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ABSTRACT 

Safety measurement and its analysis has been a challenging and well-researched topic in 

transportation. Conventionally, surrogate safety measures have been used as safety indicators in 

simulation models for safety assessment, in control formulations for driver assistance systems, and 

in data analysis of naturalistic driving studies. However, surrogate indicators give partial insights 

on traffic safety i.e., they only indicate a predetermined set of possible pre-crash situations for an 

interacting vehicle pair. Recently, a safety indicator called the driving safety field based on field 

theory has been proposed for two-dimensional vehicle interactions. However, the objectivity of its 

functional form and validity are yet to be tested. This paper provides a qualitative and quantitative 

comparison of different safety indicators as a risk measure to demarcate their mathematical 

properties and evaluate their usefulness in quantifying trajectory risk. We compare five relevant 

safety indicators: inverse time to collision (iTTC), post-encroachment time (PET), potential 

indicator of collision with urgent decceleration (PICUD), warning index and safety field force. 

Their formulations are mathematically analyzed to yield qualitative insights and their values over 

simulated vehicle trajectories are evaluated to yield quantitative insights. Our results acknowledge 

the limitations and demarcate the functional utilities of the selected safety indicators.  

 

 

Keywords: Surrogate safety indicators, Risk measure, Safety field force, Automated Driving 
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INTRODUCTION 

Safety is a key performance indicator of any transportation system. Road safety research has 

received considerable attention owing to the enormous societal losses incurred in road accidents 

worldwide, with about 1.25 million fatalities, and between 20 and 50 million non-fatal injuries (1). 

Recent efforts in safety research are primarily focusing on the use of surrogate safety indicators 

(SSM), as a proactive and cost efficient method to evaluate safety, acknowledging the limitations 

of using crash records (2) e.g. road safety assessment (3, 4); ex-ante safety evaluation in driver 

assistance and automation systems (5, 6); and behavior modeling of human drivers in safety 

critical scenario (7). The advent of intelligent vehicles has brought in uncertainties especially with 

regard to vehicle interactions. The uncertainties stem from the fact that an intelligent vehicle 

possesses enhanced communication and control capabilities compared to a human-driven vehicle, 

but lacks in the spatial and temporal anticipative capabilities. Achieving an agreement on a set of 

objective safety indicators that are applicable in mixed traffic is a methodological challenge. 

Hence, the selection of a safety indicator has profound implications on the quality and agreeability 

of the safety research findings.  

Essentially, a safety indicator is a measure of risk associated with a vehicle interaction. 

Surrogate safety measures (SSM) are the most common risk indicators used in safety studies. The 

risk delineated by SSM could vary depending on their formulation and parameter consideration. 

More importantly, they are often discontinuous as their validity is limited to a prescribed set of 

interacting vehicle configurations. For example, time to collision is not defined in a car following 

situation with a faster leader. Recently, a safety model has been proposed that is capable of 

describing risk continuously over the vehicle path. This safety model is based on field theory and 

defines driving risk as a spatial field (8). However, the objectivity of its functional form and 

validity are yet to be tested. Therefore, despite the wide range of safety indicators, selection of an 

appropriate indicator warranting validity and agreeable results is intricate. 

Safety indicators are usually selected based on their study scope and methodological 

suitability, making it difficult to generalize their findings. Even though safety indicators have been 

extensively reviewed and empirically validated in the past, limited literature exists on the 

demarcation of their mathematical properties; representation of risk causal factors in their 

formulation; evaluation of their usefulness in quantifying trajectory risk. To that end, in this paper, 

we compare relevant safety indicators for their qualitative and quantitative aspects. Their 

formulations are mathematically analyzed to yield qualitative insights and their values over 

simulated vehicle trajectories are evaluated to yield quantitative insights. Our results acknowledge 

the limitations and demarcate the functional utilities of the selected safety indicators. 

The remainder of this paper is organized as follows: Following the introductory section, a 

literature review is presented focused on identifying relevant safety indicators. The theoretical 

properties of these indicators are then analysed qualitatively and further verified quantitatively 

using numerical vehicle trajectory simulation. 

  

LITERATURE REVIEW 

Crash statistics have been traditionally used for road safety evaluation. Even though relevant, it 

has drawbacks such as the unavailability of sufficient crash data to derive statistically significant 

conclusions and inability to be used for ex-ante evaluation. These drawbacks made researchers 

turn towards a complementary approach that uses surrogate safety measures (SSM). The 

characteristics of SSM are that they are more frequent than crashes; they are observable in traffic; 

and they represent crash causality and crash mechanisms (9).  



