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KORT OVERZICHT VAN DE INHOUD

Dit proefschrift handelt over Boolese metrische ruimten M;
dat zijn ruimten waarbij aan elk tweetal elementen a en b uit M
een element d (a,b) van een Boolese algebra B is toegevoegd als
afstand.

In het bijzonder worden onderzocht de zg. geassocieerde Boolese
metrische ruimten M, ontstaan uit Boolese valuatie-ringen R door
middel van de definitie d (a,b) = ¢ (a —b), waarbij ¢ de valuatie
is van R in de verzameling B van idempotente elementen van R.

Ringen van partitie-afbeeldingen van een gegeven ring R in een
gegeven Boolese algebra B worden bestudeerd om aan de hand
hiervan complete, separabele, geassocieerde, zwak convexe Boolese
metrische ruimten te kunnen construeren. Tevens worden voor-
waarden aangegeven waaronder een Boolese valuatie-ring een ring
van partitie-afbeeldingen is.

Na het invoeren van een topologie in de Boolese metrische
ruimte M worden de begrippen maximale keten, boog en segment
gedefinieerd. Verschillende eigenschappen en karakteriseringen
worden afgeleid.






PREFACE

This treatise originated from an article by L. M. Blumenthal[5]1),
Boolean geometry I, to which I will refer by BGI. Blumenthal’s
manuscript 2) for the intended continuation of the article BGI,
Boolean geometry II (to which I will refer by BGII) was the outset
of these underlying investigations. Some of the following material
is taken from BGII. Where this occurs it has been indicated.

In his paper BGI the author developes some aspects of the distance
geometry of a Boolean metric space B, obtained by attaching to
each two elements a and b of a Boolean algebra B the element
d (a,b) = (anb’)u (2’ nb) of the algebra as distance. The methods
and results of that study are entirely algebraic in the sense that no
topological notions are involved. The in BGII presented con-
tinuation of the program deals with continuity notions based upon
the introduction of a topology in the Boolean algebra B.

The underlying thesis “Boolean metric spaces” has been set up
on a more general basis, making use of an article by J. L. Zemmer
[20], Some remarks on p-rings and their Boolean geometry. This
means that the sets giving rise to Boolean metric spaces are not
restricted to Boolean algebras. We will also allow so called Boolean
valued rings as sets from which to obtain Boolean metric spaces.

It follows trom a result obtained by W. Krull 3) that any Boolean
valued ring may be considered as a subdirect sum of integral
domains %). Since Krull’s result is rather deep and since it turned
out to be possible to prove several properties of Boolean valued
rings without making use of this result, we have tried to refrain
from basing our developement on the above mentioned theorem.
In fact we have kept our results completely independent of it.

1) Numbers between brackets refer to the References at the back of this thesis.
%) Not published; but see the abstract [5a].

%) [15], references at the bottom of p. 113.

%) [15], Theorem 31, p. 123.



For more extensive and detailed information on the field of
distance geometry we refer to L. M. Blumenthal [4], Theory and
applications of distance geometry, especially to chap. xv. For the
lattice-theoretical aspect we refer to H. Hermes [10], Einfithrung
in die Verbandstheorie.

Most of the notation will be developed in the text. A few general
remarks may be given here. Ring operations will be indicated by
the usual justaposition and -+ . Boolean operations will be denoted
by n and u. For the complementation in a Boolean algebra we use
the accent ', while the order-relation is written <, << meaning <<
and 4. Since set-operations are Boolean operations we will make
no distinction between these unless confusion might occur. In that
case the set operations are denoted by ), &, <and c for comple-
mentation.

In general capitals will be used for sets.




CHAPTER I

ASSOCIATE RINGS

1. Boolean algebras, Boolean rings and idempotents.

It is known that Boolean rings with identity may be identified
with Boolean algebras !); i.e. a Boolean ring with identity can be
considered as a Boolean algebra under suitable modifications of the
ring operations and conversely. The Boolean operations expressed
in terms of the ring operations are

anb = ab,
aub=a-+ b -Lab,
a’'=1-+ a.

The ring operations expressed in terms of the Boolean operations are

ab=an b,
a+b= (@ nb)u(anb’).
It is also known that the idempotents of a commutative ring R
with identity form a Boolean ring B with identity and hence a

Boolean algebra 2). The operations of the set B, considered as a
Boolean algebra, expressed in terms of the ring operations are

anb =ab,
aub=a-+ b—ab,
a’'=1—a.

The operations of the set B, considered as a Boolean ring, expressed
in terms of the ring operations are

a® b= ab,
a@db=a-+ b—2ab.
In order to avoid the difficulty and inconvenience of distinguishing

between too many kinds of operations we will always consider the
set B of idempotents of a commutative ring R with identity as a

1) [18]; also [10], § 22 and [11], chap. VII.
%) [8].




Boolean algebra. Thus we only have to distinguish between Boolean
operations and ring operations. Since the Boolean multiplication
coincides with the ring multiplication, mostly the justaposition
will be used. Only when the fact is to be stressed that a Boolean
multiplication is meant, we will use the Boolean notation (cap).

2. Boolean valued rings.

2.1 DEFINITION. A commutative ring R with identity is called a
BOOLEAN VALUED RING 1Y), provided there exists a mapping o of R
wmto a Boolean algebra B

p: a—>g(a) aeR,cp(a)eB, such that

i) ¢ = if and only if a =0,

(i) (b)= (2) e (b),

(ii}) ¢ (a +b) < ¢ (a) ug (b).
The subset of B consisting of all images of R under the mapping ©
will be indicated by @ (R).
Some properties of Boolean valued rings, immediate consequences
of the definition, are:

211 an =0 implies a = 0;

or: a Boolean valued ring does not contain proper (i.e. non
zero) nilpotent elements.

212 ¢ (a) = ¢ (—a).

213 ¢(a) <¢(1) forallaeR.

214 ¢ (a) = ¢ (1) it ais a unity of R (i.e. if a-1 € R).
2:1.5 (a—|~b)~<p() ¢ (b) if ab = 0.

From 2.1.1 it follows that R is isomorphic to a subdirect sum of
integral domains 2). As pointed out in the Preface we will not make
use of this fact in the sequel. Since, however, conversely any
subdirect sum with identity of integral domains is a Boolean valued
ring, as we will show, one would then have

2.2 THEOREM. A commutative ring R with identity s a Boolean
valued ring if and only if R does not contain proper nilpotent elements.
To show that any subdirect sum with identity of integral domains
is a Boolean valued ring we remark that such a subdirect sum is a
subring of a full direct sum of integral domains. A full direct sum

') [20].
?) [15], Theorem 31, p. 123.
P




of integral domains may be considered as the commutative ring S
with identity consisting of all functions f of a variable w € Q, such
that f (w) €I (w), where I (w) is an integral domain for each
o € Q). Equality, addition and multiplication of elements of the
full direct sum are to be defined component-wise, where f (w) is
the w-component of the element f of the full direct sum. We will
denote the full direct sum by

S= 2*I (w),
weQ
Q being the cardinality of the set of component integral domains
I (o). The idempotents of S are those functions of w that only
assume the values zero and one, as f (o) f (0) = f (w) is equivalent
to f () =0 or f(w) =1 since I (w) is an integral domain. One
could say: the idempotents of S are the characteristic functions in S.
This Boolean algebra Bg of idempotents of S will be used for the
valuation of R. The situation therefore is:

S: full direct sum of integral domains.
R: subdirect sum of S.

Bs: idempotents of S.

Bg: idempotents of R.

It follows easily that if a subdirect sum of integral domains has an
identity, this must be the identity of the full direct sum, i.e. the
tunction f such that f (o) =1 €I (») for all w € Q.

Using the fact that for the Boolean algebra Bs of idempotents of
Sf <g is equivalent to fng=1f (or to fug = g) one proves
easily: the idempotent f precedes the idempotent g if and only if
f (w) = O for all those elements w € Q for which g (o) == 0.

1) [16].




Now let s €S and let ¢ be the characteristic function (i.e. idem-
potent) in Bg defined by

6(w) =0 if s(w) =0,
c(w)=1 if s (w) #0.

Then the mapping ¢
p: s—>9(s) =o, S€ES, o€ Bg

is a mapping of the full direct sum S onto the Boolean algebra Bg of
idempotents of S. One may easily verify that the conditions for a
Boolean valuation are satisfied. Since R is a subring of S = Z*I (w)
we thus have constructed a Boolean valuation for R. wel)
Property 2.1.3 implies that one can always assume that ¢ (1) = 1.
Forif ¢ (1) # 1, consider the subset B* of B consisting of all elements
of B preceding ¢ (1). This is a distributive sublattice with 0 and
¢ (1) as its least and greatest element. Defining u* = u’ n ¢ (1)
for all u € B* one sees readily that

unu* =0,
uuu* = ¢ (1).

Thus u* is the complement of u in B* so that B* is a Boolean algebra.
Sussman [19] introduced the notion of associate ring. Since we

want to refrain from using the fact that a Boolean valued ring may

be considered as a subdirect sum of integral domains, we give a

different definition.

2.3 DEFINITION. If B denotes the Boolean algebra of all idempotents

of a Boolean valued ring R, we call R an ASSOCIATE RING provided

(i) @ (R) <B,
() ¢ (u) =u forall ueB.
If, in addivion, the Boolean algebra B is complete, we call R a
COMPLETE, ASSOCIATE RING.
Denoting by C the set of all x € R such that ¢ (x) = 1 and by U
the set of all unities of R the following properties of associate rings
may easily be proved

231 ®(R)=B and o (1) =1.

232 ¢ (b1 —bg) =1 ifand onlyif by = by’ (by,bs € B).
233 ag(a)) =0 forall aeR.

234 ag(a) =a forall aeR.

235 U <C.

236 a+ ¢ (a) eC.




As an example of associate rings we will discuss the commutative
regular rings with identity ). A ring R is called regular provided
for each element a € R there exists an element x € R such that
axa = a.

2.4 THEOREM. A commutative regular ring R with identity is an
associate ring 2).

Proof. Let a € R and let x € R such that a2x = a. Such an element
x must exist in R since R is regular. Suppose there was also another
element y € R such that a?y = a. Then we would have ax = ay
since a?xy = ax but also a?xy = ay. This proves that the mapping ¢

@ a—>¢ (a) = ax; a,x € R such that a?x = a

is single valued.

Furthermore ax is an idempotent of R since axax = ax. If u is
an idempotent of R we have ¢ (u) = u. Left to verify whether the
properties required for a Boolean valuation are satisfied.

(i) a = 0 implies ax = 0; also ax = 0 implies a = 0; for if not,
we would have a2x = a while (ax) a = 0 and a # 0.

(i) if ¢ (a) = ax and ¢ (b) = by, where a?x = a and b2y =
we see immediately that o (ab) = abxy = ¢ (a) ¢ (b) since
a?b2xy = ab.

(iii) ¢ (a) = ax; ¢ (b) = by; ¢ (a + b) = (a + b)z; again holding
a?x = a, by = b and (a + b)2z = a + b. We have to show
that ¢ (@ +b) < ¢ (a) u 9 (b), which is equivalent to ¢ (a + b)

{p@)ue(d) =09 ( a4+ b). Expressed in terms of thering operations
solely thismeans: ¢ (a +b) {¢(a) + ¢ (b) —¢ (a) ¢ (b) } =@ (a +b).

Straight forward substitution and computation shows that the
equality is valid. Examples of regular rings are the p-rings 3).
A p-ring (p is prime) is a ring with more than one element, with the
property that for every element a it holds that aP = a and pa = 0.
p-Rings are necessarily commutative. Furthermore: a p-ring is
regular since for any element a of the ring it holds aaP—2a = a, thus
satisfying the requirement for regular rings. A special instance of
p-rings are 2-rings, the so called Boolean rings.

Thus we can say that p-rings with identity are associate rings.
The valuation in case of p-rings is

Y [7].
2) see also [19].
3) [15], chap. VII.



p: a—> ¢ (a) = aaP~2 = apP-1
and more in particular for 2-rings (Boolean rings)

p:a—>¢(a) =a,
so that in case of a 2-ring the valuation is the identity mapping of
the ring onto itself.
As any Boolean algebra can be converted into a Boolean ring
(2-ring), we see that also Boolean algebras are instances of associate
rings.

Finally we prove

2.5 THEOREM. An associate ring R is regular if and only if U = C.
Proof. Suppose U = C. Let a € R; then ¢ (a) € B and ¢ (a)’ € B.
Set a* = a 4 ¢ (a)’, so that a € C (prop. 2.3.6) and hence a € U so
that (a*)~1 e R. Now we have aa* =a (a 4+ ¢ (a)’) = a2; thus
a2 (a*)~1 = a and R is regular.

Conversely, suppose that R is regular. Let a € C; then a?x = a for
some x € R. ¢ (a) = 1 and ¢ (a) = ax, from which ax = 1, so that
a € U. Since we also have U < C (prop. 2.3.5) it follows U = C.

3. Boolean metric spaces.

3.1 DEFINITION. An abstract set M is called a BOOLEAN METRIC
SPACE 1), provided there exists a mapping d of M x M into a Boolean
algebra B
d: (a,b)>d(a,b), (a,b)eM x M, d (a,b) eB

such that

(i) d(ab) =0 ifandonlyif a=Db,

(i) d(a,b) =d (b,a),

(iii) d (a,b) < d (a,c) ud (c,b).

3.2 TueEoREM. Every Boolean valued ving R can be made into a
Boolean metric space M by defining d (a,b) = ¢ (@ —b). R will be
said to be the underlying set of M and M will be said to be obtained
from R.

Proof. One may easily verify that ¢ (a — b) satisfies the require-
ments for a Boolean distance.

Denoting the set of all distances of pairs of elements of R by D (R),
we have D (R) = @ (R), so that in case of an associate ring R we
have D (R) = B, where B is, again, the Boolean algebra of idem-
potents of R.

1) [6], [7], [5], [20].
10




3.3 DEFINITION. A Boolean metric space M obtained from a (complete)
assoctate ring R by defining d (a,b) = ¢ (a —b) for A)b e R, will be
called a (COMPLETE) ASSOCIATE BOOLEAN METRIC SPACE.

In the same way: a REGULAR BOOLEAN METRIC SPACE M is a Boolean
metric space obtained from a commutative regular ring R with
identity.

If the underlying set R is a p-ring with identity the Boolean metric
space M, obtained from R, will be called a BOOLEAN METRIC P-SPACE.
In particular a BOOLEAN METRIC 2-SPACE is a Boolean metric
space M obtained from a Boolean ring R (2-ring) with identity or a
Boolean algebra R; i.e. from a ring R for which every element is
idempotent, so that R = B.

It is this class of Boolean metric 2-spaces that Blumenthal deals
with in BGI and BGII.

3.4 TureoreM. If M is an associate Boolean metric space and B the
Boolean algebra of idempotents of R, the underlying set of M, B is a
Boolean metric 2-space with d (a,b) = a’bub’a for all a,beB.
We call B the Boolean metric 2-space ASSOCIATED with M.

