
Transaction
monitoring
Final Report
T. Harting
S. Popping
M. Post
D. Swaab

TI
38
06

-B
ac
he
lo
rp
ro
je
ct
-2
01
7

Transaction
monitoring

Final Report
by

T. Harting
S. Popping
M. Post
D. Swaab

to obtain the degree of Bachelor of Science
at the Delft University of Technology.

Project duration: April 24, 2017 – July 7, 2017
Coaches: Prof. dr. C. Lofi TU Delft

Ir. W. Van bunq
Bachelor project coordinators: Dr. O.W. Visser

Dr. H. Wang

Preface
The report before you documents the bachelor project ‘Transaction monitoring’, which was conducted
by Tom Harting, Sven Popping, Mathieu Post and Daniël Swaab. This project is part of the Computer
Science Bachelor program at Delft University of Technology. It serves as the final project before ob-
taining the degree of Bachelor of Science. Over the past three months, we were engaged in conducting
this project and writing this report. Within this project, we designed and implemented a system which
deals with monitoring transactions for fraud. This project was commissioned by bunq.

We would like to thank everyone at bunq for their open attitude and help over the course of our
project. Our questions were never left unanswered and we received all the help we needed. Special
thanks go out to Wessel Van (developer) and Ali el Hassouni (data scientist) for their guidance and
support.

Finally, we would like to especially thank Prof. Dr. Christoph Lofi from Delft University of Technol-
ogy for his advice, feedback and clear explanations.

Tom Harting
Sven Popping
Mathieu Post
Daniël Swaab

Amsterdam, June 2017

iii

Summary
Being a bank, bunq deals with transaction fraud on a regular basis. All transactions that are handled by
bunq aremonitored for these cases of fraud by a transactionmonitoring system. When this system flags
a transaction as being possibly fraudulent, a bunq employee has to manually check this transaction.
The problem with the current system is that it proves to be time consuming and labor intensive. This is
caused by the fact that there are a lot of transactions which are falsely flagged as possibly fraudulent,
these transactions are called false positives. This resulted in a demand for a system which reduced
the number of false positives and thereby the time needed to manually check the flagged transactions.

To fulfill this demand, bunq has been working on creating a machine learning model which classifies
transactions as fraudulent or legitamte. This machine learning model has shown promising results
during test runs on historical data. However, it was not yet production ready, because it was very slow
and there existed no connection with the existing bunq back-end.

During the project, a new transaction monitoring system was designed and implemented. The new
system uses a combination of a bunq-made machine learning model and a set of pre-defined rules
to flag a transaction as possibly fraudulent or not. The final system implementation consists out of 5
different components: (1) an incoming transaction system, responsible for noticing new transactions
and segregating those over different workers so that they can be classified in parallel, (2) an informa-
tion gathering system, which efficiently gathers large sets of needed information for the classification,
(3) a machine learning model server, which enables fast communication with altering machine learn-
ing models, (4) a set of pre-defined rules, which check transactions for indicators of fraud and (5) a
Grafana dashboard which monitors the performance and statistics of the machine learning model, the
pre-defined rules and our system.

The system is fully tested by unit and integration tests. Furthermore, new machine learning models
and pre-defined rules can be easily adopted. All the above mentioned components are implemented
and fully working. The final implementation is focused on integrating the system in the currently existing
bunq back-end, because the system will actually be used in production.

v

Contents

Preface iii

Summary v

1 Introduction 1

2 Research stage 3
2.1 Problem definition and analyses . 3

2.1.1 Problem Definition . 3
2.1.2 Current Situation . 3
2.1.3 Our Assignment . 3

2.2 General Structure. 4
2.3 Machine learning model . 5

2.3.1 Deep learning and GBM . 5
2.3.2 Frameworks. 6

2.4 Back-end connection . 7
2.4.1 bunq back-end . 8
2.4.2 Connection options . 8

2.5 Gathering data . 9
2.5.1 Input features . 9
2.5.2 bunq database . 10
2.5.3 Efficiency solutions . 10
2.5.4 Used data . 12

2.6 Monitoring. 13
2.7 Other aspects. 13

2.7.1 Programming language . 13
2.7.2 Testing . 14
2.7.3 Dataset . 14

2.8 Conclusions. 14

3 Software development methodology 17
3.1 Agile. 17
3.2 GitLab . 17
3.3 Experiences and contact with the client and coach . 18

4 Stage one: Minimal viable product 19
4.1 Initial software design . 19

4.1.1 MVP overview . 19
4.1.2 Job controller . 20
4.1.3 Machine learning worker . 20

4.2 Problems during implementation . 21
4.3 Used design patterns. 22

5 Stage two: Filter rules, monitoring and training 23
5.1 Filter rules. 23

5.1.1 Initial software design . 24
5.1.2 Problems during implementation . 24
5.1.3 Used design patterns. 26

5.2 Monitoring. 26
5.2.1 Initial Design . 26
5.2.2 Problems during implementation . 27

vii

viii Contents

5.3 Training . 28
5.3.1 Initial software design . 28
5.3.2 Problems during implementation . 29

6 Stage three: Fast access to data 31
6.1 Data from the database . 31

6.1.1 Data gathering alternatives . 31
6.1.2 Initial software design . 32

6.2 From H2O’s Steam to our own implementation . 32
6.2.1 The old situation . 32
6.2.2 Used language and framework . 32
6.2.3 The new situation. 33

7 Stage four: Making the system production ready 35
7.1 Pivoting our focus . 35
7.2 Updated software design. 35

7.2.1 Direct database querying instead of data store . 35
7.2.2 Workflows. 36
7.2.3 Storing features for training . 37
7.2.4 Mapping in code instead of database . 37
7.2.5 Naming conventions . 37
7.2.6 Shell commands instead of queue. 37

7.3 Optimizing the execution time . 38

8 Conclusions 39

9 Recommendations and ethics 41
9.1 Recommendations . 41

9.1.1 Specific machine learning models . 41
9.1.2 Data storing . 41
9.1.3 Load tests . 41
9.1.4 Use the generated data . 41

9.2 Ethics . 42
9.2.1 User data . 42
9.2.2 EU General Data Protection Regulation. 42

A Project plan 43
A.1 Project assignment . 43

A.1.1 Project environment . 43
A.1.2 Project goal . 44
A.1.3 Assignment specification . 44
A.1.4 Final product requirements. 44

A.2 Project Setup . 45
A.2.1 Methods. 45
A.2.2 Tools . 45
A.2.3 Techniques . 45
A.2.4 Planning. 45
A.2.5 Contract . 46

A.3 Quality assurance . 46
A.3.1 Functionality . 46
A.3.2 Maintainability . 46
A.3.3 Efficiency . 47
A.3.4 Security and privacy . 47

B Software Improvement Group 49
B.1 First feedback. 49
B.2 Our response . 50
B.3 Second feedback . 50

Contents ix

C Original project description 51
C.1 Project description . 51
C.2 Company description . 51

D Infosheet 52

Bibliography 53

1
Introduction

Our project took place at a company named bunq, a self-proclaimed ‘IT company with a banking li-
cense’. bunq is a bank that overthrows the traditional way of banking and focuses on making banking
more personal and social. Instead of an unwieldy big company (like most other banks), they are much
more agile.

Because bunq is a bank they handle a lot of transactions. An inescapable part of handling so many
transactions, is the fact that some of these transactions are fraudulent. At bunq, there are currently
fraud detection and prevention systems in place, which are aimed at detecting and preventing those
fraudulent transactions. bunq is constantly improving these transaction monitoring systems, because
the people who are committing fraud are continuously trying out new strategies to avoid being caught.

The goal of our project is to create a flexible system which communicates with a (changing) machine
learning model that classifies possible fraudulent transactions. To do this, the system has to be con-
nected to the systems already present at bunq. Furthermore, our system should be able to use custom
monitoring rules to support the machine learning model. Moreover, it needs to provide statistics and
visualizations about these models and rules. This way, a new transaction monitoring system based
on machine learning can be implemented in the bunq workflow and these models and rules can be
tweaked and compared using the statistics.

This report documents our progress throughout the project, the environment in which the project
was conducted and recommendations for further improvements of the transaction monitoring system.

1

2
Research stage

A big part of creating a software solution is research into the problem and it’s environment. This re-
search is needed to arrive at the best techniques and solutions for the given project. At the beginning
of the eleven project weeks, two weeks are spent on doing the research, which is presented in the fol-
lowing sections. First a detailed description of the problem, the current status and the assignment are
formulated. Then a structure for the application is proposed, this application interacts with the machine
learning model and two currently existing systems of bunq. The possible solutions for the interaction
with each of these systems are discussed and we will substantiate the final decisions regarding these
solutions. After this, we discuss other requirements that have to be taken into account when developing
this system. Finally, a conclusion is given that shows the complete set-up of the system.

2.1. Problem definition and analyses
In this section we will give a description of the project problem. Furthermore, we analyze the current
situation. From this, we will derive the assignment. A more detailed description of these topics is given
in our project plan, which can be found in appendix A.

2.1.1. Problem Definition
Transaction handling is a very important aspect of a bank, no less for bunq. Thousands of transactions
happen every day. Each and every one of these transactions needs to be checked. There are multiple
reasons why a bank should check their transactions. First of all, there is a need for simple (trivial)
checks. For example, when a person wants to do a payment, and this person’s balance is not high
enough, the transaction should be blocked. Next to these checks, a bank is also obligated to monitor
their transactions for fraud and report fraud when it is found. This, among other things, prevents money
laundering and the financing of terrorism [3]. Fraud leaves typical organizations with a loss of 5% of
their revenues each year [2]. In bunq’s case, the loss is not only caused by the fraudulent transactions
themselves, but also by the time spent on monitoring these transactions.

2.1.2. Current Situation

. .

.

. .

2.1.3. Our Assignment
Our assignment can be described as follows. Although a machine learning model is being build, there
is not yet a system in place to use this model to classify a transaction in production. There is a need

3

4 2. Research stage

for such a system which allows a machine learning model to work with the bunq back-end. Further-
more, this system should be able to accept updated models, show statistics about the used model and
compare the performance of these models. Next to this, our system should be able to use custom
monitoring rules to support the machine learning model.

.
.

.
.

.
.

To guarantee that the application is working properly, we need to monitor it. For example, are
transactions still checked inside the time constraints? We also need to monitor the used machine
learning model. How many transaction are flagged per day? How many false positives are found? And
is this increasing or decreasing?

In the project plan, requirements were defined. In researching the set-up of our application, these
requirementsmust be considered. The problem description above includesmost of these requirements.
The following paragraphs recap the remaining requirements to guarantee the quality of the final product.

Functionality The final product needs to work correctly. The number of false negatives should be
limited and the number of false positives should decrease. The connection between the systems should
be solid and stable.

