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Summary

Deep learning models have made enormous strides over the past decade. However, they

still have some disadvantages when dealing with changing data streams. One of these flaws

is the phenomenon called catastrophic forgetting. It occurs when a model learns multiple

tasks sequentially, having access only to the data of the current task. However, this scenario

has strong implications for real-world machine learning and engineering problems where

new information is introduced into the system over time. Continual learning is a subfield

of deep learning that aims to work in this scenario. Therefore, this thesis presents a general

continual learning paradigm to tackle the catastrophic forgetting issue in deep learning

models, regardless of architecture.

Following ideas from the neuroscience literature, we create task-specific regions in

the network, i.e. subnetworks, to encode information there. Thus, some parameters are

responsible for solving this task, which mitigates forgetting compared to conventional

training where the trainable parameters are simultaneously assigned to all tasks. A proper

subnetwork should be then selected by the algorithm to make a prediction or information

about the correct subnetwork must be given by the user. The subnetworks can share some

connections to transfer knowledge between each other and facilitate future learning.

In the first part of the thesis, we describe the proposed methodology: task-specific

subnetwork creation during training and the proper subnetwork selection during inference

stages. We examine different subnetwork prediction strategies outlining their advantages

and disadvantages. We validate the proposed algorithms on a series of well-known image

datasets in computer vision in classification and semantic segmentation tasks. The proposed

solution significantly outperforms current state-of-the-art methods by 10-20% of accuracy.

The second part of the thesis illustrates the benefits of cooperative learning via continual

learning in physical sciences and solid mechanic examples. We demonstrate that by sharing

parameters, the following subnetwork can be trained either with lower prediction error,

requiring fewer training data points, or both, compared to conventional training with one

network per task. Importantly, the model does not forget any of the acquired knowledge

since once a parameter is assigned to a subnetwork, it is not changed when training new

tasks. We would like to highlight the potential importance of further development of

continual learning methods in engineering to improve the generalization capabilities of

the models.

The thesis concludes by discussing the main results and findings. We also outline the

main limitations of the work and directions for improvement. Further development of

continual learning models will lead to more advanced artificial intelligence systems that

should contribute to solving a wider range of problems.
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Samenvatting

Modellen voor diep leren hebben de afgelopen tien jaar enorme vooruitgang geboekt. Ze

hebben echter nog steeds enkele tekortkomingen als het gaat om veranderende datastro-

men. Een van deze tekortkomingen is het fenomeen dat “catastrofaal vergeten” wordt

genoemd. Het komt voor wanneer een model meerdere taken achter elkaar leert en alleen

toegang heeft tot de gegevens van de huidige taak. Dit scenario heeft grote gevolgen voor

echte machine learning- en engineeringproblemen waarbij in de loop van de tijd nieuwe

informatie in het systeem wordt geïntroduceerd. Continu leren is een deelgebied van

diepgaand leren dat zich met dit scenario bezig houdt. Daarom presenteert dit proefschrift

een algemeen continu leerparadigma om het probleem van “catastrofaal vergeten” in diep

leren modellen aan te pakken, ongeacht de architectuur.

Op basis van ideeën uit de neurowetenschappelijke literatuur creëren we taakspecifieke

regio’s in het netwerk, d.w.z. subnetwerken, om daar informatie te coderen. Sommige

parameters zijn dus verantwoordelijk voor het oplossen van deze taak, wat het vergeten

vermindert in vergelijking met conventionele training waarbij de trainbare parameters tege-

lijkertijd aan alle taken worden toegewezen. Vervolgens moet door het algoritme een juist

subnetwerk worden geselecteerd om een voorspelling te doen, of de gebruiker moet infor-

matie over het juiste subnetwerk geven. De subnetwerken kunnen een aantal verbindingen

delen om kennis onderling over te dragen en toekomstig leren te vergemakkelijken.

In het eerste deel van het proefschrift beschrijven we de voorgestelde methodologie:

taakspecifieke subnetwerkcreatie tijdens training en de juiste subnetwerkselectie tijdens

inferentiefasen. We onderzoeken verschillende voorspellingstrategieën voor subnetwerken

en schetsen hun voor- en nadelen. We valideren de voorgestelde algoritmen op een reeks

bekende beelddatasets in computer vision in classificatie- en semantische segmentatieta-

ken. De voorgestelde oplossing presteert aanzienlijk beter dan de huidige state-of-the-art

methoden met een verbetering van 10-20% van de nauwkeurigheid.

Het tweede deel van het proefschrift illustreert de voordelen van coöperatief leren via

continu leren in de natuurwetenschappen en met voorbeelden uit de mechanica van de

vaste stof. We laten zien dat door het delen van parameters opeenvolgende subnetwerkken

kunnen worden getraind met een lagere voorspellingsfout, of met minder trainingsdatapun-

ten, of beide, vergeleken met conventionele training met één netwerk per taak. Belangrijk is

dat het model niets van de opgedane kennis vergeet, aangezien een parameter die eenmaal

aan een subnetwerk is toegewezen, niet meer wordt gewijzigd bij het trainen van nieuwe

taken. We willen graag het potentiële belang benadrukken van de verdere ontwikkeling van

continue leermethoden in de techniek om de generalisatiemogelijkheden van de modellen

te verbeteren.

Het proefschrift wordt afgesloten met een bespreking van de belangrijkste resulta-

ten en bevindingen. Ook schetsen we de belangrijkste beperkingen van het werk en de

verbeterpunten. Verdere ontwikkeling van modellen voor continu leren zal leiden tot
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geavanceerdere kunstmatige-intelligentiesystemen die zouden moeten bijdragen aan het

oplossen van een breder scala aan problemen.
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1

1
Introduction

This chapter introduces the catastrophic forgetting problem in deep neural networks. We
describe continual learning as a field that tackles this problem under different scenarios. A
general paradigm for the continual learning algorithm is described in this chapter. Then we
formulate the main research goal of the thesis and research questions that help to achieve the
goal. Finally, the outline of the thesis is presented.
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Artificial Intelligence (AI) aims to create algorithms and software that imitate the

intelligence of humans. There are various subfields in AI aiming to build smart systems

that can learn and behave as natural intelligence. One is machine learning (ML), which

incorporates observed data to train complex statistical models [1]. Machine learning has

become a powerful tool to solve a variety of real-life problems in engineering, finance,

medicine and physics. In the last few years, there has been a particular interest in deep

neural networks (DNNs), i.e. deep learning (DL) models [2–4].

Artificial Intelligence (AI)

Machine Learning (ML)

Deep Learning (DL)

Continual 
Learning (CL)

Figure 1.1: Artificial Intelligence and its sub-areas.

Despite the popularity of DNNs, they fail to learn tasks sequentially [5]. This occurs

because DNNs tend to forget old information while learning new one. This phenomenon is

called catastrophic forgetting [6], and continual learning (CL) is the subfield of deep learning
that focuses on this problem. Figure 1.1 summarizes the relation between AI, ML, DL and

CL.

The development of continual learning models improves their robustness to the real-

world non-stationary environments. For instance, an autonomous vehicle needs to con-

stantly perform scene recognition incrementally adapting to new conditions without

forgetting previous knowledge [7]. Another example is a medical system that continuously

learns to segment different regions of the human brain from MRI scans without retraining

because past data can be too sensitive to store on a server [8, 9]. In the following sections,

we will discuss the reasons for catastrophic forgetting and different problem scenarios.This

thesis aims to propose a new paradigm for overcoming catastrophic forgetting in DNNs by

taking inspiration from neuroscience literature and encoding different tasks in separate

subregions, activating a proper one at inference.

1.1 Continual learning for deep neural networks
Machine learning systems, as well as biological ones, suffer from forgetting [6, 10]. However,

DNNs-based models may suffer from catastrophic forgetting even if there are only two

tasks [11]. In a scenario where the network is trained sequentially, the parameters trained
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for the first task will be updated relative to the second, significantly losing the ability to

perform the previous one [10]. This is the outcome of the gradient-based weights update

rule, where every parameter of the neural network is only updated based on the gradient

of the loss on the current task without considering previous tasks [11], in contrast to

multi-task learning [12]. In neuroscience, it is also known as the plasticity-stability dilemma
[13, 14]. The illustration of this process is shown in Figure 1.2.

Learning

Task 1

Learning
Task 2

Figure 1.2: An illustration of parameters overwriting in sequential training.

In continual (or lifelong) learning, data comes in batches 0, 1, …, 𝑡 , … sequentially,

which are called tasks. In the moment 𝑡, only data 𝑡 for task 𝑡 is available, while all

previous batches0,1,… ,𝑡−1 are not. Continual learning aims at creating deep learning

models that do not forget previously learned tasks while being able to learn new ones.

Addressing current challenges in continual learning and mitigating catastrophic forgetting

brings the deep learning community one step closer to mimicking the capabilities of the

human brain.

Continual learning literature mostly focuses on algorithms for computer vision or

natural language processing tasks. Yet, developing a general method not limited to one data

type is essential, albeit less common in the current literature. Also, modern approaches do

not focus much on the influence of one task in learning the following ones. However, the

human brain can take advantage of already-acquired information facilitating the learning

process and requiring fewer training examples to learn a pattern [15].

1.1.1 Different continual learning scenarios
The notation of the task refers to a separate batch of training data𝑡 = (𝑋 (𝑡), 𝑌 (𝑡)) available
at the current step 𝑡, where 𝑋 (𝑡)

is input data and 𝑌 (𝑡) are corresponding labels. This
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can be a set of new classes, domains, or output space [16]. Continual learning literature

distinguishes several scenarios for classification problem [16, 17], which are formalized

with the use of marginal distributions 𝑃(𝑋 (𝑡)), 𝑃(𝑋 (𝑡)) ≠ 𝑃(𝑋 (𝑡+1)), and the availability of

task-ID:

• Task-incremental learning (Task-IL): the easiest CL scenario, where task-ID is given

during training and inference. Tasks have non-overlapping class labels and {𝑌 𝑡} ≠
{𝑌 𝑡+1}. A real-life example is learning mechanical law, e.g. stress-strain relation, for

different material types. This is a task-IL problem since at the inference stage we

know for which material we want to predict stress with the given strain (see also

Chapter 6).

• Domain-incremental learning (Domain-IL): task-ID is unavailable during inference.

However, the model does not need to infer what task input data belongs to and

has a fixed set of output neurons, meaning {𝑌 𝑡} = {𝑌 𝑡+1}, but the input distribution
changes over time. In other words, tasks always have the same structure, but there

is a distribution shift in input space. One example of domain-incremental learning is

an autonomous agent driving under different weather conditions [18].

• Class-incremental learning (Class-IL): the most challenging scenario, where task-ID

is not given at the inference stage. The output layer consists of separate task-specific

classification heads {𝑌 𝑡} ⊂ {𝑌 𝑡+1}. A typical example of the class-IL problem is a

monitoring system that learns to classify different types of defects while they occur.

Task n

Task nTask n Task 1

Task 1

Neural 
network

task-IL

class-IL

. 
. 

.

Task 1

task-ID 
is available

task-ID 
is not available

TRAINING TESTING

Figure 1.3: An illustration of the difference between task-IL and class-IL scenarios.

However, in this thesis, we will discuss only task-IL and class-IL scenarios in case of

classification problems, following the categorization of Masana et al. [19], and scenarios
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with or without provided task-ID for regression and segmentation problems. In Figure

1.3, we show a schematic with the difference between task-IL and class-IL scenarios for

classification.

1.2 General paradigm
In this section, we present the basic paradigm proposed in the thesis. Drawing inspiration

from the neuroscience literature and some evidence about how the human brain works

[20, 21], we propose dividing the network into task-related regions, which in this case

are task-specific subnetworks. Thus, during training, the algorithm strives to find these

subnetworks for specific tasks, and during testing, it is necessary to select a suitable

subnetwork and make a prediction using it.

Task 1 & Task 2

Task 2

Task 1

Available 
connections

X

X Y

TRAINING TESTING

Subnetwork selection

Prediction

Task 2

Figure 1.4: An overview of the proposed CL paradigm.

Figure 1.4 summarizes this paradigm using the example with two tasks. We demonstrate

it in the most general case of the class-IL scenario. Here the model first has to predict the

task from which 𝑋 came, and then make a prediction 𝑌 with the corresponding subnetwork.

1.2.1 Research Goal and ResearchQuestions
The research goal is to build a DNN without catastrophic forgetting that can be applied to

a variety of problems and data types, e.g., images and time series. As described previously,

we create specialized regions in a network (task-specific subnetworks) that are responsible

for solving a particular task. Moreover, if tasks are similar, we want previously acquired

knowledge to help the model master new tasks with better performance. Overall, the

research goal (RG) can be formulated as follows:

Develop a neural network model that can solve several tasks incrementally, promoting

different regions and training the model to use learned concepts for solving new ones.
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We formulate several research questions (RQ) that should help us to achieve the RG
and discuss the importance of these questions:

• RQ1: How to create a task-specific subnetwork?

First, we should understand which connections and neurons are the most significant

in DNN for solving a given task. By estimating the importance of each parameter,

we will be able to prune the connections that do not contribute much to the final

output and retain only the useful ones.

• RQ2: How to train subnetworks sequentially without forgetting?

Once we can build these task-specific subnetworks separately, we need to figure out

how to build them sequentially. The problem here is that subsequent subnetworks

can interfere with all previous ones, causing forgetting.

• RQ3: What is the mechanism for activating the correct subnetwork during inference?

At the inference stage, DNN receives the test data point. In task-IL scenario, the

model also knows the task-ID for the data point and, therefore, which subnetwork

to use. However, in a more general class-IL case, task-ID should be inferred by the

algorithm to use the correct subnetwork.

• RQ4: Can knowledge transfer between the regions improve generalization and/or

reduce training data needs?

The created subnetworks make parts of the DNN pretrained on previous tasks.

This may facilitate the learning of new tasks if the model reuses the connections

pretrained on similar tasks. As a result, this transfer learning effect may improve the

performance of the model on new tasks without forgetting old ones or reduce the

need for training data for future tasks.

1.3 Thesis Outline
The thesis consists of two parts: Methodology (Chapters 2, 3 and 4) and Application (Chap-

ters 5, 6). In the first part, we develop the general approach to tackle continual learning

problems. In Chapter 2, we present a data-driven neural network pruning algorithm [22]

that creates a task-specific subnetwork (region) for the given dataset. We validate this

pruning strategy on various image-based datasets such as MNIST and CIFAR-10/100 out-

performing other state-of-the-art methods. In Chapter 3, we utilize the developed pruning

algorithm to create sequentially task-specific subnetworks in the class-IL scenario. Then

we propose two strategies to infer task-ID to select the associated subnetwork. However,

these strategies require access to a batch of test data for a more accurate determination of

task-ID. Chapter 5 presents an incremental learning approach for the defect segmentation

problem, where we improve the task prediction strategy and overcome the limitation of

the test batch that is raised in Chapter 3.

The second part of the thesis explores opportunities for continual learning in the

physical sciences and engineering. In both cases, we assume that task-ID is provided at the

training and inference stages and there is no need to predict it. In Chapter 5, we propose

an incremental learning approach for physics-informed neural networks (PINNs) [23].
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In this algorithm, we take advantage of task-specific subnetworks to learn every partial

differential equation (PDE) with a separate subnetwork. This way, part of the network is

already pretrained with previous PDEs, which improves the generalization capabilities of

PINNs. However, due to the specifics of PINNs, training data is always available for every

PDE since one can easily sample training points of the domain. Chapter 6 describes the

application of the developed in the first part methodology to the stress-strain constitutive

modeling problem. In this chapter, we consider the scenario where task-ID is provided at

inference, meaning we know which model we need to use for the given strain values.
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Part I: Methodology
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2
Creation of task-specific

subnetworks

Deep neural networks are highly overparameterized in conventional training and use all of
their parameters for learning a task. However, the human brain activates only a small portion
of all connections that process new information for learning. Thus, this chapter proposes an
approach to sparsify a neural network for the given task, i.e. identify a task-specific subnetwork
that is responsible for solving this task. We propose an iterative pruning strategy introducing a
simple importance-score metric that deactivates unimportant connections, tackling overparam-
eterization in DNNs and modulating the firing patterns. The aim is to find the smallest number
of connections that is still capable of solving a given task with comparable accuracy, i.e. a
simpler subnetwork. This subnetwork is then associated with the task, while the remaining
parameters are freed for others. The proposed strategy is validated on various image datasets
such as MNIST, CIFAR-10/100 and Tiny-ImageNet outperforming other state-of-the-art pruning
strategies by a margin in terms of the number of removed connections. We also explore the
influence of different training hyperparameters on the level of produced sparsity.

