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Abstract

Adaptive Cruise Control (ACC) relieves human drivers’ tasks by taking over the control of
the throttle and braking of the vehicles automatically. However, it has been demonstrated
in many empirical studies that current production ACC systems fail to guarantee string sta-
bility. It is believed that if vehicles can take the longitudinal dynamics further downstream
into account and react to the propagating disturbance earlier, the string stability in the
platoon may be improved. Instead of relying on inter-vehicle communication technolo-
gies, the ego-vehicle should be able to detect the second leading vehicle by leveraging the
power of on-board sensors. Still, the second leader measurements can be highly erroneous.
Therefore, it is important to consider the entailed measurement uncertainties when de-
signing and evaluating such ACC systems. This study proposes several ACC systems which
possess the property of multi-anticipation and uncertainty handling.

The possible sensor technology which can collect the second leader measurements is
first investigated. Based on the considered setup, the measurement uncertainties are mod-
elled to reflect the real-world conditions. The ACC system architecture and control system
design method are then proposed. Deep reinforcement learning is applied for the con-
troller design in light of its great potential in describing the complex non-linear control
task and handling the uncertainties. Kalman filters and recurrent policies with a Long-
Short-Term-Memory network are applied to cope with uncertain measurements. The first
method estimates the state information before feeding it back to the controller agent, while
the latter incorporates the state estimator into the controller to actively consider the uncer-
tainties while making decisions.

A numerical simulation approach is adopted to theoretically assess the performance of
the proposed ACC systems. A traffic disturbance event and multiple levels of measurement
noise are considered in the experiment. To analyze the performance in terms of string
stability and ride comfort and understand the car-following behavior mechanism resulted
from the proposed systems, a quantitative analysis framework is developed.

The evaluation results demonstrate the applied learning-based approach succeeds to
train ACC control policies which can ensure string stability. It is also found that the multi-
anticipation ability significantly improves the string stability and ride comfort performance.
In the scenarios with measurement noise, systems using the tuned Kalman filters exhibit
the ideal level of string stability performance. However, ride comfort cannot be guaranteed
in scenarios with large measurement noise. On the other hand, systems using recurrent
policies can better ensure ride comfort performance while maintaining string stability at
certain levels. Based on the results, the performance limits of the proposed ACC systems
in the handling of measurement uncertainties are explored. In addition, with the different
policy training setups, the trade-off between these two performance aspects is shown.

The findings of this study are anticipated to trigger the development of advanced multi-
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vi Abstract

leader ACC system by automakers, sensor manufacturers, and traffic engineers. Future
work can be directed to an enhanced controller design. Robustness of the systems with
respect to other sources of measurement uncertainties, more types of traffic disturbance,
and platoon heterogeneity is worth further design consideration and analysis.
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1
Introduction

This chapter introduces the background of the research topic and the problem definition.
Several research questions are proposed according to the research problem defined. The
scope and overall structure of the study are also described at the end.

1.1. Background

Autonomous vehicles (AV), or self-driving vehicles, have gained a lot of attention from the
truck industry, public transport agencies, and private car users in recent years. It is be-
lieved that AVs can improve the road safety by removing human errors, provide mobility to
people with inconvenience, increase the traffic efficiency by optimizing driving behaviors,
and hence reduce the vehicle emissions (European Commission, 2018). Many studies have
tried to predict the market penetration rate of AVs and timeline of AV-related development.
Milakis et al. (2017) stated that the fully automated vehicles are expected to be available be-
tween 2025 and 2045. However, various advanced driver assistance systems (ADAS), each
representing a level of automation, have already been widely implemented on commercial
vehicles nowadays.

Typical functionalities in ADAS include Adaptive Cruise Control (ACC), lane keeping
assistance, forward collision warning and avoidance, automated emergency braking, and
parking assistance, etc. This study focuses on the design of ACC, which is one of the most
commonly-discussed applications in ADAS. It adapts the vehicle acceleration according to
the desired spacing policy by using the measurements collected by on-board sensors in the
driving environment. The development of this vehicle automation functionality achieves
the Society of Automotive Engineers (SAE) level 1 automation. Various ACC systems have
already been widely-implemented on commercial vehicles nowadays. Calvert et al. (2017)
summarized that the share of ACC-equipped vehicles on roads will reach approximately
20% by 2035. The purpose of ACC is to enhance the ride comfort and convenience by adapt-
ing the speed of the vehicles automatically. According to the measurements collected from
on-board sensors, ACC systems reduce the gap deviation between the preceding vehicle
and the ego-vehicle from the desired spacing policy.

1
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Early ACC systems have already shown their positive effect on improving ride comfort
and reducing fuel consumption (Marsden et al., 2001; Xiao and Gao, 2010). However, when
looking at the system from a traffic engineering perspective, the automated control over
the vehicle longitudinal dynamics provided by ACC systems can greatly influence the traf-
fic flow efficiency and stability. The effect of ACC systems on traffic flow performance has
received a lot of attention from both the automotive industry and the research community
of intelligent vehicles (T. Li et al., 2022; Makridis et al., 2020; Spiliopoulou et al., 2018; Van-
derWerf et al., 2002). In particular, the results in van Arem et al. (1996) and Calvert et al.
(2017) both showed that the presence of AVs does not necessarily bring positive effect on
traffic flow and road capacities in scenarios with high traffic demand or certain ACC pene-
tration rates.

When multiple vehicles equipped with ACC systems drive along each other by following
the behaviors of their predecessors, an ACC vehicle platoon is formed. It was demonstrated
in many field experiments and empirical studies that platoons consist of vehicles equipped
with current commercial ACC systems could not ensure string stability, indicating that the
disturbance caused by the preceding vehicle would be amplified as it propagates upstream
along the platoon (Ciuffo et al., 2021; Gunter et al., 2021; Knoop et al., 2019). Marsden
et al. (2001) pointed out a specific case which could result in such a platoon instability. It
was found that when a vehicle cut-in to the head of the platoon, a deceleration wave could
propagate along the platoon and hence formed a shockwave when the first leading vehi-
cle applies a braking. The factors leading to the amplification of shockwave disturbance,
which is the so-called string instability, could be the reaction delay of following vehicles,
e.g. actuator time lag and sensor delay, determined spacing policy, and parameters in the
ACC controller (T. Li et al., 2021; Makridis et al., 2020; J. Zhou and Peng, 2005). Moreover,
the problem of string instability not only induces shockwaves which degrade the traffic flow
efficiency but also leads to increased energy consumption and unsafe traffic situations in
extreme cases. The vehicles at the tail of an unstable platoon would even experience ACC
disengagement or come to a complete stand still when its braking motion is too obtrusive.
With the increasing number of ACC-equipped vehicles on public roads, this problem needs
to be addressed.

To mitigate the amplification of traffic disturbances and improve the string stability of
AV platoons, the benefit of cooperative ACC (CACC) systems which employ wireless inter-
vehicle communication technologies, the so-called Vehicle-to-Vehicle (V2V) communica-
tion, has been frequently discussed and investigated in recent years. When individual ve-
hicles can obtain and utilize the in-car information of its direct preceding vehicle, e.g. de-
termined vehicle acceleration in the next time step, or even information of numerous pre-
ceding vehicles, the string stability of the platoon can be guaranteed. The improved traffic
flow performance brought by CACC systems has been demonstrated by many studies us-
ing theoretical analysis and simulation approaches (Ploeg et al., 2014; Pueboobpaphan and
van Arem, 2010; Schakel et al., 2010; Shladover et al., 2012).

As mentioned above, major research endeavor has evolved from ACC to CACC systems
for the sake of string stability performance. However, the employment of CACC systems
heavily relies on communication technologies to achieve information-sharing between ve-
hicles (Shladover et al., 2015). To ensure string stability, a certain penetration rate of con-
nected and autonomous vehicles (CAVs) is required, which is still rather difficult to achieve
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nowadays. In addition, there are many concerns regarding the adoption of wireless com-
munication technologies, such as its unreliability, privacy issues, and the risk of cyber at-
tacks. The consequence after communication breakdown is also one of the critical prob-
lems which should be considered. Hence, there are still many difficulties for practitioners
to tackle before CACC systems can be broadly accepted and implemented.

1.2. Problem statement

According to the aforementioned difficulties and concerns, we seek to improve the string
stability performance of ACC systems by exploiting the capability of sensors instead of us-
ing communication technologies to achieve any level of cooperative behaviors. If the mea-
surements of leaders further ahead can be collected from on-board sensors, the vehicle can
respond to the downstream car-following dynamics earlier and more accurately to prevent
from overreacting to the disturbance. This also resembles the behavior of human drivers
who look at more than one vehicle ahead to adapt their car-following behaviors, which
was demonstrated by Hoogendoorn et al. (2006) and Ossen (2008). This kind of driving
behavior, which enhances drivers’ situation awareness, is called multi-anticipation. For
AVs, Gorter (2015) also emphasized the importance of designing an ACC system which can
look at more than one predecessor so that the traffic safety can be improved even when the
ACC-equipped vehicles are driving at a relatively short headway.

A few studies have already designed such kind of CACC systems which possess the prop-
erty of the multi-anticipation by looking at multiple predecessors to control the longitu-
dinal motion of the ego-vehicle (Dollar et al., 2021; Hasebe et al., 2003; Wang, Daamen,
Hoogendoorn, et al., 2014a; Wilmink et al., 2007). Given the current development of sensor
technologies, we believe that this kind of autonomous driving ability should be technically
achievable even without the help of communication technologies. ACC-equipped vehi-
cles should be able to collect information from not only the direct leader but also those
occluded leaders further downstream by using on-board sensors. Information related to
how the state-of-the-art sensor technologies can achieve a non-line-of-sight detection and
perceive a completely occluded object will be explained in section 2.4.

After implementing this detection functionality into AVs, its ACC system can then incor-
porate and utilize the measurements of the downstream leaders to determine the accelera-
tion command in the next time step. In the first part of this study, we focus on the design of
the controllers of the ACC systems with the assumption of accurate sensor measurements.
However, different from CACC systems using vehicle communication technologies to ob-
tain information, leveraging sensors to collect measurements from leaders further down-
stream may entail relatively high sensor measurement uncertainties. These uncertainties
may affect string stability and ride comfort. The design of ACC systems which are aware of
the uncertainties and can properly react to them is the other focal point in this study. The
influence of the proposed systems on the platoon performance in terms of string stability
and ride comfort will be assessed.
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1.3. Research questions

This study aims to propose new ACC systems to control the car-following behavior of AVs
and assess their influence on string stability and ride comfort performance in the platoon.
Several research questions are developed and categorized into six groups. The research
methodology should help answer these questions.

The first and second groups of research questions focus on the design of multi-leader
ACC systems considering sensor measurement uncertainties. The second group again em-
phasizes the importance of modelling and handling of measurement uncertainties. To
comprehensively evaluate the performance of the proposed systems, the third, fourth, and
fifth question groups are developed. Each of them tries to explore one of the aspects of
the system performance. Continuing from the third and fourth question groups regard-
ing string stability and ride comfort performance, the last question group considers the
influence of measurement uncertainties. It seeks to explore the performance limit of the
proposed multi-leader ACC system designs and provide a reference for the required level
of sensor measurement accuracy for the multi-leader detection functionality.

Design-related questions:

• What kind of control method for ACC systems has the potential to outperform other types
of controllers in terms of string stability and the handling of measurement uncertainties?
How to design the ACC controllers using the selected control method? Which factors can
and should be considered in the control system design?

• What is the proper way to model and simulate the measurement uncertainties so that
the real-world autonomous driving conditions can be reproduced? When it is known
that the sensor measurements are erroneous, what kind of methods can be used by the
ACC systems to cope with the uncertainties??

Performance-related questions:

• What is the criteria of string stability in this study? Which indicators can be used to ap-
propriately evaluate the string stability performance of the proposed ACC systems?

• While aiming at preserving string stability, can the system still maintain a certain level
of ride comfort for the platoon? How to quantitatively analyze the ride comfort perfor-
mance of the proposed systems?

• What is the benefit of multi-anticipation for the ACC vehicle platoon? How to explore
the positive effect of the proposed multi-leader ACC system compared to the one-leader
system?

• What is the influence of the considered measurement uncertainties on the ACC system
performance? What is the measurement uncertainty boundary for the proposed systems
within which the desired performance in terms of string stability and ride comfort can
still be preserved?
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1.4. Research scope

The problem domain and the limitations of this study regarding the ACC system design,
sensor technology setup, vehicle motion model, and simulated driving environment, are
described in this section.

Vehicles equipped with an ACC system usually have a hierarchical architecture which
consists of an upper-level controller and a lower-level controller. The upper-level provides
the desired acceleration, while the lower-level mechanically controls the throttle and brake
command. H. Zhou et al. (2021) emphasized the importance of the lower-level ACC con-
troller for string stability performance. However, this study focuses on the upper-level con-
troller, which determines the vehicle acceleration in the next decision time step. Therefore,
it is assumed that the lower-level controller and vehicle internal driveline can react pre-
cisely according to the vehicle acceleration command from the upper-level. In addition,
other external factors, including aerodynamics, rolling resistance, and road geometry, are
not considered in this context.

Given the current development of the automotive exteroceptive sensors, AVs are ex-
pected to be able to detect at least two leaders ahead, which are the direct preceding vehi-
cle and the pre-preceding vehicle (herein after referred to as the first and second leaders,
respectively). Figure 1.1 illustrates the possible detection functionality setup when using
RADAR as the major sensor for the detection task. The blue radio waves represent the de-
tection of the first leader, while the green waves propagate to the second leader through
diffraction or reflection under the bottom of the first leader. In this study, following vehi-
cles can only collect preceding information via on-board sensors. Cooperative behaviors or
centralized platoon control which requires the utilization of inter-vehicle communication
technologies is not considered in the defined scope.

Follower (ego-vehicle) First leader Second leader

Figure 1.1: Illustration of multi-leader detection functionality using a RADAR

This study seeks to analyze the string stability of a single lane car-following problem
on motorways, which indicates that only a single vehicle platoon is considered. Multi-lane
driving behaviors, such as lane-changing or merging/diverging behaviors of vehicles in the
platoon, are excluded. Following this setting, false positive alarms in the detection task
are not considered. This also removes the concern of the on-board sensor capability to
distinguish whether the detected second leader is on the same lane with the ego-vehicle
or the adjacent lanes, which is a large difficulty for the vehicle perception system when the
detected object is far away or the surrounding driving environment is complicated.
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1.5. Research outline

The remainder of this study is summarized as follows. Chapter 2 reviews articles regard-
ing the ACC/CACC system development, the definition and analysis approach of the string
stability of a vehicle platoon, sensor technology development, and the modelling and han-
dling of measurement uncertainties. Chapter 3 then introduces the proposed control sys-
tem architecture and explains the methods and tools applied to design the whole control
system in detail.

In chapter 4, several experimental scenarios which can be used to properly test the per-
formance of the proposed ACC systems are created. Although various ACC or CACC con-
trollers utilizing information from multiple predecessors have been proposed, there is still
little understanding of the collective performance and induced effect of a vehicle longitudi-
nal control system with the multi-anticipation capability. Therefore, chapter 4 also aims to
propose a quantitative analysis framework to explore the string stability, ride comfort per-
formance, and behavior mechanism of the vehicles equipped with the ACC systems when
facing a traffic disturbance. Chapter 5 then presents and compares the evaluation results
of each system in the experiment. Figure 1.2 provides an overview for this study.

Literature review

Quantitative analysis

Experimental design

Performance evaluation

Design and simulation tool

Control system design

System architecture 

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Figure 1.2: Research outline

At the end of the report, chapter 6 first summarizes all the findings based on the per-
formance evaluation results. The results are also compared to the previous studies and the
initial hypothesis. The limitations of the methodology in this study are also discussed in
this chapter. Chapter 7 then concludes the study. It again recapitulates the major research
findings and answers those proposed research questions. After giving the conclusion of the
whole study, implications from both the scientific and practical perspectives and recom-
mendations for relevant and possible future work are drawn to deliver messages to other
interested researchers.



2
Literature Review

The research focuses on the design of multi-leader ACC systems and its potential effect
on string stability and ride comfort. This chapter first reviews the literature regarding the
state-of-the-art ACC systems development and modelling. In the second section, the con-
cept of string stability and its different analysis approaches are introduced. The third sec-
tion describes the benefit of multi-anticipative car-following behaviors for traffic and the
ACC/CACC systems proposed in the past which possess such property. The last two sec-
tions discuss the suitable sensor technology setup for the multi-leader ACC driving task by
reviewing the development of commonly-used automotive sensors and the modelling and
handling of sensor measurement uncertainties in past studies. Based on the previous find-
ings, the summary section at the end of this chapter determines the overall methodology
for this study.

2.1. Adaptive cruise control

ACC has been one of the most popular research topics regarding ADAS in recent years. The
earliest development of ACC systems can be viewed as an extension of conventional cruise
control systems. In order to enhance driving comfort and convenience, numerous research
projects and experiments were conducted by experts and vehicle manufacturers in both the
US and Europe around 1990’s to facilitate the development of ACC systems (Marsden et al.,
2001; Xiao and Gao, 2010). After more than 30 years of development, automakers have now
started to extend the availability of ACC systems from premium vehicles to middle-class
commercial vehicles.

Typical ACC controllers are mathematically modelled as a state feedback controller in
the research field. The goal of the ACC controller is to maintain the distance between ve-
hicles according to a specified spacing policy. The controller determines the vehicle ac-
celeration (control signal) and sends it to the lower-level controller. The internal state of
the ego-vehicle and surrounding information would be collected by on-board sensors and
feedback to the controller as the next control input, which forms the closed-loop structure.

7
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CACC systems are the evolution of ACC systems with the help of inter-vehicle commu-
nication technologies. Because of its great potential in ensuring driving safety and effi-
ciency, their development is gaining more attention than that of the ACC system in recent
years. To follow the state-of-the-art ACC-related development, this section also includes
many studies regarding the design and assessment of CACC.

With the improvement of online optimization algorithms and the increasing popularity
of machine learning in the field of control system, ACC systems which apply these various
control methods have also been proposed. The systems can, therefore, be categorized by
the control methods adopted. This section covers three major types of control methods
which were used for the ACC controller design.

2.1.1. Linear and non-linear state feedback control

The most studied ACC controllers use linear state feedback control logic. Typically, the sys-
tem state includes the range error, which is the difference between the current physical gap
and the desired gap based on the spacing policy, and the range rate, which is the relative
speed between the preceding vehicle and the ego vehicle. The distance and speed mea-
surements are collected from on-board sensors and fed back to the controller to determine
the next vehicle acceleration after every time step. The feedback gains in the linear control
logic are specified to represent the sensitivity of the two components in the system state
to the next vehicle acceleration. Its formulation is pretty much similar to a proportional-
derivative (PD) controller. In VanderWerf et al. (2001) and VanderWerf et al. (2002), the
vehicle acceleration in the car-following mode can be calculated by the control law

ai ,k = k1 ·ei ,k +k2 · (vi−1,k−1 − vi ,k−1), (2.1)

where ei ,k is the gap error between vehicle i and vehicle i −1 at time step k, as calculated
by

ei ,k = xi−1,k−1 −xi ,k−1 − td · vi ,k−1. (2.2)

In Eq 2.2, xi−1,k−1, xi ,k−1, vi−1,k−1, and vi ,k−1 are the position and speed of the preceding
vehicle and ego-vehicle in the previous time step. td is the desired time gap based on the
spacing policy specified. k1 and k2 represent the feedback gains of the gap error and relative
speed, respectively.

Stemmed from the above mentioned linear state feedback model, Xiao et al. (2017) pro-
posed an empirical ACC model. The gap error in the controller is calculated by

ei ,k = xi−1,k−1 −xi ,k−1 −d0 − td · vi ,k−1, (2.3)

where d0 represents an additional dynamic spacing margin determined based on the speed
of the ego-vehicle to prevent rear-end collision, as given by
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d0 =


vehicle length if vi ,k−1 ≥ 15m/s

75
vi ,k−1

if 10.8 ≤ vi ,k−1 ≤ 15

vehicle length+2 if vi ,k−1 < 10.8.

(2.4)

Similar to this model, many other ACC car-following models in the literature are vari-
ants of this linear state feedback formulation.

CACC systems can achieve better performance than normal ACC systems by utilizing
more information obtained from vehicle communication technologies. In van Arem et al.
(2006), the proposed CACC systems modified the linear state feedback car-following model
of the original ACC systems by adding the lead vehicle acceleration, an in-vehicle informa-
tion, into the control law

ai ,k = k0 ·ai−1,k−1 +k1 ·ei ,k +k2 · (vi−1,k−1 − vi ,k−1). (2.5)

The term ai−1,k−1 in Eq 2.5 represents the lead vehicle acceleration. With this infor-
mation, the controller can react to the front vehicle behavior more accurately and thus
decrease the minimum desired time gap between vehicles, which increases the traffic flow
capacity more significantly (van Arem et al., 2006; VanderWerf et al., 2001; VanderWerf et
al., 2002).

In addition to the linear models, others have attempted to apply nonlinear car-following
models, which are originally used for modelling human driven vehicles, to both ACC and
CACC systems. Hasebe et al. (2003) proposed a cooperative driving control system by ex-
tending the Optimal Velocity Model (OVM) to include not only multiple preceding vehi-
cles but also vehicles behind. The acceleration is determined by the difference between
the current speed and an optimal speed calculated by a nonlinear function of headways
with other vehicles. However, it is pointed out that the OVM cannot ensure collision-free,
which makes it less applicable for autonomous vehicles. Kesting et al. (2008) used Intelli-
gent Driver Model (IDM) to represent ACC vehicles. The benefit of using IDM over linear
state feedback models is its ability to create a more human-like and comfortable driving
maneuver. It was further enhanced to solve the hard-braking behavior when facing a cut-in
situation in dense traffic (Kesting et al., 2010). The model was again updated to prevent the
originally unrealistic behavior caused by a speed which exceeds the desired speed (Treiber
and Kesting, 2013). The acceleration command generated by the enhanced IDM is calcu-
lated by

aI DM = a

1−
(

v

v0

)δ
−

 s0 +max
[

0, vT + v∆v
2
p

ab

]
s

 , (2.6)

where v represents the current speed of the ego-vehicle, v0 is the desired speed, ∆v calcu-
lates the error between the desired speed and current speed, s denotes the current distance
gap, s0 is the distance gap in standstill conditions, and T indicates the desired time gap. a
and b are parameters representing the maximum acceleration and minimum comfortable
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deceleration, respectively. δ is the parameter for the free acceleration exponent, which is
usually set to δ= 4.

Two most commonly used ACC controller formulations in the literature were intro-
duced above. In VanderWerf et al. (2001), the linear models were used to develop new
simulation methods to test the effect of driver assistant systems on traffic flow dynamics.
These linear state feedback models were further discussed and used in many types of ACC-
related studies to investigate the string stability and traffic flow effect of the ACC system.
For instance, continuing from their previous study, VanderWerf et al. (2002) estimated the
highway capacity for different market penetration rate of ACC and CACC vehicles with lin-
ear controllers through a stochastic simulation approach. There are also several studies
using IDM models as the ACC car-following models to evaluate the performance of ACC
systems. Milanés and Shladover (2014) even implemented an IDM controller into the ACC
system of two commercial vehicles to conduct a car-following experiment. Spiliopoulou et
al. (2018) used IDM as the ACC car-following model to propose a real-time driving behav-
ior adaptation control strategy which changes the time gap setting to improve the traffic
flow efficiency. There are also many studies exploring the string stability of (C)ACC systems
based on these models, which will be discussed in section 2.2.

Many studies tried to calibrate the parameters of these ACC car-following models by
using empirical data to reproduce the behavior of commercial ACC vehicles to evaluate the
state-of-the-art development. James et al. (2019) provided a comprehensive investigation
of the linear and IDM ACC car-following models by first calibrating them according to data
collected from a 2013 Cadillac SRX equipped with a production ACC system. A simulation
approach using VISSIM was then adopted to evaluate the influence of penetration rate and
following headway on macroscopic traffic flow performance. Blauw (2019) also tried to cal-
ibrate the ACC system of an Audi A4. It was found that the ACC system exhibits non-linear
driving behavior, which cannot be represented by a linear model. Shang and Stern (2021)
also followed this kind of framework and pointed out the contradicting results in terms of
string stability and bottleneck capacity between using the model in the literature and using
the calibrated ACC controller. To further enhance the accuracy of ACC models in repro-
ducing the behaviors of commercial systems, He et al. (2022) aimed to augment the linear
controllers, IDM, and Gipps’ car-following model with physics-based extensions, including
perception delay, non-linear dynamics, and acceleration constraints. The vehicle trajec-
tory data collected from the field experiment conducted at AstaZero test track were used
to calibrate the proposed augmented models. However, the results did not show much im-
provement in terms of modelling accuracy compared to those previously-proposed mod-
els before being augmented. In addition, it was found that the best model to represent the
commercial ACC systems is independent of the brand of the vehicles.

2.1.2. Model predictive control

Model predictive control (MPC), or receding horizon control, is one of the most popular
feedback control methods nowadays. In recent years, many studies have been investigating
ACC controller designs based on MPC. By using an optimization approach, various objec-
tives and requirements regarding ecology, efficiency, stability, safety, and limitation of vehi-
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cle dynamics, can be considered in the model simultaneously. The advantage of feedback
control can also be shown by using a prediction model to account for the future system
dynamics.

In MPC, the control signal is determined by solving a minimization problem with a cost
function containing all the objectives and constraints of the system behavior over a finite
time horizon. Corona and De Schutter (2008) proposed an MPC-based control method for
ACC system of a vehicle. The cost function includes the number of gear switchings, con-
trol input variation, and deviation from the leader trajectory. The operational range of the
speed, the largest position deviation with the leader, and comfort acceleration boundary
are designed in the constraints. The simulation of vehicle motion considering the air drag
and tire friction was also used as the prediction model in the MPC framework. The trade-
off between the performance and computation requirements compared with other control
methods was discussed. Naus et al. (2008) applied MPC to design the ACC Stop-&-Go func-
tionality. The primary objective of the MPC-based controller was to follow the leader at a
desired distance according to the constant headway while the traffic efficiency and com-
fort being the secondary objective. The optimization model formulation allows the tun-
ing of the resulting controller by changing a weighting factor in a formulated performance
function related to traffic efficiency and comfort. As highlighted in these two studies, the
MPC-based ACC controller design possesses the ability to consider multiple objectives.

Exploiting this merit of optimal control method, the MPC-based ACC controller has
also been widely adopted to achieve ecological objectives in these years. Wang, Daamen,
Hoogendoorn, et al. (2014) designed an Ecological Adaptive Cruise Control system consid-
ering the CO2 emission rate via a function of vehicle speed. The optimization problem was
solved by a dynamic programming approach. It was found that the eco-driving strategy
produces a smoother acceleration profile. At the macroscopic level, a trade-off between
traffic efficiency and emission rate in free flow traffic conditions, while increasing traffic
efficiency and reducing emission rate can bring similar outcome in congested situations.
Wang, Daamen, Hoogendoorn, et al. (2014b) proposed a model which enables the con-
trolled vehicle to consider the future behaviors of other adjacent vehicles. In the next part,
Wang, Daamen, Hoogendoorn, et al. (2014a) further extended the MPC framework into a
cooperative system setting, in which vehicles equipped with the MPC controller utilize V2V
communication to increase the situation awareness and achieve a global performance. The
work demonstrated the flexibility of MPC in formulating into various control strategies.

Other than those studies which incorporated ecological objectives into the cost func-
tion of the ACC model, there were also several studies applying MPC to handle the uncer-
tainties lying in the received information and the system dynamics of the ego-vehicle it-
self. Moser et al. (2017) applied a stochastic MPC approach for the development of a CACC
system. The ego-vehicle utilizes the information transmitted from the two predecessors
ahead. A new prediction model which estimates the probability distribution of the future
speed of the preceding vehicle is trained with real data. It intends to prevent errors in the
prediction model from causing degraded comfort, harsh actions, and more fuel consump-
tion. In addition, the CACC controller has a flexible spacing policy by using a maximum and
minimum headway constraint in the optimization model instead of the commonly-used
constant headway policy. The results showed that the proposed MPC with the stochastic
prediction model outperforms the deterministic MPC approach. To develop a robust ACC
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controller which can solve the same issue, Sakhdari et al. (2017) also proposed a tube-based
MPC approach, which maintains the system state in a certain region. The tube is derived
from offline defined uncertainty boundaries computed from an additional linear feedback
controller, which is then incorporated into the cost function of the MPC problem. The sim-
ulation results demonstrated the success of the proposed approach in handling the sensor
delay and system disturbances. According to the contribution of these studies, the poten-
tial of MPC in handling the uncertainty in the ACC system is implied.

However, it is computationally expensive to solve an online optimization problem in
the MPC framework given the problem complexity and the prediction horizon specified. A
lot of research endeavor has been placed on resolving the computation requirement of this
control method to favor the real-world application. For instance, Wang, Daamen, Hoogen-
doorn, et al. (2014b) adopted a faster numerical solution algorithm to solve the optimal
control problem for real-time control. S. E. Li et al. (2014) also aimed to deal with the
computational complexity problem of MPC for the real-world online application of ACC
by relaxing the inequality constraints and reduced the number of control variables in the
prediction horizon. The results from the simulation experiments and field tests showed
reduced computation time and satisfactory controller performance. There is also some
methods proposed to completely remove the computational concern of this optimal con-
trol method, which will be discussed in subsection 7.4.1.

2.1.3. Intelligent control

Intelligent control methods lie between classical control theoretical approaches and those
approaches utilizing the concept of artificial intelligence, including neural network, fuzzy
logic, and the general machine learning methods. It is usually considered for the design of
complex dynamical systems whose behaviors are difficult to be described.