Maintainability The final product will be used by bunq. Therefore it is important to write maintainable
code. It should be clean, documented, tested and comply to the PSR-2 code-style guide [12]. bunq
formulates this as follows: “It should not take more time to remove your code from the code base, then
how much it took to build the code”.

Efficiency Transaction monitoring deals with a lot of data. While there is a need to monitor trans-
actions in real-time, efficiency is a key aspect. The threshold given to us by bunq to classify one
transaction is . . Besides this, the number of users at bunq continues to grow and
therefore the product should be scalable.

Security & Privacy bunq is a bank, therefore the privacy and security of it’s users are of utmost
importance. The final product will handle transaction data which is privacy sensitive and the model
will be trained and tested on anonymized data. Therefore the application will need to be secure at all
times.

2.2. General Structure
Based on the application requirements and the initial information of the systems running at bunq, a
first general product structure is given in figure 2.1. This section will give an overview of this proposed
structure. The rest of this report is dedicated to presenting a more in-depth research on the different
aspects of this structure.

.
.

.

.
Next to the back-end, the application needs to gather the needed information for classifying from

the database. As stated it has to do so in an efficient manner. This data from the database, is then
used as input for the model. The details of how the application will connect to the database and which
data the application needs, is discussed in chapter 2.5.

2.3. Machine learning model 5

Figure 2.1: Schematic overview of the different systems and their relation to the project

There are two other systems that are related to our end product, the transaction monitoring dash-
board and monitoring. The transaction monitoring dashboard is used to manually check the flagged
transactions. This web application extracts data from the database. This web interface does not need
to be replaced, while our application writes it’s results to the same database as the current system.
Monitoring (left in the figure) means checking the requirements the of the application itself (speed etc.)
and analyzing the used machine learning model. In chapter 2.6, we explain which frameworks are used
at bunq, how the application can integrate these and which data is important for monitoring.

In the yellow area the machine learning model and it’s training are defined. The initial model comes
from Ali el Hassounni’s research [8]. Training reassembles a script that is used to train the model with
the data from the database. Themodel will classify transactions using input provided by our application.
In chapter 2.3 a more detailed description of the model and the interaction with the model will be given.

2.3. Machine learning model
In the field of machine learning, a lot of big steps have been made in the last couple of years. This is
mainly the result of the enormously increasing availability of data, but also of the development of new
algorithms [16]. There are a lot of frameworks which all use different algorithms or implementations to
work with all this data. In this report we will use the term machine learning model, which is defined as
the trained classifier that we use in our system to classify transactions as being possibly fraudulent or
not.

2.3.1. Deep learning and GBM
Currently deep learning is a fast growing sub-field of machine learning. It has been shown that deep
learning can find more complex patterns in (raw) data than what is currently possible with other machine
learning techniques. The key difference between deep learning and other machine learning techniques
is that the layers of deep learning algorithms are not created by human engineers, but are learned from
the data itself. Prerequisite of using deep learning algorithms is that a lot of data is needed to train a
deep learning model that can classify the data.

.

.

6 2. Research stage

.
.

.
.

2.3.2. Frameworks
As stated in this report, our application integrates an existing machine learning model, made by Ali el
Hassounni, in the bunq back-end. In his research [8], Ali el Hassounni used the H2O framework [13]
to create his machine learning model. However, there are more free frameworks available. These
frameworks are used to create the actual machine learning model which we will use in our application.
Despite his experience with H20, Ali el Hassounni was willing to look at other frameworks to see if
there would be a better fit for our application. This is why we compared different frameworks. We
have selected some frameworks that are currently available, open source and widely used. We have
compared the frameworks namely on available algorithms, benchmarks [21] and the availability of
documentation.

• scikit-learn [6]

• API: Python
• Written in Python (some C and C++)
+ Applicable for almost every machine learning algorithm
+ Widely used by programmers
+ A lot of documentation
+ A lot of available libraries
− Slow
− Memory inefficient

• R packages [23]

• API: R
• Written in R, C and Fortran
+ Applicable for almost every machine learning algorithm
+ Widely used in the academic field
+ A lot of documentation
+ A lot of available libraries
− Slow
− Memory inefficient

• mlpack [19]

• API: C++
• Written in C++
+ Really fast because it is completely written in C++
− Not a lot available algorithms (no GBM for example)
− No native APIs other than for C++

• Apache Spark MLlib [1]

• API: R, Python, Java, Scala
• Written in Scala
− Made to distibute over a cluster of servers
− Really memory inefficient

• H2O [13]

2.4. Back-end connection 7

• API: R, Python, Java, Scala, REST
• Written in Java, Python and R
+ Already used at bunq for research purposes
+ Fast
+ Memory efficient
+ Export trained model as POJO
+ Deploy the model as REST API
+ Lots of different options
+ Scalable
+ Also supports deep learning frameworks as backend

• xgboost

• API: Python, R, Java, Scala, C++
• Written in C++
+ GPU support
+ Fast
+ Memory efficient
− Only capable of Distributed Gradient Boosting (GBDT, GBRT or GBM)

Our application has to be scalable, as the amount of transactions will probably increase a lot over
time. Also, the hardware set-up should be easily maintainable. Therefore, we can already discard
scikit-learn, R packages and Apache Spark MLlib. These three frameworks turned out to be quite
slow and sometimes they will crash because of memory consumption on very big (>1M) data sets [21].
Furthermore, Apache Spark MLlib is made to run on clusters, which are hard to maintain and such an
advanced solution is not needed for our project..

Another framework that does not meet our needs is mlpack. It turns out to be really fast using the
algorithms that are available in the framework. However, since boosting machines are not implemented
which perform best for us at the moment, it is not really suitable for us at this point [4, 21].

This leaves us with two frameworks which will probably work the best for our use case: H2O and
xgboost. xgboost and H2O are pretty comparable in terms of performance for our purposes at the
moment, but H2O offers a lot of more options. H2O has great support for a lot of different machine
learning algorithms and offers a lot of parameters that can be used to fine-tune these algorithms. This
makes it suitable to easily test different algorithms and parameters to check which ones have the best
results and the least errors.

.

. .
That in combination with the possibility of H2O to deploy the model as a REST API as well as creating
a POJO of the model, makes it relatively easy to create a completely new model without editing much
of the rest of the code base. It will be possible to deploy a new model which uses the same REST API.

Also not unimportant is the accuracy of the models for the different frameworks, which is almost
the same. Depending on the amount and the kind of data xgboost or H2O performs a bit better. This
makes that we have chosen to use H2O as our machine learning framework. As stated above, H2O is
currently also used internally for research purposes, which is also an advantage. This combined with
all the positive points described above makes H2O the best choice for our project. We will start by
using the REST API to use the model within our application, if this does not meet our requirements we
will look at using the exported POJO.

2.4. Back-end connection
In this section we first describe how the bunq back-end handles payments and where in this process
the transaction monitoring should be added. In the second section we describe how the connection
between the back-end and our application can be made, the most efficient way to do this and how we
are going to implement this.

8 2. Research stage

2.4.1. bunq back-end

.
.

.
.

.
.

.
.

.
.

.
. .

.
.

.

.

.
.

.
.

.

.
.

.
.

2.4.2. Connection options
Our application should be connected to the existing back-end. The most important requirement for this
connection is that it should be easy to install, however it should also take the same amount of time to
remove.

For this connection there are several options. It could be done via a file system, the back-end writes
data to a directory monitored by the application. Another option is via the database, the back-end and
the application share a schema and use it to share data. It could also be done via a bridge, so the
back-end and the application are integrated. The last option is via a message, the back-end sends a
request to application to check a transaction and it will responded with the classification.

File system Using a file system for this problem is simply devious, because the request data should
be really small. Furthermore this will create a latency that the application can not afford.

Database The bunq back-end and our application share the same database. Therefore it could be
possible to have our application watch over the transaction scheme and go to work when a new trans-
action has been inserted. However, this will probably result in a big load on the database which it can
not afford.

Another way is that the database sends a trigger to our application when a new record is inserted.
However, according “The Trouble with Triggers” [18] this should be avoided, because it will lead to a

2.5. Gathering data 9

maintenance headache. “They should be used only when you cannot do something any other way” as
stated by Tom Kyte [18].

Bridge Bridges are reliable and fast, but will increase the complexity on both sides of the application.
In this case there is only one call from the back-end to the application, so making a bridge for this
project is a bit much. Furthermore the requirement is that our application should be easy to add and
remove, making bridge might make this to complicated.

Message Sending a message from the back-end to the application is the last option. This means
that the back-end will send a message to our application. This has as advantages that it is easy to
implement and can be easily added to and removed from the current back-end.

.

We concluded that for this case using a message was the best solution, more specifically by using
an API call. We concluded this because this will give the least amount of overhead and it is easy to
expand.

The request the back-end needs to send to our application differs, when it is done before or after the
transaction is committed to the database. The difference between these two is the body of the request.
When it is before the commit, the request should contain all the information about the transaction.

.
.

.
.

.

.
.

2.5. Gathering data
In this section we will first describe the specifics of the bunq database. We will then look at why our
application needs a connection with this database. After this the efficiency aspect of the database is
described in further detail. Finally, we will look at which data our application needs and where/how this
data is stored.

2.5.1. Input features
.

.
.

.

.
. .

.
.

.
. .

.
.

.
.

10 2. Research stage

2.5.2. bunq database
.

.
. .

.
. .

.

.
.

.

. .

2.5.3. Efficiency solutions
As stated before, there is a need for our application to classify the transaction data in real-time, this is
why efficiency is a key aspect. The threshold given by bunq is to keep the time needed to classify one
transaction under 0.1 second, to ensure the ‘real-time feel’ of the application. In this section we will
describe different techniques that we can use to achieve this goal.

Directly querying the database The least complex solution is querying the existing bunq database
for every feature that is needed. This means that all the needed computations are executed during
the classification of a transaction. Although this technique is straight forward to implement, it will result
in a large amount of queries on the database per transaction. Also, the computation of the complex
features will most likely take too much time to still pass the threshold. This is why we do not think that
this solution caters all our needs.

Data store Besides the method described above, the time needed to gather the needed features
can also be optimized by looking at the structure of the database itself. In section 2.5.1, we already
discussed the problems of complex features.

There is a solution to this problem; using a data store. A data store is a database which is used to
store integrated data from other databases. What this means in our application is that the data store
contains features which would take to much time to calculate for each transaction. An example is a
feature like the number of transactions during the last week for a certain user. This feature would occupy
a lot of time if it needs to be calculated for each transaction. That is why this value could be stored in a
data store. The process described here is called data denormalization. Data denormalization describes
the process of improving read performance of the database, by adding copies of (joined or ordered)
data to the database. Although data denormalization increases the complexity of the system, studies
have shown that it can enhance query performance when it’s deployed with a proper understanding of
the needed features [24]. If we want to use a data store, we have to expand the ORM which is currently
available to allow the application to gather data from the data store.