This chapter is based on  Aleksandr Dekhovich, David M.J. Tax, Marcel H.F. Sluiter, and Miguel A. Bessa.

Neural network relief: a pruning algorithm based on neural activity. Machine Learning, 113, 2597–2618, 2024.
https://doi.org/10.1007/s10994-024-06516-z
Code repository: https://github.com/adekhovich/NNrelief.
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2.1 Introduction
Creating task-specific subnetworks requires the understanding of which parameters are

useful for the given data and which can be removed. For this purpose, we turn to the litera-

ture on optimization of neural network architecture. One way to optimize the architecture

is to build it from scratch via Neural Architecture Search (NAS) [24], however, NAS-based

approaches are very computationally expensive [25]. Therefore, we follow a different route

in this thesis using neural network pruning.

Pruning is a common technique for neural network compression [26], where the main

goal is to reduce memory and computational costs of inference. Pruning assumes particular

relevance for deep neural networks because modern architectures involve several millions

of parameters. Existing pruning methods are based on different strategies, e.g Hessian

analysis [27, 28], magnitudes of weights [29], data-driven approaches [30, 31], among others

[32, 33]. Pruning can be done in one shot [34] or in an iterative way [35], and it is possible

to prune connections [27, 28, 36, 37], neurons [31, 38, 39] or filters for convolutional layers

[40, 41]. The typical pruning pipeline includes three stages: training the original network,

pruning parameters and fine-tuning. Recently, interesting solutions for the third stage

have been suggested that involve weight rewinding [35] and learning rate rewinding [42].

We have developed an algorithm that aims to prune a network without a significant

decrease in accuracy after every iteration by keeping the signal in the network at some

predefined level close to the original one. This contrasts with strategies that use a pre-

defined ratio of parameters to prune [30, 31, 35] whichmay lead to a drastic drop in accuracy

for relatively high ratios. We look at the local behaviour of a particular connection and

its contribution to the neuron, but not at the output or the loss function. Our aim is to

deactivate unimportant connections for a given problem in order to free them for other

tasks – a crucial step towards novel architectural continual learning strategies [43, 44].

Sparse architectures are also more robust to noisy data [45] and exhibit benefits in the

context of adversarial training [46, 47]. Therefore, we focus on reducing the number

of parameters of deep learning models targeting these scenarios, although we expect a

reduction of the computational complexity (FLOPs) as well.

Our iterative pruning algorithm is based on an importance score metric proposed

herein that quantifies the relevance of each connection to the local neuron behaviour. We

show compressions of more than 50 times for VGG [3] architectures on CIFAR-10 and

Tiny-ImageNet datasets with a marginal drop of accuracy. We also apply our method

to ResNets [4], achieving better parameter compression than state-of-the-art algorithms

with a comparable decrease of accuracy on CIFAR-10 dataset. In addition, we visualise

the effects of our pruning strategy on the information propagation through the network,

and we observe a significant homogenization of the importance of the pruned neurons.

We associate this homogenization with the notion of neural network relief: using fewer

neuronal connections and distributing importance among them.

2.2 Related work
One of the first works eliminating unimportant connections in relatively small networks

proposed analyzing the Hessian of the loss function [27, 28] without network retraining.

This idea was further developed for convolutional networks [36, 48]. However, computing
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second-order derivatives by calculating the Hessian is costly.

The magnitude-based approach [29] is simple and fast because it only involves prun-

ing the weights with the smallest magnitude. This assumes that parameters with small

magnitudes do not contribute significantly to the resulting performance. For convolutional

layers, the sum of kernels’ elements in the filters is considered and filters with the smallest

sum are pruned [49]. Iterative magnitude pruning is applied for finding winning tickets

[35] – the minimal subnetwork that can be trained at least as well as the original one with

the same hyperparameters.

Other algorithms use input data to reduce the number of parameters. In [30] pruning

depends on the ratio of zero activations using ReLU function. So, the neurons that do not

fire frequently enough are eliminated. A greedy approach is used for ThiNet [50], where

channels that do not affect the resulting sum in convolutional layers are removed by solving

an optimization problem. A similar algorithm is used in [40], but the optimization problem

is solved with LASSO regression for determining ineffective channels. The property

of convexity and sparsity that ReLU produces provides analytical boundaries for Net-

trim [51] by solving a convex optimization problem. The game-theoretic approach with

Shapley values [31] demonstrates good performance in a low-data regime, i.e. one-shot

pruning without retraining, where neurons within one layer are considered as players

in a cooperative game. NISP [52] finds the contribution of neurons to the last layer

before classification, while iSparse framework [53] trains sparse networks eliminating the

connections that do not contribute to the output. A pruning strategy where the connections’

contribution is based on computing the loss function derivatives was also suggested in

[54].

Additional methods of interest include Bayesian weight pruning [33] and Bayesian

compression [39] to prune neurons and aim at computational efficiency. SSS [55] introduces

a scaling factor and sparsity constraints on this factor to scale neurons’ or blocks’ outputs.

Similarly, SNLI [56] uses ISTA [57] to update the scaling parameter in Batch Normalization

of convolutional layers to obtain a sparse representation. HRank [58] calculates the average

rank of feature maps and prunes filters with the lowest ones. FSABP [59] finds filters that

extract similar information and prunes them. As a result, filters that provide diversity in

feature maps are retained. In the same way, CHIP [60] measures correlations between

feature maps truncating feature maps with the lowest independence scores.

2.3 Proposed method
Our goal is to eliminate connections in a layer that, on average, provide a weak contribution

to the next layer. We believe that a low magnitude of a weight does not mean that

information passing through the connection has to have a negligible contribution. The

converse is also assumed to be true: if a high weight magnitude is multiplied by a weak

signal from the neuron (or even zero) then the contribution of that product is relatively

insignificant in comparison with other input signals in the neuron, as long as this holds for

most data. Therefore, our strategy contrasts significantly with magnitude-based pruning

[29].
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Figure 2.1: Neural network layers 𝑙−1 and 𝑙 with𝑚𝑙−1 = 4 and𝑚𝑙 = 2 neurons, respectively. The weights associated
to a connection between neurons 𝑖 and 𝑗 in layer 𝑙−1 to 𝑙 are 𝑤(𝑙)

𝑖𝑗 .

Fully connected layers Assume that we have a pruning set 𝐗(𝑙−1) = {𝐱(𝑙−1)1 ,… ,𝐱(𝑙−1)𝑁 }
with 𝑁 samples, where each datapoint 𝐱(𝑙−1)𝑛 = (𝑥(𝑙−1)𝑛1 ,… , 𝑥(𝑙−1)𝑛𝑚𝑙−1

) ∈ ℝ𝑚𝑙−1 is the input for

layer 𝑙−1 with dimension 𝑚𝑙−1 and where 1 ≤ 𝑙 ≤ 𝐿 . We define the importance of the
connection between neuron 𝑖 of layer 𝑙−1 and neuron 𝑗 of layer 𝑙 as:

𝑠(𝑙)𝑖𝑗 =
|||𝑤

(𝑙)
𝑖𝑗 𝑥

(𝑙−1)
𝑖

|||
∑𝑚𝑙−1

𝑘=1
|||𝑤

(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑘

|||+
|||𝑏
(𝑙)
𝑗
|||

, (2.1)

where
|||𝑤

(𝑙)
𝑖𝑗 𝑥

(𝑙−1)
𝑖

||| =
1
𝑁 ∑𝑁

𝑛=1
|||𝑤

(𝑙)
𝑖𝑗 𝑥

(𝑙−1)
𝑛𝑖

|||, and 𝑤(𝑙)
𝑖𝑗 is the corresponding weight between

neurons 𝑖 and 𝑗 (see Figure 2.1) and 𝑏(𝑙)𝑗 is the bias associated to neuron 𝑗 . The importance

score for the bias of neuron 𝑗 is 𝑠(𝑙)𝑚𝑙−1+1,𝑗 =
||𝑏
(𝑙)
𝑗
||

∑𝑚𝑙−1
𝑘=1

||𝑤
(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑘

||+||𝑏
(𝑙)
𝑗
||
. The denominator corresponds

to the total importance in the neuron 𝑗 of layer 𝑙 that we denote as 𝑆(𝑙)𝑗 =∑𝑚𝑙−1
𝑘=1

|||𝑤
(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑘

|||+
|||𝑏
(𝑙)
𝑗
|||, 1 ≤ 𝑗 ≤ 𝑚𝑙 . Algorithm 1 summarizes the procedure.

Algorithm 1 Fully connected layers pruning

1: function FC pruning(network, X, 𝛼)
2: 𝐗(0) ← 𝐗
3: for every fc_layer 𝑙 in FC_Layers do
4: 𝐗(𝑙) ← fc_layer(𝐗(𝑙−1))
5: for every neuron 𝑗 in fc_layer 𝑙 do
6: compute importance scores 𝑠(𝑙)𝑖𝑗 for every incoming connection 𝑖 using (2.1).
7: 𝑠(𝑙)𝑖𝑗 = 𝑆𝑜𝑟𝑡(𝑠(𝑙)𝑖𝑗 , 𝑜𝑟𝑑𝑒𝑟 = 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔)
8: 𝑝0 = min{𝑝 ∶∑𝑝

𝑖=1 𝑠
(𝑙)
𝑖𝑗 ≥ 𝛼}

9: prune connections with importance score 𝑠(𝑙)𝑖𝑗 < 𝑠(𝑙)𝑝0𝑗
10: end for
11: end for
12: return pruned network

13: end function
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The idea behind our approach is to deactivate the connections 𝑖 = 1… ,𝑚𝑙−1 that on

average do not carry important information to the neuron 𝑗 of layer 𝑙 in comparison with

other connections. As a result of Eq.1, we simplify each neuron by using a smaller number

of input connections, while causing minimal effective changes to the input signal of that

neuron and subsequent minimal impact on the network.

(a) LeNet-300-100 pretrained on MNIST (b) LeNet-300-100 pruned on MNIST

Figure 2.2: LeNet-300-100 architecture on MNIST before and after pruning, where connections are coloured with

respect to importance score: blue (least important)→ red (most important).

Figure 2.2 shows the importance score of every connection in the LeNet-300-100 [61]

architecture before and after pruning when applied to the MNIST dataset. Connections

are represented by thin blue lines when they have the lowest importance score 𝑠(𝑙)𝑖𝑗 , and
go up to red thick lines when they are the most important. The figure demonstrates an

interesting phenomenon besides the fact that there are much fewer connections after

applying our pruning strategy: the importance scores of the connections become much

closer to each other and there are no longer highly important and highly unimportant

connections. We eliminate connections (contributors to the neuron’s signal) that on average

do not contribute in terms of the strength of the signal that they bring to the neuron for a

given dataset.

Convolutional layers Our pruning approach for convolutional layers is similar to the

one conducted on fully connected layers. We consider kernels and a bias in a particular

filter as contributors to the signal produced by this filter.

Assumewe have𝑚𝑙−1-channelled input samples𝐗(𝑙−1) = {𝐱(𝑙−1)1 ,… ,𝐱(𝑙−1)𝑁 }, where 𝐱(𝑙−1)𝑘 =
(𝑥(𝑙−1)𝑘1 ,… , 𝑥(𝑙−1)𝑘𝑚𝑙−1

) ∈ ℝ𝑚𝑙−1×ℎ1𝑙−1×ℎ
2
𝑙−1 , where ℎ1𝑙−1 and ℎ2𝑙−1 are the height and width of input

images (or feature maps) for convolutional layer 𝑙. For every kernel 𝐊(𝑙)
1𝑗 ,𝐊

(𝑙)
2𝑗 ,… ,𝐊(𝑙)

𝑚𝑙𝑗 , 𝐊
(𝑙)
𝑖𝑗 =

(𝑘(𝑙)𝑖𝑗𝑞𝑡) ∈ ℝ𝑟𝑙×𝑟𝑙 , 1 ≤ 𝑞, 𝑡 ≤ 𝑟𝑙 , 𝑟𝑙 is a kernel size, and a bias 𝑏(𝑙)𝑗 in filter 𝐅(𝑙)𝑗 , we define �̂�(𝑙)
𝑖𝑗 =

(
|||𝑘
(𝑙)
𝑖𝑗𝑞𝑡

|||) as a matrix consisting of the absolute values of the matrix 𝐊(𝑙)
𝑖𝑗 .

Then we compute importance scores 𝑠(𝑙)𝑖𝑗 , 𝑖 ∈ {1,2,… ,𝑚𝑙} of kernels 𝐊(𝑙)
𝑖𝑗 as follows:

𝑠(𝑙)𝑖𝑗 =
1
𝑁 ∑𝑁

𝑛=1
|||
|||�̂�

(𝑙)
𝑖𝑗 ∗ |||𝑥

(𝑙−1)
𝑛𝑖

|||
|||
|||𝐹

𝑆(𝑙)𝑗
, (2.2)

𝑠(𝑙)𝑚𝑙+1,𝑗 =
|||𝑏
(𝑙)
𝑗
|||
√
ℎ1𝑙 ℎ

2
𝑙

𝑆(𝑙)𝑗
. (2.3)
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where 𝑆(𝑙)𝑗 =∑𝑚𝑙−1
𝑖=1 (

1
𝑁 ∑𝑁

𝑛=1
|||
|||�̂�

(𝑙)
𝑖𝑗 ∗ |||𝑥

(𝑙−1)
𝑛𝑖

|||
|||
|||𝐹)+

|||𝑏
(𝑙)
𝑗
|||
√
ℎ1𝑙 ℎ

2
𝑙 is the total importance score in

filter 𝐅(𝑙)𝑗 of layer 𝑙, and where ∗ indicates a convolution operation, and ||⋅||𝐹 the Frobenius

norm.

In Eq. 2.2, we compute the amount of information that every kernel produces on

average, analogously to what we do in fully connected layers. Algorithm 2 summarizes the

approach for convolutional layers.

Algorithm 2 Convolutional layers pruning

function CONV pruning(network, X, 𝛼)
2: 𝐗(0) ← 𝐗

for conv layer 𝑙 in CONV_Layers do
4: 𝐗(𝑙) ← conv_layer(𝐗(𝑙−1))

for every filter 𝐅𝑗 in conv_layer 𝑙 do
6: compute importance scores 𝑠𝑖𝑗 ∀ kernel 𝐊(𝑙)

𝑖𝑗 and bias 𝑏(𝑙)𝑗 in filter 𝐅(𝑙)𝑗
using (2.2), (2.3).

