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Reversible Interframe Compression of Medical 
Images: A Comparison of 

Decorrelation Methods 
P. Roos and M.  A. Viergever 

Abstract-The present paper investigates whether data rep- 
resenting medical image sequences can be compressed more ef- 
ficiently by taking into account the temporal correlation be- 
tween the sequence frames. The standard of comparison is 
intraframe HINT [ I ] ,  which is the best known reversible de- 
correlation method for 2-D images. In interframe decorrela- 
tion, distinction is made on the one hand between extrapola- 
tion- and interpolation-based methods, and on the other hand 
between methods based on local motion estimation, block mo- 
tion estimation, and unregistered decorrelation (i.e., without 
motion compensation). These distinctions give six classes of in- 
terframe decorrelation methods, all of which are described. The 
methods a re  evaluated by applying them to sequences of coro- 
nary X-ray angiograms, ventricle angiograms, and liver scin- 
tigrams, as well as to a (nonmedical) videoconferencing image 
sequence. 

The conclusions of the study are, for the medical image se- 
quences: 1) interpolation-based methods are  superior to ex- 
trapolation-based methods, 2) estimation of interframe motion 
is not advantageous for image compression, 3) interframe 
compression yields entropies comparable to intraframe HINT 
at  higher computational costs, and 4) two methods, unregis- 
tered extrapolation and interpolation, are  nonetheless possibly 
interesting alternatives to intraframe HINT. Unregistered in- 
terpolation gives slightly worse results than 2-D HINT at  re- 
duced (approximately 2 /3) computational cost, whereas unre- 
gistered extrapolation gives significantly worse-but for many 
purposes still acceptable-results than 2-D HINT at signifi- 
cantly lower (approximately 1 /5) computational cost. 

I. INTRODUCTION 
MAGE compression is becoming increasingly impor- I tant in efficient archiving and transmission of images. 

Reversibility of compression methods may seem a ques- 
tionable option, since, on the one hand, many choices and 
compromises outweighing slight compression losses have 
already been made in the image acquisition, and on the 
other hand, the requirement that no information be lost 
severely limits the amount of compression. Yet in the de- 
sign of picture archiving and communication systems, the 
compression step is often prescribed to be reversible [ 2 ] ,  
either for legal reasons or because postprocessing of the 
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images would augment the losses introduced by a non- 
reversible method to an unacceptable level. 

In reversible image compression distinction is made be- 
tween two consecutive steps, decorrelation and coding. 
The image decorrelation aims to reduce the redundancy 
within the images. The thus obtained energy compaction 
is exploited by a variable length coder, e .g . ,  arithmetic 
coding [3], Huffman [4], or Lempel-Ziv [SI. The coding 
step is not considered in this paper. 

In a previous study on reversible intraframe image 
compression, HINT (Hierarchical INTerpolation) stood 
out as the most efficient decorrelation method [ 11. For time 
series of 2-D images it is likely that a more efficient de- 
correlation scheme can be obtained by utilizing the tem- 
poral correlation in addition to the spatial correlation. The 
purpose of this paper is to investigate whether the tem- 
poral correlation can be exploited to increase the effi- 
ciency of image compression of a sequence with respect 
to 2-D intraframe decorrelation. Since an image sequence 
may contain motion artefacts, registration methods, which 
estimate the artefactual motion and compensate for it, 
may be expected to increase the temporal correlation be- 
tween the images and hence the temporal decorrelation 
efficiency. We shall evaluate this expectation by consid- 
ering both unregistered (i.e.,  not motion-compensated) 
decorrelation and motion-compensated decorrelation. 
Motion estimation in image sequences can be accom- 
plished by two principally different approaches: intensity 
matching and feature matching. In intensity matching the 
pixel values (in the case of 2-D images) of the two images 
to be registered are compared so as to yield a displace- 
ment vector field. In feature matching the locations of well 
defined features in the two images are compared; the fea- 
tures may be either low-level features as edges, corners, 
etc., or high-level features like entire objects. In either 
case, the estimation procedure yields a relative motion be- 
tween the two images which is corrected for by means of 
some, usually affine, transformation. 

In this paper, we consider only intensity matching, 
since this approach has proven successful in registering 
medical image sequencies, in particular sequences of an- 
giographic images, [6]-[8]. Distinction is made between 
local estimation methods, also known as pixel-recursive 
or pel-recursive methods, and block motion estimation 
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methods; see Mussman [9] and Jain [lo] for a review. 
Furthermore, any temporal decorrelation scheme may be 
based on either extrapolative or interpolative prediction. 
The division into extrapolation- and interpolation-based 
decorelation on the one hand, and unregistered, locally 
motion-compensated, and block motion-compensated de- 
correlation on the other hand, gives rise to six classes of 
decorrelation methods. In Section I1 extrapolation- and 
interpolation-based frame coding is described, in Section 
I11 unregistered decorrelation techniques are presented. In 
Section IV, block motion-compensated decorrelation is 
described in extrapolation and interpolation form and Sec- 
tion V discusses local motion-compensated decorrelation 
in extrapolated and interpolated form. The various decor- 
relation techniques are applied to a number of medical 
image sequences and one nonmedical image sequence in 
Section VI. The results are somewhat surprising, in par- 
ticular the fact that motion registration is detrimental for 
efficient image compression in most of the cases consid- 
ered. This phenomenon, as well as other characteristics 
of the results, are discussed in Section VII. The final Sec- 
tion VI11 gives a summary of the conclusions of this study 
on reversible interframe decorrelation. 