Mullakkal Babu, Wang, Farah, van Arem, Happee  4  

 

SSM have been critically and extensively reviewed over time (6, 10–13). Generally, SSM 

define the collision risk of an interacting vehicle pair as a function of their instantaneous kinematic 

states (acceleration, velocity and position) and depend on their spatial configuration. Hence, these 

indicators can be categorized into longitudinal and lateral indicators based on the location of the 

interacting vehicles. Longitudinal indicators have been widely used in forward collision warning 

systems, safety assessment of highways and human behavioral modelling in rear-end crash 

scenarios. Common longitudinal-SSM are Time To Collision (TTC), inverse Time To Collision 

(iTTC), Time Exposed Time to collision (TET), Time Integrated Time to collision (TIT) (14), 

Decceleration Required To Avoid Collision (DRAC), Potential Indicator of Collision with Urgent 

Deceleration (PICUD)(12). Lateral-SSM like Post Encroachment Time (PET) have been used as a 

risk measure in lane change controllers, safety assessment of intersections and lateral vehicle 

maneuvers.  

SSM that are not intrinsically bounded to lateral or longitudinal interactions can be found 

in the literature. For instance, Crash Potential Index (CPI) and Aggregated Crash Index based on a 

predetermined set of probable set of evasive maneuvers (6, 15). The functionality of these 

probabilistic indicators is restricted to certain driving regimes due to the difficulty of exhaustively 

listing all possible maneuvers. Additionally, predictive risk maps have been proposed to estimate 

the future risk based on the predicted trajectories of interacting vehicles (16). Even though this 

approach is efficient for ex-ante safety evaluation in controllers, its performance inherently 

depends on the prediction modules and does not fall within the scope of this work. Recently, Wang 

et al proposed an alternative risk assessment methodology for two-dimensional vehicle 

interactions based on field theory (8). They model risk as a vector field and incorporate road, 

vehicle and driver characteristics into a unified field formulation. In this study, we focus on five 

safety indicators: iTTC, PICUD, Warning Index (relevant longitudinal indicators with different 

parameter considerations), PET (relevant lateral indicator), and safety field force 

(two-dimensional safety indicator). 

 

QUALITATIVE ANALYSIS 

Qualitative analysis of the selected indicators was performed with the following objectives: to 

evaluate the mathematical properties of their functional form in the multi-vehicle scenario; and to 

benchmark their formulation with expected causal tendencies of major risk contributing variables.  

 

Desirable Mathematical Properties for a Risk Measure in Multivehicle Scenario 

In this section we present the desirable mathematical properties of safety indicators to verify the 

applicability of selected safety indicators in multivehicle scenarios. Mathematical measure theory 

has prescribed criteria for a function to be termed as a measure (17). Being a risk measure of 

vehicle interaction, it is desirable for safety indicators to adhere to these criteria as follows:  

Let X be the set of all interacting vehicles V under consideration, and Σ be the collection of 

possible subsets of X. A risk measure µ: Σ R from Σ to the real number line R is a mathematical 

risk measure if the following conditions are satisfied: 

Non-negativity: The risk measure µ of any vehicle V with index k in Σ is a non-negative value.  

   0kµ V   (1) 

This property is desirable considering that a negative risk value is non-intuitive and its use is 

ambiguous in multi-vehicle scenarios, i.e. it could cancel a positive risk value.  
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Countable additivity: The risk measure µ should indicate the union of risk values due to the 

interacting vehicles M in a multi-vehicle scenario. Wherein, the risk measure of a countable 

disjoint collection of vehicle units {𝑉𝑖}𝑖=1
𝑀  is the same as the sum of all risk measures of each 

vehicle unit as follows: 

 
1 1

  ( )
MM

k k

k k

µ V µ V
 

 
 

 
   (2) 

This property simplifies the individual risk calculations for complex multivehicle 

interactions; and it allows the addition of individual risk measures to estimate the total 

societal/collective risk. However, this is not an essential property to indicate the risk associated 

with vehicle pair interaction like car following. 

 

Risk Factors and Expected Causal Tendencies 

In this section we detail the major contributing factors of risk and their expected causal tendencies. 