𝑠(𝑙)𝑖𝑗 = 𝑆𝑜𝑟𝑡(𝑠(𝑙)𝑖𝑗 , 𝑜𝑟𝑑𝑒𝑟 = 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔)
8: 𝑝0 = min{𝑝 ∶∑𝑝

𝑖=1 𝑠
(𝑙)
𝑖𝑗 ≥ 𝛼}

prune kernel 𝐊(𝑙)
𝑖𝑗 with importance score 𝑠(𝑙)𝑖𝑗 < 𝑠(𝑙)𝑝0𝑗

10: end for
end for

12: return pruned network

end function

2.4 Numerical experiments
We test our pruning method for LeNet-300-100 and LeNet-5 [61] on MNIST, VGG-19 [3] and

VGG-like [62] on CIFAR-10/100 [63] and Tiny-ImageNet datasets. We evaluate our method

on classification error, the percentage of pruned parameters (
|𝑤=0|
|𝑤| (%)) or the percentage

of remaining parameters (
|𝑤≠0|
|𝑤| (%)) or compression rate (

|𝑤|
|𝑤≠0| (%)) and pruned FLOPs

(floating-point operations), where |𝑤 ≠ 0| refers to the number of unpruned connections.

For the details about training and pruning hyperparameters, and FLOPs computation see

Section A.1 and Section A.2. We use the initialization method introduced in [64] to initialize

parameters. We run our experiments multiple times with different random initializations

of the parameters. In our tables and figures, we present mean and standard deviation for

the results averaged over these random initializations.

2.4.1 LeNet architecture
We experiment with LeNets on the MNIST dataset. LeNet-300-100 is a fully connected

network with 300 neurons and 100 neurons in two hidden layers respectively, and LeNet-5

Caffe, which is a modified version of [61], has two convolutional layers followed by one

hidden layer and an output layer. We perform iterative pruning by retraining the network

starting from initial random parameters, instead of fine-tuning. Table 2.1 shows that our

approach is among the best for both LeNets in terms of pruned parameters.
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Table 2.1: Results for LeNet-300-100 and LeNet-5 trained and pruned on MNIST. For pruning, 1000 random

training samples are chosen, 𝛼
fc
= 0.95, 𝛼conv = 0.9.

Network Method Error (%) Parameters retained (%)

LeNet-300-100

DNS [65] 1.99 1.79

L-OBS [36] 1.96 1.5

SWS [32] 1.94 4.3

Sparse VD [33] 1.92 1.47
NNrelief (ours) 1.98 ± 0.07 1.51 ± 0.07

LeNet-5

DNS [65] 0.91 0.93

L-OBS [36] 1.66 0.9

SWS [32] 0.97 0.5

Sparse VD [33] 0.75 0.36
NNrelief (ours) 0.97 ± 0.05 0.65 ± 0.02

2.4.2 VGG architecture
We perform our experiments on VGG-13 and VGG-like (adapted version of VGG-16 for

CIFAR-10 dataset that has one fully connected layer less) on CIFAR-10, CIFAR-100 and

Tiny-ImageNet datasets. We also show in this section the effect of two optimizers – Adam

[66] and SGD and two weight decay values on our pruning technique.

CIFAR-10/100 Table 2.2 shows that after the reduction of the weights to less than 2% of

the original number, the accuracy only drops by 0.1%, and that our approach outperforms

others both in terms of pruned parameters and pruned FLOPs. In Figure 2.3, we show the

final architecture after pruning and the level of sparsity by layer. It can be observed that

NNrelief with Adam optimizer achieves a high level of filter sparsity even though it prunes

kernels.
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(a) An architecture before and after pruning by seed.
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(b) Sparsity by layer after pruning using different seeds.

Figure 2.3: Architecture structure for VGG-like on CIFAR-10 with Adam optimizer considering three random

initializations.

We also perform pruning for standard VGG-13 on CIFAR-100 using 5 iterations, and

considered three randomization seeds to provide reasonable statistical significance. The

results from the different optimizers are presented in Figure 2.4. The results show that Adam

seems to perform the compression more aggressively, resulting in a higher compression

rate, and also a slightly lower accuracy. The compression of about 14.5× after the fifth
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Table 2.2: Results for VGG-like trained on CIFAR-10 with Adam optimizer. During retraining 60 epochs are used;

the learning rate is decreased by 10 every 20 epochs. For NNrelief (ours) 𝛼conv = 𝛼
fc
= 0.95 and 1000 samples are

chosen for the importance scores computation. Sign ’-’ means that accuracy has increased after pruning.

Network Method Acc (%)

(base-

line)

Acc

drop

(%)

Parameters

retained

(%)

FLOPs

pruned (%)

VGG-like

Pruning [49] 93.25 -0.15 36 34.2

Sparse VD [33] 92.3 0.0 2.1 N/A

BC-GNJ [39] 91.6 0.2 6.7 55.6

BC-GHS [39] 91.6 0.6 5.5 61.7

SNIP [54] 91.7 -0.3 3.0 N/A

HRank [58] 93.96 1.62 17.9 65.3

CHIP [60] 93.96 0.24 16.7 66.6

NNrelief (ours) 92.5 0.1 1.92 ± 0.02 75.5 ± 0.4

iteration without loss in accuracy is presented for Adam and weight decay 5 ⋅10−4, while
SGD allows to train a network with higher accuracy, but after 5 iterations we obtain smaller

compression (about 4.5×) and the decrease of accuracy by 0.5% with the same weight decay.

We obtain a lower compression rate for both optimizers when the weight decay is lower

(10−4). Figure 2.5 shows the final architecture and sparsity that we achieve with Adam

optimizer at the end of the pruning procedure. We observe a high level of filter sparsity

with Adam, as also reported in [67], but good compression is also obtained for the SGD

optimizer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Compression rate

73.2
72.8
72.4
72.0
71.6
71.2
70.8
70.4
70.0
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cy

 (%
)

SGD, 5e-4
SGD, 1e-4
Adam, 5e-4
Adam, 1e-4

Figure 2.4: Results for VGG-13 over three seeds; mean values are used to compute dots and standard deviation are

shown with error bars. We compare two optimizers, SGD and Adam, and two different values of weight decay for

evaluation after 5 pruning iterations.

Tiny-ImageNet We also apply our approach to Tiny-ImageNet dataset that is a subset of

the ImageNet dataset with 200 classes and an image spatial resolution of 64×64. Following
SNIP strategy, we use strides [2,2] in the first convolutional layer to reduce the size of

images. The results are reported in Table 2.3. We observe a compression by more than 40

times almost without any loss of accuracy (−0.03%) using Adam optimizer.
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(a) SGD, weight decay = 5 ⋅10−4
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(b) SGD, weight decay = 10−4
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(c) Adam, weight decay = 5 ⋅10−4

co
nv

1
co

nv
2

co
nv

3
co

nv
4

co
nv

5
co

nv
6

co
nv

7
co

nv
8

co
nv

9
co

nv
10 fc1 fc2 fc3

0
100
200
300
400
500

No
. f

ilt
er

s/
ne

ur
on

s

unpruned
seed 0
seed 1
seed 2

(d) Adam, weight decay = 10−4

Figure 2.5: VGG-13 architecture on CIFAR-100 trained with SGD (top) and Adam (bottom), and weight decay

equal to 5 ⋅ 10−4 (left) and 10−4 (right) and pruned with 5 iterations. The results for three different seeds are

presented.

Table 2.3: Results for VGG-like trained on Tiny-ImageNet with Adam optimizer. During retraining 50 epochs

are used; the learning rate is decreased by 10 every 20 epochs. For NNrelief (ours) 𝛼conv = 𝛼
fc
= 0.95 and 2000

samples are chosen for the importance scores computation.

Network Method Acc (%)

(base-

line)

Acc

drop

(%)

Parameters

retained

(%)

FLOPs

pruned (%)

VGG-

like

SNIP [54] 45.14 0.87 5.0 N/A

NNrelief (ours) 45.63 0.03 2.32 ± 0.06 75 ± 0.32

2.4.3 ResNet architecture
In addition, we test our approach on ResNet architectures for CIFAR-10/100 and Tiny-

ImageNet datasets. Our main objective is to prune as many parameters as we can without

significant loss of accuracy. For ResNet-20/56 on CIFAR-10, we perform iterative pruning

over 10 iterations, training the model with SGD and Adam. In Table 2.4 we compare our

results with other approaches, and Figure 2.6 displays the pruning history. We achieve a

higher percentage of pruned parameters for ResNet-20 and ResNet-56, using both optimizers

with comparable final accuracy.

A notable observation for some seeds when training with SGD is that separate con-

volutional blocks are pruned and only residual blocks remain, i.e. the signal propagates

through skip connections and not through main convolutional layers since they do not

contribute to the sum (Figure 2.8).

For ResNet-20/56 on CIFAR-100 the results are presented in Table 2.5 and by iteration

in Figure 2.7.
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Table 2.4: Results for ResNets trained on CIFAR-10 with SGD and Adam optimizers. During retraining 60 epochs

are used; the learning rate is decreased by 10 every 20 epochs. For NNrelief (ours) 𝛼conv = 0.95,𝛼
fc
= 0.99.

ResNet Method Acc (%)

(baseline)

Acc drop

(%)

Parameters

pruned (%)

FLOPs

pruned (%)

20

SFP [41] 92.2 1.37 30 42.2

SNLI [56] 92.0 1.1 37.2 N/A

SSS [55] 92.8 2 45 60
CNN-CFC [68] 92.2 1.07 42.75 41.6

NNrelief (SGD) 92.25 ± 0.12 1.15 ± 0.13 63.68 ± 1.52 25.85 ± 1.57

NNrelief (Adam) 91.83 ± 0.16 0.39 ± 0.27 68.75 ± 1.26 13.81 ± 2.6

56

Pruning-B [49] 93.04 -0.02 13.7 27.6

SFP [41] 93.59 -0.19 30 41.1

NISP [52] N/A 0.03 42.6 43.61

CNN-CFC

[68]

93.14 -0.24 43.09 42.78

93.14 1.22 69.74 70.9

HRank

[58]

93.36 0.09 42.4 50

93.36 2.54 68.1 74.1
CHIP [60] 93.26 1.21 71.8 72.3

NNrelief (SGD) 93.6 ± 0.08 1.14 ± 0.22 76.2 ± 0.44 35.8 ± 2.69

NNrelief (Adam) 92.8 ± 0.08 0.03 ± 0.23 75.95 ± 0.22 32.5 ± 0.31
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(d) CIFAR-100

Figure 2.6: ResNet-20 on CIFAR-10 and CIFAR-100 by iteration averaged over three random initializations, the

error bars represent standard deviation for these three runs. The red dot corresponds to the selected best iteration.

Tiny-ImageNet Training of a modified ResNet-18 with 16, 32, 64 and 128 output channels

indicates that we can prune more than 50% of the parameters with both optimizers (see
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Figure 2.7: ResNet-56 on CIFAR-10 and CIFAR-100 by iteration averaged over three seeds, the error bars represent

standard deviation for these three runs. The red dot corresponds to the selected best iteration.
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Figure 2.8: ResNet-56 architecture on CIFAR-10 by seed with SGD optimizer.

Table 2.5: Results for ResNets trained on CIFAR-100 with SGD and Adam optimizers. During retraining 80 epochs

are used; the learning rate is decreased by 10 every 30 epochs. For NNrelief (ours) 𝛼conv = 0.95,𝛼
fc
= 0.99.

ResNet Optimizer Acc (%)
(baseline)

Acc drop (%) Parameters

pruned (%)

FLOPs

pruned (%)

20

SGD 68.75 ± 0.15 1.26 ± 0.33 54.54 ± 0.24 12.49 ± 1.52

Adam 67.34 ± 0.2 0.41 ± 0.23 51.82 ± 0.23 3.42 ± 1.21

56

SGD 71.43 ± 0.16 0.43 ± 0.26 58.62 ± 0.26 31.2 ± 3.09

Adam 71.68 ± 0.09 0.88 ± 0.12 67.72 ± 0.29 13.79 ± 0.94

Figure 2.9). Adam, however, maintains a higher level of accuracy during retraining than

SGD.We use 2000 samples to evaluate importance scores, and weight decay for (re-)training
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equal to 5 ⋅10−4.
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Figure 2.9: ResNet-18 on Tiny-ImageNet trained with SGD and Adam optimizers. The results are averaged over

three random initializations. The bars represent standard deviations considering three runs.

Sparsity In contrast to VGG results, we do not observe a significant difference between

optimizers in terms of produced sparsity for CIFAR-10/100 and Tiny-ImageNet. In the

works that explore the question of sparsity [67], ResNet architecture was not explored. It

seems that the skip connections allow the signal to pass unhindered to the next layers,

making it harder for the Adam optimizer to find which activations are significant, and

aggressively prune the less significant connections.

2.5 Discussion
To illustrate the meaning of the importance scores we compare our approach with the

magnitude-based one. Also, we present error bounds for the difference of a signal in the

layer before and after pruning.

2.5.1 Comparison with Magnitude-based approach
In order to show the difference between our approach and the magnitude-based approach

[29], we build the heatmaps with the location of top 15.5% of the most significant connec-

tions in the LeNet-300-100 pretrained on MINIST for both our proposed method and the

magnitude-based pruning, since this number corresponds to the percentage of parameters

that remain after pruning with our proposed rule (importance scores) using 𝛼 = 0.95. The
importance scores (IS) are computed from Eq. 2.1, while for the magnitude-based rule,

we consider both structured and unstructured pruning. In the structured case, we select

the top 15.5% in each layer independently, and in the unstructured, the top 15.5% from all

layers are selected, meaning that some layers may contain more or less than 15.5% of the

parameters.
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Figure 2.10: The remaining 15.5% connections according to Importance scores and magnitude-based rule (struc-

tured and unstructured pruning) for trained LeNet-300-100 on MNIST.

Figure 2.10 displays the difference between our approach and the magnitude-based

(structured and unstructured) one when determining the significance of network connec-

tions. According to the figure, we can see different patterns for the remaining connection,

especially for the unstructured magnitude-based rule, where more connections are retained

in the last layer compared to the IS rule. Overall, we present the Jaccard index [69] between

IS and both magnitude-based rules in Table 2.6. The Jaccard index (or Intersection over

Union, IoU) for two sets 𝐴 and 𝐵 is defined as follows: IoU = |𝐴∩𝐵|
|𝐴∪𝐵| .

Table 2.6: Jaccard index (similarity) between IS rule (𝛼 = 0.95) and magnitude-based one (structured and unstruc-

tured) for each layer if 84.5% of parameters are pruned in LeNet-300-100 pretrained on MNIST.

Layer Magnitudes (structured) Magnitudes (unstructured)

Importance

scores

784 → 300 0.08 0.08

300 → 100 0.11 0.18

100 → 10 0.16 0.66

Both Figure 2.10 and Table 2.6 demonstrate that the IS rule prunes the network differ-

ently from both magnitude-based rules. First, the binary heatmap patterns in the figure

indicate a clear difference between the methods. In addition, the IoU indicators are low for
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every case, meaning that the IS pruning proposed herein determines the most significant

connections differently to both magnitude-based rules. From empirical results, we observe

that IS-based pruning deactivates more connections in overparameterized layers. In Table

2.7, we present the number of active neurons by layer after one pruning iteration (15.5% of

all parameters are retained). As it can be seen, the IS metric deactivates more neurons in

every layer compared to unstructured magnitude pruning [29, 35]. This happens because

some neurons produce a low signal (or zero signal because of the ReLU activation function).

Table 2.7: Number of active neurons for magnitude-based pruning and with importance scores one (NNrelief) for

LeNet-300-100 pretrained on MNIST.

Method Architecture

Original 784→ 300→ 100→ 10

importance scores 380→ 131→ 96→ 10
magnitude-based (unstructured) 530→ 136→ 97→ 10

In contrast to magnitude-based pruning, NNrelief automatically determines the number

of connections to prune when 𝛼 is given. However, for magnitude-based pruning, the

number of pruned connections is a hyperparameter which is difficult to set. For example,

if we prune 80% of the remaining parameters at every iteration as discussed in the Lottery

Ticket Hypothesis work [35], then after 11 iterations magnitude-based pruning retains

100% ⋅0.811 ≈ 8.6% of the parameters, while NNrelief retains 1.51% (see Table 2.1 and Table

A.3). This is achieved due to the usage of the input signal to estimate the importance scores,

which helps to determine the number of connections to prune.