Proof. a—b=a(l—b)—b(—a);

¢@a—b) <9(@e(l—Dbue(d) el —a)
Referring to section 1 of this chapter we have: 1 —a = a’ and
1—b="0b".
Since R is an associate ring and a, b, a’, b’ are all elements of B,
so that ¢ (a) =a, ¢ (b) =b, ¢ (a’) = a’ and ¢ (b") = b’; we thus
have ¢ (a—b) <ab’uvadb . . . . . . . .. .. ... (i)
Moreover: ab’ (a — b) = ab’,
from which ¢ (ab’) ¢ (a —b) = ¢ (ab’),
or ¢ (ab’) < ¢ (a —b), or ab” < ¢ (a—Db).
Similarly: ¢ (a'b) < ¢ (a —b), or a'’b < ¢ (a—Db),
so that a’buba <g(a—>b) . . . . . . . . . . .. .. (i)
(1) and (i) imply: ¢ (a —b) = a’b u b’a.
3.5 CoroLLARY. If M s a Boolean metric 2-space, d (a,b) =
a’buba forall a,b e RY).
Proof. R is a Boolean ring (2-ring) so that all elements are idem-
potent: R = B.
Note: in the sequel Boolean metric p-spaces will be denoted by My,.

1) see also [5].

11




3.6 DEFINITION. A distance-preserving correspondence between the
elements of two subsets of an associate Boolean metric space M is called
@ CONGRUENCE, and such a mapping of the space onto itself is called a
MOTION.

It is obvious that for a fixed element a € M the mapping m (x) =
x 4+ aisa motion. This class of motions will be called TRANSLATIONS.
There is a unique translation that takes any assigned element a into
any assigned element b, namely the translationm (x) = x + (b—a).
If Mo is a Boolean metric 2-space, we see from section 1 and from
CoroLLARY 3.5 that the translation m (x) = a + x becomes
m (x) = d (x,a) orm (x) = d (x,m (0)) sincea = m (0). Blumenthal?)
has proved that any motion of a Boolean metric 2-space My can be
written as m (x) = d (x,m (0)). Thus we may say that for Boolean
metric 2-spaces translations are the only motions.

Blumenthal also showed that any congruent mapping f of My into
itself is involutary: ff (x) = x, for all x € My, from which it follows
that f is a motion. Since these results also apply to the Boolean
metric 2-space B, associated with any associate Boolean metric
space M, we can say that every congruent mapping f of M such
that f(B) < B can be written as f (x) = d (x,f (0)) as far as f
applies to B, i.e. forallx € B < M;and also that any such congruence
f is involutory for B: ff (x) = x for all x € B, from which it follows
that f is a motion of B. Zemmer 2) has described the motions of
Boolean metric p-spaces M, by means of matrices with elements
from the Boolean algebra of idempotents of the p-ring R, under-
lying My.

3.7 DEFINITION. A subset {a, } of an associate Boolean wmetric
space M is called a METRIC BASIS for M, provided every element
x e M is uniquely determined by its distances d (x,ay) from the
elements of the set { ay }.

It follows readily from LEMMA 2.2 chap. III that the set of constants
of a homogeneous Boolean valued ring R, underlying a Boolean
metric space M, forms a metric basis.

This implies that the identity 1 and its successive summands
253 5 5 savns ,p of a Boolean metric p-space My form a metric basis
for My, 2).

1) [4], § 133, p. 334.

2) [20].
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CHAPTER 1II

RINGS OF PARTITIONAL MAPPINGS

1. The rings KB and KB*.

Let B be a complete Boolean algebra and K a commutative ring
with identity. For the sequel it is of importance to remark that in a
complete Boolean algebra the distributive law

xnUy,=U(Xny, (and dually)
holds 1), from which
UxenUypg = U (Xenyp) (and dually).
1.1 DEFINITION. A mapping §
v a—>1{ () wekK, ¢ (x) eB
of a commutative ring K with identity into a complete Boolean algebra
B such that
M) bWdM =0 if pFy,

which is also expressed by saying that the elements
¥ (o), o € K are PAIRWISE ORTHOGONAL,
(i) U (e =1
e
1S called a PARTITIONAL MAPPING.

We say that ¢ assumes the value o on § (o) if ¢ (x) 7% O and that ¢
does not assume the value o if ¢ («) = 0.

A partitional mapping is called a FINITE partitional mapping if ¢
only assumes finitely many values.

1.2 TueoREM. The set of all partitional mappings of a commutative
ring K with identity into a complete Boolean algebra B is a commutative
ring KB* with identity.

If F s a field, the ring FB* is regular.

Proof. We first introduce a multiplication and addition for the
elements of KB*.

1) [10], Satz 24.1, p. 130.

13



Therefore let ¢; and g be two elements of KB*

g1 a—>d1 (0); a€eK, 1 (x) €B;
o: a2 (a); a€K, g (x) €B.

Then we define

b1 o> U (1) b2 (v)

wy=a
b1+ o> U da (p) 2 (v)
Qwt+v=o

It is clear that the mappings ¢ {2 and {1 + {3 both belong to KB*.
Furthermore it is clear that the multiplication and the addition are
commutative. That the multiplication is associative may be seen
as follows
(b1 g2) 31— U {( U g (1) g2 (v) ) 3 (A)}, which is equivalent

Yh=0t V=%

toa—> U U d1(p) 42 (v) $3 (A), orto a— U 1 (1) 2 (v) g3 (1)

UA=0 UV=% UVA=a
Similarly we find {3 (Y2 ¢3) 1ao— U 1 (1) a2 (v) I3 (M),
UVA=u
from which (¢1 $2) g = 1 (Y2 ¥3).
The associativity for the addition is proved similarly.
To prove the distributive law we have

1 (b +d3) ta—= U 1 () { U o (u) ¥3(v) }, or equivalently

An=o L+v=x
a— U U g1 (A) dz (@) g3 (v),
Boe=a: =k or also o — U) b1 () b2 () d3(v) . ... ()
AMp+v)=a

Furthermore we have
1o ta—> U gy () b2 (v) and ¢1¢s ta— U g () g3 (v)
wv=ao wv=a
from which ¢y ¢2 + ¢1da3ta—> U [{ U 1 (p) Y2 (u) }
B+y=a  pp=8

{ U 41(0) 2 (v) }]

whichisequaltoa— U U U {1 (p) Y2 (w) q;f(c) U3 (v).
B+y=o pp=B ov=y
But since ¢ (p) Y1 (6) = 0 if ¢ % ¢ and 1 (p) ¢1 (0) =
b1(p) =d1(0)ifp =0
we find 1 g2 + d1¢gia - U U U d1 @) da () s (v)
Btr=o Me=B =y
which is equivalent to o — U {1 (A) 2 () 3 (v) . . . . (i)
Apt+v)=a

14




From (i) and (ii) it follows ¢y (b2 + Us) = d1 da + d1 Us.

To complete the proof that KB* is a ring with identity we have to
indicate the zero and the identity of KB* together with a negative
for each ¢ € KB*.

The zero of KB* is the mapping 0 :a—0 (x); x € R, 0 () € B,
such that

0(0)=1 and 0 (a) =0 ifa 0.

Apparently 0 € KB*. It holds that ¢ 4+ 0 = ¢ for every ¢ € KB*
as may be seen from ¢ +0:a—> U ¢ (u) 0 (v) = ¢ («)

wtv=o
For ¢ e KB*, { : a0 = ¢ («)
we introduce the mapping — ¢ : o = ¢ (— «
We then have ¢ + (—¢) ta—> U ¢ (u) ¢ (—V);

wt+v=a
M U dwe(=v=Ud@=1L
w+v=0 v
i U () ¢ (—v) =0, since u # —v.
ptv=a++0

From (i) and (ii) it follows ¢ + (—¢) = 0.
The identity of KB* isthe mapping 1 : o« —1 («); x € R, 1 () € B,
such that

1(1)=1and 1 («) =0 if o 7 1.

Apparently 1 € KB* It holds that ¢ 1 = 1 for every ¢ € KB* as
may be seen from ¢ 1 :oa— U ¢ () 1 (v) = ¢ («).

wv=0
To show that for a field F the ring FB* is regular we consider for
the mapping ¢ € FB* the mapping ¢* : o — {* («); « € F, {* («) €B,
such that

¢*(a):¢(;1c>ifa¢0 and ¢* () = ¢ (0) if &« =0,
and we will show ¢ ¢* & = {.
bgFpia—> U ¢ () o* ) (w);

YAL=o
(i) « £ 0; then A £ 0, so that we have KU U0 U* () O () =
HAL=A
! 1
LU pee)ee = U v })=uver—ve

15




(i) =05 U ¢ () d* )¢ (w) =

YAL=0 ‘
(U 4603(3)@3v i U 4640801 -
xA=0 A wgi=h
A#£0 =0
1 1
{xzi):()"l) (X) Lp(i) } U kl) (O) = {)\io‘p (O) 4}(;\ } U q" (0) _
A#0

0ud (0) =4 (0).

This completes the proof of THEOREM 2.2.

It follows from the detinition of a finite partitional mapping ¢ that
¢ («) only differs from zero for finitely many elements « € K.
Repeating the preceding construction of KB*, but now only allowing
finite partitional mappings to occur, one obtains a commutative
ring KB with identity. Again, if F is a field, FB is regular. B need
not be complete for this construction. Thus we have

2.3 THEOREM. The set of all finite partitional mappings of a commu-
tative ring K with identity into a Boolean algebra B is a commutative
ring KB with identity.

If ¥ s a field, the ring B s regular.

It may be noted that KB << KB* and that KB = KB*if K is finite.

2. The sets < K,B >, K* and B*.

Let KB be the set of all finite partitional mappings of a commu-
tative ring K with identity into a Boolean algebra B. We will
consider the subset < K,B > of KB, consisting of all finite
partitional mappings < §b >

<&b>ra><Eb>(x);xaeK, 0#£E£€K,0#4beB

such that i) <&b> () =b,

i) <&b>(0) =1,

i) <&b > (x) =0 if 0 £ a #£E,
while for £ = 0 or b = 0 we define the mapping < £,b > to be the
zero mapping 0 € KB.

21 LEMMA. < &;,b; > < E9,ba > = < &1 E9,by ba >.
Proof. Consider U < E1,by > (i) < Ea,bs > (v).

uv=a

< &1,b1 > (w) is zero for all u such that 0 7= p # &; due to (iii) above;
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< &9,bg > (v) is zero for all vsuch that 0 £ v # &3 due to (iii) above.
Therefore we only have to investigate the following cases:

v < &, by > (1) < &, by > (V)
gl Ez 51 az bl b2
0 ‘ Eg 0 b, b,
‘ ’
‘ 0 &, b; b,
i 0 0 b; b}

Since b by u b ba = (b1 bg)’, it follows
U < &1,b1 > (p) < &2,ba > (v) = < &1 E2,b1 b2 > (@)

wv=a

or < E&1,b1 > < Eg,bs > = <& &b ba >.

2.2 COROLLARY. < &b >= <1 > <1b >.

2.3 LEMMA. < £1,b > + <E,b>= <& + &b >,

Proof. Similar as above.

2.4 CoROLLARY. For awy integer k it holds that k < &b > =

< kEb >.

Proof. It follows from LEmMMA 2.3 by induction that n < £,b > =

< n&b >, for any natural member n. Since

< —E,b > by definition, we have k < £b > = < k&b > for

any integer k.

2.5 LEMMA. < Eb; > + <Ebg > = < Ebjubg >if by by = 0.
Proof. Consider U <<&,b; > (1) <&,ba > (v). For the same reasons

wtv=ou

as above we only have to investigate the following cases:

a=pty | v <> () <Eby> ()
]
2% | 3 £ by by = 0
£ ‘ £ 0 .b; by = b, since b; < bj
£ 0 £ bi b, = b, since b, < bj
0 0 bj b = (b uby)’

17




Thusit follows that U <<&,b; > (u) <&b2>(v) = <&biubs > («)

QRA+v=o
or <&b; >4 <Eby>= <{biuby >.

2.6 LEMMA. < &1,b1 > + < Eg9,ba > = << &1 + E2,b1 be > +
< E1,b1 by > 4 < Eg,b] by >.

Proof. <€1,b1> = <€;,b1b2ubiby> = <&;,bybe> + <€1,b1 b5 >
<E&2,ba> = <&2,b1baub;ba> = <&3,b1ba> + <€2,b; ba>
from which the result, using LEmMmA 2.3.

Let < K,b > be the subset of << K,B > consisting of all elements
< £,b > for a fixed element b of B, b # 0.

2.7 THEOREM. For any b € B, different from zero, < K,b > =~ K.

Proof. We will let £ € K correspond with the element < £,b > of
< K,b >. This is a one to one correspondence between << K,b >
and K. To prove < K,b > =~ K we have to show for £, € K

(1) <&,b><&b>=<E&&b>,
(i) <&,b>—4+ <&,b>= <& + &,b >.

(i) follows from LEMMA 2.1 and (ii) from LEmmA 2.3.
For the special case b = 1 we will denote the element < £,1 > by &,
so that £ is the mapping &: a > £ («); « € R,€ (x) € B, such that
EE)=1and £(x) =0 if a £E.
In particular we have 0: =0 (x) such that
00 =1and O(x) =0 if « %40,
and 1: «—1 (o) such that
1(1)=1and 1(x) =0 if « £1,
as we have already introduced before.
This special subset << K,1 > of all elements £ = < £,1 > will be
called the set of constants of KB (and of KB*) and will be denoted
by K*.
Resuming we have K =~ < K,b > < KB < KB* for any b # 0,
and in particular K =~ < K,1 > = K* < KB < KB*.

Let < 1,B > be the subset of < K,B > consisting of all elements
<1b >.
2.8 THEOREM. < 1,B > s lattice-isomorphic to B.
Proof. We willlet b € B correspond with << 1,b > € < 1,B >. This

is a one to one correspondence between B and < 1,B >. In order
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to establish the lattice-isomorphism between B and << 1,B > we
will prove

(i) <1,bi1><1bs>=<1bibs>
() <1lbi>+ <lbe>— <1lb1><1lbs>= <1l,bjubz>.
(i) follows from LEMMA 2.1.

Since < 1,b; >+ <1bs >—<1b; ><1be >= <1b;>-+
< 1,bg > + < —1,by by > we will consider

U <1b1>(w <Llbz> () <—1bibz> ().

uAvHA=o
a=p+v+r| w v A <1,b;>(p) <1,by>(v) <—1,b;by,>(2)
1 1 1 |-1 by b, by by = byb, |
| 0 1 0 -1 b, bj b, b, = 0 |
0 0 1 -1 b1 b, b, b, = 0
-1 0 0 |-1 b7 b by b, = 0
2 1 1 0 b, b, (byby) = 0
1 1 0 0 b, by (by by)” = by bj
1 0 i 0 by b, (by by)” = bi b,
0 i 0 | 0 0 b1 b (by by)” = bibj
\

Since by bg u by b'z u b'l by = by u bg and bll bé = (b1 u by)’

we have U < 1b; > (u) <1l,ba> (v <—1bibs> () =
TREVED T < 1,byubg > (a)

andthus <1,b; >+ <1,bg>—<1b; > <1,bs>= <1bjubg>.