ETL Filling the data store with the needed features is done by a process called Extract, Transform,
Load (ETL) [31]. Within ETL, the data is first extracted from the data sources, in our application these
are the databases which store the tables. After the extraction, the data is transformed. During this
transformation, rules and functions are applied to the extracted data in order to transform it to the
needed format for the end target. Some data does not require transformation, it is directly copied to
the end target. This data is called ‘pass through’ data. In our application the transformation functions
vary from joining data from different databases, aggregating data, sorting and ordering the data, etc.
The last phase of ETL is load. During this phase, the transformed data is loaded into the end target,
which is the data store.

Traditionally, the ETL process is run in a periodic schedule, for example every night. This means
that the data in the data store is not live data, but data from the previous day. For features like the

2.5. Gathering data 11

age of the user this is not a problem, while it changes only once a year. However,
. For these features, there is a

need for (near) real-time ETL. Real-time ETL is the process were the data store is constantly updated,
instead of for example once a day.

Real-time ETL example: Santos and Bernardino There are several possible techniques to achieve
real-time ETL, here we will describe the real-time data warehouse loading methodology by Santos and
Bernardino [25]. This methodology is used as an example of how real-time ETL could be achieved and
it could serve as a base for our ETL system later on during the project. There are already a number
of open-source (real-time) ETL frameworks available which can be used (e.g. [28] or [30]), the choice
to make our own ETL system or use one of these frameworks will be substantiated later on during the
project.

The methodology in the paper [25] is mainly based on the principle that row insertion procedures
in tables with few or no contents are performed much faster than these procedures in large tables. In
general, it is a known fact that data handling in small tables is much less complex and much faster
then in large tables. The methodology focuses mostly on optimizing the loading aspect of ETL and the
querying of the data store.

Figure 2.2: Architecture of the proposed methodology (inspired by [25]).

In figure 2.2, the architecture of the proposed methodology is visually explained. The methodology
consists of different steps, which we will explain here.

Creation of temporary tables - In this step a temporary table is created for every table in the data
store. A temporary table is a structural copy of the original table, which is created empty of contents
and with no indexes, keys or other constraints. There is an extra attribute that is added to the temporary
table. This attribute is a unique sequential identifier which is related to the insertion of each row in the
temporary table.

Santos and Bernardino argue that performance is not the only ETL problem, complexity is a impor-
tant factor as well. They state that this step guarantees a simple and fast logical an physical support
for achieving (near) real-time ETL, while the only change in the structure is adding some simple tables.

Loading procedure - After the ETL procedure has extracted and transformed the needed data, the
loading procedure needs to refresh the data store. Within this methodology this is done by executing
the following steps every time a new entry is made to the source tables:

1. Extract the needed information from the tables.

2. Transform this information to the needed format.

3. Create a new entry in the temporary table of the data store destination table.

4. Insert the transformed data in this new entry, set the unique sequential identifier to a counter
which starts at 1 and auto-increments for every entry insertion.

Santos and Bernardino state that inserting entries in the temporary table is faster then inserting it in the
original table. This is partly caused by the fact that the temporary table does not contain indexes, keys
or other constraints. So there is no need for time consuming tasks like index updating.

12 2. Research stage

Query adaptation - To take advantage of the use of temporary tables, Santos and Bernardino ex-
plain that the queries that are used to get data from the data store need to adapted to the following
rule: the FROM clause should join the needed data store tables with their temporary tables, excluding
all fixed restriction predicate values from the WHERE clause whenever possible. However, when only
the most recent information is required, the query should only use the temporary table. The writers
state that this way, their method aids in processing the most recent data, while this data is stored in
the temporary table. The small size of these tables makes recent data query processing a lot faster [25].

Reoptimizing - As the temporary tables grow, they lose their advantages. To regain the performance
it is necessary to reoptimize the system. The reoptimization is done by updating the original data store
tables. The rows of the temporary tables should be aggregated according to the original table’s primary
key. The row with the highest unique sequential identifier should be added to the original database in
the case of duplicate values, because this row represents the most resent entry. Then delete the tem-
porary table content and restore the unique sequential identifier to 1. The time it takes to update the
tables is the only time in which the data store is not accessible for the application. So the interval of
reoptimizing should by a good balance between temporary table performance and extraction usage.

In their paper, Santos and Bernardino show that the methodology works by conducting an experi-
ment on an actual data store. They applied their methodology at various time rates against the execu-
tion of various query workloads for data stores with different scale sizes. All these scenarios showed
that it is possible to achieve real-time ETL in exchange for an average increase of query execution
time.

Features in the data store Until now, we have assumed that we store all the needed features in the
data store. However, for a lot of features this is not necessary. Some features are direct copies of
attributes from a database (previously mentioned ‘pass through’ data). Other features require some
calculation, but this can be very minimal (like getting age from a date of birth). It is more efficient to just
take these features directly from the database, without storing them in a data store first. This is why
we will need to look at the execution time of retrieving and calculating each feature. From this data
we will determine which features need to be stored in a data store and if there is a need for certain
temporary tables as described above. We will begin by using just a few of these features. As the
project is progressing we will add more and more features to our application, increasing the need for
efficiency.

2.5.4. Used data
In his paper [8], Ali el Hassouni describes the data that is needed for his machine learning model
and where he extracted this data. We will use this information combined with our access to the bunq
database to describe how the transaction data is stored and structured. We will do this by looking at
the database specifics and the relevant tables. Then we will look at the data that needs to be stored in
the previously described data store.

Tables The bunq database consists of a large amount of tables, a lot of which are logs of other tables.
This is why we will not describe the whole database, but just the parts that apply to transaction mon-
itoring. The features used by the machine learning model are derived from the columns of the tables
or combinations of different tables. As stated, the tables are segregated over separate databases.

.
. .

. .
.

.

.
.

2.6. Monitoring 13

.
.

. .

.

.
. .

.
.

.
.

.
.

2.6. Monitoring
.
.

.
. .

. .
.

.
.

.

.
.
. .

.

.
.

.
.

.

2.7. Other aspects
In this chapter we describe the research on the other aspects that are in place and the conclusions we
can derive from this research.

2.7.1. Programming language
We need to make an informed decision about which programming language we will use to build our
application. At bunq, PHP is used as the main programming language. Although they had a preference

14 2. Research stage

for a PHP application, we were free to choose the language that we thought would fit best.
Our fist choice was Java. The biggest reason to go for Java was that the machine learning model

is exported to a POJO (Plain Old Java Object). It would be easy to fit this into our Java application.
Furthermore, all the team members had a lot of experience in Java, which was also an advantage to
us. However, during the research we found out that the database tables are segregated over separate
databases. As stated, bunq uses a custom ORM to access the data from the database. If we were to
use Java, we would have to make our own ORM or find a different solution. Because H2O also allows
the machine learning model to be accessed via a REST API, we decided that it would be easier to write
our application in PHP and use this API. This way we can use the ORM that is currently in place and
our application will fit better in the existing code base. If it turns out that the REST API does not meet
our requirements, we will have to make our own connection to the exported POJO.

2.7.2. Testing
“Everything that can go wrong, will go wrong sooner or later” - Murphy’s law. Many things can go wrong
in the process of checking a transaction, often this is because the code simply does not work. bunq
wants to be fast with their processes, failing code is only a waste of time and can cost a lot of money.
For these reasons good testing is very important.

At bunq, unit testing, API call testing and manual testing are used. Manual testing is done for the
parts that can not be tested using PHPUnit, eg. card payment testing. Beside the bunq testing criteria,
our application should also meet the Software Improvement Group (SIG) testing criteria. This means
we should have a 100% test coverage.

Beside these unit tests and integration tests, which test whether the code works, we also want
to do a load test. Load testing is testing under unusually heavy load to determine the range of load
the application can handle [26]. We want to know the number of payments which our application can
handle without breaking down or causing errors with the existing back-end or database. The reason
for this is that the application should be scalable and thus should handle a lot of transactions well.

2.7.3. Dataset
For training the machine learning model, a lot of labeled data is needed. In our case these are trans-
actions that are labeled as fraud or not. Ali el Hassouni labeled a dataset for us that we can use.

transactions which all have been labeled fraudulent or not. The
dataset is real, but anonymized for privacy and security reasons.

2.8. Conclusions
This section contains the conclusions of the research that we conducted. It gives a concise overview
of the different parts of our application and it will serve as a base for the creation of our application.

Machine learning model In chapter 2.3 we discussed the differences between deep learning and
other machine learning methods. We have also compared different machine learning frameworks that
are available at the moment. From these frameworks we have concluded that H2O is the best option
for our problem, because it scores good on accuracy, speed, memory consumption, available APIs and
extra features such as deploying as REST API and supporting deep learning frameworks for the future.
Another a big advantage of H2O is that it is already used for research purposes at bunq.

Back-end connection

.
. .

.

Gathering data In this chapter, we saw that we can use the ORM that is currently in place to com-
municate with the bunq MySQL database. Furthermore, we described the importance of efficiency in
gathering data from the database. By looking at different features of the machine learning model, we
concluded that there was a need to store some of these features in a data store, instead of calculating

2.8. Conclusions 15

them over and over again. We also saw that there is a need for real-time access to some of these fea-
tures. A real-time ETL technique which makes use of temporary tables was described, this technique
is a possible solution to the problem. Later on during this project, we will experiment with this technique
and/or already existing ETL frameworks to ensure fast access to the needed data.

Monitoring

. .
.

.

Other aspects In this chapter we explained that wewill use PHP to write our application. This decision
was made while it enables us to use the ORM that is currently in place. Furthermore, we will start by
using the REST API provided by H2O to use the machine learning model.

The code should be well tested, there are several different techniques to achieve this. The tech-
niques that we are going to use are: unit testing, integration testing and load/scalability testing. The
first two are to ensure the functionality of the code, the last is to test if the application can handle a
heavy load and thus if the application is scalable.

The data that we will use for the machine learning model is real, but anonymized. It contains around
transactions.

3
Software development methodology

In this section we will describe the software development methodology by which we worked during the
project. We show the structured way in which we tackled the given problem and describe the tools that
we used to do so.

3.1. Agile
As we learned over the past years, the agile approach is often the best approach when working on a
software development project. Within the agile approach, the project is split up in different parts. We
called these parts stages, later on in this report we will describe these stages in further detail.

During these stages we started by looking at what we wanted to do during the stage and how long
this would take. The average stage took about one week. We then started designing the architecture
of the code by using a whiteboard. When the initial design for that stage was finished we implemented
it.

3.2. GitLab
During the implementation of the designed code architectures we made use of GitLab. GitLab is a
Git repository manager which equipped us with all the tooling we needed to successfully manage the
project.

At the beginning of a stage, after creating the design, we split the bigger architecture in several
smaller tasks called issues. Such an issue is labeled tomake clear to which part of the product it belongs
(for example MachineLearningModel or Monitoring). An issue is also linked to amilestone, which
is a point in the project which we are working towards, in our case a stage. After creation, the issue is
put in the ‘To Do’ product backlog.