There were many studies using various intelligent control methods to design ACC con-
trollers. Naranjo et al. (2003) proposed an ACC controller based on fuzzy logic. The con-
troller and experiments were then extended to cope with extreme Stop&GO maneuvers
(Milanes et al., 2012; Naranjo et al., 2006). Tsai et al. (2010) also developed a fuzzy longi-
tudinal controller which can adapt to various car-following conditions. In the simulation
experiments done by Ko and Lee (2007), it was even found that a fuzzy ACC controller can
guarantee string stability. However, the drawback of fuzzy logic-based control is its lack of
systematic design methodology, such as parameter tuning. Neural network gets rid of the
problem by automating it through a learning-based approach (Godjevac, 1995).

Neural network (NN) is another intelligent control method which can be used to de-
scribe complex system dynamics and implement human intelligence and reasoning into
machines. Bifulco et al. (2008) developed a human-like ACC by using an artificial neural
network (ANN). It was found that ANN can reproduce the human driving behavior as ac-
curately as a linear model. However, it is mentioned that ANN may suffer from over-fitting
problems caused by the learning process. There were also a few studies using NNs to model
human drivers’ car-following behaviors although they were not aiming for developing an
ACC system. For instance, Ohno (2001) used a driving simulator to collect experienced
drivers’ behavior characteristics when using ACC and built a NN-based driver model. The
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purpose was to conduct simulations using the developed model and test the performance
of vehicles equipped with the ACC system.

On the other hand, reinforcement learning (RL) has become one of the most popular
areas in machine learning nowadays. One of the earliest research application of RL on AVs
can be found in Forbes (2002). A model-based reinforcement learning method to train
a control policy for AVs to conduct car-following and lane-following tasks. Many stud-
ies using RL and its extension for autonomous driving have been proposed since then.
Two decades later, Z. Zhu and Zhao (2021) provided a comprehensive review of the all
the studies developing autonomous driving policies using related methods and discussed
them from the system architecture, task-specific, and problem-driven perspectives. Several
problems which need to be aware of when applying this kind of method for autonomous
driving and the directions for future development were summarized at the end.

For the development which specifically focused on ACC systems using RL, Ng et al.
(2008) applied Monte Carlo RL to develop an ACC controller, which updates the feedback
gains in a parametric linear controller at every time instance. A certain level of stable
platoon performance was also found in the numerical simulation results. Desjardins and
Chaib-Draa (2011) used the policy gradient algorithm in RL to develop CACC controllers. A
Stop&Go scenario was used as the learning task for the agent. In addition, a reward func-
tion was designed to direct the agent to execute the desired car-following behavior. To the
best of our knowledge, this was the first study to apply a model-free RL approach to design
a vehicle longitudinal speed controller.

To leverage the strength of both learning-based control method and deep learning with
NN, imitation learning (IL) and deep reinforcement learning (DRL), which combines the
two methods together, gains a lot of attention in these days. Because of the rapid advance-
ment of learning algorithms, many studies have started to apply IL to train CC, ACC or
CACC controllers. First, although the term "IL" and "AVs" were not mentioned in the study,
the car-following model trained in Chong et al. (2013) is actually a human-like vehicle lon-
gitudinal controller developed using the concept of IL in disguise. In order to overcome
the drawbacks of traditional car-following model calibration methods, a fuzzy rule-based
neural network to simulate individual driving behavior was constructed in that study. The
network was trained with real vehicle trajectory data through the actor-critic method. The
NN-based approach intended to solve the problem of high dimensional state space in the
microscopic traffic behavior modelling and cope with the driver behavior heterogeneity. As
can be seen in this study, researchers have started to improve the performance of intelli-
gent control method by incorporating more than one concepts and approaches. M. Zhu et
al. (2018) also intended to train a human-like AV longitudinal controller using IL. Empirical
driving data were used in the simulation environment for the training. It was found that
the built deep deterministic policy gradient (DDPG) controller has a greater accuracy in
terms of reproducing human drivers behaviors than other data-driven car-following mod-
els do. It also showed good generalization to different car-following scenarios. In M. Zhu
et al. (2020), objectives regarding safety, efficiency, and comfort were further considered
in the reward design. The proposed approach significantly outperforms MPC-based ACC
controller in terms of computation speed.

Instead of reproducing the human-like behavior by IL, DRL approaches for ACC or log-
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itudinal speed controller design seek to maximize a cumulative reward function value in
each training episode which is designed with expert knowledge. Zhao et al. (2013) adopted
a supervised actor-critic approach to develop an ACC controller. The actor network was
pre-trained using a supervised approach to enhance the convergence speed of the training
and the control policy performance. The study was also proposed before the concept of
DRL has become mature. There were a lot of DRL-based ACC controller developed using
DDPG as it is one of the most recently proposed DRL algorithms. To dampen traffic os-
cillations and reduce energy consumption, Qu et al. (2020) also to develop a car-following
model based on DDPG for electric connected and automated vehicles. A platoon of 10 ve-
hicles which drive on a ring road were simulated in the environment for training. Lin et al.
(2020) compared the DRL-based and MPC-based ACC controllers. It was found that DRL
may still suffer from the generalization problem of machine learning approaches when the
state inputs are out of the range for training. However, it performs better than MPC when
there are large modelling errors, such as control delay or unexpected system dynamics.
This study provided different insights into the benefit of DRL-based ACC controller design
rather than only mentioning the increased computation efficiency. Hart et al. (2021) di-
vided the ACC car-following model into two modes and hence trained two policies, the
free-driving and car-following policies. They were trained on leader speed profiles gener-
ated from a stochastic process to reflect vehicle dynamics in reality. It was found in the
testing of a five-follower platoon that the models can achieve string stability without ex-
plicitly considering it in the policy training setup.

For vehicle longitudinal control utilizing in-vehicle information of predecessors, M. Li
et al. (2020) proposed a DRL-based driving strategy to reduce the collision risks in traffic
oscillations. The acceleration of the preceding vehicle is transmitted via vehicle communi-
cation technologies. A surrogate measurement of safety was used in the reward function.
The strategy was implemented into microscopic traffic simulator to analyze the traffic flow
and safety performance. Mirwald et al. (2021) developed a learning-based CACC controller
which taks the string stability and communication loss into account. Not only the current
acceleration, the preceding vehicle transmits its predicted future acceleration information
to the following vehicle. The string stability was considered by including a constraint in the
reward function which limits the acceleration of the ego-vehicle according to the accelera-
tion of the preceding vehicle in a certain time window in the past. On the other hand, the
communication loss was modelled by two levels of communication quality with a Markov
chain. The results showed that the trained agent can ensure string stability to a certain ex-
tent and reduce the impact of communication loss. To handle communication failure, Shi
et al. (2022) also incorporated the time- and spatial-varying information flow topology of
V2V communication into the training environment to develop a distributed longitudinal
control strategy for connected automated vehicles to dampen the traffic oscillation. Dif-
ferent from other decentralized CACC controllers which only use the information of the di-
rect preceding vehicle, in-vehicle information of multiple downstream preceding vehicles
can be transmitted via dedicated short range communication in the control scheme. Nu-
merical simulation results showed that the proposed distributed control outperforms other
strategies in terms of stabilizing the oscillation. At the next level of vehicle platoon control,
there were also studies using the concept of multi-agent DRL to develop vehicle longitu-
dinal speed controllers which can achieve cooperative platoon behavior with the help of
vehicle communication technologies. To achieve multiple objectives for a CAV platoon in
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a mixed traffic environment, Shi et al. (2021) proposed a cooperative CAV control strategy
based on a DRL algorithm. The traffic stream is decomposed into multiple vehicle sub-
platoons led by a human-driven vehicle to reduce the computation and communication
burden. Each subplatoon has a control module which determines the immediate accelera-
tion of every CAV in the subplatoon. To consider the string stability in the reward function,
a control theoretical string stability criteria in the frequency domain is modified into the
time domain. By locally optimizing each subplatoon, the global traffic performance can
be improved. The effectiveness of the proposed strategy was demonstrated by simulation
experiments using NGSIM data.

Nowadays, one of the most popular issue for intelligent control to tackle is the so-called
decision-making and planning under uncertainty. As mentioned previously, Mirwald et al.
(2021) and Shi et al. (2022) applied DRL to tackle the state information uncertainty stem-
ming from the communication loss. In addition to DRL based on the typical Markov de-
cision process (MDP), it is worth developing RL or DRL-based vehicle controller using the
concept of partially observable Markov decision process (POMDP) so that the presence of
noise or other uncertainty in the system state can be considered, as discussed by Forbes
(2002) at the end of his study.

There were already several studies developing vehicle longitudinal controller or con-
trol strategy based on the concept of POMDP. J. Wei et al. (2011) described the single-lane
AV driving behavior as a point-based Markov decision process to consider three types of
uncertainties, sensor noise, perception constraints, and future behavior of the surround-
ing vehicles. A statistical acceleration prediction model based on the assumption that the
acceleration would decay to zero was used to predict the leader behavior. Simulation and
road test results both indicated the proposed model-based RL approach produce more ro-
bust and safe driving behavior than the state-of-the-art ACC systems when considering
uncertainties resulted from the sensor capability. Albeaik et al. (2022) developed a cruise
controller for the vehicle mechanical system of a heavy duty truck using DRL. The problem
was defined as a POMDP to consider the unknown mechanical configuration and internal
state of the truck. The trained control policy showed success in inferring the state variables
and tracking. More studies regarding DRL based on POMDP and their applications for AVs
will be introduced in subsection 2.5.2.

H. Zhou et al. (2022) provided an in-depth review for the longitudinal motion planning
of AVs through learning-based methods, e.g., IL and (D)RL. The state-of-the-art achieve-
ment in the industry and endeavor which have been made by the research community were
both discussed. It pointed out that automakers tend to focus on the safety performance of
the longitudinal motion planning systems. Hence, particular attention was placed on the
contribution of these methods for congestion mitigation in the article. It was claimed by the
autor that (D)RL-based methods possess a greater potential for integrating traffic-related
domain knowledge into the motion planning design. The importance of the ability to pre-
dict the future motion of the surrounding vehicles using recurrent NNs was also empha-
sized. The suggestions made in this article are highly consistent with the above-mentioned
review results in this subsection and will become an important foundation for the method-
ology adopted in this study.
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2.2. String stability of vehicular traffic

String stability, which is also known as asymptotic stability or platoon stability, has long
been a popular research topic in the domain of traffic flow and autonomous vehicle lon-
gitudinal control. String stability in car-following dynamics discusses the propagation of
disturbance from vehicles to vehicles within the platoon. The platoon is said to be string
unstable if the disturbance amplitude becomes larger while propagating to the next vehi-
cles in the upstream direction. On the contrary, if the disturbance gradually damps out
while propagating, the platoon achieves a strict string stability (Pueboobpaphan and van
Arem, 2010). The methodologies adopted to analyze string stability and design ACC con-
trollers are discussed in this section.

For human driven vehicular traffic, the two main reasons of string instability are the
time lag of acceleration command for adapting the speed caused by the vehicle longitudi-
nal control system limitation and the reaction time of the driver. For traffic consisting of
autonomous vehicles, the sensor or communication delay, which is similar to the reaction
time of human drivers, becomes the main source of instability. In Treiber et al. (2007) and
Kesting and Treiber (2008), the influence of the reaction time and adaptation time on the
stability of traffic flow was explored. These factors were mathematically incorporated into
the IDM to microscopically simulate the affected traffic dynamics. It was found that these
two factors causes string instability in different wave-lengths of instability. Apart from the
time delays, other parameters, such as the desired time gap in the numerical car-following
model, or the net distance between vehicles also influence the string stability of a platoon.
However, the effect of these factors and parameters is not the major focus in this study.

The string stability of a vehicle platoon can be investigated using different approaches.
Pueboobpaphan and van Arem (2010) provided an detailed review of stability analysis meth-
ods for vehicular traffic. At the beginning, the theoretical linear stability analysis was the
most commonly used method. In these studies, the transfer function of the error of spac-
ing, speed, or acceleration between the following vehicle and its leader is then formulated
based on the car-following model considered. If the transfer function value is less than one,
the platoon is believed to be string stable. An example of the transfer function of the speed
error can be written as

Γ(z) = Ṽi (z)

Ṽi−1(z)
, (2.7)

where Ṽi (z) and Ṽi−1(z) are Laplace transforms of the speed disturbance of the follower
and the leader, respectively.

The first study using this approach can be dated back to 1950s. Chandler et al. (1958)
and Herman et al. (1959) considered the propagation of speed and acceleration fluctua-
tion in a human driven vehicle platoon using a relative speed control model caused by the
first leading vehicle. A criterion regarding the sensitivity to relative speed and reaction time
was deducted. This method was later on used by Shladover (1978) to analyze the vehicle-
follower control system for the automated guideway transit vehicles. Swaroop et al. (1994)
also introduced this method to compare the string stability of two different spacing poli-
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cies for automatically controlled vehicles. Wilson and Ward (2011) provided an overview of
the framework of the microscopic car-following models and corresponding linear stability
analysis methods. However, this kind of method relies on several assumptions, including
a homogeneous vehicle platoon and a steady and periodic oscillation. These assumptions
limits the applicability of such method in stability analysis (Sun et al., 2020). To cope with
this difficulty, Wang et al. (2017) proposed a third-order linearized vehicle dynamics model
which can be used for a platoon with mixed vehicle classes and controller parameter set-
tings and extended the transfer function formulation of string stability criteria for heteroge-
neous platoons. The predictive power of this method was demonstrated by comparing with
a systematic simulation approach. Montanino and Punzo (2021) also proposed a method
to analyze the string stability with drivers’ and vehicles heterogeneity. A condition for weak
string stability was defined. The study also emphasized that the uncertain transfer function
should be used to map the probability distributions of controller parameters to the defined
condition. It was concluded that the string stability of a heterogeneous platoon is heavily
governed by the platoon heterogeneity. The methods regarding string stability analysis for
heterogeneous platoon were also discussed in Xiao and Gao (2011) and Shang and Stern
(2021).

As adopted by Treiber et al. (2007) and Kesting and Treiber (2008), there are also many
other studies using simulation approaches and looking at certain indicators, such as the
amplitude of an instantaneous acceleration and the acceleration profile, to analyze the
string stability effect. Simulation approaches overcome the limitation resulted from the as-
sumptions made when using the theoretical analysis methods and can be flexibly adopted
to evaluate the string stability in different types of traffic scenarios which is closer to reality.
Studies which can be classified into this category include VanderWerf et al. (2001), Bareket
et al. (2003), and Xiao et al. (2017).

The other approach to investigate the string stability is by conducting field experiments.
Knoop et al. (2019) conducted an experiment asking seven SAE level-2 autonomous vehi-
cles to drive as a platoon on public roads. The driving behavior and interactions between
these vehicles were discussed. To analyze the platoon stability, the study chose a rather
simplified and qualitative way by investigating the fluctuations in vehicle speed. The de-
layed, amplified, and strong response to the speed changes of leader could clearly be ob-
served in the speed profiles, which showed that the tested platoon was unstable. Makridis
et al. (2020) conducted an experiment with five ACC-equipped vehicles at the AstaZero test
track. Recorded data with different perturbation magnitudes and equilibrium speeds also
showed the instability of the platoon is visible even in small perturbation caused by the
varying road gradient. Ciuffo et al. (2021) also analyzed the results of a test campaign held
at ZalaZONE Automotive Proving Ground. A 10-vehicle platoon consists of human-driven
vehicles and ACC-equipped vehicles from different automakers was tested. Both the weak
and strict string stability was evaluated using the concept of Lp string stability. The results
showed that string instability conditions occurred in every time gap setting. It was also
found that the road geometry can induce and amplify the shockwaves. T. Li et al. (2021)
setup an experiment using a three vehicle platoon. The lead vehicle produced several dif-
ferent driving profiles which reflect the typical traffic oscillation. The string stability was
then analyzed by examining the response time, speed disturbance indicators, including
oscillation growth and overshooting, and acceleration disturbance indicators, including
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deceleration and acceleration rates. The influence and correlation between these factors
were also explored to characterize the ACC car-following behavior.

Many studies actually combined theoretical and empirical methods with a simulation
approach to analyze the string stability of vehicular traffic. Milanés and Shladover (2014)
tested three proposed ACC/ CACC models by implementing them on four Nissan Infiniti
M56s. The experimental results of these controllers were also used to derive ACC/CACC
car-following models for further microscopic simulation analysis. It was found from both
the experimental and simulation results that a platoon of ACC vehicles is string unstable,
while CACC systems can provide significant improvement. Gunter et al. (2019) conducted a
series of car-following experiments to calibrate an optimal velocity relative velocity model.
It was found that the model with the best goodness of fit are string unstable. Gunter et
al. (2021) further extended the experiment by testing seven ACC-equipped vehicle mod-
els. The data were collected from a 1200-mile driving experiment. The theoretical analysis
results again showed that none of them can guarantee string stability. Later on, these ex-
perimental data were used by Shang and Stern (2021) to calibrate the parameters in IDM
and apply it for theoretical and simulation analysis of the string stability and traffic flow
stability of traffic streams with ACC vehicles.

Studies mentioned above provided many methods to analyze string stability. There
were many studies which aimed to consider string stability in the design of ACC controllers.
Liang and Peng (1999) optimized the parameters in the linear ACC controller to guarantee
string stable performance. The dynamics of the lower-level controller was considered. On
the other hand, J. Zhou and Peng (2005) chose to ensure string stability and traffic flow
stability by optimizing the spacing policy of the ACC system dynamically. The two stability
criteria were formulated as constraints in the optimization problem. The simulation results
showed that the traffic density can be significantly increased. To cope with the influence of
sensor and actuator delay on string stability, Xiao and Gao (2011) also developed a sliding-
mode ACC controller to produce string stable performance for both a homogeneous and
heterogeneous platoon. Wang et al. (2018) adopted an MPC controller to compensate the
influence of sensor delay by estimating the true state according to the previous state, his-
torical information, and system dynamics, while the actuator lag was compensated by con-
sidering it in the prediction model to formulate an anticipatory control strategy. Simulation
results showed that the MPC ACC controller is robust in scenarios with small sensor delays,
while the impact of actuator lag is not as large as that of sensor delay.

2.3. Multi-anticipative car following models

This study is built on the belief that the string stability of vehicular traffic cam be im-
proved by enabling drivers or vehicles to look at multiple vehicles ahead. This idea has
been demonstrated in the literature. This section summarized these past studies using
theoretical and empirical analysis to show the effect and existence of this behavior.

The concept of multi-anticipative car-following behavior in the real-world driving sce-
nario has already been pointed out in Herman et al. (1959). In that study, a control scheme
for the longitudinal behavior of a human driven vehicle involving two vehicles ahead was



2.3. Multi-anticipative car following models 19

proposed by modifying the original model which only includes the influence of the first
vehicle in front. The theoretical criteria for asymptotic stability of this control scheme was
also formulated. Treiber et al. (2006) tried to include spatial anticipation for multiple ve-
hicle ahead into a time-continuous car-following model. The acceleration is calculated by
summing influence of every vehicle ahead considered based on the distance, speed, and
speed difference. It was shown that the anticipation can compensate the reaction time
and estimation error of human drivers, which could lead to destabilizing effects. The basic
models proposed in the study can also be regarded as ACC controllers to understand the
impact of autonomous vehicles on overall traffic. According to the understanding of the
compensation mechanism discovered, Treiber et al. (2007) again highlighted the effect of
anticipation by specifically looking at the stability performance. It was found that a proper
anticipation behavior allows the reaction time to be even longer than the safety time gap.

Different from the previous studies which proposed modified car-following models based
on theoretical knowledge, Hoogendoorn et al. (2006) carried out an investigation of multi-
anticipative behaviors using empirical trajectory data. Several relatively simple car-following
models were selected as the basis for the derivation of their multi-leader forms and cali-
brated using maximum likelihood estimation. It was concluded that considering the multi-
anticipative stimuli improves the extent of which the model can represent the manual driv-
ing behavior. In addition, vehicles tend to be more sensitive to the relative speed with the
second and third leaders than to the distance in between. More discussions on the in-
fluence of the multi-anticipative behavior were discussed in Ossen (2008). Heterogeneity
exists in multi-anticipative behavior of different drivers. It was found that more than 50%
of the drivers look further ahead than the direct leader, and even 20% considered more
than two vehicles ahead. Furthermore, to which extent the multi-anticipative behavior in-
fluence the driving behavior depends on the action of both the direct leader and second
leader ahead. The author also pointed out that the insights into this kind of behavior can
help automakers produce a more appropriate design of ACC controllers for customers. To
enhance the prediction accuracy of the multi-anticipative car-following behavior, Lu et al.
(2015) used support vector regression method to train a model using NGSIM vehicle tra-
jectory data. The analysis results also confirmed the existence of multi-anticipation and
presented insights into the behavior.

The aforementioned multi-anticipative models were used to describe the car-following
behavior of human driven vehicles. The purpose of them is to capture the real reaction of
drivers on the road. For autonomous vehicles, these concepts are applied to improve traffic
stability. Hasebe et al. (2003) extended the OVM to achieve cooperative longitudinal driv-
ing control considering the gaps between both preceding (forward-looking) and following
(backward-looking) vehicles. Linear stability analysis method was applied to different set
of parameters. It was found that by looking at two vehicles ahead and one following vehicle
generates the best stability performance. Hallouzi et al. (2004) tested a cooperative driving
setup which utilized inter-vehicle communication. The ego-vehicle looks at two preceding
vehicles and maintains certain time gaps with them. The minimum acceleration is selected
to ensure safety of the vehicle. In the CACC system developed by de Bruin et al. (2004), the
distance and speed information of the vehicle further ahead serves as a correction term for
the direct leader input information, which selects the vehicle with largest potential danger
and modify the input information for the controller. To cope with the congestion forming
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at sags, Papacharalampous et al. (2015) also utilized the concept of multi-anticipation to
design a CACC controller by adding a term in the control law to consider the influence of
multiple vehicle downstream.

Accomplishing multi-anticipative car-following behavior through cooperative or com-
munication systems allows the controlled vehicle to handle the situation that there are hu-
man driven predecessors between itself and the closest preceding vehicle which has the
inter-vehicle communication functionality. Wilmink et al. (2007) proposed a CACC control
mode which uses a mean speed difference with the predecessors considering the difficulty
to obtain distance measurements when the system penetration rate is low. Lee et al. (2021)
also proposed a CACC system which can still leverage the benefit of using communication
technologies even when the direct predecessor is an unconnected vehicle.

Most of the studies using CACC systems with multi-anticipation mentioned above ex-
tended some developed car-following models or typical state feedback ACC controllers.
Kreuzen (2012), Wang, Daamen, Hoogendoorn, et al. (2014a), and Dollar et al. (2021) de-
veloped MPC-based CACC systems with multi-anticipation. This kind of receding hori-
zon control method allows the ego-vehicle to further predict the motion of multiple pre-
decessors, which enhances the potential benefit of multi-anticipative behavior. By doing
so, a high level of cooperative control strategy for the ego-vehicle and its followers can be
achieved. The systems can also predict the behavior of the unconnected vehicles between
the ego-vehicle and the first connected predecessor. In Wang, Daamen, Hoogendoorn, et
al. (2014a), even a high level cooperative behavior which allows the CACC-equipped vehicle
to control the behavior of the human-driven following vehicle was proposed. These studies
demonstrated the potential of MPC-based CACC controller to achieve multi-anticipation
considering platoon heterogeneity and low penetration rate of connected vehicles.

To our knowledge, there was little effort in both the industry and the research commu-
nity studying or introducing the multi-anticipation functionality of ACC systems without
using communication technologies. The first and only to develop a vehicle which has the
ability to detect more than one leader was Tesla Autopilot v8.0 with its advanced RADAR
system. The sensor setup which can achieve this kind of functionality will be discussed in
section 2.4. However, the purpose of it is to provide early emergency braking for the ego-
vehicle when one of the leaders ahead apply a hard braking. To what extent this advanced
RADAR system contribute to the ACC system is unknown for the public. Following this
functionality, Donà et al. (2022) recently published their work on developing and evaluating
the string stability of an ACC system with multi-anticipation ability through RADAR sens-
ing. The system uses the most commonly used linear state feedback controller with mod-
ified inputs which integrate the second leader measurements and considers their relative
importance. The typical theoretical linear stability analysis approach was adopted to as-
sess the string stability of the linear system and provide a reference for parameters tuning.
The problem definition and consideration are quite similar with this study, as mentioned
in chapter 1. However, the desired time gap setting was slightly larger than the discovered
performance limit of the linear ACC system. In addition, the real-world sensor capability
was not considered in the study. Whether the proposed system design can be applied in re-
ality and the improvement it can bring to the overall traffic flow performance require more
investigation.
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2.4. Automotive sensor technology development

On-board sensors which are currently implemented on AVs include Inertia Measurement
Units (IMU), Global Positioning System (GPS), Radio Detection and Ranging (RADAR), Light
Detection and Ranging (LiDAR), cameras, and ultrasonic sensors, etc. The exteroceptive
sensors which are used in production ACC systems to collect measurements from other
vehicles include RADAR, LiDAR, and cameras (Rosique et al., 2019; Van Brummelen et al.,
2018; Vargas et al., 2021).

It is important to take several practical factors, such as required information and reli-
ability, into account when choosing or designing a suitable sensor setup for a specific AV
task. As mentioned in section 1.4, the proposed ACC systems in this study rely on a multi-
leader detection functionality which enables the ego-vehicle to perceive the second leader
ahead of it. To detect the second leader which may be completely occluded by the first
leader, the on-board sensor setup should be able to conduct non-line-of-sight detection
task. Active sensors which uses light beam, such as LiDAR, and vision-based camera sen-
sors are therefore not suitable for this functionality since it is impossible for the beam to
penetrate through objects which are mostly occluded. On the contrary, RADAR sensors
possess the capability of detecting completely occluded objects with the diffraction and
reflection characteristics of radio waves.

Typical RADAR sensors used by automotive for ACC systems are Millimeter-wave (MMW)
RADAR (Hasch et al., 2012; T. Zhou et al., 2020). By using the time of flight (ToF) between
the emitted waves and the echo, a point cloud is generated at every time instance. The
ToF can also be used to estimate the distance (range) between the ego-vehicle and the tar-
get vehicle. The speed (range rate) measurements are estimated by the observed Doppler
frequency shift.

The idea and effectiveness of using RADAR to detect completely occluded or non-line-
of-sight (NLOS) objects for automotive have already been realized by a commercial vehi-
cle model. Tesla Autopilot v8.0 is equipped with an advanced RADAR system which has a
more detailed point cloud and can detect more than one vehicles ahead, as mentioned in
the section 2.3. It was stated that the RADAR signal can bounce under the direct prede-
cessor to reach the vehicle further ahead. For studies related to NLOS detection, Scheiner
et al. (2020) pointed out that detecting the NLOS objects requires recovering them from re-
flected signals, which is mostly fainted and considered to be the noise. A NLOS detection
approach using Doppler RADAR sensor was developed by jointly detecting and tracking the
NLOS objects. To detect rush-out pedestrians which may be in the blind area or occluded,
Hayashi et al. (2021) also developed a detection and motion classification approach using
micro-doppler RADAR. It was found that the radio wave can propagate by being diffracted
or reflected from the bottom space of the occluding vehicle. The conducted experiments
showed that the Doppler RADAR and simple clustering approach can achieve a high accu-
racy of behavior detection and classification. These studies both revealed the possibility of
NLOS or occluded detection using RADAR sensor.

In addition to its ability to detect occluded object, the merits of using RADAR include
long detection range, direct speed measurements, and low cost. RADAR can also conduct
reliable detection under all weather since the radio wave has higher penetrability which
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makes them applicable in adverse visibility conditions (Vargas et al., 2021). These fea-
tures enable it to outperform other exteroceptive sensors in driving environments with
such sensing requirements. Although the measurement accuracy of RADAR may be slightly
lower than LiDAR, it is still the most suited sensor for this specific task. Therefore, a MMW
long range RADAR is selected for the multi-leader detection functionality in the proposed
ACC systems.

Many studies nowadays have highlighted the importance of RADAR and seek to facili-
tate its development and applications in the automotive industry (Abdu et al., 2021). De-
spite all the advantages mentioned above, there is still a concern of RADAR sensor regard-
ing the possibility and frequency of false positive signals when receiving reflections from
other objects which are not of interest for the ADAS applications caused by the bouncing of
the signals. The multiple radio wave reflections from these objects resulted in false alarms
(Rosique et al., 2019; Van Brummelen et al., 2018). Moreover, RADAR-based sensor setup
may only achieve an object-level perception task, while AVs nowadays usually requires a
high-level perception to understand the extent of the object. Berthold et al. (2017) inves-
tigated the characteristics of RADAR point cloud data and the potential of using them for
vehicle contour estimation. Palffy et al. (2022) also seek to utilize the elevation measure-
ment from a 3+1D RADAR for multi-class road user detection. The results showed that the
additional elevation information and subsequent RADAR data bring its performance closer
to the level of using LiDAR data.

However, to really counter the issue of false positive and increase the accuracy of RADAR
detection for the second leader measurements, the multi-leader ACC systems are expected
to rely on a high-level perception sensor setup, which is not required by original ACC sys-
tems. Using a proper sensor fusion technique to combine the information from those
vision-based sensors is a suitable method to achieve the multi-leader detection function-
ality (Liu et al., 2021; S. Wu et al., 2009). By integrating multiple calibrated sensors, the
ego-vehicle has a better knowledge of whether the information collected from RADAR is
indeed useful for the multi-leader ACC system. Since the focus of this study is a single-lane
car-following problem, it is assumed that the on-board RADAR coupled with other sensors
implemented on the ego-vehicle possess the ability to identify whether a detected object is
on the same lane with itself by using the sensor fusion approach mentioned above. There-
fore, the false positive detection signals are not considered in the defined problem context,
as introduced in section 1.4.

