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KORT OVERZICHT VAN DE INHOUD 

Dit proefschrift handelt over Boolese metrische ruimten M; 
dat zijn ruimten waarbij aan elk tweetal elementen a en buit M 
een element d (a,b) van een Boolese algebra B is toegevoegd als 
afstand. 

In het bijzonder worden onderzocht de zg. geassocieerde Boolese 
metrische ruimten M, ontstaan uit Boolese valuatie-ringen R door 
middel van de definitie d (a,b) = tp (a - b), waarbij tp de valuatie 
is van R in de verzameling B van idempotente elementen van R. 

Ringen van partitie-afbeeldingen van een gegeven ring R in een 
gegeven Boolese algebra B worden bestudeerd om aan de hand 
hiervan complete, separabele, geassocieerde, zwak convexe Boolese 
metrische ruimten te kunnen construeren. Tevens worden voor
waarden aangegeven waaronder een Boolese valuatie-ring een ring 
van partitie-afbeeldingen is. 

N a het in voeren van een topologie in de Boolese metrische 
ruimte M worden de begrippen maximale keten, boog en segment 
gedefinieerd. Verschillende eigenscha ppen en karakteriseringen 
worden afgeleid. 
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PREFACE 

This treatise originated from an article by L. M. Blumenthal [5J 1), 
Boolean geometry I, to which I will refer by BGI. Blumenthal's 
manuscript 2) for the intended continuation of the article BGI, 
Boolean geometry II (to which I will refer by BGII) was the outset 
of these underlying investigations. Some of the following material 
is taken from BGII . Where this occurs it has been indicated. 

In his paper BGI the author developes some aspects of the distance 
geometry of a Boolean metric space B, obtained by attaching to 
each two elements a and b of a Boolean algebra B the element 
d (a,b) = (a n b') u (a' n b) of the algebra as distance. The methods 
and results of that study are entirely algebraic in the sense that no 
topological notions are involved. The in BGII presented con
tinuation of the program deals with continuity notions based upon 
the introduction of a topology in the Boolean algebra B. 

The underlying thesis "Boolean metric spaces" has been set up 
on a more general basis, making use of an article by J. L. Zemmer 
[20J, Some remarks on p-rings and their Boolean geometry. This 
means that the sets giving rise to Boolean metric spaces are not 
restricted to Boolean algebras. We will also allow 50 called Boolean 
valued rings as sets from which to obtain Boolean metric spaces. 

It follows trom aresult obtained by W. Krull 3) th at any Boolean 
valued ring may be considered as a sub direct sum of integral 
domains 4). Since Krull's re sult is rather deep and sin ce it turned 
out to be possible to prove several properties of Boolean valued 
rings without making use of this re sult , we have tried to refrain 
from basing our developement on the above mentioned theorem. 
In fact we have kept our results completely independent of it. 

1) Numbers between brackets refer to the References at the back of this thesis. 
2) Not published; but see the abstract [Sa]. 
3) [lSJ, references at the bottom of p. 113. 
') [lSJ, Theorem 31, p. 123 . 
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For more extensive and detailed information on the field of 
distance geometry we refer to L. M. Blumenthal [4J, Theory and 
applications of distance geometry, especially to chap. xv. For the 
lattice-theoretical aspect we refer to H. Hermes [10J, Einführung 
in die Verbandstheorie. 

Most of the notation will be developed in the text. A few general 
remarks may be given here. Ring operations will be indicated by 
the usual justaposition and + . Boolean operations will be denoted 
by n and u. For the complementation in a Boolean algebra we use 
the accent' , while the order-relation is written <, < meaning < 
and i=. Since set-operations are Boolean operations we will make 
no distinction between these unless confusion might occur. In that 
case the set operations are denoted by 1.\, \v, ~ and c for comple
mentation. 

In general capitals will be used for sets. 
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CHAPTER I 

ASSOCIATE RINGS 

I. Boolean algebras, Boolean rings and idempotents. 

It is known th at Boolean rings with identity may be identified 
with Boolean algebras 1); i.e. a Boolean ring with identity ean be 
eonsidered as a Boolean algebra under suitable modifieations of the 
ring operations and eonversely. The Boolean operations expressed 
in terms of the ring operations are 

a n b = ab, 
a u b = a + b + ab, 

a' = 1 + a. 

The ring operations expressed in terms of the Boolean operations are 

ab = a n b , 
a + b = (a' n b) u (a n b'). 

It is also known that the idempotents of a eommutative ring R 
with identity form a Boolean ring B with identity and henee a 
Boolean algebra 2). The operations of the set B, eonsidered as a 
Boolean algebra, expressed in terms of the ring operations are 

a n b = ab, 
a u b = a + b - ab, 

a' = 1- a. 

The operations of the set B, eonsidered as a Boolean ring, expressed 
in terms of the ring operations are 

a Q9 b = ab, 
a EB b = a + b - 2 ab. 

In order to a void the diffieulty and ineon venienee of distinguishing 
between too many kinds of operations we will always eonsider the 
set B of idempotents of a eommutative ring R with identity as a 

1) [18J; also [10J, § 22 and [l1J, chap. VII. 
2) [8]. 

5 



Boolean algebra. Thus we only have to distinguish between Boolean 
operations and ring operations. Since the Boolean multiplication 
coincides with the ring multiplication, mostly the justaposition 
will be used. Only when the fact is to be stressed that a Boolean 
multiplication is meant, we will use the Boolean notation (cap). 

2. Boolean valued rings. 

2.1 DEFINITION . A commutative ring R with identity is called a 
BOOLEAN VALUED RING 1), provided there exists a maPPing cp of R 
into a Boolean algebra B 

cp: a ~ cp (a) a E R, cp (a) E B, such that 

(i) cp (a) = 0 if and only if a = 0, 
(ii) cp (ab) = cp (a) n cp (b), 
(iii) cp (a + b) < cp (a) u cp (b). 

The subset of B consisting of all images of Runder the map ping cp 
will be indicated by <l> (R). 
Same proper ties of Boolean valued rings, immediate consequences 
of the definition, are: 

2.1.1 an = 0 implies a = 0 ; 

or: a Boolean valued ring does not contain proper (i .e. non 
zero) nilpotent elements. 

2.1.2 cp (a) = cp (- a). 
2.1.3 cp (a) < cp (1) for all a ER. 
2.1.4 cp (a) = cp (1) if a is a unity of R (i.e. if a-I ER). 
2.1.5 cp (a + b) = cp (a) u cp (b) if ab = O. 

From 2.1.1 it follows that R is isomorphic to a sub direct sum of 
integral domains 2) . As pointed out in the Preface we will not make 
use of this fact in the sequel. Since, however, conversely any 
subdirect sum with identity of integral domains is a Boolean valued 
ring, as we will show, one would then have 

2.2 THEOREM . A commutative ring R with identity is a Boolean 
valued ring if and only if R does not contain proper nilpotent elements. 
To show th at any subdirect sum with identity of integral domains 
is a Boolean valued ring we rem ark that such a sub direct sum is a 
subring of a full direct sum of integral domains. A full direct sum 

1) [20]. 
2) [15J, Theorem 31, p. 123 . 
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of integral domains may be considered as the commutative ring S 
with identity consisting of all functions f of a variabie cu E Q, such 
that f (cu) E I (cu), where I (cu) is an integral domain for each 
cu E Q 1). Equality, addition and multiplication of elements of the 
full direct sum are to be defined component-wise, where f (cu) is 
the cu-component of the element f of the full direct sumo We will 
denote the full direct sum by 

S = ~* I (cu), 
wen 

Q being the cardinality of the set of component integral domains 
I (cu). The idempotents of S are those functions of cu that only 
assume the values zero and one, as f (cu) f (cu) = f (cu) is equivalent 
to f (cu) = 0 or f (cu) = 1 since I (cu) is an integral domain. One 
could say: the idempotents of S are the characteristic functions in S. 
This Boolean algebra Bs of idempotents of S will be used for the 
valuation of R. The situation therefore is: 

s 

S: full direct sum of il1tegral domail1s. 
R: subdirect sum of S. 
Es: idempotel1ts of S. 
ER: idempotel1ts of R. 

It follows easily that if a subdirect sum of integral domains has an 
identity, this must be the identity of the full direct sum, i.e. the 
iunction f such th at f (cu) = 1 E I (cu) for all cu E Q. 
Using the fact that for the Boolean algebra Bs of idempotents of 
Sf < g is equivalent to f n g = f (or to f u g = g) one proves 
easily: the idempotent f pre ce des the idempotent g if and only if 
f (cu) = 0 for all those elements cu E Q for which g (cu) = O. 

1) [16]. 
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Now let s ES and let a be the characteristic function (i.e. idem
potent) in Bs defined by 

Then the mapping tfl 

a (w) = ° if s (w) = 0, 
a (w) = 1 if s (w) =F 0. 

tfl: s -+ tfl (s) = a, SE S, a E Bs 

is a mapping of the full direct sum S onto the Boolean algebra Bs of 
idempotents of S. One may easily verify that the conditions for a 
Boolean valuation are satisfied. Since R is a subring of S = L*I (w) 
we thus have constructed a Boolean valuation for R. WEn 

Property 2.1.3 implies that one can always assume that tfl (1) = 1. 
F or if tfl (1) =F 1, consider the subset B * of B consisting of all elemen ts 
of B preceding tfl (1). This is a distributive sublattice with ° and 
tfl (1) as its least and greatest element. Defining u* = u' n tfl (1) 
for all u E B* one sees readily that 

u n u* = 0, 
u u u* = tfl (1). 

Thus u* is the complement of u in B* so th at B* is a Boolean algebra. 
Sussman [19J introduced the notion of associate ring. Sin ce we 

want to refrain from using the fact that a Boolean valued ring may 
be considered as a subdirect sum of integral domains, we give a 
different definition. 
2.3 DEFINITION. I/ B denotes the Boolean algebra 0/ aU idempotents 
0/ a Boolean valued ring R, we eaU R an ASSOCIATE RING provided 

(i) <l> (R) < B, 
(ii) tfl (u) = u for all u E B. 

1/, in addûion, the Boolean algebra B is comPlete, we eaU R a 
COMPLETE, ASSOCIATE RING. 

Denoting by C the set of all x E R such that tfl (x) = 1 and by U 
the set of all unities of R the following properties of associate rings 
may easily be proved 

2.3.1 <l> (R) = Band tfl (1) = 1. 
2.3.2 tfl (bI - b2) = 1 if and only if bI = b2' (bI, b2 E B). 
2.3.3 a tfl (a)' = ° for all a ER. 
2.3.4 a tfl (a) = a for all a E R. 
2.3.5 U <C. 
2.3.6 a + tfl (a)' E C. 
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As an example of associate rings we will diseuss the commutative 
regular rings with identity 1). A ring R is called regular provided 
for each element a ER there exists an element x E R sueh that 
axa = a. 

2.4 THEOREM. A commutative regular nng R with identity is an 
associate ring 2) . 
Proof. Let a ER and let XE R su eh that a2x = a. Such an element 
x must exist in R since Ris regular. Suppose there was also another 
element y ER su eh that a2y = a . Then we would have ax = ay 
sinee a2xy = ax but also a 2xy = ay. This proves that the mapping rp 

rp: a -+ rp (a) = ax; a,x E R su eh that a2x = a 

is single valued. 
Furthermore ax is an idempotent of R sinee axax = ax. If u is 
an idempotent of R we have rp (u) = u. Left to verify whether the 
properties required for a Boolean valuation are satisfied. 

(i) a = 0 implies ax = 0 ; also ax = 0 implies a = 0; for if not , 
we would have a2x = a while (ax) a = 0 and a i= O. 
(ii) if rp (a) = ax and rp (b) = by, where a2x = a and b2y = b, 
we see immediately that rp (ab) = abxy = rp (a) rp (b) sinee 
a2b2xy = ab. 
(iii) rp (a) = ax; rp (b) = by; rp (a + b) = (a + b)z; again holding 
a2x = a, b2y = band (a + b) 2Z = a + b. We have to show 
th at rp (a + b) < rp (a) u rp (b), which is equivalent to rp (a + b) 
{ rp ( a) u rp (b) } = rp (a + b) . Expressed in terms of the ring operations 
solelythismeans: rp (a + b) {rp (a) + rp (b) -rp (a) rp (b) } = rp (a + b). 

Straight forward substitution and eomputation shows that the 
equality is valid. Examples of regular rings are the p-rings 3). 
A p-ring (p is prime) is a ring with more than one element, with the 
property th at for every element a it holds that aP = a and pa = O. 
p-Rings are necessarily commutative. Furthermore: a p-ring is 
regular since for any element a of the ring it holds aaP- 2a = a, thus 
satisfying the requirement for regular rings. A special inst anee of 
p-rings are 2-rings, the so ealled Boolean rings. 
Thus we can say that p-rings with identity are associate rings. 
The valuation in case of p-rings is 

1) [17]. 
2) see a lsa [19J. 
3) [15J, chap. VII . 
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ql: a --+ ql (a) = aaP- 2 = a P- 1, 

and more in particular for 2-rings (Boolean rings) 

ql: a --+ ql (a) = a, 

so that in case of a 2-ring the valuation is the identity map ping of 
the ring onto itself. 
As any Boolean algebra can be converted into a Boolean ring 
(2-ring), we see th at also Boolean algebras are instanees of associate 
rings. 

Finally we prove 

2.5 THEOREM. A n associate ring R is regular ij and only ij U = C. 
Proof. Suppose U = C. Let a ER; then ql (a) EB and ql (a)' EB. 
Set a* = a + ql (a)', so that a E C (prop. 2.3.6) and hen ce a EU so 
that (a*) - l ER. Now we have aa* = a (a + ql (a)') = a2 ; thus 
a2 (a*)-l = a and Ris regular. 
Conversely, suppose that R is regular. Let a E C; then a2x = a for 
some x E R. ql (a) = 1 and ql (a) = ax, from which ax = 1, so th at 
a EU. Since we also have U < C (prop. 2.3.5) it follows U = C. 

3. Boolean metric spaces. 

3.1 DEFINITION. An abstract set M is called a BOOLEAN METRIC 

SPACE 1), provided there exists a maPPing d oj M X M into a Boolean 
algebra B 

d: (a,b) --+ d (a,b), (a,b) E M X M, d (a,b) EB 

such that 
(i) d (a,b) = 0 if and only if a = b, 
(ii) d (a,b) = d (b,a), 
(iii) d (a,b) < d (a,c) u d (c,b). 

3.2 THEOREM. Every Boolean valued ring R can be made into a 
Boolean metric space M by dejining d (a,b) = ql (a - b). R will be 
said to be the underlying set oj Mand M wilt be said to be obtained 
jrom R. 

Proof. One may easily verify that ql (a - b) satisfies the require
ments for a Boolean distance. 
Denoting the set of all distances of pairs of elements of R by D (R), 
we have D (R) = <I> (R), so that in case of an associate ring R we 
have D (R) = B, where Bis, again, the Boolean algebra of idem
potents of R. 

1) [6J, [7J, [5J, [20]. 
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3.3 DEFINITION. A Boolean metric space M obtained Irom a (comPlete) 
associate ring R by delining d (a,b) = cp (a - b) lor A,b ER, wil! be 
called a (COMPLETE) ASSOCIATE BOOLEAN METRIC SPACE. 
In the same way: a REGULAR BOOLEAN METRIC SPACE M is a Boolean 
metric space obtained. from a commutative regular ring R with 
identit y . 
If the underlying set R is a p-ring with identity the Boolean metric 
space M, obtained from R, will be called a BOOLEAN METRIC p-SPACE. 
In particular a BOOLEAN METRIC 2-SPACE is a Boolean metric 
space M obtained from a Boolean ring R (2-ring) with identity or a 
Boolean algebra R; i.e. from a ring R for which every element is 
idempotent, so th at R = B. 
It is this class of Boolean metric 2-spaces th at Blumenthal deals 
with in BGI and BGII. 

3.4 THEOREM. 11 M is an associate Boolean metric space and B the 
Boolean algebra ol idempotents ol R, the underlying set ol M, B is a 
Boolean metric 2-space with d (a,b) = a'b u b 'a lor al! a,b EB. 
We cal! B the Boolean metric 2-space ASSOCIATED with M. 

Proof. a - b = a (1 - b) - b (1 - a); 
cp (a - b) < cp (a) cp (1- b) u cp (b) cp (1 - a). 

Referring to section 1 of th is chapter we have: 1 - a = a' and 
1- b = b' . 
Since Ris an associate ring and a, b, a', b' are all elements of B, 
so that cp (a) = a, cp (b) = b, cp (a') = a' and cp (b') = b'; we thus 
have cp (a - b) < ab' u a'b . . . . . . . . . . . . . . . (i) 

Moreover: ab' (a - b) = ab', 
from which cp (ab') cp (a - b) = cp (ab'), 
or cp (ab') ~ cp (a - b), or ab' < cp (a - b). 