This proves that < 1,B > is a Boolean algebra, lattice-isomorphic

to B, whose Boolean operations expressed in terms of the ring

operations of KB are

<1b; >n<1lby>=<1b;y > < 1bs >,
<1,b1>U<1,b2> =<1b1 >+ <lbs>—<1b; > <1,bs>.

2.9 THEOREM. If D s a commutative integral domain with identity,
the set B* of idempotents of DB* coincides with the set of idempotents
of DB and B* is lattice-isomorphic to B.

Proof. We first will show that B* = <1,B >. Let <1b > €
<1,B>.Then <1,b> <1,b> = <1,b> so that <1,b> € B*.
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Now, conversely, let ¢ € B¥. This means U ¢ (n) ¢ (v) = ¢ («),
wv=o

which is equivalent to U ¢ () = ¢ (o), from which it follows

2_o

U () =19 (). If ¢ () %0 there must exist an element

2—q
i € D such that p = « and p2 = «. For the integral domain D this
isequivalent to « =0 or o = 1. Thus we may say that,if 0 £« #1,
{ («) must be equal to zero. Setting ¢ (1) = b, ¢ (0) must equal b" in
order to satisfy the requirements for a partitional mapping. Since
¢ thus turns out to be the element < 1,b >, we have proved
ye<1B > Thus B¥*¥=<1B > As <1B><<DB>
< DB we have proved at the same time that all idempotents of DB*
are also idempotents of DB. The converse being trivial it follows
that the set of idempotents of DB* and DB coincide and are equal
to B*.
Referring to section 1 chap. I and to THEOREM 2.8 it follows that
B* =~ B.

<1,1>e<1,8>=B"=‘B
constants

<1,b,>€<1,B

circle surface: KB.
circumference with centre: B* ~ B.
centre: zero element of KB.

As will be shown in the next section: the leaf of constants together
with the circumference generate KB.

3. KB generated by K* and B*.

3.1 TureoreEM. Any ¢ € KB that assumes n values (n > 2) oy
i=1->n) on () resp., such that on =0, can be written as

n—1
&P =2 <O(.i,q) (OCj =>.
i=1

i=
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Proof. The statement is apparently true for n = 2, as we then have
b= <o (a1) >.
Assume the statement to be true for n = k — 1: any ¢ € KB that

assumes k — 1 values oy i =1—+k —1) on ¢ () resp., such that
k—2

ax—1 = 0, can be written as & = 2 < a4, ¢ (2;) >. We will prove
i=1

that then the statement is also true for n = k.

Therefore let ¢ be an element of KB assuming k values o (i = 1 — k)

on ¢ («;) resp., such that ax = 0. Consider the element ¢* derived

from ¢ in the following fashion
¥ () = ¢ (o) i=1->k—2
*(0) = (ox-1) v (o).

Then ¢* is an element of KB that assumes k — 1 values o3 (i =
k—2

1—+k —2), 0 so that ¢* can be written as ¢* = X < a3,{ (o) >
i=1
according to the induction assumption. We assert that ¢ =
$* 4+ < ag—1,¥ (ax—1) >. To prove this consider
U ¢* (0) < an-1,¥ (2n-1) > (v) with the table i =1-—>k — 2):

wAv=a

amutv] v | v [ v < e e >
| | |
o fok Ok—1 $ (o) ¢ (oek—1) =0
T 0 $ (o) ¢ (k1) = P ()
a0 omer | (§ (o) UG () (o) = ¢ (o)
0 0 (¥ (ox-1) U ¢ (k) 7 (k1) = (o) = $(0)

Thus we see U {* () < ox—1,9 (otk—1) > (v) = ¢ (o), or
wrv=a g = ¢* + < ag-1,¥ (ox—1) >.

Together with the induction assumption this yields
k—2 n—1

g =2 <o () >+ < ox—1,9 (0x—1) >, or § = 3 < o, (o) >.
i=1 i=1
A slightly changed version of the preceding theorem we have in

the following
3.2 THEOREM. Any ¢ € KB assuming n values o; (i = 1 —n) and

not assuming the value zero can be written as ¢ = X < aq,§ (oz) >.

i=1
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Proof. Consider the element {*, derived from ¢ in the following

manner

O* (o) = ¢ (1) i=1l->n—1

*(0) = ¢ (o).
Due to the fact that «; £ 0 for i =1-—>n — 1, we have {* € KB
and also ¢ ={* + < an,§ (%n) > which may be proved in a
similar way as above by considering U {* (u) < an,d (an) > (v).

wtv=a
a—pts] B | ¥ P (1) < om § (am) > ()
o + an % | on ¢ () ¢ (o) = 0
o o 0 ¥ (o) ¢ (on)” = ¢ ()
On 0 On ¢ (on) ¢ (on) = ¢ (on)
0 0 0 ¢ () Yl = 0

Since ¢* fulfils the requirements of THEOREM 3.1 we now have

n—1

V=% <o (o) > + < omd () > 0rd = = < g, d (o) >.
i=1 i=1
Combining THEOREMS 3.1 and 3.2 we have

3.3 THEOREM. An element y of KB assuming n values o; (i = 1 — n)
can be written as ¢ = X < a3,§ (o) >.

i=1
1} { does not assume the value zero we have a; 7 0 fori =1 - n.
If  assumes the value zero on ¢ (o) we have oy #~= O0fori=1-n—1
and an = 0, so that < an,§ (oen) > = 0.

3.4 DEFINITION. A sum X < E;j,b; > 1s called an ORTHOGONAL SUM
provided =1

(i) bib; =0 for i #j.
If also (i) & # &; for 1 #j

the sum 1s called a SIMPLIFIED ORTHOGONAL SUM.

3.5 DEFINITION. A REPRESENTATION of an element § € KB is a sum
2 < &3,by > such that § = X < ;b >.

i=1 i=1
According to the preceding theorems we now have
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3.6 TuEOREM. Every element § of KB has a unique simplified

orthogonal representation § = X < &3,by >, & # 0, by # 0, while ¢
i=1

i=

assumes the value &5 on b.

If U by = 1,4 does not assume the value zero.
i=1

If U by # 1,4 assumes the value zero on [ U b; ]’
) it

i=1 i=
Moreover: ¢ = X < E,bj > =2 <,1 > <1b;>=
i=1 i=1 n
ZE& <1lb; >.
i=1
We thus see that every element ¢ of KB can be written as a linear
combination of elements from B* with coefficients in K*, or the
other way around: as a linear combination of elements from K*
with coefficients in B*. Anyway, KB is generated by K* = K
and by B* = B.
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CHAPTER III

ASSOCIATE RINGS THAT ARE RINGS
OF PARTITIONAL MAPPINGS

1. Unitary subrings of DB*.

Let D be a commutative integral domain with identity and B a
complete Boolean algebra. Let R be a unitary subring of DB*; i.e.
let R be a ring of partitional mappings of D into B containing the
identity of DB*.

1.1 THEOREM. A wunitary subring R of the ring of all partitional
mappings of a commutative integral domain D with identity into a
complete Boolean. algebra B is a Boolean valued ring.

Proof. Let ¢ € R. Define ¢ () = ¢ (0)".
() ©(0)=0(0) =0; () = 0 implies ¢ (0)’ =0 or

Y0 =1;ie. ¢ =0.
(i) ¢ (b1 d2) =d192(0) =[ U 1 (w) b2 (v) 1’5

v=0
e (Y1) (4!2)“: b1 (0)" 42 (0)" = [ 1 (0) u 2 (0) ]".

We have to show U ¢y (1) 2 (v) = ¢1 (0) u 2 (0).
wyv=0

Udr (w) = 1542 (0) = g2 (0) U d1 () = U 1 (1) $2 (0).
@ @ 2
Ude (v) = 15491 (0) = 41 (0) U g2 (v) = U 1 (0) g2 (v).

v

%herefore we have ¢1 (0) u¢2(0) = [U ¢1v(0) G2 (v) Ju[Uda(p)d2(0).
v w

But since D is an integral domain it holds that
[U¢1(0) b2 (v) JulUda () $2(0)] = U0¢1 () d2 (v).
v @ uy=

(i) @ (Y1 +do) = 1+ d2) 0 =[ U g1 (w) $2 (v) 1.

p+v=0
@ (Y1) U (Y2) = 41 (0)" v 2 (0) = [ 1 (0) Y2 (0) 1"
But ¢ 1 (0) 42 (0) < U 41 (w) d2 (v) so that ¢ (Y1 + ¢2) <
Ry ® (Y1) v e (Y2).
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The situation is the following:

The Boolean algebra used for the valuation of R is B*. Since we
assumed that R is a unitary subring of DB* R contains the subring
Do* of D*, generated by 1.

R n D* is a subring of D* containing Dy*.

R n B* is a Boolean subalgebra of B*.

Some properties of R are:

1.1.1 ¢ (u) = u for all elements u € R n B*.
1.1.2 ¢ («) = 1 for all elements « € R n D*, « 5 0.
113 Uy —a) =1

aeD*
1.1.1. and 1.1.2 follow immediately from the definition of ¢, u and «.
To show 1.1.3 we have ¢ ({) = ¢ (0); 0 (y —a) = (Y —a) (0)';
P(W—a) == 0)= U $(@a(=v)=U ¢ =), from

p+v=0 p=o
which U ¢ (¢ —«) = U (o) = 1.

oeD* oeD*
We already know that as soon as R > D* and R > B* we must
have R > DB since DB is generated by D* and B*. In that case
the situation would be:




Since DB and DB* have the same set of idempotents B*, B* is also
the Boolean algebra of idempotents of R. Thus R is an associate
ring and we have

1.2 THEOREM. If R is a unitary subving of the ring DB* of all
partitional mappings of a commutative integral domain D with identity
mto a complete Boolean algebra B and if in addition R contains the
sets D* and B*, R is an associate ving whose set of idempotents is B*,
while DB < R < DB*.

1.3 CorOLLARY. DB and DB* are associate rings.

2. Homogeneous Boolean valued rings.

2.1 DEFINITION. A Boolean valued ring R containing an integral
domain D with identity such that

i) o) =1 forall « €D, a £ 0
@) Ne((x—a =0 forall xeR
oxeD

will be called a HOMOGENEOUS BOOLEAN VALUED RING. The elements o
of the integral domain will be veferred to as CONSTANTS. It is understood
that if D 1s an infinite set, the Boolean algebra B should be complete.
We now proceed to prove several lemmas, needed for our next
theorem, all referring to a homogeneous Boolean valued ring R.

22 LEMMA. ¢ (x —a) = ¢ (y —a) for all « € D implies x =y.
Proof. g (x —y) <9 (x—a)ue (y—a) = ¢ (x —a) for all « €D.
Thus ¢ (x—y) < N ¢ (x —a) = 0. Therefore ¢ (x —y) =0, or
X =7y, oeD
23 LEMMA. ¢ (x —p)ue (x—v)=1;xeR;uveD;pu #v
Proof. ¢ (x —p)ug (x —v) > ¢ (0 —v) = Lsincep,veDandp #v.
24 LEMMA. ¢ (x1X2 — ) < ¢ (X1 — @) U@ (X2 —V); X1,X2 € R;
wv €D.
Proof. x3 xo —pv = (x1 — ) (Xa — V) + vx1 + pux2 — 2 pv

= (x1—p) (X2 —v) +v(x1—p) +p(x2—v).
Therefore ¢ (x1 xg —pv) < @ (X1 — @) ¢ (Xe—Vv)ue (V) ¢ (X1 —p)u
? (W) o (x2—v) <o (x1—p)ug(x2—v)
25 LEMMA. @ (x1— @)U (X2 —Vv) Vo (X1 X2 —a) = 1;a,uveD;
o F Uy,
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Proof. ¢ (x1 —p) U @ (Xa—V) U @ (X1 Xs —a) > ¢ (X1 X2 — uv) U
o (x1 Xg — ) = 1 according to LEMMA 2.4 and LEMMA 2.3 resp. and
since o 7 wuv.

2.6 LEMMA. P (Xl X9 —oc) = N ((p (X1 = p.) (SN) (Xz —V) )

wv=a

Proof. N N (¢ (Xx1X2—a)ug (X1 —@)ue (X2 —v) = ¢ (X1X2 — )
wov

using N ¢ (x3 —p) = 0 and N ¢ (x2 —v) = 0. But also:

w v
NN (p(x1xz—a)ue (X1 —p)ug (Xg—V)) =
g Q(@(Xlxz—a)U@(Xl—H)U<P(X2—V))=
N (o (K1Xe—w) U (x1—p) U (x2—V)) =
wy=a N (¢ (x1—p) e (x2—Vv)),

wy=a
from which the result.
Similarly one proves

27 LEMMA. ¢ (X1 +X2—a) = N (¢ (X1 —p) U (x2—V)).

wt+v=0o
2.8 THEOREM. I} R s a homogeneous complete associate ring then
R s isomorphic to a ring of partitional mappings R* such that
DB < R* < DB*, where D 1s the integral domain of constants

contained in R and B the complete Boolean algebra of idempotents of R.
Proof. Let x € R. Then define the mapping ¢

bra—>op(x—a) , aeD, ¢ (x—a)eB,

of D into B.

This is a partitional mapping according to LEMMA 2.3 and prop. (ii)
of DEFINITION 2.1. Let the set of all partitional mappings ¢ so
obtained be denoted by R*. Then there is a one to one corre-
spondence between R and R* due to LEmma 2.2; furthermore
R* < DB*. To show that R =~ R* we have

Q) e(xixa—a) = U @(x1—p) ¢ (x2—v) (LEMMA 2.6),
uv=o
{) o (x1 +xe—o) = U o(x1—u) ¢ (xe—v) (LEMMA 2.7).

To prove DB < R* it is sufficient to show D* < R* and B* < R*.
Let p e D < R; then we have ¢ e R* {:a— ¢ (1 —«)’, and also
<wl>eD* <pl>a—><pl>( with ¢opu—a) =
< w1 > («) for all « € D, from which D* < R*.
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Now let b e B < R and consider ¢ (b —«);
¢(b—1)=¢(1—b)=¢()=D,
¢ (b—0) = ¢ (b) =b.

We will prove that ¢ (b —a) = 1 for 0 7= a 7 1.
Suppose ¢ (b —a) # 1 for O # o # 1.

¢(b—a)ue(b—0) =1 since « # 0 (LEMMA 2.3);
o(b—o)=gb—a)upb—1)¢(b—0) =
(e(b—o)ue(d—1))n (¢p(b—x) up(b—0)) = ¢(b—a) ue(b—1).

But ¢ (b —a) U (b—1) =1 would contradict LEMmmMa 2.3 since
o # 1. Thuse (b —a) =1 for 0 # « 7~ 1.

Now it follows readily that forb e B < 1,b > € R*, so that B¥ << R*.
For we have ¢ e R*, {: a— ¢ (b — ), and also < 1,b > € B¥*,
<1lb>:a—=><1b> («). We just proved ¢ (b —a)' = <1,b > («)
for all « € D, so that B* << R*,

3. p-Rings.