2.5. Measurement uncertainties

This section discussed the method for modelling and handling of measurement uncertain-
ties done by past studies related to autonomous driving or ACC/CACC systems in particu-
lar.
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2.5.1. Modelling of measurement uncertainties

Sensor measurement uncertainties critically influence both the development of ADAS ap-
plications and validation of their performance. To obtain a reliable results, the sensor mea-
surement must be simulated in a proper way which can reflect a realistic driving environ-
ment. Past studies applied many methods to simulate and model the sensor. For studies
using data to statistically extract or learn the pattern of the error, Hanke et al. (2016) intro-
duced a classification hierarchy according to the type of sensor measurements. It helped
derive statistical models of the measurement error by using reference data of the corre-
sponding sensor. To model the sequential measurements generated from LiDAR, Zec et al.
(2018) proposed a hidden Markov model to represent the stochastic process of the mea-
surement errors by training through large amount of data. Mitra et al. (2018) also inte-
grated the error of camera bounding box detection by applying a non-linear auto-regressive
method. The method helped the objection detection module to be aware of the erroneous
information and improved the AV decision-making.

Apart from those data-driven modelling methods, there were also several studies fol-
lowing certain assumptions of the stochasticity of the measurement uncertainties, includ-
ing noise, false negative, and false positive. In Saxena et al. (2019), it was simply assumed
that measurement noise follows Gaussian distributions. When the false negative signal
occurs, the noise variance becomes larger than in the normal condition to reflect the influ-
ence of the missing data point. To take the occurrence of false positive and false negative
into account, Bock et al. (2018) tested a multi-sensor driver assistant system by simulat-
ing the probability of false negative and false positive signals at every time instance using
discrete time Markov chains. Three cases with different levels of error complexity in terms
of the dependency between successive sensor detection and correlation between different
sensors are considered. Piazzoni et al. (2021) also simulated the false negative signals as
a Markov chain with a specified steady state probability and a mean sojourn time in the
detection and non-detection state. At a more detailed level, Elmquist and Negrut (2020)
gave an overview of how the sensor models process the signals to generate measurements
and how the sensor errors are incorporated. By comparing these sensor models and the
experiment conducted, the required accuracy of sensor models used for the simulation of
AVs were concluded.

Instead of previous studies which mainly discussed the influence of sensing and per-
ception errors on the safety performance of general AVs, there were several studies specif-
ically focusing on the influence of measurement uncertainties on developing and evaluat-
ing ACC/CACC systems for both safety and traffic stability. To close the gap between sim-
ulation and reality and explore the effect of measurement errors, Wang, Daamen, Hoogen-
doorn, et al. (2014), Y. Zhou et al. (2017), and Donà et al. (2022) all included Gaussian white
noise in the range and range rate measurements collected from the considered on-board
sensor. On the other hand, the uncertainties generated by the communication loss were
more frequently discussed for CACC systems (Hallouzi et al., 2004; C. Wu et al., 2019).
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2.5.2. Handling of measurement uncertainties

To reduce the effect of measurement uncertainty on decision-making of the vehicle, a suit-
able tracking algorithm can be used. Kalman filter (KF) is one of the most commonly em-
ployed methods for vehicle tracking in the past. Nowadays, many advanced filtering meth-
ods, such as adaptive KF or particle filter, have been proposed to overcome the limitation
of KF. Floudas et al. (2005) tested the performance of KF and particle filter in terms of po-
sition and velocity estimation using RADAR measurements. It was found that KF-based
techniques performs better than particle filter due to the comparatively short processing
time requirement considering the developed computation power at that time. On the other
hand, to achieve accurate tracking og the position of the preceding vehicle, Aldrich and
Wickramarathne (2018) proposed a KF method for a LiDAR-based tracker since it is known
that RADAR sensor measurements are known to be more noisy than other types of sensors.
Kim and Park (2020) also proposed an extended KF (EKF) by fusing the RADAR and LiDAR
measurements. A reliability function considering the distance as a factor of the sensing
performance was used to determine the Kalman gain at every time step. The real-world
experiment showed improved tracking accuracy after using the reliability function in the
EKF framework.

There were several studies specifically using KF as the state estimator in the control
loop of ACC/CACC systems. Y. Zhou et al. (2017) incorporated the KF into the developed
MPC-based ACC and CACC controllers. The optimization problem was decomposed into
a linearly constrained linear quadratic problem and a linear quadratic estimation prob-
lem. An adaptive KF was used to estimate the covariance of process dynamics. For the
handling of temporary communication loss of a CACC system, Hallouzi et al. (2004) used
an extended KF to fuse the position, velocity, and acceleration information of the preced-
ing vehicle collected from the on-board GPS sensor via inter-vehicle communication. The
state estimator were used to interpolate the position of the vehicles when there is no in-
put information from the GPS. C. Wu et al. (2019) also adopted an adaptive KF to estimate
the acceleration of the preceding vehicle and prevent the CACC system from degrading to
an ACC system due to communication loss. The covariance of the process dynamics was
calculated by a probability density function of the target acceleration value. Both the simu-
lation and experiments showed a reduced gap error compared to the system using a normal
KF.

Other than using traditional filtering approach to track the motion of the object, much
research has started to use recurrent neural networks (RNNs) to predict and estimate the
target motion. Chenna et al. (2004) compared the performance of KF and RNNs for state
estimation and tracking problems. An RNN architecture with one hidden layer was built.
The simulation results indicated that RNNs can produce state estimation and tracking per-
formance which closely match that of a basic KF. However, the potential of RNNs for cases
violating the linear and Gaussian assumptions was pointed out. These network models can
be trained with time series data to learn the probability pattern of the next output state.
Later on, a lot of studies regarding using Long Short Term Memory (LSTM) networks, a
type of RNNs, to predict or track the motion trajectory of other surrounding vehicles have
been proposed (Akita and Mita, 2019; Deo and Trivedi, 2018). Chandramouli (2021) de-
veloped several LSTM models to predict the longitudinal and lateral trajectory of the tar-
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get vehicle. The highD dataset was used in both the model training and evaluation. The
models with different attention mechanisms were trained with both filtered and unfiltered
data. It was found that training with filtered data performs better than that of unfiltered
data in general. the Lane changing behaviors can also be predicted. Furthermore, for the
prediction of vehicle behaviors in traffic oscillation which is believed to be more difficult
to predict than normal car-following cases, M. Zhou et al. (2017) proposed an RNN-based
car-following model. The RNN-based model outperformed the classical IDM when con-
sidering the driver characteristic heterogeneity. There were also studies aiming to integrate
the merit of RNNs into the design of KFs (Revach et al., 2022; Zheng et al., 2019). However,
this kind of idea has not been applied particularly for trajectory prediction or tracking tasks
in ADAS.

Previous studies seek to resolve the uncertainties by applying various state estimation
models and approaches. Nowadays, much research has been exploring the possibility of
handling the uncertainties at the decision-making level of AVs. RL based on POMDPs is
a method which suits this kind of problem properly. The concept of using POMDPs for
the decision-making and planning of AVs was also mentioned in Forbes (2002). In model-
based RL based on POMDPs, a belief state, which is the probability distribution of the un-
derlying state, is estimated in a feedforward structure (McAllister and Rasmussen, 2017).
On the other hand, model-free DRL solves POMDPs by using RNNs to integrate the his-
torical states and actions. Bakker (2001) is one of the earliest to propose the idea of using
LSTM for model-free RL based on POMDPs. The purpose and advantage of using LSTM is
its ability to utilize the memory to solve a problem which requires long-term dependency.
There were several studies which integrated RNNs or LSTM networks into DRL networks
to solve the POMDP problems. Hausknecht and Stone (2015) first added recurrency into a
deep Q network to create a deep recurrent Q network (DRQN). The first convolution layer
in the agent was replaced by a LSTM layer to deal with partial observability by utilizing
the historical information. Several studies also tried to extend other DRL algorithms for
control task with continuous action space by implementing LSTM networks into network
structure, such as the recurrent deterministic policy gradient (RDPG) proposed by Heess
et al. (2015) and the LSTM-twin-delayed deep deterministic policy gradient (LSTM-TD3)
proposed by Meng et al. (2021).

Real-world traffic- and autonomous driving-related problems often contain a lot of in-
formation uncertainties in the environment. Therefore, the applications of DRL based on
POMDPs in these fields of research can already be found in several relevant studies. For
instance, Qiao et al. (2018) proposed a POMDP policy network with LSTM to tackle the
problem of an AV traversing a non-controlled urban intersection. Mani et al. (2019) also
applied RDPG algorithm to train an AV agent how to utilize the temporal information to
navigate in a dense traffic environment by adapting to the slow speed or overtaking other
vehicles. As discussed in subsection 2.1.3, there were several studies using DRL to design
vehicle cruise controllers considering uncertainty. However, these studies did not explicitly
use RNNs to estimate the belief state, indicating the RL problems were not formulated as
POMDPs. In Mirwald et al. (2021) for instance, the actions taken in the past two time steps
were included in the state vector to represent the history. By doing so, the agent has bet-
ter access to the information in the environment. Albeaik et al. (2022) applied a recurrent
deep learning model to deal with the unknown vehicle configuration and state information.
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However, the detailed network architecture was not stated in the study.

Solving a model-based or model-free RL based on POMDPs requires the agent to plan
or learn with an unknown transition dynamics of the hidden state. To overcome this addi-
tional difficulty, several studies aimed to integrate the concept of a filtering method, such
as KF or particle filter, into POMDPs (Erez and Smart, 2010; Ma et al., 2020). Although these
methods have not yet been applied to the filed of autonomous driving, they also symbol-
ized the research endeavor to solve a decision-making problem under uncertainty using
DRL.

2.6. Summary

This section summarizes all the recent research development regarding the research prob-
lem to provide proper reasons and considerations for several decisions which will be made
for the methodology in this study.

There were many studies designing ACC controllers using different control methods
for various objectives. Stability performance of the system remains to be one of the ma-
jor challenges for ACC systems. The multi-anticipative car-following behavior provides a
possibility to improve string stability as it has already been applied in several proposed
CACC system designs. Based on the automotive RADAR sensors development nowadays,
it is believed that advanced RADAR sensors are able to detect multiple leaders ahead even
if they are completely occluded. A commercial vehicle in the market and a relevant study
published recently (Donà et al., 2022) have demonstrated the feasibility of the idea.

This study aims to propose a new control strategy which has the property of multi-
anticipation for ACC systems. The systems also need to be robust to measurement uncer-
tainties since the second leader measurements collected from the on-board RADAR sensor
may be highly erroneous. To overcome the limitation of a typical linear controller in de-
scribing the non-linearity of the complex dynamical behavior and the difficulties in han-
dling sensor measurement uncertainties, MPC or learning-based control approaches pos-
sess better capability than typical linear state feedback controllers. According to studies
comparing these two approaches, it is believed that learning-based control methods, such
as DRL, may perform better than MPC in terms of computation time requirement and un-
certainty handling. In addition, a few ACC-related studies have extended the controller de-
sign methods from DRL based on MDPs with full observability to DRL based on POMDPs
to deal with the state estimation under uncertainty and time-series prediction. Therefore,
DRL-based ACC controllers which can handle measurement uncertainties using RNNs will
be developed in this study.

To analyze string stability of the developed intelligent control system considering mea-
surement uncertainties, the control theoretical analysis approach may not be suitable for
the problem. Instead, a numerical simulation-based approach is then adopted so that its
flexibility for different kinds of disturbance scenarios can be utilized.

Regarding measurement uncertainties for ACC systems, past studies mostly considered
the presence of noise in sensor measurements and actuator behaviors. Following this con-
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sideration, the noisy measurement will first be included in both the design and evaluation
of the proposed systems. The author still wants to point out that losing detection (false
negative signal) of the second leader may exist due to the undiscovered RADAR sensor ca-
pability. This is similar to the problem of communication loss, one of the major issues
encountered by CACC systems. Hence, it is also worth investigating the problem of false
negative for the proposed multi-leader ACC systems. However, for simplicity, this study
does not touch upon these types of measurement uncertainties.

According to the findings from literature review, the methodology for both the system
design and performance evaluation in this study will then follow.





3
Control System Design

The first section in this chapter introduces the basic architecture of the system, which is
a simplified ACC control system, and provide an overview of the different ACC systems
which will be designed following the proposed architecture. The remainder of this chapter
describes how to design the ACC controllers and the state estimators, which are the two
main components in the system architecture in this study. As mentioned in section 2.6,
this study applies DRL to develop the ACC controllers. The general concept and elements
in DRL are then elaborated in section 3.2. In the third section, the structure of the pol-
icy networks are introduced. The fourth section then explains how the ACC car-following
problem is formulated for the training of controller agents with the assumption of accu-
rate measurements. Section 3.5 describes the concept and standard procedure of Kalman
filtering, which is one of the state estimation methods adopted by the proposed systems.
Section 3.6 explains how to modify the content in section 3.4 to train recurrent policies for
ACC controllers which can directly utilize the erroneous measurements and handle the un-
certainties. The last section then introduces the simulation approach and tools which will
be used to train the controller agents.

3.1. System architecture

Figure 3.1 presents the architecture of the ACC systems proposed in this study. Typical ACC
systems can only utilize the distance gap and relative speed measurements with the direct
preceding vehicle. However, the multi-leader ACC systems proposed in this study have two
upper-level controllers. According to the specified spacing policy, controller 1 uses the po-
sition and speed information of the first leader and generate the acceleration command for
the ego-vehicle to follow the first leader, while controller 2 is designed for the ego-vehicle to
follow the second leader (the pre-preceding vehicle). The minimal acceleration command
generated by these two controllers would be the real vehicle acceleration control input in
the next time step, as did by the system proposed by Hallouzi et al. (2004).

The “Plant” block in Figure 3.1 contains the vehicle motion model applied to simulate
the car-following dynamics in the driving environment according to the determined accel-

29
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eration command, which will be described in detail in section 3.7. As mentioned in section
1.4, other sub-systems, functionalities, and external factors, e.g., the lower-level ACC con-
troller, internal driveline, and road slope, which can affect the vehicle longitudinal motion
are not considered in the defined problem context. A disturbance can occur in the driving
environment and deviate the system from the equilibrium state, which is the desired spac-
ing in the car-following problem. In this study, the disturbance would be a speed fluctua-
tion of the leading vehicles. When facing disturbance in the environment, the controllers
would then seek to stabilize the system and guide the ego-vehicle back to the desired spac-
ing.

The on-board sensor is another important component in the whole system. It collects
and processes exteroceptive measurements as input for the controllers. As mentioned in
section 2.4 in this study, RADAR sensor is selected for this ACC system due to its suitability
for the non-line-of-sight multi-leader detection functionality. Besides, the state estimators
will also be designed to cope with erroneous measurements for the controllers.
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the 1st leader

ACC

controller 1

The 1st leader 

measurements 
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controller 2
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the 2nd leader
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measurements 

Acceleration 1
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Figure 3.1: The architecture (block diagram) of the multi-leader ACC system

When designing ACC controllers, it is often assumed that the sensor and state estimator
implemented in the system together possess the ability to provide accurate input informa-
tion. This kind of consideration may be acceptable for the first leader measurements given
the state-of-the-art sensor technology development. However, the second leader measure-
ments may be relatively erroneous given that the ability of sensors to accurately detect the
second leader ahead is still unknown especially when it is occluded to a large extent. En-
abling the designed ACC controllers to handle the measurement uncertainties is one of the
main research focuses in this study. Therefore, not only ACC controllers which take actions
based on the assumption of perfect information but also controllers which can directly
cope with inaccurate measurements will be designed. Hence, three types of ACC systems
are developed:

• ACC systems containing controller(s) designed with accurate sensor measurements (sec-
tion 3.4)
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• KF-ACC systems containing the same controller(s) as those designed for the ACC systems
and KF(s) as the state estimator(s) (section 3.5)

• LSTM-ACC systems containing controller(s) designed with uncertain sensor measure-
ments in several levels (section 3.6)

The first type of systems is equipped with controllers designed based on the assump-
tion of accurate measurements. To handle measurement uncertainties, the second type
of systems uses the same controllers designed previously and additionally adopt Kalman
filters to estimate the state information before using it by the controllers.

Different from the KF-ACC systems whose controllers can only passively make deci-
sions based on the input information filtered by the state estimator, the third type of sys-
tems is LSTM-ACC systems which possess the ability to take actions by actively consid-
ering the measurement uncertainties. The controllers in this type of systems are trained
with uncertain measurements. An LSTM network layer is implemented into these con-
trollers directly to serve as the hidden state estimator. By doing so, the DRL policies used
in these controllers become the so-called recurrent policies which are based on POMDPs.
The improvements or potential drawbacks of this kind of controller design method will be
discussed in chapters 5 and 7.

There will be two different systems with different number of leaders in each category
mentioned above. It is also important to note that there will be multiple two-leader KF-ACC
systems and two-leader LSTM-ACC systems, while each of them is designed or tuned for a
specific level of measurement uncertainties. Furthermore, this study aims to explore the
potential trade-off between string stability and ride comfort. To create this kind of diversity
among the proposed systems, each system introduced in this section has two versions with
different weighting setups on the gap error and jerk terms in the reward function design
during the training of the controllers, which will later on be introduced in subsection 3.4.2.
Table 3.1 below again summarizes the design of the twelve systems proposed.

Table 3.1: Overview of the proposed ACC systems

System # leader(s) Weightings Controller(s) State estimator(s)

ACC systems
1

0.5/0.5
Trained with accurate
measurements

None
0.9/0.1

2
0.5/0.5
0.9/0.1

KF-ACC systems
1

0.5/0.5
Same controllers as in
the ACC systems

Kalman filters
0.9/0.1

2
0.5/0.5
0.9/0.1

LSTM-ACC systems
1

0.5/0.5
Trained with uncertain
measurements

LSTM networks
0.9/0.1

2
0.5/0.5
0.9/0.1
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3.2. Introduction to deep reinforcement learning

RL is classified as a machine learning approach which teaches agents how to solve a se-
quential decision-making problem through trial-and-errors. Based on the reward or penalty
obtained from the environment, the learning agent explores how to make the appropriate
decisions and take actions in particular states. DRL stems from the combination of RL and
the concept of deep learning. Besides the field of vehicle automation, it has also been ap-
plied to many studies related to traffic signal control and ramp metering in recent years
(Han et al., 2022; H. Wei et al., 2021). This section intends to provide a brief overview of the
fundamentals of DRL and introduce the selected algorithm.

3.2.1. Markov decision process and Bellman’s equation

In RL, agents learn by interacting with the environment. The process of RL can be math-
ematically described as an MDP. An MDP can also be understood as a Markov chain with
rewards and decisions (actions). A Markov chain describes the stochastic transitions be-
tween states S based on a defined transition probability matrix P . The transitions possess
the Markov property, meaning the future state is independent of the given past states. In a
Markov reward process (MRP), rewards R are assigned to provide judgements on the tran-
sitions. When the set of agent’s decisions or actions A are further considered in the MRPs,
they become the so-called MDPs. An MDP can be described as a tuple (S, A,P,R,γ). To
determine the action at each given state, a policy π comes into play. π describes the prob-
ability distribution over actions at the current state where the agent is.

The essence of RL is the training of the optimal policy π∗ by considering not only the
immediate reward but also the future rewards the agent can receive. Hence, the objective is
to maximize the expected cumulative reward, which is known as the return G , by conduct-
ing a sequence of actions. For each reward in the sequence, a discount is given to consider
their importance by using a discount factor γ ∈ (0,1). A larger discount factor means a
larger importance and influence the future states are for the agent. The calculation of the
return G can be written as

Gt = Rt+1 +γRt+2 +γ2Rt+3 + ... =
∞∑

k=0
γk Rt+k+1. (3.1)

To derive the optimal policy which generates the largest return, it is important to know
the value of each state or state-action pair. Therefore, the value function of a state and
the action-value function (Q-function) of a state-action pair should be formulated. Value
function represents the expected return which the agent can gain by starting from a given
state s and acting according to a given policy π throughout the whole trajectory, while Q-
function indicates the expected return an agent can gain after taking a specific action a at
a given state s and again following a determined policy π. Bellman’s equation provides a
mathematical way to formulate the value function
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V π(s) = E
a∼π
s′∼P

[
Rt+1 +γV π(s′)

]
(3.2)

and the action-value function

Qπ(s, a) = E
s′∼P

[
Rt+1 +γ E

a′∼π
[
Qπ(s′, a′)

]]
. (3.3)

In these equations, the next state (s′) is sampled from the defined transition probability
distribution (P ); the current action (a) and the next action (a′) are both sampled from the
current policy (π). Eq 3.3 is formulated according to an on-policy RL algorithm, indicating
that the policy used to make decisions is the same as the one which is being optimized.

Instead of the value function or Q-function which shows the absolute quality of a state
or state-action pair, some RL algorithms need to know how good a specific action is than
other actions based on the given policy at the current state. An advantage function of tak-
ing the action a at state s can be formulated for this kind of algorithms. There are many
different ways to describe an advantage function, while

Aπ(s, a) =Qπ(s, a)−V π(s) (3.4)

is one of the most straightforward example.

More formulations of the advantage function for various RL algorithms can be found in
Schulman et al. (2015). Other in-depth explanations about the DRL algorithm used in this
study will be introduced in subsection 3.2.4.

3.2.2. Partially observable Markov decision process

The RL problem introduced above can be suitably applied when it is assumed that the agent
has complete access to the perfect information in the environment. The environment is
called a fully observable environment when this is the case. However, the environment is
not always fully observable for the agent in real-world scenarios. Partial observability (PO)
refers to the situation that the agent can only receive part of the state information or noisy
values from the environment. In a PO condition, the underlying state in the environment
is not fully observable for the agent. Therefore, it is difficult to make decisions only based
on the current state it observes.

To overcome the limitation of MDPs in handling information uncertainty, POMDPs are
developed. In a normal MDP, the process satisfies the Markov property, meaning that the
next state only depends on the current state and action conducted. However, a POMDP,
which can be described as a tuple (S, A,P,R,Ω,O,γ), is built upon the modification of the
original MDP. Figure 3.2 illustrates the process of a POMDP. Instead of using the state, a
belief state b is determined by a state estimator (the SE in Figure 3.2) according to the cur-
rent observation and the history, which includes all past observations and actions taken. Ω
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represents the set of observations the agent can perceive; while O is the observation func-
tion which gives the probability distribution of possible observations based on the given
resulting state.

Figure 3.2: Process of a POMDP (Littman, 1996)

As shown in the figure, the history of process needs to be known by the agent so that
it can determine the belief state. Hence, to derive the optimal policy, it is important to
provide the agent with a "memory" of the past. The method used to cope with the PO
condition in the training process in this problem context will be introduced in section 3.3.

3.2.3. Deep neural network agent

Different from traditional RL methods, DRL methods use a deep neural network (DNN)
as a function approximator to represent the mapping between the states and actions de-
cided. Figure 3.3 illustrates the interaction of a DRL agent and the environment. The DNN
takes the state information and reward sent from the environment as the input and out-
puts a probability distribution of actions. One of the advantages of combining RL and DL
over traditional RL is the ability to handle information in a high-dimensional state space,
e.g., images and raw data from sensors. However, it also suffers some drawbacks of neural
networks, such as data-efficiency and difficulty to be interpreted.

3.2.4. Reinforcement learning algorithm

Deriving the optimal policy network relies on a proper RL algorithm. RL algorithms are
branched into model-based and model-free algorithms. In a model-based RL approach,
the agent has access to a known or learned model of the environment (transition proba-
bility distributions and rewards). The primary task of the agent is to plan the optimal se-
quence of actions by using a predictive model. Although model-based RL approaches have
better performance in terms of sample efficiency, they relies on a representative model
which can help predict the outcome in the future. Such methods cannot work well when
an accurate predictive model of the environment is not available. On the other hand, a
model-free RL approach learns by directly interacting with the environment. Without any
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Figure 3.3: Conceptualization of deep reinforcement learning (Mao et al., 2016)

given knowledge from a model, this kind of methods requires more samplings to explore
and interact with the environment. Nowadays, the model-free methods are receiving much
more attention than model-based methods due to its easiness to implement and applica-
bility to a wide range of problems. This study also uses a model-free RL method to train the
optimal policy of the ACC controllers.

RL approaches can also be further divided into two categories, policy optimization and
Q-learning, according to whether the action to be taken in the learning process is deter-
mined based on the most recent version of the policy which is optimized. In policy opti-
mization methods, the policy being evaluated and improved is the same as the one which
is being used to make decisions. Hence, this category is also called on-policy algorithms.
Some examples include the classical Policy Gradient, Actor-to-Critic (A2C), Trust Region
Policy Optimization (TRPO), and Proximal Policy Optimization (PPO). Whereas those Q-
learning methods, such as Deep Q Network (DQN) and its variants, are often called off-
policy algorithms because the updated policy is independent of the behavior policy. Each
type of RL algorithms has its own pros and cons. On-policy algorithms are believed to be
more stable, while off-policy algorithms are more sample efficient. To compensate the
trade-off between these two categories, there are several algorithms which are proposed
by borrowing the strengths of each side, including Deep Deterministic Policy Gradient
(DDPG), Twin-delayed DDPG (TD3), and Soft Actor-Critic (SAC).

Given the relatively simple search space of action defined in the problem, this study se-
lects PPO, an on-policy method which can be used for both discrete and continuous action
spaces, as the RL algorithm to train the optimal policy network. It is proposed by Schulman
et al. (2017) with the merit of being easier to implement than TRPO. PPO is an Actor-Critic
method, implying that it has two neural networks, the actor and the critic. The actor stands
for the policy network which determines the next action, while the critic estimates the value
function of the state.

PPO updates the hyperparameter θ of the policy network via gradient ascent, as can be
written as

θt+1 = arg max
θ

E
st ,at∼πθ,t

[
LC LI P (st , at ,θt ,θ)

]
, (3.5)
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where LC LI P denotes the objective function, which is calculated by

LC LI P (st , at ,θt ,θ) = min
(
rt (θ)Ât ,cl i p (rt (θ),1−ϵ,1+ϵ) Ât

)
, (3.6)

where rt (θ) = πθ(at |st )
πθt (at |st ) is the ratio between the probability of choosing action at at st using

the new policy πθ and that using the current policy πθt . If rt (θ) > 1, action at would be se-
lected more often in the new policy than in the current policy, and vice versa. Ât represents
the estimated advantage function of taking action at at state st .

However, when the action selection probability in the current policyπθ(at |st ) is low, the
objective function becomes unstable due to the large probability ratio rt (θ). The clipping
function used in the objective function prevents the instability of the learning process by
using a parameter ϵ to restrain the step size of the update.

For the critic network, the algorithm aims to minimize the error between the estimated
value and the target value by updating the neural network parameters φ. The gradient
descent method can then be applied, as written by

φt+1 = arg min
φ

E
[
LV F (st , at ,φ)

]
. (3.7)

The loss function LV F , which calculates the squared error between the estimated value
function and the target return value, is formulated by

LV F (st , at ,φ) = (
Vφ(st )−Ĝt

)2
, (3.8)

where Vφ(st ) is the estimated value function with parameters φ. Ĝt represents the target
return value. The general process of the PPO algorithm is described in Algorithm 1.

Algorithm 1. Proximal policy optimization
Initialize the actor network parameters θ0 and the critic network parameter φ0

for t = 1, 2, . . . do
Generate sequences of actions with T time steps based on policy πθt

Calculate estimated advantage function Ât based on the current critic network Vφt

Calculate the objective function LC LI P
t when using policy πθt

Optimize and update the actor network parameters θt+1 via gradient ascent
Calculate target return Ĝt

Calculate the loss function LV F
t when using value function Vφt

Optimize and update the critic network parameters φt+1 via gradient descent
end for

To achieve the learning of partial observability, this study further combines RNN struc-
ture into the PPO algorithm, which will be introduced in section 3.3. The procedure of the
training would also become more complicated and slightly different. However, this section
does not introduce the algorithm in detail given that it is not the major focus and a DRL
library will be used in this study.
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To sum up, this study aims to apply a model-free DRL method to train the optimal poli-
cies for the ACC controllers in the multi-leader ACC system. The settings for the learning
agents, environment, and training process will be discussed in the following sections.

3.3. Deep neural network structures and parameters

As mentioned in section 3.2, the ACC controllers of the ego-vehicle would be the agents
in the DRL framework. Each controller learns a DNN to map the state input to the out-
put action. The learning process of PPO, the selected RL algorithm, consists of two DNNs,
the actor and the critic. Both networks contain two hidden fully-connected layers, while
each of which has 64 neurons. Figures 3.4 shows the actor-critic network structures of the
controllers trained with full observability. The hyperbolic tangent (Tanh) fucntion is used
as the activation function in every layer of the networks because its output range (-1 to 1)
suits the range of vehicle acceleration values in this car-following problem.

𝑠𝑡

Actor

Critic

FC FC 𝜋𝜃 (𝑠𝑡) = 𝑎𝑡+1

FC FC 𝑉∅ (𝑠𝑡)

Figure 3.4: Policy proximal optimization actor-critic network structure of the ACC controllers

For the training of LSTM-ACC controllers in partial observable environments, a shared
LSTM layer with 128 units is implemented before the actor and the critic networks to form
recurrent policies. The LSTM network is a special type of RNNs which has a chain structure
enabling the model to learn through a sequence of data in the time series. Different from
ordinary RNNs, an LSTM network resolves the issue of long-term dependency by using
three gating mechanisms, including a forget gate, an input gate, and an output gate, to
control the flow of information. Figure 3.5 gives an example of an LSTM unit. By doing
so, the DRL problem becomes a POMDP instead of the original MDP. The LSTM layer is
expected to infer the belief state at every time step using the history, current state, and
current action as the input. Figure 3.6 shows the structure of the recurrent policy network
in LSTM-ACC controllers.

The DNN setups and parameters used in the PPO algorithm are summarized in Table
3.2. Most of the parameters follow the default settings in the selected DRL algorithm library
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and suggestions in the original paper.