Similarly: cp (a'b) < cp (a - b), or a'b < cp (a - b), 
so that a'b u b'a < cp (a - b) . . . . . . . . . . . 

(i) and (ii) imply: cp (a - b) = a'b u b'a. 

(ii) 

3.5 COROLLARY. 11 M is a Boolean metric 2-space, d (a,b) = 
a'b u b'a lor all a,b ER 1). 
Proof. R is a Boolean ring (2-ring) so that all elements are idem
potent: R = B. 
Note: in the sequel Boolean metric p-spaces will be denoted by Mp. 

1) see also [5]. 
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3.6 DEFINITION. A distance-preserving correspondence between the 
elements ot two subsets ot an associate Boolean metric space M is called 
a CONGRUENCE, and such a maPPing ot the space onto itselt is called a 
MOTION . 

Tt is obvious that for a fixed element a E M the mapping m (x) = 

x + a is amotion. This class of motions will be called TRANSLATIONS. 

There is a unique translation that takes any assigned element a into 
any assigned element b, namely the translation m (x) = x + (b -a) . 
If M2 is a Boolean metric 2-space, we see from section 1 and from 
COROLLARY 3.5 that the translation m (x) = a + x becomes 
m (x) = d (x,a) or m (x) = d (x,m (0)) since a = m (0). Blumenthal 1) 

has proved that any motion of a Boolean metric 2-space M2 can be 
written as m (x) = d (x,m (0)). Thus we may say that for Boolean 
metric 2-spaces translations are the only motions. 
Blumenthal also showed that any congruent mapping f of M2 into 
itself is involutary: ff (x) = x, for all x E M2, from which it follows 
that f is a motion. Since these results also apply to the Boolean 
metric 2-space B, associated with any associate Boolean metric 
space M, we can say that every congruent mapping f of M such 
th at f (B) < B can be written as f (x) = d (x,f (0)) as far as f 
applies to B, i .e. for all x EB < M; and also th at any such congruence 
fis involutory for B: ff (x) = x for all x EB, from which it follows 
th at f is a motion of B. Zemmer 2) has described the motions of 
Boolean metric p-spaces Mp by means of matrices with elements 
from the Boolean algebra of idempotents of the p-ring R, under
lying Mp. 

3.7 DEFINITION. A subset {a",} ot an associate Boolean metric 
space M is called a METRIC BASIS tor M, provided every element 
x E M is uniquely determined by its distances d (x,act) trom the 
elements ot the set { a:x }. 

It follows readily from LEMMA 2.2 chap. III th at the set of constants 
of a homogeneous Boolean valued ring R, underlying a Boolean 
metric space M, forms a metric basis. 
This implies th at the identity 1 and its successive summands 
2,3, ... . .. ,p of a Boolean metric p-space Mp form a metric basis 
for Mp 2). 

1) [4J, § 133, p . 334. 
2) [20]. 
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CHAPTER II 

RINGS OF PARTITIONAL MAPPINGS 

I. The rings KB and KB*. 

Let B be a complete Boolean algebra and K a commutative ring 
with identity. For the sequel it is of importance to rem ark that in a 
complete Boolean algebra the distributive law 

x n U Y'X = U (x n Yat) (and dually) 

holds 1), from which 

U X at n U Y(3 = U (xC! n Y(3) (and dually) . 

1.1 DEFINITION. A maPPing ~ 

~: a -+ ~ (0:) 0: E K, ~ (0:) EB 

of a commutative ring K with identity into a comPlete Boolean algebra 
B su eh that 

(i) ~ (fL) ~ (v) = 0 if fL =F v, 
which is also expressed by saying th at the elements 
~ (0:),0: EK are PAIRWISE ORTHOGONAL, 

(ii) U ~ (0:) = 1 
<:lEK 

is called a PARTITIONAL MAPPING. 

We say that ~ assumes the value 0: on ~ (0:) if ~ (0:) =F 0 and that ~ 
does not assume the value 0: if ~ (0:) = O. 
A partitional mapping is called a FINITE partitional mapping if ~ 
only as su mes finitely many values. 

1.2 THEOREM. The set of all partitional maPPings of a comm~ttative 
ring K with identity into a complete Boolean algebra B is a commutative 
ring KB* with identity. 
If F is a field, the ring FB* is regular. 

Proof. We first introduce a multiplication and addition for the 
elements of KB*. 

1) [10J. Satz 24.1. p. 130. 
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Therefore let Y;l and Y;2 be two elements of KB* 

Y;l: rx --+ h (rx); IJ. E K, Y;l (rx) EB ; 
Y;2: rx --+ Y;2 (IX); rx EK, Y;2 (rx) EB. 

Then we define 

h Y;2: rx --+ U Y;l (fL) ~2 (v) 
f.l1l = CX 

Y;l + Y;2: rx --+ U Y;l (fL) Y;2 (v) 
f.l + II = !x 

It is clear that the mappings Y;l Y;2 and Y;l + Y;2 both be long to KB*. 
Furthermore it is clear that the multiplication and the addition are 
commutative. That the multiplication is associative may be seen 
as fol1ows 

(h Y;2) Y;3: rx --+ U {( U Y;l ([1-) Y;2 (v)) Y;3 (À)}, which is equivalent 
xÀ= rx f.l1l = X 

to rx -;. U U Y;l ([1-) Y;2 (v) Y;3 (À), or to rx --+ U Y;l (fL) ~2 (v) Y;3 (À). 
xÀ= rx f.l1l = X [.LIIÀ = rx 

Similarly we find Y;l (Y;2 Y;3) : IX --+ U Y;l ([1-) Y;2 (\I) Y;3 (À) , 

trom which (Y;l Y;2) Y;3 = Y;l (Y;2 Y;3). 
The associativity for the addition is proved similarly. 
To prove the distributive law we have 

h (Y;2 + Y;3) : rx --+ U Y;l (À) { U Y;2 ([1-) Y;3 (\I) }, or equivalently 

or also rx --+ U h (À) Y;2 (fL) Y;3 (v) . . . . (i) 
À(f.l+ II) = rx 

Furthermore we have 
h Y;2 : IJ --+ U h ([1-) Y;2 (\I) and Y;l Y;3 : rx --+ U Y;l ([1-) 'h (\I) 

f.l ll = rx f.lll = rx 

from which Y;l Y;2 + Y;l Y;3 : IX --+ U [{ U h (p) Y;2 ([1-) } 
~ +y= (f. Pf.l = ~ 

{ U Y;l (0") Y;2 (\I) } ] 
r:JII = y 

which is equal to rx --+ U U U Y;l (p) Y;2 ([1-) Y;l (0") tJ;3 (\I). 
~ +y= 1)( PfJ. = ~ r:JII = y 

But since Y;l (p) tJ;1 (0") = 0 if p =1= 0" and Y;l (p) Y;l (0") = 

h (p) = Y;l (0") if P = 0" 

we find Y;l Y;2 + h Y;3 : rx --+ U U U Y;l (À) Y;2 ([1-) Y;3 (\I) 
~ +ï= rx ÀfJ. = ~ ÀII = y 

which is equivalent to rx --+ U h (À) Y;2 ([1-) Y;3 (v) . . .. (ii) 
À(fJ.+V) = rx 
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From (i) and (ii) it follows IjIl (1jI2 + 1j13) = IjIl 1j12 + h 1j13. 

To complete the proof that KB* is a ring with identity we have to 
indieate the zero and the identity of KB* together with a negative 
for eaeh Ijl E KB*. 
The zero of KB* is the mapping 0 : Cl. ~ 0 (Cl.) ; Cl. ER, 0 (Cl.) EB, 
su eh that 

o (0) = 1 and 0 (Cl.) = 0 if Cl. =1= O. 

Apparently 0 E KB*. It holds th at Ijl + 0 = Ijl for every Ijl E KB* 
as may be seen from Ijl + 0 : Cl. ~ U Ijl (fL) 0 (v) = Ijl (Cl.) 

For Ijl E KB*, Ijl : Cl. ~ Ijl (Cl.) 
we introduce the mapping -Ijl : Cl. ~ Ijl (- CI.) 
We then have Ijl + ( -Ijl) : Cl. ~ U Ijl (fL) Ijl (- v); 

(i) U Ijl (fL) Ijl (-v) = UIjI(fL) =1, 
~+ v~ o ~ 

(ii) U Ijl (fL) Ijl (- v) = 0, sinee fL =1= - v. 

From (i) and (ii) it follows Ijl + (-Ijl) = O. 

The identity of KB* is the mapping 1 : Cl. ~ 1 (CI.); Cl. ER, 1 (Cl.) EB, 
sueh that 

1 (1) = 1 and 1 (Cl.) = 0 if Cl. =1= 1. 

Apparently 1 E KB* It holds that Ijl 1 = 1 for every Ijl E KB* as 
may be seen from Ijl 1 : CI. ~ U Ijl (fL) 1 (v) = Ijl (CI.). 

~v~a 

To show th at for a field F the ring FB* is regular we eonsider for 
the mapping Ijl E FB* the mapping 1jI* : Cl. ~ 1jI* (CI.); Cl. E F, 1jI* (Cl.) EB, 
sueh th at 

1jI* (Cl.) = Ijl (~) if Cl. =1= 0 and 1jI* (Cl.) = Ijl (0) if Cl. = 0, 

and we will show Ijl 1jI* Ijl = Ijl . 

Ijl 1jI* Ijl : Cl. ~ U Ijl (x) 1jI* (À) Ijl (fL) ; 
xÀ~~ ()' 

(i) Cl. =1= 0; then À =1= 0, so that we have U Ijl (x) 1jI* (À) Ijl (fL) = 
xÀ~~<X 

xÀ~~ <X Ijl (x) ~ (D Ijl (fL) = X2~~ <x Ijl (x) Ijl (~) = x~<X Ijl (x) = ~ (CI.). 
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(ii) rx = 0; U tjJ (x) tjJ* (À) tjJ (fL) = 
xÀf-l = cx 

{ xÀ~= O y; (x) tjJ G) tjJ (fL) } u {xÀ~= O tjJ (x) y; (0) tjJ (fL) } = 
À* O À= O 

{ U tjJ (x) tjJ (~) } u tjJ (0) = { U tjJ (0) y; (~) } u tjJ (0) 
X 2À= O À. À* O À 
À* O 

o u tjJ (0) = tjJ (0). 

This completes the proof of THEOREM 2.2. 
It follows from the detinition of a finite partitional mapping y; th at 
y; (rx) only differs from zero for finitely many elements rx E K. 
Repeating the preceding construction of KB*, but now only allowing 
finite partitional mappings to occur, one obtains a commutative 
ring KB with identity. Again, if F is a field, FB is regular. B need 
not be complete for this construction. Thus we have 

2.3 THEOREM. The set of all finite partitianal maPPings at a cammu
tative ring K with identity inta a Boolean algebra B is a cammutative 
ring KB with identity. 
lf F is a field, the ring FB is regular. 
It may be noted that KB < KB* and that KB = KB* if K is finite. 

2. The sets < K,B > , K* and B*. 

Let KB be the set of all finite partitional mappings of a commu
tative ring K with identity into a Boolean algebra B. We will 
consider the subset < K,B > of KB, consisting of all finite 
partitional mappings < ~,b > 

< ~,b > : rx --+ < ~,b > (rx); rx EK, 0 =J= ~ EK, 0 =J= b EB 

such that (i) < ~,b > (1;) = b, 
(ii) < ~,b > (0) = b', 
(iii) < ~, b > (rx) = 0 if 0 =J= rx =J= ~, 

while for ~ = 0 or b = 0 we define the map ping < 1;,b > to be the 
zero mapping 0 E KB. 

2.1 LEMMA. < ~l,bl > < ~2,b2 > = < ~l ~2,bl b2 >. 
Proof. Consider U < ~l,bl > (fL) < ~2,b2 > (v). 

f-l\l = CX 

< ~l,bl > (fL) is zero for all fL such that 0 =J= fL =J= ~l due to (iii) above ; 
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< çz,bz > (v) is zero for all v such that 0 0:/= v 0:/= çz due to (iii) above. 
Therefore we only have to investigate the following cases: 

I IX = fL'I [ fL [ 
'I [ < ~v bI > (fL) < ~2' b 2 > ('I) 

~l ~2 
I 

~l ~2 bI b 2 

0 ~l 0 bI b~ 

0 0 ~2 b~ b 2 

0 0 0 b~ b~ 

Since bI b~ u b~ bz = (bI bz)', it follows 

U < çl,bl > (fL) < çz,bz > (v) = < Çl çz,bl bz > (IX) 
fL'I = IX 

or < çl,bl > < çz,bz > = < Çl ÇZ,bl bz > . 

2.2 COROLLARY. < ç,b > = < ç,1 > <l,b > . 

2.3 LEMMA. < çl,b > + < ç2,b > = < Çl + ç2,b > . 
Proof. Similar as above. 

2.4 COROLLARY. For any integer k it holds that k < ç,b > = 
< kç,b > . 
Proof. It follows from LEMMA 2.3 by induction that n < ç,b > = 
< nç,b > , for any natural member n. Since - < ç,b > = 

< - ç,b > by definition, we have k < ç,b > = < kç,b > for 
any integer k. 

2.5 LEMMA. < Ç,bl > + < ç,bz > = < ç,bl U bz > if bI bz = O. 

Proof. Consider U < ç,bl > (fL) < ç,bz > (v). For the same re as ons 
fL + 'I = IX 

as above we only have to investigate the following cases: 

IX = fL+'I [ fL [ 
'I 

[ 
< ~, bI > (fL) < ~, b 2> ('I) 

2~ E, ~ bI b 2 = 0 

~ ~ 0 . bI b~ = bI since bl:S b~ 

~ 0 ~ bi b 2 = b 2 sin ce b 2 :S b~ 

0 0 0 bi b~ = (bI u b 2)' 
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Thus it follows th at U < ~,bl > (r.L) < ~,b2 > (v) = < ~,bl U b2 > (ex) 
f.L + v= O( 

or < ~,bl > + < ~,b2 > = < ~,bl U b2 > . 

2.6 LEMMA. < ~l,bl > + < ~2,b2 > = < ~1 + ~2,bl b2 > + 
< ~l,bl b~ > + < ~2,b~ b2 >. 

Proof.<~l,bl> = <~1,blb2Ublb~ > = <~1,blb2>+<~1,blb~ > 
<~2,b2> = <~2,bl b2 u b~ b2 > = <~2,blb2 > + <~2,b~ b2 > 

from which the result, using LEMMA 2.3. 
Let < K,b > be the subset of < K,B > consisting of all elements 

< ~,b > for a fixed element b of B, b * O. 

2.7 THEOREM. For any b EB, different from zero, < K,b > ~ K. 

Proof. We will let ~ E K correspond with the element < ~,b > of 
< K,b >. This is a one to one correspondence between < K,b > 
and K. To prove < K,b > ~ K we have to show for ~1 , ~2 EK 

(i) < ~l,b > < ~2,b > = < ~1 ~2,b >, 
(ii) < ~l,b > + < ~2,b > = < ~1 + ~2,b > . 

(i) follows from LEMMA 2.1 and (ii) from LEMMA 2.3. 
For the special case b = 1 we will denote the element < ~,1 > by ~, 
so that ~ is the mapping ~: ex ~ ~ (ex); ex E R,~ (ex) EB, such th at 

In particular we have 

and 

~ (~) = 1 and ~ (ex) = 0 if ex * ~ . 

0: ex ~ 0 (ex) such th at 
o (0) = 1 and 0 (ex) = 0 if ex * 0, 
1: ex ~ 1 (ex) such that 
1 (1) = 1 and 1 (ex) = 0 if ex * 1, 

as we have already introduced before. 
This special subset < K,l > of all elements ~ = < ~,1 > will be 
called the set of constants of KB (and of KB*) and will be denoted 
by K*. 

Resuming we have K ~ < K,b > < KB < KB* for any b * 0, 
and in particular K ~ < K,1 > = K* < KB < KB* . 

Let < 1,B > be the subset of < K,B > consisting of all elements 
< 1,b >. 

2.8 THEOREM. < 1,B > is lattice-isomorphic to B. 

Proof. We willlet bE B correspond with < 1,b > E < 1,B >. This 
is a one to one correspondence between Band < 1,B > . In order 
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to establish the lattice-isomorphism between Band < 1,B > we 
will prove 

(i) < 1,bl > < 1,b2 > = < 1,bl b2 > 
(ii) < 1,bl > + < 1,b2 > - < 1,bl > < 1,b2 > = < 1,bl U b2 > . 

(i) follows from LEMMA 2.1. 

