301| 301 301
Vrapper (Base) 23 23 23 23 23
Vrapper (Core branch) | 47 45 a7 a7 47

Table B.2: Number of earliest and latest 20% of the analyseidions (RQ2).
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Appendix C

Gantt charts

Below, the Gantt charts per code smell type for every sulsigstiem are presented.
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Lifespans of Data Classes in Evolution Chamber.
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Figure C.14: Lifespans of Message Chain Classes in JDivelLog
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Figure C.18: Lifespans of Data Classes in jGnash.
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Appendix D

Boxplots

The boxplots displayed below represent the distributiondif/idual lifespans of code smell
instances per subject system over a range of revisions.

D.1 Overall Lifespans (RQ1)
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Figure D.1: Boxplot of lifespan distribution in CalDAV4j.
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Figure D.2: Boxplot of lifespan distribution in Evolutionh@mber.
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Figure D.3: Boxplot of lifespan distribution in JDiveLog.
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Figure D.4: Boxplot of lifespan distribution in jGnash.
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Figure D.5: Boxplot of lifespan distribution in Saros.
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Overall Lifespans (RQ1)
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Figure D.6: Boxplot of lifespan distribution in VLCJ.
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Figure D.7: Boxplot of lifespan distribution in Vrapper @&.
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Figure D.8: Boxplot of lifespan distribution in Vrapper (€.
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D.2 20% Lifespans (RQ2)
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Figure D.9: Boxplot of lifespan distribution in the first 2086CalDAV4j.
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Figure D.10: Boxplot of lifespan distribution in the last2®f CalDAV4].
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Figure D.11: Boxplot of lifespan distribution in the first20of Evolution Chamber.
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20% Lifespans (RQ2)
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Figure D.12: Boxplot of lifespan distribution in the last®®f Evolution Chamber.
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Figure D.13: Boxplot of lifespan distribution in the first20of JDiveLog.
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Figure D.14: Boxplot of lifespan distribution in the last%2®f JDiveLog.
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Figure D.15: Boxplot of lifespan distribution in the first@0of jGnash.
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Figure D.16: Boxplot of lifespan distribution in the last%2®f jGnash.
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Figure D.17: Boxplot of lifespan distribution in the first@0of Saros.
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20% Lifespans (RQ2)
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Figure D.18: Boxplot of lifespan distribution in the last2®f Saros.
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Figure D.19: Boxplot of lifespan distribution in the first20of VLCJ.
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Figure D.20: Boxplot of lifespan distribution in the lasta®f VLCJ.
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Figure D.21: Boxplot of lifespan distribution in the first@0of Vrapper (base).
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Figure D.22: Boxplot of lifespan distribution in the last@®f Vrapper (base).
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Figure D.23: Boxplot of lifespan distribution in the first@0of Vrapper (core).
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20% Lifespans (RQ2)
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Figure D.24: Boxplot of lifespan distribution in the last@®f VVrapper (core).
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