This expectation is based on reasoning and relationships that are reported in previous empirical 

and physics-based crash studies. Dynamics and causality of a crash are directly and indirectly 

influenced by various factors, and it would be farfetched to exhaustively list them. But few of these 

factors have been reported to have a causal relationship with vehicle collisions. Firstly, the 

probability of a collision between two road users is expected to increase with their approaching 

rate and decrease with the inter-vehicle spacing (shorter time for the driver to react; the lesser 

possibility of risk mitigation or evasive maneuver). Secondly, the collision impact is expected to 

increase with an increase in velocity (18) and mass (19) of the conflicting vehicles (with higher 

vehicular velocity, the driver should react more rapidly to avoid a collision; higher vehicular mass 

results in higher kinetic energy transferred and higher collision severity). Thirdly, the collision 

impact is reported to increase with delta-V or the change in vehicle velocity as the result of an 

impact (20). Finally, the roadway characteristic like surface friction (21) and driver characteristic 

like reaction time (22) are expected to influence the collision risk. 

 

Benchmarking the Safety Indicators with Expected Risk Tendencies 

In this section, we compare the expected risk tendency of a factor with the risk tendency as 

described by the partial derivative of the indicator with respect to the factor.  

 

Time to Collision  

TTC is defined as the time required for two vehicles to collide if they continue in their present 

velocity along the present path. 1  ;n
n n

n

s
TTC v v

v
 


 where, 𝑣𝑛 denotes the instantaneous velocity 

of the vehicle 𝑛; ∆𝑣𝑛 = 𝑣𝑛 − 𝑣𝑛−1 and 𝑠𝑛 denotes the relative velocity and forward spacing of 

vehicle n with respect to the front vehicle n-1. Inverse time to collision (iTTC) is the inverse 

formulation of TTC and is widely used in controllers like adaptive cruise controller (23) and to 

assess human driver behavior (24). A higher value represents higher risk and the interaction risk is 

often captured by the minimum-TTC or maximum-iTTC over the interaction period. It is 

formulated as follows 

 1
1  ,n n

n

n

nif v
v v

iTTC v
s





   (3) 
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𝜕𝑖𝑇𝑇𝐶

𝜕∆𝑣
=

𝜕𝑖𝑇𝑇𝐶

𝜕𝑣𝑛
=

1

𝑆
> 0, indicates that the risk increases with an increase in approaching rate. 

𝜕𝑖𝑇𝑇𝐶

𝜕𝑠
=

−∆𝑉

𝑠2 , indicates that the risk decreases with an increase in the spacing of the slower leader. 

As shown in Table 1, both these indications are in agreement with the expected risk tendencies.  

 

Potential Indicator for Collision with Urgent Deceleration (PICUD) 

PICUD is defined as the forward spacing between two vehicles if both of them brake with a 

maximum deceleration (12) as follows: 

 
2 2

1     

2

n n
n h n

max

v v
PICUD s t v

a

     (4) 

where 𝑎𝑚𝑎𝑥 denotes the maximum deceleration and 𝑡ℎ denotes the time delay of human response 

and smaller PICUD indicate higher risk.  

 
𝜕𝑃𝐼𝐶𝑈𝐷

𝜕∆𝑣
= −

𝑣𝑛+𝑣𝑛−1

2𝑎𝑚𝑎𝑥
< 0,  

𝜕𝑃𝐼𝐶𝑈𝐷

𝜕𝑣𝑛
= − (

𝑣𝑛

𝑎𝑚𝑎𝑥
+ 𝑡ℎ) < 0 and 

𝜕𝑃𝐼𝐶𝑈𝐷

𝜕𝑡ℎ
= −𝑣𝑛 < 0 indicates that the 

risk increases with an increase in approaching rate, vehicle velocity and human reaction time 

respectively. 

 
𝜕𝑃𝐼𝐶𝑈𝐷

𝜕𝑠
= 1 > 0, indicates that the risk decreases at a constant rate with an increase in spacing. As 

shown in Table 1, PICUD is in agreement with the expected risk tendencies. In this paper we use  

 

Warning Index (w) 

Warning index, w is a safety indicator used in collision warning algorithms (23). This indicator 

also includes factors like tire- road friction and system delay. A lower w represents higher risk and 

it is formulated as follows 

 n br

w br

d
w

d

s

d





 (5) 

  
2 2

1

2

n n
br n s

max

v v
d v t f

a
 

 
    

 
 (6) 

  
2 2

1 

2

n n
w n s n h

max

v v
d v t f v t

a
 

 
    

 
 (7) 

 

where, 𝑑𝑏𝑟 denotes the required braking distance; 𝑑𝑤 denotes the required warning distance; 𝑓(. ) 

denotes the friction scaling function and 𝜇 is the estimated value of tire-road friction. 𝑡𝑠 is the 

system delay and 𝑡ℎ is the delay of human response.  