11. EXTRAPOLATION- AND INTERPOLATION-BASED FRAME 
CODING 

In temporal decorrelation methods, distinction can be 
made between extrapolation-based and interpolation-based 
schemes. Extrapolated frame coding produces an estimate 
of each frame, apart from the first one, from previous 
frames. In this paper, we confine ourselves to schemes 
which are based on the previous frame only: 

t = 1, 2 ,  3, * . . , (1) 

wheref(x, t ) i  t = 0, 1 ,  2 ,  . . is a temporal sequence of 
2D images, f ( x ,  t )  is an estimate of f (x ,  t ) ,  and SE is 
some function o f f ( x ,  t - 1 ) ;  x is a spatial coordinate 
vector. In frame interpolation a number of temporal res- 
olution levels can be distinguished. At the highest tem- 
poral resolution level the images at odd sampling times 
( t  = 1 ,  3, 5, 7, * * ) are estimated: 

f (x ,  t )  = %,(fix, t - 1)) 

f (x ,  2t + 1 )  = %,(f(x, 2 0 ,  f (x ,  2t + 2 ) )  

t = 0, 1, 2, 3, - * * 9 ( 2 )  
where %I is some interpolation function. At the second 
level (lower temporal resolution) the images at time t = 
2, 6 ,  10, 14, * . are estimated: 

p<x,  4t + 2 )  = %F,(f(x, 4 0 ,  f (x ,  4t + 4 ) )  

t = 0, 1, 2, 3, . (3) 

This procedure may be continued for lower resolution lev- 
els. The overall interpolation estimator can be written in 
hierarchical form: 

f(x,  2'(2t + 1)) = S,(f(x, 2 ' + 5 ) ,  f (x ,  2 ' + l ( t  + 1))) 

1, t = 0, 1, 2, 3, . . * ( 4 )  

where the integer 1 denotes the temporal resolution level 
of the interpolative estimation, with 1 = 0 at the highest 
level. Note that (4) is in fact one-dimensional HINT ap- 
plied in the temporal direction. The hierarchical predic- 
tion steps may proceed in arbitrary order, the reconstruc- 
tion, however, must proceed from the lowest level of 
resolution level to the highest. 

In both extrapolation- and interpolation-based schemes 
it is not possible to (temporally) decorrelate all frames 
without violating the causality condition which ensures 
reversibility. For example, in extrapolated coding the first 
frame cannot be estimated, while in interpolated coding 
at least two frames cannot be decorrelated temporally. To 
obtain optimal overall reversible compression of the se- 
ries, these basis frames are coded intraframe using HINT. 

111. UNREGISTERED INTERFRAME DECORRELATION 
If the motion between consecutive frames in the se- 

quence is not compensated for, the decorrelation schemes 
become very straightforward. In extrapolation-based cod- 
ing, the only reasonable (and statistically significant) es- 
timate is 

f ( x ,  t )  = f ( x ,  t - 1) t = 1, 2 ,  3, * * * . ( 5 )  

In interpolation-based frame coding, the estimation 
scheme is simply 

f(x,  2'(2t + 1)) = l ( f ( x ,  2 / + 5 )  + f ( x ,  2 ' + ' ( t  + 1))) 

1, t = 0, 1, 2 ,  3, * . * . (6) 
The difference image to be coded is given by 

E(X, t )  =f(x,  t )  - NINT(~'(X, t ) )  (7) 
where NINT is nearest integer rounding. 

The simulation results of both schemes are presented in 
Section VI. In Figs. 1-3 an example is given of an orig- 
inal frame (this frame is taken from Series I ,  which is used 
later on in Section VI), an extrapolated difference frame 
and an interpolated difference frame. (Note that the dif- 
ference images have been shifted and scaled up for illus- 
tration purposes only). 

IV. BLOCK MOTION-COMPENSATED DECORRELATION 
A .  Extrapolation Schemes 

In block matching the image is segmented into a fixed 
number of rectangular (overlapping or nonoverlapping) 
blocks. The assumption is made that all picture elements 
of one block have the same distortion, which yields one 
displacement vector D per block. A displacement vector 
is obtained by minimizing 

d(f(x - D,  t - 11, f(x, t))  (8) 

where d represents some image distance measure. Ex- 
amples of image distance measures are normalized root 
mean squared and normalized mean absolute distance 
measures [ 111, (normalized) cross-correlation (e.g., [ 121) 
and the discrete sign change (DSC) criterion [ 131. We will 



l i e  t h c  DSC criterion since Venot h a s  shown that this ini- 
age intasure is niorc robust than the other distance mea- 
 ire\ riicntioned [ 131. Thc DSC criterion calculates the 
number of sign changes in ii block (scanned line by line 
or c<)lui1111 by <olumn)  of the difl.crcnce image 

\\here v i .  .\' arc thc coordinates of s and ill. I& the CO- 

ordinates 01 '  D. while the sc i l : i r  q represents the dcpth of 
the "chcs\board pattern" added to the subtracted image. 
The tilatch i s  optinial if the DSC ~ a l u e  reaches its maxi- 
mum. hote that in this model onl! translation is dealt 
\\ i t h .  Ln order t o  i'ully extract in-plaw motion artefacts. 
rotation (unif.orrn) scaling and shear should also be in-  

cluded in the optimization procedure, but this would i n -  
ply a prohibitive increase of computation time. Venot rt 
(11. 161 and Zuiderveld 01. 181 have shown that the re- 
striction to translation produces acceptable results in ac- 
ceptable computation times. Of course. any motion of the 
3-D scene perpendicular to the prc)jection plane of the time 
sequence is disregarded. Finally i t  should be noted that 
gray-level otfsets between frames have been included i n  
the registration procedurc. 