2.5.2 Error estimation
To complement the analysis of our approach we derive error bounds by considering the

difference between a signal in the trained neuron and a reduced one without retraining,

before and after the activation function. This analysis is important to make sure NNrelief

does not destroy the pretrained structure, and that changes in the output neurons are not

dramatic enough to prevent successful retraining. To illustrate this, we compare the derived

error bounds with the observed changes in ResNet-20 pretrained on CIFAR-10 if the fully

connected layer is pruned. Without loss of generality wemay assume the first 𝑝 connections

in the neuron 𝑗 of layer 𝑙 are kept and that the bias 𝑏(𝑙)𝑗 as well as weights 𝑤(𝑙)
𝑝+1,𝑗 ,… ,𝑤(𝑙)

𝑚𝑙𝑗 are

pruned in a particular neuron 𝑗 . Then, for any input 𝑥(𝑙−1)𝑛 ∈𝐗(𝑙−1) = {𝑥(𝑙−1)1 ,… , 𝑥(𝑙−1)𝑁 }⊂ℝ𝑚𝑙−1

we obtain:

𝛿𝑝(𝑥(𝑙−1)𝑛 ) =
|||||

𝑚𝑙−1

∑
𝑘=1

𝑤(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑛𝑘 + 𝑏(𝑙)𝑗 −

𝑝

∑
𝑘=1

𝑤(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑛𝑘

|||||
=
|||||

𝑚𝑙−1

∑
𝑘=𝑝+1

𝑤(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑛𝑘 + 𝑏(𝑙)𝑗

|||||
≤

≤ |||𝑏
(𝑙)
𝑗
|||+

𝑚𝑙−1

∑
𝑘=𝑝+1

|||𝑤
(𝑙−1)
𝑘𝑗 𝑥(𝑙−1)𝑛𝑘

|||. (2.4)

By averaging over all samples:



2.5 Discussion

2

25

𝛿𝑝 ≤
|||𝑏
(𝑙)
𝑗
|||+

𝑚𝑙−1

∑
𝑘=𝑝+1

|||𝑤
(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑘

||| = 𝑆(𝑙)𝑗 ⋅
(

|||𝑏
(𝑙)
𝑗
|||

𝑆(𝑙)𝑗
+
∑𝑚𝑙−1

𝑘=𝑝+1
|||𝑤

(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑘

|||
𝑆(𝑙)𝑗 )

=

= 𝑆(𝑙)𝑗 ⋅
𝑚𝑙−1

∑
𝑘=𝑝+1

𝑠(𝑙)𝑘𝑗 = 𝑆(𝑙)𝑗 (1−𝛼). (2.5)

Therefore, from (2.5) we see that the sequence of residuals {𝛿𝑝}𝑚𝑝=1 decreases with

respect to 𝑝 and increases with 𝛼. Also, for any Lipschitz continuous activation function

𝜑 ∈ Lip(𝑋 ), 𝑋 ⊂ ℝ with Lipschitz constant 𝐶 we obtain:

Δ𝑝(𝑥(𝑙−1)𝑛 ) =
|||𝜑(

𝑚𝑙−1

∑
𝑘=1

𝑤(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑛𝑘 + 𝑏(𝑙)𝑗 )−𝜑(

𝑝

∑
𝑘=1

𝑤(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑛𝑘 )

||| ≤

≤ 𝐶|||

𝑚𝑙−1

∑
𝑘=𝑝+1

𝑤(𝑙)
𝑘𝑗 𝑥

(𝑙−1)
𝑛𝑘 + 𝑏(𝑙)𝑗

||| = 𝐶𝛿𝑝(𝑥(𝑙−1)𝑛 ). (2.6)

As a result, from Eq. (2.5) and Eq. (2.6):

Δ𝑝 ≤ 𝐶𝑆(𝑙)𝑗 (1−𝛼). (2.7)

For the point-wise estimation on set 𝐗(𝑙−1) = {𝑥(𝑙−1)1 ,… , 𝑥(𝑙−1)𝑁 } ⊂ ℝ𝑚𝑙−1 , ∀𝑥(𝑙−1)𝑖 we obtain:

Δ𝑝(𝑥(𝑙−1)𝑖 ) ≤ max
𝑥(𝑙−1)𝑛 ∈𝐗(𝑙−1)

𝐶𝛿𝑝(𝑥(𝑙−1)𝑛 ). (2.8)

Since ReLU, ELU, sigmoid and, tanh are Lipschitz continuous functions then (2.7) and

(2.8) hold for them, meaning that the sequence of residuals {Δ𝑝}
𝑚𝑙
𝑝=1 decreases as well with

the increase of 𝛼. Moreover, in the case of ReLU and ELU, the Lipschitz constant is 𝐶 = 1.
In summary, by increasing 𝛼 we indeed reduce the approximation error of the neuron.

Analogously, for input 𝑚𝑙−1-channeled pruning set 𝐗(𝑙−1) = {𝐱(𝑙−1)1 ,… ,𝐱(𝑙−1)𝑁 }, where
𝐱(𝑙−1)𝑘 = (𝑥(𝑙−1)𝑘1 ,… , 𝑥(𝑙−1)𝑘𝑚 ) ∈ ℝ𝑚𝑙−1×ℎ1𝑙−1×ℎ

2
𝑙−1 , where ℎ1𝑙−1 and ℎ

2
𝑙−1 are height and width of input

images (or feature maps) for convolutional layer 𝑙−1, and 𝐁(𝑙)
𝑗 ∈ ℝℎ1𝑙 ×ℎ

2
𝑙 is a matrix that

consists of the same bias value 𝑏(𝑙)𝑗 at every element we obtain:

𝛿𝑝(𝑥
(𝑙−1)
𝑘 ) =

|||||

|||||

𝑚𝑙−1

∑
𝑖=1

𝐊(𝑙)
𝑖 ∗ 𝑥(𝑙−1)𝑘𝑖 +𝐁(𝑙)

𝑗 −
𝑝

∑
𝑖=1

𝐊(𝑙)
𝑖 ∗ 𝑥(𝑙−1)𝑘𝑖

|||||

|||||𝐹
=

=
|||||

|||||

𝑚𝑙−1

∑
𝑖=𝑝+1

𝐊(𝑙)
𝑖 ∗ 𝑥(𝑙−1)𝑘𝑖 +𝐁(𝑙)

𝑗

|||||

|||||𝐹
≤

𝑚𝑙−1

∑
𝑖=𝑝+1

|||
|||𝐊

(𝑙)
𝑖 ∗ 𝑥(𝑙−1)𝑘𝑖

|||
|||𝐹 +

|||
|||𝐁

(𝑙)
𝑗
|||
|||𝐹 ≤

≤
𝑚𝑙−1

∑
𝑖=𝑝+1

|||
|||𝐊

(𝑙)
𝑖 ∗ |||𝑥

(𝑙−1)
𝑘𝑖

|||
|||
|||𝐹 +

√
ℎ1𝑙 ℎ

2
𝑙
|||𝑏
(𝑙)
𝑗
|||. (2.9)
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Then, by averaging over all pruning samples similarly to the fully connected case we

obtain:

𝛿𝑝 ≤
𝑚𝑙−1

∑
𝑖=𝑝+1

1
𝑁

𝑁
∑
𝑘=1

|||
|||𝐊

(𝑙)
𝑖 ∗ 𝑥(𝑙−1)𝑘𝑖

|||
|||𝐹 = 𝑆(𝑙)𝑗 (1−𝛼), (2.10)

from which for any Lipschitz continuous activation functions 𝜑 with Lipschitz constant 𝐶,
we obtain:

Δ𝑝 =
1
𝑁

𝑁
∑
𝑘=1

|||
|||𝜑(

𝑚𝑙−1

∑
𝑖=1

𝐊(𝑙)
𝑖 ∗ 𝑥(𝑙−1)𝑘𝑖 +𝐁(𝑙)

𝑗 )−𝜑(

𝑝

∑
𝑖=1

𝐊(𝑙)
𝑖 ∗ 𝑥(𝑙−1)𝑘𝑖 )

|||
|||𝐹 ≤

≤ 𝐶𝑆(𝑙)𝑗 (1−𝛼). (2.11)

Inequalities (2.7), (2.11) show how the signal in a neuron or filter, respectively, changes

after the layer is pruned. Let us consider how this change influences the network output. We

define 𝑁 (𝑙)
𝑖𝑙 (𝑥;𝐖(1∶𝑙)) as a value in the 𝑖th𝑙 neuron in layer 𝑙, where 𝐖(1∶𝑙) = (𝐖(1),… ,𝐖(𝑙))

are parameters in layers 1,… , 𝑙. The matrix that we obtain after pruning layer 𝑙 we define
as �̂�(𝑙)

, and 𝑚𝑙 is the number of neurons in layer 𝑙, 1 ≤ 𝑙 ≤ 𝐿. Then, for 1 ≤ 𝑙 < 𝐿 (for 𝑙 = 𝐿
see (2.5) in Section 5.2):

𝜀(𝑥) =
|||||
𝑁 (𝐿)
𝑖𝐿 (𝑥;𝐖(1∶𝐿))−𝑁 (𝐿)

𝑖𝐿 (𝑥;𝐖(1∶𝑙−1),�̂�(𝑙),𝐖(𝑙+1∶𝐿))
|||||
=

=
|||||

𝑚𝐿−1

∑
𝑖𝐿−1=1

𝑤(𝐿)
𝑖𝐿−1𝑖𝐿(𝜑(𝑁

(𝐿−1)
𝑖𝐿−1 (𝑥;𝐖(1∶𝐿−1)))−

−𝜑(𝑁 (𝐿−1)
𝑖𝐿−1 (𝑥;𝐖(1∶𝑙−1),�̂�(𝑙),𝐖(𝑙+1∶𝐿−1))))

|||||
≤

≤ 𝐶
𝑚𝐿−1

∑
𝑖𝐿−1=1

|||𝑤
(𝐿)
𝑖𝐿−1𝑖𝐿

|||
|||𝑁

(𝐿−1)
𝑖𝐿−1 (𝑥;𝐖(1∶𝐿−1))−

−𝑁 (𝐿−1)
𝑖𝐿−1 (𝑥;𝐖(1∶𝑙−1),�̂�(𝑙),𝐖(𝑙+1∶𝐿−1))

||| (2.12)

Performing similar transformations as in (2.12) until layer 𝑙, we obtain:

𝜀(𝑥) ≤ 𝐶𝐿−𝑙
𝑚𝐿−1

∑
𝑖𝐿−1=1

|||𝑤
(𝐿)
𝑖𝐿−1𝑖𝐿

|||

𝑚𝐿−2

∑
𝑖𝐿−2=1

|||𝑤
(𝐿−1)
𝑖𝐿−2𝑖𝐿−1

|||…

𝑚𝑙

∑
𝑖𝑙=1

|||𝑤
(𝑙)
𝑖𝑙 𝑖𝑙+1

|||
|||𝜑(𝑁

(𝑙)
𝑖𝑖𝑙 (𝑥;𝐖

(1∶𝑙)))−𝜑(𝑁
(𝑙)
𝑖𝑙 (𝑥;𝐖(1∶𝑙−1),�̂�(𝑙)))

||| (2.13)

Then, averaging (2.13) over all pruning samples from 𝐗 and using (2.7):



2.6 Conclusion

2

27

Figure 2.11: Absolute difference in the neurons’ response at the output layer before and after pruning ResNet-20

(𝛼
fc
= 0.95). The bars represent the theoretical bounds, and the dots present empirical observations for 10000

images.

𝜀 ≤ 𝐶𝐿−𝑙
𝑚𝐿−1

∑
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|||𝑤
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𝑖𝐿−1𝑖𝐿

|||
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(𝑙)
𝑖𝑙 𝑖𝑙+1

|||Δ
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𝑝𝑖𝑙

≤

(1−𝛼)𝐶𝐿−𝑙
𝑚𝐿−1

∑
𝑖𝐿−1=1

|||𝑤
(𝐿)
𝑖𝐿−1𝑖𝐿

|||

𝑚𝐿−2

∑
𝑖𝐿−2=1

|||𝑤
(𝐿−1)
𝑖𝐿−2𝑖𝐿−1

|||…
𝑚𝑙+1

∑
𝑖𝑙=1

|||𝑤
(𝑙)
𝑖𝑙 𝑖𝑙+1

|||𝑆
(𝑙)
𝑖𝑙 .

(2.14)

Inequality (2.14) shows the bounds of the network error change after pruning on the

pruning set 𝐗. Figure 2.11 shows the absolute changes in output responses for ResNet-20

after pruning on CIFAR-10 with 𝛼fc = 0.95. The error bars (in black) show the theoretical

bounds of the difference estimated in (2.8) and (2.13), and the dots demonstrate the actual

changes computed on the test data. From the figure, one can observe that the theoretical

bounds capture the signal changes well in most cases, especially, for output neurons 0, 6

and 7.

2.6 Conclusion
In this chapter, we have aimed to create task-specific subnetwork within the main network

for the given task and to answer Research Question 1 (RQ1). This has been achieved

by proposing a novel pruning strategy and associated error estimation that applies to

different neural network architectures. Our algorithm is based on eliminating layers’

kernels or connections that do not contribute to the signal in the next layer. In this method,

we estimate the average signal strength coming through each connection via proposed

importance scores and try to keep the signal level in the neurons close to the original

level. Thus, the number of removed parameters in a layer is selected adaptively, rather

than being predetermined. As a result, the algorithm obtains a subnetwork capable of

propagating most of the original signal while using fewer parameters than other reported
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strategies. We explore the effect of Adam and SGD optimizers on our pruning strategy. The

results show that for VGG architecture Adam optimizer gives much higher compression

than SGD, however, for ResNet, we do not observe this behaviour. We observe that the

obtained subnetwork tends to homogenize connection importance, hinting that every

remaining connection is approaching similar importance for the dataset on average. The

following step is to create multiple subnetworks, one for each task, in such a way that

these subnetworks do not disturb each other.
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3
Continual learning with
specialized subnetworks

In the previous chapter, we described an algorithm to create a task-specific subnetwork for
the given task via iterative pruning. This has been achieved by evaluating the average
importance of every parameter while propagating the signal through the network. However,
for multiple sequential tasks, we need multiple subnetworks created continually. Moreover,
these subnetworks should not interfere with each other, causing forgetting.

In this chapter, we address the catastrophic forgetting challenge by considering a class-
incremental learning scenario where a neural network sees test data without knowing the task
from which this data originates. During training, the proposed solution finds a subnetwork
within the DNN that is responsible for solving a given task with the algorithm proposed in Chap-
ter 2. Then, in Section 3.3, we discuss how to sequentially create multiple subnetworks without
conflicting with each other while still allowing knowledge transfer across them. This chapter
provides the results on various image datasets (CIFAR-100, CUB-200-2011 and ImageNet-1000)
for continual learning methods, significantly outperforming other state-of-the-art approaches.

This chapter is based on  Aleksandr Dekhovich, David M.J. Tax, Marcel H.F. Sluiter, and Miguel A. Bessa.

Continual prune-and-select: class-incremental learning with specialized subnetworks. Applied Intelligence, 53,
17849–17864, 2023. https://doi.org/10.1007/s10489-022-04441-z
Code repository: https://github.com/adekhovich/continual_prune_and_select.
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3.1 Introduction
Despite significant progress, deep learning methods tend to forget old tasks while learning

new ones. This is known as catastrophic forgetting in neural networks [10, 11]. In the

conventional setting, a machine learning model has access to the entire training data at

any point in time. Instead, in continual learning or lifelong learning [70] data for a given

task comes in sequentially at a specific learning moment, and then new data associated

with another task comes in at a different moment. Continual learning aims at creating

deep learning models that do not forget previously learned tasks while being able to learn

new ones, i.e. addressing catastrophic forgetting. Often continual learning scenarios are

divided into two categories [19]: task-incremental learning (task-IL) and class-incremental

learning (class-IL). In the task-incremental case, the model knows which task is being

solved at the testing stage, while in the class-incremental case, this is not known for the

model. Therefore, the class-IL scenario is more challenging and more general than the

task-IL one. In computer vision, there are works on continual learning for both scenarios

in classification [5, 43, 71], while for object detection [72–74] and semantic segmentation

problems [75–77] the class-IL case is more frequent. However, task-IL naturally arises in

engineering applications, where task-ID is available at the inference stage.

