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Reversible Interframe Compression of Medical
Images: A Comparison of
Decorrelation Methods

P. Roos and M. A. Viergever

Abstract—The present paper investigates whether data rep-
resenting medical image sequences can be compressed more ef-
ficiently by taking into account the temporal correlation be-
tween the sequence frames. The standard of comparison is
intraframe HINT [1], which is the best known reversible de-
correlation method for 2-D images. In interframe decorrela-
tion, distinction is made on the one hand between extrapola-
tion- and interpolation-based methods, and on the other hand
between methods based on local motion estimation, block mo-
tion estimation, and unregistered decorrelation (i.e., without
motion compensation). These distinctions give six classes of in-
terframe decorrelation methods, all of which are described. The
methods are evaluated by applying them to sequences of coro-
nary X-ray angiograms, ventricle angiograms, and liver scin-
tigrams, as well as to a (nonmedical) videoconferencing image
sequence.

The conclusions of the study are, for the medical image se-
quences: 1) interpolation-based methods are superior to ex-
trapolation-based methods, 2) estimation of interframe motion
is not advantageous for image compression, 3) interframe
compression yields entropies comparable to intraframe HINT
at higher computational costs, and 4) two methods, unregis-
tered extrapolation and interpolation, are nonetheless possibly
interesting alternatives to intraframe HINT. Unregistered in-
terpolation gives slightly worse results than 2-D HINT at re-
duced (approximately 2 /3) computational cost, whereas unre-
gistered extrapolation gives significantly worse—but for many
purposes still acceptable—results than 2-D HINT at signifi-
cantly lower (approximately 1/5) computational cost.

I. INTRODUCTION

MAGE compression is becoming increasingly impor-

tant in efficient archiving and transmission of images.
Reversibility of compression methods may seem a ques-
tionable option, since, on the one hand, many choices and
compromises outweighing slight compression losses have
already been made in the image acquisition, and on the
other hand, the requirement that no information be lost
severely limits the amount of compression. Yet in the de-
sign of picture archiving and communication systems, the
compression step is often prescribed to be reversible [2],
either for legal reasons or because postprocessing of the
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images would augment the losses introduced by a non-
reversible method to an unacceptable level.

In reversible image compression distinction is made be-
tween two consecutive steps, decorrelation and coding.
The image decorrelation aims to reduce the redundancy
within the images. The thus obtained energy compaction
is exploited by a variable length coder, e.g., arithmetic
coding [3], Huffman [4], or Lempel-Ziv [5]. The coding
step is not considered in this paper.

In a previous study on reversible intraframe image
compression, HINT (Hierarchical INTerpolation) stood
out as the most efficient decorrelation method [1]. For time
series of 2-D images it is likely that a more efficient de-
correlation scheme can be obtained by utilizing the tem-
poral correlation in addition to the spatial correlation. The
purpose of this paper is to investigate whether the tem-
poral correlation can be exploited to increase the effi-
ciency of image compression of a sequence with respect
to 2-D intraframe decorrelation. Since an image sequence
may contain motion artefacts, registration methods, which
estimate the artefactual motion and compensate for it,
may be expected to increase the temporal correlation be-
tween the images and hence the temporal decorrelation
efficiency. We shall evaluate this expectation by consid-
ering both unregistered (i.e., not motion-compensated)
decorrelation and motion-compensated decorrelation.
Motion estimation in image sequences can be accom-
plished by two principally different approaches: intensity
matching and feature matching. In intensity matching the
pixel values (in the case of 2-D images) of the two images
to be registered are compared so as to yield a displace-
ment vector field. In feature matching the locations of well
defined features in the two images are compared; the fea-
tures may be either low-level features as edges, corners,
etc., or high-level features like entire objects. In either
case, the estimation procedure yields a relative motion be-
tween the two images which is corrected for by means of
some, usually affine, transformation.

In this paper, we consider only intensity matching,
since this approach has proven successful in registering
medical image sequencies, in particular sequences of an-
giographic images, [6]-[8]. Distinction is made between
local estimation methods, also known as pixel-recursive
or pel-recursive methods, and block motion estimation
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methods; see Mussman [9] and Jain [10] for a review.
Furthermore, any temporal decorrelation scheme may be
based on either extrapolative or interpolative prediction.
The division into extrapolation- and interpolation-based
decorelation on the one hand, and unregistered, locally
motion-compensated, and block motion-compensated de-
correlation on the other hand, gives rise to six classes of
decorrelation methods. In Section II extrapolation- and
interpolation-based frame coding is described, in Section
III unregistered decorrelation techniques are presented. In
Section IV, block motion-compensated decorrelation is
described in extrapolation and interpolation form and Sec-
tion V discusses local motion-compensated decorrelation
in extrapolated and interpolated form. The various decor-
relation techniques are applied to a number of medical
image sequences and one nonmedical image sequence in
Section VI. The results are somewhat surprising, in par-
ticular the fact that motion registration is detrimental for
efficient image compression in most of the cases consid-
ered. This phenomenon, as well as other characteristics
of the results, are discussed in Section VII. The final Sec-
tion VIII gives a summary of the conclusions of this study
on reversible interframe decorrelation.