A local optimum of the DSC value can be obtained by 
using search techniques such as Hooke and Jeeves 141. 
logarithmic search [ I S ] .  or conjugate direction search 
[ 161. We found that tor all three methods at least 30 per- 
cent of the obtained displacement vectors did not globally 
optimize the DSC criterion. We therefore simply used a 
brute force technique by scanning all possibilities (within 
a sufficiently large window) to ensure globality of the op- 
timum. 

The rectangluar grid of displacement vectors is bilin- 
early interpolated to obtain a displacement vector per 
pixel. The ditference image 

E(x. t )  = f ' ( x .  t )  - NINT(f(x - D ,  t ~ 1 ) )  ( I O )  

is coded together with the block displacement vectors to 
obtain a ful ly  reversible block displacement compensation 
niethod. The number of block displacement vectors is a 
trade-off. By increasing the number o f  vectors a more lo- 
cal but also noisier estimate is obtained, while moreover 
the additional storage of these vectors may undo any i n -  
provement in decorrelation efficiency. 

B. lriterpolutiori .S'(~Iiet~ip.s 

I n  block motion-compensated interpolation the images 
f ( x .  t - I )  and , / ' (x.  f + 1 )  are subdivided into a fixed 
number of rectangular blocks. The assumption is made 
that the motion is time-independent in the interval ( t  - I .  
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Fig. 4 .  In symmetrical motion-compensated interpolation a displacement 
vector D for the frame f i x ,  t )  at time t is estimated from the frames at time 
r - l a n d r + l .  

t + 1). This allows the calculation of a displacement vec- 
tor for each block by minimizing 

d(f(x - D, t - I ) ,  f (x  + D, t + 1)) (11) 

where d is the DSC criterion, see Fig. 4. Analogously to 
block extrapolation we simply scanned all possibilities to 
ensure globality of the optimum. A complete displace- 
ment vector field is obtained by bilinear interpolation of 
the block displacement vectors. The difference image to 
be coded is given by 

E(X, t )  = f (x ,  t )  - NINT (i (f(x - D, t - 1) 

+ f(x + D, t + I))). (12) 

A “best” estimate of D(x) is obtaind by minimizing the 
displaced frame difference (DFD) in some sense. The 
DFD is defined by 

DFD(X, B )  = f ( x ,  t )  - f ( x  - a, t - 1)  

t =  1 , 2 , 3 ,  0 . .  (14) 

where D is some estimate of D. The DFD can be linear- 
ized by combining (13) and (14): 

DFD(X, B )  = f ( x  - D,  t - 1) - f ( x  - B, t - 1) 

= - ( D  - BITvf(x  - D, t - 1) 

= -v”(x - B, t - I ) ( D  - D) 
+ O(D - B)2 

+ O(D - b)* (15) 

where (3 is the Landau order symbol. 
In straightforward motion estimation the DFD is mini- 

mized at position x to find the desired estimate of the dis- 
tortion D(x). For the purpose of (reversible) compression, 
however, this would be impractical since it would require 
the storage of the complete displacement vector field. By 
calculating the DFD at already coded pixels only, a causal 
estimate of D(x) can be obtained. The estimation is done 
using a window containing pixels neighbouring the pixel 
to be coded. The number of pixels at which the DFD is 
calculated (“observations”) is a tradeoff; the displace- 
ment estimate of a (spatially) uniformly moving object 
will benefit from a large number of observations, whereas 
a small number of observations leads to a local but noisy 
estimate. In the reconstruction the DFD value is com- 
puted from the already decoded pixels. 

From (15) it follows the N observations at pixels x( j )  j 
= 1 , 2 ,  - . -  , N take the form: 

DFD(x(l), b) = - V ‘f(x(1) - 8, t - 1) ( D  - B )  + O(D - a)’ 

The calculation of the displacement vector field is solely 
based on f (x ,  t - 1) and f (x ,  t + 1) and thus no addi- 
tional storage of the block displacement vectors is re- 
quired. In the reconstruction off(x,  t )  the block displace- 
ment vectors are simply recalculated. 

V.  LOCAL MOTION-COMPENSATED DECORRELATION 
A .  Extrapolation Schemes 

In local (or recursive) motion estimation a displacement 
vector is calculated for each pixel. Thus a vector field is 
obtained where all geometrical in-plane distortions are de- 
scribed by local translations. The method assumes that for 
each pixel x there is a distortion vector D(x) such that 

t = 1, 2, 3, - . f(x, t )  = f ( x  - D(x), t - 1) 

(13) 

In matrixhector notation (16) is rewritten as 

z = HT(D - B )  + v (17) 

where the vector z represents the N observations of the 
DFD, H T  is the N X 2 matrix of gradients, and v is a 
vector representing the Taylor expansion truncation error. 