3.1 THEOREM. If R s a homogeneous associate ving whose integral
domain D of constants is finite, we have R = DB, where B 1s the
Boolean algebra of idempotents of R. If the set of constants of R is a
finite field, R is regular.

Proof. According to THEOREM 2.8 we have R =~ R* where
DB < R* < DB*. But since D is finite, we have DB = DB* from
which DB = R* = DB¥*, so that R =~ DB.

Note that since D is finite the Boolean algebra B of idempotents
of R need not be complete.

If the constants of R form a finite field F, we know that FB is
regular, so that the same holds for R.

The following results concerning p-rings were obtained by
Foster [9] and Zemmer [20]. Since they follow from our preceding
discussion (and thus independently of the fact that p-rings may be
considered as subdirect sums of fields I, 1)) they will be mentioned
here.

Therefore let I, be the residue class of integers mod p for any
prime p. Then we have

3.2 THEOREM. A 7ing R is a p-ring with identity if and only if
R = IyB for some Boolean algebra B.

1) [15], Theorem 45, p. 146.
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Proof. Suppose x € I,B with the following simplified orthogonal

representation
p—1
x =2Xi<1lb;>,ielp bjeB.
i=0
p—1 p—1
Then XP=X1P<1lbi>=2i<1lbi>=x . . .. i)
i=0 i=0
since iP = i for all i € Iy,
p—1
Also px=2Xpi<lbi>=0 . .. . .. .. ... (i

i=0
since pi = O for alli Iy.

(i) and (ii) together with the fact that 1 € I;B yield the result that
I,B (and thus any R = I,B) is a p-ring with identity.
Now, conversely, let R be a p-ring with identity, whose set of
idempotents is B. In the first place we established previously that
p-rings are associate rings.
Let 0,1,2,...... , p — 1 be the zero of R and the identity of R with
its successive summands. Denote this set by F. Then we will show

(i) Fisa field Iy,

i) ¢@)=1,i=1-p—1,

p—1

(iii) N ¢ (x —i) =0 forall x eR,

i=0
thus establishing the fact that p-rings are homogeneous Boolean
valued rings. I being a finite field we may apply THEOREM 3.1,
from which we have R == IB.

(i) follows from the fact that R has prime characteristic p.
(i) follows from the fact that R is a p-ring, so that we have
¢ (i) =iP~1 = 1sincei eI, andi # 0.

(iif) P’i % (x — i) :i@ (x—i)=9[(x—1) (x—2.....(x—p) ]

But (x—1) (x—2)...... (x—p) =xP—x=0 for all x, from
which the result.

3.3 THEOREM. Let {1 and s be two elements of a p-ring R = I,B
with identity whose simplified orthogonal representations are:

$1 =
P

i< 1,01 (@) > ielpds () eB, and
1

i< 1,99 (@) >,ielpds (i) eB.
1

T M=l Mo
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Then we have for the simplified orthogonal representations of Y1 Y2 and

$1 + 2

P
he=2i<1ln()>withn(i = 2 ¢ (m)¢z(n), and
i=1

i=

Wtde=Si<lof >witho@)= 2 ¢ (m)de ().

i= m+4n=i

All integers are residue classes mod p.
Proof. g1de (i) = U ¢1 (m) e (n),

but since by U bs = by + bz — by bz = by - by if by by = 0
we have 7 g2 (i) = X {1 (m) g (n), and similarly
(Y1 + do) () = Z Y1 (m) d2 (n).
m-+4n=i

Now apply THEOREM 3.6. chap. IL
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CHAPTER 1V

CONVEX BOOLEAN METRIC SPACES

Throughout this chapter M stands for an associate Boolean metric
space; i.e. a Boolean metric space obtained from an associate
ring R by defining d (a,b) = ¢ (a —b) for a,b € R. The Boolean
algebra of idempotents of R will be denoted by B. For a,b € B it
holds: d (a,b) = a’b u b'a.

1. The relations weakly-between and between.

1.1 DEFINITION. We say that an element x € M 1s weakly-between
two distinct elements a and b of M: B* (a,x,b), provided

(i) d(ab) =d (a,x)ud (x,b),

(i) a #x # b.
It follows from the definition that d(a,b) > d(a,x) and d (a,b) >
d(b,x).
It also follows from the definition that B* (a,x,b) and B* (b,x,a)
are equivalent; i.e. the relation weakly-between is symmetric in the
outer-points.
By considering the set of all functions of a set  with values in a
commutative ring with identity one obtains examples of associate
Boolean metric spaces that contain isoceles and equilateral triples.
Blumenthal showed that a Boolean metric 2-space Mz does not
contain isoceles triples 1). This result also holds for the Boolean
metric 2-space B associated with any associate Boolean metric
space M.
A few elementary properties of the relation weakly-between may
be mentioned here. Their proves are all straight forward.
1.1.1 B* (a,b,x) and B* (b,a,x) imply d (a,x) = d (b,x).
1.1.2 If B* (a,b,c), B* (b,c,a) and B* (c,a,b) hold, then d (a,b) =

d (b,c) = d (c,a) and conversely.

1) [4], § 131, p. 331.
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1.1.3 B* (a,x,b) with d (a,x) = d (b,x) imply d (a,x) = d (b,x) =
d (a,b).

1.1.4 Ifd (a,x) = d (b,x), B* (a,b,x) is equivalent to B* (b,a,x).

We thus see that to obtain also uniqueness of the inner-point for the

relation between one has to impose stronger requirements. Therefore

1.2 DEeFINITION. We say that the element x € M is between two
distinct elements a and b of M: B (a,x,b), provided d (a,b) > d (a,x)
and d (a,b) > d (b,x).

It follows from the definition that B (a,x,b) implies B* (a,x,b) and
that B (a,x,b) is unique for the inner-point. In a Boolean metric
2-space Mg, B*(a,b,c) implies B (a,b,c), since a space Mz does not
contain isoceles triples, so that d (a,c) = d (a,b) would imply
b = candd (a,c) = d (b,c) would imply a = b.

From THEOREM 3.4 chap. I and from a result obtained by Blumen-
thal 1) it follows

1.3 THEOREM. Fora,b,c € B < M the relation B (a,x,b) is equivalent
toab<x<aub,a#x#Db.

This, fortunately, implies that for a,b € B such that a < b, metric-
betweeness coincides with order-betweeness, as in this case ab = a
and aub = b, so that B (a,x,b) and a << x < b are equivalent.
For the relation weakly-between in an associate Boolean metric
space M the following property holds

1.4 PrROPERTY. B* (a,x,b) and B* (a,y,b) and B* (x,2,y),a #z #b,
mmply B* (a,z,b).
Proof. B* (a,x,b) is equivalent to ¢ (a —b) > ¢ (a —x) and
¢ @—b) =g (b—x).
B* (a,y,b) is equivalent to ¢ (a —b) > ¢ (a —y) and
o(@a—b) =o(b—y).
B* (x,z,y) is equivalent to ¢ (x —y) > ¢ (x —z) and
¢ (x—y) =9 (y—2).
It follows g(a—b) > gp(a—Xx) U p(a—y) = @(xX—y) = @(x—2z).
Also ¢ (a—Db) > ¢ (a —x) so that ¢ (a —b) > ¢ (x —2z) U
pl@a—x) =09 (@—2z).
Similarly ¢ (@ —b) > ¢ (b — z). Thus¢(a—b) > ¢ (a—z) up(b—2z).
Together with ¢ (a—b) < ¢ (a—z) u ¢(b—z) this yields ¢ (a—b) =
o (@a—z)ug (b—z) : B* (azb).

1) [4], § 132, p. 333.
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In a similar manner the following two properties are proved
1.5 ProperTY. B* (a,b,c) and B* (a,c,d), b # d, imply B* (a,b,d).

1.6 ProrPerTY. If B* (a,b,c) and B* (b,c,d) then B* (a,b,d) and
B* (a,c,d) are equivalent.

In case of a Boolean metric 2-space Mg we have the additional
properties

1.7 ProperTY. B (a,b,c) and B (a,c,d) imply B (b,c,d).

Proof. B (a,b,c) is equivalent withac <b <awuc,a #b #c.
B (a,c,d) is equivalent with ad <c¢ <aud,a #c #d.

It follows bd < aducd < cucd =¢, and also ¢ <acucd <
bucd <bud. Thus bd <c <budorB (b,c,d) since b 7 ¢ # d.

1.8 ProperTY. B (a,x,b) and B (a,p,x) and (B (x,q,b), b 75 ¢ # d,
mply B (p,x,q).

Proof. From the premisses it follows that pq < (aux) (bux) =
abux = x and also puq > axubx = (aub) x = x, from which
the result.

2. Convexity.

2.1 DEFINITION. An associate Boolean wmetric space M is said to be
CONVEX provided for every two distinct elements a and b of M there
exists an element x € M such that B (a,x,b).

Similarly the concept WEAKLY-CONVEX is defined.

Blumenthal proved 1) for a Boolean metric 2-space that such a
space is convex if and only if the underlying Boolean algebra is
atom-free.

For associative Boolean metric spaces we have

2.2 TuEOREM. The fact that the Boolean metric space M is atom-free
implies that M is weakly-convex and is implied by the convexity of M.

Proof. First suppose M is convex. Let u be an atom of B. There
must, however, be an element a € M such that B (0,a,u), since M
is convex. That is we have: u > ¢ (a) and u > ¢ (@ —u). Both
¢ (a) = 0 and ¢ (@ —u) = 0 are excluded since a # 0 and a # u,
so that we have 0 < ¢ (a) < u and also 0 < ¢ (a —u) < u, each
contradicting the fact that u was an atom of B.

1) BG II.
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Now suppose B is atom-free and let a,b € M. Consider ¢ (a —b) # 0,
since we suppose a 7% b. There must be an element u € B such that
0 <u < ¢ (a—Db). We assert B* (a,a + u,b).

To prove this we have:

¢(@—b+u) <¢(a—b)ue(u)=¢(a—b)since ¢ (u) =u<¢(a—b);
thus g (@—b 4+ u)ueg (u) < ¢ (a—D>b) from which ¢ (a —b) =
9 (@a—b -+ u)ue (u).

Furthermore: a 4 a -+ u since u £ 0; and also a —u % b since
u # a —b. This completes the proof.

3. Convectification.

Blumenthal showed 1) that the requirement for a Boolean metric
2-space to be convex is less restrictive than it might appear since
he indicated a way to embed every Boolean metric 2-space iso-
morphically and isometrically in a convex Boolean metric 2-space.
His argument is easily extended to the more general case.

3.1 THEOREM. Every associate Boolean wmetric space M 1s iso-
morphically and isometrically embeddable in a convex associate
Boolean metric space M.

Proof. Consider the set M; of all ordered pairs (a,b) of elements
a,b of M = M,.
Define (al,bl) (az,bz) = (a1 az,bl bz),

(a1,b1) + (ag,bg) = (a1 + az,b1 + by),

@ (a,b) = (o (), (b)), so that

d [ (a1,b1),(az,be) ] = @ [ (a1,b1) — (az,b1) ] =

¢ [ (a1 —ag),(b1 —ba) ] = (¢ (a1 —ag), ¢ (b1 —b2)) =

(d (a1,a2), d (b1,bs)).
Then it is easily seen that M; is an associate Boolean metric space
whose underlying set R; is an associate ring whose set B; of
idempotents consists of all ordered pairs (u,v) with u,v e B = B,.
The identification of (a,a) e Ry with aeR = Ro embeds My
isomorphically and isometrically in Mj.
By induction, repetition of this procedure yields a sequence of
associate Boolean metric spaces { Mj }, each of which is embedded
isomorphically and isometrically in the following. Let R* be the
union of all sets Rj: R* = U R;. Define multiplication, addition

i=1

1) BG II.
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and valuation for elements of R* in the same way in which these
operations were defined in the ring Ry of smallest index k that
contains all the elements involved, then R* is an associate ring.
If M* is the associate Boolean metric space obtained from R* and
if B* is the Boolean algebra of idempotents of R*, one may easily

establish that B* = U B; and that B* is atom free. For suppose
i=1
u € B* is an atom and By is the Boolean algebra of idempotents of
Ry with smallest index k containing u; then it holds 0 << (u,0) <
(u,u) (and also 0 < (O,u) < (u,u)) for (u,u) € Bg+1 < B*. Thus u
cannot be an atom. Since B* is atom-free M* is weakly-convex.
But M is even convex in this case. To prove this, let x,y € M*,
x =# y. Consider (x,x), (x,y) and (y,y). Weassert B ((x,x),(x,y),(y.y)),
which is equivalent to ¢ ((x,x) — (y,y)) > ¢ ((x,x) — (x,y)) and
o ((x,x) — (v,y)) > ¢ ((y,y) — (x,y)). For these expressions we have:
e (%) — 1) — Tz ) = o — 00 (— )
o ((xx) —(xy) =0 Ox—y) = (00 x—y),
e () —xy) =o(y—x0) = (¢ (v —x.0),
from which the result.
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CHAPTER V
INTRODUCTION OF A TOPOLOGY

I. Order-convergence. !)

Let {x; },i=12..., be a sequence of elements of a partially
ordered set P. An element u € P is called a LOWER-BOUND for the
sequence { x; }, provided u < x; for all i. Dually an UPPER-BOUND
v is defined. A sequence { x; } is called BOUNDED provided the set
U of all lower-bounds and the set V of all upper-bounds are not
empty.

An element = € P is called a SUB-ELEMENT for a sequence { x; } in
case = < x; for all j = N. Dually a SUPER-ELEMENT o is defined.
Note that the set U of all lower-bounds is contained in the set II
of all sub-elements and that the set V of all upper-bounds is
contained in the set X of all super-elements: U < Il and V < X.
Also: each element of Il precedes each element of X. An INTER-
ELEMENT p for a sequence {x;j} is an element of P such that
© < p < o for all sub- and super-elements = and o of the sequence
{xi }. In case the set R of all inter-elements has a smallest resp. a
largest element, we denote these by lim x; (limes inferior) resp.
lim x; (limes superior). A sequence is called CONVERGENT provided

lim x; = lim x;; in other words: provided the sequence has one and

only one inter-element. This inter-element is called the LiMIT of the
sequence. In case both sets II and X are void the sequence {x; }
can not be convergent since every element of P is inter-element.
In case of bounded sequences Il and X are not empty, since U
and V are not empty.

Suppose we have a sequence {x; } such that x; = x for all i.
The set II of all sub-elements consists of all elements of P preceding
the element x. The set of all super-elements consists of all elements
of P following x. The only inter-element, therefore, is the element x

1) [14].
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itself, from which it follows that the sequence {x; } converges to
the limit x.

From the definition of convergence it follows immediately that if a
sequence converges to a limit x and also to a limit y, x and y must
be equal, so that for convergent sequences the limit is uniquely
determined, this being the only inter-element of the sequence.