Since < 1,bl > + < 1,b2 > - < l,bl > < l,b2 > = < l,bl > + 
< 1,b2 > + < - l,bl b2 > we will consider 

U < l,bl > (fL) < l,b2 > (v) < .:...- 1,bl b2 > (À) . 
f.L + V+ À= 1X 

v 

1 1 1 - 1 

o 1 0 - 1 

o 0 1 - 1 bi 

- 1 0 0 - 1 b~ 

bI b 2 

bI b 2 

bI b 2 

bI b 2 

2 1 1 0 bI b 2 (bI b 2)' = 0 

1 1 0 0 bI b~ (bI b 2)' = bI b~ 

1 0 1 0 b~ b 2 (bI b 2)' = b~ b 2 

o 0 0 0 b~ b~ (bI b 2)' = b~ b~ I 
'--------.----L.-----'-------'-----L-___ _ ~. 

Since bI b2 u bI b~ u bi b2 = bI U b2 and bi b2 = (bI u b2)' 

we have U < 1,bl > (fL) < l,b2 > (v) < -1,bl b2 > (À) = 

f.L +v + À= 1X < l,bl U b2 > (IX) 

and thus < 1,bl > + < l,b2 > - < l,bl > < l,b2 > = < 1,bl u b2 >. 
This proves that < I,B > is a Boolean algebra, lattice-isomorphic 
to B, whose Boolean operations expressed in terms of the ring 
operations of KB are 

< 1,bl > n < l,b2 > = < l,bl > < l,b2 > , 
< 1,bl> U <1,b2 > = < 1,bl > + < 1,b2 > - < 1,bl > < l,b2 > . 

2.9 THEOREM. 11 D is a commutative integral domain with identity , 
the set B* ol idempotents ol DB* coincides with the set ol idempotents 
ol DB and B* is lattice-isomorphic to B. 

Proof. We first will show that B* = < I,B > . Let < l,b > E 
<1,B >. Then <1,b > < 1,b > = < 1,b > sothat < 1,b > EB*. 
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Now, conversely, let tjJ E B*. This means U tjJ (fL) tjJ (\I) = tjJ (IX), 
fJ.'1 ~ ()( 

which is equivalent to U tjJ (fL) = tjJ (IX), from which it follows 
fJ.2~ ()( 

U tjJ (fL) tjJ (IX) = tjJ (IX). If tjJ (IX) * 0 there must exist an element 
fJ.2 ~ ()( 

fL E D such that fL = IX and fL2 = IX. For the integral domain D this 
is equivalent to IX = 0 or IX = 1. Thus we may say that, if 0 * IX * 1, 
tjJ (IX) must be equal to zero. Setting tjJ (1) = b, tjJ (0) must equal b' in 
order to satisfy the requirements for a partitional mapping. Since 
tjJ thus tums out to be the element < 1,b > , we have proved 
tjJ E < 1,B > . Thus B* = < 1,B >. As < 1,B > < < D,B > 
< DB we have proved at the same time that all idempotents of DB* 
are also idempotents of DB. The converse being trivi.al it follows 
that the set of idempotents of DB* and DB coincide and are equal 
to B*. 
Referring to section 1 chap. land to THEOREM 2.8 it follows that 
B* ro..J B. 

~---<><l.bl>E<lJS >, 

circle surface : KB. 
circumference with centre: B* ~ B . 
centre: zero element of KB. 

s*;:;:s 

As will be shown in the next section : the Ie af of constants together 
with the circumference generate KB. 

3. KB generated by K* and B*. 

3.1 THEOREM. Any tjJ E KB that assumes n values (n > 2) lXi 
(i = 1 --+ n) on tjJ (lXi) resp., such that IXn = 0, can be written as 

0-1 

tjJ = ~ < lXi,tjJ (lXi > . 
i~1 
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Proof. The statement is apparently true for n = 2, as we then have 
y; = < ~1,Y; (~l) > . 
Assume the statement to be true for n = k - 1: any y; E KB that 
assumes k - 1 values ~i (i = 1 ---+ k - 1) on y; (~i) resp., sueh that 

k- 2 

~k-l = 0, ean be written as ~ = ~ < ~i, y; (~i) >. We will prove 
; = 1 

that then the statement is also true for n = k. 
Therefore let y; be an element of KB assuming kvalues cx.i (i = 1 ---+ k) 
on y; (~i) resp., sueh th at cx.k = O. Consider the element y;* derived 
from y; in the following fashion 

y;* (cx.i) = y; (~i) i = 1 ---+ k - 2 
y;* (0) = y; (~k-l) U y; (cx.k). 

Then y;* is an element of KB that assumes k -1 values ~i (i = 
k- 2 

1 ---+ k - 2), 0 50 th at y;* ean be written as y;* = ~ < ~t,y; (~i) > 
1= 1 

aeeording to the induetion assumption. We assert that y; = 
y;* + < cx.k- l,y; (cx.k- l) > . To prove this eonsider 

U y;* (fL) < cx.n- l,y; (~n-l) > (v) with the table (i = 1 ---+ k - 2) : 
fL +V= cx. 

cx. = fL + v I fL I 
v I <jJ* (fL) < cx.k - l, <jJ (cx.k - 1) > (V) 

cx.i + cx.k - l cx.i cx.k - l <jJ (cx.i) <jJ (cx.k- l) 0 

cx.i cx.[ 0 <jJ (cx.i) <jJ' (cx.k-l) <jJ(cx.;) 

cx.k - l 0 cx.k- l (<jJ (cx.k-l) U <jJ (cx.k)) <jJ. (cx.k-l) <jJ (cx.k- l) 

0 0 0 (<jJ (cx.k-l) U <jJ (cx.k)) Iji'(cx.k-l) <jJ(cx.k) = Iji(O) 

Thus we see U y;* (fL) < cx.k-l,y; (cx.k- l) > (v) = y; (cx.), or 
fL +V= cx. tjJ = tjJ* + < cx.k-l,tjJ (~k-l) >. 

Together with the in duet ion assumption this yields 
k- 2 u- I 

tjJ = ~ < cx.i,y; (cx.i) > + < ~k-l,tjJ (~k-l) > , or tjJ = ~ < cx.f,y; (cx.i) >. 
1= 1 1=1 

A slightly ehanged version of the preeeding theorem we have in 
the following 

3.2 THEOREM. Any tjJ E KB assuming n values ~i (i = 1---+ n) and 
u 

not assuming the value zero can be written as y; = ~ < cx.i,tjJ (~i) >. 
; = 1 
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Proof. Consider the element tfi*, derived from tfi in the following 
manner 

~* (CX:i) = ~ (CX:i) i = 1 ~ n - 1 
~* (0) = ~ (CX:n) . 

Due to the fact th at CX:i =f=. 0 for i = 1 ~ n - 1, we have ~* E KB 
and also ~ =~* + < CX:n,~ (cx:n) > which may be proved in a 
similar way as above by considering U ~* (fL) < CX:n , ~ (CX:n) > (v) . 

fL +V= OC 

OC = fL + v I fL I v I tjJ* (fL) < OCn, tjJ (ccn) > (v) 

cc! + CCn OCi OCn tjJ (CCi) tjJ (OCn) = 0 

CCi oci 0 tjJ (CCi) tjJ (ocn)' = tjJ (OCi) 

ccn 0 ccn tjJ (CCn) tjJ (CCn) = tjJ (CCn) 

0 0 0 tjJ (CCn) tjJ (OCn)' = 0 

Since ~* fulfils the requirements of THEOREM 3.1 we now have 
n-1 n 

~ = L < CX:i,~ (CX:i) > + < CX:n,tfi (CX:n) > , or ~ = L < CX:i,~ (CX:i) > . 
i = l ; = 1 

Combining THEOREMS 3.1 and 3.2 we have 

3.3 THEOREM. A n element ~ ol KB assuming n values CX:i (i = 1 -~ n) 
n 

can be written as ~ = L < CX:b~ (CX:i) > . 
; = 1 

I I ~ does not assume the value zero we have CX:i =f=. 0 lor i = 1 ~ n. 
11 ~ assumes the value zero on ~ (CX:n) we have CX:i =f=. 0 lor i = 1 ~ n - 1 
and CX:n = 0, so that < CX:n,~ (CX:n) > = O. 

n 

3.4 DEFINITION. A sum L < çi,bi > is called an ORTHOGONAL SUM 
provided ; = 1 

11 also 
(i) bi bJ = 0 
(ii) ~i =f=. ~j 

for i =f=. j. 
for i =f=. j 

the sum is called a SIMPLIFIED ORTHOGONAL SUMo 

3.5 DEFINITION. A REPRESENTATION ol an element ~ E KB is a sum 
n n 

L < çi,bi > such that ~ = L < ~i,bi > . 
1= 1 ;=1 

According to the pre ce ding theorems we now have 
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3.6 THEOREM. Every element 1)1 of KB has a umque simplified 
n 

orthogonal representation 1)1 = :E < ~i,bi > , ~i =F 0, bi =F 0, while 1)1 
i ~ l 

assumes the value ~i on bi. 
n 

Ij U bi = 1,1)1 does not assume the value zero. 
i ~ l 

n n 

Ij U bi =F 1,1)1 assumes the value zero on [ U bi ]' . 
i~ l i~ l 

n n 

i = l i ~ l n 

:E ~i < 1,bi > . 
i ~ l 

We thus see that every element 1)1 of KB ean be written as a linear 
eombination of elements from B* with eoeffieients in K*, or the 
other way around: as a linear eombination of elements from K* 
with eoeffieients in B*. Anyway, KB is generated by K* ~ K 
and by B* ~ B. 
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CHAPTER III 

ASSOCIA TE RINGS TH AT ARE RINGS 
OF PARTITIONAL MAPPINGS 

I. Unitary subrings of DB*. 

Let D be a commutative integral domain with identity and B a 
complete Boolean algebra. Let R be a unitary subring of DB*; i.e. 
let R be a ring of partitional mappings of D into B containing the 
identity of DB*. 

1.1 THEOREM. A unitary subring R ot the ring ot all partitional 
maPPings ot a commutative integral domain D with identity into a 
comPlete Booleal1. alf!,ebra B is a Boolean valued ring. 

Proof. Let ~ ER. Define cp (~) = ~ (0)'. 

(i) cp (0) = 0 (0)' = 0; cp (~) = 0 implies ~ (0)' = 0 or 
~ (0) = 1; i.e. ~ = O. 

(ii) cp (h ~2) = ~l ~2 (0)' = [ U ~l (fL) ~2 (v) ]' ; 
fLV = O 

cp (~l) cp (~2) = h (0)' ~2 (0)' = [~l (0) U ~2 (0) ]'. 

We have to show U ~l (fL) ~2 (v) = tf!l (0) U ~2 (0). 
fLV = O 

U ~l (fL) = 1 ; ~2 (0) = ~2 (0) U ~l (fL) = U ~l (fL) ~2 (0). 
fL fL fL 
U ~2 (v) = 1; h (0) = ~l (0) U ~2 (v) = U ~l (0) ~2 (v) . 
v v v 

Therefore we have ~l (0) U ~2 (0) = [ U ~l (0) ~2 (v) ] U [ U ~l (fL) ~2 (0). 
v 

But since D is an integral domain it holds that 

[ U h (0) ~2 (v) ] U [ U ~l (fL) ~2 (0) ] = U h (fL) ~2 (v). 
v fL fLV = O 

(üi) cp (tf!l + ~2) = (~l + ~2) (0)' = [ U h (fL) ~2 (v) ]'. 
fL + V= O 

cp (h) u cp (~2) = ~l (0)' U ~2 (0)' = [tf!l (0) ~2 (0) ]'. 

But ~ 1 (0) ~2 (0) < U h (fL) ~2 (v) so th at cp (~l + ~2) < 
fL + v= o cp (~l) U cp (~2). 
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The situation is the following: 

The Boolean algebra used for the valuation of R is B*. Since we 
assumed th at R is a unitary subring of DB* R contains the subring 
Do* of D*, generated by 1. 
R n D* is a subring of D* containing Do* . 
R n B* is a Boolean sub algebra of B* . 
Some properties of Rare : 

1.1.1 cp (u) = u for all elements u E R n B*. 

1.1.2 cp (<X.) = 1 for all elements <X. E R n D*, <X. * O. 

1.1.3 U cp (~ - <x) ' = 1. 

1.1.1. and 1.1.2 follow immediately from the definition of cp, u and <x. 

To show 1.1.3 we have cp (~) = ~ (0)'; cp (~ - <x) = (~ - <x) (0)' ; 
cp(~-<X.)' = (~-<X.)(O)= U ~(fL)<X.(- v)= U ~(fL) = ~(<X.),from 

~+ v~ o ~~~ 

which U cp (~-<X.)' = U ~ (<X.) = 1. 
CXED* 

We already know that as soon as R > D* and R > B* we must 
have R > DB since DB is generat ed by D* and B* . In that case 
the situation would be: 

1 o o 

DS* 
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Since DB and DB* have the same set of idempotents B*, B* is also 
the Boolean algebra of idempotents of R. Thus R is an associate 
ring and we have 

1.2 THEOREM. 11 R is a unitary subring ol the ring DB* ol all 
partitional maPPings ol a commutative integral domain D with identity 
into a complete Boolean algebra Band il in addition R contains the 
sets D* and B*, R is an associate ring whose set ol idempotents is B*, 
while DB < R ~ DB*. 

1.3 COROLLARY. DB and DB* are associate rings. 

2. Homogeneous Boolean valued rings. 

2.1 DEFINITION. A Boolean valued ring R containing an integral 
domain D with identity such th at 

(i) cp (IX) = 1 for all IX E D, IX i= 0 

(ii) n cp (x - IX) = 0 for all x E R 
()(ED 

will be called a HOMOGENEOUS BOOLEAN VALUED RING. The elements IX 
ol the integral domain will be relerred to as CONSTANTS. ft is understood 
that il D is an inlinite set, the Boolean algebra B should be complete. 
We now proceed to prove several lemmas, needed for our next 
theorem, all referring to a homogeneous Boolean valued ring R. 

2.2 LEMMA. cp (x - IX) = cp (y - IX) lor all IX E D imp lies x = y. 

Proof. cp (x - y) < cp (x - IX) U cp (y - IX) = cp (x - IX) for all IX ED. 
Thus cp (x - y) < n cp ~x - IX) = O. Therefore cp (x - y) = 0, or 
x= y. ()(ED 

2.3 LEMMA. cp (x - fL) u cp (x - v) = 1; X ER; fL,v E D; fL i= v. 
Proof. cp (x - fL) u cp (x - v) > cp (fL - v) = 1 since fL,V E D and fL i= v. 

2.4 LEMMA. cp (Xl X2 - fLV) < cp (Xl - fL) U cp (X2 - V); Xl,X2 ER; 
fL,v ED. 

Proof. Xl X2 - fLV = (Xl - fL) (X2 - v) + VXl + fLX2 - 2 fLV 
= (Xl - fL) (X2 - v) + v (Xl - fL) + fL (X2 - v). 

Therefore cp (Xl X2 - fLV) < cp (Xl - fL) cp (X2 - v) U cp (v) cp (Xl - fL) U 
cp (fL) cp (X2 - v) < cp (Xl - fL) U cp (X2 - v). 

2.5 LEMMA. cp (Xl - fL) U cp (X2 - v) U cp (Xl X2 - IX) = 1; lX,fL,V E D; 
IX i= fLV. 
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Proof. cp (Xl - [k) U cp (X2 - V) U cp (Xl X2 - a) > cp (Xl X2 - [kV) U 

cp (Xl X2 - a) = 1 according to LEMMA 2.4 and LEMMA 2.3 resp. and 
since a =I=- [kV . 

2.6 LEMMA. cp (Xl X2 - a) = n (cp (Xl - [k) U cp (X2 - v) ). 
[1.v ~ (x 

Proof. n n (cp (Xl X2 - a) U cp (Xl - [k) U cp (X2 - V)) = cp (X1X2 - a) 
[1. v 

using n cp (Xl - [k) = 0 and n cp (X2 - V) = O. But also: 
[1. v 

n n (cp (Xl X2 - a) U cp (Xl - [k) U cp (X2 - v)) = 

[1. v n (cp (Xl X2 - a) U cp (Xl - [k) U cp (X2 - V)) = 

n (cp (Xl X2 - [kV) U cp (Xl - [k) U cp (X2 - V)) = 

[1.v~ (x n (cp (Xl - [k) U cp (X2 - V)), 

from which the result. 
Similarly one proves 

[1.v ~ Q( 

2.7 LEMMA. cp (Xl + X2 - IX) = n (cp (Xl - [k) U'P (X2 - V)) . 
[1. + V ~ (x 

2.8 THEOREM. If R is a homogeneous complete associate ring then 
R is isomorphic to a ring of partitional maPPings R * such that 
DB < R* < DB*, where D is the integral domain of constants 
contained in Rand B the complete Boolean algebra of idempotents of R. 
Proof. Let X ER. Then define the mapping y; 

y;: a -+ cp(x - IX)' , aED,cp(x-a)EB, 

of D into B. 
This is a partitional mapping according to LEMMA 2.3 and prop. (ii) 
of DEFINITION 2.1. Let the set of all partitional mappings y; so 
obtained be denoted by R*. Then there is a one to one corre
spondenee between Rand R* due to LEMMA 2.2; furthermore 
R* < DB*. To show that R ~ R* we have 

(i) cp (Xl X2 - a) U cp (Xl - [k)' cp (X2 - V)' (LEMMA 2.6), 
~'J = Cï 

(ii) cp (Xl + X2 - IX) = U cp (Xl - [k)' cp (X2 - V)' (LEMMA 2.7). 
[1. + V ~ ,)( 

To prove DB < R* it is sufficient to show D* < R* and B* < R*. 
Let [k E D < R; then we have y; E R*, y;: a -+ cp ([k - oc)', and also 
< [k,1 > E D*, < [L,l > : oc -+ < [k,l > (oc) with 'P ([k - oc)' 
< [k,1 > (oc) for all IX E D, from which D* < R*. 
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Now let b EB < Rand consider tp (b - ex.); 
tp (b - 1) = tp (1 - b) = tp (b') = b', 
tp (b - 0) = tp (b) = b. 