In order to calculate an optimum causal estimate, an 
iterative procedure is followed which minimizes the DFD, 
and hence the truncatnion residue U ,  in some sense. Let Dk 
be the kth value of D in the iteration process, and zk, H ;  
the corresponding values of z and H T .  By using the cal- 
culated distortion vector as the next estimate an implicit 
difference equation is obtained as follows: 

(18) z k  = HkT(Dk+l - D k ) .  

Netravali and Robbins [17], [SI minimize the truncation 
residue v by means of a weighted gradient method, which 
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is related to the SIRT algorithm [ 191 used in image re- 
construction from projections, see the Appendix. 

The resulting iteration procedure is 

& + I  = 4 - f k  w;)zk(;)H,(;)  

= Dk - ck W ( j  ) DFD(x(j), Dk)VS(x( j )  
I 

- DL, - 1 )  (19) 
where ei is a relaxation constant (which was taken to be 
independent of k by Netravali and Robbins), Hk(j) de- 
notes thejth column of Hk,  and W ( j ) , j  = 1,  2, . . . , N ,  
is a set of weight coefficients, with 

c W ( j )  = 1 .  
J 

An example of a three point causal weight-coefficient 
window is 

where the dot represents the position of the pixel to be 
coded. The choice of ek influences the rate of convergence 
and the stability, but not necessarily the quality of the 
estimation [20]. Walker and Rao [21] use a nonconstant 
E ~ ,  which is small if the gradient is large (e.g. ,  at the edge 
of an object) and large for small gradients: 

The resulting iterative displacement estimation scheme is 

= Dk - W j ) e k M j ) ,  Dk)zk( j )Hk( j ) .  ( 2 3 )  

In the derivation of the above methods a least square es- 
timate of the DFD has been sought. Consequently, is has 
been assumed implicitly that the truncation residue U in 
(17) can be considered as additive white zero-mean 
Gaussian noise. By assuming this noise behavior explic- 
itly, Biemond er al .  [22] derive a regularized least squares 
(Wiener) estimate of the update, which reads 

I 

Dk+, = Dk + (HkH; + pZ)-‘HLzk (24) 
where p is a regularization parameter, representing the 
ratio of the update variance and the noise variance. In Fig. 
5 ,  an example of a different frame (Series I ,  see Section 
VI) resulting from Wiener-based extrapolation is given. 

B. Ititer-polutioti Schemes 
The assumption made in (13) is equivalent to the as- 

sumption that for each pixel x a distortion vector D’ (x) 
exists such that 

f (x ,  t )  = f ( x  + D ’ ( x ) ,  t + 1 )  t = 0, 1, 2 ,  . . 

For objects moving at constant speed the distortion vec- 
tors D(x)  and D‘ (x) are equal. This admits the definition 

Fig. 5.  A Wiener-based motion compensated extrapolated difference frame 
(Series I ) .  The image has been shifted and scaled for display purposes. 

of a symmetrical displaced frame difference (SDFD) by 

SDFD(x, b) = f ( x  + b, t + 1) - f ( x  - D, t - l ) ,  

(26) 

where D is an estimate of D. 

equality of D and D’ yields: 

SDFD(x, a) = f ( x  + D, t + 1)  - f ( x  + D, t - 1) 

Linearizing the SDFD using (13) and (25) and the 

+ f ( x  - D ,  t - 1) - f ( x  - 8, t - 1 )  

= - ( D  - b ) T ( V f ( x  + 8, t + 1) 

+ v f ( x  - 8, t - 1)) + ~ I ( D  - D)> 
= - V T ( f ( X  + a, t + 1)  

+ f (x  - 8, t - 1 ) )  ( D  - 6) 
+ tI(D - a)’. (27) 

Analogously to extrapolated recursive displacement esti- 
mation a number of observations are made. These obser- 
vations however need not be causal, since no information 
o f f (x ,  t )  is used. We have 

z = G’(D - D) + (28) 

where the vector z represents N observations of the SDFD, 
G T  is the N x 2 matrix of gradients, and w is the vector 
of truncation errors. 

As in Section V-A an ityative procedure is followed: 
let Dk be the kth value of D in the iteration process, and 
zi, H: the corresponding values of z and H f .  The differ- 
ence equation then becomes 

z i  = G m i . 1  - 4) .  (29) 
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Fig. 6.  A difference frame resulting from a Wiener-based motion conipen- 
sated interpolation (Series I) .  The image has been shifted and scaled for 
display purposes. 

where t,! is constant for the Netravali and Robbins method 
and defined by (22) for the Walker and Rao method. 

Wiener-based pel-recursive interpolation yields a reg- 
ularized least squares estimate of the update of the sym- 
metrical displacement vector 

D L + l  = DL + (GLG[ + p I ) - ' G L z L .  (31) 

In Fig. 6 ,  an example is given of a difference frame (Se- 
ries I), resulting from Wiener-based interpolation. 