If { xy; } is a subsequence of { x; } and if I1,¥ and R denote the set
of sub-elements, super-elements and inter-elements resp. for the
sequence {x; } and II*X* and R* similarly for the subsequence
{ xp; }, we have Il < IT* 2 < ¥* and R* < R. From this it follows
that if a subsequence of a convergent sequence converges, it must
have the same limit as the sequence itself, since R only contains
one element and hence R* contains at most one element. That
there may be situations in which subsequences of convergent
sequences do not converge (R* void) will be shown at the end of
this section.

RESULT. If one introduces in a partially ordered set the above
described ORDER-CONVERGENCE for sequences, one obtains a space in
which the following three conditions hold:

(i) {=xi},xi = x for all i, converges to x;

(i) {=xi } converges to a and { x; } converges to b implies a = b;

(iii) every convergent subsequence { xy; } of a convergent sequence
{ xi } converges to the same limit as the sequence does.

Because of the resemblance these three conditions bear with the
three conditions imposed on a space to be a Fréchet L-space 1), we
might say that a partially ordered set P with the order-convergence
constitutes a WEAK FRECHET L-SPACE.

The term “order-convergence” for sequences in complete lattices
was first introduced by G. Birkhoff 2) and independently by
L. Kantorovich 3). H. Loéwig, however, introduced this concept for
partially ordered sets4). It will be shown in section 3 that for
complete lattices these notions coincide.

See for these references [16], footnote 15 on page 59, and also foot-
note 18 on page 62.

1) [4], chap. I, § 4.

2) [2], esp. THEOREM 29; also [3].
8) [13]; also [12].

%) [14].
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The Birkhoff-Kantorovich procedure was previously used in set
theory by Borel.

EXAMPLE.

The partially ordered set P consists of all points on the curves I, II,
IIT and IV with the following partial ordering:

all points on I precede all points on IV;

) N § | . . ., IV
) ., 1II . ), ., IV,
) ) ) I ) . A I

I ), ) ., III;

and further:
all points precede points on the same curve more to the right.
Now let { x; } be a sequence with the odd-numbered terms on I and
the even-numbered terms on II, in such a fashion that the terms
move to the right and approach the point B, both on I as on II.
We then have

Z: IVuB,

Im: IuB.

The only inter-element therefore is B, so that { x; } converges to B.
Taking the subsequence of odd-terms we have

2*: IITuBuUlV,
Im*: TuB,

so that there is no inter-element.
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2. Order-convergence in lattices.

In this section we will investigate some properties of sequences
in case the underlying set is a lattice L. Then we can say that for
any sequence { x; } the set II of all sub-elements and the set X of
all super-elements constitute an additive, resp. a multiplicative
ideal 1). Also we can assert that the set R of all inter-elements is a
sublattice of L. This follows directly from the definitions of all
concepts involved.

2.1 LEMMA. If {x; } is a sequence for which lim x; exists, © < a
for all elements = € 11 implies lim x; < a.

Proof. = < a forall = €II;
m < lim x; (def. of lim x;).

SOn<ahmx1<11mx1forallrcel'[. R R R (i)
Therefore a lim X; i1s an inter-element so that lim x; < a lim x;.
(i) and (i1) together yield a lim x; = lim x; or equlvalently lim x; <a.
A consequence of this lemma is established in the followmg

2.2 THEOREM. Let { x; } and { y; } be two wo sequences. such that x; < y;
for all i. Then lim x; < hm vi and lim x; > lim y; provided the
imvolved expresszons exist.

Proof. It is clear that I1x < Ily.
Thus from ny <limy; for all ny e Iy

it follows 7wy < lim yi for all g € I
According to the pr prev1ous lemma this implies hm x; < hm Vi
Dually one establishes Tim X; > Tim Vi

2.3 COROLLARY. If {x;i } and {yi} are two convergent sequences
with x; <yi for all i, then lim x; < lim y;.

2.4 THEOREM. lim x; ewists if and only if U {m:mell} exists.
Dually: lim x; exists if and only if N {6: 6 € Z } exists.

Proof. Suppose lim x; exists. Then we have = <lim x; for all

7 € II. Suppose further = < a for all = e II. It then follows that
lim x; < a. This shows that hm x; is indeed the l.u.b. of all elements

of 1I.

1) [10], § 12.
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On the other hand suppose U { =: = € Il } exists. It is then obvious
that # < Un < o for all = € II and for all ¢ € X. This means that
U &t is an inter-element. Let a be an arbitrary inter-element: = < a
for all meIl. Then Un < a, so that U= is indeed the smallest
inter-element: U {w: = € Il } = lim x;.

2.5 COROLLARY. A sequence 1is convergent if and only if both
U{n:mell }and N {c: 0 €2} exist and are equal.

The two situations may be depicted as follows:

Superelements Superelements

Subelements Subelements

{xi }not convergent {xi}convergent

3. Order-convergence in complete lattices.

In case the lattice L is complete, all sequences { x; } are bounded

since
Nxi < x5 <Ux; forallj.

This implies that for any sequence { x; } the set Il and X are non
void. Furthermore, the completeness of L and THEOREM 2.4 imply
that imx; = U {wm:well } and Hxiz N {c:c€X} so that,
in case of a complete lattice L, any sequence always has a non
void set of inter-elements. This implies that every subsequence
{ xp; } of a convergent sequence { x; } converges to the same limit
as { x;j } does. Thus we have

3.1 THEOREM. The order-convergence, defined in a complete lattice L,
makes L into a Fréchet L-space.
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(@]

oo o0

x;j and U N x;.
k k=1i=k

Consider

[

k=1i

Let ox = U x3 and gy = N Xj.
i=k i=k

The following three properties hold

(i) 7k < ok for all k;

i) x; <ok forallj =k;

(iii)) wx < x; forall j = k.
It follows from (ii) and (iii) that wx and ok are sub- resp. super-
elements for the sequence { x; }. The sequences { =; } and { o; } are
resp. monotone increasing and monotone decreasing sequences.
Suppose w is a sub-element for the sequence {x;}:m < x; for
j = N. Then it follows = < 7y < Umk. So any sub-element precedes
some sub-element 7 and hence Uny. Dually any super-element
follows some super-element oy and hence Noy.
If (Unk) denotes the additive ideal generated by the element Ury
(the so called principle ideal consisting of all elements preceding the
element Unyg) and dually, if (Nok) denotes the multiplicative ideal
generated by the element Noy (the so called principle ideal consisting
of all elements following the element Noik) we may state

Hg(Unk)andzg(ﬂck).
k=1 k=1
This fishbone situation can be depicted as follows:

All sub-elements
my are on the back-
bone, whereas the
other sub-elements
may also be on the
sidebones.

All super-ele-

o) ments oy are on the

backbone, whereas

the other super-ele-

N ments may also be
Ok on the sidebones.
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3.2 THEOREM. U {m:nell } =Umng and N {c:6€X } =N mx.
k=1 k=1

Proof. 1 < Umnygforall mell;
therefore U {wm:mell } < U ny;
but since i € Il for all k we also have Uny < U {w:mell }, so

that U {w: 7w eIl } = U mx and dually.
k_

=1
3.3 COROLLARY. A4 sequence { X; } of elements of a complete lattice L

1s convergent if and only if U me = N ok or if and only if U N x; =

o o k=1 k=1 k=1li=k
n u Xji.
k=1 i=k

34 LeMMA. If {x;} 1S a monotone increasing Sequence, it has the

limit U x;5. Dually: if {x; } is a monotone decreasing sequence it has
i=1 oo

the limat U x;.

i=1

o0 o0
Proof. mx = N xj = Xi; 50 U g = U xy;
i=k k=1 k=1
(e} (o]
Xj; so N Ok = UXi.
1 k=1 i=1

cs3

oo
Ok — U Xj =
i=k i

Il

3.5 THEOREM. A sequence { X; } converges to the limit x if and only if
for each element xyi there exist elements ux and vy such that
ug < xxg < Vg, where {u; }4x and {v; }|x; i.e. where {u; } is a
monotone increasing sequence with the limit x and where { v; } is
a monotone decreasing sequence with the limit x also.

Proof. Suppose {x; } > x. Take ux = nx = N x; and vg = ox =
oo i=k

U x3. Then {=; } and { 6; } are monotone increasing resp. decreasing
i=k I

sequences with Ur; = lim x; = x = lim x; = Noj, so that lim =; =

lim 65 = x. T
Now suppose ux < xx < vk, where {ux }4x and {vg }|x.
Apparently all elements ux and vy are sub- resp. super-elements for

the sequence { x; }. According to the definition of lim x; and lim x;
we have for all k

ux < lim x; from which Uuyi < lim x; and

Vi Zm xj from which Nvy ZHI;I Xj.
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But since Uu; = x = Nv; we have lim x; = lim x;.

Thus { x; } is convergent to the limit x.

RESULT. In case of a complete lattice L, we have the following
equivalent criteria for a sequence { Xi } to be convergent with limit x:

1 limxizﬂxizx;
II U{minmell}=N{oci0ce} =X,

III U Nxs=N Ux; =Xx;
k=1i=k k=1i=k

IV ug < x¢ < vi, where {ug }4x and { vk }|x.

4. The continuity of the lattice operations.

Let L be a complete lattice with the following properties

i) {x;i }tximplies a n lim x; <lim (a n Xj);
(i) {x;}{ximplies a ulim x; > lim (a v x;).

These lattices were called TOPOLOGICAL LATTICES by Birkhoff 1).
He established the fact that in topological lattices the lattice
operations are continuous. The proof for the u-operation will be
given here; the proof for the n-operation is dual.

4.1 LEMMA. U (x5uyi) = Uxju Uy,

Proof. xx < Ux; and yx < Uy; so that xx uyk < Ux;uUy; and
hence U (xj uy;) < Ux;u Uyi;

xx < U (x5 uyj), therefore Ux; < U (xj uy;) and similarly

Uy; < U (x3uyi) so that Ux; u Uy; < U (x5 U yi).

4.2 COROLLARY. {xj }tx and {y;}ty wmply lim (xjuy;) =
lim x; v lim y;.

4.3 LEMMA. NX;uNy; < N (X5 U Yi).

Proof. Nx; < xx and Ny; < yx so that Nx; uNy; < Xk U yk for
all k, from which the result.

4.4 COROLLARY. {xj }|{ X and {yi}|y wmply limx;ulimy;<
lim (x5 U y3).

4.5 LEMMA. {x; }| X implies a ulim x; = lim (a u x;).
Proof. auxy >aunx; for all k, hence N (auxi) =>auNx.

1 [1], p. 63.
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Since L is a topological lattice: a ulim x; > lim (a u x;) or equiva-
lently a u Nx; > N (a u x;) from which the result.

4.6 LEMMA. {x; }|x and {y; }|y imply lim x; ulim y; >
lim (Xi U Y1)

Proof. xjuy; = xjuy; so that xjuy; > x3uy; for j<1i;
therefore lim (x; u x;) > lim (x; u yi) (COROLLARY 2.3);
xjulimy; = lim (x;ux;) (LEMMA 4.5);

Xjuy > lim (x;uy;) forallj;

lim (xjuy) > lim (x; uy;) (COROLLOARY 2.3);

yulimx; >lim (xjuy;))  (LEMMA 4.5);

yux > lim (x5 uyj) or lim x; ulim y; > lim (x5 U y3).

From COROLLARY 4.4 and from LEMMA 4.6 we now have

4.7 LEMMA. {x3}{ X and {yi}{y imply lim x; ulim y; = lim (x; U y;).
This enables us to state the main

4.8 THEOREM. {X; }>Xx and {yi}—>y wmply lim (x;uy;) =
lim x; u lim y;.

Proof. {x;}—x implies 7 < xx < o} such that {=, }4x and
{ox }¥x. Similarly {y;}—y implies =} < yx <o} such that
{m} }ty and {oy }}y.

It follows m Uy < Xk Uyk < oy U o
with {n uny } 4 xuy from COROLLARY 4.2
and {opucy } | xuy from COROLLARY 4.7.

But this means lim (x; u y;) = lim x; u lim y;.

Now that we have proved that the operations n and u are
continuous with respect to the order-convergence we also can say
that the relation < is continuous, as this relation may be expressed
in terms of the operation n (or v).

Concluding this section we want to show that complete Boolean
algebras are topological lattices. This follows immediately from the
fact that in complete Boolean algebras the following two distributive
laws hold

anUx;=Uax; and auNx; =N (auxy),
as we already pointed out in section 1 of chap. II.
Thus we have

4.9 THEOREM. A complete Boolean algebra is a topological lattice in
which the Boolean operations are continuous with respect to the
order-convergence.
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Proof. It has already been shown that the lattice operations n and
u and the lattice relation < are continuous. Since, however, the
Boolean operation of complementation can also be expressed in
terms of the lattice operations n and u the result follows.

5. The metric topology of 1.

Let M be a complete, associate Boolean metric space whose
underlying complete associate ring is R. Let B be the complete
Boolean algebra of idempotents of R. Fora,b € R we have d (a,b) =
¢ (@ — b) € B and more specifically d (a,b) = a’b u b’a for a,b € B.
The order-convergence makes B into a Fréchet L-space: ‘B. We will
refer to this topology of B as the ORDER-TOPOLOGY.

In a similar fashion we want to introduce a topology in M.

5.1 DEeFINITION. We say that a sequence { x; } of elements x; € M
converges to the element x € M: lim x; = X, provided lim d (x3,x) = 0
in the order-topology of ‘B. The topology of M, induced by this notion of
convergence, will be referrved to as the METRIC-TOPOLOGY of M. It will
be proved below that the metric-topology makes M into a Fréchet
L-space: M.

It should be noted that due to definition 5.1 there are two notions
of convergence now for elements of ‘B. Fortunately we have

5.2 THEOREM. For the elements of ‘B the metric-topology coincides
with the order-topology; i.e. lim x; = x if and only if lim d (x;,x) = 0.

Proof. From the fact that the distance function for elements of ‘B
can be expressed in terms of the Boolean operations: d (a,b) =
a’b u b’a and since these Boolean operations are continuous in the
order-topology it follows that the distance functionis also continuous
in the order-topology. Thus if lim x; = x then also lim d (x,x;) =
d (x,lim x;) = d (x,x) = 0. Conversely:

limx; =limd {d (x,xi),x }1) =d {limd (x,x1),x } = d(0,x) = x.
5.3 THEOREM. &M s a Fréchet L-space.

Proof. We have to show

(1)  {xi}, xi = X, converges to x;

(i) lim x; = a and lim x; = b imply a = b;

(iii) lim x; = x implies lim x,; = x for any subsequence
{ Xn; } of the sequence { x; }.

1) [4], Theorem 131.2, p. 332.
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(i) 1isobvious.

(ii) follows from d (a,b) <d (xj,a) ud (x3,b), for all i, which
implies d (a,b) < lim d(xj,a) u lim d(x;,b) = 0. Thus d(a,b) = 0
ora =b.

(iii) follows from the fact that B is a Fréchet L-space.

5.4 THEOREM. The ring operations of R are continuous in M.

Proof. Let lim x; = x; ie. limd (x,x5) = O0; and let limy; = y;

ie. limd (y,yi) = 0.