Every morning, we started by choosing which issues we wanted to pick up that day, each issue for
that day was assigned to a teammember. When a teammember started to work on an issue, he started
by creating a git branch on which he could work. When the issue was fully implemented it needed to be
tested as well. We used the phpdbg framework to generate test coverage reports in which we could
see if all the created code was properly tested.

When an issue was completed, the assigned team member created a merge request for merging
his issue branch into the main develop branch. The issue was then labeled with the ‘Review’ label.
Now another team member looked at the merge request. He was responsible for checking the code
and test quality, when it was needed he would place comments at certain lines in the code. When the
reviewer was satisfied with the newly created code, he merged it into the main develop branch. Now a
new issue could be picked up. In figure 3.1 an example screenshot of our issue board is presented.

After a stage was finished, the develop branch was merged into the master branch and a tag with
the name of that stage was created. This way we we always had access to a fully working and tested
version of our product.

17

18 3. Software development methodology

Figure 3.1: Example issue board screenshot

3.3. Experiences and contact with the client and coach
This project is not the first time we work by the agile methodology or with a Git repository manager.
This is however the biggest and most extensive software project we faced during our studies, which is
why the advantages of the used software development methodology were very clear to us. The agile
approach forced us to split up the project in smaller stages, which made it easier to understand all the
parts. It also helped a lot during the planning. Besides this, we liked the fact that we could build working
prototypes at every stage. This made the product more tangible and enabled us to receive concrete
feedback.

Furthermore, GitLab satisfied our needs very well. It enabled us to work together on a complex
software system without a lot of overhead. GitLab made it easy for us to review each others code and
to divide the issues over the team members.

Over the course of this project, we stayed in good contact with our client, as well as with our TU
coach. During this whole project, we have been working at the bunq office in Amsterdam. Being there
every day made it possible for us to quickly get answers to all our questions. We also gained very
useful insights about working at a young software company.

Every week, we planned a meeting with our TU coach. This enabled us to keep him up to date and
we received very valuable tips and feedback during these meetings.

4
Stage one: Minimal viable product

This is the first stage of the design process. During this stage, we will design and implement the minimal
viable product (MVP). The MVP is the most basic form of our application. This section will describe
the software design of the MVP, which will serve as a base which we will expand during the coming
stages.

4.1. Initial software design
This section describes the initial software design which was made before we started implementing the
MVP. During the implementation, some changes had to be made. These changes can be found in the
next section.

4.1.1. MVP overview
.

.
.

.

Figure 4.1: Schematic overview of the minimal viable product, ORM and machine learning model

19

20 4. Stage one: Minimal viable product

.
.

.
. .

.
.
.

.

4.1.2. Job controller
.

.
.

.
.

.

4.1.3. Machine learning worker

.
.

[= *
]

.
.

[= *
]

.
.

.

.

. .
.

.
.

.
[= *
]

.
.

.
[= *
]

.
.

.
. .

4.2. Problems during implementation 21

4.2. Problems during implementation
During the implementation of the initial design which is described above, we encountered several prob-
lems which led to redesigns of our code structures. These redesigns will be described in this section.

.
.

.
.

.

.

Figure 4.2: Schematic overview of the redesigned minimal viable product

.
.

.

.
.

.
[= *
]

. .
.

.
. .

22 4. Stage one: Minimal viable product

. .
.

. .
.

.

.
.

. . .
.

.

4.3. Used design patterns
.

.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
.

. .
.

.

.

. .

5
Stage two: Filter rules, monitoring and

training
At the start of this stage, the MVP is fully designed, implemented, tested and working. It is now time to
implement three new parts of the system, which are filtering, monitoring and training. These parts will
be explained in further detail in this section.

Figure 5.1 shows a schematic overview of the design of the application, including the initial design
of the new parts that will be added during this stage. This figure is used to illustrate the processes that
will be described during this section.

Figure 5.1: Schematic overview of the initial stage 2 application design

5.1. Filter rules

. .

23

24 5. Stage two: Filter rules, monitoring and training

.

5.1.1. Initial software design

.

. .

. .
.

.

. .

. .
.

5.1.2. Problems during implementation

This section will the describe the changes that we made to the initial software design during it’s imple-
mentation.

Transaction types
.

.
.

.
.
.

. .

.
.

.

.

.
. .

.
.

.
.

5.1. Filter rules 25

Figure 5.2: Schematic overview of the redesigned job controller

.
.

.

.
.

.
.

.

.
.

.

.
.

.

Storage
. .

.

.

.

.
.

.
.

.
.

_

.
.

26 5. Stage two: Filter rules, monitoring and training

Figure 5.3: Schematic overview of the redesigned stage 2 application

.
.
.

.
.

.
.

[= *
]

.
.

.
.

.

5.1.3. Used design patterns

. .

5.2. Monitoring
When an application is added to a system as big as the bunq back-end, it is important to track it’s
performance. The goal for the transaction monitoring application is to reduce the number of false
positive hits. To help bunq in getting insights about this goal, monitoring is used.

Monitoring covers two areas: application processes and analyzing. The running application pro-
cesses need to bemonitored to ensure that the application is functioning as it should. The data gathered
can be used for analyzing different aspects of transaction monitoring: performance of machine-learning
models, performance of rules, etc.

5.2.1. Initial Design
This section will describe the initial design of the monitoring application.

5.2. Monitoring 27

Software choices .
.

. .
.

Metrics .
.

.

.

.

System design .
.

.
.

5.2.2. Problems during implementation
This section will describes the problemswhich we encountered while implementing the above described
initial design.

Graphite’s limitations Not knowing a lot about monitoring and time serie databases (TSDB), we
assumed that all the metrics could simply be put into Graphite. For DevOps related metrics that are
time based this was no problem, but for more analytic ones Graphite wasn’t suited. Graphite is solely
a TSDB. This means that it expects data to come in on a time interval. Because not all our data is
structured this way and because we found out that Graphite is not very easy adaptable, we started
analyzing other data sources. Depending on the metric certain data sources will be better then others.
Grafana can use different data sources next to each other, but it would be best to use as little data
sources as possible to keep it understandable and maintainable. The databases that are currently
supported by Grafana are:

• Graphite [11]
• Prometheus [22]
• Elasticsearch [9]
• InfluxDB [14]
• OpenTSDB [20]
• AWS Cloudwatch [5]

MySQL is not yet supported, but support for MySQL is in development. It is already integrated in a
pre-release of Grafana. While bunq uses a MySQL database, it could be very efficient to use MySQL
as data source.

In choosing the data source, we look for efficiency and simpleness. AWSCloudwatch andOpenTSDB
are disregarded almost directly. ASW cloudwatch is coupled to AWSCloud Resources and applications
that run on AWS. This is not used at bunq so not applicable. OpenTSDB runs via HBase. A distributed
environment that can give a lot of overhead when self hosted, so this is also not applicable. The next
data source to take of the list is InfluxDB. Although the systems was easy to install and use, it came with
a restricted set of metrics that where mostly related to server monitoring. Next up are Prometheus and
Elasticsearch. Prometheus and Elasticsearch are open source and newer databases. Prometheus is,

28 5. Stage two: Filter rules, monitoring and training

just like Graphite, solely build as a TSDB. Elasticsearch proved to be rather difficult to set up for our
use case.

After researching the data sources, we wanted to try if the MySQL data source in the pre-release
of Grafana could be used. We were quickly able to connect the MySQL database to Grafana to show
plots. The calls to MySQL are SQL-queries, so there are no systems needed between Grafana and
the bunq database. This offers a lot more possibilities and simplicity when creating a dashboard for
the monitoring, which is why we decided to use MySQL.

Segregated databases Some metrics need multiple database tables for calculation. As stated, bunq
structured their tables as separate databases, for scalability reasons. Grafana can only use one data
source per query, so when the data will be split over several databases in the future, this could cause
a problem. However, it is very well possible that Grafana will support multiple data sources per query
in the future.

Dashboard script A lot of metrics need to be shown in the same ways: per 30 days, per model,
per type, per panel etc. This results in 8 different queries per metric, where only the SELECT part is
a bit different. When a database name changes or when a query is slightly altered, you would have
to change around 30 to 40 queries in Grafana. To improve the ease of use, we created a dashboard
generation script. Based on metric settings files and the basic queries, this script generates a custom
dashboard and uploads it to Grafana.

During the process of implementing, a fewmore metrics were added to the list:
. .

. .
Figure 5.4 shows an example dashboard with the current metrics.

Figure 5.4: Example of transaction monitoring dashboard

5.3. Training
In order to improve the machine learning model over time, training is crucial. During training, the
features that were calculated for each transaction are needed again. It is undesirable to recalculate all
those features, we already calculated them during the monitoring process.

5.3.1. Initial software design
.

.
.

5.3. Training 29

5.3.2. Problems during implementation

.

.
.

.

6
Stage three: Fast access to data

During this stage we will look at the different techniques which we can use to get fast access to our
data. As we mentioned in section 2.5, simple features like the amount of the transaction can be easily
fetched from the database. However, more complex features like the average transaction amount of a
certain user over the past 30 days require much more computation time. This is why there is a need for
a smarter, faster way to access the complex data. Furthermore, we will look at the data that we send
to and receive from the machine learning model.

6.1. Data from the database
During the initial design phase, we looked at different alternatives for fast data access. We will describe
the currently applicable alternatives and derive at a conclusion on which technique we will use. Then,
we will describe the software design of this technique within our application.

6.1.1. Data gathering alternatives
In the research part of this report, we discussed data storage and ETL. A small recap, a data store is a
database which contains analytical data which can be quickly accessed by for example our transaction
monitoring application. ETL is the process of filling the data store with data and updating this data. The
data store is the place where we store data that is to complex too calculate from the current database
at each transaction.

ETL framework There are several open source ETL frameworks available. However when we started
to try them out, we found out that the segregated setup of the bunq database prevents us from properly
using these frameworks. For example, a lot of frameworks use JOIN operators on several tables, while
the bunq tables are all stored in different databases, this is not possible. Also most frameworks were
focused on retrieving information from different data sources (csv files, databases, etc.), this is not
what we need for our application. Furthermore, almost all of the ETL frameworks only let us use a trial
version. While we do not have a budget available for this project, we can not use the paid version.

Custom ETL While the current ETL frameworks do not fully cater our needs, we can look at creating
our own custom ETL process. Although this would require more work than using an existing frame-
work, it has some clear advantages. We would be able to use the ORM that is currently in place to
communicate with the database. Furthermore it enables us to store the data in the exact format in
which we need it. The downside is that we need to find a good solution for keeping the data in the data
store up to date and remove data that is not longer needed.