Figure 3.5: The internal structure of a Long-Short-Term Memory unit (Olah, 2015)

LSTM

ℎ𝑡(𝑜𝑡−1, 𝑎𝑡−1, … )

𝑜𝑡

Actor

Critic

𝑎𝑡

FC FC 𝜋𝜃(𝑜𝑡 , 𝑎𝑡, ℎ𝑡) = 𝑎𝑡+1

FC FC 𝑉∅(𝑜𝑡 , 𝑎𝑡 , ℎ𝑡)

ℎ𝑡+1(𝑜𝑡 , 𝑎𝑡, … )

Figure 3.6: Recurrent policy proximal optimization actor-critic network structure of the LSTM-ACC
controllers

Table 3.2: Deep neural network design and parameters in the learning algorithm

Shared LSTM Actor Critic
# hidden layers 1 2 2
# units per layer 128 64 64
Activation function — Tanh Tanh
Weights initialization Orthogonal matrix
Optimization algorithm Adam
Mini batch size 64
Learning rate 0.0003
# steps per update (T ) 2048
Discount factor (γ) 0.99
Clip range parameter (ϵ) 0.2
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3.4. Policy training setup with accurate measurements

To apply DRL to develop the ACC controllers, several elements in the DRL policy have to be
defined to suit the desired car-following task. In this section, the state and action spaces
of the policy in the ACC controllers are formulated. Other settings regarding the training,
including the reward function design and training tasks, are also described here.

3.4.1. State and action spaces

The state vector of the policy should contain enough information for the agent to make
proper decisions. Several elements in the state vector are the distance gap with the i th
leader gi ,k , speed of the ego vehicle vk , relative speed with the i th leader ∆vi ,k , jerk jk ,
while each component has a large enough state space to accommodate possible values.
The state vectors of the ACC controllers can be written as

si ,k = (gi ,k , vk ,∆vi ,k , jk ). (3.9)

The distance gap, speed, and relative speed information enable the agent (ego-vehicle)
to understand the current state which allows it to execute the desired car-following task,
while the jerk helps the agent to maintain a comfortable driving maneuver. The computa-
tion of distance gap gi ,k using raw data collected from the RADAR is described by

gi ,k = di ,k−τS − (i −1) · l − i ·dmi n , (3.10)

where di ,k−τS is the net distance between the rear of the i th leader and the front bumper
of the ego vehicle at time step k −τS ; dmi n denotes the jam (minimum) distance gap; τS

represents the sensor delay; l is the vehicle length used in this study.

For other elements in the state vector, the speed of the ego-vehicle vk and relative speed
with its leader ∆vi ,k are information which can be directly obtained from the RADAR sen-
sor. The jerk can be calculated by

jk = ak −ak−1

∆t
, (3.11)

where ak and ak−1 denote the vehicle acceleration values at the current and previous time
step, respectively.

The action defined in the DRL framework is the control input u of the ACC controllers
ranging from umi n = -6 m/s2 to umax = 3 m/s2, which is also the range of the vehicle ac-
celeration a, taking reference from the range of aggressive driving behavior defined in Bae
et al. (2019). These values are determined considering drivers’ comfort and the ability of
vehicle mechanical systems. In extreme safety critical situations, an even larger decelera-
tion value may be required. However, it is not considered here in this problem context and
the major purpose of the proposed ACC systems.
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The values of the parameters used in the ACC controllers are summarized in Table 3.3.
In the training of the policies, the sensor delay τS is equivalent to zero so that the agent
learns the correct behavior for the corresponding state observation without considering
the influence of the delayed information. The length of vehicles is assumed to be 4 m in
this study. In reality, the length of the first leader should be estimated by using the contour
of the detected vehicle or advanced image recognition technique.

Table 3.3: Parameter values used in the policy training

Parameter Value
Sensor delay (τS) 0 s (training), 0.2 s (experiment)
Vehicle length (l ) 4 m
Minimum distance gap (dmi n) 2 m
Time step size (∆t ) 0.1 s
Std. of distance gap (σg ) scenario-specific
Std. of relative speed (σv ) scenario-specific
Maximum acceleration (umax ) 3 m/s2

Minimum acceleration (umi n) -6 m/s2

3.4.2. Reward function

Many different spacing policies and their effect have been investigated in previous ACC
studies. This study selects the constant time gap (CTG) policy, which is one of the most
commonly-discussed spacing policies. The ACC controllers aim to help the ego-vehicle
maintain the desired time gaps with its two leaders ahead.

The reward function in the designed DRL framework consists of three components,
time gap error, jerk, and correctness of the action, while each of them represents the spac-
ing policy, driving comfort, and penalty for undesired actions, respectively. In Shladover
(1978), it was pointed out that limiting the jerk has destabilizing effect on the longitudi-
nal dynamics of the following vehicle. Therefore, the reward function should be able to
guide the system to achieve a certain level of balance between these two factors. For ACC
controller agents in this study, a negative reward function

Ri ,k =α · |ei ,k |
emax

+β · | jk |
jmax

+min(
ei ,k−1 −ei ,k

emax
,0). (3.12)

is designed. A negative reward function implies that every element in the function is nega-
tive. In Eq 3.12, ei ,k is the time gap error, which can be calculated by

ei ,k = t gi ,k − t g∗
i , (3.13)

where t gi ,k = gi ,k
vk

is the time gap of the ego-vehicle with the i th leader at k time step, and
t g∗

i is the desired time gap with the i th leader determined according to the given spacing
policy. emax and jmax are values specified to normalize the gap error term and the jerk

term, respectively. In this reward function design, emax = t g∗
2 and jmax = (umax−umi n )/3

∆t . α
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and β are the weights of the the first two elements, respectively. There is no weighting
for the third element since it serve as a penalty term in the function. In this study, two
weighting combinations are considered:

• Weighting combination 1: α= 1
2 and β= 1

2

• Weighting combination 2: α= 9
10 and β= 1

10

The two combinations aim to highlight the hypothetical trade-off between the two fac-
tors in the reward function and also help observe how the string stability and ride comfort
performance are influenced by the different weighting setups.

Based on the negative reward design, the policy would seek to attain zero reward as fast
as possible so that the ego-vehicle can reach the equilibrium and stable state (desired time
gap and zero relative speed). In addition, the reward function should be able to provide a
gradient for the agent to understand whether it is getting closer to the desired state or not.
Therefore, every component in the function is continuous.

The proposed ACC systems in this study follow the constant time gap policy as the con-
trol goal in their controllers. The desired time gap (t g∗) in the policy of each ACC controller
should be determined and used in the reward functions. Wang et al. (2017) showed that a
linear state feedback ACC controller can preserve string stable performance but with a lim-
ited range of feedback gain parameters when driving at 1 s time gap with 0.2 s sensor delay
and 0.2 s actuator lag in a homogeneous platoon. To investigate whether the proposed sys-
tem can also achieve this level of performance, t g∗

1 is set to 1 s for the controller (controller
1) which is responsible to follow the first leader, while t g∗

2 would be 2 s for controller 2 to
follow the second leader. An even smaller time gap is considered to be slightly too dan-
gerous given the reaction time required by human drivers when they have to take-over the
control of the vehicle if a safety-critical situation occurs.

A negative value (P = −100) would be added as a penalty term if the resulting state
falls into certain regions in the state space which are unreasonable or may lead to disen-
gagement of the ACC system, including an collision (t gk < 0), an extremely long time gap
(t gk > t g∗+5), or a negative speed of the ego-vehicle (vk < 0). The value of P should be
sufficiently small so as to assign penalty to the incorrect behavior, but not too small which
may cause a large difficulty for the training of the DNN agents.

3.4.3. Training task design for controllers with full observability

In the training process of ACC controllers, each episode simulates a 30 s car-following task,
which is equivalent to 300 time steps for the ACC system. The simulation approach will be
introduced in subsection 3.7.1. This study first setup a stationary environment (constant
speed of the leader) and seek to train the optimal policies by creating different initial con-
ditions in the environment for the agent (ego-vehicle) to tackle. In each episode, the leader
keeps a constant speed, while the ego-vehicle starts with a randomized initial speed and
time gap so that the agent can explore various car-following tasks. For instance, an initial
state with a positive relative speed or a time gap larger than the desired value in the spacing
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policy trains the ego-vehicle how to approach a fast leader; an initial state with a negative
relative speed or a time gap shorter than the desired value teaches the ego-vehicle how to
properly adjust its speed profile to reach back to the equilibrium state.

In each episode, the speed of the leader is selected in a range between 15 m/s (54 km/h)
and 35 m/s (126 km/h), which is approximately equivalent to the uncongested motorway
speed range, as 120 km/h and 50 km/h are used as the design speed and the threshold speed
between uncongested and congested traffic flow in Dijker et al. (1997). The applicability of
the trained policy in situations outside the specified speed range will be further examined.
All the detail regarding the initialization of each training episode is described as follows:

• Constant speed of the leader: [15 m/s, 35 m/s]

• Initial relative speed with the i th leader (∆vi ,0): [-3 m/s, 3 m/s]

• Initial time gap with the i th leader (t gi ,0): [t g∗
i −0.5 s, t g∗

i +3 s]

The combination of every initial condition explored during the training process con-
tributes to the final output policy altogether. Note that a few studies using RL to develop
ACC controllers have the ego-vehicle learn in a non-stationary environment, which means
the leader may have a trajectory with an oscillating acceleration profile. This kind of method
asks the ego-vehicle to learn the state transition probability and the control policy without
knowing the exact future movement of the leader. In this kind of setting, it may be chal-
lenging for the agent to make the correct decision based on rewards obtained from the
varying environment. In addition, determining sufficient and representative training tasks
which ensure the applicability of the output policy is relatively difficult. Therefore, this kind
of method is not preferred for the training of agents with full observability in this study.
On the other hand, this kind of method may work in studies developing CACC systems, in
which the ego-vehicle has a certain extent of knowledge of the next action (acceleration
command) of the leader according to the in-vehicle information received through wireless
vehicle communication technologies.

Each training episode would be terminated if the termination criteria is met, as the con-
ditions mentioned in the previous subsection. This measure avoids the agent from contin-
uing the exploration in situations which are unlikely to happen and make use of the training
process efficiently.

3.5. State estimation using Kalman filter

When there is uncertainty in the sensor measurements, a KF can be used to derive an es-
timation of the true underlying state of the second leader measurements. It can also be
understood as a method to track the movement of the leading vehicle. For actual RADAR
measurements, an EKF should be applied to handle the non-linearity in the state transfor-
mation for measurements in polar coordinates, which ruins the Gaussian property. How-
ever, this study aims to explore the influence of uncertainty in range (distance gap) and
range rate (relative speed) measurements for the multi-leader ACC application. Therefore,
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this study uses a linear KF instead of EKF for the ego-vehicle to track its leaders since the
azimuth measurement is not of major interest in the defined problem context. For com-
pleteness, this section reiterates the steps and equations of the basic discrete linear KF for
vehicle longitudinal motion tracking which can be used by the proposed ACC systems ac-
cording to the material (Welch and Bishop, 2006).

In this problem, the state vector includes the distance gap between the leader and fol-
lower, relative speed, and relative acceleration. Hence, the estimated state of the i th leader
at time step k is formulated as a vector

ẑi ,k =
 gi ,k

∆vi ,k

∆ai ,k

 . (3.14)

The standard KF is a recursive process, which consists of two main steps, the prediction
of state and update of the state estimation using measurements. Assumptions regarding
the noise for the initial state, process dynamic, and measurements are determined before-
hand. This method is believed to be a practical and state-of-the-art approach to deal with
the potential sensor measurement uncertainties nowadays.

The steps and parameters in KF are describes as follows. The assumed process dynamic
of the system is first formulated to produce the predicted state vector in the next time step.
In this study, the leading vehicle motion is assumed to be a constant acceleration move-
ment following Newton’s law of motion. Therefore, the prediction of mean of the state
vector in matrix form can be derived by

ẑ−
i ,k = F · ẑi ,k−1, (3.15)

where ẑ− is the predicted state estimation, and F represents the state transition, which is
calculated by

F =
1 ∆t 1

2∆t 2

0 1 ∆t
0 0 1

 . (3.16)

The predicted error covariance matrix of state variables P− can be calculated by

P−
i ,k = F ·Pi ,k−1 ·F T +Q. (3.17)

In Eq 3.17, Q represents the process noise covariance, which represents the uncertainty
in the process dynamic. According to the assumption of the constant acceleration motion,
there may be some noise in the leading vehicle acceleration. Hence, Q can be derived by
projecting the random variance of the acceleration σa

2 on the process dynamic using the
state transition matrix F , as shown in
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Q = F ·
0 0 0

0 0 0
0 0 σa

2

 ·F T =


∆t 4

4
∆t 3

2
∆t 2

2
∆t 3

2 ∆t 2 ∆t
∆t 2

2 ∆t 1

 ·σa
2. (3.18)

After predicting the mean and variance of the state vector, the output variables ŷ− need
to be derived from the predicted state vector ẑ−

i ,k using the observation matrix, as shown by

ŷ−
i ,k = H · ẑ−

i ,k , (3.19)

while

H =
[

1 0 0
0 1 0

]
. (3.20)

Since RADAR provides distance and direct speed measurement, the observation matrix
H is used to extract the predicted values of these two output variables from the predicted
state vector.

The derived measurements in ŷ− will then be used to update the mean of the state
vector. In the next step, the Kalman gain Gi ,k , which is the weighting factor between the
process dynamic and measurement, is calculated by

Gi ,k = P−
k ·H T

H ·P−
k ·H T +R

. (3.21)

To achieve the lowest variance for the state, the optimal Kalman gain can be calculated
as the ratio of the degree of uncertainty in our assumed process dynamic and the degree of
uncertainty in the observation. In Eq 3.21, R denotes the measurement covariance.

After calculating the Kalman gain, the mean and variance of the state vector at current
time step can be updated, as shown in

ẑi ,k = ẑ−
i ,k +Gi ,k · (yi ,k − ŷ−

i ,k ) (3.22)

and

Pi ,k = (1−Gi ,k ·H) ·P−
i ,k . (3.23)

The updated mean of the state vector ẑi ,k can then be used in the DRL-ACC system.
Both the mean and variance of the updated state would be used in the next time step to
continue the estimation of the leader state information.

The initial error covariance Pi ,0, process noise covariance Q, and measurement noise
covariance R are parameters in the KF process. In this study, we assume the system has
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accurate information at the beginning. Therefore, Pi ,0 =
0.01 0 0

0 0.01 0
0 0 0.01

 for both i = 1

and i = 2. In addition, the noise covariance matrices stay constant throughout the whole
tracking task. After several trials of tuning, the process noise covariance Q, which is derived
from σa = 0.5 m/s2, is found to have the best performance in terms of maintaining string
stability considering the case of a typical traffic disturbance, which will be introduced in
chapter 4. The measurement noise covariance matrices R would also follow the scenario
settings, which will also be discussed later.

Note that this study adopts the conventional KF method. As mentioned in subsection
2.5.2, several studies have proposed tracking methods using adaptive KF, which changes the
measurement and process noise covariance matrix dynamically during the task (Mehra,
1972). In this context, random noise of the leader acceleration may also become a time-
dependent value σak which is changed dynamically so that the tracking task can adapt to
changes in the target vehicle movement more quickly by using the adapted KF than it does
when using the conventional KF method.

3.6. Recurrent policy training setup with uncertain measure-
ments

To tackle the measurement uncertainty, the other method adopted in this study is the uti-
lization of RNNs, as introduced in section 3.3. LSTM-ACC controllers can hence be formu-
lated. Different from the previous ACC controllers which are trained with accurate mea-
surements, these controllers are trained directly with uncertain measurements. Therefore,
the input for the DNN agents has to be changed. Furthermore, a completely different setup
is applied to design the training task.

3.6.1. Observation space

To train the LSTM-ACC controllers with noisy state information, the observation o at each
time steps would replace the true underlying states s, as described by

oi ,k = (g ′
i ,k , vk ,∆v ′

i ,k , jk ), (3.24)

where g ′
i ,k represents the distance gap with random error, while ∆v ′

i ,k is the relative speed
calculated from the speed of the leader which also contains random error.

Random errors ϵ are added to the RADAR range and range rate measurements to repre-
sent the measurement uncertainty. Since the RADAR sensor directly collects and calculates
these two measurements through different approaches, the error terms of the distance gap
and relative speed follow two independent zero-mean Gaussian distributions with stan-
dard deviations σgi and σvi , respectively, as shown by
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g ′
i ,k = gi ,k +ε∼ N (0,σ2

gi
) (3.25)

and

v ′
i ,k = vi ,k +ε∼ N (0,σ2

vi
). (3.26)

In the defined problem, internal information of the ego-vehicle which can be obtained
from interoceptive sensors, such as its own speed vk and acceleration ak , is assumed to be
accurate. Hence, the jerk jk would also remain unchanged.

3.6.2. Training task design for controllers with partial observability

For the training of LSTM-ACC controllers, the training tasks are different from those of the
ACC controllers. The implementation of the LSTM enables the agent to predict the next
state. In this problem context, the ACC controller of the ego-vehicle would be able to pre-
dict the distance gap and relative speed with the target leader. The original constant speed
leader behavior setup designed for the training of ACC controllers with full observability
cannot leverage the benefit of using LSTM and deteriorates its prediction ability. There-
fore, instead of training the LSTM-ACC controllers in a stationary environment, this study
seeks to train these recurrent policies in a non-stationary environment.

It is worth noting that RL in a non-stationary environment has been a challenging topic
for the field of artificial intelligence (Alegre et al., 2021). It is difficult for the agent to un-
derstand the state transition dynamics if the environment changes too frequently or the
changes diverse a lot. The approach of using the prediction ability of LSTM to overcome
this potential difficulty adopted in this study is one class of the methods for RL to cope with
non-stationarity.

When creating non-stationary driving behaviors for controllers to learn, traffic distur-
bances with different amplitudes of acceleration/deceleration are considered. At the be-
ginning of each episode, the leader and ego-vehicle starts from the equilibrium state in
which the two vehicles have a same speed and keep the desired time gap. The leader will
then speeds up or slow down at a certain moment in the episode, which may be caused by
the cut-in and cut-out behavior of a vehicle in front of the platoon leader. The leader stays
at the resulting speed for a certain time length and starts to fix back to the original speed
by either accelerating or decelerating with a smaller rate than the disturbance itself. Such a
leader behavior leads to a shockwave which propagates upstream along the platoon. In this
training setup, it is assumed that the disturbance and speed-fixing period have a constant
acceleration. The disturbance of each episode is randomly generated following the ranges
of values described below.

• Initial speed of both the leader and ego-vehicle: [15 m/s, 35 m/s]

• Starting point of the disturbance: [2 s, 4 s]

• Time length of the disturbance: (0 s, 5 s]
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• Acceleration/deceleration of the disturbance (ad ): [-4 m/s2, 2 m/s2]

• Time length of the resulting high/low speed period: [0.5 s, 8 s]

• Acceleration/deceleration of the speed-fixing behavior:{
[−ad m/s2,−ad

3 m/s2] for ad > 0

[−ad
3 m/s2,−ad m/s2] for ad < 0

Figures 3.7 and 3.8 illustrate two examples of the leader behavior for the training of the
LSTM-ACC controllers. The first example shows a traffic disturbance caused by an acceler-
ating behavior of the leader, while the second one depicts a disturbance caused by a strong
deceleration of leader. After the resulting high/low speed period, these vehicles try to reach
the original speed with a determined acceleration or deceleration.

Acceleration

Deceleration

High speed period

Start of the disturbance

Figure 3.7: The first example of the leader behavior with initial speed = 25 m/s, accelerating disturbance with
1.2 m/s2 occurring from 5 s to 8 s, 6 s high speed period, and decelerating with -0.6 m/s2

Deceleration

Acceleration

Low speed period

Start of the disturbance

Figure 3.8: The second example of the leader behavior with initial speed = 30 m/s, decelerating disturbance
with -2 m/s2 occurring from 8 s to 12 s, 2 s low speed period, and accelerating with 1.6 m/s2
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The resulting speed caused by the oscillation would be bounded between 11 m/s (40
km/h) and 39 m/s (140 km/h) to match the operational design domain of the proposed
multi-leader ACC systems specified in the training of ACC controllers. The acceleration or
deceleration amplitude of the disturbance would be recalculated based on the bounded
resulting speed and the randomly generated time length of the disturbance if the original
resulting speed exceeds the boundary.

3.7. Simulation and training tools

The previous sections explain the theory behind the selected system design methods and
the setup for the defined problem. In this section, the simulation approach and program-
ming tools used for the design of the ACC controllers and the simulation experiment after-
ward will be introduced.

3.7.1. Numerical simulation approach

A numerical simulation approach is adopted to represent the environment in the DRL
method. Following Newton’s law of motion, a vehicle motion model


xk = xk−1 + vk−1∆t + 1

2 ak−1∆t 2

vk = vk−1 +ak−1∆t

ak = ak−1 + (uk −ak−1)∆t/τA

(3.27)

is formulated. In Eq 3.27, xk is the vehicle position, and τA is the actuator lag resulting from
the lower-level ACC controller and the vehicle driveline, including the engine, throttle, and
brake response. In this study, a 0.2 s actuator lag is adopted, as the value used in Wang et al.
(2018) and Xiao and Gao (2011). The model updates the position, speed, and acceleration
of every simulated vehicle according to the action carried out at every time step.

The state information introduced in section 3.4 can be derived from the updated po-
sition, speed, and acceleration of the leader and follower. For instance, the distance gap
(di ,k−τS ) is the difference between the positions xk−τS of the i th leader and that of the ego-
vehicle. These equations mathematically describe the movement of vehicles and the tran-
sition between states. Based on the action carried out and the car-following dynamics sim-
ulated, the reward function value can then be calculated.

3.7.2. Training tool and setup

The DRL training and numerical simulation (DRL environment) are both built using Ope-
nAI Gym (Brockman et al., 2016) in Python 3.7.11, which is suited for Stable Baselines (Hill
et al., 2018), the selected DRL algorithm library using Tensorflow 1.15.0 as the deep learning
package. Note that the new version of Stable Baselines (Stable Baselines 3), which supports
PyTorch, was already released (Raffin et al., 2021). However, the recurrent policy networks



3.7. Simulation and training tools 49

are not yet supported in Stable Baselines 3 for the time being of this thesis project. There-
fore, Stable Baselines 2.10.2 is adopted. The training of 10000 time steps takes around one
minute on a laptop which has a 4-core (8 thread) Intel Core i7 CPU running at 2.80 GHz
with 12Mb cache and an elementary Nvidia GeForce MX350 GPU.

For the training of the DNN agents with full observability (accurate measurements),
the total number of time steps is 1500000. On the other hand, those agents with partial
observability for LSTM-ACC systems are trained for 6000000 time steps (four times of the
ACC controllers) since the LSTM layer contains much more neurons and parameters to be
optimized. Therefore, a longer training process is necessary. During the training process,
the performance of the learned model is estimated every 100000 time steps by simulating
100 randomly generated episodes. The estimated policy which has the highest average
reward would be stored as the optimal policy and used in the simulation experiments for
performance evaluation.





4
Experimental Design and Analysis

After designing the ACC systems, this chapter introduces how the proposed systems will be
evaluated. The simulation approach, which has already been used in the system design, is
again explained. The second section describes the scenarios in the experiment. Section 4.3
then summarizes all the scenarios and develops a framework for the evaluation and com-
parison afterward. The quantitative analysis framework which will be applied to analyze
the output from the numerical simulation is introduced in the last section.

4.1. Simulation setup

As described in section 3.7, a numerical simulation approach is formulated to be used as
the environment in the DRL method. The same approach is extended to carry out the de-
signed experiments in this study. In the numerical simulation, the longitudinal dynamics
of a 20-vehicle homogeneous platoon is simulated. The behavior of the first vehicle is pre-
determined, and the other following vehicles act according to the acceleration command
generated from the ACC system. The time step size (∆t ) of the simulation is 0.1 s. The time
length of the simulation experiment depends on the designed car-following task, which will
be described in the next section. The position, speed, and acceleration of each following
vehicle at every time step will be stored for further analysis.

4.2. Experimental scenarios

In this section, the experiment including several scenarios is designed to evaluate the per-
formance of these ACC systems. The leader behavior and level of sensor measurement un-
certainties are the two main control variables for the experiment, while this study first con-
siders a specific leader behavior with disturbance for simplicity in the performance evalu-
ation.

51
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4.2.1. Leader behavior with traffic disturbance

The car-following dynamics of the following vehicles depends on the behavior of the first
vehicle in the platoon. To test the string stability of the ACC systems, a disturbance needs
to be added to the behavior of the first vehicle to investigate the response of the following
vehicles. From a traffic flow perspective, a speed fluctuation behavior of the leading vehi-
cle is of interest since it is often the cause of the propagation of shockwaves on motorways.
Therefore, this study considers a 50 s vehicle driving behavior with a type of speed fluc-
tuation described in T. Li et al. (2021) as the disturbance. This kind of leader behavior is
also used to train the DRL-LSTM-ACC controllers in this study, as mentioned in subsection
3.6.2.

Figure 4.1 gives an example of the speed profile of the first vehicle in the platoon. In the
created driving behavior, the first vehicle starts with a constant stabilization speed 33 m/s
for 3 seconds. It then conducts a strong deceleration with -3 m/s2 for 4 s and maintains at
the low resulting speed for 5 s. Later on, it spends 8 s speeding up with 1.5 m/s2 to reach
the original stabilization speed. This is a comparatively aggressive braking and accelerating
maneuver for human drivers, which can better help demonstrate the effectiveness of the
proposed ACC systems in this study.

StabilizationConstant Deceleration Low-speed Acceleration

Sp
ee

d

Time

Stabilization 
speed

Oscillation
amplitude

3 s 7 s 12 s 20 s

Figure 4.1: Oscillation speed profile of the first vehicle in the platoon

4.2.2. Sensor measurement uncertainties

Sensor measurement uncertainties are the other important aspect in this study. To explore
the uncertainty boundary for string stability performance of the developed ACC systems,
measurement noise is considered in the experiments.

Noise is one of the most common type of uncertainties for sensor measurements. It
can come from the detection of different points of the leading vehicle, e.g. rear bumper or
chassis of the vehicle. Different scattering radar point clouds lead to different estimations
of the target vehicle contour and produce noisy range (distance) measurements. The sec-
ond type of sources which can lead to measurement noise is the signal-to-noise (S/N) ratio,
the ratio of reception power to noise power. Factors influencing the S/N ratio include the
measurement time, frequency used, and the power of transmission and reception speci-
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fied in the sensor. Measurement noise can also subject to other external factors related to
the distance and speed of the target object or the environment. However, these external
and environmental factors are excluded in this study due to the unavailability of data from
which such features can be extracted.

Hence, random errors resulted from the noisy measurements mentioned above are con-
sidered. The errors of the distance gap and speed measurements are assumed to follow
two independent zero-mean Gaussian distributions with standard deviations σg m and σv

m/s, respectively. The accuracy of the first leader information is fixed to σg1 = 0.2 m and
σv1 = 0.2 m/s, which are determined according to the state-of-the-art automotive long-
range RADAR accuracy summarized in Hasch et al. (2012) and Gamba (2020). This scenario
which only considers the measurement uncertainties of the first leader is denoted by "N0"
in this study, as it will also be applied in those two-leader systems.

The accuracy of the second leader measurements, however, is still unknown since it is a
relatively new concept in the ADAS applications or ACC system development. For the sim-
ulation experiment and model training in this study, it is assumed that the second leader
measurements would be more erroneous than the first leader measurements. According
to Hasch et al. (2012), the standard deviations of the two measurements can be calculated
based on the same S/N ratio. Hence, the standard deviations of the range and range rate
measurements tend to increase together when the S/N ratio increases.

Given that the RADAR calibration and parameters remain unchanged, the S/N ratios
vary in four different levels. Accordingly, the system performance will be evaluated in four
different levels of measurement noise:

• N1: σg2 = 0.5 m and σv2 = 0.5 m/s

• N2: σg2 = 1 m and σv2 = 1 m/s

• N3: σg2 = 1.5 m and σv2 = 1.5 m/s

• N4: σg2 = 2 m and σv2 = 2 m/s

Each level has a standard deviation value for both the range and range rate measure-
ments of the second leader. A RADAR sensor which has a larger level of measurement
noise than level N4 would be regarded as an unreliable sensor for the multi-leader detec-
tion functionality and any other ADAS applications. Each scenario will be simulated 20
times to account for the randomness.

It is worth noting that there are indeed other sources of sensor measurement uncertain-
ties which can be considered in this single-lane longitudinal driving case. For instance, the
problem of losing detection (false negative) may often happen to the second leader detec-
tion task when the power of the received signal becomes too small and significantly affects
the reliability of the multi-leader ACC system. However, this type of sensor measurement
uncertainty creates another dimension to investigate and is hence left out in this study.
More relevant discussion can be found in chapter 7.
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4.3. Performance evaluation framework

To draw valuable research findings and answer the proposed research questions afterwards,
a clear framework for the evaluation and comparison of the system performance is re-
quired. In chapter 5, the simulation and analysis results will be divided into four parts,
which will be introduced as follows.

• Part 1 (section 5.2): This study emphasizes the importance and possibility of the design of
multi-leader ACC systems. Therefore, the first part of the evaluation will focus on the the
comparison between the performance of the one-leader ACC system and that of the two-
leader ACC system in the scenario with accurate measurements. By doing so, the string
stability, ride comfort performance, and car-following behavior mechanism of the two
systems will first be investigated, as will be introduced in the next section. The benefit
of multi-anticipation for the car-following dynamics in the platoon, which is also the
fourth research question in this study, can also be discovered. The performance of these
two systems under perfect information will become the baseline for the comparison with
other systems in scenarios with uncertain measurements.

• Part 2 (section 5.3): In the second part of the evaluation, sensor measurement uncer-
tainties are considered. It is important to understand the impact of different levels of
uncertainties on string stability and ride comfort. Therefore, the ACC systems evaluated
in Part 1 will then be simulated in scenarios with measurement uncertainties modelled as
described in section 4.2.2. It is anticipated that the system performance will be degraded
as the level of measurement uncertainties increases.