II. EXTRAPOLATION- AND INTERPOLATION-BASED FRAME
CODING

In temporal decorrelation methods, distinction can be
made between extrapolation-based and interpolation-based
schemes. Extrapolated frame coding produces an estimate
of each frame, apart from the first one, from previous
frames. In this paper, we confine ourselves to schemes
which are based on the previous frame only:

foe, 0 =Fe(fix,t— 1) 1=1,2,3---, (1

where f(x,1),t =0, 1, 2, - -+ is a temporal sequence of
2D images, f(x, t) is an estimate of f(x, ), and Fg is
some function of f(x, + — 1); x is a spatial coordinate
vector. In frame interpolation a number of temporal res-
olution levels can be distinguished. At the highest tem-
poral resolution level the images at odd sampling times

(t=1,3,5,7, ) are estimated:
e, 2t + 1) = F(f(x, 20, flx, 2t + 2))
t:07 la 29 37 Y (2)

where JF; is some interpolation function. At the second
level (lower temporal resolution) the images at time ¢t =
2,6,10, 14, - - - are estimated:

Flx, 4t +2) = F,(f(x, 40, f(x, 4t + 4))
r=0,1,2,3, . 3)

This procedure may be continued for lower resolution lev-
els. The overall interpolation estimator can be written in
hierarchical form:

fa, 2@+ 1) = F(f, 27y, fe, 2" @ + D)
l,t=20,1,2,3, " 4)

where the integer ! denotes the temporal resolution level
of the interpolative estimation, with / = 0 at the highest
level. Note that (4) is in fact one-dimensional HINT ap-
plied in the temporal direction. The hierarchical predic-
tion steps may proceed in arbitrary order, the reconstruc-
tion, however, must proceed from the lowest level of
resolution level to the highest.

In both extrapolation- and interpolation-based schemes
it is not possible to (temporally) decorrelate all frames
without violating the causality condition which ensures
reversibility. For example, in extrapolated coding the first
frame cannot be estimated, while in interpolated coding
at least two frames cannot be decorrelated temporally. To
obtain optimal overall reversible compression of the se-
ries, these basis frames are coded intraframe using HINT.

III. UNREGISTERED INTERFRAME DECORRELATION
If the motion between consecutive frames in the se-
quence is not compensated for, the decorrelation schemes
become very straightforward. In extrapolation-based cod-
ing, the only reasonable (and statistically significant) es-
timate is

fa, 0 =fa,t—1)

In interpolation-based frame coding, the estimation
scheme is simply

e, 2@ + ) =5 (f(x, 27 ') + fx, 207 @ + D)

r=1,2,3,---. (5

lLt=0,1,2,3,+--. (6)
The difference image to be coded is given by
E(x, 1) = f(x, ) — NINT((x, 1)) )

where NINT is nearest integer rounding.

The simulation results of both schemes are presented in
Section VI. In Figs. 1-3 an example is given of an orig-
inal frame (this frame is taken from Series I, which is used
later on in Section VI), an extrapolated difference frame
and an interpolated difference frame. (Note that the dif-
ference images have been shifted and scaled up for illus-
tration purposes only).

IV. BLOCK MOTION-COMPENSATED DECORRELATION
A. Extrapolation Schemes

In block matching the image is segmented into a fixed
number of rectangular (overlapping or nonoverlapping)
blocks. The assumption is made that all picture elements
of one block have the same distortion, which yields one
displacement vector D per block. A displacement vector
is obtained by minimizing

d(fx - D,t = 1), f(x,0) ®)

where d represents some image distance measure. Ex-
amples of image distance measures are normalized root
mean squared and normalized mean absolute distance
measures [11], (normalized) cross-correlation (e.g., [12])
and the discrete sign change (DSC) criterion [13]. We will
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Fig. 1.
prxels. 312 gray values. recorded at 30 images /s: this sequence is ~Series
I in Section V.

One frame of a coronary angiogram time sequence (512 x 512

An unregistered extrapolated difference trame (Series 1). The im-
age has been shifted and scaled for display purposes.

Fig 2

use the DSC ceriterion since Venot has shown that this im-
age measure 1s more robust than the other distance mea-
sures mentioned |13}, The DSC criterion calculates the
number of sign changes in a block (scanned line by line
or column by column) of the difference image

flxo e n = fle, Dioxs = Dot = 1) + g(=1)" 70,
P= 10203, 9)

where vy, v, are the coordinates of x and D . D- the co-
ordinates of D. while the scalar ¢ represents the depth of
the ““chessboard pattern™ added to the subtracted image.
The match is optimal it the DSC value reaches its maxi-
mum. Note that in this model only translation is dealt
with. [n order to fully extract in-plane motion artefacts,

rotation (uniform) scaling and sheuar should also be in-

An unregistered interpolated difference frame (Series 1). The im-
age has been shifted and scaled for display purposes.