We will prove th at tp (b - ex.) = 1 for 0 oF ex. oF 1. 
Suppose tp (b - ex.) oF 1 for 0 oF ex. oF 1. 
tp (b - ex.) u tp (b - 0) = 1 since ex. oF 0 (LEMMA 2.3); 
tp (b - ex.) = tp (b - ex.) u tp (b - 1) tp (b - 0) = 
(tp(b-ex.) utp(b-1)) n (tp(b-ex.) utp(b-O)) = tp(b-ex.) utp(b-1). 

But tp (b - ex.) u tp (b - 1) 7'=- 1 would contradict LEMMA 2.3 since 
ex. oF 1. Thus tp (b - ex.) = 1 for 0 oF ex. oF 1. 

Nowit follows readily thatforb EB < 1,b > E R*, so that B* < R*. 
For we have ~ ER*,~: ex.-+tp (b - ex.)', and also < 1,b > EB*, 
< 1,b >: ex.-+ < 1,b > (ex.). We just proved tp (b - ex.)' = < 1,b > (ex.) 
for all ex. E D, so th at B* < R*. 

3. p-Rings. 

3.1 THEOREM. 11 R is a homogeneous associate ring whose integral 
domain D ol constants is linite, we have R ~ DB, where B is the 
Boolean algebra ol idempotents ol R. 11 the set ol constants ol R is a 
linite lield, Ris regular . 

Proof. According to THEOREM 2.8 we have R ~ R*, where 
DB < R* < DB*. But since D is finite, we have DB = DB* from 
which DB = R* = DB*, so that R ~ DB. 
Note that since D is finite the Boolean algebra B of idempotents 
of R need not be complete. 
If the constants of R form a finite field F, we know that FB is 
regular, so that the same holds for R. 

The following results concerning p-rings were obtained by 
Foster [9J and Zemmer [20]. Since they follow from our pre ce ding 
discussion (and thus independently of the fact th at p-rings may be 
considered as subdirect sums of fields lp 1)) they will be mentioned 
here. 
Therefore let lp be the residue class of integers mod p for any 
prime p. Then we have 

3.2 THEOREM. A ring R is a p-ring with identity il and only il 
R ~ IpB lor some Boolean algebra B. 

1) [15J, Theorem 45, p. 146. 
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Proof. Suppose x E IpB with the following simplified orthogonal 
representation 

Then 

p-l 

X = l: i < 1,bi >, i E lp, bi EB. 
i=O 
p-l p-l 

xP = l: ip < 1,bi > = l: i < 1,bi > = X 
i= O i = O 

sin ce ip = i for all i Elp. 
p-l 

Also px = l: pi < 1,bi > = 0 
i = O 

since pi = 0 for all i lp. 

(i) 

(ii) 

(i) and (ii) together with the fact th at 1 E IpB yield the re sult that 
IpB (and thus any R ~ IpB) is a p-ring with identity. 
Now, conversely, let R be a p-ring with identity, whose set of 
idempotents is B. In the first place we established previously that 
p-rings are associate rings. 
Let 0,1,2, ...... , p - 1 be the zero of Rand the identity of R with 
its successive summands. Denote this set by F. Then we will show 

(i) F is a field lp, 
(ii) rp (i) = 1, i = 1 ~ P - 1, 

p-l 

(iii) n rp (x - i) = 0 for all x E R, 
i = O 

thus establishing the fact that p-rings are homogeneous Boolean 
valued rings. F being a finite field we may apply TH EO REM 3.1, 
from which we have R ~ IpB. 

(i) follows from the fact that R has prime characteristic p. 
(ii) follows from the fact th at R is a p-ring, so that we have 
rp (i) = ip-l = 1 since i E lp and i i= O. 

p-l p 

(iii) n rp (x - i) = n rp (x - i) = rp [ (x - 1) (x - 2) ...... (x - p) ]. 
i = O i=l 

But (x - 1) (x - 2) ...... (x - p) = xP - X = 0 for all x, from 
which the result. 

3.3 THEOREM. Let Y;l and Y;2 be two elements of a p-ring R = IpB 
with identity whose simPlified orthogonal representations are: 

p 

Y;l = l: i < 1,Y;1 (i) >, i E Ip,Y;l (i) EB, and 
i=l 

p 

Y;2 = l: i < 1,Y;2 (i) >, i E Ip,Y;2 (i) EB. 
i = l 
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Then we have lor the simplilied orthogonal representations ol ~l ~2 and 

h + ~2: 
p 

h ~2 = ~ i < 1,7t (i) > with 7t (i) = ~ ~l (m) ~2 (n), and 
i=l mn = i 

P 

~l + ~2 = ~ i < 1,0" (i) > with 0" (i) = ~ h (m) ~2 (n). 
i = l m+n = Î 

All integers are residue classes mod p. 

Proof. ~l ~2 (i) = U h (m) ~2 (n), 
mn = i 

but since bI u b2 = bI + b2 - bI b2 = bI + b2 if bI b 2 = 0 
we have h ~2 (i) = ~ ~l (m) ~2 (n), and similarly 

mn = i 

m+n= i 

Now apply THEOREM 3.6. chap. Il . 
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CHAPTER IV 

CONVEX BOOLEAN METRIC SPACES 

Throughout this chapter M stands for an associate Boolean metric 
space; i.e. a Boolean metric space obtained from an associate 
ring R by defining d(a,b) = cp (a - b) for a,b ER. The Boolean 
algebra of idempotents of R will be denoted by B. For a,b EB it 
holds: d (a,b) = a'b u b'a. 

1. The relations weakly-between and between. 

1.1 DEFINITION. We say that an element x E M is weakly-between 
two distinct elements a and bot M: B* (a,x,b), provided 

(i) d (a,b) = d (a,x) u d (x,b), 
(ii) a =F x =F b. 

It follows from the definition th at d(a,b) > d(a,x) and d (a,b) > 
d(b,x). 
It also follows from the definition that B* (a,x,b) and B* (b,x,a) 
are equivalent; i.e. the relation weakly-between is symmetric in the 
outer-points. 
By considering the set of all functions of a set .Q with values in a 
commutative ring with identity one obtains examples of associate 
Boolean metric spaces that contain isoceles and equilateral triples. 
Blumenthal showed that a Boolean metric 2-space M2 does not 
contain isoceles triples 1). This result also holds for the Boolean 
metric 2-space B associated with any associate Boolean metric 
space M. 
A few elementary properties of the relation weakly-between may 
be mentioned here. Their proves are all straight forward. 

1.1.1 B* (a,b,x) and B* (b,a,x) imply d (a,x) = d (b,x). 
1.1.2 If B* (a,b,c), B* (b,c,a) and B* (c,a,b) hold, then d (a,b) = 

d (b,c) = d (c,a) and conversely. 

1) [4J, § 131, p. 331. 
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1.1.3 B* (a,x,b) with d (a,x) = d (b,x) imply d (a,x) = d (b,x) = 

d (a,b). 
1.1.4 If d (a,x) = d (b,x), B* (a,b,x) is equivalent to B* (b,a,x). 

We thus see that to obtain also uniqueness of the inner-point for the 
relation between one has to impose stronger requirements. Therefore 

1.2 DEFINITION. We say th at the element XE M is between two 
distinct elements a and b oj M: B (a,x,b), provided d (a,b) > d (a,x) 
and d (a,b) > d (b,x). 
It follows from the definition that B (a,x,b) implies B* (a,x,b) and 
that B (a,x,b) is unique for the inner-point. In a Boolean metric 
2-space M2,B* (a,b,c) implies B (a,b,c), since a space M2 does not 
contain isoceles triples, so that d (a,c) = d (a,b) would imply 
b = c and d (a,c) = d (b,c) would imply a = b. 
From THEOREM 3.4 chap. land from aresult obtained by Blumen
thal l ) it follow5 

1.3 THEOREM. For a,b,c EB < M the relation B (a,x,b) is equivalent 
to a b < x < a u b, a =:1= x =:1= b. 

This, fortunately, implies th at for a,b EB such th at a < b, metric
betweeness coincides with order-betweeness, as in this case ab = a 
and a u b = b, so that B (a,x,b) and a < x < b are equivalent. 
For the relation weakly-between in an associate Boolean metric 
space M the following property holds 

1.4 PROPERTY. B* (a,x,b) and B* (a,y,b) and B* (x,z,y), a =:1= z =:1= b, 
imPly B* (a,z,b). 

Proof. B* (a,x,b) is equivalent to cp (a - b) > cp (a - x) and 
cp (a - b) > cp (b - x). 

B* (a,y,b) is equivalent to cp (a - b) > cp (a - y) and 
cp (a - b) > cp (b - y). 

B* (x,z,y) is equivalent to cp (x - y) > cp (x - z) and 
cp (x - y) > cp (y - z). 

It follows cp(a-b) > cp (a-x) u cp(a-y) > cp(x-y) > cp (x-z). 
Also cp (a - b) > cp (a - x) so that cp (a - b) > cp (x - z) u 

cp (a - x) > cp (a - z). 
Similarly cp (a - b) > cp (b - z). Thus cp (a-b) > cp (a-z) u cp (b-z). 
Together with cp (a-b) < cp (a-z) u cp(b-z) this yields cp (a-b) = 
cp (a - z) u cp (b - z) : B* (a,z,b). 

1) [4J, § 132, p . 333. 
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In a similar manner the following two properties are proved 

1.5 PROPERTY. B* (a,b,c) and B* (a,c,d), b =I=- d, imPly B* (a,b,d). 

1.6 PROPERTY. It B* (a,b,c) and B* (b,c,d) then B* (a,b,d) and 
B* (a,c,d) are equivalent. 

In case of a Boolean metric 2-space M2 we have the additional 
properties 

1.7 PROPERTY. B (a,b,c) and B (a,c,d) imPly B (b,c,d). 

Proof. B (a,b,c) is equivalent with ac < b < a u c, a =I=- b =I=- c. 
B (a,c,d) is equivalent with ad < c < a u d, a =I=- c =I=- d. 

It follows bd < ad u cd < c u cd = c, and also c < ac u cd < 
b u cd < b u d. Thus bd < c ::;: b u d or B (b,c,d) since b =I=- c =I=- d. 

1.8 PROPERTY. B (a,x,b) and B (a,p,x) and (B (x,q,b), b =I=- c =I=- d, 
imply B (p,x,q). 

Proof. From the pre misses it follows that pq < (a u x) (b u x) = 
ab u x = x and also p u q > ax u bx = (a u b) x = x, from which 
the result. 

2. Convexity. 

2.1 DEFINITION. An associate Boolean metric space M is said to be 
CONVEX provided tor every two distinct elements a and b ot M there 
exists an element x E M such th at B (a,x,b). 
Similarly the concept WEAKLY-CONVEX is defined. 
Blumenthal proved 1) for a Boolean metric 2-space that such a 
space is convex if and only if the underlying Boolean algebra is 
atom-free. 
For associative Boolean metric spaces we have 

2.2 THEOREM. The tact that the Boolean metric space M is atom-tree 
implies that M is weakly-convex and is implied by the convexity ot M. 

Proof. First suppose M is convex. Let u be an atom of B. There 
must, however, be an element a E M such that B (O,a,u), since M 
is convex. That is we have: u > cp (a) and u > cp (a - u). Both 
cp (a) = 0 and cp (a - u) = 0 are excluded since a =I=- 0 and a =I=- u, 
50 that we have 0 < cp (a) < u and also 0 < cp (a - u) < u, each 
contradicting the fact that u was an atom of B. 

1) BG Il . 
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Now suppose B is atom-free and let a,b EM. Consider cp (a - b) "* 0, 
since we suppose a "* b. There must be an element u E B such that 
o < u < cp (a - b). We assert B* (a,a + u,b) . 

To prove this we have : 

cp (a- b+u) < cp (a - b) ucp (u) = cp (a-b) since cp (u) = u < cp (a-b); 
thus cp (a - b + u) u cp (u) < cp (a - b) from which cp (a - b) = 

cp (a - b + u) u cp (u). 

Furthermore: a "* a + u sin ce u "* 0; and also a - u "* b since 
u "* a - b. This complet es the proof. 

3. Convectification. 

Blumenthal showed 1) that the requirement for a Boolean metric 
2-space to be convex is Ie ss restrictive than it might appear sin ce 
he indicated a way to embed every Boolean metric 2-space iso
morphically and isometrically in a convex Boolean metric 2-space. 
Ris argument is easily extended to the more general case. 

3.1 THEOREM. Every associate Boolean metric space M is iso
morphically and isometrically embeddable in a convex associate 
Boolean metric space M. 

Proof. Consider the set MI of all ordered pairs (a,b) of elements 
a,b of M = Mo. 

Define (al,bl) (a2,b2) = (al a2,b l b2), 
(al,bl) + (a2,b2) = (al + a2,bl + b2), 
cp (a,b) = (cp (a),cp (b)), so that 
d [ (al,bl),(a2,b2) ] = cp [ (al,bl) - (a2,bl) ] = 
cp [ (al - a2),(bl - b2) ] = (cp (al - a2), cp (bI - b2)) = 
(d (al,a2), d (bl,b2))' 

Then it is easily seen that MI is an associate Boolean metric space 
who se underlying set Rl is an associate ring whose set BI of 
idempotents consists of all ordered pairs (u,v) with u,V EB = Bo. 
The identification of (a.,a) E Rl with a E R = Ro embeds Mo 
isomorphically and isometrically in MI. 
By induction, repetition of this procedure yields a sequence of 
associate Boolean metric spaces {Mi }, each of which is embedded 
isomorphically and isometrically in the following . Let R* be the 

union of all sets Ri: R* = U Ri. Define multiplication, addition 
i = l 

I) BG Il. 
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and valuation for elements of R* in the same way in which these 
operations were defined in the ring Rk of smalle st index k that 
contains all the elements involved, then R* is an associate ring. 
If M* is the associate Boolean metric space obtained from R* and 
if B* is the Boolean algebra of idempotents of R*, one may easily 

00 

establish that B* = U Bi and that B* is atom free. For suppose 
i = l 

u E B* is an atom and Bk is the Boolean algebra of idempotents of 
Rk with smallest index k containing u; Ui.en it holds ° < (u,O) < 
(u,u) (and also ° < (O,u) < (u,u)) for (u,u) E BUI < B* . Thus u 
cannot be an atom. Since B* is atom-free M* is weakly-convex. 
But M is even convex in this case. To prove this, let x,y E M*, 
x =1= y. Consider (x,x), (x,y) and (y,y). We assert B ((x,x),(x,y),(y,y)), 
which is equivalent to cp ((x,x) - (y,y)) > cp ((x,x) - (x,y)) and 
cp ((x,x) - (y,y)) > cp ((y,y) - (x,y)). For these expressions we have: 
cp ((x,x) - (y,y)) = cp (x - y,x - y) = (cp (x - y),cp (x - y)), 
cp ((x,x) - (x,y)) = cp (O,x - y) = (O,cp (x - y)), 
cp ((y,y) - (x,y)) = cp (y - x,O) = (cp (y - x),O), 
from which the result. 
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CHAPTER V 

INTRODUCTION OF A TOPOLOGY 

I. Order-convergence. 1) 

Let {Xi }, i = 1,2 ... , be a sequence of elements of a partially 
ordered set P. An element u EP is called a LOWER-BOUND for the 
sequence {Xi }, provided u < Xi for all i. Dually an UPPER-BOUND 

v is defined. A sequence {Xi } is called BOUNDED provided the set 
U of all lower-bounds and the set V of all upper-bounds are not 
empty. 
An element 1t EP is called a SUB-ELEMENT for a sequence {Xi} in 
case 1t < Xj for all j > N. Dually a SUPER-ELEMENT cr is defined. 
Note that the set U of all lower-bounds is contained in the set rr 
of all sub-elements and that the set V of all upper-bounds is 
contained in the set L of all super-elements: U < rr and V < L. 
Also: each element of rr precedes each element of L. An INTER

ELEMENT P for a sequence {Xi} is an element of P such that 
7t < P < cr for all sub- and super-elements 1t and cr of the sequence 
{ Xi }. In case the set R of all inter-elements has a smallest resp. a 
large st element, we denote these by lim Xi (limes inferior) resp. 

lim Xi (limes superior). A sequence is called CONVERGENT provided 

lim Xi = lim Xi; in other words: provided the sequence has one and 

only one inter-element. This inter-element is called the LIMIT of the 
sequence. In case both sets rr and L are void the sequence {Xi} 

can not be convergent since every element of P is inter-element. 
In case of bounded sequences rr and L are not empty, since U 
and Vare not empty. 