• Part 3 (section 5.4): The third part focuses on the effect of applying KFs as the state esti-
mators in the ACC systems. Therefore, the KF-ACC systems using the same controllers of
the previous ACC systems and the tuned KFs will be simulated to explore whether they
can attain the same level of performance as the scenarios with accurate sensor measure-
ments in Part 1 of the evaluation.

• Part 4 (section 5.5): The last part evaluates the performance of the LSTM-ACC systems
which use recurrent policies to handle the noisy measurements. Besides of answering the
question whether this type of systems can perform as good as the previously-proposed
ACC systems in scenarios with accurate measurements, these systems will also be com-
pared with the systems using KFs. It is worth investigating the difference between the
effects of these two methods in terms of measurement uncertainty handling.

The structure in chapter 5 will follow this four-part performance evaluation framework.
Table 4.1 provides an overview of each experiment and the whole evaluation framework. It
should be noted that every system listed in the table has two different versions which are
designed with different weighting combinations for the terms in the reward function of the
DRL training setup.
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4.4. Quantitative Analysis

This section describes the quantitative analysis framework for the numerical simulation
output. Initial hypotheses of the performance and effect of the proposed ACC systems on
string stability, ride comfort, and overall car-following dynamics are required to develop
this analysis framework.

4.4.1. String stability indicators

To investigate the string stability performance, some indicators which can represent such
property should be defined to quantitatively evaluate the results of the simulation experi-
ments conducted. For simplicity, this study only investigates the impact of disturbance on
the speed of the following vehicles. First, the analysis focuses on the effect of the ACC sys-
tem response on the propagation of speed fluctuation. The oscillation amplitude of each
vehicle is computed by the difference between the stabilization speed (SS) and the lowest
speed (LS) in the profile, while the oscillation growth amplitude (OG) is the difference be-
tween the oscillation amplitude of the first vehicle in the platoon and that of the follower
considered . By looking at the propagation of the oscillation growth amplitude in the pla-
toon, whether the disturbance is amplified or damped out can be observed.

Additionally, after the following vehicle speeds up in the acceleration phase, the speed
of it may slightly exceed the SS. This phenomenon is known as the overshooting effect. It
is also related to the string stability performance since a large overshooting amplitude can
potentially lead to another disturbance and traffic oscillation. Hence, the overshooting am-
plitude (OS), which is calculated by the difference between the SS and the highest speed
(HS) after the acceleration phase in the speed profile of the follower, would be the second
indicator in the quantitative analysis framework. Both an increasing oscillation growth am-
plitude and an increasing overshooting amplitude along the platoon indicate a certain level
of string instability. After applying the proposed systems, both indicators are expected to
decrease as fast as possible in the upstream direction of the platoon.

Oscillation

growth

Overshooting 

amplitude

Figure 4.2: String stability indicators shown in the speed profiles of a following vehicle equipped with a
non-optimized linear state feedback ACC controller
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Figure 4.2 shows the speed profiles of an oscillating leader and a follower equipped with
a non-optimized linear state feedback ACC controller (k1 = 0.2 and k2 = 0.4). It provides a
graphical example of the two string stability indicators.

The string stability indicators of each following vehicle and their calculation methods
are summarized:

• Oscillation growth amplitude (m/s): OGn = LSn −LSl

• Overshooting amplitude (m/s): OSn = HSn −SS

Subscript l represents the first leading vehicle in the platoon, whose behavior is pre-
determined, while subscripts n denotes the number of the following vehicle within the pla-
toon.

4.4.2. Ride comfort indicators

As mentioned in section 4.2, measurement noise is considered in the simulation experi-
ment. The existence of noise may not only affect the string stability performance but also
result in uncomfortable driving maneuvers (fluctuation in the acceleration profile). The
state estimators, KF and the implemented LSTM network, are expected to help smooth out
the noise in both the range and range rate measurements so that the jerk at every time
step can be reduced. In addition to ride comfort, reducing the jerk between consecutive
time steps is also an important aspect for the vehicle driveline and mechanical systems. Al-
though not being explicitly simulated in this study, commercial vehicles usually have a jerk
limiting mechanism to preserve ride comfort and prevent severe damage on the hardware.

Hence, to evaluate the performance of the system when facing noisy measurements,
the jerk amplitudes experienced by vehicles in the platoon will be recorded and analyzed.
First, the probability distribution of jerk of all vehicles in all simulation runs will be cal-
culated to discuss whether the system produces uncomfortable driving maneuvers when
facing the disturbance and measurement uncertainty. The criteria and threshold of jerk
are determined beforehand to define the boundary of comfortable and aggressive driving
maneuvers. According to Bae et al. (2019), the jerk threshold for normal and comfortable
driving behaviors can range from 0.3 m/s3 to 0.9 m/s3. Jerk amplitudes ranging from 0.9
m/s3 to 2 m/s3 are regarded as aggressive driving behaviors. A jerk amplitude larger than
2 m/s3 is therefore considered abnormal and only occurs in emergency conditions. Figure
4.3 graphically shows the ride comfort levels and the threshold values.

By doing so, the impact of noisy measurements and the improvement brought by the
adopted state estimation methods can be explored. It is also hypothesized that noisy mea-
surements will definitely create large jerk amplitudes between consecutive time steps. A
higher level of measurement uncertainties may further result in larger jerk amplitudes and
hence more uncomfortable driving maneuvers.

As mentioned in subsection 3.4.2, jerk and stability may be two potentially contradict-
ing performance indicators for a vehicle platoon. Whether this trade-off does exist in the
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Normal/comfortable Aggressive Emergency

Jerk (m/s3)

Figure 4.3: Definition of ride comfort levels based on jerk amplitudes

performance of the proposed systems and what kind of effect can the adopted state esti-
mation methods or controllers bring for these two performance aspects will be discussed
in chapter 5 by comparing the system performance before and after the implementations
of the state estimators. The different weighting combinations used in the reward function
of the DRL policy training setup may also provide insights into this aspect.

4.4.3. Car-following behavior mechanism

Other than investigating string stability and ride comfort by looking at these indicators,
this study also seeks to explore the car-following behaviors of vehicles equipped with the
proposed ACC systems by comparing the trajectories of the following vehicles with their
hypothetical trajectories generated from Newell’s car-following model (Newell, 2002). The
method was originally adopted by Laval (2011) and Laval and Leclercq (2010) to investi-
gate the behaviors of human driven vehicles. T. Li et al. (2021) also applied this method to
analyze the behavior of ACC-equipped vehicles in empirical experiments.

In Newell’s car-following model, it is stated that the position of the following vehicle
(xi+1) at time t is a distance δ upstream of the position of the preceding vehicle (xi ) at time
t −τ. The trajectory of the leader and the follower should be identical except for a shift of
space and time between them, as shown in Figure 4.4.

𝜏

𝛿

Figure 4.4: Follower trajectory generated based on Newell’s car following model

Using the same notations, the mathematical formulation of Newell’s car-following model
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can be described by

xi+1(t ) = xi (t −τ)−δ. (4.1)

According to the constant time gap spacing policy considered by the ACC systems in
this study, the time shift τwould be 1 s, and the distance shift δwould be 6 m, which is also
the jam headway calculated by summing the minimum distance gap (dmi n) and vehicle
length (l ).

If the vehicle trajectory stays above the Newell’s follower trajectory (black dashed lines
in Figure 4.4), it represents an aggressive driving maneuver. In contrast, a trajectory be-
low the Newell’s trajectory indicates that the follower has a timid or conservative behavior.
The position deviations of the following vehicles from the Newell’s follower trajectories are
calculated and recorded at every time step to help discover the behavioral response of the
following ACC vehicles to the preceding traffic oscillation event.





5
Results

This chapter first presents the training performance of the ACC controllers and LSTM-ACC
controllers. The learning processes of the agents under different weighting setups and dif-
ferent levels of uncertainties can be observed, which helps explain and verify the policy
network training setup in chapter 3. The simulation output of the proposed systems in
those scenarios defined in section 4.2 have been analyzed following the quantitative anal-
ysis framework proposed in section 4.4. The analysis results are then divided into different
sections based on the systems considered. These sections provide preliminary and detailed
discussions according to the observations from the analysis results.

5.1. Training performance

The curves in Figures 5.1 and 5.2 record the undiscounted cumulative reward and episode
length at every evaluation point during the training process of the ACC controllers. The dots
in the plot of cumulative reward represent the evaluated model with the highest average
reward.

As can be seen in the plot of episode length on the right hand side of Figure 5.1, the
learning agent of ACC controller 1 found the policy which successes to complete all the
car-following tasks at the fifth evaluation point, while the fourteenth evaluated model is
selected as the optimal policy. For the ACC controller 2, the algorithm managed to find
the success policy within 100000 time steps of training , which is even before the first eval-
uation point. In general, the cumulative rewards of controller 2 are higher than those of
controller 1 throughout the training process. The training of a successful policy is also eas-
ier for controller 2 than it is for controller 1. This is due to the setting in reward function
design and the difference between their spacing policies. Since controller 2 has a larger
desired time gap, the reward function values are often higher than those in controller 1. A
larger time gap also allows it to prevent the training episode from being easily terminated
due to the occurrence of a too large or too short time gap.

Figure 5.2 shows the training performance of the ACC controllers in the second weight-
ing combination setup. It is found that the learning agent of the ACC controller 2 also has
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Figure 5.1: Undiscounted cumulative reward (left) and episode length (right) of the ACC controllers trained
with the first weighting combination at every evaluation point in the training process
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Figure 5.2: Undiscounted cumulative reward (left) and episode length (right) of the ACC controllers trained
with the second weighting combination at every evaluation point in the training process

higher cumulative reward than the agent of ACC controller 1 at the end of the training pro-
cess. However, there is no significant difference between the amounts of training needed
for each agent to find the success policy. This implies that the second weighting combi-
nation setup, which focuses more on the gap-keeping performance than the ride comfort,
makes it more difficult for the agent with full observability to learn how to complete the
car-following task. More explorations are required for the agents in this reward function
design.

On the other hand, the learning curves of recurrent policies show similar trend in the
training process. As shown in the curve of episode lengths on the bottom of Figure 5.3,
the algorithm found the policy which enables the LSTM-ACC controller 1 to finish every
evaluation episode at the 15th evaluation point, while the trained policies of every LSTM-
ACC controller 2 success to complete the entire simulation episode around the 5th point.
For the training of the LSTM-ACC controller 2 under multiple levels of uncertainties, it is
also found that the training performance is influenced by the level of uncertainties. In the
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Figure 5.3: Undiscounted cumulative reward (top) and episode length (bottom) of the LSTM-ACC
controllers trained with the first weighting combination at every evaluation point in the training process
(dotted lines represent their counterparts without using the LSTM networks in the network architecture)

scenarios with lower level of uncertainties, the trained policy is able to achieve a higher
undiscounted cumulative reward. In addition, the training with a higher level of uncer-
tainties leads to more unstable training performance and larger variation of the average
cumulative reward. For instance, the policy for LSTM-ACC controller 2 in measurement
uncertainty level N4 fails to complete all the training episodes at the 51st evaluation point,
as shown in both the curves of cumulative rewards and episode lengths, while this does not
happen to the LSTM-ACC controller 2 in other uncertainty levels.

On the other hand, for the training of LSTM-ACC controllers which can handle mea-
surement uncertainties, the positive effect of adding the recurrent layer into the DNN agent
can also be demonstrated. The dotted learning curves in in Figure 5.3 represent the learn-
ing processes of four policies in the corresponding levels of uncertainties without using the
LSTM network. According to the episode length curve, these policies may be able to find
a success policy for the car-following task faster than their counterparts with recurrency
since the comparatively simple DNN structure makes the training much simpler. However,
it is found that the maximum cumulative rewards of these policies are all smaller than those
of the recurrent policies. Moreover, the difference between the policy and the recurrent pol-
icy becomes larger at higher uncertainty levels. This implies the importance of making use
of the history of states and actions and the power of memories to make decisions under
uncertainty.

Figure 5.4 presents the training of LSTM-ACC controllers in the second weighting com-
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Figure 5.4: Undiscounted cumulative reward (top) and episode length (bottom) of the LSTM-ACC
controllers trained with the second weighting combination at every evaluation point in the training process

bination setup. It also shows that the optimal cumulative reward is smaller when the mea-
surement uncertainty level becomes higher. However, different from the trend observed
in the training performance of ACC controllers, the second weighting combination setup
makes it easier for the agent of LSTM-ACC controller 1 to find the successful policy than
the first weighting combination setup does. The improvement may also be reflected in the
final optimal policy performance, which will be discussed in subsection 5.5.1.
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5.2. System performance with accurate measurements

This section shows the simulation and performance analysis results of the one-leader and
two-leader ACC systems in scenarios with accurate measurements. The main purpose is to
show the ability of DRL in designing ACC controllers and also explore the potential benefit
of multi-anticipative car-following behavior of the two-leader DRL-ACC system.

5.2.1. Performance of one-leader ACC systems

The 20-vehicle platoon consisting of a human driven leader and nineteenth following ve-
hicles equipped with the one-leader ACC system designed with the first weighting com-
bination is first simulated in the created traffic oscillation case. Figure 5.5 shows the ac-
celeration/speed/gap profiles of the first six vehicles in the platoon. As can be seen in the
acceleration and speed profiles, it seems that the disturbances in the driving behaviors of
the first five following vehicles are maintained at nearly the same level as the first vehicle
(leader 1 in the figure). Although it is uncertain that whether the disturbance is damped out
or not in the upstream of the platoon, it can be observed that the disturbance is not dra-
matically amplified. Furthermore, the time gap of each follower with their leaders does not
deviate too much from the desired value (1 s) when encountering the disturbance and can
be fixed back to the desired value in the stabilization phase. These two aspects demonstrate
the success of DRL in developing the ACC controllers.
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Figure 5.5: Acceleration, speed, and time gap profiles of the platoon using the one-leader ACC system
designed with the first weighting combination in the scenario with accurate measurements

The car-following dynamics of the whole platoon can be observed in Figure 5.6, which
plots the trajectories and speed contours of every vehicle in the platoon. By looking at the
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speed contours, it is actually found that the minimum speed of the 20th vehicle seems to be
slightly larger than the first vehicle according to the color of the speed contour although it is
still difficult to observe any difference. This indicates that the oscillation amplitude is grad-
ually reduced while propagating upstream. On the other hand, the speed profile in Figure
5.5 shows that the overshooting behaviors exist and are slightly amplified, as demonstrated
by the dark blue line segments (around 34 m/s) in the stabilization phase of each trajectory
in Figure 5.6. This will be further discussed by numerically investigating the string stability
indicators in subsection 5.2.3.

0 10 20 30 40 50
time (s)

400

600

800

1000

1200

1400

1600

1800

2000

po
sit

io
n 

(m
)

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Figure 5.6: Vehicle trajectories and speed contours of the platoon consisting of vehicles equipped with the
one-leader ACC system designed with the first weighting combination in the scenario with accurate

measurements

The car-following behavior mechanism of the system is analyzed by comparing the tra-
jectories of the following vehicles to the trajectories generated by Newell’s car-following
model. Figure 5.7 highlights a segment of the vehicle trajectories and plots both the real
trajectories and Newell’s trajectories. It shows that the two trajectories are nearly over-
lapped. Figure 5.8 further calculates the position deviation between the real trajectories
and Newell’s trajectories of the first five following vehicles. As can be seen in the figure,
there are only little variations between these two trajectories, which indicates that the ve-
hicles equipped with the ACC system basically follow the longitudinal movement of the
leader only with a space shift and time delay. There is no apparent timid or aggressive driv-
ing behavior found from the followers.

After the performance assessment of the one-leader ACC system designed with the first
weighting combination, the platoon consisting of followers equipped with the system de-
signed with the second weighting combination is then simulated. Figure 5.9 shows the
acceleration/speed/gap profiles of the first five followers. It can be seen that the minimum
deceleration of the followers becomes larger while propagating upstream, which demon-
strates that the disturbance is gradually damped out. In addition, compared to the system
trained with the first weighting combination, the gap errors of the followers equipped with
the system trained with the second weighting combination are smaller. This clearly indi-
cates the effect of the second weighting combination setup in the reward function which
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Figure 5.7: Real trajectories (colored lines) and Newell’s trajectories (dotted lines) of the platoon using the
one-leader ACC system designed with the first weighting combination in the scenario with accurate

measurements
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Figure 5.8: Position deviation with Newell’s trajectories of the first five followers in the platoon using the
one-leader ACC system designed with the first weighting combination in the scenario with accurate

measurements

favors the gap keeping performance more than reducing the jerk amplitudes.

The speed contours in Figure 5.10 also show that the minimum speed of the upstream
vehicles becomes higher as the dark red segments becomes shorter or even fades out.
Moreover, the overshooting behaviors (dark blue segments) can no longer be observed.
These features all demonstrate the better string stability performance of the one-leader
ACC system designed with the second weighting combination.

The car-following behavior mechanism of the one-leader ACC system designed with the
second weighting combination is also analyzed by comparing the trajectories of the follow-
ing vehicles to the trajectories generated by Newell’s car-following model. Figure 5.11 also
shows the position deviation between the two trajectories for each follower. It is shown that
there are more significant variations between these two trajectories than the platoon using
the previous ACC system although the deviations are basically smaller than 1 m. The pos-
itive deviations at the deceleration phase indicate that the followers slow down more than
the theoretical behavior, meaning that the vehicles equipped with the one-leader ACC sys-
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Figure 5.9: Acceleration, speed, and time gap profiles of the platoon using the one-leader ACC system
designed with the second weighting combination in the scenario with accurate measurements

tem designed with the second weighting combination tend to decelerate more than those
vehicles equipped with the previous system. It can also be observed by looking at the speed
contours in Figure 5.10 that the green segments at the deceleration phase start earlier and
also become longer. This kind of relatively conservative driving behavior helps mitigate the
propagation of the disturbance.
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Figure 5.10: Vehicle trajectories and speed contours of the platoon consisting of vehicles equipped with the
one-leader ACC system designed with the second weighting combination in the scenario with accurate

measurements
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Figure 5.11: Position deviation with Newell’s trajectories of the first five followers in the platoon using the
one-leader ACC system designed with the second weighting combination in the scenario with accurate

measurements

To sum up, the one-leader ACC system designed with the first weighting combination
can slightly damp out the disturbance although the effect is still difficult to be observed,
which indicates a small level of string stable performance. However, little overshooting
behavior exists at the stabilization phase for every following vehicle. On the other hand, the
one-leader ACC system designed with the second weighting combination can significantly
damp out the disturbance and prevent the overshooting phenomena, showing the better
string stability performance.
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5.2.2. Performance of two-leader ACC systems

The simulation results of the vehicle platoon using the two-leader ACC system are pre-
sented in this subsection. Figure 5.12 provides the first impression on the performance of
the two-leader system designed with the first weighting combination. By looking at the
acceleration profile, the followers have significantly higher minimum acceleration value in
the deceleration phase than their leaders do when facing the disturbance. The same effect
can be observed from the slope of the curves in the speed profile. In addition, it seems
that the minimum speed of each follower becomes higher in the upstream of the platoon
although it cannot be clearly shown by only looking at the first five followers.
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Figure 5.12: Acceleration, speed, and time gap profiles of the platoon using the two-leader ACC system
designed with the first weighting combination in the scenario with accurate measurements

Figure 5.13 helps observe the benefit of the two-leader system. The minimum speed of
the following vehicles becomes significantly higher (shorter red segments) while the dis-
turbance propagates in the upstream direction. However, the length of yellow and green
segments also becomes longer for followers at the upstream of the platoon, which implies
that the two-leader ACC systems guide the vehicles to start slowing down earlier than the
one-leader ACC systems do. This demonstrates the early slow down reaction resulted from
the multi-anticipation ability. Vehicles tend to decelerate lightly for a longer time span in-
stead of decelerating strongly for a shorter time period.
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According to these two figures, the other aspect worth mentioning is that the overshoot-
ing behavior is not as significant as it is in the case for the one-leader system. This is be-
lieved to be the effect of looking at more than one leader downstream. In the acceleration
and stabilization phases, although the behavior of the followers may be mostly influenced
by the first leader, it may also be controlled by the second leader at some points in time. The
aggressive driving maneuver can hence be suppressed, which mitigates the overshooting
effect.
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Figure 5.13: Vehicle trajectories and speed contours of the platoon using the two-leader ACC system
designed with the first weighting combination in the scenario with accurate measurements

To explore the car-following dynamics of the two-leader system, the plots of time gaps
1 and 2 in Figure 5.12 first provide some insights. It is found that the time gaps of follower
2 and follower 4 with their first leader are larger than 1 s in the deceleration phase. On
the other hand, their time gaps with the second leader (time gap 2) are below the desired
value (2 s), which clearly implies that they are mostly reacting according to the movement
of the second leader during deceleration. This is also the effect of the aforementioned early
slow down behaviors. It is believed that this phenomenon can be significantly observed
from the behaviors of followers 2, 4, and 6, etc., while the behavior of followers 3, 5, and 7,
etc. are mainly influenced by their first leader since their first leaders (followers 2, 4, and 6,
etc.) behave more conservative and slow down earlier than their second leaders (followers
1, 3, and 5, etc.). Therefore, the multi-anticipative car-following behaviors tend to occur
intermittently within the platoon. Figure 5.14 plots the controlling leader at every time step
of followers 2-5. As can be seen, followers 2 and 4 are controlled by the second leader more
often during the deceleration phase, which demonstrates the mentioned phenomena. In
addition, this figure also helps explain that the second leader does take over the control of
the ACC task again between the acceleration phase and stabilization phase to suppress the
overshooting behaviors of the followers.

Figures 5.15 and 5.16 can also be used to observe the propagation of this kind of car-
following behavior. In Figure 5.15, it is found that the real trajectories of several followers,
e.g., the third vehicle (follower 2), are slower than Newell’s trajectories right before they
reach the minimum speed. This early slow down behavior is similar to the conservative (or
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Figure 5.14: Controlling leader of followers 2-5 equipped with the two-leader ACC system designed with the
first weighting combination in the scenario with accurate measurements

timid) driving behavior of human drivers introduced in Laval and Leclercq (2010). Such
phenomenon become less observable from the trajectories of vehicles upstream. Figure
5.16 clearly demonstrates such effect. The positions of followers 2 and 4 deviate from the
Newell’s trajectories at the beginning of the disturbance, while the deviation of follower 4
is also smaller than that of follower 2.
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Figure 5.15: Real trajectories (colored lines) and Newell’s trajectories (dotted lines) of the platoon using the
two-leader ACC system designed with the first weighting combination in the scenario with accurate

measurements

The performance of the two-leader ACC system designed with the second weighting
combination is then analyzed. Figure 5.17 shows the acceleration/speed/gap profiles of the
first five followers. Compared to the system designed with the first weighting combination,
the behaviors of the followers are all quite similar. Followers 2 and 4 again exhibit the early
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Figure 5.16: Position deviation with Newell’s trajectories of the first five followers in the platoon using the
two-leader ACC system designed with the first weighting combination in the scenario with accurate

measurements

slow down behavior as plotted in the profile of gap 1. The difference brought by the second
weighting setup can be observed from the gap profiles that the gap errors become even
smaller than before. This again demonstrates the effect of giving higher weights on the gap
error term in the reward function.
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Figure 5.17: Acceleration, speed, and time gap profiles of the platoon using the two-leader ACC system
designed with the second weighting combination in the scenario with accurate measurements
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More significant difference between the two weighting combinations can be found from
the vehicle trajectories and speed contours in Figure 5.18. As can be observed from the
propagation of the disturbance shockwave, the lowest speed of the very upstream vehicle
stays above 24 m/s, which is higher than the platoon using the system designed with the
first weighting combination. In addition, the overshooting behaviors between the acceler-
ation and stabilization phase can barely be seen in the speed contours.
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Figure 5.18: Vehicle trajectories and speed contours of the platoon using the two-leader ACC system
designed with the second weighting combination in the scenario with accurate measurements

Figure 5.19 also shows that not only followers 2 and 4 decelerate more than the the-
oretical behavior by looking further downstream, but other following vehicles also have
relatively conservative car-following behavior. These behaviors collectively damp out the
disturbance faster than the behaviors of the vehicles equipped with the previous system.

0 10 20 30 40 50
time (s)

4

2

0

2

4

de
vi

at
io

n 
(m

)

follower1
follower2
follower3

follower4
follower5

Figure 5.19: Position deviation with Newell’s trajectories of the first five followers in the platoon using the
two-leader ACC system designed with the second weighting combination in the scenario with accurate

measurements

In conclusion for the two-leader ACC system, the disturbance can be effectively damped
out when the following vehicles look further ahead. Hence, it has better string stability per-
formance than the one-leader system. The overshooting phenomena between the accel-
eration and stabilization phases of every following vehicle are also mitigated. These are
all benefits brought by the multi-anticipative car-following behavior, which can be found
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by looking at the acceleration/speed/gap profiles and position deviations between the real
and theoretical trajectories.

5.2.3. Comparison of one-leader and two-leader ACC systems

To compare the one-leader and two-leader systems, the string stability indicators, includ-
ing oscillation growth amplitudes OG and overshooting amplitudes OS of every vehicle in
the platoon, and the ride comfort performance are analyzed from the simulation result.

The systems designed with the first weighting combination is first evaluated and com-
pared. Figure 5.20 shows the two indicators, OG and OS, of each follower in the platoon
when facing the disturbance. By looking at the oscillation growth curve of the one-leader
system, it is found that the one-leader system can really achieve string stable performance
since the OG value decreases as the disturbance propagates to upstream vehicles. The two-
leader system, on the other hand, has a more significant reduction in the OG value than
the one-leader system. The curve of the two-leader system also exhibits a step-like pattern.
This feature is resulted from the dynamics of the multi-anticipative behavior. As discussed
in subsection 5.2.2, the significant oscillation amplitude reductions and minimum decel-
eration increment would occur at followers 2, 4, and 6, etc.

The overshooting amplitude OS of each vehicle in the platoon using the two systems
are shown on the right side in Figure 5.20. Both systems have increasing OS values along
the platoon, which means the overshooting exists when using both systems. However, the
slope of the OS curve is smaller for the two-leader system, indicating a mitigated overshoot-
ing effect. The result coincide with the finding from Figures 5.12 and 5.13 in subsection
5.2.2.
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Figure 5.20: Comparison of the oscillation growth amplitude (left) and overshooting amplitude (right)
between the one-leader and two-leader ACC systems designed with the first weighting combination in the

scenario with accurate measurements

Figure 5.21 shows the two string stability indicators of the systems designed with the
second weighting combination. As can be seen in the left figure, the oscillation growth
amplitudes decrease faster in the curves of both the one-leader and two-leader systems.
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This demonstrated that the proposed one-leader ACC system designed with the second
weighting combination possess the ability to damp out the disturbance. The OG values
of the vehicles equipped with the two-leader system also shows the step-like decreasing
pattern while propagating upstream. Follower 19 in the platoon can reduce nearly 3.5 m/s
of the oscillation.

On the other hand, the effect of the second weighting combination can also be discov-
ered by looking at the overshooting amplitude, as shown in the right plot of Figure 5.21. The
overshooting amplitudes are all smaller than or equal to 0.015 m/s for vehicles equipped
with either the one-leader or two-leader systems, which are small enough to be negligi-
ble. This again indicates that the overshooting effect does not exist when using the systems
designed with the second weighting combination.
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Figure 5.21: Comparison of the oscillation growth amplitude (left) and overshooting amplitude (right)
between the one-leader and two-leader ACC systems designed with the second weighting combination in

the scenario with accurate measurements

The ride comfort performance of the two systems designed with both weighting com-
binations can be compared by analyzing the jerk experienced by the following vehicles ac-
cording to the method proposed in subsection 4.4.2. Figure 5.22 shows the distribution
of jerk of all vehicles at every time step in the traffic disturbance. Although the difference
between all the curves may not be significant, some features can still be observed. It is
first found that the two-leader systems outperform the one-leader systems in both weight-
ing combination setups. The jerk amplitudes distributions of the two-leader systems are
more concentrated at around 0 m/s3 than those of the one-leader systems, indicating that
the early slow down behavior brought by the two-leader systems can slightly reduce the
amount of large jerk amplitudes.

However, comparing the performance of two different weighting combination setups,
it is found that the systems designed with the second weighting combination have better
ride comfort performance than the systems designed with the first weighting combination
as the green and red curves in Figure 5.22 are more concentrated than the blue and orange
curves. This may be different from the initial hypothesis since the second weighting com-
bination does not favor the limitation on jerk amplitudes. The possible reason could be
that the upstream vehicles equipped with the systems designed with the second weighting
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combination in the platoon experience less disturbance since the string stability perfor-
mance is also improved. The vehicles would not need to conduct relatively aggressive driv-
ing maneuvers any more when facing the disturbance. Hence, the aggregated ride comfort
performance of the platoon is also improved.
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Figure 5.22: Cumulative distribution function of jerks experienced by the platoons using the one-leader and
two-leader ACC systems in the scenario with accurate measurements
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Figure 5.23: Probability distribution of jerks in each ride comfort level experienced by the platoons using the
one-leader and two-leader ACC systems in the scenario with accurate measurements

Figure 5.23 shows the distribution of jerks in each level defined in subsection 4.4.2. For
the systems designed with the first weighting combination, significant improvement on
ride comfort can be found. When using the one-leader system, around 5% of the maneu-
vers are aggressive driving behaviors, while a small amount of emergency maneuvers can
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be found. When using the two-leader system, almost 100% of the jerks experienced by
following vehicles stay in the range of comfortable driving maneuver. This implies that
the multi-anticipation behavior helps the following vehicles to prevent aggressive accel-
erating and decelerating maneuver. When looking at the systems designed with the sec-
ond weighting combination, the one-leader system can already reduce the amount of ag-
gressive driving maneuvers significantly compared to the system designed with the first
weighting combination. The two-leader system does not show much improvement when
using these criteria to assess the ride comfort since they are already at a quite ideal level of
performance. Still, the effect of multi-anticipation and different weighting setups on ride
comfort has been found by investigating these four systems.
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5.3. System performance under measurement uncertainty

In this section, both systems are simulated with different levels of sensor measurement
uncertainties to explore the performance of the systems in scenarios which are closer to the
real-world autonomous driving situations. It is also important to understand the influence
of erroneous second leader information so that countermeasures can be designed and used
to maintain the string stability.