The decreasing w indicates an increasing risk. Considering this, 
𝜕𝑤

𝜕∆𝑣
= −

𝑓(𝜇)(𝑣𝑛+𝑣𝑛−1)

2𝑎𝑚𝑎𝑥𝑣𝑛𝑡ℎ
−

𝑡𝑠

𝑣𝑛𝑡ℎ
< 0 and 

𝜕𝑤

𝜕𝑡ℎ
= −

𝑤

𝑡ℎ
< 0 , indicates that the risk increases with an 

increase in approaching rate and human reaction time respectively. 
𝜕𝑤

𝜕𝑠
=

1

𝑣𝑛𝑡ℎ
> 0, indicates that 

the risk decreases with an increase in spacing.  

As shown in TABLE 1, w is in agreement with the expected risk tendencies. However, there are 

some relations that contradict the expected risk tendencies.  
𝜕𝑤

𝜕𝑣𝑛
 > 0 is subject to the condition 

∆𝑣𝑛𝑡𝑠

𝑣𝑛
2𝑡ℎ

<
𝑠

𝑣𝑛
2𝑡ℎ

+
𝑓(𝜇)

2𝑎𝑚𝑎𝑥𝑡ℎ
+

𝑓(𝜇)𝑣𝑛−1
2

2𝑎𝑚𝑎𝑥𝑡ℎ𝑣𝑛−1
2  ,  

𝜕𝑤

𝜕µ
=

𝑣𝑛
2−𝑣𝑛−1

2

2𝑎𝑚𝑎𝑥𝑣𝑛𝑡ℎ
> 0, if 𝑓(𝜇) is an increasing function of µ. This indicates that the risk increases 

with an increase in road friction coefficient while approaching a faster leader. In this paper we use  
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Post Encroachment Time (PET) 

PET is used as a risk measure in scenarios involving lateral maneuvers. PET denotes the time lapse 

between the end of the encroachment of the turning vehicle and the time when the vehicle actually 

arrives at the potential point of collision (25). The encroachment line 𝑥𝑒 in case of a lane changing 

maneuver is defined as a virtual line perpendicular to the lane dividing marker and crossing the 

intersection point of the lane dividing marker, and the lane change trajectory. To understand the 

variation of PET chronologically, we predict the encroachment line and the corresponding PET at 

every time step, using kinematic prediction with constant velocity assumption. In a situation where 

two vehicles pass the encroachment line one after the other, the PET definition as per the above 

assumption is as follows:  

 
e e

j i

j i

x x x x
PET

v v

 
   (8) 

where, 𝑥𝑗 and 𝑣𝑗 are the position and velocity of the first vehicle respectively; 𝑥𝑖 and 𝑣𝑖 are the 

position and velocity of the second vehicle respectively. 𝑥𝑒 is the longitudinal position of the 

encroachment line. Since this formulation does not directly involve ∆𝑣, we do not further analyze 

the mathematical properties. 

 

Driving Safety Field  

Field theory has been used to model traffic flow (26). In this theory, moving road objects such as 

vehicles and non-moving road objects such as lane markings are represented as component fields 

and their union represents the total driving risk. Based on field theory, Wang et. al (8) proposed a 

Driving Safety Field (DSF). DSF of a road object is a physical field that denotes its influence on 

driving safety. This influence is determined by the driver behaviour characteristics, road condition, 

attributes and kinematic state of the road object. The magnitude and direction of this influence are 

denoted by the field strength vector. A vehicle in the aforementioned field experience a safety field 

force (SF) which denote its current driving risk. The proposed field strength and field force for two 

moving vehicles are given as follows:  

   1

3

1
1 .c cjk v cos

cj c c c k

cjcj

kR M DR e
rr


 

r
E  (9) 

   1. 1
k cos

cj j j jR M DR e
 

  jv

cj
F E  (10) 

where, 𝑬𝒄𝒋 and 𝑭𝒄𝒋  denote the safety field strength vector and the safety field force vector, 

respectively on vehicle j due to a moving vehicle c; 𝒓𝒄𝒋 denotes the radial distance vector from 

vehicle c to vehicle j. 𝜃 (clockwise positive) is the angle between directions 𝑣𝑐 and 𝒓𝑐𝑗;    is the 

angle between directions 𝑣𝑗  and 𝒓𝑐𝑗 .   𝑘, 𝑘1 and  𝑘3 are the calibration coefficients. The driver 

risk factor 𝐷𝑅𝑖  is a dimensionless value between 0 (safe driver) and 1 (risk taking driver). 