Fig. 3.

cluded in the optimization procedure, but this would im-
ply a prohibitive increasc of computation time. Venot ef
al. 16] and Zuiderveld er al. |8] have shown that the re-
striction to translation produces acceptable results in ac-
ceptable computation times. Of course, any motion of the
3-D scene perpendicular to the projection plane of the time
sequence is disregarded. Finally it should be noted that
gray-level offsets between frames have been included in
the registration procedure.

A local optimum of the DSC value can be obtained by
using search techniques such as Hooke and Jeeves [14],
logarithmic scarch [15]. or conjugate direction search
[16]. We found that for all three methods at least 30 per-
cent of the obtained displacement vectors did not globally
optimize the DSC criterion. We therefore simply used a
brute force technique by scanning all possibilities (within
a sufficiently large window) to ensure globality of the op-
timum.

The rectangluar grid of displacement vectors is bilin-
early interpolated to obtain a displacement vector per
pixel. The difference image

Ex.n = fx. 1) — NINT(f(x — D, r — 1)) (10)

is coded together with the block displacement vectors to
obtain a fully reversible block displacement compensation
method. The number of block displacement vectors is a
trade-off. By increasing the number of vectors a more lo-
cal but also noisier estimate is obtained, while moreover
the additional storage of these vectors may undo any im-
provement in decorrelation efficiency.

B. Interpolation Schemes

In block motion-compensated interpolation the images

f(x.t = 1)and f(x, r + 1) are subdivided into a fixed

number of rectangular blocks. The assumption is made
that the motion is time-independent in the interval (z — 1,
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f(x,t+1)

]
. /i

=D =

z9—D,

Fig. 4. In symmetrical motion-compensated interpolation a displacement
vector D for the frame flx, 7) at time ¢ is estimated from the frames at time
t— landt + 1.

t + 1). This allows the calculation of a displacement vec-
tor for each block by minimizing

dfx —D,t - 1), f@x+D,t+ 1) (11
where d is the DSC criterion, see Fig. 4. Analogously to
block extrapolation we simply scanned all possibilities to
ensure globality of the optimum. A complete displace-
ment vector field is obtained by bilinear interpolation of
the block displacement vectors. The difference image to
be coded is given by

E(x, 1) = f(x, 1) — NINT G (f(x = D, 1 — 1)

+ f(x + D, t + 1))). (12)

A “‘best’’ estimate of D(x) is obtaind by minimizing the
displaced frame difference (DFD) in some sense. The
DFD is defined by

DFD(x, D) = f(x,7) — f(x — D, t = 1)
t=1,2,3,--- (14)

where D is some estimate of D. The DFD can be linear-
ized by combining (13) and (14):

DFD(x, D) = f(x = D,t = 1) — f(x — D, 1t — 1)
- -D)'Vfx - D, r - 1)

+ 0D - DY
= —Vf@x = D,t - 1)(D - D)
+ 0D — D)’ (15)

where O is the Landau order symbol.

In straightforward motion estimation the DFD is mini-
mized at position x to find the desired estimate of the dis-
tortion D(x). For the purpose of (reversible) compression,
however, this would be impractical since it would require
the storage of the complete displacement vector field. By
calculating the DFD at already coded pixels only, a causal
estimate of D(x) can be obtained. The estimation is done
using a window containing pixels neighbouring the pixel
to be coded. The number of pixels at which the DFD is
calculated (‘‘observations’’) is a tradeoff; the displace-
ment estimate of a (spatially) uniformly moving object
will benefit from a large number of observations, whereas
a small number of observations leads to a local but noisy
estimate. In the reconstruction the DFD value is com-
puted from the already decoded pixels.

From (15) it follows the N observations at pixels x(j) j
=1,2, -+, N take the form:

DFD(x(1), D) = =V f(x(1) = D, — 1)(D — D) + (D — D)’

DFD(x(N), D) =

The calculation of the displacement vector field is solely
based on f(x, t — 1) and f(x, ¢t + 1) and thus no addi-
tional storage of the block displacement vectors is re-
quired. In the reconstruction of f (x, £} the block displace-
ment vectors are simply recalculated.

V. LocAL MoTiON-COMPENSATED DECORRELATION
A. Extrapolation Schemes

In local (or recursive) motion estimation a displacement
vector is calculated for each pixel. Thus a vector field is
obtained where all geometrical in-plane distortions are de-
scribed by local translations. The method assumes that for
each pixel x there is a distortion vector D(x) such that

fx,n=fx—-Dx,t—-1) =123,
13)

-VTfeW) — D, t — 1)(D — D) + 9D — D). (16)

In matrix/vector notation (16) is rewritten as
z=H'D-D) +v (17)

where the vector z represents the N observations of the
DFD, H” is the N X 2 matrix of gradients, and v is a
vector representing the Taylor expansion truncation error.