Then we have d (xy,xiyi) = ¢ (Xy — Xiy + Xiy — Xiyi) <
o[(x—x)ylue[xi(y—yi] =
() ex—x)vex)e(y—y) SeE—x)ue [y —yi) =
d (X,Xi) vd (y,yl)

From this it follows that lim d (xy,xiyi) = O so that lim x;y; = Xxy.

Similarly we have d (x 4+ y,xi + yi) =
px+y—xi—yi) LeE—X) Ve (y—yi) =
d (x,xi) ud (y,yi), from which lim (x; + yi) = x + .

5.5 THEOREM. M has the property that if a sequence {x; } does not
converge to x, there is a subsequence { Xn; } mot contaiming a sub-
subsequence converging to X.

Proof. We will prove the equivalent statement: if every sub-
sequence { Xp; } has a subsubsequence { y; } with limit x, then the
original sequence { x; } has the limit x. Let, therefore, d (xix) = d4
and d (xp;,X) = dyp; and also d (y;,x) = 9;.

Then we can say lim §; = 0, which means §; < u; with {uj }|0.
For every subsequence { xp; } there is such a sequence {u; }. This
implies

Ndi <N 3 <Nu;fromwhichU Nd; <U Nu;=0;
i=k j=1 j=1 k=1 i=k 1=1 j=I

Uy from whichn Udi <N Uuy=Nuwu=0.

k=1 i=k 1=1 j=1 1=1

1 1
SinceU Ndij=N Ud;=0, we have limd; =0 and hence

5.6 DEFINITION. An element x € <M is called an ACCUMULATION-
element of a subset X of <M, provided there exists a sequence {X; } of
elements of X, all different from x, such that lim x; = X.
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The CLOSURE X of a subset X of <M is the set X together with all its
accumulation elements.

A set X will be called CLOSED provided X = X.

A set X will be called OPEN provided its compliment is closed.

One may easily establish that the so defined family of open sets
induces an open-set-topology in ¢f; i.e. a topology defined in
terms of open sets satisfying the usual requirements for open sets.
Even more, as one may also easily see,

5.7 THEOREM. The open-set-topology of <M, induced by the metric
topology of <M by DEFINITION 5.6 makes <M a FRECHET SPACE
(T1-SPACE).

5.8 DEFINITION. A mapping f (x) of <M into M is called CONTINUOUS
AT Xo, provided lim x; = X implies lim f (x;) = f (xo).

5.9 THEOREM. The counterimage of a closed (open) set under a
continuous mapping 1s closed (open). More precise: if A and B are
lwo subsets of M and if £ is a continuous mapping of A onto B,
f (A) = B, then a set closed (open) in B will have a counterimage that
1s closed (open) in A.

Proof. Let Y be a closed subset of B and let f1(Y) = X <A.
Consider the sequence {x;} with limit x, x;€X,xeA. The
continuity of f implies lim f (x;) = f (x),f (xi) € Y, f (x) € B. But
since Y is closed in B, we must have f (x) € Y, and hence x € X =
f~1 (Y). Therefore X is closed in A.

By taking relative complements one sees that the same holds for
open sets.

Note: the converse of this theorem need not be true, i.e. if the
counterimages of closed (open) sets are closed, the mapping need
not be continuous. We have to be careful therefore, not to apply
certain topological theorems that are based upon the equivalence
of the statements:

(i) fis a continuous mapping,
(ii) counterimages of closed (open) sets are closed (open).

5.10 CoRrROLLARY. A homeomorphism between two subsets A and B
of &M carries sets closed (open) in A over into sets, closed (open) in B.

5.11 THEOREM. The Boolean algebra ‘B is closed.

Proof. Let x be an accumulation element of ‘B: lim x; = X, X; €‘B.
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Since xjXj = X; we also have
x = lim x; = lim xj x; = lim x; lim x; = xx. Thus x €B.

5.12 DEFINITION. A subset A of <M is compact, provided every
infinite subset of A contains at least one accumulation-element in
the set A.

It follows that all accumulation-elements of A necessarily belong
to A, so that a compact set A is automatically closed.

5.13 THEOREM. A homeomorphism f carries a compact set A over
into a compact set f (A) = B.

Proof. Let X be an infinite subset of B. Then {1 (X) is an infinite
subset of A that must have at least one accumulation-element x in
A since A is compact. It follows that the element f (x) is an ac-
cumulation element of X in B.

5.14 THEOREM. I} x is an accumulation-element of the set X, every
open set containing x contains at least one element of X different from x.

Proof. Suppose this is not the case. Let U be an open set containing
x but not containing any elements of X different from x. The
complement U’ of U is a closed set containing all elements of X
but not the accumulation-element x, which is a contradiction.
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CHAPTER VI

MAXIMAL CHAINS

In this chapter ‘B stands for a complete, atom-free Boolean
algebra with the order-topology induced by the order-convergence.
As was shown in THEOREM 5.2 chap. V this order-topology
coincides with the metric-topology induced by the distance function
d (a,b) = a’bub’a.

1. Characterization.

1.1 DEFINITION. An ORDERED subset of B is a subset of B in which
every two elements are comparable. A CHAIN C («,8) in B is an ordered
subset of B with a first element o and a last element B. A chain is also
called an ordered subset of ‘B with end-points o and 3. A MAXIMAL
CHAIN I' («,8) in B is a chain that is not a proper subset of a chain with
the same end-points. We also say that a maximal chain is irreducible
between its end-points.

1.2 THEOREM. A maximal chain is convex.

Proof. Let vy and 3,y < 3, be two distinct elements of a maximal
chain I' («,£) and suppose there is no element ¢ on the maximal
chain such that B (y,£,8), which, here, is equivalent to y < £ < 3.
Consider the motion m of B defined by m (x) = d (y,x), x € B.
Then we have m (y) = 0 and m (3) = d (y,3). Since ‘B is atom-free
there must be an element ¢ € B such that 0 < ¢ < m (8), which
implies B (0,e,m (38)). The motion m is involutory, so that we also
have B (y,m™1 (¢),8) which is equivalent to y < m=1 (¢) < 3. This
would imply that m~! (¢) is an element of B between « and £
comparable to all elements of the maximal chain I' («,2) that is not
on I' («,8), which is a contradiction.

1.3 THEOREM. A maximal chain is algebraically complete.
Proof. TfA <T'(«,f), then N A = N a exists in B since Bis complete.

aeA
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Let x eI (o,B) such that x> a for some element a € A. Then
x > NA. If x e T" («,8) such that for no element a € A, x > a, then
for alla € A, x < a and thus x<< N A. It follows that N A is com-
parable to all elements of the maximal chain. It must therefore
be an element of it. In a similar way we prove that UA =
UaeTl (op). :

aeA

1.4 THEOREM. A chain that is convex and algebraically complete is a
maximal chain.

Proof. Let x € B, « < x < 3, comparable to all elements of the
convex and algebraically complete chain C («,2). We will show that
then x must be an element of C («,(). This would establish that
C(«,B) is @ maximal chain. Let C (x,8) be the set of all elements
of C («,p) following x and let C («,x) be the set of all elements of
C («,B) preceding x. Then we have C («,x) u C (x,g) = C («,8).
Consider both NC (x,8) and UC («,x). These elements of ‘B must
belong to C («,8), due to its algebraic completeness. We have
UC (o,x) <x <NC(x,B). Suppose UC («,x) 7% N C (x,8). Then there
must be an element y € B such that UC (a,x) <y < NC (x,0)
because C («,B) is convex. It follows that y ¢ C («,x) and y ¢ C (x,8),
which contradicts the fact that C (e,x) u C (x,£) = C («,p).
Therefore UC («,x) = x = N C (x,p), from which x € C («,p).

It follows from THEOREMS 1.2, 1.3 and 1.4 that maximal chains in
complete, atom-free Boolean algebras are characterized as convex
and algebraically closed chains. Some additional properties of
maximal chains are given in the following theorems.

1.5 THEOREM. A maximal chain is closed.

Proof. Suppose lim x; = x, x; € I' (,8), x € B. The elements x; are
comparable to all elements of the maximal chain. Because of the
continuity of the order relation < x is also comparable to all
elements of the maximal chain and hence x must be an element of it.

1.6 THEOREM. A maximal chain is compact.

Proof. Let I' («,8) be a maximal chain and let X < T («,8) be an
infinite subset of it. We will construct a monotone sequence { x; }
of elements of X. Since monotone sequences are convergent and
since maximal chains are closed the limit must be an element of
I' («,), which would prove the compactness of the maximal chain.
The monotone sequence is constructed by successive bisection of

50




the maximal chain. Of the successively generated two parts of the
maximal chain, at least one must contain infinitely many elements
of X. If both of them do, select “the left interval” to proceed with.
The first step is performed by taking xj € X, X1 # «, X1 % B, S0
that o1 = o <x3 < B =£;1. At least one of these intervals
a1 <y < x1 and x; <y < 1 contains infinitely many elements
of X. We denote the selection by ag <<y << B2. Now we take
X9 € X such that as << x2 << P2 etc. The nth step is oy < Xn < Bn,
which means either ap—1 << Xn < Xp—1 OF Xp-1 < Xp << Bn-1.

We then have the following situation

21 = a < X3 <f=p,
oz < X2 < Po,
a3 < X3 < B3,

an < Xn < Bn etc,

where o; = aj—1 and B; = Xi—1;

or o = Xj—1 and B; = Bi1.

We may distinguish two cases:

(i) The selection of intervals is eventually a selection of the type
ag—1 < Xkx << Xk—1

(after a certain index only this kind of intervals appears).

(ii) The sequence of intervals contains infinitely often the type
Xp-1 < Xk < Pr-1.

In the first case it is easily seen that the sequence { x; } is eventually
monotone decreasing.

In the second case: delete all intervals of type (i). The subsequence
of intervals so obtained yields a subsequence { xp; } that is monotone
increasing.

1.7 THEOREM. A maximal chain cannot have a connected proper
subset with the same end-points.

Proof. Let I' («,8) be a maximal chain and let A («,3) be a connected
proper subset containing « and @. Suppose x € I' (,8), x ¢ A («,B).
Denoting by P (x) the set of all maximal chain elements y such
that y < x and similarly denoting by F (X) the set of all maximal
chain elements y such that y >x, we will consider the sets

51



P(x)nA («B) and F (x)nA («,8) both of which are closed in
A (,8). Furthermore these sets are disjoint, non void while their
union is A («,8). They form a closed partition of A («,) which
contradicts the assumption that A («,8) was connected.

1.8 THEOREM. A chain that is connected 1s a maximal chain.

Proof. Let x €B, « < x < [, comparable to all elements of a
connected chain C («,). Consider the sets P (x) nC («,f) and
F (x) n C («,p), where P (x) and F (x) have the same meaning as in
TueEoREM 1.7. If x is not an element of C («,f), the two sets form a
closed partition of C («,8) which cannot be. Hence x € C («,8).

1.9 TaEOREM. Two maximal chains 'y («1,81) and I's (as,p2) for
which there exists a one to one mapping £ of I'1 onto I's that is order
preserving and continuous, arve homeomorphic.

Proof. Suppose { &2 }1 €22 € I's. Then {f-1 (£2) } is a monotone
increasing sequence of elements of I'; that must have a limit £!
on I'1. Then, because of the continuity of f, it follows f (1) = &2 or
equivalently f-1 (£2) = 1. This means that the mapping 1 is
continuous for monotone increasing sequences. In the same way
the continuity of f~1 for monotone decreasing sequences is proved.
But then f-1 is continuous for arbitrary sequences.

2. Separable Boolean algebras.

2.1 DEFINITION. An ordered subset A of ‘B is called SEPARABLE,
provided the g.1.b. and the 1.u.b. of A can be written as a g.l.b. and a
Lu.b. of at most countably many elements of A. Thus, provided

i) NA=Na=NZxyxi€A; and

aeA i=1
i) UA=Ua=Uyyi €A
acA i=1

2.2 DEFINITION. B is called separable, provided every ordered subset
of B is separable.

2.3 LEMMA. An ordered, closed and separable subset A of B 1is
algebraically complete.

Proof. We have N A = N x3,x; €A and U A = U y;,y; € A.
i=1 i=1

It is then always possible to select a monotone decreasing sequence
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{xp; }¥yN A and similarly a monotone increasing sequence
{yn;}} U A. Since A is closed we have N A € A and UA € A.

2.4 TuEOREM. I} ‘B is separable every maximal chain is connected.

Proof. Suppose T' (o,8) = A uB where AnB =0, A and B both
closed in I" («,); A £ 0, B # 0.

As T («,B) is closed in ‘B, A and B are both closed in B. They are also
both ordered. Since B is separable A and B are algebraically
complete (LEmMMA 2.3). Consider N B = b e B. Assume b # a.
Denote by A* the set of all maximal chain elements preceding and
not equal b. Then A* is not empty since b 7% «and I' («,£) is convex.
A* is a subset of A, obviously closed in A, hence closed in I' («,f)
and thus closed in ‘B. A* is also ordered. Since B is separable A* is
algebraically complete. Therefore U A* e A¥ < A;but UA* =beB,
yielding a contradiction. We have to assume therefore that b = «,
which implies « € B. In exactly the same way we may prove that
o € A. This contradicts the assumption that I'(«,8) was not
connected.

2.5 THEOREM. If ‘B is separable, a closed and convex chain is a
maximal chain.

Proof. Follows from LEMMA 2.3 and THEOREM 1.4.

2.6 COROLLARY. If B is separable, a maximal chain cannot have a
closed and convex proper subset with the same end-points.

Thus we have obtained for complete, atom-free and separable
Boolean algebras the following characterization of maximal chains

2.7 THEOREM. If B is separable, a chain is a maximal chain if and
only if it is closed and convex.

Proof. Follows from THEOREMS 1.2, 1.5 and 2.5.
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CHAPTER VII

ARCS

Throughout this chapter ¢/ stands for a complete, separable,
associate, convex Boolean metric space whose complete, separable
Boolean algebra of idempotents is ‘B.

1. Arc-length.

1.1 DEeFINITION. An ARC A (a,b) is a subset of <M that is homeo-
morphic with a maximal chain T' () in B: A (a,b) = f (I («,8))
where f is a homeomorphism such that f (o) = a and f (8) = b 1).

Since a maximal chain is irreducible between its end-points the
same is true for an arc. Furthermore, since the property of being
connected is solely expressed in terms of closed (open) sets and since
a homeomorphism carries sets closed (open) in the maximal chain
over into sets closed (open) in the arc and conversely, we may say
that an arc is connected since a maximal chain is connected. For
the same reasons it is impossible for an arc to have a connected
proper subset with the same end-points.

1.2 THEOREM. An arc is compact (and hence closed).
Proof. Follows from the fact that a maximal chain is compact and
that compactness is invariant under a homeomorphism.

1.3 LEmMA. A homeomorphism f (I' (o,p)) = T («,B) of a maximal
chain onto itself such that f () = o and f (B) = P preserves the order.
Proof.

() 7

« L) (k) £, £, A

Assume the contrary: &; < &g and f (§1) > f (82), &1 # «, £2 # B;
then we will produce a contradiction.