There is evidence from neuroscience [21, 78, 79] that humans have special regions in

the brain that are responsible for the recognition of specific patterns. Moreover, several

studies show that the human brain encodes information in a sparse representation with an

optimal fraction of active neurons of 1%-4% at the same time [20, 80]. Motivated by this

observation, this thesis proposes a class-IL algorithm for image classification based on two

steps: creating a subnetwork for a given task during training and selecting a previously

obtained subnetwork during inference to make predictions. The first stage is achieved via

iterative pruning that propagates input patterns through the network and eliminates the

least useful connections. During inference, we first predict the current task when selecting

the appropriate subnetwork from a small batch of test samples, and only then make a

prediction with the selected subnetwork. We allow overlaps between subnetworks in order

to induce knowledge transfer during training of new tasks. However, previously trained

weights are not changed. Parameter update only occurs when training available neuron

connections, which become part of a new subnetwork associated with the new task.

3.2 Related work
In this section, we provide a study on the current state of class-incremental continual

learning methods, their categorization and the limitations of each category.

Class-incremental learning As previously mentioned, continual learning problems

are usually classified according to whether or not the task-ID is available during inference.

We focus on the class-IL scenario where the task ID is absent during inference since it is

the most realistic and challenging scenario of continual learning. All class-IL methods are

usually divided into three categories [16]: regularization [5, 81–85], rehearsal [86–89] and
architectural [90–92]. The diagram with these types of methods and examples is shown in

Figure 3.1.
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Class-incremental learning 
methods

Replay methods
Regularization-based

methods
Architectural methods

iCaRL [86]
EEIL [97]
BiC [98]

PODNet [89]
iTAML [104]

AFC [99]

SI [5]
LwF [81]
IMM [93]
EWC [84]
MAS [85]

DMC [100]

DEN [90]
 SupSup [91]
SpaceNet [92]
CP&S [148]

DER [102]
FOSTER [103]

Figure 3.1: Categorization of continual learning approaches.

Purely regularization-based methods introduce an additional term in the loss function to

prevent forgetting. Some approaches [5, 85, 93, 94] estimate the importance of connections

for a given task and penalize the model for gradient updates during training for the next

tasks. Learning without forgetting (LwF) [81] adds a term in the loss function that penalizes

changes in old output heads for new data while training new output heads on new data.

Regularization-based methods have the advantage of not storing past data in memory nor

needing network expansion, but they perform worse compared to other approaches [19].

Rehearsal (or replay) methods replay small amounts of old classes [86] or generate

synthetic examples [95] to be able to predict previously seen classes. iCaRL uses the

nearest class mean [96] (NCM) classifier together with fixed memory of old data to mitigate

forgetting. Bias-correction methods [87, 97, 98] aim to tackle the tendency of class-IL

algorithms to be biased towards classes of the last tasks, which arises due to class imbalance

at the latest stages [19]. PODNet [89] has multiple terms in the loss function using old

data from the memory of a fixed size, penalizing signal deviations not only in the output

layer but also in intermediate ones. AFC [99] uses knowledge distillation by estimating

the importance of each feature map. The estimation is based on the increase of loss

function from changing channels’ parameters in the feature maps. The obvious limitation

of rehearsal methods is the need to keep past data, which is often not desirable in practical

applications due to privacy issues as mentioned by [100].

Architectural methods follow a different strategy where the network architecture is

modified to avoid forgetting. For example, the Dynamically Expandable Network (DEN)

[90] expands the network architecture in an online manner, increasing network capabilities,

and introducing a regularization term to prevent forgetting. However, due to the expansion

of the network, the final number of parameters is greater than for the original architec-

ture, which increases the memory costs. Supermasks in Superposition (SupSup) [91] and

SpaceNet [92] find subnetworks for every task. SpaceNet assigns parameters to one task

only, without sharing knowledge between tasks which limits its allocation capabilities for

long sequences of tasks. In addition, SpaceNet requires to pre-define the sparsity level for

each task. SupSup uses a randomly weighted backbone [101] instead of pruning to obtain a

task-related subnetwork. During inference, SupSup predicts the correct subnetwork for the
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given test data, using all data points in the batch. In the provided experiments, the batch

size is equal to 128 images which may not be applicable to real-life problems. DER [102]

dynamically expands the feature extractor by introducing new channels and freezes old

feature representation while learning a new task. Later, DER uses a small portion of old data

and current data to finetune the network for all tasks. To stop the growth of the number

of parameters, DER uses a pruning strategy, however, the final number of parameters is

unpredictable. Similarly, FOSTER [103] introduces a new module with a feature map to

learn new classes. However, it uses a knowledge distillation strategy inspired by gradient

boosting instead of pruning to compress the model. As a result, the outcome of FOSTER is

a single fixed-sized backbone network.

A Meta-Learning approach for class-IL is proposed by iTAML [104]. The algorithm

for updating parameters for all old tasks also needs fixed-sized memory, but iTAML uses

a momentum-based strategy for meta-updates to overcome catastrophic forgetting. At

the test stage, iTAML starts by predicting the task associated with that sample using a

given test batch, and then adapts its parameters to the predicted task using data from fixed

memory. Finally, with the adapted model and predicted task-ID, iTAML makes a prediction.

Overall, iTAML uses samples from previous tasks to prevent forgetting, and the batch of

test data to predict task-ID, making it the most demanding algorithm out of consideration.

Also, the model adaptation to the predicted task makes it computationally more expensive

than other state-of-the-art methods.

Iterative pruning for Continual learning Typically, neural network pruning is used

for model compression such that it reduces memory and computational costs. The pruning

pipeline consists of three steps: network pretraining, deleting the least important con-

nections or neurons based on some criterion, and network retraining. Iterative pruning

is characterized by repeating the second and third steps several times. There are numer-

ous approaches to pruning, namely magnitude pruning [29, 35, 49], data-driven pruning

[22, 30, 50, 55] and sensitivity-based pruning [27, 28, 48, 105]. Iterative pruning has been

recently applied in the context of task-IL but not in the more challenging class-IL scenario,

where the task-ID is not known a priori. Unsurprisingly, pruning has been shown to

lead to simplified neural networks with a small fraction of the original parameters. This

can facilitate the accumulation of knowledge for new tasks, as demonstrated by task-IL

methods based on iterative pruning, namely PackNet [43] that uses magnitude connections

pruning [29], and CLNP [106] that uses data-driven neurons pruning [55]. Piggyback [44]

learns the mask for every task, as well as CPG [107] which also expands a network in the

ProgressiveNet manner [108]. The performance of these algorithms is strong for task-IL,

but they have the significant limitation of requiring to know the task-ID.

We are interested in developing a class-IL method that contains the benefits of iterative

pruning connections to obtain sparse network representations while being capable of

selecting tasks without knowing the task-ID. To this effect, we developed a pruning strategy

called NNrelief [22] that aims at leaving as many connections as possible available for

future tasks, leading to sparser networks when compared to other pruning methods. The

algorithm’s idea is to propagate signal through the network, compute a metric called

importance score for each connection which estimates its contribution to the signal of

the following neuron, and then prune the least contributing connections incoming to the
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Table 3.1: Assumptions used by different types of class-IL methods (“bs” means batch size).

Methods Replay old data test 𝑏𝑠 > 1 Adaptation

SI, MAS, LwF, LwM, SpaceNet no no no

iCaRL, BiC, PODNet, DER, AFC, FOSTER yes no no

iTAML yes yes yes

CP&S (ours) no yes no

neuron.

Task selection Currently, there are few strategies for task selection in class-incremental

learning. For example, iTAML [104] and SupSup [91] use similar ideas for task identification

class-IL applied to image classification problems, and neither method uses pruning as

a means to create space for new knowledge. The underlying assumption is that if a

classifier network is well-trained, the highest output signal in the neuron of the output

layer corresponds to the class belonging to the correct task. So, iTAML sums the largest

output values of every task-related output in that layer over every test image in the batch,

and then finds the layer with the highest total sum. SupSup relies on the entropy of the

signal in each of the heads, in the hope that the model is confident in its prediction when it

is in the correct head, meaning that the entropy of signal within the head should be smaller

than in other heads. Note that both methods use batches of test samples to select the

correct task: iTAML varies the batch size from 20 to 150 depending on the dataset, while

SupSup uses 128 images in their experiments. A different strategy is pursued by Kim et al.

[109], where an autoencoder is associated with a task during training. In the test stage,

the reconstruction loss is computed for every autoencoder with the given test image, and

the one with minimum reconstruction loss is chosen to make predictions. Subsequently, a

classification model makes a prediction with the given predicted task-ID. It was shown that

in the case of LwF [81] and LwM [82] this task-selection procedure improves classification

accuracy. However, this task-selection approach requires training an autoencoder for every

task which is impractical.

Limitations of class-IL approaches State-of-the-art class-IL methods have simplified

training by replaying old data [86, 87, 89, 101], doing inference with a batch of images

to determine the current task [91, 104] and by performing adaptation before inference

[104]. Table 3.1 summarizes these assumptions for each method. In rehearsal methods,

examples of previous classes are stored (with fixed or growing memory), which makes them

inappropriate when images should not be kept for a long time. Similarly, the adaptation

of a model for a given batch of test data before making a prediction (as in iTAML) is only

possible when having examples in memory. Furthermore, the need for a significant number

of images in a batch during inference arises from the difficulty of identifying the task-ID

correctly with one image only. These can be strong model constraints when considering

real-life applications.
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3.3 Proposed method
This section describes how to take advantage of neural network sparsification via pruning

and use it to overcome forgetting old tasks while learning new ones. We discuss how to

deal with the overlaps between subnetworks and how we activate proper subnetwork at

the inference stage.

Initial state Pruning Assigning 
weights to the task

Ta
sk

 1
Ta

sk
 2

Task 1 & Task 2

Task 2

(a) (b)

(d) (e) (f)

Task 1

Available
connections

(g)

(c)

Figure 3.2: The overview of Continual Prune-and-Select (CP&S) training procedure. In stages (a)–(c), the first task

is learned; in (d)–(f) the network learns task 2; the final outcome is in (g), where the network is trained for both

tasks.

The proposed Continual Prune-and-Select (CP&S) method is based on training a subnet-

work for each given task and then selecting the correct subnetwork when doing inference

for new data with an unknown task-ID. We start by training a regular neural network

for a specific task (Figure 3.2(a)), iteratively pruning it to find a subnetwork with good

performance (Figure 3.2(b)). This creates a trained subnetwork capable of performing

that particular task, leaving the remaining network free for future tasks (Figure 3.2(c)).

Importantly, when a new task comes in (Figure 3.2(d)), the corresponding new subnetwork

is found by iteratively pruning the entire original network – including all free neuronal

connections and all existing subnetworks found for other tasks (Figure 3.2(e)). This is

possible by freezing the parameters of previously found subnetworks (avoiding to forget

past tasks associated with the corresponding subnetworks), updating all the remaining

parameters of the network, and then pruning the entire network until the corresponding

subnetwork is found. This way, the new subnetwork (Figure 3.2(f)) can contain connections

from other subnetworks but it does not affect their performance on past tasks because

it did not update the parameters of shared connections – it only updated the parameters
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of unshared connections. This allows to have the transfer of knowledge from one task to

another without forgetting (Figure 3.2(g)).

The new strategy proposed herein can be implemented with different pruning algo-

rithms to create each subnetwork, and with different task selection algorithms to find

the correct subnetwork for inference. As long as the pruning and selection strategies

have reasonable performance, we expect this strategy to outperform previous continual

learning methods in the class-IL scenario because (1) it avoids forgetting if the task is

selected correctly (unlike iTAML); (2) it allows knowledge transfer among tasks (unlike

SpaceNet). Also, CP&S (3) does not need to replay old data (unlike iCaRL, RPS-net, BiC,

LUCIR, PODNet, AFC); (4) The backbone architecture is fixed and never changes during

training (unlike DER), or requires additional temporary modules (unlike FOSTER).

Without loss of generality, we use NNrelief [22] pruning algorithm proposed in Section

2.3 because, as we can see from the results, it promotes sparser networks when compared

to the state-of-the-art, and it creates a renormalization effect in the network that distributes

the importance of neuronal connections. Concerning task selection (in our case subnetwork

selection), we considered different strategies, including the one proposed in the literature

that applies to our method (see iTAML [104] and SupSup [91]).

Formally, denoting our classification network as  and considering 𝑇 tasks, then:

 = ∪𝑇𝑡=1 𝑡 , (3.1)

where 𝑡
is the subnetwork for task 𝑡, with 𝑡 = 1,2,… , 𝑇 . Each subnetwork 𝑡

is found

with our NNrelief pruning algorithm that determines the most important parts of the main

network for solving a given task 𝑡. This algorithm estimates each connection’s contribution

to the total signal of a receiving neuron when compared to the other connections that

are incoming to that neuron. This contribution is computed by the importance score (IS)
of every connection with Eq. 2.1 and Eq. 2.2 for the input signal 𝐗 = {𝐱1,… ,𝐱𝑁 } with 𝑁
data points. Then NNrelief prunes the connections entering the neuron with the lowest

contribution to the importance score whose sum is less than (1−𝛼)∑𝑚
𝑖=1 𝑠𝑖𝑗 , where 𝛼 is the

hyperparameter of the algorithm, 0 ≤ 𝛼 ≤ 1. More details are given in our original article

[22].

Algorithm 3 Pseudocode for CP&S training procedure

Input: network , datasets {X𝑡}𝑇𝑡=1. Initialize learning parameters 𝑝 (learning rate, weight

decay, number of epochs, etc. ), pruning parameters (for NNrelief algorithm: 𝛼 and the

number of pruning iterations 𝑘)
1: for 𝑡 = 1,2,… , 𝑇 do
2:  𝑡 ← Pruning( ,X𝑡 ,𝛼,𝑘)
3: freeze parameters 𝑤 ∈ 𝑡

and never update them

4: end for
Output: network that learned tasks 1,2,… , 𝑇 .

In the context of class-IL we receive datasets X1,X2,… ,X𝑇
sequentially. The pruning

algorithm then creates masksM1,M2,… ,M𝑇
for every task 𝑡 = 1,2,… , 𝑇 , whereM𝑡 = (𝑚𝑡

𝑖𝑗 )𝑖,𝑗 ,
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𝑚𝑡
𝑖𝑗 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1, if there is an active connection

between neurons 𝑖 and 𝑗 ,
0, otherwise

and corresponding importance scores 𝑆1, 𝑆2,… , 𝑆𝑇 , 𝑆𝑡 = (𝑠𝑡𝑖𝑗 )𝑖,𝑗 .
Once the subnetworks are created during training, selecting the correct subnetwork

given a batch of test data becomes essential to do inference. In this article, we define a

test batch of size 𝑠 as 𝐗𝑡𝑒𝑠𝑡 = {𝐱𝑡𝑒𝑠𝑡1 ,𝐱𝑡𝑒𝑠𝑡2 ,… ,𝐱𝑡𝑒𝑠𝑡𝑠 }, and can simplify the notation to cases

where the fully connected part of the network consists of one layer since we run all our

experiments on ResNet architectures. However, there are no restrictions to apply this

approach to any other type of architecture. We define the convolutional part for task 𝑡 as
𝜃𝑡 , 𝜃𝑡 ∶ ℝ3×𝐻×𝑊 → ℝ𝑑

(𝐻,𝑊 are the height and width of an input image and 𝑑 is the length

of an output feature vector), and the fully connected layers as 𝜑𝑡 ∶ ℝ𝑑 → ℝ𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠
.