In order to calculate an optimum causal estimate, an
iterative procedure is followed which minimizes the DFD,
and hence the truncation residue v, in some sense. Let Dy
be the kth value of D in the iteration process, and z;, H H
the corresponding values of z and H'. By using the cal-
culated distortion vector as the next estimate an implicit
difference equation is obtained as follows:

2 = H{(Dyer — D). (18)

Netravali and Robbins {17], [8] minimize the truncation
residue v by means of a weighted gradient method, which
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is related to the SIRT algorithm [19] used in image re-
construction from projections, see the Appendix.
The resulting iteration procedure is

D.., =D, — ¢ ]z W) 2 () H ()
:m—qémwmmwnawwm

= D,1-1 (19

where ¢, is a relaxation constant (which was taken to be
independent of k& by Netravali and Robbins), H,(j) de-

notes the jth column of Hy, and W(),j = 1,2, -+, N,
is a set of weight coefficients, with
LW = 1. (20)
J

An example of a three point causal weight-coefficient

window is
< w(l) w( 2)>
w(3) -

where the dot represents the position of the pixel to be
coded. The choice of ¢, influences the rate of convergence
and the stability, but not necessarily the quality of the
estimation [20]. Walker and Rao [21] use a nonconstant
€;, which is small if the gradient is large (e.g., at the edge
of an object) and large for small gradients:

1
20Vvfx = Dt — DI

@n

ek(x, D) - (22)

The resulting iterative displacement estimation scheme is

&u=lh*§WMQmﬂJMMﬁMU%(B)

In the derivation of the above methods a least square es-
timate of the DFD has been sought. Consequently, is has
been assumed implicitly that the truncation residue v in
(17) can be considered as additive white zero-mean
Gaussian noise. By assuming this noise behavior explic-
itly, Biemond er al. [22] derive a regularized least squares
(Wiener) estimate of the update, which reads

Dy = Dy + (HH[ + pI)"'Hz 24)

where p is a regularization parameter, representing the
ratio of the update variance and the noise variance. In Fig.
5, an example of a different frame (Series I, see Section
VI) resulting from Wiener-based extrapolation is given.

B. Interpolation Schemes

The assumption made in (13) is equivalent to the as-
sumption that for each pixel x a distortion vector D’ (x)
exists such that

fe, D =fx+D@,t+1) 1=0,1,2,
(25)

For objects moving at constant speed the distortion vec-
tors D(x) and D' (x) are equal. This admits the definition
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Fig. 5. A Wiener-based motion compensated extrapolated difference frame
(Series I). The image has been shifted and scaled for display purposes.

of a symmetrical displaced frame difference (SDFD) by
SDFD(x, D) = f(x + D, 1 + 1) — f(x — D, t — 1),
(26)

where D is an estimate of D.
Linearizing the SDFD using (13) and (25) and the
equality of D and D’ yields:

SDFD(x, D) = f(x + D, 1 + 1) — f(x + D.t — 1)
+fx—D.t— 1) —f(x~D,1r—1)
= —D-D)Y(Vfx+D,t+1)
+Vfx —D.t = 1)) + oD — DY
= -Vi(fx + D, r+1)
+ fx =D, r— 1)(D —~ D)
+ O - D). (27

Analogously to extrapolated recursive displacement esti-
mation a number of observations are made. These obser-
vations however need not be causal, since no information
of f(x, t) is used. We have

z=G'(D-D)+w (28)
where the vector z represents N observations of the SDFD,
GTis the N X 2 matrix of gradients, and w is the vector
of truncation errors.

As in Section V-A an iterative procedure is followed:
let D, be the kth value of D in the iteration process, and
z., HI the corresponding values of z and H'. The differ-
ence equation then becomes

% = G{(Deey — Dy). 29)
and the weighted gradient minimization takes the form

- 2 eW(Hu()Gi())

J

D.., =D, (30)
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Fig. 6. A difference frame resulting from a Wiener-based motion compen-
sated interpolation (Series I). The image has been shifted and scaled for
display purposes.

where ¢, is constant for the Netravali and Robbins method
and defined by (22) for the Walker and Rao method.

Wiener-based pel-recursive interpolation yields a reg-
ularized least squares estimate of the update of the sym-
metrical displacement vector

Di.., = D, + (G,G] + ul) ' Gyz,. (31)

In Fig. 6, an example is given of a difference frame (Se-
ries I), resulting from Wiener-based interpolation.