Suppose we have a sequence {Xi} su eh that Xi = X for all i. 
The set rr of all sub-elements consists of all elements of P preceding 
the element x. The set of all super-elements consists of all elements 
of P following x. The only inter-element, therefore, is the element X 

') [14]. 
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itself, from which it follows that the sequence {Xi} converges to 
the limit x. 
From the definition of convergence it follows immediately that if a 
sequence converges to a limit X and also to a limit y, x and y must 
be equal, so that for convergent sequences the limit is uniquely 
determined, this being the only inter-element of the sequence. 
If { Xni } is a subsequence of { Xi } and if II,L and R denote the set 
of sub-elements, super-elements and inter-elements resp. for the 
sequence {Xi} and II*,L* and R* similarly for the subsequence 
{xni }, we have II < II*,L < L* and R* < R. From this it follows 
that if a subsequence of a convergent sequence converges, it must 
have the same limit as the sequence itself, since R only contains 
one element and hence R* contains at most one element. That 
there may be situations in which subsequences of convergent 
sequences do not converge (R* void) will be shown at the end of 
this section. 

RESULT. 11 one introduces in a partially ordered set the above 
described ORDER-CONVERGENCE lor sequences, one obtains a space in 
which the lollowing three conditions hold: 

(i) { Xi },Xi = X for all i, converges to X; 

(ii) {Xi} converges to a and {Xi} converges to b implies a = b; 
(iii) every convergent subsequence { xni } of a convergent sequence 

{ Xi } converges to the same limit as the sequence does. 

Because of the resemblance these three conditions bear with the 
three conditions imposed on a space to be a Fréchet L-space 1), we 
might say th at a partially ordered set P with the order-convergence 
constitutes a WEAK FRÉCHET L-SPACE. 

The term "order-convergence" for sequences in complete lattices 
was first introduced by G. Birkhoff 2) and independently by 
L. Kantorovich 3). H. Löwig, however, introduced this concept for 
partially ordered sets 4). It will be shown in section 3 that for 
complete lattices these notions coincide. 
See for these references [16J, footnote 15 on page 59, and also foot
note 18 on page 62. 

1) [4 J, chap. I, § 4. 
2) [2 J, esp. THEOREM 29; also [3]. 
3) [13J ; also [12]. 
4) [14 J. 
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The Birkhoff-Kantorovich procedure was previously used in set 
theory by Borel. 

EXAMPLE. 

The partially ordered set P consists of all points on the curves I, Il, 
III and IV with the following partial ordering : 

all points on I precede all points on IV ; 
Il " IV; 

III " IV ; 
I 11; 
I " lIl; 

and further: 
all points precede points on the same curve more to the right . 
Now let {Xi} be a sequence with the odd-numbered terms on land 
the even-numbered terms on Il, in such a fashion that the terms 
move to the right and approach the point B, both on I as on Il. 
We then have 

~: IV u B , 
rr: I u B. 

The only inter-element therefore is B, so that { Xi } converges to B. 
Taking the subsequence of odd-terms we have 

~*: III u B u IV, 
rr* : luB, 

so that there is no inter-element . 
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2. Order-convergence in lattices. 

In this section we will investigate some properties of sequences 
in case the underlying set is a lattice L. Then we ean say that for 
any sequence {Xi } the set TI of all sub-elements and the set ~ of 
all super-elements constitute an additive, resp. a multiplicative 
ideal 1). Also we ean assert th at the set R of all inter-elements is a 
sublattice of L. This follows directly from the definitions of all 
eoncepts involved. 

2.1 LEMMA. Ij {Xi} is a sequence jor which lim Xi exists, 1t < a 

jor all elements 1t E TI implies lim Xi < a. 

Proof. 1t < a for all 1t E TI; 
1t < lim Xi (def. of lim x;). 

So 1t < a lim Xi < lim Xi for all 1t E TI (i) 

Therefore a lim Xi is an inter-element so that lim Xi < a lim Xi . 
- - -

(i) and (ii) together yield a lim Xi = lim Xi or equivalently lim Xi < a. 

A consequence of this lemma is established in the following 

2.2 THEOREM. Let { Xi } and { Yi } be two sequences such that Xi < Yi 

jor all i. Then lim Xi < lim Yi and lim Xi > lim Yi provided the 

involved expressions exist. 

Proof. It is clear that TI x < TI y. 
Thus from 1ty < lim Yi for all1t y E TI y 

it follows 1tx < lim Yi for all 1tx E TI x. 

Aecording to the previous lemma this implies lim Xi < lim Yi. 

Dually one establishes lim Xi > lim Yi. 

2.3 COROLLARY. Ij {Xi} and {Yi} are two convergent sequences 
with Xi < Yi jor all i, then lim Xi < lim Yi. 

2.4 THEOREM. lim Xi exists ij and only ij U { 1t: 1t E TI } exists. 

Dually: lim Xi exists ij and only ij n { cr: cr E ~ } exists. 

Proof. Suppose lim Xi exists. Then we have 1t < lim Xi for all 
- -

1t E TI. Suppose further 1t < a for all 1t E TI. It then follows th at 
lim Xi < a. This shows that lim Xi is indeed the l.u.b. of all elements 

of TI. 

' ) [10J, § 12. 
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On the other hand suppose U {TI: TI E rr } exists. It is then obvious 
that TI < U TI < cr for all TI E rr and for all cr E~. This means that 
U TI is an inter-element. Let a be an arbitrary inter-element: TI < a 
for all TI E rr . Then U TI < a, so that U TI is indeed the smallest 
inter-element: U {TI: TI E rr } = lim Xi. 

2.5 COROLLARY. A sequence is convergent ij and only ij both 
U {TI: TI E rr } and n { cr: cr E ~ } exist and are equal. 

The two situations may be depicted as follows: 

{x i } not convergent 

Superelements 

Subelements 

{ x i }convergent 

3. Order-convergence in complete lattices. 

In case the lattice L is complete, all sequences { Xi } are bounded 
since 

n Xi < Xj < U Xi for all j . 

This implies th at for any sequence {Xi} the set rr and ~ are non 
void. Furthermore, the completeness of Land THEOREM 2.4 imply 

th at lim Xi = U {TI : TI E rr } and lim Xi = n { cr: cr E ~ } so that, 

in case of a complete lattice L, any sequence always has a non 
void set of inter-elements. This implies that every subsequence 
{ Xnj } of a convergent sequence {Xi} converges to the same limit 
as {Xi} does. Thus we have 

3.1 THEOREM. The order-convergence, dejined in a complete lattice L, 
makes L into a Fréchet L-space. 
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Consider 00 00 

n u Xi and U n Xi . 
k = l i = k k = l i = k 

00 00 

i = k i = k 

The following three properties hold 

(i) TIk < O'k for all k; 
(ii) Xj < O'k for all j > k; 
(iii) TIk < Xj for all j > k. 

It follows from (ii) and (iii) that TIk and O'k are sub- resp. super
elements for the sequence { Xi }. The sequences {TIi } and { O'i } are 
resp. monotone increasing and monotone decreasing sequences. 
Suppose TI is a sub-element for the sequence {Xi} : TI < Xj for 
j > N. Then it follows TI < TIN < UTIk. So any sub-element precedes 
some sub-element TIN and hence UTIk . Dually any super-element 
follows some super-element O'N and hence nO'k. 

If (UTIk) denotes the additive ideal generated by the element UTIk 

(the so called principle ideal consisting of all elements preceding the 
element UTIk) and dually, if (nO'k) denotes the multiplicative ideal 
generated by the element nO'k (the so called principle ideal consisting 
of all elements following the element nO'k) we may state 

TI :Ç ( U TIk) and ~ :Ç (n O'k ). 
k = l k = l 

This fishbone situation can be depicted as follows: 

All sub-elements 
1tN are on the back
bone, whereas the 
other sub-elements 
mayalso be on the 
sidebones. 
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3.2 THEOREM. U { 7t: 7t E IJ } = U 7tk and n { cr: cr E ~ } = n 7tk . 
k = l 

Proof. 7t < U 7tk for all 7t E IJ ; 
therefore U { 7t: 7t E IJ } < U 7tk; 

k = l 

but since 7tk E IJ for all k we also have U 7tk < U { 7t: 7t E IJ }, so 

th at U { 7t: 7t E IJ } = U 7tk and dually. 
k = l 

3.3 COROLLARY. A sequence { Xi } ot elements ot a comPlete lattice L 

is convergent it and only it U 7tk = n crk or it and only it U n Xi = 
00 00 k = l k = l k = l i = k 

n U Xi. 
k = l i=k 

3.4 LEMMA. ft {Xi} is a monotone increasing sequence, it kas tke 

limit U Xi. Dually: it {Xi} is a monotone decreasing sequence it kas 
i = l 00 

tke limit U Xi. 
i=l 

00 

Proof. 7tk = n Xi = Xk; so U 7tk = U Xk; 
i = k k = l k = l 

00 

i = k i = l k = l i = l 

3.5 THEOREM. A sequence { Xi } converges to tke limit X it and only it 
tor each element Xk th ere exist elements Uk and Vk such that 
Uk < Xk < Vk, where {Ui } t X and {Vi} t X ; i.e. where {Ui } is a 
monotone increasing sequence with the limit X and where {Vi } is 
a monotone decreasing sequence with the limit X also. 

Proof. Suppose {Xi} -i>- x. Take Uk = 7tk = n Xi and Vk = crk = 
00 i = k 

U Xi. Then {7ti } and { cri } are monotone increasing resp. decreasing 
i = k 

sequences with U7ti = lim Xi = X = lim Xi = ncri, so that lim 7ti = 
lim cri = X. 

Now suppose Uk < Xk < Vk, where {Uk}t X and {Vk H x. 
Apparently all elements Uk and Vk are sub- resp. super-elements for 

the sequence {Xi }. According to the definition of lim Xi and lim Xi 

we have for all k 

Uk < lim Xi from which UUk < lim Xi and 

Vk > lim Xi from which nVk > lim Xi . 
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But sin ce UUi = X = nVi we have lim Xi = lim Xi . 

Thus { Xi } is convergent to the limit x. 

RESULT. In case of a comPlete lattice L, we have the following 
equivalent criteria for a sequence {Xi } to be convergent with limit x: 

l lim Xi = lim Xi = X; 

II U {TI: TI ElI} = n { cr: cr E ~} = X; 
00 00 

IIl U n Xi = n U Xi = X; 

4. The continuity of the lattice operations. 

Let L be a complete lattice with the following properties 

(i) {Xi }tx implies a n lim Xi < lim (a n Xi); 
(ii) { Xi } t X implies a u lim Xi > lim (a u Xi)' 

These lattices were called TOPOLOGICAL LATTICES by Birkhoff 1). 
He established the fact th at in topological lattices the lattice 
operations are continuous. The proof for the u -operation will be 
given here; the proof for the n -operation is dual. 

4.1 LEMMA. U (Xi u Yi) = UXi U UYi. 

Proof. Xk < UXi and Yk < UYi so that Xk u Yk < UXi U UYi and 
hence U (Xi u Yi) < UXi u UYi; 

Xk < U (Xi u Yi), therefore UXi < U (Xi u Yi) and similarly 
UYi < U (Xi u Yi) so that UXi u UYi < U (Xi u Yi). 

4.2 COROLLARY. {Xi}tX and {Yi}ty imPly lim (Xi u Yi) 
lim Xi u lim Yi . 

4.3 LEMMA. nXi u nYi < n (Xi u Yi) . 

Proof. nXi < Xk and nYi < Yk so that nXi u nYi < Xk u Yk for 
all k, from which the result . 

4.4 COROLLARY. {Xi} t X and {Yi} t Y imply lim Xi u lim Yi < 
lim (Xi u Yi). 

4.5 LEMMA. {Xi Hx imPlies a u lim Xi = lim (a u Xi). 

Proof. a u Xk > a u nXi for all k , hence n (a u Xi) > a u nXi. 

1) [1] , p. 63. 
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Since L is a topologicallattice: a u lim Xi > lim (a u xï) or equiva
lently a u nXi > n (a u Xi) from which the result . 

4.6 LEMMA. {Xi} t X and {Yi } t y imPly lim Xi u lim Yi > 
lim (Xi u Yi). 

Proof. Xi u Yi = Xi U Yi so that Xj u Yi > Xi U Yi for i < i; 
therefore lim (Xj u Xi) > lim (Xi u Yi) (COROLLARY 2.3); 
Xj u lim Yi = lim (Xj u Xi) (LEMMA 4.5); 
Xj u Y > lim (Xi u Yi) for all i; 
lim (Xj u y) > lim (Xi u Yi) (COROLLOARY 2.3) ; 
Y u lim Xi > lim (Xi u Yi) (LEMMA 4.5); 
Y u X > lim (Xi u Yi) or lim Xi u lim Yi > lim (Xi u yI) . 

From COROLLARY 4.4 and from LEMMA 4.6 we now have 

4.7 LEMMA. {xd tX and {Ydt Y imPly lim Xi u lim Yi = lim (Xi u Yi). 
This enables us to state the main 

4.8 THEOREM. {Xi} ~ X and {Yi} ~ Y imPly lim (Xi u yt) = 
lim Xi u lim Yi. 

Proof. {Xi} ~ X implies 7t~ < Xk < cr~ such that {7t~ } t X and 
{ cr~ }tx. Similarly {Yi} ~ Y implies 7t~ < Yk < cr~ such that 
{7t~ Hy and { cr~ }t y. 
It follows 7t~ u 7t~ < Xk U Yk < cr~ U cr~ 
with {7t~ u 7t~ } t X u Y from COROLLARY 4.2 
and {cr~ u cr~ } t X u y from COROLLARY 4.7. 

But this means lim (Xi u Yi) = lim Xi u lim Yi. 
Now th at we have proved that the operations n and u are 

continuous with respect to the order-convergence we also can say 
that the relation < iscontinuous, as this relation may be expressed 
in terms of the operation n (or u). 

Concluding this section we want to show that complete Boolean 
algebras are topologicallattices. This follows immediately from the 
fact th at in complete Boolean algebras the following two distributive 
laws hold 

a n U Xi = U aXi and a u n Xi = n (a u Xi), 

as we already pointed out in section 1 of chap. Ir. 
Thus we have 

4.9 THEOREM. A comPlete Boolean algebra is a topologicallattice in 
which the Boolean operations are continuous with respect to the 
order-convergence. 
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Proof. It has already been shown th at the lattice operations n and 
u and the lattice relation < are continuous. Since, however, the 
Boolean operation of complementation can also be expressed lil 

terms of the lattice operations n and u the result follows. 

5. The metrie topology of c:Jl1. 

Let M be a complete, associate Boolean metric space whose 
underlying complete associate ring is R. Let B be the complete 
Boolean algebra of idempotents of R. For a,b ER we have d (a,b) = 

<p (a - b) EB and more specifically d (a,b) = a/b u b/a for a,b EB. 
The order-convergence makes B into a Fréchet L-space: 13. We will 
refer to this topology of 13 as the ORDER-TOPOLOGY. 
In a similar fashion we want to intro duce a topology in M. 

5.1 DEFINITION. We say that a sequence {Xi} of elements Xi E M 
converges to the element X E M: lim Xi = X, provided lim d (Xi,X) = 0 
in the order-topology of 13. The topology of M, induced by this notion of 
convergence, will be referred to as the METRIC-TOPOLOGY of M. It will 
be proved below that the metric-topology makes M into a Fréchet 
L-space: c:Jl1. 
It should be noted that due to definition 5.1 there are two notions 
of convergence now for elements of 13. Fortunately we have 

5.2 THEOREM. For the elements of 13 the metric-topology coincides 
with the order-topology; i.e. lim Xi = X if and only if lim d (Xi,X) = O. 

Proof. From the fact that the distance function for elements of 13 
can be expressed in t erms of the Boolean operations: d (a,b) = 

a/b u b' a and since these Boolean operations are continuous in the 
order-topology it follows th at the distance function is also continuo us 
in the order-topology. Thus if lim Xi = X then also lim d (X,Xi) = 

d (x,lim Xi) = d (X,X) = O. Conversely: 

lim Xi = lim d {d (X,Xi),X } 1) = d {lim d (X,Xi) , X } = d(O,x) = x. 