Similarly to the selection of the pruning algorithm for subnetwork creation, we can also

adopt different strategies to identify the correct subnetwork associated with a particular

task. In order to establish a fair comparison with the literature, we focus on the maximum
output response (maxoutput) strategy that is used by other methods (e.g. [91, 104]), but we

also show that other task selection methods can lead to good results (see Appendix for a

strategy based on Importance Scores).

The maxoutput strategy for task prediction is simply formulated as:

𝑡∗ = argmax
𝑡=1,2,…,𝑇

𝑠
∑
𝑖=1

max𝜑𝑡(𝜃𝑡(𝐱𝑡𝑒𝑠𝑡𝑖 )). (3.2)

This does not require data storage. There are no memory costs associated with this

prediction.

Algorithm 4 Pseudocode for CP&S inference procedure

Input: network , test batch 𝐗𝑡𝑒𝑠𝑡
.

1: predict task 𝑡∗ for the test batch 𝐗𝑡𝑒𝑠𝑡
using Eq. (3.2)

2: make a prediction �̂� = 𝑡∗(𝐗𝑡𝑒𝑠𝑡)
Output: predicted classes �̂� for test data 𝐗𝑡𝑒𝑠𝑡

.

Complexity analysis We estimate this separately for the training and inference stages.

In the training stage for one task, we perform initial training and then the prune-retrain

steps over 𝑘 iterations. For retraining, we use a smaller number of epochs. Therefore, if

we initially train the network with 𝑁 epochs, then we define the number of retraining

epochs as 𝑁1 with 𝑁1 < 𝑁 . Overall, we have 𝑁 + 𝑘𝑁1 < (1+ 𝑘)𝑁 epochs. In practice, we

use 𝑘 ≤ 3, so the total number of training epochs for one task can be estimated as (𝑁 ).
During inference, the maxoutput approach requires propagating input signal through every

created subnetwork. That means if 𝑇 tasks are learned, we need 𝑇 inference operations.

3.4 Numerical experiments
We compare CP&S with different methods available in the literature. Aiming to establish a

fair comparison, we use different measurements of accuracy during the learning process,
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namely average multi-class accuracy (ACC), backward transfer metric (BWT) [110] and

average incremental accuracy (AIA) [86]. These metrics can be written assuming that a

model learned 𝑇 tasks and denoting 𝑅𝑡2 ,𝑡1 as the accuracy for task 𝑡1 after learning up to

task 𝑡2 (inclusive, i.e. 𝑡2 ≥ 𝑡1):

ACC(𝑇 ) =
1
𝑇

𝑇
∑
𝑡=1

𝑅𝑇 ,𝑡 (3.3)

BWT(𝑇 ) =
1

𝑇 −1

𝑇−1
∑
𝑡=1

𝑅𝑡,𝑡 −𝑅𝑇 ,𝑡 (3.4)

AIA(𝑇 ) =
1
𝑇

𝑇
∑
𝑡=1

ACC(𝑡) (3.5)

The idea of the BWT is to measure the forgetting of the incremental-learning models,

evaluating how much information about previous tasks is lost after learning a new one. We

evaluate all methods using several class orderings to obtain robust results, as recommended

in [19].

Datasets We evaluate CP&S on three datasets: ImageNet-1000, including its subset

ImageNet-100 [111]; CUB-200-2011 [112]; and CIFAR-100 [63]. We also consider different

task construction scenarios. For completeness, the datasets are briefly described as follows:

• ImageNet-1000 consists of 1,281,167 with 224×224 pixels RGB images for training

and 50,000 images for validation of 1000 classes. We split both ImageNet-100 and

ImageNet-1000 in 10 incremental steps of equal size, similarly to the literature;

• CUB-200-2011 consists of 11,788 224 × 224 pixels RGB images of 200 classes with

5,994 training and 5,794 for testing images;

• CIFAR-100 consists of 60,000 with 32×32 pixels RGB images of 100 classes with 6k

images per class. There are 50,000 training samples and 10,000 test samples;

We start our experiments with ImageNet-100 (the first 100 classes of the ImageNet-

1000 dataset) and with CIFAR-100 before considering more challenging datasets such as

ImageNet-1000 and CUB-200-2011. For all datasets, we use the ResNet-18 architecture,

as considered by previous methods. For ImageNet-100/1000 datasets, we split them into

10 tasks of the same size (each task having 10 classes). We compare CP&S with other

state-of-the-art models, namely iCaRL [86], EEIL [97], BiC [87], RPS-net [101], iTAML

[104], DER [102] and FOSTER [103]. In addition, we provide a comparison with the case of

Finetuning, when no anti-forgetting actions are performed, and a network sequentially

learns new tasks one by one. For comparison with other works, we either reproduce the

results from the official GitHub repository using the hyperparameters mentioned in the

original articles or report the results from the original works when available. See the details

in Appendix B.1.
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(a) Comparison on ImageNet-100: 10 tasks
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(b) Varying test batch size

iTAML (bs=50)
CP&S (Adam, bs=5)
CP&S (Adam, bs=10)
CP&S (Adam, bs=20)
CP&S (SGD, bs=20)
CP&S (Adam, task-IL)
CP&S (SGD, task-IL)

Figure 3.3: Results on ImageNet-100 and comparison with other approaches. Notation: "bs" refers to the test

batch size; "task-IL" refers to the task-IL scenario where the task-ID is known, providing an upper bound to the

results. The pruning parameter of CP&S is 𝛼𝑐𝑜𝑛𝑣 = 0.9 for both optimizers, SGD and Adam. The class ordering is

generated by seed 1993 (iCaRL seed).

ImageNet-100 Figure 3.3 shows that CP&S outperforms state-of-the-art methods for

this dataset, even when considering two different optimizers – Stochastic Gradient Descent

(SGD) and Adam [66]. We use a learning rate of 0.1 for SGD and 0.01 for Adam, dividing

it by 10 on epochs 30 and 60, and we consider weight decay of 10−4 for both optimizers.

Figure 3.3(a) shows our predictions using a smaller batch size than iTAML – 20 samples

instead of 50 – and compares them with other methods. Figure 3.3(b) clarifies the influence

of considering different test batch sizes in CP&S method, where it is demonstrated that

even when using 5 or 10 samples per batch we still perform better. The same figure also

shows that when using Adam we identify the correct subnetwork in 100% of the cases

because we reach the upper bound provided in the task-IL scenario, i.e. where the task-ID

is known and subnetwork selection is not necessary. For SGD, we observe a slight drop

in accuracy after task 8 compared to the task-IL scenario, although it still outperforms

iTAML even though the latter uses 50 images for task identification and requires keeping

images in memory. Overall, CP&S reaches 98.38% accuracy with Adam and 92.62% with

SGD, translating into improvements for this dataset beyond 8% and 2.5% when compared

to next best method, and even larger when compared to other methods after all classes are

learned.

We note that using Adam [66] is advantageous for CP&S due to the higher level of

sparsity that is produced after pruning with NNrelief when compared with other optimizers

[22]. Note that pruning makes neuron connections available for creating new subnetworks

associated with future tasks. If the number of available connections is small, then new

subnetworks may not be sufficiently expressive to reach high accuracy for a given task. A

similar effect is expected if the number of tasks is large, as shown in the next experiments

for CIFAR-100.

CIFAR-100 Before considering more challenging datasets such as ImageNet-1000 and

CUB-200-2011, we focus on CIFAR-100 where we split its 100 classes by a different number

of tasks: 5, 10 and 20 tasks composed of 20, 10 and 5 classes, respectively. For iTAML,

we followed the original implementation with hyperparameters described in the paper
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(a) CIFAR-100: 5 tasks
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(b) CIFAR-100: 10 tasks
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(c) CIFAR-100: 20 tasks

Finetuning
iTAML
CP&S (bs=120)
CP&S (task-IL)

Figure 3.4: Comparison with iTAML on CIFAR-100 split in 5, 10 and 20 tasks. Notation: “bs” refers to the batch

size during inference, “task-IL” refers to the task-IL scenario where the task ID is known, providing an upper

bound to the results. Five different class orderings are used.

including the test batch size equal to 20, and using ResNet-18(1/3) [110] which is a modified

version of the standard ResNet-18 architecture where the number of filters is divided by

three. For CP&S, we use Adam for training using 70 epochs and starting with the learning

rate 0.01 which is then divided by 5 every 20 epochs. We use 𝛼𝑐𝑜𝑛𝑣 = 0.9 and 3 pruning

iterations as the pruning parameters of NNrelief.

Figure 3.4 shows that when considering 5 or 10 tasks CP&S significantly outperforms

iTAML with the same batch size. However, for twenty tasks our performance drops sharply

after the eleventh task, even in the ideal case where the task-ID is given (task-IL scenario).

Despite being able to alleviate this drop by considering a larger test batch size, or by

considering a different strategy for task (subnetwork) selection based on Importance Scores

(see Appendix B.1), we observe this drop occurs approximately at the same number of

tasks, independently of the class ordering used. Figure 3.5 (left) explains what occurs for

the 20 tasks case by showing a heatmap with the task-selection accuracy by row for every

task after a new task is learned. We also evaluate the prediction accuracy for each task

when the task-ID is known (task-IL scenario) so that we can isolate the effect of not being

able to appropriately select the subnetwork of interest for a given task and the effect of

achieving low accuracy for a specific task. We observe that even in this case, the accuracy

for each new task after the eleventh also drops (see Figure 3.5 (right)). Therefore, our

method performs well until we reach a saturation point when there are not enough neuron

connections available to create a sufficiently large subnetwork to achieve high prediction

accuracy for a new task. This is a logical conclusion, as one can only learn new tasks while

sufficient neuronal connections remain available for training. We call this issue network
saturation. Notably, if there are enough available connections, this type of method reduces

capacity saturation [113] by isolating task-specific parameters, unlike to regularization-

based and replay methods [114]. However, the model cannot learn new concepts at network

saturation point. Increasing the size of the original architecture eliminates this issue, but

then we can unpredictably increase the memory costs, therefore, we work with a fixed

architecture.

In addition, note that we do not keep data in memory (no replay), nor do we need to

use adaptation to estimate the task before making a final prediction, unlike the methods
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Figure 3.5: CIFAR-100 divided into 20 tasks of 5 classes each. Task-selection accuracy with maxoutput (left) and
accuracy by task (right).

reviewed above. We also use smaller test batch sizes than iTAML, despite using the same

task selection strategy. The following experiments show that this conclusion holds for

more challenging datasets.

ImageNet-1000 Focusing now on a more challenging dataset, we split ImageNet-1000

into 10 tasks of 100 classes. To evaluate CP&S, we train ResNet-18 with 90 epochs and SGD

with a learning rate equal to 0.1 dividing it by 10 every 30 epochs. Figure 3.6(a) shows that

CP&S performs better than the state-of-the-art, exhibiting more than 10% higher Top-5

accuracy than the next best method, which is DER [102] and more than 20% improvement

over the second best BiC [87]. We found this result to be particularly striking, since the

prediction accuracy remains around 94% with virtually no forgetting for the first time in

the literature, to the best of our knowledge. Figure 3.6(b) also shows results for different

test batch sizes for determining the task-ID and corresponding subnetwork. Once again, a

batch size of 20 provides a good trade-off between accuracy and sample size. Interestingly,

prediction accuracy is better for CP&S method than others even when using only 5 test

samples in the batch. With 20 images in the test batch, we can almost reach the upper

bound of the task-IL scenario, completely reaching it when using 50 images (i.e. identifying

the task-ID correctly in 100% of the cases).

In addition, we provide a comparison on the ImageNet-1000 dataset calculating Top-1

accuracy. In Table 3.2, we observe that CP&S outperforms the two most recent state-of-

the-art methods, DER and FOSTER, by more than 10%.

CUB-200-2011 We split CUB-200-2011 dataset into four tasks with 50 classes in each

of the tasks. For testing, we take standard ResNet-18 pretrained on ImageNet-1000 [111]

and fine-tuned with SGD. For iTAML, we also use pretrained weights and use the same

hyperparameters for fine-tuning that are used in the original paper for other large-scale

datasets. The pruning parameter for CP&S is 𝛼𝑐𝑜𝑛𝑣 = 0.95 and only one pruning iteration is

used.
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(a) Comparison on ImageNet-1000: 10 tasks
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(b) Varying test batch size

DER
CP&S (bs=5)
CP&S (bs=10)
CP&S (bs=20)
CP&S (bs=50)
CP&S (task-IL)

Figure 3.6: Results obtained for ImageNet-1000 dataset and comparison with other approaches (a) and different

batch sizes (b). Notation: “bs” refers to the test batch size; “task-IL” refers to the task-IL scenario (upper bound

obtained when task ID is known). The pruning parameter is 𝛼𝑐𝑜𝑛𝑣 = 0.9 for CP&S. Class ordering is generated by

seed 1993 (referring to iCaRL’s seed).

Table 3.2: Average incremental accuracy on ImageNet-1000

Method Top-1 AIA

iCaRL [86] 38.4

DER [102] 66.73

FOSTER [103] 68.3

CP&S (ours) 79.08

Figure 3.7 presents the accuracy and BWT history with 20 test images per batch, once

again using maxoutput as the task-selection strategy. For 20 test images, it can be observed

that CP&S once again exhibits almost no forgetting of information about previous tasks

while learning new ones. However, iTAML even though it keeps 2000 images in memory,

continuously forgets previous tasks. In addition, note that 2000 images represent 1/3 of the
CUB-200-2011 dataset, and that we see a dramatic loss of performance for iTAML when

using 1000 images (which is still 1/6 of all the images). In the case of 5 images per test

batch, we obtain similar forgetting as iTAML with 2000 images in memory but still a better

forgetting metric than iTAML with 1000 images in memory. A more detailed comparison

can be found in Appendix B.3.

In summary, CP&S outperformed the state-of-the-art for all datasets considered with

the exception of CIFAR-100 when considering a large number of tasks. We demonstrate

that we can perform better for small-scale and large-scale datasets (ImageNet-1000) where

the second best methods are different. We considered scenarios where each task has a small

or a large number of classes, including cases where there is a small number of training

examples (CUB-200-2011) without keeping them in memory.
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(a) CUB-200: 4 tasks (accuracy)
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(b) CUB-200: 4 tasks (forgetting)
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Figure 3.7: Comparison with iTAML on four tasks constructed from CUB-200-2011. Notation: “memory” is the

number of images from previous tasks; “task-IL” refers to task-IL scenario as an upper bound for our approach.

3.5 Further analysis
CP&S method’s performance degrades if there are too many tasks because the number

of available neuron connections is not enough to create an expressive subnetwork and

to select the correct task. This was shown for CIFAR-100 when considering 20 tasks (see

Figure 3.4). In addition, there are scenarios where task selection during inference should

be performed by a different strategy instead of maxoutput. For example, when there is

an imbalanced number of classes within the tasks we note that using the modification of

Importance Scores (IS) to select tasks is advantageous. Focusing on fully connected layers,

for the given dataset 𝐗 = {𝐱1,𝐱2,… ,𝐱𝑠} we can compute:

𝑠𝑡𝑖𝑗 = 𝑤𝑖𝑗 ⋅𝑚𝑡
𝑖𝑗 ⋅𝜃𝑡𝑖 (𝐗) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑤𝑖𝑗 ⋅𝜃𝑡𝑖 (𝐗), if there is an active connection

between neurons 𝑖 and 𝑗
0, otherwise,

, (3.6)

where 𝑤𝑖𝑗 ⋅𝜃𝑡𝑖 (𝐗) =
1
𝑠 ∑

𝑠
𝑘=1𝑤𝑖𝑗 ⋅𝜃𝑡𝑖 (𝐱𝑘) and 𝜃𝑡𝑖 are the feature extractor layers of task 𝑡.