VI. REsuULTS

We have evaluated the above described methods on
several medical image sequences and one nonmedical im-
age sequence. Series I, II, and III consist of coronary X-
ray angiograms. Series I is a set of 15 frames of 512 X
512 pixels, 9 b (512 gray values), recorded at 30 images
per second. Series II consists of 14 152 X 1512 frames,
8 b, recorded at 25 images/s. Series III consists of 18
frames of 256 X 256, 8 b, recording speed 25 images/s.
Series IV is a set of 18 ventricle X-ray angiograms, 256
X 256, 8 b recorded at 12.5 images /s. Series V is a liver
scintigram image sequence for the detection of Meckel’s
diverticle. The series contains 40 frames of 128 x 128,
8 b, recording speed 1 image /min. Series VI is a video
conferencing time series of 20 frames of 256 X 256, 8 b,
recorded at 60 images/s. Although reversible compres-
sion is not very appropriate for the latter type, the series
is included for the sake of comparison.

In Table I, the average entropies (in bits /pixel) result-
ing from the various interframe decorrelation schemes and
from straightforward intraframe HINT are given for the
six image sequences. In Figs. 7 and 8, the results of the
extrapolation-based methods are presented in pictorial
form. The differences between the average entropies pro-
duced by the interpolation-based methods are too small to
make a pictorial presentation suitable.

In temporal interpolation the number of hierarchical

steps used depends on both the spatial and the temporal
correlation. For the situation of low-spatial and high-tem-
poral correlation the number of hierarchical steps should
be large. In this situation it is advantageous to interpolate
images which are (temporally) far apart. For the five med-
ical image sequencies the optimum value of the parameter
[ in (4) was found to be 0; only half of the images are
temporally decorrelated, the other half are 2-D HINT de-
corelated. For the video conferencing series, which is the
only series with a ratio of temporal to spatial correlation
larger than 1 (see Fig. 9), / = 2 is optimum: every 8th
frame is 2-D HINT decorrelated.’

In block motion estimation, described in Sections 1V-
A and B, an equidistant grid of block displacement vec-
tors is calculated. The DSC distance is calculated over an
area of 31 X 31 pixels, each grid point represents an area
of 16 X 16 pixels. The overlapping blocks will produce
a global motion estimate. The block displacement vectors
are stored at 24 b/vector, thus creating an overload of
24 /16% = 0.09 b /pixel. This overload has already been
taken into account in Table I. The ¢ parameter in the DSC
criterion depends on the signal-to-noise ratio of the im-
ages. The optimal ¢ is a tradeoff: a small g leads to a
displacement sensitive but noisy estimate, a large g yields
a noise- and motion-insensitive estimate. In the simula-
tion results the g is tuned per image sequence. the optimal
values are 4, 4, 8, 8, 6, 12 for image sequences I through
VI

The three extrapolated pixel-recursive motion estima-
tion methods described in Section V-A use a causal win-
dow from which the displacement information is ob-
tained. The optimal window size depends on the
correlation of the displacement vectors. Global motion is
detected for large windows whereas a small window leads
to a local yet noisy motion estimate. We found that a win-
dow of three pixels, configurated as shown in (21) is op-
timal for the medical image sequences. For the video se-
quence a slight improvement can be obtained by using a
5-point window. Conventionally, the obtained displace-
ment vector is used as a starting vector for the recursive
estimation of the next displacement vector. We found,
however, that for the medical image sequences this leads
to a less efficient scheme than the memoryless model
where the starting vector is set equal to zero. The optimal
¢ in the Netravali and Robbins extrapolated method turned
out to be 0.005 for all images series, for the interpolation
variant the optimal value was found to be 0.001. The pa-
rameter u in the Wiener-based pel-recursive method is a
damping parameter. For the extrapolated scheme the op-
timum values for p are 10, 1, 5, 10, 10, 100 for image
sequences 1 through VI. For interpolated Wiener-based
motion compensation the optimum um is equal to 90 for
all sequences.

In reversible interframe compression the temporal de-
correlation can be combined with spatial (reversible) de-
correlation without any restriction. From the methods de-