5.3 THEOREM. c:Jl1 is a Fréchet L-space. 

Proof. We have to show 

(i) { Xi }, Xi = X, converges to X; 

(ii) lim Xi = a and lim Xi = b imply a = b; 
(iii) lim Xi = X implies lim Xni = X for any subsequence 

{ Xni } of the sequence { Xi }. 

1) [4J, Theorem 131.2, p. 332. 
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(i) is obvious. 
(ii) follows from d (a,b) < d (xi,a) u d (xi,b), for all i, whieh 
implies d (a,b) < lim d (xi,a) u lim d (xi,b) = 0. Thus d (a,b) = 0 
or a = b. 
(iii) follows from the faet that'B is a Fréehet L-spaee. 

5.4 THEOREM. The ring operations of Rare continuous in <!?I1. 

Proof. Let lim Xi = x; i.e. lim d (X,Xi) = 0; and let lim Yi == y; 
i.e. lim d (Y,Yi) = O. 

Then we have d (xy,XiYi) = cp (xy - XiY + XiY - XiYi) < 
cp [ (x - Xi) Y ] u cp [ Xi (y - Yi] = 
cp (y) cp (X - Xi) u cp (Xi) cp (y - YI) < cp (X - Xi) u cp (y - Yi) 
d (X,Xi) u d (Y,Yi)' 

From this it follows that lim d (Xy,XiYi) = 0 so that lim XiYi = xy. 

Similarly we have d (x + y,xi + Yi) = 

cp (x + Y - Xi - Yi) < cp (X - Xi) u cp (y - Yi) = 
d (X,Xi) u d (Y,Yi), from whieh lim (Xi + Yi) = X + y . 

5.5 THEOREM. e.?W has the property that if a sequence {Xi} does not 
eonverge to x, there is a subsequence {xni } not containing a sub
subsequence converging to x. 

Proof. We will prove the equivalent statement: if every sub
sequenee {Xni } has a subsubsequenee {Yi } with limit x, then the 
original sequenee { Xi } has the limit x. Let, therefore, d (XiX) = di 
and d (Xni'x) = dni and also d (Yj,x) = aj. 
Then we ean say lim aj = 0, whieh means aj < Uj with {Uj HO. 
For every subsequenee {xni } th ere is su eh a sequenee {Ui }. This 
implies 

00 00 00 00 00 00 

n di < n aj < n Uj from whieh U n di < U n Uj = 0 ; 
i=k j = 1 j = 1 k = 1 i = k 1= 1 j = 1 

00 00 00 00 00 00 00 

U di < U aj < U Uj from whieh n U di < n U Uj = n UI = O. 
i = k j = 1 j = 1 k = 1 i = k 1= 1 j = 1 1= 1 

00 00 

Sinee U n di = n U di = 0, we have lim di = 0 and henee 
k = l i = k 

lim Xi = X. 
k = 1 i = k 

5.6 DEFINITION. An element XE e.?W is called an ACCUMULATION

element of a subset X of <!?11, provided there exists a sequence {Xi} of 
elements of X, all different from x, su eh that lim Xi = X. 
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The CLOSURE X of a subset X of ~ is the set X together with all its 
accumulation elements. 

A set X will be called CLOSED provided X = X. 
A set X will be called OPEN provided its comPliment is closed. 
One may easily establish that the so defined family of open sets 
induces an open-set-topology in~; i.e. a topology defined in 
terms of open sets satisfying the usual requirements for open sets. 
Even more, as one mayalso easily see, 

5.7 THEOREM. The open-set-topology of ~, induced by the metric 
topology of ~ by DEFINITION 5.6 makes ~ a FRÉCHET SPACE 
(TI-sPACE). 

5.8 DEFINITION. A maPPing f (x) of ~ into ~ is called CONTINUOUS 
AT Xo, provided lim Xi = Xo imPlies lim f (Xi) = f (xo). 

5.9 THEOREM. The counterimage of a closed (open) set under a 
continuous maPPing is closed (open). More precise: if A and Bare 
two subsets of ~ and if f is a continuous maPPing of A onto B, 
f (A) = B, then a set closed (open) in B will have a counterimage that 
is closed (open) in A. 

Proof. Let Y be a closed subset of Band let f-I (Y) = X < A. 
Consider the sequence {Xi} with limit x, Xi E X, X E A. The 
continuity of f implies lim f (Xi) = f (x),f (Xi) E Y, f (X) EB. But 
since Y is closed in B, we must have f (x) E Y, and hence X EX = 

f-I (Y). Therefore X is closed in A. 
By taking relative complements one sees that the same holds for 
open sets. 

N ote: the converse of this theorem need not be true, i.e. if the 
counterimages of closed (open) sets are closed, the mapping need 
not be continuous. We have to be careful therefore, not to apply 
certain topological theorems that are based upon the equivalence 
of the statements: 

(i) f is a continuous mapping, 
(ii) counterimages of closed (open) sets are closed (open). 

5.10 COROLLARY. A homeomorPhism between two subsets A and B 
of ~ carries sets closed (open) in A over into sets, closed (open) in B. 

5.11 THEOREM. The Boolean algebra 'B is closed. 

Proof. Let X be an accumulation element of 'B: lim Xi = X, Xi E'B. 
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Since Xi Xi = Xi we also have 
X = lim Xi = lim Xi Xi = lim Xi lim Xi = XX. Thus X E:8. 

5.12 DEFINITION. A subset A of (!/'\,f is compact, provided every 
infinite subset of A contains at least one accumulation-element in 
the set A. 

It follows that all accumulation-elements of A necessarily belong 
to A, so that a compact set A is automatically closed. 

5.13 THEOREM. A homeomorphism f carries a compact set A over 
into a compact set f (A) = B . 

Proof. Let X be an infinite subset of B. Then f- I (X) is an infinite 
subset of A th at must have at least one accu mulat ion-element X in 
A since A is compact. It follows that the element f (x) is an ac
cumulation element of X in B. 

5.14 THEOREM. If X is an accumulation-element of the set X, every 
open set containing X contains at least one element of X different from x. 

Proof. Suppose this is not the case. Let U be an open set containing 
X but not containing any elements of X different from x. The 
complement U' of U is a closed set containing all elements of X 
but not the accumulation-element x, which is a contradiction. 
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CHAPTER VI 

MAXIMAL CHAINS 

In this chapter <B stands for a complete, atom-free Boolean 
algebra with the order-topology induced by the order-convergence. 
As was shown in THEOREM 5.2 chap. V this order-topology 
coincides with the metric-topology induced by the distance function 
d (a,b) = a/b u b/a. 

1. Characterization. 

1.1 DEFINITION. A n ORDE RED subset ot <B is a subset ot <B in which 
every two elements are comparabie. A CHAIN C (ex,~) in <B is an ordered 
subset ot <B with a tirst element ex and a last element ~ . A chain is als 0 

called an ordered subset ot <B with end-points ex and ~. A MAXIMAL 
CHAIN r (ex,~) in <B is a chain that is not a proper subset ot a chain with 
the same end-points. We also say that a maximal chain is irreducible 
between its end-points. 

1.2 THEOREM. A maximal chain is convex. 

Proof. Let y and ~,y < ~ , be two distinct elements of a maximal 
chain r (ex,~) and suppose there is no element I; on the maximal 
chain such that B (y,I;,~), which, here, is equivalent to y < I; < 0. 
Consider the motion m of <B defined by m (x) = d (y,x), x E<B. 
Then we have m (y) = a and m (0) = d (y,o). Since <B is atom-free 
there must be an element E E<B such that a < E < m (0), which 
implies B (a,E,m (0)). The motion mis involutory, so th at we also 
have B (y,m-I (E),O) which is equivalent to y < m- I (E) < 0. This 
would imply that m- I (E) is an element of <B between ex and ~ 
comparable to all elements of the maximal chain r (ex,~) that is not 
on r (ex,~), which is a contradiction. 

1.3 THEOREM. A maximal chain is algebraically complete. 

Proof. If A < r (ex,~), then n A = n a exists in <B since<B is complete. 
aEA 
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Let XE r (<x,~) such that x > a for some element a E A. Then 
x > nA. If x E r (<x,~) such that for no element a E A, x > a, then 
for all a E A, x < a and thus x < nA. It follows that n A is com
parable to all elements of the maximal chain. It must therefore 
be an element of it . In a similar way we prove that U A = 
Ua E r (<x,~). 

aeA 

1.4 THEOREM. A chain that is convex and algebraically comPlete is a 
maximal chain. 

Proof. Let x E 'B, <X < X < ~, comparable to all elements of the 
convex and algebraically complete chain C (<x,~). We will show th at 
then x must be an element of C (<x,~). This would establish that 
C(<x,~) is a maximal chain. Let C (x,~) be the set of all elements 
of C (<x,~) following x and let C (<x,x) be the set of all elements of 
C (<x,~) pre ce ding x. Then we have C (<x,x) u C (x,~) = C (<x,~). 

Consider both n C (x,~) and U C (<x,x). These elements of 'B must 
belong to C (<x,~), due to its algebraic completeness. We have 
U C (<x,x) < X < n C (x,~). Suppose U C (<x,x) =F n C (x,~). Then there 
must be an element y E'B such that U C (<x,x) < y < n C (x,~) 
because C (<x,~) is convex. It follows that y i C (<x,x) and y i C (x,~), 
which contradicts the fact that C (<x,x) u C (x,~) = C (<x,~). 
Therefore U C (<x,x) = X = n C (x,~), from which x E C (<x,~). 
It follows from THEOREMS 1.2, 1.3 and 1.4 that maximal chains in 
complete, atom-free Boolean algebras are characterized as convex 
and algebraically closed chains. Some additional properties of 
maximal chains are given in the following theorems. 

1.5 THEOREM. A maximal chain is closed. 

Proof. Suppose lim Xi = x, Xi E r (<x,~), x E'B. The elements Xi are 
comparable to all elements of the maximal chain. Because of the 
continuity of the order relation < x is also comparable to all 
elements of the maximal chain and hence x must be an element of it. 

1.6 THEOREM. A maximal chain is compact. 

Proof. Let r (<x,~) be a maximal chain and let X < r (<x,~) be an 
infinite subset of it. We will construct a monotone sequence {Xi} 

of elements of X. Since monotone sequences are convergent and 
since maximal chains are closed the limit must be an element of 
r (<x,~), which would prove the compactness of the maximal chain. 
The monotone sequence is constructed by successive bisection of 
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the maximal chain. Of the successively generated two parts of the 
maximal chain, at least one must contain infinitely many elements 
of X. If both of them do, select "the left interval" to proceed with. 
The first step is performed by taking Xl E X, Xl =1= IX, Xl =I=~, so 
that IXI = IX < Xl < ~ = ~l. At least one of these intervals 
IXI < Y < Xl and Xl < Y < ~l contains infinitely many elements 
of X. We denote the selection by 1X2 < y < ~2. Now we take 
X2 EX such that 1X2 < X2 < ~2 etc. The n th step is IXn < X n < ~n, 
which means either IXn- 1 < Xn < Xn- l or Xn- l < Xn < ~n-l. 
We then have the following situation 

IXI = IX < Xl < ~ = ~l, 

1X2 < X2 < ~2, 

1X3 < X3 < ~3, 

IXn < Xn < ~n etc., 

where lXi = lXi- 1 and ~i = Xi-I; 

or lXi = Xi-l and ~i = ~i-l. 

We ma y distinguish two cases: 

(i) The selection of intervals is eventually a selection of the type 

IXk- 1 < Xk < Xk- l 

(aft er a certain index only this kind of intervals appears). 
(ii) The sequence of intervals contains infinitely of ten the type 

Xk- l < Xk < ~k-l. 
In the first case it is easily seen that the sequence { Xi } is eventually 
monotone decreasing. 
In the second case: delete all intervals of type (i). The subsequence 
of intervals so obtained yields a subsequence { X ni } that is monotone 
. . 
mcreasmg. 

1. 7 THEOREM. A maximal chain cannot have a connected proper 
subset with the same end-points. 

Proof. Let r (IX,~) be a maximal chain and let Ll (IX,~) be a connected 
proper subset contaiiling ex and ~. Suppose XE r (IX,~), X 1= Ll (IX,~). 

Denoting by P (x) the set of all maximal chain elements y such 
that y :::; x and similarly denoting by F (X) the set of all maximal 
chain elements y such th at y > x, we will consider the sets 
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P (x) n ~ (oc,~) and F (x) n ~ (oc,~) both of which are closed in 
~ (oc,~). Furthermore these sets are disjoint, non void while their 
union is ~ (oc,~). They form a closed partition of ~ (oc,~) which 
contradicts the assumption that ~ (oc,~) was connected. 

1.8 THEOREM. A chain that is connected is a maximal chain. 

Proof. Let x E'B, oc < x < ~, comparable to all elements of a 
connected chain C (oc,~). Consider the sets P (x) n C (oc,~) and 
F (x) n C (oc,~), where P (x) and F (x) have the same meaning as in 
THEOREM 1.7. If x is not an element of C (oc,~), the two sets form a 
closed partition of C (oc,~) which cannot beo Hence XE C (oc,~). 

1.9 THEOREM. Two maximal chains r1 (OC1,~1) and r 2 (OC2,~2) tor 
which there exists a one to one maPPing f ot r 1 onto r 2 that is order 
preserving and continuous, are homeomorPhic. 

Proof. Suppose {~r } t ~2,~r E r 2. Then {f-1 (~f) } is a monotone 
increasing sequence of elements of r 1 that must have a limit ~l 
on r 1 . Then, because of the continuity of f, it follows f (~l) = ~2 or 
equivalently f-l (~2) = ~l. This means th at the mapping f-1 is 
continuous for monotone increasing sequences. In the same way 
the continuity of f- 1 for monotone decreasing sequences is proved. 
But then f-1 is continuous for arbitrary sequences. 

2. Separable Boolean algebras. 

2.1 DEFINITION. An ordered subset A ot 'B is caUed SEPARABLE, 
provided the g.l.b. and the l.u.b. ot A can be written as a g.l.b. and a 
l.u.b. ot at most countably many elements ot A. Thus, provided 

00 

(i) n A = n a = n Xi,Xi E A; and 
aEA i = l 

(ü) U A = U a = U Yi,yi E A. 
aEA i = l 

2.2 DEFINITION. 'B is caUed separable, provided every ordered subset 
ot'B is separable. 

2.3 LEMMA. A n ordered, closed and separable subset A ot 'B ~s 

algebraicaUy complete. 

Pro of. We have n A = n Xi,Xi E A and U A = U Yi,yi E A. 
i = l ; = 1 

It is then always possible to select a monotone decreasing sequence 
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{xni } t n A and similarly a monotone increasing sequence 
{YnJ t UA. Since A is closed we have nA E A and U A E A. 

2.4 THEOREM. 11 'B is separable every maximal chain is connected. 

Proof. Suppose r ((X,~) = A u B where A n B = 0, A and B both 
closed in r ((X,~); A i= 0, B i= 0. 
As r ((X,~) is closed in 'B, A and Bare both closed in 'B. They are also 
both ordered. Since 'B is separable A and Bare algebraically 
complete (LEMMA 2.3). Consider nB = b EB. Assume b i= (x. 

Denote by A * the set of all maximal chain elements pre ce ding and 
not equal b. Then A * is not empty since b i= (X and r ((X,~) is convex. 
A * is a subset of A, obviously closed in A, hence closed in r ((X,~) 

and thus closed in 'B. A * is also ordered. Since'B is separable A * is 
algebraically complete. Therefore UA * E A * <A; but UA * = b EB, 
yielding a contradiction. We have to assume therefore that b = (x, 

which implies (X EB. In exactly the same way we may prove that 
(X E A. This contradicts the assumption that r ((X,~) was not 
connected. 

2.5 THEOREM. 11 'B is separable, a closed and convex chain is a 
maximal chain. 

Proof. Follows from LEMMA 2.3 and THEOREM 1.4. 

2.6 COROLLARY. 11'B is separable, a maximal chain cannot have a 
closed and convex proper subset with the same end-points. 
Thus we have obtained for complete, a tom-free and separable 
Boolean alge bras the following characterization of maximal chains 

2.7 THEOREM. 11'B is separable, a chain is a maximal chain il and 
only il it is closed and convex. 

Proof. Follows from THEOREMS 1.2, 1.5 and 2.5. 
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CHAPTER VII 

ARCS 

Throughout this chapter c.?I1 stands for a complete, separable, 
associate, convex Boolean metric space whose complete, separable 
Boolean algebra of idempotents is 'E. 

I. Arc-Iength. 

1.1 DEFINITION. An ARC A (a,b) is a subset of c.?I1 that is homeo
morPhic with a maximal chain r (~,~) in 'E: A (a,b) = f (r (~,~)) 
where f is a homeomorPhism such that f (~) = a and f (~) = bI). 