 𝑀𝑖 denotes a virtual mass related to a moving or non-moving object, parameterized by its mass, 

vehicle type and velocity. 𝑅𝑖 denotes a road condition influencing factor that is parameterized by 

factors including road-tyre friction coefficient, curvature, slope and visibility. In this study, we 

have used the values of parameters as suggested in (8). FIGURE 1 demonstrates the spatial 

distribution of the safety field strength caused by vehicle c. A larger  𝐹𝑐𝑗 (blue colour) means a 

higher driving risk for vehicle j. 
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𝜕𝐹𝑐𝑗

𝜕∆𝑣
= 𝑘1𝐹𝑐𝑗 > 0, indicates that the risk increases with an increase in approaching rate. 

 
𝜕𝐹𝑐𝑗

𝜕𝑟𝑐𝑗
= −𝑘3 𝐹𝑐𝑗|𝑟𝑐𝑗|

𝑘3−1
, indicates that the risk decreases with an increase in spacing.  

The original paper (8) does provide a detailed formulation of 𝑅𝑖 , 𝐷𝑅𝑖 and 𝑀𝑖 . If 𝑅𝑖  is 

defined as an increasing function of 𝑓(µ), 𝐹𝑐𝑗  decreases with road friction coefficient. If 𝐷𝑅𝑖 is 

defined as an increasing function of 𝑡ℎ, 𝐹𝑐𝑗 increases with human reaction time. If  𝑀𝑖 is defined as 

an increasing function of 𝑣𝑛 , 𝐹𝑐𝑗  increases with vehicular velocity. This holds for vehicular mass 

as well. As shown in TABLE 1, the indications are in agreement with the expected tendencies.  

 
 

FIGURE 1 Demonstration of safety field strength due to a moving vehicle. Blue colour indicates 

higher risk; unit of field strength is Newton. 

 

Findings of the Qualitative Analysis 

The theoretical verification of the five safety indicators described above reveals the following:  

 the selected indicators have limited consideration of risk factors and the SF formulation 

incorporates the largest number of factors. 

 the selected indicators formulations represent the expected risk tendencies. However, a 

contradiction was found in the case of the w (See Table 1). 

 the selected SSM do not account for vehicle mass in their formulation. 

Examination of the mathematical properties of the selected indicators reveals the following:  

 none of the selected safety indicators can claim countable additivity property as they are 

defined for vehicle pairs. Even though the SF on a vehicle is additive, in its present vector 

C 
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formulation the risk due to the presence of multiple vehicles cannot be added. For example, 

forces acting in opposite direction tend to cancel out, but the risk measure due to two vehicles 

cannot cancel out. 

 PICUD and PET can have a negative risk value which is undesirable in a multi-vehicle 

scenario (See Table 1).  

 quantitatively, iTTC, w and SF may go to infinity at limiting conditions (See Table 1). Even 

though theoretically plausible, this property violates the principle of countable additivity and 

necessitates an upper bound definition. For instance, a risk measure tending to ∞  is 

computationally undesirable for adaptive cruise control systems (23). 

TABLE 1 Theoretical Verification of Safety Indicators 

*NA implies not applicable 

 

FIGURE 2 depicts the forward spacing vs relative velocity plot representing the vehicle 

operational space as suggested by (27). A vehicle trajectory can be visualized on this plot as a 

continuous line with a plausible direction of motion. The principle concerning the plausibility of 

the direction of motion is demonstrated using arrows in FIGURE 2a. The risk measures, for a 

vehicle moving at 10m/s, described by different safety indicators are depicted as color map on this 

plot. In this paper, the parameters values for w are 𝑎𝑚𝑎𝑥 = 3.3 m/s
2
,
  𝑡𝑠 = 0.5𝑠, 𝑡ℎ = 1s, 𝑓(𝜇) = 1; 

and for PICUD are 𝑎𝑚𝑎𝑥 = 3.3m/s
2 
and 𝑡ℎ = 1s.We use this plot to visually examine the indicators 

for their validity and the risk variation along a trajectory. As shown in FIGURE 2a, iTTC is not 

defined for the lower quadrant, which depicts a faster leader. PICUD and w have smoother 

transition from “safe-green” to “unsafe-blue” than iTTC and SF. Moreover, the iTTC risk 

indication abruptly disappears in a transition from upper to lower quadrant of the plot.  