5.3.1. Performance of one-leader ACC systems under measurement un-
certainty

The performance of the one-leader ACC system when facing measurement noise is first
discussed. As introduced in chapter 4, the first leader measurements have a small level of
uncertainty with standard deviations σg1 = 0.2 m and σv1 = 0.2 m/s (measurement uncer-
tainty level N0). 20 simulation runs were executed to account for the randomness.
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Figure 5.24: An example of acceleration, speed, and time gap profiles of the platoon using the one-leader
ACC system designed with the first weighting combination in the scenario with measurement uncertainty

level N0

Figure 5.24 shows an example of the acceleration/speed/gap profiles of the one-leader
ACC system with the specified level of sensor measurement uncertainty. It is found that the
curves in the profiles fluctuate more often than they do in the case with perfect informa-
tion. However, it is not observable that whether the string stability performance is deterio-
rated by simply looking at the profiles of the first five followers. The acceleration/speed/gap
profiles of the one-leader ACC system designed with the second weighting combination
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Figure 5.25: Oscillation growth amplitude (left) and overshooting amplitude (right) of the one-leader ACC
system designed with the first weighting combination in scenarios with and without measurement noise
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Figure 5.26: Oscillation growth amplitude (left) and overshooting amplitude (right) of the one-leader ACC
system designed with the second weighting combination in scenarios with and without measurement noise

when facing the same level of measurement noise shows similar pattern and is therefore
not shown in this subsection.

Figures 5.25 and 5.26 provide a quantitative way to look at the influence of the mea-
surement noise on string stability indicators. As can be seen on the left side of the figures,
the OG values of every vehicle in the platoon become higher when the measurements are
noisy. In addition, the OS values of every vehicle in the platoon OS increases compared to
the scenario with perfect information. Therefore, it is found that the noisy measurements
bring negative effect on the string stability performance for the one-leader ACC systems,
but the impact is not significant enough to cause string instability.

Figures 5.27 and 5.28 show the cumulative distribution of jerk amplitudes of the one-
leader ACC systems before and after the measurement noise is considered in the simula-
tion experiment. As can be observed in the distribution curves, there are more aggressive
and emergency driving maneuvers present when the measurement noise is considered,
indicating the influence of measurement noise on the ride comfort performance. By com-
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paring the systems designed with different weighting setups, it can also be found that the
system designed with the second weighting combination produce more driving maneuvers
with large jerk amplitudes, which is because of the effect of the different weighting setups in
the training process. The second weighting combination resulted in a trained policy which
does not limit the jerk amplitudes as much as the one trained with the first weighting com-
bination. Hence, when the measurements are noisy, its actions would also fluctuate more,
which leads to larger jerks.
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Figure 5.27: Cumulative distribution function of jerks experienced by the platoon using the one-leader ACC
system designed with the first weighting combination in scenarios with and without measurement noise
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Figure 5.28: Cumulative distribution function of jerks experienced by the platoon using the one-leader ACC
system designed with the second weighting combination in scenarios with and without measurement noise



82 5. Results

The probability distribution of jerks in each ride comfort level can be found in Figure
5.29. As can be seen in the figure, the number of jerk amplitudes which are larger than 0.9
m/s3 significantly increases when facing noisy measurements. In addition, a lot of emer-
gency driving maneuvers with jerk amplitudes larger than 2 m/s3 appear. This outcome can
be caused by both the incorrect measurements and the abrupt actions required to reach the
desired state. The ride comfort performance difference between the two weighting combi-
nation setups can also be found.
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Figure 5.29: Probability distribution of jerks in each ride comfort level experienced by the platoons using the
one-leader ACC systems in scenarios with and without measurement noise
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5.3.2. Performance of two-leader ACC systems under measurement un-
certainty

To evaluate the performance of the two-leader ACC system considering measurement un-
certainties, it is simulated with four levels of measurement noise, as mentioned in sub-
section 4.2.2. Figures 5.30 and 5.31 show the acceleration, speed, and time gap profiles
of the two-leader ACC system designed with the first weighting combination considering
the measurement uncertainty levels N1 and N4 in the second leader measurements, re-
spectively. In Figure 5.30, the pattern of every element is quite identical to the pattern in
Figure 5.12 when there is no uncertainty. Although the acceleration decision (control ac-
tion) made by the following vehicles is slightly fluctuating, the influence is not significant
in the speed profile.
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Figure 5.30: Acceleration, speed, and time gap profiles of the platoon using the two-leader ACC system
designed with the first weighting combination in the scenario with measurement uncertainty level N1

In Figure 5.31, however, the fluctuation of vehicle acceleration becomes more irreg-
ular than in the case of low measurement noise. This also makes the speed profile of
each following vehicle more irregular. In addition, by looking at the time gap with the first
leader (time gap 1), it is found that the early slow down behavior can hardly be observed.
This means that the system does not utilize the full potential of the multi-anticipative car-
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following behavior because of the incorrect second leader measurements. The same con-
sequence can also be found in the profile of time gap 2 with the second leader. As shown
in Figure 5.30, in the scenario with relatively small measurement errors, time gaps 2 would
not deviate too much away from the desired level (2 s) than in the case of perfect informa-
tion. When the errors become larger, it is observed that time gap 2 deviates more than 0.1
s in both the deceleration and acceleration phases, which shows degraded string stability
performance. Still, one can see that the oscillation is not amplified, the minimum decel-
eration rate does not decrease dramatically as well. It is therefore inferred that the string
stability performance can still be ensured even if there is a certain level of measurement
noise considered.
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Figure 5.31: Acceleration, speed, and time gap profiles of the platoon using the two-leader ACC system
designed with the first weighting combination in the scenario with measurement uncertainty level N4

Once again, the acceleration/speed/gap profiles of the two-leader ACC system designed
with the second weighting combination are skipped as they have similar patterns and would
not provide added value for the discussion in this subsection. The quantitative analysis re-
sults of the system can still be found in the remainder of this subsection.

Figures 5.30 and 5.31 provide the first impression and comparison of the effect of differ-
ent levels of measurement noise. The system performance is discussed by taking average
over 20 simulation runs and analyzing the string stability indicators, as shown in Figures
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5.32 and 5.33. For the two-leader ACC system, the indicator values would start from fol-
lower 2 since follower 1 only uses the one-leader system. It is shown that while the mea-
surements become more noisy, the OG values becomes larger. However, the overall trend
of the curves still remains, implying that the string stability can be maintained even if the
ego-vehicle receives noisy measurements. The OS values basically show the same phe-
nomena. The higher the uncertainty level is, the larger the overshooting amplitudes are.
On the other hand, the OS curves of the system designed with the first weighting combi-
nation show slightly different outcomes. It can be seen on the right side of the Figure 5.32
that including certain levels of measurement noise helps mitigate the overshooting effect.
It seems that the noisy measurements may lead to relatively conservative behavior between
the acceleration and stabilization phase since the following vehicle would slow down more
often due to the erroneous information, which eliminates the overshooting behaviors.
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Figure 5.32: Oscillation growth amplitude (left) and overshooting amplitude (right) of the two-leader ACC
system designed with the first weighting combination in scenarios with measurement uncertainty levels N1

- N4
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Figure 5.33: Oscillation growth amplitude (left) and overshooting amplitude (right) of the two-leader ACC
system designed with the second weighting combination in scenarios with measurement uncertainty levels

N1 - N4
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Figure 5.34: Cumulative distribution function of jerks experienced by the platoon using the two-leader ACC
system designed with the first weighting combination in scenarios with measurement uncertainty levels N1

- N4
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Figure 5.35: Cumulative distribution function of jerks experienced by the platoon using the two-leader ACC
system designed with the second weighting combination in scenarios with measurement uncertainty levels

N1 - N4

As already shown in Figures 5.30 and 5.31, the existence of measurement noise leads to
more jerk throughout the whole simulation run. Figures 5.34 and 5.34 show the distribu-
tion of the jerk at every time step experienced by all following vehicles under each level of
measurement uncertainty. Figures 5.36 and 5.37 plot the distributions in each ride comfort
level. Note that follower 1 is not included in the analysis of the two-leader system since it
only uses the one-leader ACC system. As shown by the curves and bar charts, more jerk am-
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plitudes exceeding the range of the comfortable level appear while the measurement un-
certainty level increases. At every level of measurement uncertainty, more than 50% of the
jerk values exceed the range of comfortable driving maneuver. A large amount of jerk fall
into the range of emergency driving behavior, while the situation gets even worse when the
level of measurement uncertainty is higher. More than 50% of the jerk amplitudes are larger
than 2 m/s3 in measurement uncertainty level N3. The degraded ride comfort is even more
severe for the system designed with the second weighting combination. The numbers of
emergency driving maneuvers increase by around 10% in every measurement uncertainty
level. This negative impact is expected to be removed after applying the properly designed
state estimation methods.
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Figure 5.36: Probability distribution of jerks in each ride comfort level experienced by the platoons using the
two-leader ACC systems designed with the first weighting combination in scenarios with measurement

uncertainty levels N1 - N4
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Figure 5.37: Probability distribution of jerks in each ride comfort level experienced by the platoons using the
two-leader ACC systems designed with the second weighting combination in scenarios with measurement

uncertainty levels N1 - N4

In general, the tested levels of measurement noise would not severely degrade the string
instability performance in the deceleration phase given that the measurement of the first
leader is still accurate enough, as demonstrated in the previous subsection. Possible rea-
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son for such outcome can also be that the random fluctuating effect (the switching be-
tween positive and negative measurement errors) can still averagely result in the desired
car-following behavior. However, the impact of the noise can still be seen by looking at
the ride comfort performance. The actions executed by the followers easily exceed the jerk
threshold, indicating degraded and unreasonable driving maneuvers.
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5.4. Performance of systems using Kalman filters

Many tracking methods can be adopted to estimate the true state of the leading vehicle and
eliminate the influence of measurement noise for the ACC system. This section investigates
the effect of Kalman filtering on the performance of the systems. It is applied based on the
assumption made in this study that the measurement noise follows Gaussian distribution.

5.4.1. Performance of one-leader KF-ACC systems

The KF state estimator is first implemented to the one-leader system to create a one-leader
KF-ACC system. Figure 5.38 presents an example of the filtered output of distance gap
and relative speed measurements utilized by the ACC controller of follower 1. As can be
seen, the tuned KF can adapt to the disturbance in the leader behavior and reduce the
amplitudes of the measurement errors. Figure 5.39 then shows an example of the accelera-
tion/speed/gap profiles of the one-leader KF-ACC system designed with the first weighting
combination in the created scenario with measurement uncertainty level N0. By compar-
ing it with Figure 5.24, one can clearly see that the vehicle acceleration does not fluctuate
that often any more, demonstrating the positive effect of filtering for the range and range
rate measurements.
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Figure 5.38: Filtered distance gap and relative speed measurements for the one-leader KF-ACC system
designed with the first weighting combination in the scenario with measurement uncertainty level N0

Figures 5.40 and 5.41 look at the string stability indicators in detail. As can be seen in
Figure 5.40, the OG values after using KF can be reduced to almost the same level as the per-
fect information scenario although the improvement may be insignificant by looking at the
profiles. The curve of OS values also shows similar improvement. On the other hand, the
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system designed with the second weighting combination does not show much improve-
ment in both indicators after using a KF. Figure 5.41 shows that both the OG and OS curves
overlaps with the curves without using any state estimator. This is probably due to the fact
that the string stability of the system is already at the performance limit in the scenario
with this level of measurement noise. More improvement is expected for ride comfort per-
formance of the system after applying the KF.
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Figure 5.39: Acceleration, speed, and time gap profiles of the platoon using the one-leader KF-ACC system
designed with the first weighting combination in the scenario with measurement uncertainty level N0
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Figure 5.40: Oscillation growth amplitude (left) and overshooting amplitude (right) of the one-leader
KF-ACC system designed with the first weighting combination with and without measurement noise

The ride comfort after using the one-leader KF-ACC system is evaluated. Figure 5.42
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Figure 5.41: Oscillation growth amplitude (left) and overshooting amplitude (right) of the one-leader
KF-ACC system designed with the second weighting combination with and without measurement noise

plots the distribution of jerks experienced by the followers equipped with the system de-
signed with the first weighting combination. By comparing with the system without using
any state estimator, it is found that the jerk amplitudes are significantly reduced. Figure
5.43 also plots the distribution of jerks experienced by the followers equipped with the sys-
tem designed with the second weighting combination. The jerk amplitudes are also re-
duced after applying a KF in the system, but the effect is not as significant as it is in the
previous system designed with the first weighting combination. There are still many jerk
amplitudes which exceed the threshold of comfortable driving maneuvers.
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Figure 5.42: Cumulative distribution function of jerk experienced by the platoon using the one-leader
KF-ACC system designed with the first weighting combination in the scenario with measurement

uncertainty level N0
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Figure 5.43: Cumulative distribution function of jerk experienced by the platoon using the one-leader
KF-ACC system designed with the second weighting combination in the scenario with measurement
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Figure 5.44: Probability distribution of jerks in each ride comfort level experienced by the platoons using the
one-leader KF-ACC systems in scenarios with and without measurement noise

Figure 5.44 again provides the detailed probability distribution in each ride comfort
level. By looking at the one-leader KF-ACC system designed with the first weighting combi-
nation, there are only 1% of jerk amplitudes in the range of emergency driving maneuvers,
which is a lot closer to the performance in the scenario with accurate measurements than
the ACC system without using any state estimator. The system designed with the second
weighting combination also shows a lot of improvement after using a KF. These analysis
results clearly implies the improved ride comfort brought by the filtering method adopted.
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However, the number of aggressive driving maneuvers still increases, implying the influ-
ence of the weighting setup which does not favor jerk limitation.
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5.4.2. Performance of two-leader KF-ACC systems

The performance of the two-leader KF-ACC system in multiple levels of measurement noise
is then evaluated. An example of the filtered output of the second leader measurements
with uncertainty level N4 is shown in Figure 5.45. The smoothing effect of the filter can be
observed significantly. The filter can also follow the changes of leader behavior during the
deceleration and acceleration phase.
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Figure 5.45: Filtered distance gap and relative speed measurements for the two-leader KF-ACC system
designed with the first weighting combination in the scenario with measurement uncertainty level N4

Figures 5.46 and 5.47 present examples of the profiles of the first six vehicles in the pla-
toon which are equipped with the system designed with the first weighting combination
when dealing with the uncertainty levels N1 and N4 in the second leader measurements,
respectively. Compared to the system without using any state estimator, the acceleration
profiles in both levels of measurement noise become smoother. On the other hand, the
improvement can also be found by looking at the time gap profiles in Figure 5.47. The devi-
ation of time gap 2 when facing the large measurement noise becomes smaller and closer
to it is in the scenario with perfect information. The early slow down behaviors can also be
observed again in the plot of time gap 1, which disappear originally when the system does
not use any state estimator. However, there are still many large acceleration fluctuations
in the acceleration profile in Figure 5.47. Such fluctuations lead to large jerks in the mo-
tions of the following vehicles, causing more irregular speed profile and even more severely
degraded driving comfort than they are in the scenario without using any state estimator.

Figures 5.48 and 5.49 again plot the string stability indicators for the two-leader KF-ACC
systems. Figure 5.48 plots the indicators for the system designed with the first weighting
combination. As can be seen, the curves of the OG values largely overlap with the curve
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Figure 5.46: Acceleration, speed, and time gap profiles of the platoon using the two-leader KF-ACC system
designed with the first weighting combination in the scenario with measurement uncertainty level N1

in the scenario with perfect information, demonstrating the effectiveness of applying KFs.
However, it is worth noting that KFs also bring negative effect to the OS values. As can be
seen in the plot of OS curves, it is found that filtering out the measurement noise actually
makes the overshooting effect more severe in the scenarios with measurement uncertainty
levels N3 and N4. The OS values increase while propagating to the upstream of the platoon,
which is similar to the effect in the scenario with perfect information. The system designed
with the second weighting combination also shows improvement for the OG values. After
using KFs, the curves of every measurement uncertainty level become closer to the curve
of the scenario without any state estimator, indicating improved string stability. However,
the curves of scenarios with measurement uncertainties still deviate more from the curve
of the perfect information scenario than the situations in Figure 5.48. In addition, the OS
curves do not show significant difference after applying KFs. This implies that the system
designed with the second weighting combination benefit from the state estimation of KFs
less than the system designed with the first weighting combination does, which is again the
effect of different weighting setups in the policy training.
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Figure 5.47: Acceleration, speed, and time gap profiles of the platoon using the two-leader KF-ACC system
designed with the first weighting combination in the scenario with measurement uncertainty level N4
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Figure 5.48: Oscillation growth amplitude (left) and overshooting amplitude (right) of the two-leader KF-ACC
system designed with the first weighting combination in scenarios with and without measurement noise
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Figure 5.49: Oscillation growth amplitude (left) and overshooting amplitude (right) of the two-leader KF-ACC
system designed with the second weighting combination in scenarios with and without measurement noise

Figures 5.50 and 5.51 present and compare the distribution of jerk and experienced by
the followers before and after applying KFs as state estimators for the noisy sensor mea-
surements. Similar to the improvement found in the one-leader KF-ACC system, the ride
comfort of the two-leader KF-ACC system is also significantly enhanced and become closer
to the level of the scenario with accurate measurements. As shown in the figure, a large
portion of jerk amplitudes are decreased to the range of comfortable driving maneuver
although there are still a certain number of aggressive or emergency driving maneuvers
especially in relatively high measurement uncertainty levels. Comparing the systems de-
signed with two different weighting combinations in the two figures, it is also found that
the system designed with the first weighting combination still has better ride comfort per-
formance after using KFs.
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Figure 5.50: Cumulative distribution function of jerk experienced by the platoon using the two-leader
KF-ACC system designed with the first weighting combination in scenarios with and without measurement

noise
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Figure 5.51: Cumulative distribution function of jerk experienced by the platoon using the two-leader
KF-ACC system designed with the second weighting combination in scenarios with and without

measurement noise

As shown in Figure 5.52, KFs in the system designed with the first weighting combina-
tion can successfully prevent at least 60-90% of the jerk values from exceeding the thresh-
old of comfortable driving behavior depends on the measurement uncertainty level con-
sidered. However, the emergency driving maneuvers still exist. In uncertainty level N4,
the number of emergency maneuver even exceeds 10%. For the performance of two-leader
KF-ACC system designed with the second weighting combination shown in Figure 5.53, the
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ride comfort performance when facing measurement noise becomes even worse. Only 40-
70% of the driving maneuvers can stay in the range of comfortable maneuvers. At measure-
ment uncertainty level N4, more than 20% of the maneuvers exceed the 2 m/s3 threshold.
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Figure 5.52: Probability distribution of jerks in each ride comfort level experienced by the platoons using the
two-leader KF-ACC system designed with the first weighting combination in scenarios with and without

measurement noise
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Figure 5.53: Probability distribution of jerks in each ride comfort level experienced by the platoons using the
two-leader KF-ACC system designed with the second weighting combination in scenarios with and without

measurement noise

By implementing KFs before the noisy measurements are fed back to the controller in
the loop of the system architecture, the system aims to estimate the true state for the de-
signed controllers. According to the results shown in this section, it is found that a tuned
conventional filtering approach is able to reduce the impact of measurement noise and
brings the string stability performance back to the level of scenarios with accurate mea-
surements. In addition, the vehicle acceleration profile becomes smoother than in the sce-
narios without using any state estimator. However, the problem of fluctuating accelera-
tions still remains especially when the measurement uncertainty level is high. This leads
to severely degraded ride comfort performance of the platoon. Therefore, it may be con-
cluded that there seems to be a performance limit in terms of ride comfort for the KF- ACC
systems when encountering large measurement noise.
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5.5. Performance of systems using recurrent policies

After exploring the performance of the KF-ACC systems and their potential strengths and
shortcomings, this section analyzes the performance of the LSTM-ACC systems which use
recurrent policies to control the car-following behavior of the following vehicles.

5.5.1. Performance of one-leader LSTM-ACC systems

This section presents the simulation and evaluation results of the one-leader LSTM-ACC
system. Figure 5.54 first shows an example of the acceleration/speed/gap profiles of the
first five followers in the platoon which are equipped with the system designed with the
first weighting combination. Although it is still unclear whether the deceleration wave is
amplified or not according to these profiles, it can be observed that the following vehicles
exhibit abnormal behavior when speeding up again to the stabilization speed. They tend to
accelerate more than their leaders at the beginning of the acceleration phase and adjust its
acceleration afterward. This abnormal behavior, to a certain extent, indicates the imperfect
performance of the trained policy in conducting the car-following behavior when facing
the disturbance. In addition, the overshooting amplitudes are clearly increasing for the
upstream vehicles.
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Figure 5.54: Acceleration, speed, and time gap profiles of the platoon using the one-leader LSTM-ACC
system designed with the first weighting combination in the scenario with measurement uncertainty level

N0

From Figure 5.55, it can be observed that the oscillation is indeed slightly damped out
for vehicles in the middle of the platoon, but the minimum speed seems to start decreasing
again for vehicles further upstream. A second fluctuation wave emerges from the original
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fluctuation. In addition, the overshooting effect also significantly becomes more severe
than any other systems have experienced before.
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Figure 5.55: Vehicle trajectories and speed contours of the platoon using the one-leader LSTM-ACC system
designed with the first weighting combination in the scenario with measurement uncertainty level N0
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Figure 5.56: Acceleration, speed, and time gap profiles of the platoon using the one-leader LSTM-ACC
system designed with the second weighting combination in the scenario with measurement uncertainty

level N0

The performance of the one-leader LSTM-ACC system designed with the second weight-
ing combination is then discussed. Figure 5.56 shows the acceleration/speed/gap profiles
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of first five followers in the platoon equipped with the system. It is clearly seen that the sys-
tem does not perform very well in smoothing out the acceleration fluctuations due to the
measurement noise. However, the overall patterns of the speed and time gap profiles are
more normal for the car-following behavior of vehicles when encountering disturbances
than those vehicles equipped with the system designed with the first weighting combina-
tion. This shows that different weighting combination setups significantly affect the per-
formance of the final policies. The second weighting setup generates better control policy
in this case. As can be seen in the figure, the disturbance is not amplified, and the over-
shooting phenomena do not exist.

Figure 5.57 illustrates the speed contours of all the vehicles in the platoon equipped
with the system designed with the second weighting combination. Different from the previ-
ous system designed with the first weighting combination, the disturbance can be damped
out while propagating to the upstream. The conservative driving behaviors, as mentioned
in subsection 5.2.1, can also be observed again. No overshooting behaviors can be found
by looking at the speed contours. These all demonstrate the effectiveness and improve-
ment brought by the one-leader LSTM-ACC system which was designed with the second
weighting combination.
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Figure 5.57: Vehicle trajectories and speed contours of the platoon using the one-leader LSTM-ACC system
designed with the second weighting combination in the scenario with measurement uncertainty level N0

The OG and OS curves of the vehicle platoon using the one-leader LSTM-ACC system
designed with the first weighting combination are shown in Figure 5.58. The OG curve on
the left side shows that the oscillation amplitude is decreasing even faster than the one-
leader ACC system in the scenario with accurate measurements. However, the OG value
starts increasing from follower 12. It is inferred that this is the influence of the other distur-
bance wave formed in the original disturbance. It is observed that vehicles tend to reach a
constant speed which is slightly above the lowest speed of their leader first and decelerate
again to reach the desired state, which later on results in the second disturbance which is
amplified while propagating to the upstream. On the other hand, the OS curve provides
a quantitative view of the severe overshooting effect. As shown by the curve, the OS value
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even exceeds 4 m/s for follower 19 at the end of the platoon. The string stability perfor-
mance of the one-leader LSTM-ACC system designed with the first weighting combination
is deteriorated to the level which is worse than the system without using any state estima-
tor.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
follower

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

os
cil

la
tio

n 
gr

ow
th

 a
m

pl
itu

de
 O

G
 (m

/s
)

without noise
uncertainty level N0
Recurrent policy, uncertainty level N0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
follower

0

1

2

3

4

5

ov
er

sh
oo

tin
g 

am
pl

itu
de

 O
S 

(m
/s

)

without noise
uncertainty level N0
Recurrent policy, uncertainty level N0

Figure 5.58: Oscillation growth amplitude (left) and overshooting amplitude (right) of the one-leader
LSTM-ACC system designed with the first weighting combination in scenarios with and without

measurement noise
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Figure 5.59: Oscillation growth amplitude (left) and overshooting amplitude (right) of the one-leader
LSTM-ACC system designed with the second weighting combination in scenarios with and without

measurement noise

The string stability performance of the one-leader LSTM-ACC system designed with the
second weighting combination is quantitatively analyzed and shown in Figure 5.59. It is
found that the OG curve is decreasing in the upstream direction, indicating that the system
shows string stable performance. However, the curve of the one-leader LSTM-ACC system
stays above the curve of the system without using any state estimator at the upstream of
the platoon, meaning that the trained recurrent policy does not possess the same level of
performance as the previous system when facing noisy measurements. To handle the mea-
surement noise, the string stability performance is slightly degraded. By looking at the OS
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curves in the right plot of the figure, it is also found that the one-leader LSTM-ACC system
does not improve the overshooting effect compared to the one-leader ACC system without
using any state estimator. Therefore, it can be concluded that the one-leader LSTM-ACC
systems do not show any improvement in terms of string stability.
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Figure 5.60: Cumulative distribution function of jerk experienced by the platoon using the one-leader
LSTM-ACC system in the scenario with measurement uncertainty level N0
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Figure 5.61: Cumulative distribution function of jerk experienced by the platoon using the one-leader
LSTM-ACC system in the scenario with measurement uncertainty level N0

The ride comfort performance of the one-leader LSTM-ACC systems is also analyzed.
Figure 5.60 and 5.61 show the distributions of the jerks experienced by the following vehi-
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cles equipped with the systems designed with the two weighting combination setups, re-
spectively. As can be seen in the two figures, the cumulative distributions of jerks clearly get
closer to the distributions in the scenario with accurate measurements. Comparing the two
systems, it is also found that the system designed with the second weighting combination
shows worse ride comfort performance than the system designed with the first weighting
combination, which again demonstrates the influence of different weighting setups espe-
cially when measurement noise is considered.

Figure 5.62 summarizes the ride comfort performance of the one-leader LSTM-ACC
systems by calculating the distribution of jerks in each ride comfort level. For the system
designed with the first weighting combination, it is found that although it indeed signifi-
cantly reduces the amount of jerks exceeding the threshold of comfortable maneuver com-
pared to the scenario without using any state estimator (Figure 5.29), its performance is
slightly worse than that of the system using a KF by looking at the amount of emergency
maneuvers. The system designed with the second weighting combination, on the other
hand, has a slightly higher number of jerks in the range of comfortable driving maneuver
than the corresponding one-leader KF-ACC system, showing a better ride comfort perfor-
mance.
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Figure 5.62: Probability distribution of jerks in each ride comfort level experienced by the platoons using the
one-leader LSTM-ACC system in scenarios with and without measurement noise

To sum up for the one-leader LSTM-ACC system, the trained recurrent policy for the
system designed with the first weighting combination shows string instability and worse
ride comfort compared to traditional filtering approach. The system designed with the
second weighting combination also does not show improved string stability performance
compared to its counterpart without using any state estimator although it can still ensure
string stability as the disturbance can be damped out. However, the system does have posi-
tive effect on the ride comfort performance compared to its counterpart using a KF. In gen-
eral, it is still difficult to train a recurrent policy which can completely reduce the impact of
measurement noise on the string stability and ride comfort at the same time.
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5.5.2. Performance of two-leader LSTM-ACC systems

According to the results in the previous subsection, it is known that the one-leader LSTM-
ACC systems do not perform better than the one-leader KF-ACC system or even the system
without using any state estimator in terms of string stability. In particular, the system de-
signed with the first weighting combination even leads to string instability at the upstream
of the platoon. Therefore, for the first two-leader LSTM-ACC system in this subsection of
evaluation, it will use the one-leader KF-ACC system for the following task with the first
leader. The controllers using recurrent policies are only applied for the car-following task
with the second leader. For the second system designed with the second weighting combi-
nation, both ACC controllers using recurrent policies will be used.
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Figure 5.63: Acceleration, speed, and time gap profiles of the platoon using the two-leader LSTM-ACC
system designed with the first weighting combination in the scenario with measurement uncertainty level

N1

The evaluation of two-leader LSTM-ACC systems starts from the system designed with
the first weighting combination. Figure 5.63 shows the acceleration/speed/gap profiles
of the system in the scenario with measurement uncertainty level N1. As can be seen in
Figure 5.63, the behaviors of the following vehicles are pretty much similar to the behav-
iors shown in subsection 5.2.2 in which the two-leader ACC system is used in the scenario
with accurate measurements. This implies that the ACC controllers using the recurrent
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policy can perfectly track the second leader and generate string stable performance even
when the measurements are noisy and help the ego-vehicle leverage the benefit of multi-
anticipation.

Figure 5.64 also shows that the disturbance is significantly damped out at the upstream
of the platoon. In addition, the overshooting effect can hardly be observed between the
acceleration and stabilization phase. From these two figures, it can already be found that
the string stability performance of the two-leader LSTM-ACC system is better than the one-
leader LSTM-ACC system designed with the first weighting combination.
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Figure 5.64: Vehicle trajectories and speed contours of the platoon using the two-leader LSTM-ACC system
designed with the first weighting combination in the scenario with measurement uncertainty level N1

The evaluation results of the two-leader LSTM-ACC system in the scenario with mea-
surement uncertainty level N4 are then discussed by looking at Figures 5.65 and 5.66. As
shown in the acceleration profile in Figure 5.65, the decreasing deceleration amplitude is
still observable. The time gap profiles also exhibit the early slow down behavior mentioned
before. However, the overall string stability performance is not as good as it is in the sce-
nario with measurement uncertainty level N1. The time gap profiles show that the early
slow down behaviors are not significantly exhibited anymore.