Sin ce a maximal chain is irreducible between its end-points the 
same is true for an arc. Furthermore, sin ce the property of being 
connected is solely expressed in terms of closed (open) sets and since 
a homeomorphism carries sets closed (open) in the maximal chain 
over into sets closed (open) in the arc and conversely, we may say 
that an arc is connected since a maximal chain is connected. For 
the same reasons it is impossible for an arc to have a connected 
proper subset with the same end-points. 

1.2 THEOREM. An arc is compact (and hence closed) . 
Proof. Follows from the fact th at a maximal chain is compact and 
that compactness is invariant under a homeomorphism. 

1.3 LEMMA. A homeomorphism f (r (~,~)) = r (~,~) of a maxim al 
chain onto itself such that f (~) = ~ and f (~) = ~ preserves the order. 

Proof. 

f(TC) 

. 
ex ft 

Assume the contrary: ~1 < ~2 and f (~1) > f (~2), ~l *- ~, ~2 *- ~; 
then we will produce a contradiction. 

1) BG Il. 
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Let X be the set of all elements ; su eh that f (;) > f (;2). This set 
is not void since ;1 E X. Consider n X = 7t. Then 7t -=F rx; for if 
7t = rx, we would have rx = f (rx) = f (7t) > f (;2), which is im
possible. Since X is ordered and (obviously) closed and sin ce 'B is 
separable, X is algebraically complete. Therefore 7t EX, which 
means f (7t) > f (;2) ; f (7t) = f (;2) would imply 7t = ;2, thus 
yielding ;1 < ;2 = 7t which contradicts the definition of 7t. There
fore: f (7t) > f (;2). 
Let P (7t) denote the set of all maximal chain elements preceding 7t . 
Sin ce 7t -=F rx this set is not empty. It holds th at UP (7t) = 7t. Since 

'B is separabie it is always possibie to write 7t = U 7ti, 7ti E P (7t) . 
i=l 

Furthermore it is always possible to select a monotone increasing 
subsequence {7tni }t 7t . Then we have lim f (7tni) = f (7t) . Together 
with f (7t) > f (;2) this implies the existence of an element 7tnk 
such that f (7tnk) > f (;2). But 7tnk i X since 7tnk EP (7t). This is a 
contradiction. 

1.4 DEFINITION. A NORMALLY ORDERED INSCRIBED POLYGON 

P (aO,al, . .... ,an) of an arc A (a, b) = f (r (rx,~)) is a subset 
P (aO,al, ..... ,an) of the arc A (a,b) such that ao = a and an = b 
and such th at f- 1 (ai) = rxi E r (rx,~), whereas i < i imPlies 
f - 1 (ai) < f- 1 (aj) or rxi < rxj. 
It follows from LEMMA 1.3 that this order on the arc A (a,b) is 
independent ot the homeomorphism f. 

n-l 
Let À (P) = U d (ai,ai+l) . This quantity is then independent ot the 

i=O 
homeomorphism t, soleley an intrinsic value ot the point set 
P (aO,al, .. .. . ,an) and the intrinsic normal ordering induced by the 
order of r (rx,~). 

Finally let I (A (a,b)) = U À (P), where the union is to be extended 
p 

over all normally ordered inscribed polygons of the arc A (a,b). 
This will be our definition of the leng th of an arc A (a,b), independent 
of the homeomorphism f 1). 

1.5 DEFINITION. A COMPLEX C of a subset X < 0v.f is a set of 
unordered pairs of elements of X. 

A sequence (Xl,X2, ..... , xn) of elements of a subset X < 0v.f is said 

1) BG Il. 
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TO BELONG TO A COMPLEX C ot X, provided (Xi,Xi+I) E C, i = 1--+n-1. 
A sequence (XI,X2, ..... , xn) ot elements ot a subset X < eJl,1 is said 
TO · CONNECT P WITH q, where pand q are elements ot X, provided 
Xl = pand Xn = q. 
A subset X < eJl,1 is said TO BE CONNECTED WITH RESPECT TO A 
COMPLEX C ot X provided every two elements pand q ot X are connected 
by a sequence belonging to C. 

Note that by taking C as a complex of the set C* consisting of all 
the elements forming the unordered pairs of the set C, the complex 
C may be connected with respect to itself. In that case we say that 
C is a CONNECTED COMPLEX. 

1.6 DEFINITION. The LINEAR CONTENT ot a s~tbset X < eJl,1 is the 
element ot 'B: I (X) = U d (a,b). 

a,bEX 

The COMPLEX CONTENT ot a comPlex C is the element ot 'B: 
À (C) = U d (a,b). 

(a,b)eC 

1.7 THEOREM. The linear content ot a set X < eJl,1 is equal to the 
comPlex content ot any comPlex C ot X with respect to which X is 
connected. 

Proof. Obviously À (C) < I (X). For p,q E X let (XI,X2, ..... ,xn) 
be the sequence belonging to C that connects p = Xl with q = Xn. 
Then we have 

d (p,q) < d (p,X2) u d (X2,X3) ..... u d (Xn- l,q) < À (C). 

This holds for any p,q E X. Therefore I (X) < À (C). 
In case the set X only contains finitely many elements we will 

refer to a permutation of X as a polygon P (XI,X2, ..... ,x n), Xi EX, 
of X. Each permutation will yield a different polygon P of X, the 
underlying finite set X remaining the same. A polygon, therefore, 
is a finite set with an ordering. As a polygon P of X clearly is a 
connected complex we may apply THEOREM 1.7: À (P) = I (X). 
We will now apply the foregoing to the arc-length by taking for X 
a finite subset of the arc: 

1.8 THEOREM. I (A (a,b)) = U d (x,y). 
x,yEA 

Proof. I (A (a,b)) U À (P), according to the definition. The unionis 
P<A 

extended over all normally ordered polygons Pinscribed in A (a,b). 
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But now we have À (P) = I (X), where X is the underlying point 
set of P. So we have: I (A (a, b)) = U I (X), the union now being 

X < A 

extended over all finite subsets X of A; I (X) < U d (x,y) for any 
x,yeA 

subset X of A; therefore U I (X) < U d (x,y). We also have 
X < A x,yeA 

d (x,y) < I (X) < U I (X) for any x,y E A (a,b). Therefore 

U d (x,y) < U I (X). 
x,yeA X < A 

Result: U d (x,y) = U I (X) = U I (P) = I (A (a,b)). 
x,yeA X < A P<A 

In some instances it will be convenient to have still another 
expression for arc-Iength. Therefore let p be a fixed element of 
the arc A (a,b) : 

1.9 THEOREM. I (A (a,b)) = U d (p,y), P E A (a,b). 
yeA 

Proof. The arc A (a,b) is connected with respect to the complex C 
consisting of all pairs (p,x) wh ere p is a fixed element of A (a,b), 
and x is any element of the arc. The theorem now follows from 
THEOREM 1.7: 1 (A (a,b)) = À (C) = U d (p,y). Sometimes it will 
be desirabIe to take for the fixed element p the element a of A (a,b): 
I (A a,b) = U d (a,x). 

xeA 

2. Continuity of arc-length. 

It is immediately obvious from the above established theorems 
that arc-Iength is a congruence invariant, monotone function of arcs. 
In addition we have 

2.1 THEOREM. I (A (a,x)) u I (A (x,b)) = I (A (a,b)), x E A (a,b). 

Proof. I (A (a,b)) = U d (x,y) with Y E A (a,b); 
y 

I (A (a,x)) = U d (x,y) with Y E A (a,x); 
y 

1 (A (x,b)) = U d (x,y) with Y E A (x,b), 
y 

from which the statement follows immediately. 
I t must be mentioned that arc-Iength need not be a strictly monotone 
function of arcs. Similar examples as the one constructed in chap. IX 
will show this. In order to prove that arc-Iength is a lower semi
continuo us function of arcs, we need the notion of limit of a 
sequence of sets. However, all subsets of 0l1" form a complete 
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Boo1ean algebra in which we can introduce the order-convergence 
described in chap. V. 

2.2 THEOREM. The linear content ol a subset X < cJ'I.1 is a lower 
semi-continuous lunction ol X; i.e. il {X i } is a seq~tence ol subsets 
ol cJ'I.1 such that 1im Xi = X it holds that 1 (X) = lim 1 (Xi)' 

Proof. For every sequence {Xi} of subsets of cJ'I.1 we can construct 
monotone sequences {Ui} and {Vi} such th at Ui < Xi < Vi, 
whi1e 

00 

i = 1 i = 1 

Let us consider the 1inear contents of all these sets. 

1 (Ui) < 1 (Xi) < 1 (Vi)' 

{ 1 (Ui) } is a monotone increasing sequence of e1ements of 'B with 
00 00 

limit U 1 (Ui) = 1im 1 (Xi)' Since Un < U Ui = 1im Xi, for all n , we 
i = 1 i = l 

have 1 (Un) < 1 (lim Xi), for all n, which implies 

1im 1 (Xi) < 1 (lim Xi) ' 

We proceed to prove 1 (lim Xi) < 1im 1 (Xi)' 
-

00 

Let x,y be e1ements of 1im Xi = U Ui. Since {Ui} is an monotone 
i = l 

increasing sequence there must be a set Un containing both x and y. 
Therefore we have d (x,y) < 1 (Un) < lim 1 (Xi)' 

As this ho1ds for any two e1ements of 1im Xi we have 

1 (lim Xi) < 1im 1 (Xi)' Thus we proved 1 (lim Xi) = 1im 1 (Xi)' But 

as 1im Xi = X implies 1im Xi = 1im Xi = X, we have 1 (X) = 
1im 1 (Xi) ' 

2.3 COROLLARY. Arc-length is a lower semi-continuous lunction 
ol arcs. 

Proof. Since the 1ength of an arc is equa1 to its linear content we 
may app1y the previous theorem. 

2.4 DEFINITION. A CONTINUOUS ARC A (a,b) is an arc with the 
property that 1im Xi = X, Xi E A (a,b), imp lies lim 1 (A (a,xi)) = 

1 (A (a,x)). 

Let XE A (a,b). Consider the mapping 1 

1: X -+ 1 (x) = 1 (A (a,x)), X E A (a,b), 1 (x) E'B, 
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of an arc A (a,b) into 'E. Obviously the image of the arc A (a,b) 
under this mapping 1 is a chain C (0,1 (A (a,b)). 

2.5 THEOREM. C (0,1 (A (a,b))) is a maximal chain ij A (a,b) is 
continuous. 

Proof. We will show the chain C to be convex and closed, from 
which the theorem would follow. 

(i) C (0,1 (A (a,b))) is closed. Suppose lim 1 (Xi) = 1, Xi E A (a,b). As 
A (a,b) is compact there must be a subsequence {Xni } on A (a,b) 
with limit X E A (a,b) . But lim Xni = X implies lim 1 (A (a,xlli)) = 

1 (A (a,x)) if A (a,b) is continuous. As 1 (A (a,xnJ) = 1 (xni) and 
lim 1 (xni) = 1, we have 1 = 1 (A (a,x)) = 1 (x). It thus follows that 
1 is the image of x E A (a,b). Hence 1 E C. 
(ii) C (0,1 (A (a,b))) is convex. Suppose therefore 1 (A (a,x)) 
< I(A(a,y)), which implies x :::p y. 

Let f be the homeomorphism such that A (a,b) = f (r (IX,~)), with 
f (IX) = a and f (~) = b. Let ~ = f- I (x) and "1) = f- I (y) . Then 
~ :::P "1). Let X be the set of all elements ~ E r (IX,~) such th at 
1 (f (~)) < I (x). Consider the element ~* = U X. Then ~* :::P "1); for 
if ~* = "1), we could select a sequence {"1)i } t "1) which would imply 
f ("1)t) = f ("1)) or lim Yi = y, which, in turn, would imply lim I (Yt) = 
1 (y). But I (Yt) = I (x) and I (x) :::P I (y). Similarly let Y be the set 
of all elements ~ E r (IX,~) such that 1 (f (~)) > 1 (y) and let "1)* = 
n Y. Then also "1)* :::p ~. Since for any ~I E X and for any ~2 E Y we 
have 1 (f (~I) < 1 (x) < 1 (y) < 1 (f (~2)), we have ~I < ~2 from 
which ~* < "1)*. 
It is easily proved, however, by the same kind of continuity 
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argument as used above that 1;* =1= 1)*. Thus we have 1; < 1;* = 

U X < n Y = 1)* < 1). 
Since r (~,~) is convex there must exist an element ~* E r (~,~) 

such th at 1;* < ~* < 1)*. Let z = f (~*), then 1 (x) < 1 (z) < 1 (y), 
due to the definitions of 1;* and 1)*. This proves the convexity. 

2.6 DEFINITION. A STRICTLY MONOTONE ARC A (a,b) is an arc with 
the property that tor x,y E A (a,b), A (a,x) < A (a,y) implies 
1 (A (a,x)) < 1 (A (a,y)). 

2.7 THEOREM. A continuous, strictly monotone arc may be para
metrized with respect to arc-length. 

Proof. Let x E A (a,b). Consider the mapping 1 

1: x~l (x) = 1 (A (a,x)) 

of the arc A (a,b) onto the maxim al chain r (0,1 (A (a,b))). Due to 
the fa ct that we assumed the arc A (a,b) to be continuo us and 
strictly monotone, this mapping 1 is a continuous one to one 
mapping of A (a,b) onto r (0,1 (A (a,b))). If now r (~,~) is the 
maximal chain of which A (a,b) is the homeomorphic image we 
have two maximal chains r (~,~) and r (0,1 (A (a,b))) with a 
continuo us one to one mapping of r (~,~) onto r (0,1 (A (a,b))) that 
is order-preserving. 
THEOREM 1.9 chap. VI then implies that r (~,~) and r (0,1 (A (a,b))) 
and consequently A (a,b) and r (0,1 (A (a,b))) are homeomorphic. 
A (a,b) is now the homeomorphic image of a maximal chain 
r (0,1 (A (a,b))) such that x E A (a,b) corresponds with its arc-
1ength 1 (A (a,x)) Er (0,1 (A (a,b))). We thus have obtained a 
parametrization with respect to arc-leng th for continuous, strict1y 
monotone arcs. 

60 



CHAPTER VIII 

SEGMENTS 

Throughout this chapter e?I1'2 stands for a complete, separable, 
convex Boolean metric 2-space, whose complete, separable Boolean 
algebra of idempotents is 13. If the situation is also valid for complete, 
separable, associate, convex Boolean metric spaces in general we 
will write e?I1'. However, since not many results are available yet 
concerning the motions of such a spa ce 0'\;f, most of our following 
results only apply to a space e?I1'2. 

1. Characterization. 

1.1 DEFINITION. A SEGMENT S (a,b) is a subset of e?I1' that is 
congruent to a maximal chain r (o:,~) in 13: S (a,b) = g (r (o:,~)), 
where g is a congruence such that g (0:) = a and g (~) = b 1). 

The following properties of segments are immediate consequences 
of the definition : 

(i) segments are convex, closed and connected; 
(ii) I (S (a,b)) = d (a,b); 
(iii) segments are continuo us arcs. 

Since all segments are arcs our first attempt will be to establish a 
characterization of segments among arcs. We will show that 
segments are characterized as convex arcs. 

1.2 LEMMA. Let A be a closed, non void subset 0113 with the property 
that for every non zero element a E A there exists another element 
a* EA such that 0< a* < a . Then ° EA. 

Proof. Let a E A and let r (O,a) be a maximal chain in A * = 

A u {O}, i .e. an ordered set in A * that does not contain an ordered 
proper subset in A*. Let r* denote the set obtained from r (O,a) 
after deleting the element zero. Then r* < A. r* is closed in A. 
But since A is closed r* is also closed in 13. Sin ce r* is also ordered 
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r* is algebraically closed. Let n r* = b E r*. Then b must be zero. 
For if b # ° there must be an element b* E A such th at 0 < b* < b, 
contradicting the fact that r (O,a) is maximal in A *. 

1.3 COROLLARY. Let A be a closed, non void subset ol a Boolean 
metric 2-space e.?kf2 . Let p E e.?kf2 and suppose A has the property 
that lor every element a E A there exists an element a * E A such 
that B (p,a*,a). Then p E A. 

Proof. The motion m (x) = d (p,x) transforms p into 0. The set 
m (A) has the property: for every element m (a) E m (A) there is an 
element m (a)* E m (A) such th at B (O,m (a)*, m (a)) or ° < m (a)* 
< m (a). Our previous lemma then yields m (p) = ° E m (A) or p E A. 