OLAP cube An OLAP (online analytical processing) cube is a way to store multi-dimensional data.
OLAP cubes are very suitable to store analytical data which needs to be accessed in more then one
way. We could for example look at the number of transactions per postal code or per gender.

Several open source OLAP cube frameworks exist. While we work with the constraints that the
OLAP cube should be compatible with the existing MySQL database and we can not host our data on

31

32 6. Stage three: Fast access to data

non-bunq servers, a lot of those frameworks are not suitable. The advantage of the OLAP cubes which
we tried out is that it is very easy to fetch data. The problem however is that this technique works rather
slow. Also it is very difficult to configure a cube, which makes it hard to maintain.

Conclusion After considering the options mentioned above, we conclude that the best approach is
to the usage of a data store. The data store principle seems to be a very good fit for our project due
to it’s simplicity and customizability. To fill the data store, we expect that we have to create our own
custom ETL. This way we can use the very solid ORM which is already in place and we can store
the data in the exact form that we need. Also, we can implement our ETL system in PHP. This is an
advantage because it contributes to the consistency of our application and PHP is already widely used
within bunq.

6.1.2. Initial software design
This section describes the initial software design of the mechanism responsible for providing us with
fast access to data which is too complex to calculate for every transaction.

Data store While the data store is also a database, we have various different database options to
choose from. We started by looking at a SQL (MySQL) database, while they are already widely used
by bunq and by our application. However, we quickly found out that due to the dynamic nature of the
complex feature storage, SQL was probably not the best choice. Complex features should be easy
to add and remove. Futhermore, some of them should be accessible over multiple time dimensions
(e.g. transactions per day, week, month, etc.). While the database structure of SQL is very static, we
choose to look at NoSQL database alternatives.

After comparing the specifics of the most used NoSQL databases [17], we conclude that MongoDB
is the best fit for our data store. MongoDB is very suitable for dynamic data, while data is stored in JSON
format. This means that there is no need to predefine the columns, the data structure can be changed
over time. Furthermore, queries, indexing and real-time aggregation provide us with fast access to the
needed data. Finally, MongoDB is free and open-source.

ETL process Our idea was to design a custom ETL process. This process would be build up out of
several cron jobs which ran on set intervals. The ORM that is currently in place at bunq would be used
to fill the MongoDB data store. However, during the design phase of the ETL process, our focus pivoted
in a different direction. This was caused by a meeting with the bunq CEO, which will be described in
the next section.

6.2. From H2O’s Steam to our own implementation
This section describes our reasoning behind the decision to replace H2O’s Steam with our own imple-
mentation.

6.2.1. The old situation
Until now we have been using the Steam service from H2O [13]. This is a runnable jar file, which boots
up a simple webserver where it is possible to upload a POJO generated by the H2O framework to
compile a war file. This war file can then be used to serve a REST API on which we can make calls to
calculate the fraud probability of a given transaction. If a new machine learning model is created that
should replace the currently running one, the running REST API server should be killed, a new war
file should be created, and this new war file should be used to boot up a new server. Also if we would
like to serve multiple models at the same time, we would have to run multiple Steam instances next
to each other, running on different ports or servers. These characteristics are not desirable within our
application. This is why we decided to move to our own implementation.

6.2.2. Used language and framework
We decided to create our own implementation to host a REST API. Since we receive the machine
learning models in the form of a POJO and a jar library, we have to create the API in a JVM language.
A natural choice would probably be Java, but since some of us also have prior experience with Kotlin

6.2. From H2O’s Steam to our own implementation 33

[15], we have chosen for this language. Kotlin is a statically typed language and, according to our
opinion, more concise. Also it has full interoperability with Java. This means that Java code can
directly be called from Kotlin code and vice versa. Because of this, it does not matter that the POJO is
written in Java.

Next, we chose a framework for creating the API. Since we also already had some experience with
Spring Boot [27] we decided to use this. It is also really easy to configure and write API endpoints
with Spring Boot with the neat annotations it supports. Controllers are annotated with @Controller and
these contain methods which are annotated with @GetMapping(”<enpoint>”) for GET requests and
with @PostMapping(”<enpoint>”) for POST requests and so on.

6.2.3. The new situation

Figure 6.1: Global overview of the machine learning model server

.
. .

.
.

.
.

.

.
.

.

.
.

7
Stage four: Making the system

production ready

The goal of the bachelor project is to do a full software engineering project in a real-world environment,
at a real company. During this stage, we found out that our system will actually be integrated in the
bunq back-end. This means our system will be used in production. This integration did cause a pivot
in our focus, which resulted in a change of the global design of our system. This will be described in
this section. This stage will be the last stage of the project.

7.1. Pivoting our focus
On June 1፭፡, we had a meeting with the CEO of bunq, Ali Niknam. Being a TU Delft Computer Science
alumnus himself, he wanted to review our code and talk about the next steps of our project. Until then,
our project has been made separately from the bunq back-end core. As you can read in the sections
above, we were mainly focused on the efficiency side of the project.

During the meeting, Ali made clear that it was very important that our system would be ready to
merge into the currently existing bunq back-end. This means, among other things, that we need to use
the bunq workflows and code styles. A lot of those code styles were unknown to us until this meeting.
The compatibility of our application with the bunq back-end and systems which are already in place
became the top priority over efficiency and optimization.

What this means is that the optimization techniques which we used, like the Beanstalk queue or
the data store, will be taken out of the project for now. We will no longer focus on these future-oriented
optimizations, but rather on making the code more bunq compatible and ready to integrate in the bunq
back-end.

7.2. Updated software design
This section contains all the changes that we implemented in our software design. These changes
only influence the general structure of our application, so most of the code that we have designed and
implemented can be reused within the new design. For example, the actual implementations of the
features or data builders has remained the same.

7.2.1. Direct database querying instead of data store
In section 2.5 and 6, we described different techniques which can be used to fetch and compute the
needed (complex) features. We derived at the conclusion of using a data store. However, our pivoted
focus resulted in us not using the MongoDB or any other data store anymore. Instead, we returned to
the solution which was also proposed in section 2.5, direct querying of the bunq database. This means
that the information needed for every feature is fetched from the database on the go, this also holds
for the computation of the features.

35

36 7. Stage four: Making the system production ready

7.2.2. Workflows
The bunq application is build up out of a lot of workflows. A workflow is a process which is run within
an application. It has a start point after which it executes several tasks or other workflows. The general
design of our system is changed into workflows. For example, a Worker within our application has
become a workflow. Within this workflow, a transaction is classified. As was stated, these changes
only influence the general set up, the implementation of the specific components remain the same.
Here we will describe the workflows which are present within our transaction monitoring application. In
figure 7.1, a schematic representation of our workflows is given.

Figure 7.1: Schematic overview of the system workflow

. .

.

.
.

. .
.

. .

.
.

.

7.2. Updated software design 37

.
.

.
.

.
.

.

.
.

.

.
.

7.2.3. Storing features for training
In section 5.3, we described the way in which our application saves the calculated features in the
database, so that they can later be accessed while training the machine learning model. Within the
new design, this method of saving the features in the database is removed. This was done because of
the way we were storing these features. Because of the very dynamic nature of the features, it is very
hard to store them in a relational database. In our initial implementation, we encoded the features to
a JSON string. We removed this implementation because this is not compliant with the bunq coding
style.

The solution which we have implemented to replace the previous implementation is a csv log file.
Every time a new machine learning model is loaded into our system, a new log file is created. In the log
file, the system stores the calculated features for each transaction it processes. Another advantage of
using csv files is that they are very easy to use during the training of the machine learning model.

Our first intuition was that writing the feature values to the csv log file would take a lot of time.
However, during the testing of the execution times we found out that it only takes our system around
0.0001 seconds. So this barely has any influence of the efficiency of our system.

7.2.4. Mapping in code instead of database
Until now, our application stores mappings (for example FeatureMapping) in the database. We have
chosen to do this because it allows users to dynamically add and remove features. However, we found
out that there is no need for this at the moment. At bunq, such mappings are stored in associative
arrays in the code. We will also move our mappings from the database to these associative arrays.

7.2.5. Naming conventions

.
.

. .
.

.

7.2.6. Shell commands instead of queue
Our initial application used a queue to split the classification jobs over several workers. While opti-
mization is no longer our focus, the queue makes our application more complex then it needs to be.
Therefore, the queue is removed from the project. Instead, we will use a daemon to segregate the
classification jobs, this way our application is no longer vulnerable for queue failures.

The daemon consists out of two parts, the daemon master and the daemon worker. The daemon
master is responsible for creating the jobs and launching a daemon worker to execute these jobs. First
the daemon master will look if there are any new mutations.

. After that it launches a worker via a

38 7. Stage four: Making the system production ready

shell command to execute this job and classify all the mutations within the batch.
Currently the daemon master waits for the worker to complete it’s task, because using one worker

is enough to classify each mutation without falling behind. However, when the amount of mutations
increases to a level in which the worker does fall behind, the daemon master can launch several other
workers. The daemon master launches a worker via a shell command so that it is possible to run
several workers at once in the future, without the use of multi-threading.

7.3. Optimizing the execution time
After the new design was implemented, we started testing our application on a test database. Although
the test database is smaller than the actual production database, it gave us valuable insights in the
efficiency and speed of our application. From these tests, we saw that our system classifies a transac-
tion in around . seconds. Because this was a long way of from the . second threshold, we looked
at optimizations that could be made without changing the whole set up (e.g. without using a data store).

After a more detailed analysis of the execution times, we found out that around 90% of the time
is spent on fetching information from the database. Within this system, queries were made to
the database. From this data, it became clear that we needed to reduce the amount of queries made
to lower the execution time. As we stated before, the biggest subset of features are the aggregated
features. These features describe a certain value over different timeframes. of the queries
are made to compute these aggregated features.

To lower this large number, we started by grouping the aggregated features by data type, this if
for example the number of a certain type of payment over different timeframes. Instead of running a
separate query for all of these features, we then made one query per data type. The computations
needed to get the value for a certain timeframe are now executed on the data that we get from the data
type query. After we implemented this method at the aggregated features, we also looked at where we
could implement it at the normal features, which resulted in another optimization.

The result of these optimization is that our system now makes database calls instead of .
This is a huge improvement, which is also clear when we look at the execution times. Our system now
classifies a transaction in . to . seconds instead of . . Although this is still to slow for the initial
. second threshold, it is fast enough to use the system in the production environment. In chapter 9,
recommendations are made to further optimize the execution time.

8
Conclusions

Over the course of ten weeks, we were able to successfully complete the transaction monitoring project.
The project resulted in a fully working and tested software solution to the given problem. The system
will be taken into production at bunq, which is most likely the most progressive bank of the Netherlands.

The used bunq-made machine learning model has shown to be trustworthy and gives a substantial
lower amount of false positives then the current system. The system created by us during this project
enables bunq to combine this machine learning model and a set of pre-defined rules to classify a
transaction as being possibly fraudulent or not, in a production environment. Furthermore, the system
gathers and calculates all the needed data in an efficient manner. Next to this, a Grafana dashboard
has been implemented which allows bunq to monitor the performance of our system, as well as the
performance of the machine learning model and the pre-defined rules.