VI.  RESULTS 
We have evaluated the above described methods on 

several medical image sequences and one nonmedical im- 
age sequence. Series I ,  11, and I11 consist of coronary X- 
ray angiograms. Series I is a set of 15 frames of 512 x 
512 pixels, 9 b (512 gray values), recorded at 30 images 
per second. Series I1 consists of 14 152 x 1512 frames, 
8 b,  recorded at 25 images/s. Series I11 consists of 18 
frames of 256 X 256, 8 b,  recording speed 25 images/s. 
Series IV is a set of 18 ventricle X-ray angiograms, 256 
x 256, 8 b recorded at 12.5 images/s. Series V is a liver 
scintigram image sequence for the detection of Meckel's 
diverticle. The series contains 40 frames of 128 x 128, 
8 b, recording speed 1 image/min. Series VI is a video 
conferencing time series of 20 frames of 256 x 256, 8 b,  
recorded at 60 images / s .  Although reversible compres- 
sion is not very appropriate for the latter type, the series 
is included for the sake of comparison. 

In Table I, the average entropies (in bits/pixel) result- 
ing from the various interframe decorrelation schemes and 
from straightforward intraframe HINT are given for the 
six image sequences. In Figs. 7 and 8 ,  the results of the 
extrapolation-based methods are presented in pictorial 
form. The differences between the average entropies pro- 
duced by the interpolation-based methods are too small to 
make a pictorial presentation suitable. 

In temporal interpolation the number of hierarchical 

steps used depends on both the spatial and the temporal 
correlation. For the situation of low-spatial and high-tem- 
poral correlation the number of hierarchical steps should 
be large. In this situation it is advantageous to interpolate 
images which are (temporally) far apart. For the five med- 
ical image sequencies the optimum value of the parameter 
I in (4) was found to be 0; only half of the images are 
temporally decorrelated, the other half are 2-D HINT de- 
corelated. For the video conferencing series, which is the 
only series with a ratio of temporal to spatial correlation 
larger than 1 (see Fig. 9),  I = 2 is optimum: every 8th 
frame is 2-D HINT decorrelated. ' 

In block motion estimation, described in Sections IV- 
A and B, an equidistant grid of block displacement vec- 
tors is calculated. The DSC distance is calculated over an 
area of 3 1 x 3 1 pixels, each grid point represents an area 
of 16 x 16 pixels. The overlapping blocks will produce 
a global motion estimate. The block displacement vectors 
are stored at 24 b/vector, thus creating an overload of 
24/16' = 0.09 b/pixel. This overload has already been 
taken into account in Table I. The q parameter in the DSC 
criterion depends on the signal-to-noise ratio of the im- 
ages. The optimal q is a tradeoff: a small q leads to a 
displacement sensitive but noisy estimate, a large q yields 
a noise- and motion-insensitive estimate. In the simula- 
tion results the q is tuned per image sequence. the optimal 
values are 4 ,  4 ,  8 ,  8,  6 ,  12 for image sequences I through 
VI. 

The three extrapolated pixel-recursive motion estima- 
tion methods described in Section V-A use a causal win- 
dow from which the displacement information is ob- 
tained. The optimal window size depends on the 
correlation of the displacement vectors. Global motion is 
detected for large windows whereas a small window leads 
to a local yet noisy motion estimate. We found that a win- 
dow of three pixels, configurated as shown in (21) is op- 
timal for the medical image sequences. For the video se- 
quence a slight improvement can be obtained by using a 
5-point windc;w. Conventionally, the obtained displace- 
ment vector is used as a starting vector for the recursive 
estimation of the next displacement vector. We found, 
however, that for the medical image sequences this leads 
to a less efficient scheme than the memoryless model 
where the starting vector is set equal to zero. The optimal 
E in the Netravali and Robbins extrapolated method turned 
out to be 0.005 for all images series, for the interpolation 
variant the optimal value was found to be 0.001, The pa- 
rameter p in the Wiener-based pel-recursive method is a 
damping parameter. For the extrapolated scheme the op- 
timum values for p are 10, 1 ,  5 ,  10, 10. 100 for image 
sequences I through VI. For interpolated Wiener-based 
motion compensation the optimum pm is equal to 90 for 
all sequences. 

In reversible interframe compression the temporal de- 
correlation can be combined with spatial (reversible) de- 
correlation without any restriction. From the methods de- 

'Note that entropy numbers in Table l represent the average entropy for 
the complete image sequences: thus they are based o n  the entropy of both 
temporally and spatially decorrelated frames. 
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TABLE I 
AVERAGE ENTROPY @/pixel) OF SIX IMAGE SERIES AFTER INTRAFKAME HINT DECORRELATION A N D  VARIOUS INTERFKAME DECORRELATION TECHNIQUE 

I Coronary I1 Coronary 111 Coronary IV Ventricle V Liver VI Video 
Angiogram Angiogram Angiogram Angiogram Scintigram Conferencing 
512 X 512 512 x 512 256 x 256 256 x 256 128 X 128 256 x 256 
30 im/s  25 im/s  25 im/s  12.5 im/s  1 im/mm 60 im/s  