'Note that entropy numbers in Table I represent the average entropy for

the complete image sequences: thus they are based on the entropy of both
temporally and spatially decorrelated frames.
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TABLE 1
AVERAGE ENTROPY (b/pixel) OF SIX IMAGE SERIES AFTER INTRAFRAME HINT DECORRELATION AND VARIOUS INTERFRAME DECORRELATION TECHNIQUE
I Coronary 11 Coronary III Coronary IV Ventricle V Liver VI Video
Angiogram Angiogram Angiogram Angiogram Scintigram Conferencing
512 x 512 512 x 512 256 x 256 256 x 256 128 x 128 256 x 256
30 im/s 25im/s 25im/s 12.5im/s 1 im/mm 60 im /s
Quantization Level
(b/pixel) 9 8 8 8 8 8
Average Entropy
before Decorrelation 7.57 6.26 6.95 7.21 3.58 6.72
Intraframe HINT 2.68 2.52 3.45 3.59 2.93 4.45
Extrapolation
Unregistered 3.24 3.20 3.75 4.15 3.21 4.03
2.59 2.7 3.53 3.65 3.27 3.90
Block-based 3.23 3.30 3.78 4.14 3.30 4.07
2.74 2.86 3.65 3.81 3.36 3.97
Netravali & Robbins 2.90 3.02 3.50 3.80 3.11 3.87
2.69 2.70 3.50 3.63 3.14 3.88
Wiener 2.69 2.85 3.44 3.68 3.1 3.87
2.61 2.74 3.53 3.65 3.18 3.93
Interpolation
Unregistered 2.78 2.71 3.43 3.71 3.01 3.98
2.54 2.53 3.39 3.69 3.05 3.90
Block-based 2.80 2.73 3.44 3.76 3.01 3.96
2.58 2.56 3.40 3.58 3.05 3.88
Netravali and Robbins 2.84 2.73 3.47 3.74 2.99 4.18
2.66 2.58 3.45 3.62 3.02 4.16
Wiener 2.77 2.70 3.41 3.68 2.99 3.96
2.55 2.53 3.38 3.53 3.02 3.89

The figures in italic font denote the entropy after temporal decorrelation only, those in roman font denote the entropy after temporal decorrelation
followed by intraframe HINT applied to the individual frames. In all intraframe HINT decorrelations we used an initial blocksize of 8 X 8, resulting in
a 7-level pyramid. The Walker and Rao method described in Section V-A; B has been omitted, since the results were always in between the Netravali
and Robbins and Wiener-based pel-recursive methods both for interpolation and extrapolation.

45 * 4.5

E E *
40 4.0
3.5 3.5
30 3.0
2.5 2.5
2.0 + T T T T T T 1 2.0 4 T T T T T T 1
I I I IV V VI 1 I W IV V VI

— image sequence — image sequence

Fig. 7. The average entropy (bits /pixel) of the six image Series I-VI after
extrapolation-based temporal decorrelation.’ Block-based extrapo-
lation; — —unregistered extrapolation; --~-Netravali and Robbins; - - - -
Wiener-based motion compensation. The results of straightforward intraf-
rame HINT (*) are also shown for the six series.

scribed in [1] HINT turned out to be the best post spatial
decorrelator. See Table I for the post-HINT results (ro-
man font). Reversing the order of temporal and spatial
decorrelation, which was found to be useful in irrevers-
ible compression [23], has also been considered. We
found that for the medical image sequences a spatial-tem-

>The frames which are not temporally decorrelated have been spatially
decorrelated using 2-D HINT.

Fig. 8. The average entropy (bits /pixel) of the six image Series I-V1 after
extrapolation-based temporal decorrelation and consecutive intraframe
HINT.? Block-based extrapolation; — —unregistered extrapolation;
----Netravali and Robbins; - - - - Wiener-based motion compensation. The
results of straightforward intraframe HINT (*) are also shown for the six
series.

poral scheme is better than temporal decorrelation, but
less efficient than the above outlined temporal-spatial
scheme; for details we refer to [24].

Finally, we have calculated the correlation coeflicient
(CC) in the two spatial dimensions and in the temporal
dimensions for the six image sequencies considered. The
CC [12] is defined by

Nm,Zhg—<Z h><2 g>

Prim =

(32)

2 2

(e Z = (20 ) (0 28 (2 0) )
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Fig. 9. The temporal correlation coefficient versus the horizontal spatial
correlation coefficient for the six medical image sequences considered

where h = f(x;, x;, )and g = f(x; + k. x, + 1, 1 + m),
and where N, is the total number of elements over which
the summation is calculated. In Fig. 9 the temporal CC
(poor) s set out against the horizontal spatial CC ( pqq).
(The vertical CC ( pg;9) was found to be almost equal to
the horizontal CC.) As is clear from the figure, the video-
conferencing sequence has the highest ratio of temporal
to spatial correlation.

VII. DiscussioN OF THE RESULTS

From Table I we conclude that the Wiener-based pel-
recursive method is the most efficient method for motion
compensation both in extrapolated and in interpolated
form. It outperforms block-based motion compensation,
the Netravali and Robbins method of pel-recursive motion
compensation, and the Walker and Roa method. The spa-
tial postdecorrelator, however, destroys the optimality of
the Wiener approach. Motion compensation destroys the
spatial correlation at least partly. In some cases this effect
is seen to be so large that the entropy even increases if a
spatial decorrelator is applied to the temporally decorre-
lated images.

For the medical image sequences I through V the inter-
polation scheme is generally more efficient than the cor-
responding extrapolation scheme, both for motion-com-
pensated and nonmotion-compensated decorrelation. This
can be explained by the averaging character of the esti-
mation in interpolative decorrelation which suppresses the
temporal noise. This noise suppression effect is stronger
than the disadvantage of interpolation frames that not all
frames can be decorrelated temporally.