Of course, there are still enhancements which can be implemented.
. . We have described our recommendations for fu-

ture work in chapter 9.

A lot of effort was put into ensuring the maintainability of the system. This does not only mean
that the code is very well tested, reviewed and documented, but also that it complies with the coding
conventions that are currently in place at bunq. This was done to fulfill the clients wish of a system that
would fit into the currently existing back-end.

Everything mentioned above was achieved by strictly following the proposed software development
methodology. The relevance for bunq and it’s users, the use of a lot of real-world data and the integra-
tion in a very large and complex existing back-end have made this project a unique and very exiting
challenge.

39

9
Recommendations and ethics

Although we delivered a fully working product at the end of this project, there are of course always
enhancements which can be made. We will describe our recommendations for future work in this
chapter. Furthermore, we will also dilate upon the ethical side of our project.

9.1. Recommendations
In this section, we will describe our recommendations for future work. These recommendations relate
to the improvement of our system given the expanding of bunq and some unimplemented components
which were not vital for our application. These components were not implemented due to the short time
span of this project.

9.1.1. Specific machine learning models
.

.
.

.

.

.
. .

9.1.2. Data storing
As we described in this report, we researched the possibility to use data stores to store the complex
input features for the machine learning model and the pre-defined rules. We already designed a pos-
sible set-up for the data store in section 6.1.2. However, we chose to focus on making our system
production ready instead of implementing this design. Although we already greatly optimized the time
it takes to calculate the features, we still think a data store would result in an even bigger optimization.

9.1.3. Load tests
During the project, we extensively unit and integration tested our system. The next testing step is per-
forming load tests, to see how many transactions our application can handle in a certain time frame.
Sadly, we did not have the time to perform these tests ourselves. For systems that are built to consis-
tently run all the time, it is important to find out what the boundaries are.

9.1.4. Use the generated data
Our system is generating and storing a lot of data about the classification of a transaction. It is also
showing statistics about these classifications in the Grafana dashboard. Future work could focus on

41

42 9. Recommendations and ethics

using this data to gather new insights about fraud. From this, new machine learning features and rules
could be derived.

9.2. Ethics
The system that we actually implemented does not have a big ethical aspect. However, the input
for the machine learning model and the pre-defined rules which is gathered and calculated within our
application does. These ethical issues will be described in this section.

9.2.1. User data
The transaction monitoring system is a transaction based classifier. This means that the system uses
information about a transaction to flag a transaction. Because we are flagging transactions and not
people, it would seem that there is no ethical side to this system. However, the system is using infor-
mation about the owner of the transaction during classifying. This does cause an ethical question. Is
it permissible that the transaction monitoring system uses all the information available about a user?
Should it for example take into account that a certain user has committed fraud three years ago, even
when that user was already punished for that crime? Although we are not directly involved in these
decisions, because we do not design the input features, it is still wise to think about the implications of
some of these decisions. Our system does not distinguish different input features, so in theory it could
be used to run a very biased machine learning model. This is why we strongly recommend to think
about the ethical implications before using new input features.

9.2.2. EU General Data Protection Regulation
In 2016, the General Data Protection Regulation (GDPR) [10] was signed into action. A part of this
regulation is the so called ‘right to explanation’. This describes the right of a consumer to receive
an explanation about why a certain decision was made by for instance a company. In this project’s
environment, this means that a user has the right to know why his transaction was flagged or not. With
the current system, this is not a problem. We can show why a transaction was flagged. However, as we
already described in section 2.3.1, it is possible to include deep learning in the transaction monitoring
process . For these deep learning techniques, it is often not
possible to say why it flagged a certain transaction. Only relying on such a system would make it very
difficult to uphold the right to explanation. This is why we would advise to be very cautious in working
with these techniques.

A
Project plan

This project plan gives an oversight of the project assignment and setup. Within this plan, we will
describe the environment in which this project takes place, as well as the goals and requirements for
the final product. Furthermore, we will describe which methods, tools and techniques will be used
during this project and which quality assurance measures need to be taken into account.

A.1. Project assignment
This section will describe the assignment given to us by bunq. The first section describes the environ-
ment in which the project is done. The second section describes the goals of the project, after which the
third section defines the assignment itself. Finally, the product that we will create and it’s requirements
are described in the fourth section.

A.1.1. Project environment
bunq is a software development company with a banking license. The company is focused on making
banking easy and social again, it does this from an IT perspective and using the latest technology.

As a bank you are responsible for the security of your costumer’s money. Therefore, bunq is legally
required to monitor the transactions and scan these for possible fraudulent transactions. A transaction
is the transfer of money from one bank account to another. These transactions can be fraudulent
or non-fraudulent. .

.
.

.
Following the responsibility for the security of the customer’s money, a bank can not afford to have

false negatives. This is why the current system is very careful in the labeling of transactions. This re-
sults in a lot of false positives, which all need to be checked by the transaction monitoring department.
This is a costly and time consuming task.

Being a software development company, bunq wants to improve their transaction monitoring. The
goal of the improvement is to create a new system that classifies transactions into fraudulent and non-
fraudulent using machine learning. This should reduce the amount of false positives and thus make
the process of transaction monitoring more efficient. This should be done while keeping the false
negatives as low, and thereby as trustworthy, as possible. The transactions should be classified as
fast as possible. If possible, the transactions should be classified in real-time.

At this moment a PhD-student, Ali el Hassouni, is working on such an improvement in the form of a
machine learning model which classifies transactions.

43

44 A. Project plan

A.1.2. Project goal
Although a machine learning model is being build, there is not yet a system in place to take the model
into production. There is a need for such a system which allows a machine learning model to work with
the bunq back-end. Furthermore, this system should be able to accept updated models, show statistics
about the used model and compare the performance of these models. As stated above, efficiency is a
very important factor for the system.

A.1.3. Assignment specification
We will create a software product which fulfills the above described goal. To do this, we will start with
researching the problem and the methods needed to connect the model to the existing back-end of
bunq.

It is known that the machine learning model which is currently in place is too slow, mainly because
it uses a lot of input variables. This is why we will start by using a very simple model. However, in a
later phase, part of the assignment is to find a better model or alter the existing one to make it faster.
This process will be guided by Ali el Hassouni.

A.1.4. Final product requirements
The final product will be an application that meets all the described requirements and demands as
specified below. These requirement and demands are specified using the MoSCoW model [7].

Must have

• The systemmust create a connection between a machine learning model and the bunq back-end,
to make the transaction monitoring production ready.

• The system must allow models to be updated.

• The system must show statistics about the performance of the used model.

• The system must be able to compare the performance of different models.

• The system must work efficiently, the threshold given by bunq is to keep the classification of a
transaction under 0.1 second. This ensures that the system can be called real-time.

• The system’s performance must be monitored.

• The system must work on BSD systems.

• The system must meet the quality assurance measures which are stated later in this report.

Should have

•
.

• The current machine learning model should be altered to/replaced by a more efficient model.

• The used machine learning model should reduce the amount of false positives, without increasing
the amount of false negatives.

Could have

• There could be a function to train the model with new data, without replacing the model.

• There could be an overview of all the used models and their performances.

• There could be a feature to run several models at the same time.

Won’t have

• We will not make our own machine learning model, but use an existing framework.

A.2. Project Setup 45

A.2. Project Setup
To run a project there a multiple aspects to take into consideration. This section describes which
methods, tools and techniques are used, it gives a global planning and states information about the
contracts with bunq.

A.2.1. Methods
During the project, we will make use of SCRUM [29] to regulate the development. While we do not
have a lot of time available to deliver a working product, we will work in weekly sprints. During these
weekly sprints we split and prioritize the product backlog as much as possible, which will enable us to
combine these small parts in a ’better’ product, every week. Daily stand-ups (in the morning) will help
us to check if we are on schedule. At the end of each day we will send a daily status update to our
coach from bunq. This status update generally describes what we did that specific day. It helps us to
reflect on our own work and it forms a base for the daily standup. Furthermore it gives bunq an insight
in what we are doing and if we are still working on schedule. Moreover, we will discuss our progress
and results with the client two times a week. This way we can get fast and direct feedback and the
client stays up-to-date. We will also have a weekly meeting with our TU coach to make sure that what
we are doing is still in line with the course guides.

A.2.2. Tools
bunq provided us all with a MacBook to work on during the project. We were given our own office
space to work during the whole project, located at bunq in Amsterdam. We will use notebooks or our
MacBook to record meetings, so that we do not miss or forget valuable information or discussions.
Furthermore, bunq provided us with all the necessary development software and tools.

A.2.3. Techniques
The product we are going to build will be an application which uses a machine learning model to classify
possible fraudulent transactions and show statistics about this model. This results in three parts:

• Connection application: an application that works with the bunq back-end and uses a machine
learning model to create transaction monitoring classifications.

• Dashboard: a web-application which shows statistics and comparisons about the performances
of the used machine learning models.

• Machine learning model: the altered/replaced machine learning model which is used by the con-
nection application.

In the research report we will describe the different options and substantiate our choices. To guarantee
quality of our code, SIG will look at our code and give us feedback, which we will then use to improve
our code.

A.2.4. Planning
We set the project up in different phases: getting started, research, development and finishing. Getting
started includes setting up the development environment, getting to know the company and creating
the project plan. This phase ends at the start of the second week. During the research phase, we will
create the research report. The research report will show howwe are going to build the product and why
we will make certain choices. This phase should be finished after the second week. After the research
phase, the development phase starts. Development includes everything related to the creation of the
product: software design, writing code, testing, SIG, etc. Every week we want to deliver a new version
of the product. In the middle of the project there will be a mid-term project meeting, together with the
client and the TU coach. It is important that everything we do during the development phase is well
documented, this information will be used to create the final report. The last phase, finishing, consist
of transferring the knowledge of the system and how to use it to bunq, completing the final report and
making and giving the final presentation.

The table below shows the planning for the project, the dates shown are indications of the deadline
dates.

46 A. Project plan

Date Description
01-05-2017 Project plan
03-05-2017 First draft research report
08-05-2017 Final research report
15-05-2017 Finish software design
16-05-2017 Start coding
29-05-2017 Mid-term project meeting
01-06-2017 SIG first submission
26-06-2017 SIG second submission
26-06-2017 Submission Final Report
3/4-07-2017 Final Presentation

A.2.5. Contract
bunq is a bank, therefore it interacts with a lot of personal and privacy sensitive data. Because of
this, everything we do falls under an NDA we signed. This means that all code and the information
discussed in this report stays property of bunq and may not be made publicly available until bunq, or
the NDA, allows it. Besides the NDA we have signed a contract and swore the ’Banker’s oath’. The
contract includes basic internship details. The oath has been made a legal requirement for employees
of banks that work/interact with client data, after the 2008 financial crisis.