1.4 LEMMA. A convex and closed subset A ol a Boolean metric 
2-space e.?kf2 is connected. 

Proof. Suppose A is not connected: A = X u Y, X n Y = 0, X and 
Y being non empty, closed subsets of A. 
Let x EX. It cannot be th at between x and every element of Y 
there is an element of Y, as this would imply x E Y. So there must 
be an element y E Y such that th ere is no element of Y between 
x and y. Nevertheless, because of the convexity of A, there must be 
an element of A between x and y. This has to be an element of 
X therefore. Between this element and y there has to be another 
element of X etc. This implies XE Y, which contradicts X n Y = 0. 
Therefore A is connected. 

1.5 COROLLARY. An arc A (a,b) in e.?kf2 cannot have a proper subset 
with the same end-points that is convex and closed. 

Proof. If this were possible we would have a subset of A (a,b) with 
the same end-points which is connected. This is impossible. 

1.6 LEMMA. Every inner-element ol a convex arc A (a,b) in e.?kf2 is 
between a and b. 

Proof. Consider the subset of A (a,b) of all elements that are 
between a and b, a and b included: A* (a,b). If we can show that 
A* (a,b) is convex and closed, A* (a,b) must coincide with A (a,b). 
Obviously A* (a,b) is closed. To prove the convexity: suppose 
p,q E A* (a,b); i.e. B (a,p,b) and B (a,q,b). Since A (a,b) is convex 
there must be an element rEA (a,b) such that B (p,r,q). But then 
we have B (a,r,b), as follows from PROPERTY 1.8 chap. IV. Thus 
rE A* (a,b), which proves the convexity of A* (a,b). 
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1.7 LEMMA. It A (a,b) is a convex arc in 0'\.12, then tor all distinct 
inner-elements x,y ot the arc either B (a,x,y) or B (a,y,x) holds. 

Proof. Consider the inner-elements x and y of the arc. Since 
A (a,b) is convex B (a,x,b) holds. Consider the subset A* (a,b) of 
A (a,b) consisting of the elements z of A (a,b) such that B (a,z,x) 
or B (x,z,b) holds, including the elements a,b and x. This subset 
A* (a,b) of A (a,b) has to coincide with the arc A (a,b) as soon as 
we have shown that A* (a,b) is convex and closed. A* (a,b) is 
obviously closed. To prove that A * (a, b) is also convex, let 
p,q E A* (a,b). 
We will distinguish three cases: 

(i) B (a,p,x) and B (a,q,x) hold. Let rEA (a,b) such th at B (p,r,q). 
According to PROPERTY 1.4 chap. IV B (a,r,x) subsists, so that 
rE A* (a,b). 
(ii) B (x,p.b) and B (x,q,b) hold. This case is treated similarly as 
case (i). 
(iii) B (a,p,x) and B (x,q,b) hold. Since also B (a,x,b) holds we may 
apply PROPEIÜY 1.12 chap. IV so that B (p,x,q) holds. 

This establishes the convexity of A* (a,b), so that A* (a,b) = A(a,b) 
and hence : for every two distinct inner-elements x,y E A (a,b), 
B (a,x,y) or B (x,y,b) holds. From PROPERTY 1.11 chap. IV it 
follows that B (x,y,b) and B (a,x,b) imply B (a,x,y) , which 
completes the proof. 

We are now able to proof our main theorem of this section 

1.8 THEOREM. A convex arc A (a,b) in 0'\.12 is a segment. 

Proof. Consider the motion m (x) = d (a,x) such that m (a) = 0 
and m (b) = d (a,b) . 

Ato,b) 

d(o,b) 
? 

/ 
b ! 

! 
motion .. / 

! 

! 
! 

m(x)= d(o,x) ! 
! 

! C(o,d(o,b)) 
! 

/ o 
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From our preceding lemmas it follows that for two arbitrary, 
distinct inner-elements x,y of the convex arc A (a,b) we must have 
either B (a,x,y) or B (a,y,x), so th at we must have either 
B (O,m (x),m (y)) or B (O,m (y),m (x)),which reduces to ° < 
m (x) < m (y) or ° < m (y) < m (x). This implies that the 
image of the arc A (a,b) is a chain C (O,d (a,b)). Since A (a,b) is 
convex and compact, the same holds for C (O,d (a,b)). Therefore 
C (O,d (a,b)) is a maximal chain and A (a,b) a segment. 

2. Segment-like ares. 

One might expect that an arc A (a,b) with the property 
1 (A (a,b) = d (a,b) is a segment, in which case we would have 
another characterization of segments. However, th is is not true as 
will be shown by an example in chap. IX. 

2.1 DEFINITION. An arc A (a,b) in e.7I12 with the property 1 (A (a,b,)) 
= d (a,b) is called SEGMENT-LIKE. 

2.2 THEOREM. A continuous arc A (a,b) in e.7I12 such that every 
subarc A (a,x), x E A (a,b) , is segment-like is a segment. 

Proof. The arc is clearly strictly monotone. Since the arc is also 
continuo us the motion m (x) = d (x,a) transforms A (a,b) into a 
maximal chain as was shown in chap. VII. In fact, we obtain the 
parametrization of the arc with respect to arc-length : x E A (a,b) 
is mapped into 1 (A (a,x)) = d (a,x). Since A (a,b) is congruent with 
a maximal chain, the arc is a segment. 

2.3 DEFINITION. The EXCES Ep of an ELEMENT p of an arc A (a,b) 
in e.7I1 is defined by: Ep = {d (a,p) u d (p,b)} d' (a,b). 
The EXCES E (a,b) of the ARC A (a,b) isdefined by: E (a,b) = U Ep. 

pEA 

Direct computation shows that for e.7I12 Ep = abp' u a'b'p. From 
the definition it follows readily th at for e.7I12 Ep = ° if and only if 
B (a,p,b) holds. 

2.4 LEMMA. E (a,b) = 1 (A (a,b)) d'(a,b). 

Proof. E (a,b) = U Ep = U {[ d (a,p) u d (p,b)] d'(a,b)} = 
p p 

{ U d (a,p) d' (a,b)} u { U d (p,b) d' (a,b)} = 
p p 

1 (A (a,b)) d' (a,b) u 1 (A (a,b)) d' (a,b) = 1 (A (a,b)) d' (a,b). 

It is easily seen that E (a,b) = ° if and only if 1 (A (a,b) = d (a,b) ; 
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i.e. if and only if the arc is segment-like. Furthermore we may say 
that E (a,b) = 0 if and only if Ep = 0 for all p E A (a,b), 50 that 
1 (A (a,b)) = d (a,b) holds if and only Ep = 0 for all p E A (a,b), 
or, in case of a space e7I12, if and only if B (a,p,b) holds for all 
p E A (a,b). Thus we have 

2.5 THEOREM. An arc A (a,b) in cY'I12 is segment-like if and only if 
every inner-element p of the arc is between the end-points of the arc. 
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CHAPTER IX 

EXAMPLES 

Let Q be the left open interval (O,lJ on the realline. Let B denote 
the class of all subsets of Q th at are unions of finitely many left 
open intervals (a,bJ, ° < a < 1 and 0 < b < 1. Then B is an 
atom-free Boolean algebra whose Boolean operations are the usual 
set operations. 

Another example 1) may be obtained by taking for Q the closed 
interval [O,1J on the real line. Let B denote the set of all regular 
open subsets of Q. An (open) set is called regular provided it is 
equal to the interior of its closure. Using the following notation 

cX: complement of X 
hX: closure of X 
iX: interior of X 

we have: X is regular provided X = ihX, which is equivalent to 
X = chchX. These regular open subsets of [O,1J form a complete 
and atom-free Boolean algebra with the following operations 

XnY Xf.'\Y 
X u Y ih (X '-=J Y) 
n X(X i (î.\ X(X) 
U X(X ih (~ X(X). 

To establish that this Boolean algebra B is also separable we have 
to show that for any ordered subset {X(X} of B it holds that 

00 

n X(X = n Xi and U X(X = U Xj. 
(X i = l (X j = l 

We will only give the proof for the g.l.b., the pro of for the l.u.b. 
being similar. 

LEMMA. Let Al and A2 be two regular (open) subsets of [O,lJ such 
that Al < A2. Then fL (Al) < fL (A2), where fL denotes the Lebesgue 
me as ure on the realline. 

1) [10J, Beispiel 24.2, p. 133. 
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Proof. Since Al < Az there must be a point Xo E Az such that 
Xo f/= Al. Let (XI,XZ) be an open interval in Az containing xo. 
Now we have Al = chchAI since Al is regular. Thus CAl = hchAI = 
hicAI' Therefore Xo E hicAI' Let e: be such th at the interval 
(xo - e:,Xo + e:) is contained in the interval (XI,XZ). Then 
(xo - e:,Xo + e:) contains elements of icAI since Xo E hicAI' Since, 
however, icAI is an open set, (xo - e:,Xo + e:) contains an interval 
of CAl, i.e. a set with positive measure. Now (xo - e:,Xo + e:) is 
contained in Az; therefore Az contains a set of positive measure th at 
is not in Al. Thus fL (Az) > fL (Al). 

Due to the above established lemma we may say that there exists 
a one to one, order-preserving correspondence between the sets 
{Xex} and {fL (Xex)}; i .e. Xex < X[3 if and only if fL (Xex) < fL (X[3). 
Let fL (Xex) = fLex and let m be the infimum of the set {fLex}. We th en 
may select a monotone decreasing sequence {fLd t m,fLi = fL(Xï). 

00 

We now assert n Xi = n Xex. In order to prove this we only have 
i= l 

to show I.î Xi < I.î Xex. Suppose therefore x E I.î Xi. Let Xex be an 
arbitrary element of {Xex}. There must exist an element [Ln E {[Ld 

., such th at [Ln :S fLex, which implies Xn < Xex. Since x E Xn, we also 
! 

have x E Xex. Hence f.î Xi < I.î Xex, from which f.î Xi = I.î Xex and 
00 

thus i f.î Xi = i f.î Xex which means n Xi = n Xex. 
i= l 

We will now construct an example showing that segment-like 
ar cs need not be segments. 
Let B denote the complete, separable and atom-free Boolean 
algebra of regular open subsets of Q = [0,1]. Let r (IX.,~) be the 
maximal chain whose elements are the open intervals (O,t), t = 0--+1. 

(0,1) 

Let A (a,b) blO the arc obtained from r (IX.,~) by the following 
mapping f: 
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(O,t) Er(IX,~) --+ (O,t) EA(a,b) for t = O--+! 
(O,t) --+ (t - !,t) for t = ! --+ t 
(O,t) --+ (1 - t,t) for t = t --+ l. 

This yields the following picture of the arc A (a,b,): 

t~ _f(X)=o 

seg ment 1-----""'""""""-' 

segment 

, 

""'~------""'""""""-........ """'=:: ______ ""'........ _c 
""'~------,""""""

""',,------~~ 
',,------'~ 

)>--------'~, - f(7 )=Y 

.,/ "'" 
segment ./ "'" 

./ "'" 

IX = (0,0), or the empty set; f (IX) = a = (0,0) 
ç = (O,!) f (ç) = x = (O,!) 
YJ = (O,t) f (YJ) = y = (!,t) 
~ = (O,t) f ( ~) = b = (O,t) 

The arc A (a,b) is obviously strictly monotone and has the property 
that its arc-length equals the distance between its end-points : both 
are equal to (0,1). The subarcs A (a,x), A (x,y) and A (y,b) are 
segments since they are convex arcs. 
The arc A (a,b) is not a segment since it is not convex as there is 
no element between the arc-elements a and c. 

We conclude with the remark th at if B denotes the complete, 
separable and atom-free Boolean algebra of regular open subsets 
of Q = [O,1J and if D stands for a commutative integral domain 
with identity, the Boolean metric spaces ~ and ~*, obtained 
from the rings DB and DB* respectively, are complete, separable, 
associate, weakly-convex Boolean metric spaces that are even 
regular if D is a field. 
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STELLINGEN 

behorende bij C. J. Penning, Boolean metric spaces, 
Delft, 21 december 1960. 

I 

Pauc definieert de "aplatissement" (p,q,r) van een drietal punten 
in een metrische ruimte als de som van de twee kleinste hoeken van 
de door p, q en r bepaalde driehoek. 
Zijn 1, 2, 3 en 4 de hoekpunten van een (eventueel ontaard) viervlak 
en Ei de "aplatissement" van de drie hoekpunten tegenover het 
hoekpunt i, dan beweert Pauc ten onrechte dat het bewijs van de 
ongelijkheid 

triviaal is. 
De ongelijkheid blijkt ook te gelden als Ei voorstelt: 

ei) de som van de twee grootste hoeken in de betreffende driehoek; 
(ii) de som van de grootste en de kleinste hoek in de betreffende 

driehoek. 
eh. Pauc, Les méthodes directes en géométrie 
différentielle, p. 128 en p. 133 . 
L. M. Blumenthal, A budget of curiosa metrica, 
Am. Math. Monthly 66 (1959), p. 453 . 

I! 

Onder 2m2 - 6m + 6 mensen zijn er altijd m die elkaar kennen 
of m die elkaar niet kennen. Voor m = 3 is dit tevens het minimale 
aantal met deze eigenschap. 

II! 

Birkhoff beweert ten onrechte dat elke partieel geordende ver
zameling door invoering van de "order-topology" een Hausdorff
ruimte wordt. 

G. Birkhoff, Lattice theory, revised edition, 
Theorem 13, p. 60. 
E. E. Floyd, Boolean alge bras with pathological 
order-topologies, Pac. Journ. of Math. 5 (1955), 
p. 687-689. 



IV 

Zij Heen Hilbert-ruimte met een volledig orthonormaal systeem 
Q in H. Dan is er een Boolese valuatie ring R aan te geven die 
isomorf is met H. Voor de Boolese metrische ruimte M, verkregen 
uit R, geldt dat de afstand tussen de elementen f en g van M gelijk 
is aan de verzameling van die elementen van Q, waarvoor de 
Fouriercoëfficiënten van f en g verschillen. 
De deelverzameling Q van H is isomorf met de atomen van R. 
Bevat Q oneindig veel elementen, dan is R niet regulier. 

v 

Dat elke eindige Abelse groep van de orde 2 (2n + 1) cyclisch 
moet zijn, is geheel op elementaire wijze aan te tonen. 

VI 

Birkhoff beweert ten onrechte dat de deellichamen van een 
eindig lichaam een lineair geordend systeem vormen met de inclusie
relatie als ordenings-relatie. 

Birkhoff & McLane, A survey of modern algebra, 
exercise 5, p. 431. 

VII 

Zijn I(S) en I(R) de roosters van idealen in een commutative 
ring S met eenheid, resp. een unitaire onderring R van S, dan zijn 
de afbeelding p van I(S) in I(R) en de afbeelding cr van I(R) in I(S), 
gedefinieerd door resp. 

p (A) = A n R en cr (A) = AS 

een n -homomorfie, resp. een u -homomorfie. 
Is S bovendien een geassocieerde ring, dan is de afbeelding cr tevens 
een n -homomorfie. 
Is S een complete directe som van lichamen: S = ~ F (w), dan is 

WEn 

een ideaal A in een unitaire onderring R van S dan en slechts dan 
het ideaal van alle functies in R die nul zijn op een zekere deel
verzameling Z < D, als geldt pcr (A) = A. 

VIII 

De bewering dat de meetkundige plaats der buigpunten van de 
algemene integraalkrommen van een differentiaal vergelijking 



F (x,y,p) = 0 van de eerste orde en van hogere graad zou moeten 
voldoen aan 

is onjuist. 

F (x,y,p) = 0 
en F p (x,y,p) = 0 

B. Meulenbeld en W . K. Baart, Analyse voor pro
paedeutische examens deel 2, § 100, blz. 256. 

IX 

Om te voorkomen dat belangrijke Nederlandse kunstcollecties 
uiteenvallen of naar het buitenland verdwijnen is het wenselijk 
fiscale faciliteiten te scheppen voor erfgenamen van zulke kunst
collecties die deze zouden willen afstaan aan een museum. 

X 

Het is niet gerechtvaardigd de Nederlandse Technische Hoge
scholen de naam "Technische Universiteit" te geven. 

XI 

Het verdient aanbeveling aan het Engelse werkwoord toe te 
kennen: 

a) een tijd, welke absoluut dan wel relatief kan zijn en waarbij 
zowel de absolute als de relatieve tijd zijn onder te verdelen in 
verleden, heden en toekomst; 

b) een vorm, welke gesloten of open kan zijn. 
Hier bij dient opgemerkt te worden dat de bijzondere combinatie 
"to be going" alleen een (geïnverteerde) relatieve tijd kent in 
open vorm. 

XII 

De kiem van Heidegger's opvatting aangaande het "Dasein" in 
de tijd vindt men reeds in Kierkegaard's dagboekaantekeningen 

Sören Kierkegaard, Tagebücher, p . 129 en p. 174. 
M. Heidegger, Sein und Zeit: 

XIII 

De WIjZe waarop Madelung over de delta-iunctie schrijft schept 
verwarring. 

E. Madelung, Die mathematischen Hilfsmittel des 
Physikers, 6 . Aufl., 1957, S. 18 . 