The above discussed methods are judged solely on their
decorrelation performance (resulting average entropy).
Another aspect however is the complexity of the various
methods. The methods discussed can be divided into two
classes. The first class contains the unregistered methods
and intraframe 2-D HINT. These methods have in com-
mon that the execution time is independent of the image
contents. In contrast, for the motion compensation meth-
ods, the execution time depends on the amount of itera-
tions needed to obtain a suitable displacement vector field.

For the medical image sequences one of the interframe
decorrelation methods performs significantly better than

straightforward intraframe HINT. However, unregistered
interpolation approximates 2-D HINT within a few per-
cent as regards compression ratio. We timed both meth-
ods on an HP 375, 50 MHz, 68030 processor. For unre-
gistered interpolation we made the assumption that each
frame needs to be read only once. Since the method ac-
cesses the frames in a nonsequential order, a sufficiently
large internal memory is required. The minimal size of
the internal memory depends on [ in (4); the number of
frames needed to be stored is 2"/ " + 1. The 2-D HINT
method required 0.80 sec per frame (512 X 512 pixels).
Unregistered interpolation takes 0.32 s /frame. Since only
half the series is temporally decorrelated in interpolation
methods with /| = 0, while the other half is spatially de-
correlated using 2-D HINT, the computational cost of un-
registered interpolation is approximately 2 /3 of that of
intraframe HINT. Consequently, it is an interesting alter-
native for intraframe HINT.

If computational speed is more important than the num-
ber of bits of coded, unregistered extrapolation could be
the method of choice. It approximates the average entropy
produced by 2-D HINT not as well as unregistered inter-
polation, but for many applications the resulting bit rate
might still be acceptable. Unregistered extrapolation takes
0.14 s/frame. Since all image frames but the first are tem-
porally decorrelated, the computational cost of unregis-
tered extrapolation is approximately 1/5 of that of intra-
frame HINT.

The performance of a decorrelation method depends on
the correlation of the signal. In intraframe HINT the two
spatial correlations are utilized while the temporal decor-
relation step of nonmotion compensated extrapolation and
interpolation methods solely utilizes the interframe cor-
relation. The lack of success of the motion compensated
methods may be due to the low ratio of temporal corre-
lation to spatial correlation, or, more probably, to the poor
displacement estimates provided by the motion estimation
(effects not included are, inter-alia, illumination changes,
motion perpendicular to the frames, in-plane motion other
than linear translational motion).

The influence of the spatial sampling rate can be ob-
served by spatially downsampling the images. For images
sequence I we downsampled the images by a factor of
two: the images were low-pass filtered (half the band-
width) before downsampling so as to avoid aliasing. The
performance of the optimal temporal decorrelation method
(Wiener), intraframe HINT, and Wiener + HINT are
given in Table II. For the other image sequences the re-
sults are similar. The entropy figures represent the aver-
age entropy for the complete series, they are an average
of both interframe and intraframe decorrelated frames.
The figures in italic font denote the entropy after temporal
decorrelation only.

From Table II it appears that downsampling by a factor
of two already makes interframe decorrelation quite effi-
cient. Although it is obvious that the performance of in-
traframe HINT relative to the temporal decorrelation
methods will decrease with decreasing spatial sampling
rate, the degree of this decrease was surprisingly high to
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TABLE II
INFLUENCE OF SPATIAL DOWNSAMPLING ON THE PERFORMANCE OF
INTRAFRAME HINT, UNREGISTERED AND WIENER-BASED INTER-
AND EXTRAPOLATION FOR IMAGE SEQUENCE 1

512 x 512 256 x 256
Intraframe HINT 2.68 3.42
Unregistered extrapolation 3.24/2.59 3.17/2.91
Unregistered interpolation 2.78/2.54 3.11/3.05
Wiener-based extrapolation 2.69/2.61 2.94/3.08
Wiener-based interpolation 2.77/2.55 3.09/3.04

The figures in italic font denote the entropy after temporal decorrelation
only, those in roman font denote the entropy after temporal decorrelation
followed by intraframe HINT (8 X 8 initial blocksize).

TABLE 111
INFLUENCE OF TEMPORAL SMOOTHING ON THE PERFORMANCE OF
INTRAFRAME HINT, UNREGISTERED AND WIENER-BASED INTER- AND
EXTRAPOLATION FOR IMAGE SEQUENCE I

Original 3-Point Moving Average
Intraframe HINT 2.68 2.43
Unregistered extrapolation 3.24/2.59 2.29/1.51
Unregistered interpolation 2.78/2.54 2.09/1.92
Wiener-based extrapolation 2.69/2.61 1.93/1.90
Wiener-based interpolation 2.77/2.55 2.11/1.95

The figures in italic font denote the entropy after temporal decorrelation
only, those in roman font denote the entropy after temporal decorrelation
followed by intraframe HINT (8 X 8 initial blocksize).

us. Furthermore, the spatial postdecorrelation is less ef-
ficient or even worse for the spatially downsampled se-
quence.