A.3. Quality assurance
This section describes four topics which need to be taken into account during this project: functionality,
maintainability, efficiency and security and privacy. These topics relate to assuring the quality of the
final product, as well as the quality of the project itself.

A.3.1. Functionality
As stated in this project plan, the goal of transaction monitoring is to find fraudulent transactions in a
large set of transactions. Within our project environment, it is very important that our product functions
correctly. This importance is best explained by looking at the consequences of a false positive and a
false negative, which determine the correctness of the product (more false positives/negatives cause
a lower correctness).

False positive Here a non-fraudulent transaction is labeled as a fraudulent transaction. False pos-
itives lead to a large amount of work, because flagged transactions need to be checked manually.
Although false positives lead to a higher workload, they do not lead to a product which detects less
fraudulent transactions. A product which gives false positives, but no false negatives, would flag every
fraudulent transaction.

False negative Here a fraudulent transaction is labeled as a non-fraudulent transaction. A false neg-
ative is more harmful then a false positive. This is due to the fact that, while a false positive only leads
to a higher workload, a false negative causes a product which detects less fraudulent transactions.
While the main goal of the product is to detect fraudulent transactions, false negatives are very harmful
to the correctness of the product.

From these descriptions, we conclude that the final product should minimize the amount of false
positives and false negatives, where the false negatives are more harmful then the false positives. This
is related to the goal to create a product which correctly flags fraudulent transactions in an efficient
manner.

A.3.2. Maintainability
The goal of our project is to create a product which will be used by bunq, after our project is finished.
As a result, the code that we create should be highly maintainable so it can be used and altered by
other employees of bunq. bunq requires that all the code is written compliant to the PSR-2 coding style
guide [12]. Furthermore, the code has to be extensively documented and thoroughly tested.

A.3. Quality assurance 47

A.3.3. Efficiency
While our product has to deal with very large sets of transactional data, efficiency is a key aspect in
creating a useful classification of the data. The project goal is to create a real-time application. If our
product would not be efficient enough, it would take to much time to classify the data and the product
would not work real-time. Because we are working with transaction data, the classification loses it’s
usefulness if it takes too much time.

A.3.4. Security and privacy
bunq is a bank, therefore security and privacy are key aspects of everything they do. During this
project we will be working with transaction data of real users, and so will the final product. Of course,
the financial data of a user should remain private. To ensure this, our final product should meet bunq’s
high security standards. We will also take the security and privacy into account while working on this
project. For example, this means that we will only work on the MacBook provided to us by bunq and we
will only store the data on machines owned by bunq. Furthermore we will only use anonymized data
to test our product.

B
Software Improvement Group

Over the course of this project, we had to send our code to the Software Improvement Group (SIG) two
times. After the first submission, we received feedback which we then integrated before our final code
submission. This chapter contains SIG’s feedback, as well as our response to this feedback.

B.1. First feedback
One June 12፭፡, we received the following feedback from SIG.

De code van het systeem scoort 3,5 ster op ons onderhoudbaarheidsmodel, wat betekent
dat de code gemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere
scores voor Duplication.

Voor Duplication wordt er gekeken naar het percentage van de code welke redundant is,
oftewel de code die meerdere keren in het systeem voorkomt en in principe verwijderd zou
kunnen worden. Vanuit het oogpunt van onderhoudbaarheid is het wenselijk om een laag
percentage redundantie te hebben omdat aanpassingen aan deze stukken code doorgaans
op meerdere plaatsen moet gebeuren.

In jullie geval zit er bijvoorbeeld duplicatie tussen
.

Deze classes implementeren allebei de interface genaamd Feature, dus dit duplicaat wi-
jst op een architectuurprobleem. Het is hier beter om een nieuwe abstract class te intro-
duceren voor het gedeelde gedrag, om te voorkomen dat je later meerdere kopieën van de
code parallel moet onderhouden. De keerzijde hiervan is dat je een vrij diepe inheritance-
keten krijgt (eerst de interface Feature, dan de nieuwe abstract class, dan

, en dan pas de daadwerkelijke implementatie). In dit
geval is deze oplossing desondanks beter. De hoeveelheid code in jullie systeem is nu nog
vrij klein, en als er nu al duplicatie tussen die twee classes zit is het zeer aannemelijk dat de
hoeveelheid duplicatie later in de levensloop nog verder gaat groeien.

De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het volume van
de test-code ook groeien op het moment dat er nieuwe functionaliteit toegevoegd wordt.

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit niveau te be-
houden tijdens de rest van de ontwikkelfase.

This is our translation of the feedback to English.

The code of the system scores 3.5 stars on our maintenance model, which means that the
code is average maintainable. The highest score was not achieved because of a low score on
Duplication.

Duplication looks at the percentage of code which is redundant, in other words code which
is found multiple times in the system and which could be deleted. From a maintenance

49

50 B. Software Improvement Group

point of view, it is desirable to have a low redundancy percentage because changes to these
pieces of code usually need to happen on multiple places.

In your case, there is duplicationbetween .
These classes both implement the interface named Feature, so this duplicate points out a
architectural problem. It is better to introduce a new abstract class for the shared behaviour,
to prevent several copies of the code which need to bemaintained parallel in the future. The
downside of this is there you create a pretty deep inheritance chain (first the interface Fea-
ture, then the new abstract class, then
and then the actual implementation). However, this solution is better in this case. The
amount of code in your system is still pretty comprehensible, if there already exists duplica-
tion between those two classes it will be very likely that the amount of duplication will grow
in the future.

The presence of test code is promising, the volume of test code will hopefully grow when
new functionality is introduced.

In general, the code scores above average, hopefully this level will be retained during the
rest of the development stage.

B.2. Our response
First of all, we were very pleased with the feedback we received from SIG. Their report is mostly very
positive. The only negative thing that they point out is the existence of code duplication. From their
feedback and our own code scans, we saw that code duplication exists within the feature classes. We
fixed this by implementing their proposed solution, we created new abstract classes which included
functions which were duplicated within features. The features now extend these abstract classes.

As you can read in this report, our application went through a redesign stage. Sadly, this was done
right after we send our initial submission to SIG. This is why the code base changed a lot in between
the two SIG submissions, which is why we think it will be difficult to compare the two submissions.
However, the above mentioned features are still present in the code base. Because this was the only
feedback, we were still able to process all of SIG’s feedback in the refactored application.

B.3. Second feedback
On June 30፭፡, we received the following final feedback from SIG.

In de tweede upload zien we dat zowel de omvang van het systeem als de score voor on-
derhoudbaarheid is gestegen. Deze stijging is deels veroorzaakt door een verbetering op
het gebied van Duplication, dat in de feedback op de eerste upload als verbeterpunt werd
aangemerkt. Daarnaast hebben jullie los van onze feedback nog een aantal verbeteringen
in het gebruik van lange parameter-lijsten doorgevoerd.

Ook is het goed om te zien dat jullie naast nieuwe productiecode ook aandacht hebben
besteed aan het schrijven van nieuwe testcode.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige evaluatie
zijn meegenomen in het ontwikkeltraject.

This is our translation of the feedback to English.

Within the second upload, we see that the size as well as the maintainability score of this
system has increased. This increase is partly caused by an improvement on Duplication,
which was part of the suggested improvements in the first feedback. Moreover, you have
made a number of improvements in the usage of large parameter lists separately from the
feedback we have given.

Furthermore, it is good to see that you have focused on writing new test code next to your
new production code.

From these observations, we can conclude that the proposed improvements of the first feed-
back are implemented during the development process.

C
Original project description

The following description was given by bunq on BEPSys.

C.1. Project description
As a young and innovative mobile bank, we made it easy for customers to set up a bank account and
make payments. An inescapable part of being a bank is the fact that people try to use their accounts
to commit fraud. With our fraud detection and prevention systems we are able to catch these fraud-
sters. However, these people will keep trying out new strategies to stay under the radar. To always be
one step ahead in this cat-and-mouse game we are tweaking and improving our fraud detection and
prevention systems by testing on historical data. This process proves to be time consuming and labor
intensive.

That’s where you come in. You will build an interface that will make it possible to test the perfor-
mance of custom monitoring rules and machine learning models on the fly using historical data. The
interface should communicate with our backend systems and provide statistics and visualizations about
the performance of newly defined or tweaked monitoring rules or algorithms.

Possible research questions:

1. How do we ensure this interface is scalable, to accommodate a growing number of historical
transactions and to comply with the complexity of custom rules and inputs needed for the algo-
rithms?

2. What are the requirements for such an interface given our backend systems?

C.2. Company description
bunq is not an ordinary bank. Instead of making more money, we want to reinvent money itself with
mobile technology. That’s why we built our own banking system from scratch, including an app that
fits your entire bank in your pocket. And that’s just the beginning! We’re working non-stop on futuristic
payment methods and other innovations to make money and banking as easy, transparent, and fun as
possible.

51

Transaction Monitoring

ENVIRONMENT
Our project took place at a company named
bunq, a self-proclaimed ‘IT company with
a banking license’. bunq is a bank that
overthrows the traditional way of banking
and focuses on making banking more
personal and social. Instead of an unwieldy
big company (like most other banks), they are
much more agile.

CHALLENGE
Being a bank, bunq deals with transaction
fraud on a regular basis. All transactions that
are handled by bunq are monitored for cases
of fraud by a transaction monitoring system.
When this system flags a transaction as being
possibly fraudulent, a bunq employee has to
manually check this transaction. The problem
with the current system is that it proves
to be time consuming and labor intensive.
This is caused by the fact that there are a
lot of transactions which are falsely flagged
as possibly fraudulent, these transactions
are called false positives. This resulted in
a demand for a system which reduced the
number of false positives and thereby the
time needed to manually check the flagged
transactions.
 To fulfill this demand, bunq has been
working on creating a machine learning
model which classifies transactions as
fraudulent or not. This machine learning
model showed promising results during test
runs on historical data. However, it was not
yet production ready, because it was very
slow and there existed no connection with
the existing bunq back-end. Our challenge
was to design a system which enables the
in production usage of a machine learning
model for transaction monitoring.

PRODUCT
During the project, a new transaction
monitoring system was designed and
implemented. The new system uses a
combination of a bunq-made machine
learning model and a set of pre-defined rules
to flag a transaction as possibly fraudulent
or not. The final system implementation
consists out of five different components: (1)
an incoming transaction system, responsible
for noticing new transactions and segregating
those over different workers so that they can

be classified in parallel, (2) an information
gathering system, which efficiently gathers
large sets of needed information for the
classification, (3) a machine learning model
server, which enables fast communication
with altering machine learning models,
(4) a set of pre-defined rules, which check
transactions for indicators of fraud and (5) a
dashboard which monitors the performance
and statistics of the machine learning model,
the pre-defined rules and our system.
 The system is fully tested by unit and
integration tests. Furthermore, new machine
learning models and pre-defined rules can be
easily adopted.