Quantization Level 

Average Entropy 
(b /pixel) 9 8 8 8 8 8 

before Decorrelation 7.57 6.26 6.95 7.21 3.58 6.72 

Intraframe HINT 2.68 2.52 3.45 3.59 2.93 4.45 

Extrapolation 
Unregistered 

Block-based 

3.24 3.20 3. 75 4.15 3.21 4.03 
2.59 2.71 3.53 3.65 3.27 3.90 

3.23 3.30 3.78 4.14 3.30 4.07 
2.74 2.86 3.65 3.81 3.36 3.97 

Netravali & Robbins 2.90 3.02 3.50 3.80 3.11 3.87 
2.69 2.70 3.50 3.63 3.14 3.88 

Wiener 

Interpolation 
Unregistered 

Block-based 

2.69 2.85 3.44 3.68 3.11 3.87 
2.61 2.74 3.53 3.65 3.18 3.93 

2.78 2.71 3.43 3.71 3.01 3.98 
2.54 2.53 3.39 3.69 3.05 3.90 

2.80 2. 73 3.44 3. 76 3.01 3.96 
2.58 2.56 3.40 3.58 3.05 3.88 

Netravali and Robbins 2.84 2.73 3.47 3.74 2.99 4.18 
2.66 2.58 3.45 3.62 3.02 4.16 

Wiener 2. 77 2.70 3.41 3.68 2.99 3.96 
2.55 2.53 3.38 3.53 3.02 3.89 

The figures in  italic font denote the entropy after temporal decorrelation only, those in  roman font denote the entropy after temporal decorrelation 
followed by intraframe HINT applied to the individual frames. In all intraframe HINT decorrelations we used an initial blocksize of 8 X 8, resulting in 
a 7-level pyramid. The Walker and Rao method described in Section V-A: B has been omitted, since the results were always in between the Netravali 
and Robbins and Wiener-based pel-recursive methods both for interpolation and extrapolation. 

4.5 , 8 

2.0 I 
I I1 I11 IV v VI 

-image sequence 

Fig. 7. The average entropy (bits/pixel) of the six image Series I-VI after 
extrapolation-based temporal decorrelation.' -Block-based extrapo- 
lation; - -unregistered extrapolation; ----Netravali and Robbins: - - - - 
Wiener-based motion compensation. The results of straightforward intraf- 
rame HINT (*) are also shown for the six series. 

scribed in [ l ]  HINT turned out to be the best post spatial 
decorrelator. See Table I for the post-HINT results (ro- 
man font). Reversing the order of temporal and spatial 
decorrelation, which was found to be useful in irrevers- 
ible compression [23], has also been considered. We 
found that for the medical image sequences a spatial-tem- 

'The frames which are not temporally decorrelated have been spatially 
decorrelated using 2-D HINT. 

* 

2.0 -, 
I I1 I11 IV v VI - image sequence 

Fig. 8. The average entropy (bits/pixel) of the six image Series I-VI after 
extrapolation-based temporal decorrelation and consecutive intraframe 
HINT.' ~ Block-based extrapolation; - -unregistered extrapolation; 
----Netravali and Robbins: - - - - Wiener-based motion compensation. The 
results of straightforward intraframe HINT (*) are also shown for the six 
series. 

poral scheme is better than temporal decorrelation, but 
less efficient than the above outlined temporal-spatial 
scheme; for details we refer to [24]. 

Finally, we have calculated the correlation coefficient 
(CC) in the two spatial dimensions and in the temporal 
dimensions for the six image sequencies considered. The 
CC [12] is defined by 

Pklm = I 

Xlr';2.1 h 2  - ( XI ,X2,1  c h ) )  (Ntot x I , XZ , t g 2  - ( X I  c ,X2. f R j i )  
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Pt t 0.95 "0° 1 
0.90 4 / 

0.85 I / '  
* I1 

0.80 , 
0.80 0.85 0.90 0.45 1.60 

P h  - 
Fig. 9. The temporal correlation coefficient versus the horizontal spatial 

correlation coefficient for the six medical image sequences considered 

where h = f ( x , ,  x2, t )  and g = f ( x l  + k ,  ,r2 + I ,  t + m ) ,  
and where N,,, is the total number of elements over which 
the summation is calculated. In Fig. 9 the temporal CC 
( p o o l )  is set out against the horizontal spatial CC ( p l o o ) .  
(The vertical CC ( p o l o )  was found to be almost equal to 
the horizontal CC.) As is clear from the figure, the video- 
conferencing sequence has the highest ratio of temporal 
to spatial correlation. 

VII. DISCUSSION OF THE RESULTS 
From Table I we conclude that the Wiener-based pel- 

recursive method is the most efficient method for motion 
compensation both in extrapolated and in interpolated 
form. It outperforms block-based motion compensation, 
the Netravali and Robbins method of pel-recursive motion 
compensation, and the Walker and Roa method. The spa- 
tial postdecorrelator, however, destroys the optimality of 
the Wiener approach. Motion compensation destroys the 
spatial correlation at least partly. In some cases this effect 
is seen to be so large that the entropy even increases if a 
spatial decorrelator is applied to the temporally decorre- 
lated images. 

For the medical image sequences I through V the inter- 
polation scheme is generally more efficient than the cor- 
responding extrapolation scheme, both for motion-com- 
pensated and nonmotion-compensated decorrelation. This 
can be explained by the averaging character of the esti- 
mation in interpolative decorrelation which suppresses the 
temporal noise. This noise suppression effect is stronger 
than the disadvantage of interpolation frames that not all 
frames can be decorrelated temporally. 