Aspects Factors Expected tendency iTTC PICUD Warning 

Index 

Safety Force 

Proximity to 

point of 

collision 

relative 

velocity  

increase 

 

increase increase 

 

increase increase 

spacing decrease 

 

decrease decrease  decrease decrease 

Collision 

impact 

vehicle 

velocity  

increase increase increase increase 

subject to the 

condition 

increase 

vehicle mass increase NA NA NA increase 

Roadway 

characteristics 

surface 

friction 

decrease 

 

NA NA decrease 

subject to 

condition 

decrease 

Human 

factors 

reaction time increase NA increase Increase increase 

Range NA NA (0,∞) (−∞, +∞) (0, ∞) (0, ∞) 



Mullakkal Babu, Wang, Farah, van Arem, Happee  10  

 

  

  
FIGURE 2 Visualization of risk measures over the operational space using different safety 

indicators. Blue colour indicates higher risk. 

 

SIMULATION EXPERIMENTS 

Here we extend our study from theoretical findings to simulation-based comparison of risk values 

associated with two-dimensional trajectories. In particular, we examine peaks of the risk measures, 

analyze the ability to represent the risk related to vehicle maneuvers and inspect the continuity of 

the risk measure over typical trajectories.  

Towards this, we defined two typical safety critical scenarios on highways (28): emergency 

braking (Experiment 1) and cut-in (Experiment 2). The two experiments were done as a numerical 

simulation (simulation time of 20 s and a time step of 0.2 s) of a vehicle pair: a leader with a 

predesigned trajectory to facilitate the scenario simulation and a follower. Longitudinal follower 

trajectories were simulated using the Intelligent Driver Model with default parameters as in the 

original paper (29). Another conservative simulation assumption used is that a vehicle would be 

identified as the leader only if it is ahead on the same lane. This implies that a vehicle cutting- in 

will be detected only after it crosses the lane boundary. The safety indicators considered are iTTC 

(threshold 0.5 s
-1

) (23), PET (threshold 0.45 s), PICUD (threshold 0 m) and SF. The above 

thresholds describe the safe ranges (12, 23, 26). 

Experiment 1 

In this experiment, we simulate a leader applying sudden braking (predefined) and three possible 

evasive maneuvers of the follower vehicle. Here, the leader vehicle travelling at 5 m/s and a 

                       
Not defined 
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spacing of 10.5 m ahead of the follower suddenly brakes (-2.5 m/s
2
) at 5 s and reaches a complete 

halt at 7 s.  

 

 

 

FIGURE 3 Results of experiment 1: (a) when leader brakes and follower brakes to avoid a 

collision; (b) when leader brakes and follower changes lane via trajectory A (timely lane change); 

(c) when leader brakes and follower changes lane via trajectory B (late lane change). 
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FIGURE 3a shows the risk profiles calculated using various safety indicators when the 

follower brakes to avoid a collision as dictated by the car following model IDM. It can be seen that 

iTTC is defined only in the time interval when the leader is slower than the follower. All three 

indicators depict an increasing risk measure as the leader brakes. PICUD and iTTC show the 

highest risk when the leader reaches a complete halt and thereafter the risk decreases, whereas, SF 

indicates an increase in risk starting with the braking of the leader and reaches the maximum when 

the subject vehicle stops.  

Trajectory planning systems often compare the risk levels of alternate trajectories to select 

the safer path (5). To verify if the selected indicators are capable of trajectory comparison, we 

simulate two evasive lane change trajectories A and B as possible alternative responses to the 

braking leader on a two-lane highway (one-way). FIGURE 3b shows the risk profiles calculated 

using various safety indicators when the follower adopts trajectory A. The follower trajectory A 

begins with deceleration at 5.2 s in response to the lead vehicle braking, followed by a left lane 

change beginning at 5.4 s and ending at 9.6 s when the vehicle reaches the left lane centre. 