RESEARCH
During the research phase, we focussed
on how our application would fit into the
currently existing bunq systems. Furthermore,
we looked into fast ways of accessing data
and the monitoring of our application.

PROCESS
Over the course of this project, we have been
working at the bunq office in Amsterdam.
Being there every day made it possible for us
to quickly get answers to all our questions.
During the development phase, we followed
the agile methodology.
 During the project, we found out that our
application would be integrated in the bunq
back-end. This caused a pivot in our focus to
make our application production ready.

OUTLOOK
The final implementation of the system is
focused on integrating the system in the
currently existing bunq back-end, because the
system will actually be used in production.
 Recommendations for future work were
made to further improve the efficiency and
accuracy of the sytem. This incluces data
storing, using specific machine learning
models and performing load tests.
 The relevance for bunq and it’s users,
the use of a lot of real-world data and the
integration in a very large and complex
existing back-end have made this project a
unique and very exiting challenge.

Project team

Tom Harting

Interests

Data science, machine learning

Contributions

Database research

Feature implementation

General report chapters

Sven Popping

Interests

Machine learning, software
engineering

Contributions

Back-end research

Rule implementation

Deamon and qommander

Mathieu Post

Interests

Software development, artificial
intelligence

Contributions

Machine learning model:

 research

 server

 communication

Daniël Swaab

Interests

Artificial intelligence, human
computer interaction,
entrepreneurship

Contributions

Monitoring and statistics:

 research

 design

 implementation

Contributions by all members

Specific report chapters

Creating the final presentation

General code design

General code implementation

Contact information

Client: bunq

Ir. Wessel Van

Developer at bunq

Contact persons

Tom Harting

Sven Popping

Mathieu Post

Daniël Swaab

TU Coach

Prof. dr. C. Lofi

Web information systems

Software technology

The final report for this project can be found at: http://repository.tudelft.nl

Presentation date: 03-07-2017

Bibliography
[1] Apache. Apache spark mllib, 2017. URL http://spark.apache.org/mllib/. Accessed on

05-05-2017.

[2] B. Baesens, V. Van Vlasselaer, and W. Verbeke. Fraud Analytics Using Descriptive, Predictive,
and Social Network Techniques: A Guide to Data Science for Fraud Detection. John Wiley &
Sons, 2015.

[3] De Nederlandsche Bank. Concept good practices transactiemonitoring bij trustkantoren, October
2016. URL http://www.toezicht.dnb.nl/binaries/50-235823.pdf. Accessed on 02-
05-2017.

[4] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning
algorithms. In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06,
pages 161–168, NewYork, NY, USA, 2006. ACM. ISBN 1-59593-383-2. doi: 10.1145/1143844.
1143865. URL http://doi.acm.org/10.1145/1143844.1143865.

[5] AWS Cloudwatch. Aws cloudwatch. URL https://aws.amazon.com/cloudwatch/. Ac-
cessed on 10-05-2017.

[6] David Cournapeau. scikit-learn: machine learning in python, 2017. URL http://
scikit-learn.org/. Accessed on 05-05-2017.

[7] Andrew Craddock, Barry Fazackerley, Steve Messenger, Barbara Roberts, and Jennifer Staple-
ton. DSDM Atern Handbook. DSDM Consortium, July 2008.

[8] Ali el Hassouni. Fraud detection using machine learning methods. Master’s thesis, Vrije Univer-
siteit Amsterdam, 2017.

[9] Elasticsearch. Elasticsearch. URL https://www.elastic.co. Accessed on 10-05-2017.

[10] EU. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on
the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).
Official Journal of the European Union, L119:1–88, May 2016. URL http://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC.

[11] Graphite. Graphite makes it easy to store and graph metrics. URL https://graphiteapp.
org/. Accessed on 04-05-2017.

[12] The PHP Framework Interop Group. Psr-2: Coding style guide. URL http://www.php-fig.
org/psr/psr-2/. Accessed on 01-05-2017.

[13] H2O. H2O.ai: predicts fraud and stops it in it’s tracks, 2017. URL https://www.h2o.ai/.
Accessed on 03-05-2017.

[14] InfluxDB. Influxdb. URL https://www.influxdata.com/. Accessed on 10-05-2017.

[15] JetBrains. Kotlin programming language, 2017. URL https://kotlinlang.org/. Accessed
on 03-06-2017.

[16] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science,
349(6245):255–260, July 2015.

53

http://spark.apache.org/mllib/
http://www.toezicht.dnb.nl/binaries/50-235823.pdf
http://doi.acm.org/10.1145/1143844.1143865
https://aws.amazon.com/cloudwatch/
http://scikit-learn.org/
http://scikit-learn.org/
https://www.elastic.co
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://graphiteapp.org/
https://graphiteapp.org/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
https://www.h2o.ai/
https://www.influxdata.com/
https://kotlinlang.org/

54 Bibliography

[17] Kristof Kovacs. Cassandra vs mongodb vs couchdb vs redis vs riak vs hbase vs
couchbase vs orientdb vs aerospike vs neo4j vs hypertable vs elasticsearch vs ac-
cumulo vs voltdb vs scalaris vs rethinkdb comparison. URL https://kkovacs.eu/
cassandra-vs-mongodb-vs-couchdb-vs-redis? Accessed on 24-05-2017.

[18] Tom Kyte. The trouble with triggers. Oracle magazine, September 2008. URL http://www.
oracle.com/technetwork/issue-archive/2008/08-sep/o58asktom-101055.html.

[19] mlpack. What does mlpack implement?, 2017. URL http://www.mlpack.org/about.html.
Accessed on 05-05-2017.

[20] OpenTSDB. Opentsdb. URL http://opentsdb.net/. Accessed on 10-05-2017.

[21] Szilard Pafka. Benchmark for scalability, speed and accuracy of machine learning libraries for
classification, 2017. URL https://github.com/szilard/benchm-ml. Accessed on 05-05-
2017.

[22] Prometheus. Prometheus db. URL https://prometheus.io/. Accessed on 10-05-2017.

[23] r project. The r project for statistical computing, 2017. URL https://www.r-project.org/.
Accessed on 05-05-2017.

[24] G. L. Sanders and Seungkyoon Shin. Denormalization effects on performance of rdbms. InSystem
Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference, pages 9–pp.
IEEE, 2001.

[25] Ricardo Jorge Santos and Jorge Bernardino. Real-time data warehouse loading methodology.
In Proceedings of the 2008 International Symposium on Database Engineering and Applications,
IDEAS ’08, pages 49–58, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-188-0. doi: 10.
1145/1451940.1451949. URL http://doi.acm.org/10.1145/1451940.1451949.

[26] Shivkumar, Hasmukhrai, and Trivedi. Software testing techniques. International Journal of Ad-
vanced Research in Computer Science and Software Engineering, 2(10), October 2012.

[27] Pivotal Software. Springboot, 2017. URL https://projects.spring.io/spring-boot/.
Accessed on 03-06-2017.

[28] Open source sponsored by Stitch. Singer. URL https://www.singer.io. Accessed on 05-
05-2017.

[29] Hirotaka Takeuchi and Ikujiro Nonaka. The new new product development game. Harvard Busi-
ness Review, 64:137–146, 1986. URL http://apln-richmond.pbwiki.com/f/New+New+
Prod+Devel+Game.pdf.

[30] Christian Thomsen and Torben Bach Pedersen. Pygrametl: A powerful programming framework
for extract-transform-load programmers. In Proceedings of the ACM Twelfth International Work-
shop on Data Warehousing and OLAP, DOLAP ’09, pages 49–56, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-801-8. doi: 10.1145/1651291.1651301. URL http://doi.acm.
org/10.1145/1651291.1651301.

[31] Panos Vassiliadis and Alkis Simitsis. Extraction, Transformation, and Loading, pages 1095–1101.
Springer US, Boston, MA, 2009. ISBN 978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9_
158. URL http://dx.doi.org/10.1007/978-0-387-39940-9_158.

https://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis?
https://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis?
http://www.oracle.com/technetwork/issue-archive/2008/08-sep/o58asktom-101055.html
http://www.oracle.com/technetwork/issue-archive/2008/08-sep/o58asktom-101055.html
http://www.mlpack.org/about.html
http://opentsdb.net/
https://github.com/szilard/benchm-ml
https://prometheus.io/
https://www.r-project.org/
http://doi.acm.org/10.1145/1451940.1451949
https://projects.spring.io/spring-boot/
https://www.singer.io
http://apln-richmond.pbwiki.com/f/New+New+Prod+Devel+Game.pdf
http://apln-richmond.pbwiki.com/f/New+New+Prod+Devel+Game.pdf
http://doi.acm.org/10.1145/1651291.1651301
http://doi.acm.org/10.1145/1651291.1651301
http://dx.doi.org/10.1007/978-0-387-39940-9_158

	Preface
	Summary
	Introduction
	Research stage
	Problem definition and analyses
	Problem Definition
	Current Situation
	Our Assignment

	General Structure
	Machine learning model
	Deep learning and GBM
	Frameworks

	Back-end connection
	bunq back-end
	Connection options

	Gathering data
	Input features
	bunq database
	Efficiency solutions
	Used data

	Monitoring
	Other aspects
	Programming language
	Testing
	Dataset

	Conclusions

	Software development methodology
	Agile
	GitLab
	Experiences and contact with the client and coach

	Stage one: Minimal viable product
	Initial software design
	MVP overview
	Job controller
	Machine learning worker

	Problems during implementation
	Used design patterns

	Stage two: Filter rules, monitoring and training
	Filter rules
	Initial software design
	Problems during implementation
	Used design patterns

	Monitoring
	Initial Design
	Problems during implementation

	Training
	Initial software design
	Problems during implementation

	Stage three: Fast access to data
	Data from the database
	Data gathering alternatives
	Initial software design

	From H2O's Steam to our own implementation
	The old situation
	Used language and framework
	The new situation

	Stage four: Making the system production ready
	Pivoting our focus
	Updated software design
	Direct database querying instead of data store
	Workflows
	Storing features for training
	Mapping in code instead of database
	Naming conventions
	Shell commands instead of queue

	Optimizing the execution time

	Conclusions
	Recommendations and ethics
	Recommendations
	Specific machine learning models
	Data storing
	Load tests
	Use the generated data

	Ethics
	User data
	EU General Data Protection Regulation

	Project plan
	Project assignment
	Project environment
	Project goal
	Assignment specification
	Final product requirements

	Project Setup
	Methods
	Tools
	Techniques
	Planning
	Contract

	Quality assurance
	Functionality
	Maintainability
	Efficiency
	Security and privacy

	Software Improvement Group
	First feedback
	Our response
	Second feedback

	Original project description
	Project description
	Company description

	D Infosheet
	Bibliography