The above discussed methods are judged solely on their 
decorrelation performance (resulting average entropy). 
Another aspect however is the complexity of the various 
methods. The methods discussed can be divided into two 
classes. The first class contains the unregistered methods 
and intraframe 2-D HINT. These methods have in com- 
mon that the execution time is independent of the image 
contents. In contrast, for the motion compensation meth- 
ods, the execution time depends on the amount of itera- 
tions needed to obtain a suitable displacement vector field. 

For the medical image sequences one of the interframe 
decorrelation methods performs significantly better than 

straightforward intraframe HINT. However, unregistered 
interpolation approximates 2-D HINT within a few per- 
cent as regards compression ratio. We timed both meth- 
ods on an HP 375, 50 MHz, 68030 processor. For unre- 
gistered interpolation we made the assumption that each 
frame needs to be read only once. Since the method ac- 
cesses the frames in a nonsequential order, a sufficiently 
large internal memory is required. The minimal size of 
the internal memory depends on I in (4); the number of 
frames needed to be stored is 2"  + I )  + 1 .  The 2-D HINT 
method required 0.80 sec per frame (512 x 512 pixels). 
Unregistered interpolation takes 0.32 s/frame. Since only 
half the series is temporally decorrelated in interpolation 
methods with I = 0. while the other half is spatially de- 
correlated using 2-D HINT, the computational cost of un- 
registered interpolation is approximately 2 / 3  of that of 
intraframe HINT. Consequently, it is an interesting alter- 
native for intraframe HINT. 

If computational speed is more important than the num- 
ber of bits of coded, unregistered extrapolation could be 
the method of choice. It approximates the average entropy 
produced by 2-D HINT not as well as unregistered inter- 
polation, but for many applications the resulting bit rate 
might still be acceptable. Unregistered extrapolation takes 
0.14 siframe. Since all image frames but the first are tem- 
porally decorrelated, the computational cost of unregis- 
tered extrapolation is approximately 1 / 5  of that of intra- 
frame HINT. 

The performance of a decorrelation method depends on 
the correlation of the signal. In intraframe HINT the two 
spatial correlations are utilized while the temporal decor- 
relation step of nonmotion compensated extrapolation and 
interpolation methods solely utilizes the interframe cor- 
relation. The lack of success of the motion compensated 
methods may be due to the low ratio of temporal corre- 
lation to spatial correlation, or, more probably, to the poor 
displacement estimates provided by the motion estimation 
(effects not included are, inter-alia, illumination changes, 
motion perpendicular to the frames, in-plane motion other 
than linear translational motion). 

The influence of the spatial sampling rate can be ob- 
served by spatially downsampling the images. For images 
sequence I we downsampled the images by a factor of 
two: the images were low-pass filtered (half the band- 
width) before downsampling so as to avoid aliasing. The 
performance of the optimal temporal decorrelation method 
(Wiener), intraframe HINT, and Wiener + HINT are 
given in Table 11. For the other image sequences the re- 
sults are similar. The entropy figures represent the aver- 
age entropy for the complete series, they are an average 
of both interframe and intraframe decorrelated frames. 
The figures in italic font denote the entropy after temporal 
decorrelation only. 

From Table I1 it appears that downsampling by a factor 
of two already makes interframe decorrelation quite effi- 
cient. Although it is obvious that the performance of in- 
traframe HINT relative to the temporal decorrelation 
methods will decrease with decreasing spatial sampling 
rate. the degree of this decrease was surprisingly high to 
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TABLE I1 

INTRAFRAME HINT, UNREGISTERED A N D  WIENER-BASED INTER- 
A N D  EXTRAPOLATION FOR IMAGE SEQUENCE I 

INFLUENCE OF SPATIAL DOWNSAMPLING ON THE PERFORMANCE OF 

512 X 512 256 x 256 

Intraframe HINT 2.68 3.42 
Unregistered extrapolation 3.24/2.59 3. I7 /2 .9  1 
Unregistered interpolation 2.78/2.54 3. I I / 3 . 0 5  
Wiener-based extrapolation 2.69 / 2.6 1 2.94/3.08 
Wiener-based interpolation 2.77/2.55 3.09/3.04 

The figures in italic font denote the entropy after temporal decorrelation 
only, those in roman font denote the entropy after temporal decorrelation 
followed by intraframe HINT (8 X 8 initial blocksize). 

TABLE 111 
INFLUENCE OF TEMPORAL SMOOTHING O N  THE PERFORMANCE OF 

INTRAFRAME HINT, UNREGISTERED A N D  WIENER-BASED INTER- A N D  
EXTRAPOLATION FOR IMAGE SEQUENCE I 

Original 3-Point Moving Average 

Intraframe HINT 2.68 2.43 
Unregistered extrapolation 3.24/2.59 2.29/  1 S I  
Unregistered interpolation 2. 78/2.54 2.09/  1.92 
Wiener-based extrapolation 2.69/2.61 I .  93 / I .90 
Wiener-based interpolation 2.77/2.55 2.1 I / 1.95 

The figures in italic font denote the entropy after temporal decorrelation 
only, those in roman font denote the entropy after temporal decorrelation 
followed by intraframe HINT (8 X 8 initial blocksize). 

us. Furthermore, the spatial postdecorrelation is less ef- 
ficient or even worse for the spatially downsampled se- 
quence. 