Suppose we have importance scores 𝑆1, 𝑆2,… , 𝑆𝑇 obtained from the training set, we can

estimate the importance scores of these connections based on 𝐗𝑡𝑒𝑠𝑡
for every subnetwork

𝑡 = 1,2,… , 𝑇 , and denote these estimations as 𝑆1, 𝑆2,… , 𝑆𝑇 .
Assuming that importance scores should be similar for train and test data for the true

task-ID, we can formulate the decisive rule as:

𝑡∗ = argmin
𝑡=1,2,…,𝑇

√
∑
𝑖,𝑗
(𝑠𝑡𝑖𝑗 − 𝑠𝑡𝑖𝑗 )2, (3.7)

where 𝑠𝑡𝑖𝑗 and 𝑠𝑡𝑖𝑗 are the elements of matrices 𝑆𝑡 and 𝑆𝑡 respectively, 𝑡 = 1,2,… , 𝑇 .
We consider the case where the first task consists of 50 classes, and 10 classes are

in each of the following tasks, providing the comparison with iCaRL [86], LUCIR [87],

PODNet [89] and AFC [99] (see Table 3.1 to recall different assumptions for each method).

However, we also show that when using IS for task selection we require a larger batch size

to improve task identification (60 test samples).
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The maxoutput strategy does not work well in this case because most of the parameters

are assigned to the first task (with 50 classes). As a result, this strategy predicts the first

task when considering the last tasks for almost every batch, as shown in Appendix B.1.

As a final comment, we also investigated an alternative solution when we have a first

task that is significantly larger than the following ones. This can be solved by pretraining

convolutional weights with the first task and training only the task-specific parts in the

network. We denoted this last strategy as “CP&S-frozen” since we pretrain all convolutional
parameters with the first 50 classes, and, for the next tasks we train task-related batch nor-

malization parameters and the fully connected part that is task-specific by construction. So,

in this last strategy, each subnetwork consists of a common convolutional part (pretrained

on the first task), batch normalization layers and an output classification head. We present

an additional task-selection accuracy comparison between IS and maxoutput in Appendix

B.1. We again observe poor performance for maximum output response strategy. The final

results can be seen in Figure 3.8 and Table 3.3.

Table 3.3: Comparison between algorithms by average incremental accuracy and backward transfer metric at the

end of all tasks. Mean values and standard deviation are computed using three different orderings.

Method AIA (%) BWT (%)
iCaRL [86] 61.63 ± 0.25 12.77 ± 0.30

LUCIR [87] 63.29 ± 0.36 10.09 ± 0.12

PODNet-CNN [89] 64.56 ± 0.28 11.90 ± 0.04

PODNet-NME [89] 65.07 ± 0.44 1.18 ± 0.16

AFC [99] 65.73 ± 0.09 7.46 ± 0.38

CP&S (bs=60, IS) 64.97 ± 4.23 11.68 ± 0.20

CP&S-frozen (bs=60, IS) 70.55 ± 5.05 4.90 ± 2.35
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Figure 3.8: Accuracy history for ResNet-32 trained with CP&S and state-of-the-art. The pruning parameter is

𝛼𝑐𝑜𝑛𝑣 = 0.9 for CP&S strategy, and “task-IL” refers to the same upper bound mentioned in the previous figures.

Three different class orderings are used.

We believe this knowledge transfer strategy might be interesting to explore in the

future, where the first heads of the network specialize in selecting tasks and the deeper

layers specialize in class prediction for each task.
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Knowledge transfer Let us explore how many parameters are used by every task in

the case of ResNet-18 on ImageNet-1000. We consider the union and the intersection of

all masks as sets. In Figure 3.9(a) we show how the union and intersection are distributed

across parameters after the last task is learned in the case of ResNet-18 on ImageNet-1000.

From the union, we observe that the last layers are almost fully occupied in contrast to the

first layers. From the intersection, it can be seen that a significant fraction of parameters

is shared between each of the tasks across all layers. At the same time, about 85% are

assigned to two and more tasks (Figure 3.9(b)). Notably, 35% of parameters are shared

across all ten tasks and about 50% of parameters are used for nine or more tasks. From

these figures, we can conclude that almost all parameters are occupied at the end, having

significant overlaps between subnetworks. However, looking at Figure 3.6, we see that

performance remains stable, without drops. This allows us to conclude that subnetworks

share knowledge between tasks, which helps to assimilate new patterns.
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(b) The percentage of shared parameters

Figure 3.9: Visualization of employed masks and shared parameters for ResNet-18 on ImageNet-1000.

3.6 Conclusion
In this chapter, we have proposed a continual learning algorithm (CP&S) to overcome

catastrophic forgetting issue. This algorithm creates a task-specific subnetwork for every

task via an iterative pruning approach described in Chapter 2, which is developed to provide

sparser network representation compared to other pruning approaches. During training of

a task, weights are pruned and then fixed, such that future tasks cannot destroy the weights

in this subnetwork, while still being able to use them for other subnetworks. During the

evaluation of new data, the correct task-ID and associated subnetwork have to be inferred

from a small batch of samples.

Notwithstanding, the Chapter demonstrates that combining subnetwork creation and

subnetwork selection methods into one paradigm provides a general approach to solving

class-IL problems. We believe the proposed strategy can be further improved by developing

better task-prediction strategies that do not need a batch of test data. CP&S outperforms

all state-of-the-art methods on a variety of datasets. For ImageNet-1000, we show an

improvement of more than 10% accuracy when compared to previous algorithms. Even

though we apply CP&S to image classification tasks, no additional limitations are foreseen

when applying it to other machine learning problems. In Chapter 4, we consider a special
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case of semantic segmentation — surface defect segmentation problem — where we have

improved the subnetwork selection strategy by training a separate model for this purpose.
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4
Subnetwork selection in

surface defect segmentation
problem

Chapter 3 has described a general algorithm for class-incremental learning classification
problem. The proposed strategy includes the subnetwork creation stage for every task during
training and the subnetwork selection stage during inference to predict the correct subnetwork.
As we have discussed in the previous chapter, the considered subnetwork selection approaches
have a significant limitation of requiring several test images to predict the subnetwork properly.

In this Chapter, we improve the subnetwork prediction stage for the case when every task
consists of input data of the same class. Therefore, we consider a continual surface defect
segmentation problem where the model receives a new type of defect at each incremental step.
We train the linear discriminant analysis (LDA) classifier in a continual learning manner
to infer the defect-related subnetwork for the prediction. As in the previous chapter, we
demonstrate that the proposed paradigm outperforms other learning strategies by a margin
and is even comparable with the scenario when all data is available at the same time.

This chapter is based on  Aleksandr Dekhovich and Miguel A. Bessa. Continual learning for surface defect

segmentation by subnetwork creation and selection. Journal of Intelligent Manufacturing, 1–15, 2024. https:
//doi.org/10.1007/s10845-024-02393-4
Code repository: https://github.com/adekhovich/continual_defect_segmentation.
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4.1 Introduction
The problem that we consider in this Chapter belongs to a general class of automatic defects

inspection tasks. In contrast to classification, here we aim to predict the location of the

defect region pixel-wise. In the following sections, we describe the problem in general and

explain the difference from the classification case

Automatic defects inspection plays an important role in product quality evaluation

[115]. In the beginning of the field, the creation of meaningful features to find defective

regions was done manually [116–119]. Although classical machine learning methods have

been proposed to identify images with defective surfaces [120–122], recent advances in

deep learning research have led to an increase in performance [115]. Typically, there are

three types of tasks for defect inspection with neural networks – classification, detection

[123] and segmentation [124]. In the case of defect classification, transfer learning helps to

increase the network’s ability to detect defective surfaces [125, 126]. For segmentation, most

methods are based on the U-Net architecture [127] taking advantage of convolutional layers

that automatically extract features from the images of the surfaces [128–131]. Attention

mechanisms [132] employed in the model’s architecture can lead to even more accurate

predictions [133, 134].

The advent of deep learning models came with more data for training and comparing

these models in different real-life scenarios. For instance, after [118] proposed their NEU-

DET dataset with Hot Rolled Steel Strip Surface defects, containing six types of defects,

other groups collected datasets with either different defect categories or a more significant

number of defects, e.g., GC10-DET [135] and X-SDD [136]. In segmentation literature, we

can also find examples of different categorizations of surface defects, e.g., the Magnetic tile

dataset [131] contains images of five types of defects together with defect-free cases. As a

final example, the dataset collected by [137] also contains a large number of images but

only has three types of defects.

Notwithstanding the increase in availability of datasets, there are many instances where

there are few types of defects in each dataset. This is a natural occurrence in Engineering

practice because many processes are not amenable to high-throughput. Simultaneously,

if new defects occur or if another defect identification task with similar characteristics is

encountered, using the original dataset and neural network model while considering new

types of defects in similar (or even different) materials can be invaluable. However, training

the same neural network model on a new dataset currently requires retraining it on all

the data, even if the model was already capable of detecting some types of defects. This

happens because deep learning models suffer from catastrophic forgetting [10, 11, 138]. In

conventional training, neural networks cannot learn new tasks without forgetting old ones

if the tasks are learned incrementally. Instead, the continual learning field [114] aims to

solve this type of problem where the model receives data in batches (tasks) but aims to

learn information mitigating the forgetting issues.

We illustrate the impact of catastrophic forgetting on segmentation tasks in Figure 4.1

by considering the defect segmentation dataset SD-saliency-900 [139]. This dataset consists

of images with three types of defects: scratches, patches and an inclusion. We illustrate this

phenomenon by focusing on three typical learning scenarios: 1) single-task training where

each defect is learned with a single network, meaning there are three networks in total; 2)

joint training where the model has access to the entire dataset at once; 3) finetuning, in
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which the network learns to segment sequentially, adapting the parameters for the new

task, having them pretrained on previous ones.
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Figure 4.1: Example of forgetting in the case of incremental learning of three types of defects.

For all three learning scenarios, we quantify the segmentation performance via the

mean Intersection over Union (mIoU) score for every task after each incremental step

(Figure 4.1). We observe that finetuning on a new task leads to a significant drop in

performance for the previous task(s), as indicated by the blue bars – a clear illustration

that learning a sequence of tasks with a single network leads to forgetting the previous

tasks in the sequence (catastrophic forgetting). However, forgetting does not occur in the

case of single- and joint-task training because the network is capable of learning each of

the defects separately without any pretraining, while also being capable of learning all

of them together. We also note that both single- and joint-task training have comparable

performance, despite a small decrease in the latter case
1
.

Therefore, we see that the ability to predict defects of previous types is lost when

training for a new type of defect, i.e. that is out-of-distribution. The main objective of our

work is to propose a continual learning algorithm suitable for the surface segmentation

problem. To the best of our knowledge, this is the first work that develops a continual

learning approach for surface defect segmentation.

4.2 Related work
In particular, we focus in this Section on regularization-based methods that penalize

parameters obtained on incremental step 𝑡 −1 from drastic changes while learning the

task on incremental step 𝑡. For example, SI [5], EWC [84] and MAS [85] employ total loss

(𝑡)(𝑥;𝜃(𝑡)) on incremental step 𝑡 that consists of the loss computed for the current data,

and a penalty term to prevent forgetting:

(𝑡)(𝑥;𝜃(𝑡)) = 𝑐𝑢𝑟𝑟(𝑥;𝜃(𝑡))+
𝜆
2

#𝑝𝑎𝑟𝑎𝑚𝑠

∑
𝑖=1

Ω𝑖(𝜃
(𝑡)
𝑖 −𝜃(𝑡−1)𝑖 )

2, (4.1)

where 𝑐𝑢𝑟𝑟(𝑥;𝜃(𝑡)) is a loss on the current data, ∑#𝑝𝑎𝑟𝑎𝑚𝑠
𝑖=1 Ω𝑖(𝜃

(𝑡)
𝑖 − 𝜃(𝑡−1)𝑖 )

2
is the penalty

term,Ω𝑖 is the cumulative importance for parameter 𝑖, and 𝜃(𝑡−1), 𝜃(𝑡) are network parameters

1
As a short note, marginal improvements in performance sometimes occur when changing the task order

(investigated at the end of the article). For example, the mIoU performance for the Scratches task improved by

0.13 points after learning the Inclusion task, but the improvement is small compared to how much it degrades

after learning the Patches task.
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at incremental steps 𝑡 −1 and 𝑡, respectively. Learning without forgetting (LwF) [81] aims

to mitigate forgetting by minimizing the cross-entropy between output probabilities before

and after the model is trained on a new task.

Literature on continual learning for semantic segmentation is scarcer than for the

classification problem. We can find examples that adapt classification continual learning

algorithms to segmentation [9, 140], or some new approaches designed specifically for

segmentation [75, 76, 141]. Similar to the classification case, better results are achieved by

the methods that use a fixed-size memory buffer with samples from old tasks to overcome

forgetting [142, 143]. However, even though these methods use old data (facilitating

training), they still show significant forgetting of the first tasks while performing well only

on the last ones.

Continual learning also finds its application in industrial and manufacturing cases. For

example, MAS [85] was applied for product quality evaluation [144]. The approach clones

the output head for previous tasks with the lowest loss on the current data and uses this

copy as initialization for a new task. The weight transfer for the output layer, and MAS

algorithm that penalizes parameters from previous layers, show good performance for

the considered regression problem. Regularization-based methods have been examined

for anomaly detection in manufacturing process [145] and fault prediction in lithium-ion

batteries [146]. [147] developed an adaptive classification framework based on continual

learning to identify new unlabeled samples. The proposed approach uses Mahalanobis

distance and is employed to decide whether a new batch of data belongs to the already

seen defect type, or forms a new one.

4.3 Proposed method
We propose to take advantage of architectural methods that create task-specific subnet-

works for each task, eliminating the subnetwork selection issue. As a base method, we

consider Continual Prune-and-Select (CP&S) [148] proposed in Chapter 3 where we im-

prove the subnetwork selection process by training a model for this purpose, instead of

having simple metric-based decision rules. In general, the task-prediction problem is quite

challenging in continual learning [109] and can be seen as an out-of-distribution (OOD)

detection problem [149]. The difficulty arises from the presence of arbitrary classes in

each task, leading to cases where classes within each task may not be similar, while classes

from different tasks may have important similarities. This poses a challenge to identify

the task-ID and corresponding subnetwork, affecting the performance of the continual

learning model when the wrong subnetwork is selected. Conversely, these methods have

the advantage that when the correct subnetwork is identified then there is no forgetting,

which explains their state-of-the-art performance in different image-classification datasets

[148].

However, in contrast to image classification, every task in defect segmentation problems

consists of defects of only one type. This represents an opportunity for architectural

continual learning methods because we can train a model that learns the distribution of

each defect separately. To do so, we use linear discriminant analysis (LDA) model trained

on features extracted from a pretrained convolutional neural network [150, 151]. The

choice of LDA is explained by its efficiency and simplicity relative to deep learning-based

methods (e.g., [152]), where for each class it is necessary to train a separate model with
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Figure 4.2: An overview of the proposed method: (a) task ID (i.e., defect type/subnetwork) prediction; (b) defects

segmentation.

several hundred thousand parameters. For the segmentation model, we use the U-Net

architecture [127], in which we create task-specific subnetworks via iterative pruning. As

a pretrained feature extractor, we use the EfficientNet-B5 architecture [153] pretrained on

ImageNet-1000 [111].

In Figure 4.2, we illustrate the inference stage of our approach, which consists of

two steps: (1) predicting the defect type (task ID) with LDA; and (2) using a subnetwork

that corresponds to the predicted defect to predict the segmentation mask. Note that at

the inference stage, defect type prediction and defect mask prediction need to be done

sequentially. Training for these steps can be done in parallel and independently from each

other. We call our proposed approach LDA-CP&S since it uses the CP&S paradigm of

creating subnetworks during training, and it employs LDA for the subnetwork selection.