FIGURE 3c shows the risk profiles calculated using various safety indicators when the follower 

adopts trajectory B (late lane change). The follower trajectory B begins with deceleration at 5.2 s 

in response to the lead vehicle braking, followed by a left lane change beginning at 6.4 s and 

ending center of the left lane at 10.6 s. The lane change in two trajectories follows an “S” shaped 

path defined by a fifth degree polynomial parameterized by lane change duration of 4.3 s which is 

the typical value indicated in (30) and the lateral displacement 3.75 meter which is the typical lane 

width of a highway. The follower begins to accelerate once the lane boundary is crossed and finally 

passing the leader on the adjacent lane at 9 s (Trajectory A) and 10.2s (Trajectory B). In both cases, 

PICUD and iTTC show an increasing risk while approaching; however they were discontinued 

after the lane change. PET shows a decreasing risk starting from the beginning of the lane change 

via Trajectory A. SF shows continuous risk variation throughout the evasive maneuver and 

indicates the highest risk corresponding to a passing maneuver (See FIGURE 3b and 3c). The SF 

indicates a lower risk peak for evasive lane change trajectory A compared to evasive braking (See 

FIGURE 3a). The total risk measure using SF (area under the plot) associated with trajectory B 

(late lane change) is higher compared to trajectory A (timely lane change). Note that the other 

indicators cannot be used for comparison as they are discontinuous over the simulated trajectory. 

 

Experiment 2 

In this experiment, we simulate a three-lane highway (one-way) with two vehicles (on right and 

middle lanes) moving with a forward spacing of 10.5m. The vehicle travelling ahead on the right 

lane starts to cut-in towards the middle lane at 2s and reaches its center at 6.2s. We simulate the two 

possible evasive maneuvers of the vehicle initially travelling behind on the middle lane. Risk 

profiles (using selected indicators) when the follower brakes are shown in FIGURE 4a. PICUD 

and iTTC indicate the highest risk when cut-in is detected and decreases thereafter. PET indicates 

the highest risk earlier at the beginning of the cut-in and thereafter decreases. SF indicates risk 

from the beginning of cut-in; however the highest risk is indicated at a later point when the cut-in 

vehicle reaches the center of the middle lane and thereafter decreases. 

Risk profiles (in terms of selected indicators) when the follower performs evasive left lane 

change is shown in FIGURE 4b. The follower begins to change lane at 6.4 s and reaches the left 

lane center at 10.6 s. PICUD and iTTC indicate the highest risk as the leader cut-in is detected. 

However, they are not defined during the evasive lane change as there is no leader in the left lane. 
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PET indicates increasing (yet below threshold) risk with leader cut-in. SF indicates the highest risk 

for passing maneuver (at 13.6 s) and reducing risk thereafter. 

 

 

FIGURE 4 Results of experiment 2 (a) the leader cuts-in and follower brakes to avoid collision (b) 

the follower changes the lane to avoid collision. 
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(See FIGURE 4b at 4.6 s). Additionally, from a control perspective, this is a false negative 

risk indication, i.e. the indicator wrongly suggests zero risk for a vehicle cutting-in ahead 

before being identified as a leader. We note that SF is free of this drawback as it is 

independent of vehicle configuration assumptions. 

 Even though PET and SF describe the risk profile of lateral maneuvers, the risk measures 

have limitations. The PET fluctuates throughout the maneuver (See FIGURE 4b) and do not 

discriminate near miss events where vehicle passes at a low lateral distance. On the contrary, 

in the present formulation of SF, inter-vehicle spacing hold a high weightage and therefore it 

consistently indicates the highest risk for lateral vehicle passing even if both vehicles follow 

their lane center. 

 

DISCUSSION 
As suggested in previous studies, the usefulness/validity of a safety indicator does not (only) depend on 

the extent to which expected accident numbers can be correctly estimated, but also on whether safety 

problems can be detected or not, and/or road safety counter-measures/treatments can be compared or 

evaluated (31). In this study, we did not explore the empirical validity. We reviewed the indicators on 

the basis of their ability to theoretically represent the expected risk tendencies and to evaluate safety 

problems along simulated trajectories in critical highway situations.  