We examined the influence of temporal noise by 
smoothing the image sequences in the temporal direction. 
We used a 3-point moving average filter. In Table I11 the 
results of 2-D HINT, nonmotion compensated extrapola- 
tion and interpolation, and Wiener-based motion compen- 
sated interpolation and extrapolation are given for image 
sequence I .  Again the figures in italic font denote the en- 
tropy after temporal decorrelation only. From Table I11 
we conclude that for the temporally averaged sequences 
all temporal decorrelation methods considered outperform 
intraframe HINT significantly. The optimal method now 
is unregistered extrapolation followed by intraframe 
HINT, just as for the spatially downsampled version of 
the sequence (Table 11). 

The results of Table I1 and I11 as well as the results for 
the videoconferencing series in Table I show that the con- 
clusions of the present study should be interpreted with 
care. While the conclusions drawn above (and summa- 
rized below) are fairly consistent for all medical image 
sequences considered, they are not generally valid for any 
type of image sequence. In particular may preprocessing 
of the sequence, e.g., by temporal averaging, signifi- 
cantly alter the efficiency of the compression methods. 

VIII. SUMMARY OF CONCLUSIONS 
Interpolated temporal decorrelation is generally better 

than extrapolated temporal decorrelation for the medical 
image sequences considered. 

Wiener-based pel-recursive motion estimation is the 
most efficient method for motion compensation. How- 
ever, Wiener-based decorrelation is hardly (if at all) more 
efficient than nonmotion compensated interframe decor- 
relation. 

For the medical image sequences, none of the inter- 
frame decorrelation methods perfomis signficantly better 
than straightforward intraframe HINT. This is ascribed to 
the temporal noise present in the medical image sequence. 
Both spatial downsampling and temporal smoothing of the 
series reverse the above conclusion. 

Unregistered interpolation approximates the perfor- 
mance of intraframe HINT within a few percent. The 
lower complexity makes the method an interesting alter- 
native to intraframe HINT. Unregistered extrapolation has 
a significantly lower complexity still, but the decorrela- 
tion results are not as good as for the interpolation scheme. 
The requirements concerning compression ratio and com- 
putational speed will determine which method is most ap- 
propriate. 

APPENDIX 
In this Appendix it is derived how the iteration proce- 

dure (19) for determining the distortion vector D(x)  fol- 
lows from minimization of the truncation of the Taylor 
series expansion of the DFD. Furthermore, it is shown 
that minimizing the DFD with a steepest descent tech- 
nique is equivalent to applying the simultaneous iterative 
reconstruction technique (SIRT) to the nonlinear system 
of equations ( 17). 

A. Steepest Descent 

descent technique has the form 
Let f (x) be the function of be minimized. The steepest 

(33) 

where hk is a relaxation parameter. Note that the steepest 
descent technique is a least squares minimization method. 
Applying this technique to the DFD ( x ,  D ) ,  that is, min- 
imizing the DFD2 as a function of D results in 

x k +  1 = xk - hvf (xk) 

Dk+l = Dk - & V D ~ D F D ~ ( X ,  Dk) 

= Dk - 2hDFD(X, Dk)vDk( f (x ,  t> 

- f (x, Dk, t - 1)) 

= Dk - 2hkDFD(x, Dk)V, f (X - Dk, t - 1) , 

(34) 

for one observation at position x. In order to make the 
prediction scheme causal, Netravali and Robbins replaced 
the update by a weighted average of updates, using a 
number of observations in a neighborhood W of the pixel 
to be coded 

= Dk - Ek ,x W(j)DFD(x( j ) ,  Dk) 
J E W  

(35) 
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B. Simultaneous Iterative Reconstruction Technique 
(SIR T) 

Consider the system of linear algebraic equations: 

AX = b (36) 

where A is an N X 2 matrix, x = 2 X 1 and b = N x 1. 
Applying SIRT to this set of linear equations results in 
1251 

X k f  1 = (1 - A T&A)Xk 4- &A Tb 

N 

= xk -k ,x hjk(bj - A( j )Xk)A( j )T  (37) 
J =  I 

where Ak = diag(hjk) is a diagonal matrix providing for 
relaxation and scaling, and A ( j )  denotes thejth row of A .  
However, (17) which we wish to solve, is nonlinear; both 
A and b are dependent on x. 

We thus have the set of equations 

A(x)x  = b(x) . (38) 

A natural way to solve the nonlinear system using SIRT 
is to apply SIRT to the original system making one iter- 
ation step with zero starting vector, to update the system 
matrix and the data vector, and next to apply SIRT to the 
new system by again making one iteration step initialized 
by zero. This process is repeated until the solution is sat- 
isfactory. The reason that zero is a good starting vector 
for every new step is that the iterate xk should approach 
zero as k + 03 in order to give a good estimate D for D. 
We thus obtain the iteration scheme: 

N 

xk+l = xk + h j k b k ( j ) A l ( j ) .  (39) 
j =  1 

By setting: A = H T ,  X = D - b, xk = D - Dk, b = Z ,  
and h j k  = t k  W ( j )  in order to make (36) correspond with 
(17), we obtain as a solution to (17): 

N 

D k + l  = Dk - f k  W ( j ) z k ( j ) H k ( j )  (40) 
j =  I 

where t k  is a relaxation parameter and W ( j )  is a weight 
coefficient window providing for row scaling. 
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