1) BG 11
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Let X be the set of all elements £ such that f () > f (£2). This set
is not void since £; € X. Consider N X = n. Then = # «; for if
n=o we would have a = f () = f (x) > f (§2), which is im-
possible. Since X is ordered and (obviously) closed and since B is
separable, X is algebraically complete. Therefore = e X, which
means f (x) > 1 (82);f (n) = (§2) would imply = = &, thus
yielding &1 < &2 = = which contradicts the definition of . There-
fore: f (m) > f (£2).

Let P () denote the set of all maximal chain elements preceding .
Since 7 = o this set is not empty. It holds that U P (x) = =. Since

B is separable it is always possible to write © = U mj, w; € P (r).
i=1

Furthermore it is always possible to select a monotone increasing

subsequence { 7y; }1 7. Then we have lim f (my;) = f (). Together

with f (x) > f (§2) this implies the existence of an element 7y,

such that f (mp,) > f (§2). But mp, ¢ X since wy, € P (x). This is a

contradiction.

1.4 DEFINITION. A NORMALLY ORDERED INSCRIBED POLYGON
P (g8 e s o ,an) of an arc A (ab) = f(I'(«,B)) 2s a subset
P (ag,ag,..... ,an) of the arc A (a,b) such that ag = a and an =b
and such that 11 (a;) = o €T (a,p), whereas 1 <] wmplies
-1 (ai) < {1 (aj) or aj < aj.

It follows from LeEmMA 1.3 that this order on the arc A (a,b) is
independent ot the homeomorphism f.

n—1
Let A (P) = U d (aj,ai+1). This quantity is then independent ot the
i=0
homeomorphism f, soleley an intrinsic value of the point set
P (ag,a1s e ,ap) and the intrinsic normal ordering induced by the

order of I' («,B).
Finally let 1 (A (a,b)) = U (P), where the union is to be extended

P
over all normally ordered inscribed polygons of the arc A (a,b).
This will be our definition of the length of anarc A (a,b), independent
of the homeomorphism f 1).

1.5 DEFINITION. A coMPLEX C of a subset X < M is a set of
unordered pairs of elements of X.

A sequence (X1,X2,..... ,Xn) of elements of a subset X < M s said
1) BG 1I1.
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TO BELONG TO A COMPLEX C of X, provided (xi,xi4+1) €C,i = 1->n—1.
A sequence (X1,Xs,..... ,Xn) of elements of a subset X < <M is said
TO CONNECT p WITH q, where p and q are elements of X, provided
X1 = p and X, = q.

A subset X < M is said TO BE CONNECTED WITH RESPECT TO A
COMPLEX C of X provided every two elements p and q of X are connected
by a sequence belonging to C.

Note that by taking C as a complex of the set C* consisting of all
the elements forming the unordered pairs of the set C, the complex
C may be connected with respect to itself. In that case we say that
C is a CONNECTED COMPLEX.

1.6 DEFINITION. The LINEAR CONTENT of a subset X < M is the
element of B:1(X) = U d (a,b).

a,beX
The COMPLEX CONTENT of a complex C is the element of B:

2 (C) = U d(a,b).
(a,b)eC
1.7 THEOREM. The linear content of a set X < M is equal to the
complex content of any complex C of X with respect to which X is
conmected.

Proof. Obviously A (C) <1(X). For p,qeX let (x1,xa,..... ,Xn)
be the sequence belonging to C that connects p = x; with q = xy.
Then we have

d (p,q) <d (p,x2) ud (x2,x3)..... ud (xn-1,9) < (C).

This holds for any p,q € X. Therefore 1 (X) < a (C).

In case the set X only contains finitely many elements we will
refer to a permutation of X as a polygon P (x1,xg,..... ,Xn), Xi € X,
of X. Each permutation will yield a different polygon P of X, the
underlying finite set X remaining the same. A polygon, therefore,
is a finite set with an ordering. As a polygon P of X clearly is a
connected complex we may apply THEOREM 1.7: 2 (P) =1 (X).
We will now apply the foregoing to the arc-length by taking for X
a finite subset of the arc:

1.8 THEOREM. 1 (A (a,b)) = U d (x,y).

X,yEA

Proof. 1(A (a,b)) U i (P), according to the definition. The union is
P<A
extended over all normally ordered polygons P inscribed in A (a,b).
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But now we have A (P) =1 (X), where X is the underlying point
set of P. So we have: 1 (A (a,b)) = U 1(X), the union now being

X<A
extended over all finite subsets X of A; 1 (X) < U d (x,y) for any
X,yeA
subset X of A; therefore Ul (X) < U d (x,y). We also have
X<A X,yEA

d xy) <1(X) <UI(X) for any x,y€A (a,b). Therefore
U d(xy) < U 1(X).
X<A

X,yEA
Result: U d(xy) = U1(X)= UI1(P)=1(A (a,b)).
X,yEA X<A P<A
In some instances it will be convenient to have still another
expression for arc-length. Therefore let p be a fixed element of

the arc A (a,b):
1.9 TueEOREM. 1(A (a,b)) = U d (p,y),peA (a,b).
€A

Proof. The arc A (a,b) is conilected with respect to the complex C
consisting of all pairs (p,x) where p is a fixed element of A (a,b),
and x is any element of the arc. The theorem now follows from
TueOoREM 1.7: 1(A (a,b)) =2 (C) = Ud (p,y). Sometimes it will
be desirable to take for the fixed element p the element a of A (a,b):
I (Aab) =Ud(ax).

x€eA

2. Continuity of arc-length.

It is immediately obvious from the above established theorems
that arc-length is a congruence invariant, monotone function of arcs.
In addition we have

2.1 TueoreM. 1(A (a,x))ul (A (x,b)) =1 (A (a,b)), x € A (a,b).
Proof. 1(A (a,b)) = Ud (a,b);
1 (A (a,x)) = Ud (x,y) with y €A (a,x);
1 (A (x,b)) = LYJ d (x,y) with y € A (x,b),

(x,y) with yeA

U
U

from which the statement follows immediately.

It must be mentioned that arc-length need not be a strictly monotone
function of arcs. Similar examples as the one constructed in chap. IX
will show this. In order to prove that arc-length is a lower semi-
continuous function of arcs, we need the notion of limit of a
sequence of sets. However, all subsets of e/ form a complete
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Boolean algebra in which we can introduce the order-convergence
described in chap. V.

2.2 THEOREM. The linear content of a subset X < M is a lower

semi-continuous fumction of X; i.e. if {X i } is a sequence of subsets
of M such that lim X3 = X it holds that 1 (X) = lim 1 (Xj).

Proof. For every sequence { X; } of subsets of <M we can construct
monotone sequences { U; } and {V;} such that U; < X; <Vj,
while

I D38

Vi.

1

1

{U;}4lim X; = UUjand {V; } | lim X; =
— i=1
Let us consider the linear contents of all these sets.
1(Up) <1(Xy) <1(Vy).
{1(U;) } is a monotone increasing sequence of elements of ‘B with
limit U1 (U;) = lim 1 (X;). Since Up < U U; = lim X, for all n, we

i=1 i=1

have 1 (Up) <1 (lim Xj), for all n, which implies

lim1 (X;) <I(lim Xj).

We proceed to prove 1 (lim X;) < lim 1 (Xj).

Let x,y be elements of lim X; = U Uj. Since { U; } is an monotone
I i=1

increasing sequence there must be a set Uy containing both x and y.

Therefore we have d (x,y) <1 (Uy) <lim1 (Xj).

As this holds for any two elements of lim X; we have

1 (lim X;) <1lim1 (Xj). Thus we proved I (lim X;) = lim | (X;). But

as lim X; = X implies lim Xj = lim Xj = X, we have 1(X) =

lim 1 (Xj).

2.3 COROLLARY. Arc-length 1s a lower semi-continuous function

of arcs.

Proof. Since the length of an arc is equal to its linear content we
may apply the previous theorem.

2.4 DEFINITION. A CONTINUOUS ARC A (a,b) is an arc with the
property that lim x; = X, X; € A (a,b), implies lim1 (A (a,xy)) =
1(A (a,x)).

Let xe A (a,b). Consider the mapping |
l:x—>1(x) =1(A (a,x)), x €A (a,b), 1 (x) €B,
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of an arc A (a,b) into B. Obviously the image of the arc A (a,b)
under this mapping 1 is a chain C (0,1 (A (a,b)).

2.5 Tueorem. C (0,1 (A (a,h))) is a maximal chain if A (a,b) is
continuous.

Proof. We will show the chain C to be convex and closed, from
which the theorem would follow.

(i) C (0,1 (A (a,b)))is closed. Suppose lim 1 (x;) = I, x; € A (a,b). As
A (a,b) is compact there must be a subsequence { xn; } on A (a,b)
with limit x € A (a,b). But lim xp; = x implies lim 1 (A (a,xp)) =
1 (A (a,x)) if A (a,b) is continuous. As 1 (A (a,xp;)) =1 (xy) and
lim 1 (xp;) =1, we have 1 =1 (A (a,x)) = 1 (x). It thus follows that
lis the image of x € A (a,b). Hence 1 e C.

(i) C (0, (A (a,b) is convex. Suppose therefore 1 (A (a,x))
< 1(A(a,y)), which implies x # y.

A(Ala,b))

b
, g y Lip=L(A@.y)
* 4
q@* =, L(z2)= L(Ala,2)
Ef
: < £ (x)=4 (Ala,x)
1 e °
T e, 8) Ala,b) ¢ (0.4 (At,b)

Let f be the homeomorphism such that A (a,b) = f (I' («,£)), with
f(x) =a and f () =b. Let £ =11(x) and o = f-1 (y). Then
£ #m. Let X be the set of all elements el (o,f) such that
1(f (€)) <1(x). Consider the element £* = U X. Then £* + v; for
if £* = =, we could select a sequence { ; }1 n which would imply
f (i) = f (y) or lim y; = y, which, in turn, would imply lim 1 (y;) =
1 (y). But1(y;) =1 (x) and 1 (x) %1 (y). Similarly let Y be the set
of all elements { € I' («,8) such that 1 (f ({)) >1(y) and let o* =
N Y. Then also n* # £. Since for any ¢; € X and for any (s € Y we
have 1(f ($1) <1(x) <1(y) <1(f (Z2)), we have ¥ < from
which £* < ¢*.

It is easily proved, however, by the same kind of continuity
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argument as used above that £* £ n*. Thus we have £ < &* =
UX<NY =9*<n.

Since T' («,8) is convex there must exist an element {* e I' («,p)
such that £* < {* < n*. Let z = f (*), then 1 (x) <1 (z) <1(y),
due to the definitions of £* and »*. This proves the convexity.

2.6 DEFINITION. A STRICTLY MONOTONE ARC A (a,b) is an arc with
the property that for x)y € A (a,b), A (a,x) < A (a,y) implies
1(A (a,x) <1(A ).

2.7 THEOREM. A continuous, strictly monotone arc may be para-
metrized with respect to arc-length.

Proof. Let x € A (a,b). Consider the mapping 1
Iix—>1(x) =1(A (a,x))

of the arc A (a,b) onto the maximal chain I' (0,1 (A (a,b))). Due to
the fact that we assumed the arc A (a,b) to be continuous and
strictly monotone, this mapping 1 is a continuous one to one
mapping of A (a,b) onto I' (0,1 (A (a,b)). If now T () is the
maximal chain of which A (a,b) is the homeomorphic image we
have two maximal chains T («,f) and I' (0,1 (A (a,b))) with a
continuous one to one mapping of I' («,8) onto I' (0,1 (A (a,b))) that
is order-preserving.

THEOREM 1.9 chap. VI then implies that I' (,8) and I" (0,1 (A (a,b)))
and consequently A (a,b) and I' (0,1 (A (a,b))) are homeomorphic.
A (a,b) is now the homeomorphic image of a maximal chain
I' (0,1 (A (a,b))) such that x € A (a,b) corresponds with its arc-
length 1(A (a,x)) €' (0,1 (A (a,b))). We thus have obtained a
parametrization with respect to arc-length for continuous, strictly
monotone arcs.
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CHAPTER VIII

SEGMENTS

Throughout this chapter ¢y stands for a complete, separable,
convex Boolean metric 2-space, whose complete, separable Boolean
algebra of idempotents is B. If the situation is also valid for complete,
separable, associate, convex Boolean metric spaces in general we
will write <M. However, since not many results are available yet
concerning the motions of such a space ¢, most of our following
results only apply to a space M.

1. Characterization.

1.1 DEFINITION. A SEGMENT S (a,b) s a subset of <M that is
congruent to a maximal chain I (a,8) in B:S (a,b) = g (I' («,8)),
where g is a congruence such that g (o) = a and g (3) = b 1).
The following properties of segments are immediate consequences
of the definition:

(i) segments are convex, closed and connected;

(i) 1(S (b)) = d (a.b);

(iii) segments are continuous arcs.

Since all segments are arcs our first attempt will be to establish a
characterization of segments among arcs. We will show that
segments are characterized as convex arcs.

1.2 LeMMA. Let A be a closed, non void subset of ‘B with the property
that for every monm zero element a € A there exists another element
a* € A such that 0 < a* < a. Then 0 € A.

Proof. Let a€ A and let I'" (0,a) be a maximal chain in A* =
A u {0}, i.e. an ordered set in A* that does not contain an ordered
proper subset in A*. Let I'* denote the set obtained from I' (0,a)
after deleting the element zero. Then I'* << A. I'* is closed in A.
But since A is closed I'* is also closed in B. Since I'* is also ordered

1) BG 1.
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I'* is algebraically closed. Let N I"* = b € I'*. Then b must be zero.
Forif b £ 0 there must be an element b* € A such that 0 < b* < b,
contradicting the fact that I' (0,a) is maximal in A*.

1.3 COROLLARY. Let A be a closed, non void subset of a Boolean
metric 2-space <My, Let p € My and suppose A has the property
that for every element a € A there exists an element a* € A such
that B (p,a*,a). Then p € A.

Proof. The motion m (x) = d (p,x) transforms p into 0. The set
m (A) has the property: for every element m (a) € m (A) there is an
element m (a)* € m (A) such that B (O,m (a)*, m (a)) or 0 < m (a)*
< m (a). Our previous lemma then yields m (p) = 0 em (A) orp € A.

1.4 LeMMA. A convex and closed subset A of a Boolean wmetric
2-space My is conmected.

Proof. Suppose A is not connected: A = XuY, XnY =0, Xand
Y being non empty, closed subsets of A.

Let x € X. It cannot be that between x and every element of Y
there is an element of Y, as this would imply x € Y. So there must
be an element y € Y such that there is no element of Y between
x and y. Nevertheless, because of the convexity of A, there must be
an element of A between x and y. This has to be an element of
X therefore. Between this element and y there has to be another
element of X etc. This implies x € Y, which contradicts X nY = 0.
Therefore A is connected.

1.5 CoRrOLLARY. An arc A (a,b) in <My cannot have a proper subset
with the same end-points that is convex and closed.

Proof. If this were possible we would have a subset of A (a,b) with
the same end-points which is connected. This is impossible.