From the perspective of vehicle control systems accounting for safety utility, it is of interest 

to have smooth and objective risk measures (33). Simulation analysis showed that all the selected 

indicators are capable of delineating risk continuously in a one-dimensional interaction like car 

following. However, SSM like iTTC, PET, w and PICUD often display fluctuating or/and 

discontinuous values. For example, iTTC (and TTC) have an abrupt change when crossing the line 

of ∆𝑣 = 0 (See FIGURE 2). The measured relative speed may oscillate from positive to negative 

due to sensing errors, and this will result in fluctuating risk measures and in turn the control signals 

based on them. Moreover, as shown in the simulation analysis, discontinuous risk measures cannot 

be used in trajectory planners to compare alternate trajectories. Secondly, these indicators do not 

possess mathematical properties that are desirable in a multivehicle scenario. Thirdly, 

benchmarking the safety level based on an indicator threshold value is difficult due to limited 

number of parameters considered by these indicators (16, 26). This is because the threshold may 

vary with road characteristics, interacting vehicle type and driver reaction time. For example, a 

TTC that is considered safe on a high friction road could be deemed unsafe on a low friction or icy 

road. Moreover, most of the SSM do not account for the conflict severity. Hence, the 

decision-making modules of intelligent vehicles using these indicators cannot identify the 

trajectory of lesser crash severity in an unavoidable collision situation. Finally, as shown in 

simulation analysis, indicators defined for a prescribed set of vehicle interaction configurations 

often lead to false negative risk measures.  

Our findings also have implications in regard to the use of safety indicators for traffic 

safety assessment. The one-dimensional safety indicators yield partial insights in safety as they are 

only valid for a predefined set of vehicle interactions and do not account for collision severity. 

Additionally, these indicators cannot be used to estimate collective risk as they do not possess the 

property of countable additivity. As reported in our simulation results, SSM differs based on the 

threshold definition and underlying kinematic assumptions. This makes it difficult to reach an 

objective consensus on the safety impact. Finally the limitations of the lateral indicators like 

fluctuation (PET) and sensitivity to the spacing (SF) questions the objectivity of safety 

assessments for multilane highways. SF can potentially be used to model precautionary measures 

taken by human drivers as it can describe risk despite a collision course.  
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All the studied safety indicators are based on underlying deterministic assumptions on the 

future kinematic state of the interacting vehicles, rather than acknowledging the uncertainty in 

vehicle movement. For example, consider a scenario where a vehicle follows a leader at a spacing 

of 1 m. This scenario would be deemed safe by a TTC indicator that is based on constant velocity 

assumption. However, this scenario cannot be regarded as safe if we consider the probability that 

the leader may brake. Even though the safety field approach does not depend on kinematic 

assumptions, it also does not explicitly account for uncertainties. Moreover automated vehicles 

further contribute to the necessity of accounting vehicle uncertainty in the risk measures. 

Automated vehicles may attain more precise control as compared to manual driving, and may 

thereby safely pass at low distances; however the precision of automated vehicles will be affected 

by its perception quality. Therefore we note this inconsideration for uncertainties related to vehicle 

state is a drawback of these indicators. 

Our study demonstrates the advantages of the safety field framework in depicting risk of 

two-dimensional vehicle interactions. Recently, Wang et al demonstrated the use of an SF-based 

indicator for collision warning applicable in multivehicle scenarios (33). Moreover, if augmented 

with prediction paradigms, SF can be used for ex-ante safety evaluation in path planners. 

However, the formulation has to be fine-tuned or/and refined for practical applications. Unlike 

SSM, SF does not represent the collision causal mechanism, and therefore interpretation of the 

safety field risk measure could become ambiguous. 

 

CONCLUSION AND FUTURE WORK  

In this study we compared safety indicators based on their qualitative and quantitative aspects as a 

risk measure. Our results showed that all the selected indicators are capable of delineating risk 

continuously in a one-dimensional interaction like car following. Moreover, the selected safety 

indicators in general match the expected risk tendencies. However, in agreement with previous 

research (6, 10–13) our findings acknowledge the mathematical limitations of selected safety 

indicators like discontinuity over the operational space, omission of uncertainty in vehicle state 

assumption and the inability to account for crash severity. We also note that all these indicators 

lack mathematical properties to account for multiple vehicles and the safety field framework is a 

promising approach that allows risk estimation in two-dimensional vehicle interactions. Our 

analysis could be further improved by verifying the findings using empirical accident data. Future 

research should also focus on defining a safety indicator addressing the limitations of existing 

indicators found in this study. 
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