The same effect can also be found in Figure 5.66. It is shown that the vehicles at the
upstream of the platoon still decelerate a lot. In addition, the overshooting behaviors ap-
pear again, as can be seen in stabilization phase of the vehicle trajectories in the figure. The
probable reason of this outcome is the greater difficulty for the agent to estimate the state
due to the increased uncertainty level. More measurements are required for the agent to
perceive the occurrence of transitions between different phases in the traffic disturbance.
The large measurement noise causes longer reaction delay than the scenarios with com-
paratively small noise, which deteriorates the string stability performance.
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Figure 5.65: Acceleration, speed, and time gap profiles of the platoon using the two-leader LSTM-ACC
system designed with the first weighting combination in the scenario with measurement uncertainty level
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Figure 5.66: Vehicle trajectories and speed contours of the platoon using the two-leader LSTM-ACC system
designed with the first weighting combination in the scenario with measurement uncertainty level N4
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The performance of the two-leader LSTM-ACC systems designed with the second weight-
ing combination are then presented. Figure 5.67 first shows the acceleration/speed/gap
profiles of the first five followers equipped with the system in the scenario with measure-
ment uncertainty level N1. It is found that minimum deceleration amplitude is decreasing
while the disturbance is propagating to the upstream, indicating the string stability per-
formance. The difference between the system considered here and the previous system
designed with first weighting combination is the amplitude of gap error. As shown in the
profile of gap 2, the maximum gap error can always be kept within 0.1 s within the second
leader, which is better than the previous system in the scenario with the same level of mea-
surement uncertainty. This also demonstrate the effect of the different weighting setup.
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Figure 5.67: Acceleration, speed, and time gap profiles of the platoon using the two-leader LSTM-ACC
system designed with the second weighting combination in the scenario with measurement uncertainty

level N1

The speed contours of the vehicles equipped with the two-leader LSTM-ACC system de-
signed with the second weighting combination in the scenario with measurement uncer-
tainty level N1 are then shown in Figure 5.68. As can be seen from the speed contours, the
minimum speed of the last follower in the platoon stays above 24 m/s, which is also better
than the performance of the previous system designed with the first weighting combina-
tion. The disturbance is clearly damped out at the upstream of the platoon. Furthermore,
no overshooting behavior can be observed.
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Figure 5.68: Vehicle trajectories and speed contours of the platoon using the two-leader LSTM-ACC system
designed with the second weighting combination in the scenario with measurement uncertainty level N1
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Figure 5.69: Acceleration, speed, and time gap profiles of the platoon using the two-leader LSTM-ACC
system designed with the second weighting combination in the scenario with measurement uncertainty

level N4
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Figure 5.69 then shows the acceleration/speed/gap profiles of the two-leader LSTM-
ACC system designed with the second weighting combination in the scenario with mea-
surement uncertainty level N4. With such high level of measurement uncertainty, the string
stability performance is degraded compare to the performance in the scenario with mea-
surement uncertainty level N1, as shown in Figure 5.67. The deceleration amplitudes of the
following vehicles become smaller, and the gap errors also become larger. Still, according
to the profiles, the disturbance is not amplified, showing a certain level of string stability.

Compared to the speed profile of the previous system designed with the first weighting
combination, the pattern of decelerating behaviors of the following vehicles become more
uniform, indicating that the car-following behavior of the vehicles equipped with the sys-
tem is not seriously influenced by the measurement noise. According to the gap profiles,
the gap errors also become smaller, showing the improved string stability performance.
However, it is also found that there are more fluctuations in the speed profile. These are all
the influences caused by the different weighting setups.

The string stability performance of the entire platoon using the two-leader LSTM-ACC
system designed with the second weighting combination in the scenario with measure-
ment uncertainty level N4 can be observed in Figure 5.70. Although not as significant as in
the scenario with measurement uncertainty level N1, the disturbance is also damped out
at the upstream of the platoon. In addition, no overshooting behaviors can be found even
in such high level of measurement uncertainty. These imply that the string stability perfor-
mance of the system considered is better than the system designed with the first weighting
combination. However, as can be seen in the speed contours, the speed of the following
vehicles fluctuates a lot during the entire simulation run. This can be the outcome of the
relatively low weighting on the jerk term in the reward function. The drawback of this kind
of setup on ride comfort performance will be discussed in detail later in this subsection.

0 10 20 30 40 50
time (s)

400

600

800

1000

1200

1400

1600

1800

2000

po
sit

io
n 

(m
)

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Figure 5.70: Vehicle trajectories and speed contours of the platoon using the two-leader LSTM-ACC system
designed with the second weighting combination in the scenario with measurement uncertainty level N4
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To have a quantitative understanding of the influence of measurement noise on these
recurrent policies, the string stability indicators of the proposed two-leader LSTM-ACC sys-
tems in each measurement uncertainty level are shown in Figures 5.71 and 5.72. In Figure
5.71, it is found that the oscillation growth amplitudes are higher than the case without us-
ing any state estimator. The decreasing rate of the OG values within the platoon becomes
slower while the measurement uncertainty level becomes higher. On the other hand, the
overshooting effect can remain insignificant in scenarios with small measurement noise,
but the OS value increases dramatically in uncertainty levels N3 and N4 while the distur-
bance propagates to the upstream of the platoon. This indicates the degraded string stabil-
ity performance in scenarios with high level of measurement uncertainty.
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Figure 5.71: Oscillation growth amplitude (left) and overshooting amplitude (right) of the two-leader
LSTM-ACC systems designed with the first weighting combination in scenarios with and without

measurement noise

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
follower

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

os
cil

la
tio

n 
gr

ow
th

 a
m

pl
itu

de
 O

G
 (m

/s
)

without noise
uncertainty level N1
uncertainty level N2
uncertainty level N3
uncertainty level N4
Recurrent policies, uncertainty level N1
Recurrent policies, uncertainty level N2
Recurrent policies, uncertainty level N3
Recurrent policies, uncertainty level N4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
follower

0.0

0.2

0.4

0.6

0.8

1.0

ov
er

sh
oo

tin
g 

am
pl

itu
de

 O
S 

(m
/s

)

without noise
uncertainty level N1
uncertainty level N2
uncertainty level N3
uncertainty level N4
Recurrent policies, uncertainty level N1
Recurrent policies, uncertainty level N2
Recurrent policies, uncertainty level N3
Recurrent policies, uncertainty level N4

Figure 5.72: Oscillation growth amplitude (left) and overshooting amplitude (right) of the two-leader
LSTM-ACC systems designed with the second weighting combination in scenarios with and without

measurement noise

In general, Figure 5.72 shows similar trend in the OG curves. However, different from
the situation in Figure 5.71, the OG values of the systems designed with the second weight-
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ing combination can be reduced significantly in every scenario with each level of measure-
ment uncertainty. Although no significant improvement can be found from the OG curves,
the overshooting effect is significantly mitigated when using the system designed with the
second weighting combination compared to the scenarios without using any state estima-
tor. This shows that the second weighting combination setup applied in the training of
recurrent policies can still lead to a better string stability performance under every level of
measurement uncertainty.

It is worth noting that the OG values of the last follower in measurement uncertainty
level N4 in both Figures 5.71 and 5.72 are quite similar to those in both Figures 5.58 and
5.59, respectively. Therefore, it may be concluded that the performance of two-leader LSTM-
ACC systems in scenarios with measurement uncertainty level N4 is at the same level with
the one-leader ACC system in the scenario with accurate measurements. When the mea-
surement uncertainty becomes too high, the two-leader LSTM-ACC systems may degrade
to the one-leader ACC systems.

The ride comfort performance of the two-leader LSTM-ACC system designed with the
first weighting combination is first presented by Figure 5.73. It is found that using the re-
current policies to follow the second leader can really reduce the number of large jerk am-
plitudes resulted from the noisy measurements. The cumulative distribution curves of the
two-leader LSTM-ACC systems are pretty close to each other, indicating that there is no
large difference between the ride comfort performance of the systems under every level of
measurement uncertainty.
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Figure 5.73: Cumulative distribution function of jerks experienced by platoons using the two-leader
LSTM-ACC systems designed with the first weighting combination in scenarios with measurement

uncertainty levels N1 - N4

Figure 5.74 then shows the cumulative distribution of jerks of the two-leader LSTM-ACC
systems designed with the second weighting combination. Compared to the systems with-
out using any state estimator, the amount of large jerk amplitudes can already be largely
reduced by using these systems with recurrent policies. However, the curves deviate from
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the curve in the scenario with accurate measurements more than the situation in Figure
5.73, which is also the effect of different weighting setups.
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Figure 5.74: Cumulative distribution function of jerks experienced by platoons using the two-leader
LSTM-ACC systems designed with the second weighting combination in scenarios with measurement

uncertainty levels N1 - N4
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Figure 5.75: Probability distribution of jerks in each ride comfort level experienced by platoons using the
two-leader LSTM-ACC systems designed with the first weighting combination in scenarios with and without

measurement noise

Figures 5.75 and 5.76 again summarize the distributions of jerk amplitudes of the pla-
toons using the two-leader LSTM-ACC systems in each ride comfort level defined. For
those systems designed with the first weighting combination, nearly 90% of the driving
maneuvers can stay within the comfortable level even when the measurement uncertainty
level is high. Although there are still a certain percentage of aggressive driving maneuvers,
only around 1% of the jerk amplitudes are in the range of emergency driving maneuvers.
Compared to the KF-ACC systems shown in the previous section, the ride comfort perfor-
mance of these systems is much closer to that of the level of the system in the scenario with
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accurate measurements. On the other hand, the systems designed with the second weight-
ing combination show different results. At least 20% of the maneuvers are aggressive or
emergency driving maneuvers under every level of measurement uncertainty. In addition,
the ride comfort performance significantly degrades when the measurement uncertainty
level increases. In the scenarios with measurement uncertainty levels N3 and N4, less than
70% of the jerk amplitudes can stay in the range of comfortable maneuvers.
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Figure 5.76: Probability distribution of jerks in each ride comfort level experienced by platoons using the
two-leader LSTM-ACC systems designed with the second weighting combination in scenarios with and

without measurement noise

The results in this section show that the two-leader LSTM-ACC systems can still pro-
duce better string stable performance than the one-leader LSTM-ACC systems through
multi-anticipation. However, the string stability performance of these systems is not signif-
icantly improved compared to the systems without using any state estimator. In addition,
the ability to damp out the disturbance would be clearly degraded if the measurement un-
certainty level increases. The improvement of using the recurrent policies can, instead,
be found by looking at the ride comfort performance. By using the recurrent policies, the
systems produce better ride comfort performance than the systems using KFs. Different
weighting combinations also show slightly different levels of improvement.





6
Discussions

This chapter first summarizes the evaluation results presented in chapter 5 and compares
them with the hypothesis made in this study and the findings in previous studies. The lim-
itations of both the findings and the research methodology of this study are also discussed.

6.1. Discussions on evaluation results

For the evaluation of the proposed multi-leader ACC systems, a 20-vehicle platoon is simu-
lated. To analyze the string stability and ride comfort, which are the two main aspects of the
system performance in this study, the performance indicators include oscillation growth
amplitude, overshooting amplitude, and probability distribution of jerk amplitudes. Newell’s
car-following model is also applied as a comparison to help explain the longitudinal behav-
ior of following vehicles equipped with the proposed systems. This chapter summarizes all
the findings in chapter 5.

6.1.1. Effect of deep reinforcement learning and multi-anticipation

To examine the DRL performance in the training of ACC controller agents and understand
the general effect of multi-anticipation, this subsection focuses on the performance evalu-
ation results of ACC systems designed with accurate measurements.

From the results of ACC systems, it is found that the one-leader ACC system can already
achieve a certain level of string stability performance when looking at the decreasing oscil-
lation growth amplitude within the platoon despite that the string stability is not explicitly
considered in the control system design. The outcome demonstrates the success of ap-
plying DRL to design ACC controllers which can preserve string stability unconditionally,
which aligns with the results in Hart et al. (2021).

Compared to the one-leader systems, the two-leader ACC systems show even better
string stability performance. The oscillation growth amplitude decreases faster when using
the two-leader systems than it does when using the one-leader systems, indicating that the

117
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disturbance is damped out more significantly while propagating upstream. On the other
hand, it can be observed from the OS curves that the overshooting effect between the ac-
celeration and stabilization phases is also mitigated when the followers can look at two
preceding vehicles.

In addition, the two-leader ACC systems also exhibit better ride comfort performance
than the one-leader systems. The original aggressive driving maneuvers required by the
vehicles equipped with one-leader systems to tackle the disturbance completely disap-
pear when the following vehicles are equipped with the two-leader systems. The following
vehicles in the platoon have smoother trajectories when they are equipped with the two-
leader ACC systems. The improvement of ride comfort performance for the vehicle platoon
brought by the ability of multi-anticipation was also pointed out by Wilmink et al. (2007)
and Lee et al. (2021).

By inspecting the car-following behavior mechanism of those vehicles in many differ-
ent ways, including looking at the acceleration/speed/gap profiles, position deviation with
Newell’s car-following model, and the plot showing the controlling leader at every time
step, the multi-anticipation ability of vehicles equipped with the proposed two-leader ACC
systems can be observed from their early slow-down behaviors when facing the traffic dis-
turbance. Hence, the effect of looking further downstream for the following vehicles to im-
prove the string stability and ride comfort of the car-following dynamics in the platoon is
demonstrated. By comparing the evaluation results with other studies, similar characteris-
tics regarding the multi-anticipation can be found. The early slow down behavior exhibited
by the following vehicles equipped with the two-leader ACC systems was also pointed out
in Wilmink et al. (2007). The improved string stability of the ACC system resulted from the
multi-anticipation ability can also be found in the conclusion of Wang, Daamen, Hoogen-
doorn, et al. (2014a) and Donà et al. (2022). Therefore, it is found that the results of this
study are indeed consistent with those in the previous studies which are also related to
ACC/CACC systems with multi-anticipation.

6.1.2. Effect of measurement uncertainties and the handling methods

In the next part of the study, the effect of sensor measurement uncertainties is first investi-
gated by including measurement noise into the simulation experiments. According to the
evaluation results, it is found that measurement noise does degrade the string stability by
slightly increasing the magnitude of the disturbance experienced by vehicles in the pla-
toon, but the stability still remains as the oscillation growth decreases along the upstream
of the platoon. On the other hand, although the overshooting amplitudes increase when
the following vehicles are facing noisy measurements, the amplitudes are not amplified
while the disturbance is propagating to the upstream. Therefore, it is found that both the
oscillation and overshooting amplitudes increase when the measurement uncertainty level
becomes higher, but the systems can still maintain a certain level of string stability perfor-
mance when facing measurement noise without using any countermeasures. The result is
slightly different from the original expectation made by the author at the beginning of this
study. The random noise in the measurements does result in fluctuating behaviors. How-
ever, it turns out that these behaviors, on average, are still quite similar to the behaviors in
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the scenario with accurate measurements.

However, the random noise does severely increases the jerks experienced by the follow-
ing vehicles, which leads to extremely uncomfortable and abnormal longitudinal driving
maneuvers. This can be found by looking at the distributions of the jerks experienced by
the following vehicles in the platoon.

To cope with the measurement uncertainties, this study first applies the practical and
conventional Kalman filter (KF) as the state estimator to process the sensor measurements
for the designed controllers. It is shown in the acceleration/speed/gap profiles that the
KF successfully smooths out the influence of measurement noise. For string stability per-
formance, it is shown in the OG curves that the oscillation growth amplitudes can be re-
duced and become closer to the level of scenarios with accurate measurements. On the
other hand, the overshooting amplitudes of following vehicles in the platoon do not have
such significant improvement. Regarding the ride comfort performance, the number of
emergency actions are significantly reduced compared to the scenarios when facing mea-
surement noise without using any state estimator. However, the jerk amplitudes cannot
be completely reduced to the range of comfortable driving behavior. There is still a cer-
tain number of aggressive driving maneuvers in every measurement uncertainty level. The
number of emergency behaviors which exceed the 2 m/s3 threshold again increases in sce-
narios with relatively high levels of measurement uncertainties.

In addition to the conventional filtering approach, the LSTM-ACC systems which use
recurrent policies as the controllers are proposed. These controllers are trained in a non-
stationary partially observable environment with noisy measurements. They are expected
to further reduce the jerk amplitudes resulted from noisy measurements by actively con-
sidering the jerk at every time step in the reward function. The simulation results show that
several LSTM-ACC systems designed with the first weighting combination and relatively
high measurement uncertainty levels still fail to achieve the desired string stability per-
formance. Even though there are several LSTM-ACC systems which successfully preserve
string stability for the platoon, the performance still deviates a lot from that of the scenar-
ios with accurate measurements. It is also found that the string stability performance also
degrades while the measurement uncertainty level increases. To comply with the spacing
policy and reduce the jerk amplitudes experienced, those systems designed for scenarios
with larger measurement noise tend to behave in a more conservative way when facing
traffic disturbance. They decelerate more than the amount which is actually required and
hence sacrifice the string stability performance. This kind of trade-off between noise ro-
bustness and string stability was mentioned as the future work by Donà et al. (2022). The
results in this study further proves the existence of such trade-off.

When looking at the distribution of jerk amplitudes of the platoons using the LSTM-
ACC systems, it is found that the number of aggressive and emergency driving maneu-
vers can be reduced significantly. This implies that the ride comfort performance becomes
closer to level of the scenario with accurate measurements at every measurement uncer-
tainty level. To sum up, although the proposed LSTM-ACC systems using recurrent policies
cannot ensure ideal string stability in every setup and scenario, they manage to preserve
ride comfort when facing noisy measurements.

The difference between KF-ACC systems and LSTM-ACC systems mainly lies in the way
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the erroneous information is handled. Although it is found that the LSTM-ACC systems
are less subject to measurement noise compared to the KF-ACC systems, comparison be-
tween the performance of these two types of systems is not the key in this study. Differ-
ent parameters used in the KF or even other filtering approach can also result in different
string stability and ride comfort performance. This is something which is not explored in
this study. The main finding after evaluating these systems is their potential and ability to
preserve string stability and ride comfort even in scenarios with large measurement noise.
With proper training and parameter setups, both kinds of system design can produce the
desired performance.

6.1.3. Effect of different weighting combination setups

This study also aims to investigate the potential trade-off between string stability and ride
comfort, which is a hypothesis made at the beginning of the study. However, the string sta-
bility is not explicitly consider in the control system design in this study. It is suspected that
the gap-keeping performance also represents the string stability performance to a certain
extent. Therefore, to help observe the trade-off, two different weighting combinations on
the gap error and jerk terms are applied in the reward function of the DRL policy training
for every ACC controller agent.

By looking at the performance of one-leader ACC systems, it is found that the system
designed with the second weighting combination has better string stability performance
than the system designed with the first weighting combination. The oscillation growth am-
plitude significantly decreases while the disturbance propagates to the upstream of the pla-
toon. The two weighting combinations also lead to large difference between the overshoot-
ing effect of the two systems. The overshooting amplitude of the platoon using the system
designed with the first weighting combination increases when the disturbance propagates
to the upstream, while those of the platoon using the system designed with the second
weighting combination are small enough to be ignored. This can already demonstrate that
the gap-keeping performance can indeed represent string stability to a certain extent for
the control system design.

For ride comfort performance, it is hence expected that the system designed with the
first weighting combination may have better performance. In the end, the acceleration and
speed profiles do present that the first following vehicle in the platoon seems to have larger
and more aggressive deceleration reactions to the disturbance. However, according to the
distribution of jerks experienced by the whole platoons, the system designed with the sec-
ond weighting combination turns out to have slightly better ride comfort performance. It is
speculated that the improved gap-keeping and stability performance damps out the distur-
bance faster than before, which also alleviates the required driving maneuvers for the fol-
lowing vehicles to handle the disturbance. Therefore, the system designed with the second
weighting combination can still bring better ride comfort performance collectively. The
same situation happens for the two-leader ACC systems as well. The trade-off cannot be
shown when simply comparing the systems in the scenario with accurate measurements.
Instead, the different weighting setups only influence the local stability of the first follower
and its ride comfort performance.
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When measurement noise is considered in simulation experiments, the effect of differ-
ent weighting combinations can be observed. Although the systems designed with the sec-
ond weighting combination still have better string stability performance compared to those
designed with the first weighting combination, the ride comfort performance is signifi-
cantly degraded. More driving maneuvers with large jerk amplitudes emerge, and the num-
ber of emergency maneuvers also significantly increases when the followers are equipped
with the systems designed with the second weighting combination. This indicates that the
policies trained with the second weighting combination tend to produce more jerks es-
pecially when the measurements are noisy, which cannot be shown in the scenario with
accurate measurements. After implementing the KFs into the systems, the similar effect
can still be found. The KF-ACC systems which use controllers designed with the second
weighting combination have worse ride comfort performance.

The trade-off between string stability and ride comfort is even more significant when
looking at the performance of the systems using recurrent policies. It is found that the one-
leader LSTM-ACC system fails to preserve string stability in the platoon when it is designed
with the first weighting combination as the oscillation amplitude increases at the end of
the platoon due to an additionally induced disturbance, and the overshooting amplitude
increases dramatically while the disturbance propagates. The problem is fixed when the
system is instead designed with the second weighting combination. Although the overall
string stability performance is not improved compared to the system without using any
state estimators, the oscillation amplitude decreases, and the overshooting amplitude can
be kept at a uniform level when the one-leader LSTM-ACC system is designed with the
second weighting combination. Same situation exists for the two-leader LSTM-ACC sys-
tems. The systems designed with the first weighting combination do not show desired
string stability, especially in scenarios with large measurement noise. When the systems
are designed with the second weighting combination, the oscillation growth amplitude de-
creases, and the overshooting effect is not significant.

For the ride comfort performance of LSTM-ACC systems, it is found that systems de-
signed with the first weighting combination have almost equally ideal level of performance.
Around 99% of the jerk amplitudes stay within the 2 m/s3 threshold in every measurement
uncertainty level. When using the systems designed with the second weighting combina-
tion, the number of emergency driving maneuvers increases while the measurement un-
certainty level becomes higher. This indicates that not only do the systems have worse ride
comfort performance, but they are more sensitive to the influence of measurement noise.

To conclude, the scenario with accurate measurements can only present the contra-
diction between the local stability and ride comfort of the first following vehicle, which is
complied with the findings in Shladover (1978) to a certain extent. When looking at the
platoon as a whole, the trade-off between string stability and ride comfort by applying the
different weighting combinations is shown when the measurement noise is considered in
the simulation. Such phenomenon was indeed mentioned by Yamamura et al. (2008). The
existence of measurement noise highlights the trade-off between string stability and ride
comfort.
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6.2. Research limitations

This section aims to discuss the applicability of the proposed ACC systems in other scenar-
ios and details in the autonomous driving environment which are not considered in this
study.

6.2.1. Applicability in other speed ranges

The controllers in the ACC systems are trained in a pre-determined speed range between
15 m/s and 35 m/s which is approximately the speed range of uncongested motorway traf-
fic. This also defines the operational design domain of the proposed systems. However,
it is believed by the author that the systems may still work in a slightly larger speed range
since the trained control policies are all DNNs which basically approximate the parametric
car-following models. Parametric car-following models and the control policies both seek
to map the distance and speed information in the driving environment either perceived by
a human driver or collected from a sensor to an output acceleration value. Such mathe-
matical similarity was pointed out by H. Zhou et al. (2022). The defined speed range in this
study is already large enough to create the variability to design controllers (DNNs) which
possess sufficient generalizability. As long as the speed of either the leader or the follower
would not reach the extreme situations, e.g., a complete standstill, the systems should be
able to be applied. More testings are required to verify the above-mentioned hypothesis
regarding the generalizability of the system.

6.2.2. Applicability in other traffic disturbances

The applicability of the proposed systems when facing other types of traffic disturbance can
also be discussed. In real-world driving scenarios, a leader behavior which contains many
disturbances with a higher oscillation frequency or many disturbances with more irregular
fluctuation amplitudes may occur. When facing this kind of complicated leader behavior,
the systems using controllers designed with accurate measurements in a stationary envi-
ronment are believed to be more applicable than the systems using controllers designed
with uncertain measurements. The policies trained with accurate measurements in a sta-
tionary environment are designed in a way that the controller agent make decisions based
on the assumption that its leader maintains a constant speed at every time step. Although
the assumption is far from reality, the policy is trained to be more deterministic for every
possible system state and hence can be used in all kinds of conditions. On the other hand,
the training of recurrent policies for LSTM-ACC systems is carried out in a non-stationary
environment which uses an LSTM network as a future state estimator. The performance of
such a controller heavily depends on the training task specified. In this study, the training
tasks are manually designed and randomly generated during the training process instead
of using real vehicle trajectory data. This method ensures the behavior of the trained policy
follow the desired theoretical setting and seems to prevent the policy from generating any
unexpected control actions. However, similar to the problem of data hungriness for super-
vised and unsupervised learning, if the training task setup fails to provide sufficient sce-
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narios which the ACC controllers have to tackle, they may not be able to guarantee optimal
performance in every car-following task encountered. The generalizability of the trained
policies may be questioned if the training tasks are not well designed. This problem can
be more serious when the learning is carried out in a non-stationary environment than it
is in a stationary environment. Therefore, it is speculated that the recurrent policies in this
study are more limited because they are only trained in scenarios with a single disturbance
event in the time series. In the future work, the training of recurrent policies using leader
behavior collected from real-world data should be considered.

6.2.3. Applicability in other types of measurement uncertainties

Another aspect which can be considered when discussing the applicability of the systems in
this study is the types of measurement uncertainties. Measurement noise following Gaus-
sian distributions is the only source of uncertainties considered in the system design in
this study. However, other types of uncertainties, such as false positive alarms or false neg-
ative signals (losing detection) may also occur in the autonomous driving environment.
In addition, the measurement noise can also contain a certain extent of time- or spatial-
dependency, which is more difficult to be handled compared to the white noise. As men-
tioned previously, these characteristics are not included in this study due to the availability
of empirical or field experimental data. The KF-ACC systems apply KFs for the state esti-
mation task due to the assumption of Gaussian noise. The LSTM-ACC systems are also de-
signed by training the controller agents in scenarios with Gaussian noise. Therefore, these
two types of proposed system designs will certainly fail in scenarios with different types of
uncertainties. In future work, this problem can be addressed by considering other filtering
methods, such as particle filter, or including other sources of measurement uncertainties
in the numerical simulation so that the trained controller agents with recurrent policies
possess the ability to handle the other types of uncertainties. By doing so, the results can
also become more persuasive for practitioners’ interest.

6.2.4. Limitations in the numerical simulation environment

Apart from the applicability of the systems, there are several details regarding the mod-
elling of the driving environment which are not considered in this study. This implies that
the simulation approach adopted in this study does not precisely reproduce the vehicle
dynamics in reality, which may affect the quality of the research findings. As discussed
in section 1.4, the scope of the study does not consider the operation of lower-level ACC
controller, internal driveline, and environmental factors. Most studies related to ACC sys-
tems in the traffic domain focused on the design of upper-level controller. The possible
reason is that the discussion of lower-level controller involves the hardware design of com-
mercial vehicles which is mainly manipulated by car manufacturers themselves (H. Zhou
et al., 2021). The modelling and simulation of the lower-level controller is relatively diffi-
cult than simply simulating the upper-level planner which generates the acceleration com-
mand. For instance, factors which need to be considered in the simulation of lower-level
ACC controller include the control gains in the control systems of these actuators to pre-
cisely describe how the vehicle speed and acceleration are updated to reach the desired
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motion state determined at the upper-level. On the other hand, there are also many en-
vironmental factors, such as aerodynamic drag forces, rolling resistance, and road slope,
which can hardly be considered unless conducting field experiments. Given the complex-
ity of the problem, these aspects are excluded in this study. Therefore, the simulation and
analysis results in this study only provides a theoretical understanding of the performance
of the proposed ACC system designs based on the scope defined and assumptions made at
the beginning of the study.



7
Conclusions and Recommendations

Before concluding the study, this chapter again briefly summarizes the findings from the
evaluation results and answers those research questions proposed in chapter 1. After the
conclusions are made, section 7.4 seeks to reflect on the pros and cons of the selected
control system design method from a scientific perspective and also provide several im-
plications from a practical perspective. At the end, recommendations for future research
regarding the design of multi-leader ACC systems are provided.

7.1. Research findings

According to the evaluation results, several important research findings are drawn in this
section.

In the first part of the evaluation, it is discovered that DRL successfully trains control
policies which can ensure string stability and maintain the ride comfort performance for
the proposed ACC systems with proper training and parameter setups. It is worth noting
that this is achieved without considering string stability in the system design explicitly. The
multi-anticipation ability brought by the two-leader ACC systems benefits both string sta-
bility and ride comfort performance for the vehicle platoon. The improved performance
is resulted from the early slow down behaviors which are exhibited when the following ve-
hicles are equipped with the two-leader system. Such behavior prevents the vehicle from
having to conduct a large deceleration or excessive acceleration.

The next part of the evaluation shows that both string stability and ride comfort perfor-
mances of the ACC systems are degraded when the measurement noise is considered. The
degradation condition becomes even worse when the uncertainty level increases. In ad-
dition, the trade-off between string stability and ride comfort can be clearly demonstrated
from the results of systems designed with different weighting combinations.

To handle the measurement uncertainties, the effects of implementing KFs and using
recurrent policies are presented in the third and fourth parts of the evaluation, respectively.
Still, the higher measurement uncertainty level leads to a worse string stability and ride
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comfort performance of the systems. The trade-off between noise robustness and string
stability is also demonstrated by looking at the performance of two-leader LSTM-ACC sys-
tems. However, both types of ACC system design show their abilities and potentials to han-
dle noisy measurements. The performance limits of the systems highly depend on their
internal parameter settings.