1.6 LEMMA. Every inner-element of a convex arc A (a,b) in <My s
between a and b.

Proof. Consider the subset of A (a,b) of all elements that are
between a and b, a and b included: A* (a,b). If we can show that
A* (a,b) is convex and closed, A* (a,b) must coincide with A (a,b).
Obviously A* (a,b) is closed. To prove the convexity: suppose
p.q € A* (a,b); i.e. B (a,p,b) and B (a,q,b). Since A (a,b) is convex
there must be an element r € A (a,b) such that B (p,r,q). But then
we have B (a,r,b), as follows from PrROPERTY 1.8 chap. IV. Thus
r € A* (a,b), which proves the convexity of A* (a,b).
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1.7 LeEmmA. If A (a,b) ¢s a convex arc in <My, then for all distinct
inner-elements x,y of the arc either B (a,x,y) or B (a,y,x) holds.

Proof. Consider the inner-elements x and y of the arc. Since
A (a,b) is convex B (a,x,b) holds. Consider the subset A* (a,b) of
A (a,b) consisting of the elements z of A (a,b) such that B (a,z,x)
or B (x,z,b) holds, including the elements a,b and x. This subset
A* (a,b) of A (a,b) has to coincide with the arc A (a,b) as soon as
we have shown that A* (a,b) is convex and closed. A* (a,b) is
obviously closed. To prove that A* (a,b) is also convex, let
p,.q € A* (a,b).

We will distinguish three cases:

(i) B (a,p,x)and B (a,q,x) hold. Let r € A (a,b) such that B (p,r,q).
According to PrROPERTY 1.4 chap. IV B (a,r,x) subsists, so that
r € A* (a,b).
(ii) B (x,p.b) and B (x,q,b) hold. This case is treated similarly as
case (i).
(iii) B (a,p,x) and B (x,q,b) hold. Since also B (a,x,b) holds we may
apply ProPERTY 1.12 chap. IV so that B (p,x,q) holds.
This establishes the convexity of A* (a,b), so that A* (a,b) = A (a,b)
and hence: for every two distinct inner-elements x,y € A (a,b),
B (a,x,y) or B (x,y,b) holds. From PropErTY 1.11 chap. IV it
follows that B (x,y,b) and B (a,x,b) imply B (a,x,y), which
completes the proof.

We are now able to proof our main theorem of this section

1.8 THEOREM. A convex arc A (a,b) in <My is a segment.

Proof. Consider the motion m (x) = d (a,x) such that m (a) =0
and m (b) = d (a,b).

d(a,b)
7
//
b
A,b) /
/
/
/
motion 7
m(x)=d(a,x) /
/
/ Clod@,b)
& /
d
0




From our preceding lemmas it follows that for two arbitrary,
distinct inner-elements x,y of the convex arc A (a,b) we must have
either B (a,x,y) or B (a,y,x), so that we must have either
B (0Om (x),m (y)) or B (0m (y),m (x)),which reduces to 0 <
m(x) <m(y) or 0O <m(y) <m (x). This implies that the
image of the arc A (a,b) is a chain C (0,d (a,b)). Since A (a,b) is
convex and compact, the same holds for C (0,d (a,b)). Therefore
C (0,4 (a,b)) is @ maximal chain and A (a,b) a segment.

2. Segment-like arcs.

One might expect that an arc A (a,b) with the property
1(A (a,b) = d (a,b) is a segment, in which case we would have
another characterization of segments. However, this is not true as
will be shown by an example in chap. IX.

2.1 DEFINITION. An arc A (a,b) in Mo with the property 1 (A (a,b,))
= d (a,b) s called SEGMENT-LIKE.

2.2 THEOREM. A continuous arc A (a,b) in <Ms such that every
subarc A (a,x), x € A (a,b), is segment-like is a segment.

Proof. The arc is clearly strictly monotone. Since the arc is also
continuous the motion m (x) = d (x,a) transforms A (a,b) into a
maximal chain as was shown in chap. VII. In fact, we obtain the
parametrization of the arc with respect to arc-length: x € A (a,b)
is mapped into 1 (A (a,x)) = d (a,x). Since A (a,b) is congruent with
a maximal chain, the arc is a segment.

2.3 DEFINITION. The EXCES Ep 0of an ELEMENT p of an arc A (a,b)
n M s defined by: Ep = {d (a,p) ud (p,b)} d’ (a,b).
The EXCES E (a,b) of the ARC A (a,b) is defined by: E (a,b) = U Ey,.

peA
Direct computation shows that for &M E, = abp’ ua’b’p. From

the definition it follows readily that for <My Ep = 0 if and only if
B (a,p,b) holds.

24 LeMMA. E (a,b) =1(A (a,b)) d'(a,b).

Proof. E (a,b) =UEp, =U {[d(a,p)ud (p,b)]d'(a,b)} =
{Ud(@p) @ @b)}u{Ud(pb)d @b))—

1 (IJ)& (a,b)) d’ (a,b) ul (Ap(a,b)) d’ (a,b) =1 (A (a,b)) d’ (a,b).

It is easily seen that E (a,b) = 0 if and only if I (A (a,b) = d (a,b);
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i.e. if and only if the arc is segment-like. Furthermore we may say
that E (a,b) = 0 if and only if E, = 0 for all p € A (a,b), so that
1 (A (a,b)) = d (a,b) holds if and only E, = 0 for all p € A (a,b),
or, in case of a space &My, if and only if B (a,p,b) holds for all
p € A (a,b). Thus we have

2.5 THEOREM. An arc A (a,b) in My is segment-like if and only if
every inner-element p of the arc is between the end-points of the arc.

65




CHAPTER IX
EXAMPLES

Let Q be the left open interval (0,1] on the real line. Let B denote
the class of all subsets of Q that are unions of finitely many left
open intervals (a,b], 0=a=1and 0 =b=1. Then B is an
atom-free Boolean algebra whose Boolean operations are the usual
set operations.

Another example 1) may be obtained by taking for Q the closed
interval [0,1] on the real line. Let B denote the set of all regular
open subsets of Q. An (open) set is called regular provided it is
equal to the interior of its closure. Using the following notation

cX: complement of X

hX: closure of X

iX: interior of X
we have: X is regular provided X = ihX, which is equivalent to
X = chchX. These regular open subsets of [0,1] form a complete
and atom-free Boolean algebra with the following operations

XnY = XnaY

XuY =ih(XwY)

NXy =1(@Xy)

UX, = ih (WX,).

To establish that this Boolean algebra B is also separable we have
to show that for any ordered subset {X,} of B it holds that

NXe=NZX; and UX, = UXj.
o i=1 oL j=1
We will only give the proof for the g.l.b., the proof for the l.u.b.
being similar.
LemMA. Let Aj and As be two regular (open) subsets of [0,1] such
that A; << Ag. Then u (A1) < u (Ag), where u denotes the Lebesgue
measure on the real line.

1) [10], Beispiel 24.2, p. 133.
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Proof. Since A; << Ag there must be a point xp € Ay such that
xo ¢ A1. Let (x1,x2) be an open interval in Ay containing xo.

Now we have A; = chchA; since A; is regular. Thus cA; = hchA; =
hicA;. Therefore x¢ € hicA;. Let ¢ be such that the interval
(xo —&,X0 +¢) 1is contained in the interval (x1,x9). Then
(X0 —&,X0 + €) contains elements of icA; since xo € hicA;. Since,
however, icA; is an open set, (xo — &,Xo + ¢) contains an interval
of cAy, ie. a set with positive measure. Now (x9 —¢,Xo + ¢€) is
contained in As; therefore Ay contains a set of positive measure that
is not in Aj. Thus p (Ag) > u (Aj).

Due to the above established lemma we may say that there exists
a one to one, order-preserving correspondence between the sets
{Xo} and {u (Xy)}; ie. Xy < Xg if and only if u (Xo) < u (Xp).

Let p (Xy) = py and let m be the infimum of the set {u,}. We then
may select a monotone decreasing sequence {wi} | m,p; = p(Xj).
We now assert N X; = N X,. In order to prove this we only have

i=1

to show ) X; < @\ X, Suppose therefore x € ) Xj. Let X, be an
arbitrary element of {X,}. There must exist an element up € {p;}
such that pn =< p,, which implies X, < X,. Since x € X,, we also
have x € X,,. Hence i\ X; < @\ X,, from which @\ X; = ) X, and

thus i Xj = 1) X, which means N X; = N X,.
i=1

We will now construct an example showing that segment-like
arcs need not be segments.
Let B denote the complete, separable and atom-free Boolean
algebra of regular open subsets of Q = [0,1]. Let T' («,8) be the
maximal chain whose elements are the open intervals (0,t), t = 0—1.

P (0,0) f'(d,p)

(0,1)

Let A (a,b) be the arc obtained from I («,f) by the following
mapping f:
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04t) eI'(x,8) = (0,t) eA(a,b) for t =01
(0,t) - (t—1¢) fort=1->2
0,t) - (1 —t,4) fort=2->1
This yields the following picture of the arc A (a,b,):
N <~ f(0)=qa
segment
f(§)=x
R
g c
segment N
- f(n)=y
segment [
f(3)=b
0 2 2 %
o = (0,0), or the empty set; f (x) = a = (0,0)
& =03 f€) =x=(03)
n=(03) fen) =y=(G3
g =103 f(8) =b= (03

The arc A (a,b) is obviously strictly monotone and has the property
that its arc-length equals the distance between its end-points: both
are equal to (0,1). The subarcs A (a,x), A (x,y) and A (y,b) are
segments since they are convex arcs.

The arc A (a,b) is not a segment since it is not convex as there is
no element between the arc-elements a and c.

We conclude with the remark that if B denotes the complete,
separable and atom-free Boolean algebra of regular open subsets
of Q =[0,1] and if D stands for a commutative integral domain
with identity, the Boolean metric spaces ¢V and M *, obtained
from the rings DB and DB* respectively, are complete, separable,
associate, weakly-convex Boolean metric spaces that are even
regular if D is a field.
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STELLINGEN

behorende bij C. J. Penning, Boolean metric spaces,
Delft, 21 december 1960.

I

Pauc definieert de ,,aplatissement” (p,q,r) van een drietal punten
in een metrische ruimte als de som van de twee kleinste hoeken van
de door p, q en r bepaalde driehoek.

Zijn 1, 2, 3 en 4 de hoekpunten van een (eventueel ontaard) viervlak
en ¢; de ,aplatissement” van de drie hoekpunten tegenover het
hoekpunt i, dan beweert Pauc ten onrechte dat het bewijs van de
ongelijkheid

eitetexk=¢a
triviaal is.
De ongelijkheid blijkt ook te gelden als &; voorstelt:

(i) de som van de twee grootste hoeken in de betreffende driehoek;
(ii) de som van de grootste en de kleinste hoek in de betreffende
driehoek.

Ch. Pauc, Les méthodes directes en géométrie
différentielle, p. 128 en p. 133.

L. M. Blumenthal, A budget of curiosa metrica,
Am. Math. Monthly 66 (1959), p. 453.

II

Onder 2m2 — 6m + 6 mensen zijn er altijd m die elkaar kennen
of m die elkaar niet kennen. Voor m = 3 is dit tevens het minimale
aantal met deze eigenschap.

IIT

Birkhoff beweert ten onrechte dat elke partieel geordende ver-
zameling door invoering van de ,,order-topology”’ een Hausdorff-
ruimte wordt.

G. Birkhoff, Lattice theory, revised edition,
Theorem 13, p. 60.

E. E. Floyd, Boolean algebras with pathological
order-topologies, Pac. Journ. of Math. 5 (1955),
p. 687-689.




v

Zij H een Hilbert-ruimte met een volledig orthonormaal systeem
Q in H. Dan is er een Boolese valuatiering R aan te geven die
isomorf is met H. Voor de Boolese metrische ruimte M, verkregen
uit R, geldt dat de afstand tussen de elementen f en g van M gelijk
is aan de verzameling van die elementen van Q, waarvoor de
Fouriercoéfficiénten van f en g verschillen.

De deelverzameling Q van H is isomorf met de atomen van R.
Bevat Q oneindig veel elementen, dan is R niet regulier.

A%

Dat elke eindige Abelse groep van de orde 2 (2n + 1) cyclisch
moet zijn, is geheel op elementaire wijze aan te tonen.

VI

Birkhoff beweert ten onrechte dat de deellichamen van een
eindig lichaam een lineair geordend systeem vormen met de inclusie-
relatie als ordenings-relatie.

Birkhoff & McLane, A survey of modern algebra,
exercise 5, p. 431.

VII

Zijn I(S) en I(R) de roosters van idealen in een commutative
ring S met eenheid, resp. een unitaire onderring R van S, dan zijn
de afbeelding p van I(S) in I(R) en de afbeelding ¢ van I(R) in I(S),
gedefinieerd door resp.

p(A)=AnR en 6 (A) = AS

een n-homomorfie, resp. een u-homomorfie.
Is S bovendien een geassocieerde ring, dan is de afbeelding o tevens
een n-homomorfie.

Is S een complete directe som van lichamen: S = X F (0), dan is
we)
een ideaal A in een unitaire onderring R van S dan en slechts dan

het ideaal van alle functies in R die nul zijn op een zekere deel-
verzameling Z < Q, als geldt po (A) = A.

VIII

De bewering dat de meetkundige plaats der buigpunten van de
algemene integraalkrommen van een differentiaal vergelijking




F (x,y,p) = 0 van de eerste orde en van hogere graad zou moeten
voldoen aan
Fxyp) =0
en Fp(xy,p) =0
is onjuist.
B. Meulenbeld en W. K. Baart, Analyse voor pro-
paedeutische examens deel 2, § 100, blz. 256.

IX

Om te voorkomen dat belangrijke Nederlandse kunstcollecties
uiteenvallen of naar het buitenland verdwijnen is het wenselijk
fiscale faciliteiten te scheppen voor erfgenamen van zulke kunst-
collecties die deze zouden willen afstaan aan een museum.

X

Het is niet gerechtvaardigd de Nederlandse Technische Hoge-
scholen de naam ,, Technische Universiteit” te geven.

XI

Het verdient aanbeveling aan het Engelse werkwoord toe te
kennen:

a) een tijd, welke absoluut dan wel relatief kan zijn en waarbij
zowel de absolute als de relatieve tijd zijn onder te verdelen in
verleden, heden en toekomst;

b) een vorm, welke gesloten of open kan zijn.

Hierbij dient opgemerkt te worden dat de bijzondere combinatie
,to be going” alleen een (geinverteerde) relatieve tijd kent in
open vorm.

XII
De kiem van Heidegger’s opvatting aangaande het ,,Dasein” in
de tijd vindt men reeds in Kierkegaard’s dagboekaantekeningen
Soren Kierkegaard, Tagebiicher, p. 129 en p. 174.
M. Heidegger, Sein und Zeit.
XIII

De wijze waarop Madelung over de delta-tunctie schrijft schept

verwarring.
E. Madelung, Die mathematischen Hilfsmittel des
Physikers, 6. Aufl., 1957, S. 18.