We examined the influence of temporal noise by
smoothing the image sequences in the temporal direction.
We used a 3-point moving average filter. In Table III the
results of 2-D HINT, nonmotion compensated extrapola-
tion and interpolation, and Wiener-based motion compen-
sated interpolation and extrapolation are given for image
sequence I. Again the figures in italic font denote the en-
tropy after temporal decorrelation only. From Table ITI
we conclude that for the temporally averaged sequences
all temporal decorrelation methods considered outperform
intraframe HINT significantly. The optimal method now
is unregistered extrapolation followed by intraframe
HINT, just as for the spatially downsampled version of
the sequence (Table II).

The results of Table II and III as well as the results for
the videoconferencing series in Table I show that the con-
clusions of the present study should be interpreted with
care. While the conclusions drawn above (and summa-
rized below) are fairly consistent for all medical image
sequences considered, they are not generally valid for any
type of image sequence. In particular may preprocessing
of the sequence, e.g., by temporal averaging, signifi-
cantly alter the efficiency of the compression methods.

VIII. SuMMARY OF CONCLUSIONS

Interpolated temporal decorrelation is generally better
than extrapolated temporal decorrelation for the medical
image sequences considered.

Wiener-based pel-recursive motion estimation is the
most efficient method for motion compensation. How-
ever, Wiener-based decorrelation is hardly (if at all) more
efficient than nonmotion compensated interframe decor-
relation.

For the medical image sequences, none of the inter-
frame decorrelation methods performs signficantly better
than straightforward intraframe HINT. This is ascribed to
the temporal noise present in the medical image sequence.
Both spatial downsampling and temporal smoothing of the
series reverse the above conclusion.

Unregistered interpolation approximates the perfor-
mance of intraframe HINT within a few percent. The
lower complexity makes the method an interesting alter-
native to intraframe HINT. Unregistered extrapolation has
a significantly lower complexity still, but the decorrela-
tion results are not as good as for the interpolation scheme.
The requirements concerning compression ratio and com-
putational speed will determine which method is most ap-
propriate.

APPENDIX

In this Appendix it is derived how the iteration proce-
dure (19) for determining the distortion vector D(x) fol-
lows from minimization of the truncation of the Taylor
series expansion of the DFD. Furthermore, it is shown
that minimizing the DFD with a steepest descent tech-
nique is equivalent to applying the simultaneous iterative
reconstruction technique (SIRT) to the nonlinear system
of equations (17).

A. Steepest Descent

Let f(x) be the function of be minimized. The steepest

descent technique has the form
w1 = X — MVFOg) (33)

where A, is a relaxation parameter. Note that the steepest
descent technique is a least squares minimization method.
Applying this technique to the DFD? (x, D), that is, min-
imizing the DFD? as a function of D results in

Dy =D, - )\kVDkDFDz(xv D,)
= Dy — 2NDFD(x, D)V, (f(x, 1)

ﬁf(x9 Dk5 r— 1))
= D, — 2N\\DFD(x, D)V,.f(x — D;, t — 1),
(34)

for one observation at position x. In order to make the
prediction scheme causal, Netravali and Robbins replaced
the update by a weighted average of updates, using a
number of observations in a neighborhood W of the pixel
to be coded

Di.y = Dy = & 2 W()DFD(()), D)
JE

V() = Dt = 1) (35

where ¢, = 2\,.
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B. Simultaneous Iterative Reconstruction Technique
(SIRT)

Consider the system of linear algebraic equations:

Ax = b (36)

where Aisan N X 2 matrix, x =2 X land b = N X 1.
Applying SIRT to this set of linear equations results in
[25]

Xpo1 =T~ ATAAx, + MATD

N
=x+ 2y~ ADxAQDT  (37)

where A, = diag(\;) is a diagonal matrix providing for
relaxation and scaling, and A(j) denotes the jth row of A.
However, (17) which we wish to solve, is nonlinear; both
A and b are dependent on x.

We thus have the set of equations

A(x)x = b(x). (38)

A natural way to solve the nonlinear system using SIRT
is to apply SIRT to the original system making one iter-
ation step with zero starting vector, to update the system
matrix and the data vector, and next to apply SIRT to the
new system by again making one iteration step initialized
by zero. This process is repeated until the solution is sat-
isfactory. The reason that zero is a good starting vector
for every new step is that the iterate x; should approach
zero as k — oo in order to give a good estimate D for D.
We thus obtain the iteration scheme:

N
Xeet = X+ 2 N (DAL (39)
By setting: A = H',x =D - D,x, =D — D, b = z,
and Ay = ¢ W(}) in order to make (36) correspond with
(17), we obtain as a solution to (17):

N
Dy =Dy — g El WDz (D H()) (40)
where ¢, is a relaxation parameter and W(j) is a weight
coefficient window providing for row scaling.
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