7.2. Discussions on research questions

The findings regarding the performance of the proposed ACC systems from the evaluation
results are already summarized in the previous chapter and the previous section. This sec-
tion then seeks to answer the research questions proposed in section 1.3.

• What kind of control method for ACC systems has the potential to outperform other
types of controllers in terms of string stability and the handling of measurement uncer-
tainties? How to design the ACC controllers using the selected control method? Which
factors can and should be considered in the control system design?

Although not being investigated in this study, a few studies using typical PD-like ACC
controllers in the past have already shown a certain level of ideal performance in terms of
string stability (Wang et al., 2018; Wang et al., 2017). This study applies DRL, an intelligent
control approach, to design the ACC controllers instead of choosing other methods since
it is believed that DRL possesses a great potential for non-linear control task using DNN
and the handling of uncertainty than other control methods do. More relevant discussion
regarding the choice of controller design method can be found in section 7.4. DRL learns a
policy network by allowing the DNN agent to explore the environment through trial-and-
errors. The state of the ACC controller agent consists of distance gap with the leader, speed,
relative speed with the leader, and jerk amplitude. In the DRL framework, the time gap
error and jerk amplitude at every time step are considered in the reward function design.
The difficulty of including string stability in the controller design will also be elaborated in
section 7.4.

In this study, the controllers without considering sensor measurement uncertainties
are first designed by training with accurate measurements and randomly generated car-
following tasks in which the leader keeps a constant speed. In the next part, the LSTM net-
work is implemented into the agent to design controllers which have the state estimation
ability on its own. The training of these LSTM-ACC controller agents with recurrent poli-
cies is carried out in non-stationary traffic disturbance cases which consider measurement
noise.

The ability of DRL can first be discovered from the results of the one-leader ACC sys-
tems, which are developed through the training with accurate measurements. The de-
creasing oscillation growth amplitude and insignificant overshooting effect in the platoon
demonstrate that the controller agents trained by the DRL setup can indeed achieve a cer-
tain extent of string stability.

On the other hand, the ability of DRL in the handling of measurement uncertainties
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can be discovered by looking at the performance of the LSTM-ACC systems which use re-
current policies. When inspecting the evaluation results of LSTM-ACC systems in chapter
5, one can see that the string stability can still be preserved albeit with degraded perfor-
mance particularly in scenarios with a relatively high level of measurement uncertainties.
The jerks produced by the following vehicles, however, become smaller because of the abil-
ity of the controller agents to react by actively considering the noise. Hence, in scenarios
with a relatively small level of uncertainties, the controllers designed using the learning-
based control method manage to preserve string stability and ensure a certain level of ride
comfort in the mean time.

• What is the proper way to model and simulate the measurement uncertainties so that
the real-world autonomous driving conditions can be reproduced? When it is known
that the sensor measurements are erroneous, what kind of methods can be used by the
ACC systems to cope with the uncertainties?

In the defined problem context, two sources of measurement uncertainties, measure-
ment noise and false negative detection, can be modelled. For simplicity in this study, only
the measurement noise is considered.

In order to evaluate the proposed systems in an environment which is as close to the
real-world autonomous driving conditions as possible, the noise error should ideally follow
a pattern extracted from real data or possess a certain level of time-dependency to reflect
the influence in certain environmental conditions. However, due to the data availability of
the multi-leader detection task, which is a comparatively novel technique, and complexity
of the problem, this study does not take any real-world pattern or time-dependency into
account. The measurement noise follows zero-mean Gaussian distributions with specified
standard deviations. This is also the most commonly adopted method to model measure-
ment noise in the literature related to ACC system design and evaluation.

To handle measurement uncertainties for a dynamical control system, a filtering method
is commonly applied to estimate the true state for the controller. In this study, a linear KF
can be used since the measurement noise follows Gaussian distributions. The system state
can be estimated by the prediction based on the known process dynamics and the collected
real-time measurements. The filtered measurements would then be used by the controller
as the estimated state information. This method is, hence, adopted by the KF-ACC systems
in this study.

In this study, the ACC systems are first designed by DRL. Another method to handle
the measurement uncertainties is to extend the original control problem based on MDP to
a problem based on a POMDP. In this kind of problem, the agent can properly react only
based on the erroneous or incomplete information in the environment. The problem can
then be solved by DRL with RNNs as the state estimator in the policy. Therefore, this study
proposes LSTM-ACC systems, which have an LSTM network layer before the original actor
network in their controller agents. By doing so, the agent can utilize the history to estimate
the true underlying state at every time instant and generate control actions accordingly.

• What is the criteria of string stability in this study? Which indicators can be used to
appropriately evaluate the string stability performance of the proposed ACC systems?
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String stability is defined as the ability of the vehicle platoon to maintain or even dis-
sipate the disturbance caused by downstream car-following dynamics. The propagation
of disturbance can be investigated by looking at either the acceleration, speed, or gap er-
ror profiles of the following vehicles. To simplify the discussion in this study, the influence
of the disturbance on vehicle speed is the major focus. Two indicators, oscillation growth
amplitude and overshooting amplitude, are analyzed following the calculation method in-
troduced in subsection 4.4.1. If the two indicators is decreasing or maintaining at the same
level while propagating to the upstream of the platoon, the platoon is considered to be
string stable.

• While aiming at preserving string stability, can the system still maintain a certain level
of ride comfort for the platoon? How to quantitatively analyze the ride comfort perfor-
mance of the proposed systems?

In the literature, ride comfort is usually discussed by investigating the vehicle accelera-
tion or jerk, which is the rate of acceleration changes. In this study, the jerk is selected since
a large vehicle acceleration or deceleration is not completely avoidable when encountering
a traffic disturbance.

Traffic stability (including local, string, and traffic flow stability) and the jerk of vehicle
motion are known as two potentially contradicting factors in car-following dynamics. It
is hence expected that the jerk amplitudes may become larger when the system seeks to
ensure string stability for the platoon, and vice versa. Maintaining a certain level of ride
comfort when seeking to preserve string stability for ACC systems is one of the main re-
search objectives in this study. Therefore, two different weighting combination setups are
applied in the reward function to investigate if the hypothetical trade-off can be observed
and if the system can achieve a balance between these two factors.

To quantitatively analyze ride comfort, the cumulative probability distributions of jerk
amplitudes experienced by every platoon using the proposed ACC systems are then gener-
ated. According to the distributions of jerk amplitudes, the influence of the measurement
uncertainties and the measurement uncertainty handling methods on the ride comfort can
be understood. In addition, the threshold values for jerk amplitudes are determined to de-
fine the range of comfortable, aggressive, and emergency driving maneuvers. By looking
at the distribution of maneuvers in these ranges, the ride comfort performance of different
systems in different scenarios can be compared.

Following this framework, the ride comfort performance of the proposed ACC systems,
KF-ACC systems, and LSTM-ACC systems in different scenarios is analyzed. It is found that
the ACC systems can ensure string stability and maintain an ideal level of ride comfort per-
formance in the mean time when the measurements are accurate. Later on, the simulation
results show that the measurement noise considered in several scenarios in the simulation
experiment significantly affects the ride comfort performance of the proposed ACC sys-
tems. In addition, the trade-off between string stability and ride comfort is shown when
the measurement noise is considered. The systems designed with the second weighting
combination have better gap-keeping and string stability performance than the systems
designed with the first weighting combination, but they also lead to degraded ride com-
fort.
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For the handling of measurement noise, KFs can significantly reduce the number of
large jerk amplitudes experienced by the following vehicles. However, there is still a certain
number of aggressive and emergency maneuvers when measurement uncertainty level is
high. It is believed that different parameter settings in the filter can produce different per-
formance results. On the other hand, the LSTM-ACC systems have better ride comfort per-
formance at every level of measurement uncertainties than the KF-ACC systems. However,
it is indeed found that the string stability performance is slightly impacted when using this
kind of system. The potential of the LSTM-ACC systems is still yet to be explored.

• What is the benefit of multi-anticipation for the ACC platoon? How to explore the posi-
tive effect of the proposed multi-leader ACC system compared to the one-leader system?

The benefit of multi-anticipation can first be observed by directly looking at the acceler-
ation, speed, and time gap profiles. If the amplitudes of maximum acceleration, minimum
deceleration, speed deviations, and gap errors of the two-leader system become smaller
than those of the one-leader system, it implies the positive string stability effect of enabling
the followers to look at their second leader. More importantly, the string stability indicators,
oscillation growth and overshooting amplitudes, help provide a quantitative way to evalu-
ate the string stability. It is expected that these two indicators would decrease faster in
the upstream direction of the platoon when using the proposed two-leader ACC systems.
Furthermore, vehicle trajectories with speed contours can also provide a clear view of the
propagation of disturbance. Newell’s car-following model serves as a basis to help under-
stand the mechanism behind the behavior of the two-leader systems.

First, compared to the one-leader ACC system, the acceleration/speed/gap profiles of
the two-leader ACC system show higher minimum deceleration values, faster decrease of
the oscillation growth amplitudes, mitigated overshooting amplitudes, and smaller time
gap errors. These all demonstrate the positive effect of looking at more than one leader
further downstream. The speed contours also show that the oscillation amplitude is sig-
nificantly damped out, and the overshooting effect can hardly be observed. By comparing
the vehicle trajectories and trajectories generated from Newell’s car-following model, one
can see the early slow-down behavior stemmed from the ability of multi-anticipation indi-
cated by the positive position deviation. The early slow-down behavior allows vehicles to
have smaller deceleration response to the preceding traffic disturbance than their first and
direct leader.

The two-leader system also brings positive effect on the ride comfort performance. By
comparing the probability distributions of jerk amplitudes, it is found that the two-leader
system can avoid aggressive driving maneuvers even when facing the traffic oscillation
event. Therefore, the multi-anticipation ability can also help preserve the ride comfort the
following vehicles equipped with the proposed multi-leader ACC systems.

• What is the influence of the considered measurement uncertainties on the ACC system
performance? What is the measurement uncertainty boundary for the proposed sys-
tems within which the desired performance in terms of string stability and ride comfort
can still be preserved?
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This study tests one level of measurement noise on the proposed one-leader systems
and four levels of noise on the proposed two-leader systems. To understand the impact
of measurement noise, the proposed ACC systems without using any state estimator are
first simulated. It is found that the random noise does not cause string instability although
the oscillation growth and overshooting amplitudes slightly increase. However, the jerk
amplitudes become significantly larger and exceed the threshold of comfortable driving
maneuvers easily when considering measurement noise in the simulation experiment.

With the help of the filters, the KF-ACC systems can achieve the level of string stability
performance in every measurement uncertainty level which is similar to that in the sce-
nario with accurate measurements. The ride comfort is also improved since there are fewer
jerk amplitudes exceeding the determined comfortable driving maneuver threshold. Still,
when the uncertainty level becomes higher, the number of emergency driving maneuvers
still increases significantly.

The LSTM-ACC systems actively consider the measurement noise while making control
actions to take the ride comfort into account. With proper training setup, these systems
using recurrent policies successfully produce string stable and comfortable platoon per-
formance. The ride comfort can be better guaranteed at every measurement uncertainty
level, but the overshooting effect may still become quite severe in uncertainty levels N3 and
N4.

According to the evaluation results of KF-ACC systems and LSTM-ACC systems, it is
found that, in general, both types of system design can preserve string stability and ensure
ride comfort in scenarios in which the standard deviations of the measurement noise can
be kept within 1 m and 1 m/s for the range (distance gap) and range rate (speed) measure-
ments, respectively. Larger measurement noise makes it difficult for the systems to pre-
serve string stability and maintain the desired ride comfort performance. However, such
result may not be valid for other system designs with different training or parameter set-
tings. When different types of measurement uncertainties are considered in the simulation
experiment, the deduced theoretical boundary of measurement noise may even become
more limited. This study explores the effect of a filtering method and a recurrent DRL pol-
icy design method for ACC systems to handle measurement uncertainties and provide rec-
ommendations for possible future extension of the system design, as will be discussed in
section 7.5.

7.3. Conclusions

From a traffic engineering standpoint, string stability has long been a problem for com-
mercial ACC systems. Small disturbance caused by a leading vehicle can propagate to the
upstream of the traffic as a shockwave. To enhance the string stability of a vehicle platoon,
this study seeks to propose several ACC system designs by leveraging the power of an ad-
vanced on-board RADAR instead of inter-vehicle communication technologies due to their
potential challenges in practice. Multiple systems are proposed, while each of them has dif-
ferent setups regarding the multi-anticipation ability, the handling of sensor measurement
uncertainties, and the weightings between the gap-keeping and ride comfort performance.
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DRL is applied to design the controllers in the ACC system architecture.

Systems which are designed with accurate measurements can demonstrate the ability
of DRL and the positive effect of multi-anticipation. Therefore, the performance of these
systems is first evaluated and serves as a benchmark for the remaining scenarios with mea-
surement uncertainties considered. Later on, the system performance are evaluated in sce-
narios with measurement noise considered to explore the influence of the erroneous infor-
mation. Two methods are adopted to cope with noisy measurements. First, a tuned con-
ventional KF, which works as an external state estimator to smooth out the measurement
noise, is applied. In the second approach, the DRL-based ACC controllers are modified
by adding an LSTM layer into the DNN agent so as to formulate recurrent policies. These
controllers are trained in scenarios with different levels of measurement noise. The LSTM
network is expected to serve as an internal state estimator and predict the future leader
behavior in a traffic disturbance.

The evaluation of system performance focuses on two aspects, the string stability and
ride comfort. A numerical simulation approach is adopted to test a platoon of vehicles
equipped with the proposed ACC systems in a traffic disturbance. Other than evaluating
the system performance by investigating the indicators developed in the quantitative anal-
ysis framework, the car-following mechanism is also understood by looking at the accel-
eration/speed/gap profiles, vehicle trajectories with speed contour, and comparison with
trajectories generated from Newell’s car-following model.

The evaluation results show the ideal ability of DRL in designing controllers for the pro-
posed ACC systems and the benefit of multi-anticipation ability for the overall platoon per-
formance. Hence, the importance of developing an ACC system which can detect and react
to the preceding car-following dynamics of multiple downstream leaders is revealed.

To reflect the real-world autonomous driving conditions, uncertainties lying in the sen-
sor measurements should be included in the simulation. Therefore, measurement noise is
considered in this study. After exploring the influence of measurement noise on the system
performance, the measurement noise is also considered in the control system design to
propose systems which can possess the ability to handle measurement noise. First, the KF-
ACC systems which apply KFs as the state estimator to filter the noisy measurements are
proposed. LSTM-ACC systems which use a recurrent policy containing an LSTM network
as the controller are the second measurement handling approach in this study. With appro-
priate setups, it is found that both systems can preserve string stability and ride comfort to
a certain extent in several scenarios. In general, it is observed that an ideal platoon perfor-
mance can be guaranteed if, for more than 68% of the time, the noise of the second leader
range and range rate measurements collected from the RADAR can be kept within [-1 m, 1
m] and [-1 m/s, 1 m/s], respectively. Still, different settings regarding the DRL training and
parameter tuning should be conducted to further optimize the system performance and
carefully explore its limit.

This study provides a theoretical understanding of the car-following behavior and per-
formance of the proposed ACC systems in terms of string stability and ride comfort through
experimental simulations. The performance limit of these system designs with regard to
the handling of measurement uncertainties is also explored. It is one of the earliest at-
tempts to discuss the string stability performance of learning-based ACC systems and the
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benefit of implementing multi-anticipation ability on ACC systems. To the best of the au-
thor’s knowledge, this is the second research work which considers sensor measurement
uncertainties in both the design and evaluation of multi-leader ACC systems, as Donà et
al. (2022) being the first attempt. The results of this study are expected to motivate the
development of advanced sensor technologies and ACC systems with the ability of multi-
anticipation and measurement uncertainty handling in the future.

7.4. Implications

This section discusses how the research findings are important to the researchers in this
field of study and practitioners in the automotive industry.

7.4.1. Scientific implications

In this subsection, the strength and potential of the methodology adopted to design the
proposed ACC systems in this study are reflected by comparing it with two other alternative
methods. How they can contribute to the future research is particularly important for the
conclusion in this subsection.

In this study, string stability and measurement uncertainty handling are the two focal
points. In a control theoretical approach, a transfer function can be used to describe string
stability in the frequency domain, as mentioned in section 2.2. However, when a scenario
with complicated measurement uncertainties are considered, the analytical method may
not be able to easily describe the string stability. Instead, a simulation-based or optimization-
based approach should be applied to design ACC controllers in this situation.

To design ACC controllers considering measurement uncertainties, there are three pos-
sible control methods which can be adopted, including the optimization of a paramet-
ric model, MPC, and the DRL-based method adopted in this study. The first method re-
quires a hypothetical parametric car-following model being proposed beforehand. A multi-
objective optimization approach can then be applied to determine the parameters which
can generate optimal performance in terms of string stability and ride comfort. String sta-
bility and ride comfort can be expressed by using representative performance indicators in
the objective function. Genetic algorithm is one of the most commonly-applied heuristic
optimization methods for this kind of simulation-based optimization problem. However,
the parametric model which needs to be formulated based on expert knowledge may not
be able to capture all the non-linearity in the control task. The performance would be lim-
ited due to the formulated parametric model. Therefore, an MPC or a DRL-based method
which can consider the non-linearity in the ACC control task is preferred.

Decision-making under uncertainty is a popular topic in the research community nowa-
days. A few studies have already proposed MPC-based ACC controllers to deal with un-
certainties resulted from erroneous sensor measurements, sensor or actuator delay, and
actuator behaviors, as mentioned in subsection 2.1.2. They tried to utilize the prediction
and optimization models in the MPC framework to limit the influence of the uncertain-
ties. Different from these approaches, the LSTM-ACC controllers designed in this study
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apply a learning-based method for both the state estimation/prediction and control task.
Instead of designing or formulating a complex model for the system dynamics beforehand
like an MPC approach, this kind of method only relies on a careful training setup. Although
it has been mostly applied in the area of gaming and robotics until now, several studies
have started to investigate the possibility of using DRL based on POMDPs for the control of
autonomous driving tasks, as mentioned in subsection 2.1.3.

The other commonly stated advantage of DRL over MPC is its computation require-
ment. It is known that the direct mapping of a offline-trained DRL controller is signifi-
cantly faster than the online optimization process in an MPC-based controller. This was
one of the main reasons why DRL was adopted in those ACC-related studies. However, it
is also known that an MPC can be replaced by a DNN function approximator through the
so-called imitation learning approach. By transforming an MPC into a supervised learning
problem to approximate the behavior of the controller, the execution of an MPC controller
can become significantly faster. Piecewise affine system is also a commonly-used method
to approximate the nonlinear optimal controller. Besides, the computation power is grow-
ing rapidly nowadays. Therefore, with these alternative ways to reduce the computation
requirement, the argument that DRL is more computationally efficient than MPC may not
entirely hold. Still, it is worth noted that the efficacy of replacing an MPC controller by
these methods may be questioned since its performance may not be as good as using the
original online optimization approach.

However, either MPC or DRL has a drawback in this study. Although string stability is
the major focus in this study, it is not explicitly considered in the reward function design
although the goal of minimizing gap error in the reward function does, to a certain extent,
ask the agent to prevent the propagation of disturbance. The difficulty of considering string
stability explicitly lies in the sequential decision-making nature of RL problems. The string
stability cannot be easily described in the time domain (every single time step in the train-
ing episode), as pointed out by Mirwald et al. (2021). There are studies using DRL to design
CACC controllers which considers string stability in the reward function design since the
ego-vehicle receives the acceleration of the leader via vehicle communication technolo-
gies. With the known immediate acceleration command of the leader, the ego-vehicle can
learn to limit its acceleration response to the preceding car-following dynamics when there
is a disturbance. There are also some studies which aim to achieve cooperative behaviors
through centralized control method. In this kind of problem context, the string stability can
be ideally considered in the RL reward function. However, this is not the case in this study
since the inter-vehicle communication does not exist in the defined problem context.

Even though there is such a drawback in the control system design, the evaluation re-
sults in this study show that DRL can still be applied to design ACC controllers which can
ensure string stability. The different weighting combinations in the policy training setup
also highlight the trade-off between string stability and ride comfort and show flexibility
in the control system design. For the handling of measurement uncertainties, an LSTM
network is directly connected with the actor-critic network structure of the LSTM-ACC sys-
tems. Although it is difficult to particularly examine the state estimation performance of
the LSTM network, it is believed to be able to surpass KF especially when the assump-
tion of Gaussian noise distribution is violated. However, it is also worth mentioning that
there are other filtering approaches, such as the particle filter, which get rid of the linear-
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ity and Gaussian limitation. Using these types of filters as the state estimators can also be
considered when the measurement errors are modelled differently. Still, as discussed in
the previous section, if the measurement uncertainties follow a certain extent of time- or
spatial-dependency, the LSTM network may be able to perform better than filtering ap-
proaches by directly learning the pattern of the uncertainty development throughout the
time series.

According to the findings in this study, the ability and suitability of applying DRL to
design ACC controllers which can ensure string stability and handle noisy measurements
are demonstrated. The influence of measurement noise on the system performance is also
shown by the simulation experiment. This study aims to highlight the importance of con-
sidering more types of measurement uncertainties so that the real-world autonomous driv-
ing condition can be reproduced. In addition, the method still contains a lot of potential in
terms of uncertainty handling. Future studies can continue to propose advanced control
system design to address those problems which have not been considered in this study, as
will be discussed in section 7.5.

7.4.2. Practical implications

This subsection first focuses on the development of multi-leader detection functionality
using various on-board sensors. The applicability of the proposed DRL-based ACC systems
in practice is then discussed in the second part of this subsection.

From the results of the performance of the two-leader ACC systems in this study, it is
found that a large level of measurement uncertainties may induce negative impacts on the
system performance in terms of both string stability and ride comfort, which makes it even
worse than the one-leader system. Therefore, it is suggested that the second leader mea-
surements should only be used when its accuracy can be guaranteed at a certain level, or
other possible methods to utilize the second leader measurements should be applied to
prevent the dramatic influence of measurement uncertainties, which will be further dis-
cussed in the next section.

The detection of the second leader has not yet been widely adopted by commercial ve-
hicles nowadays. It is known that the advanced RADAR sensor implemented on Tesla Au-
topilot v8.0 possesses the ability to see two vehicles ahead (Donà et al., 2022). However, the
discussion regarding this functionality mainly lies in its positive improvement on safety. It
is only known that the vehicle equipped with the Autopilot can detect heavy braking of the
leaders further ahead and conduct emergency response even before the action of the direct
leader. To which extent the functionality contributes to the traffic stability performance of
the ACC system has not been emphasized.

While trying to implement this kind of multi-leader detection functionality for ACC sys-
tems to enhance string stability, a consideration can be raised. When the second leader is
quite far away from the ego-vehicle in a high-speed driving scenario on a multi-lane motor-
way, it may be difficult for the RADAR sensor to distinguish the second leader from vehicles
driving on other lanes. The same problem may also occur for the multi-leader detection
task at curves or other road sections with complicated geometry, which is also a difficulty
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for one-leader ACC systems to operate nowadays. Therefore, it is suggested that the point
cloud data collected from the on-board RADAR sensor should also be fused with vision-
based sensors, such as a camera or LiDAR, to verify the presence and measurements of the
second leader by looking at the lane markings and filtering out echo signals from other ve-
hicles. By doing so, the feasibility and operation of the multi-leader ACC system can be
better ensured.

There are also several manufacturers using camera or LiDAR to measure the first leader
measurements for the ACC system, as introduced in Lee et al. (2021). It is also believed that
when the second leader is only partially occluded, the cameras should be able to see and
perceive the movement of the second leader. The other possibility for this kind of vision-
based sensor setup to conduct multi-leader detection task is using the cameras to detect
the second leader by looking through the window of the first leader. By applying the ad-
vanced image recognition techniques, the cameras can possibly observe whether the sec-
ond leader is getting closer or farther away from the first leader, which can also help accom-
plish a certain level of multi-anticipative car-following behavior. Still, this type of sensor
setup suffers from the problem of low reliability and unknown ability to collect measure-
ments in a long range. How to ensure a reliable and accurate detection of the second leader
through proper sensor fusion techniques can also be the major development direction for
the industry in favor of the multi-leader ACC systems.

Regardless of the sensor technology for the multi-leader ACC systems, this study applies
DRL to design the controllers. DRL can be regarded as an intelligent control method which
has not yet been widely applied to solve any real-world problems despite its popularity in
the research community. One of the major concern lies in the explainability of such a black
box approach.

Despite this great challenge, a lot of studies and research endeavors have already been
investigating the possibility of applying DRL on various self-driving challenges, including
longitudinal speed control, lateral lane-changing maneuver, and the overall vehicle motion
and trajectory planning. The ACC controller design and control logic of commercial vehi-
cles nowadays are classified information for automakers. It is still unclear when DRL-based
ACC systems will enter the market.

Every detail of the control system design in this study, including the DNN structures
of the controller agents, state and observation space, reward function design, and training
task are carefully considered to prevent unexplainable outcome. Even if the controller de-
sign method may not be of practical interest in the near future, the findings and conclusion
regarding the effect of multi-anticipation ability and measurement uncertainty boundary
drawn from this study can still be applied to the design of multi-leader ACC systems using
other control strategies or uncertainty handling methods.

7.5. Recommendations for future work

This study proposes several multi-leader ACC system designs. The limitations of the pro-
posed systems discussed in section 6.2, including the applicability to other types of dis-
turbance events and measurement uncertainties, are all possible and interesting aspects
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to tackle for future research. For instance, it is mentioned that real vehicle trajectory data
should be considered for the training of LSTM-ACC controller agents with recurrent poli-
cies. In addition, when false negative signals of the second leader detection are consid-
ered, there are different strategies for the ego-vehicle to cope with this kind of situation.
The difference between the complete fall-back to a one-leader system and a vehicle mo-
tion tracking method can be explored. This section highlights other issues related to the
defined problem in this study and further extends the problem for future studies.

For the controller design setups, the ACC controllers in this study are DNN agents with
two hidden fully connected layers between the input and output, while the LSTM-ACC con-
trollers contain an LSTM network layer as the state estimator before the two fully connected
layers. To enhance the performance of the controller, the DNN can be redesigned to see if a
deeper or wider network architecture or a different activation function can better describe
the non-linearity in the control task and generate better car-following performance. An-
other issue which may degrade the power of DRL is related to the algorithm selected to
train the policy network. In this study, the controller agents of the ACC systems are de-
signed by PPO, an on-policy DRL algorithm. Although PPO is believed to be the most pow-
erful on-policy DRL algorithm for the time being, a lot of attention nowadays has started
to develop new DRL algorithms which leverage the merits of both the on-policy and off-
policy algorithms, such as DDPG and TD3. However, PPO is applied in this study due to
the current limitation regarding the applicability of recurrent policies in the selected DRL
library. Therefore, it is worth investigating that whether more powerful DRL algorithms can
result in an even better ACC controller performance.

Another possible change which can be made in the control system design is related to
the utilization of second leader measurements. In the proposed multi-leader ACC system
architecture, the minimal acceleration command generated by the two controllers would
be selected to ensure safe driving maneuver and follow the determined constant time gap
spacing policy. However, this control strategy may lead to large jerk amplitudes when the
controlling leader switches. In addition, the presence of noise in the second leader mea-
surements can cause unnecessary slow down behaviors to the ego-vehicle when it falsely
perceives a slower speed or decreased distance gap with the second leader. This kind of
behavior creates more uncomfortable driving maneuvers and can potentially cause addi-
tional traffic disturbance.

To prevent these two possible problems, a different control strategy can be applied to
determine the acceleration command in the next time step. In Donà et al. (2022), the mea-
surements of two leaders were incorporated by using a weighting parameter to describe
how much influence the second leader measurements have on the linear controller. An-
other simple logic which can be applied is pre-defining a threshold for the changes in sec-
ond leader measurements between two consecutive time steps based on the level of mea-
surement noise. The acceleration command generated from the controller following the
second leader would only be activated if the change of second leader measurements be-
tween two time steps exceeds the threshold. By doing so, the jerk experienced by the vehi-
cle is expected to be reduced. However, whether the string stability performance would be
affected by the delayed action caused by the threshold setting when encountering a distur-
bance should be investigated. These are two possible methods to utilize the second leader
measurements collected. An even more advanced approach can be the training of a single
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ACC controller agent which takes the measurements of both the first and second leaders
as state input at the same time. However, such controller design may not be suitable when
platoon heterogeneity is considered.

Platoon heterogeneity can also be the other focus of the future work. In practice, the
penetration rate of vehicles equipped with a multi-leader ACC system may not be suffi-
ciently high at the beginning when it hits the market. Whether the string stability can be
ensured when a platoon consists of many different types of vehicles, including human-
driven vehicle, vehicles equipped with a one-leader ACC system, and those equipped with
a two-leader system is an important question to answer. How much improvement a multi-
leader ACC system can provide when there are only 10%, 30%, or 50% of vehicles in the
platoon possessing the multi-anticipation ability can be quantitatively analyzed through a
simulation approach.

At the next level, the platoon heterogeneity may even be considered in the ACC control
system design. A single controller which knows how to make decisions no matter what kind
of ACC systems is used by the downstream leader can be proposed. A problem can arise for
this kind of control system design. What if the direct leader is a human-driven vehicle so
that it does not obey the same driving behavior and spacing policy as the ego-vehicle does?
How the controller in the multi-leader ACC system should be designed to follow the two
leaders ahead which use unknown ACC systems and have different setups in the system is
a problem which needs to be addressed. The proposed multi-leader ACC systems in this
study are not able to tackle these complicated situations. In this case, the formulation of
the DRL problem may have to be entirely modified to train the controller how to react in
such a driving environment which has unknown and heterogeneous leader behaviors.
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