Referring again to Figure 4.1, we recall that the three separate models (single-task grey

bars) are capable of learning the defects slightly better than joint training with all the tasks

together (orange bars). This hints that having task-specific parameters associated with

only one task can even help the learning process. At the same time, the shared parameters

provide a transfer learning effect between a new subnetwork and all the ones created

before. Both advantages can be exploited by LDA-CP&S.

Notwithstanding, our method could suffer a performance drop from two possible

sources: the pruning stage, and the LDA classification stage. The performance reduction

due to pruning may occur because some important parameters could be deleted when

creating additional space (free connections) for future tasks. In addition, misclassification

by LDA could result in signal routing through the wrong subnetwork and consequently

poor segmentation performance. In Section 4.4, we show that these two sources of error
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are negligible compared to the benefits of our approach. In the following subsections, we

describe the processes for subnetwork creation and LDA training.

4.3.1 Subnetwork creation
To create a subnetwork for the given task, we use NNrelief pruning algorithm [22] (Chap-

ter 2). The approach evaluates the strength of the signal that propagates through ev-

ery connection/kernel. This pruning technique shows better sparsity results than other

connection/kernel-based pruning techniques [29, 49, 54].

For the set of 𝑚𝑙−1-channelled input samples 𝐗𝑙−1 = {𝐱𝑙−11 ,… ,𝐱𝑙−1𝑁 }, where 𝐱(𝑙−1)𝑘 =
(𝑥 𝑙−1𝑘1 ,… , 𝑥 𝑙−1𝑘𝑚𝑙−1

) ∈ ℝ𝑚𝑙−1×ℎ1𝑙−1×ℎ
2
𝑙−1 with ℎ1𝑙−1 and ℎ2𝑙−1 being the height and width of feature

maps for convolutional layer 𝑙. For every kernel 𝐊𝑙
1𝑗 ,𝐊𝑙

2𝑗 ,… ,𝐊𝑙
𝑚𝑙𝑗 , 𝐊

𝑙
𝑖𝑗 = (𝑘𝑙𝑖𝑗𝑞𝑡) ∈ ℝ𝑟𝑙×𝑟𝑙 ,

𝑞 ≥ 1, 𝑟𝑙 ≥ 𝑡, where 𝑟𝑙 is a kernel size, and for every bias 𝑏(𝑙)𝑗 in filter 𝐅𝑙𝑗 , we define

�̂�𝑙
𝑖𝑗 = (

|||𝑘
𝑙
𝑖𝑗𝑞𝑡

|||) as a matrix consisting of the absolute values of the matrix 𝐊(𝑙)
𝑖𝑗 . Then we

compute importance scores 𝑠𝑙𝑖𝑗 , 𝑖 ∈ {1,2,… ,𝑚𝑙} of kernels 𝐊𝑙
𝑖𝑗 as follows:

𝑠𝑙𝑖𝑗 =
1
𝑁 ∑𝑁

𝑛=1
|||
|||�̂�

𝑙
𝑖𝑗 ∗

|||𝑥
𝑙−1
𝑛𝑖

|||
|||
|||𝐹

𝑆𝑙𝑗
,

where 𝑆𝑙𝑗 =∑𝑚𝑙−1
𝑖=1 (

1
𝑁 ∑𝑁

𝑛=1
|||
|||�̂�

𝑙
𝑖𝑗 ∗

|||𝑥
𝑙−1
𝑛𝑖

|||
|||
|||𝐹) is the total importance score in filter 𝐅𝑙𝑗 of layer

𝑙, with ∗ indicating a convolution operation, and where ||⋅||𝐹 is the Frobenius norm.

The sketch of the algorithm for pruning filter 𝐅𝑙𝑗 in a convolutional layer 𝑙 can be

described as follows (see Chapter 2, Section 2.3 for more details):

1. Choose 𝛼 ∈ (0,1) – the amount of kernels’ importance that we want to keep relative

to the total importance of the kernels in the filter 𝐅𝑙𝑗 .

2. Compute importance scores 𝑠𝑙𝑖𝑗 for all kernels in the filter 𝐅𝑙𝑗 , 𝑖 = 1,… ,𝑚𝑙−1, using Eq.

4.2.

3. Sort importance scores 𝑠𝑙𝑖𝑗 for the filter 𝐅𝑙𝑗 .

4. For the sorted importance scores 𝑠𝑙𝑖𝑗 find minimal 𝑝 ≤ 𝑚𝑙−1 such that ∑𝑝
𝑖=1 𝑠𝑙𝑖𝑗 ≥ 𝛼.

5. Prune kernels with the importance score 𝑠𝑙𝑖𝑗 < 𝑠𝑙𝑝𝑗 for all 𝑖 ≤ 𝑚𝑙−1 and fixed 𝑗 .

Overall, NNrelief finds kernels that propagate on average the lowest signal according to

the Frobenious norm and prune these kernels. As the outcome of the procedure, we obtain

a subnetwork (sub-U-Net) that predicts the defect for only one type of defects. Then we

fix all parameters that are assigned to this subnetwork and do not update them anymore.

When the network receives a new task with a new type of defect, CP&S finds a subnetwork

for this task within the main U-Net, using the parameters assigned to the previous tasks,

but without updating them. Algorithm 3 illustrates the pseudocode for CP&S and Figure

4.3 illustrates the method.
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Figure 4.3: An overview of Continual Prune-and-Select (CP&S): an example with two tasks on U-Net based

architecture.

4.3.2 Subnetwork selection
To predict the task ID (type of defect) at the inference stage, we propose to use linear

discriminant analysis (LDA). In this subsection, we describe the training procedure for

LDA. In LDA, it is assumed that all classes have class means 𝜇(1), 𝜇(2),… , 𝜇(𝑇 ) and share

the same covariance matrix 𝚺. However, in continual learning, we do not have access to

all tasks at the same time, but only task 𝑡. Therefore, the covariance matrix needs to be

updated online with respect to the new data batch.

Let us denote a new given task as 𝐗(𝑡) = {𝑥(𝑡)1 , 𝑥(𝑡)2 ,… , 𝑥(𝑡)𝑁𝑡
}. Following streaming LDA

(SLDA) strategy [151], we use a feature extractor  pretrained on ImageNet-1000 to obtain

low-dimensional data representation 𝐙(𝑡) ∶= {𝑧(𝑡)1 , 𝑧(𝑡)2 ,… , 𝑧(𝑡)𝑁𝑡
}, 𝑧(𝑡)𝑖 = (𝑥(𝑡)𝑖 ) ∈ ℝ𝑑

. Then we

can compute the class mean 𝜇(𝑡) ∈ ℝ𝑑
and update the shared covariance matrix 𝚺(1∶𝑡) ∈ ℝ𝑑×𝑑

after incremental step 𝑡 as follows [154]:

𝜇(𝑡) =
1
𝑁𝑡

𝑁𝑡

∑
𝑖=1

𝑧(𝑡)𝑖 (4.2)

𝚺(1∶𝑡) =
(𝑡 −1)𝚺(1∶𝑡−1)+𝚫(𝑡)

𝑡
, (4.3)

where 𝚫(𝑡) = (𝑡−1)(𝑍(𝑡)−𝜇(𝑡))(𝑍(𝑡)−𝜇(𝑡))T
𝑡 and (𝑍 (𝑡) −𝜇(𝑡)) ∶= (𝑧(𝑡)1 −𝜇(𝑡), 𝑧(𝑡)2 −𝜇(𝑡),… , 𝑧(𝑡)𝑁𝑡

−𝜇(𝑡)) ∈
ℝ𝑑×𝑁𝑡

. In SLDA, the regularized version of LDA is implemented by applying shrinkage

regularization to covariance matrix: 𝚲(1∶𝑡) = [(1− 𝜀)𝚺(1∶𝑡) + 𝜀𝐈]−1, where 𝐈 is an identity

matrix of the corresponding dimension.
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At the inference stage, after learning all class means 𝜇(𝑡), 𝑡 = 1,2,… , 𝑇 , and shared

covariance matrix 𝚺(1∶𝑇 )
(and 𝚲(1∶𝑡)

as a result), we can make a prediction for a new test

sample 𝑥 as follows:

𝑐 = argmax

𝑖=1,2,…,𝑇
(𝐖(𝑥)+𝐛)𝑖, (4.4)

where 𝐖 = 𝐌(1∶𝑇 )𝚲(1∶𝑇 )
, rows of 𝐌(1∶𝑇 )

are mean vectors 𝜇(𝑡) (𝑡 = 1,2,… , 𝑇 ), and 𝐛𝑖 =
− 1

2𝜇
(𝑖)𝚲(1∶𝑇 )𝜇(𝑖).
Unlike previous task prediction strategies [91, 104], with LDA we can predict the task

ID with a single test sample, rather than with a batch of samples, representing an important

advantage. This is possible because each task consists of defects of the same type and can

be described well by a normal distribution with class means 𝜇(𝑡) and common covariance

matrix 𝚺(1∶𝑇 )
.

4.4 Numerical experiments
We evaluate our LDA-CP&S approach on the SD-saliency-900 [139] and Magnetic tile

defects [131] datasets, comparing with the following scenarios:

• joint training: the model has access to all data at each incremental step. This case is

an upper bound for rehearsal-based methods.

• finetuning: the model is trained at each incremental step 𝑡 without preventing
forgetting, i.e., we finetune the model to a new task 𝑡 that is pretrained on previous

tasks 1,2,… , 𝑡−1, inevitably causing forgetting of previous tasks because the network
parameters (weights and biases) are updated for task 𝑡.

• regularization-based continual learning methods: LwF, MAS that penalize important

parameters from changing (see Section 4.2, Eq. 4.1), in an attempt to alleviate

forgetting.

We do not consider rehearsal-based approaches that replay a small portion of data

from previous tasks while learning a new one because our premise is that old data is

not available and should not be used. Furthermore, our comparative investigation of the

proposed LDA-CP&S method with others includes the joint training strategy, which is an

upper bound for rehearsal-based methods, where all data is available at each incremental

step. Therefore, if we show that LDA-CP&S performs similarly to joint training, there is

no need to consider rehearsal-based continual learning methods.

As performance metrics, we follow other segmentation works and use the mean Inter-

section over Union score. For ground truth 𝑌 and prediction 𝑌 , IoU score is computed as

follows:

IoU(𝑌 , 𝑌 ) =
|𝑌 ∩ 𝑌 |
|𝑌 ∪ 𝑌 |

. (4.5)

To train the model, we use IoU loss which leads to better performance in our experiments

than other losses, e.g., Tversky loss [155] and Focal loss [156]. However, it is worth noting
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that the difference in IoU scores between models trained with different loss functions is

not significant. The IoU loss is computed as follows:

IoUloss(𝑃,𝑌 ) = 1−
∑𝐻

𝑖=1∑
𝑊
𝑗=1 𝑃𝑖𝑗 ⋅ 𝑌𝑖𝑗 + 𝜀

∑𝐻
𝑖=1∑

𝑊
𝑗=1 𝑃𝑖𝑗 + 𝑌𝑖𝑗 −𝑃𝑖𝑗 ⋅ 𝑌𝑖𝑗 + 𝜀

, (4.6)

where 𝑃𝑖𝑗 ∈ [0,1] are the output probabilities, and 𝐻 and 𝑊 are the height and width of the

output image, 𝜀 is a smoothing parameter.

4.4.1 SD-saliency-900 dataset
In the case of the SD-saliency-900 dataset, we consider a smaller version of U-Net with 16,

32, 64 and 128 in the encoder block and 256 channels in the bottleneck because it consists of

only three types of defects – Scratches, Patches and Inclusion – with 300 images per defect.

The original size of the images is 200×200 but we resize the images to 224×224 to make

them acceptable for U-Net. We train the segmentation model for 70 epochs with 8 images in

a batch, using Adam [66] optimizer and learning rate 0.001. During the pruning stage, we

use 𝛼 = 0.9 and 3 pruning iterations. More details about the influence of hyperparameters

on the results are shown in Section 4.4.3. As it is common in continual learning literature

[19], we consider different task orderings in our experiments. We can construct six task

orderings for the current dataset (e.g., Patches → Scratches → Inclusion).

Table 4.1: Classification accuracy (%) for SD-saliency-900 dataset. The numbers are averaged over all six orderings.

Scratches Patches Inclusion Average

accuracy (%) 98.33 100 100 99.44

First, we have to make sure that LDA can accurately predict the defect type in an

incremental manner. Table 4.1 illustrates the classifier’s accuracy for each defect averaged

over all six orders. We can observe the high performance of LDA, misclassifying only a

few images from the Scratches dataset. Since 60 images were selected to test each defect

type, the prediction error presented corresponds to only 1 misclassified image.

In Figure 4.4, we show mIoU score after every incremental step for every task order.

Regularization-based methods only slightly outperform finetuning strategy, while our LDA-

CP&S shows comparable results to joint training. Poor performance of the regularization

methods can be explained by the lack of a task-specific output layer, which is present in

classification network architectures as a classification head. ThereforeMAS and LwF update

all parameters but change them slightly less than finetuning. On the contrary, LDA-CP&S

creates fixed task-specific subnetworks that can overlap and transfer knowledge between

each other. Since LDA predicts the defect type (i.e., subnetwork) well at the inference stage,

we almost do not have any losses in segmentation performance. We also do not observe

network saturation, i.e., the situation when the model does not have enough free space to

learn a new task, even though we use a smaller version of U-Net.
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Figure 4.4: IoU score after every incremental step for SD-saliency-900 dataset. The results are presented for all six

possible defect orderings.

4.4.2 Magnetic tile defects dataset
Magnetic tile defects dataset [131] contains five types of defects, namely Blowhole, Break,

Crack, Fray and Uneven, and images that are free from defects (Free). In this work, we

consider only images with defects, i.e., five classes. Since the number of defects is higher

in this case, we use a U-Net of the original size with 64, 128, 256, and 512 in the encoder

block and 1024 channels in the bottleneck. All images in the dataset have different image

sizes and, therefore, we resize them to 224 × 224. For every defect, we randomly select

80% images for training and the rest for testing. U-Net is trained for 150 epochs with 8

images in a batch, using Adam optimizer and learning rate 0.0001. Since the total number

of possible task orderings is quite large (5! = 120), we consider only five of them at random

and we do not have reason to believe that the final performance would be very different

when choosing other orderings:

• Blowhole → Break → Crack → Fray→ Uneven;

• Break→ Uneven → Fray → Crack → Blowhole;

• Crack→ Blowhole → Break → Uneven → Fray;

• Fray→ Crack→ Uneven → Blowhole→ Break;

• Uneven → Fray→ Blowhole→ Break→ Crack,

where each defect type appears exactly once for each ordering.
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One of the main difficulties with this dataset is class imbalance. Table 4.2 presents

LDA accuracy with the same feature extractor considered in the previous example: the

pretrained EfficientNet-B5 architecture. Overall, our classification model is able to identify

correctly four out of five types of defects, having some difficulties with the Fray sub-dataset

that contains the smallest number of images. The only mistake was done in the Fray

sub-dataset where we have only 7 test images, meaning that only one image is classified

wrongly.

Table 4.2: Classification accuracy (%) for Magnetic tile dataset and the total size of the dataset. The numbers for

accuracy are averaged over all five orderings.

Blowhole Break Crack Fray Uneven Average

# train (test) images 92 (23) 92 (22) 68 (17) 25 (7) 72 (21) N/A

test accuracy (%) 100 100 100 85.71 100 98.75

We would like to highlight the necessity of pretraining the network that extracts

features for LDA. The pretrained EfficientNet-B5 produces lower dimensional embeddings

that can be used for training and classification with an accuracy of 98.75%, misclassifying

only one test image. Meanwhile, if we were to consider a feature extractor with random

parameters it would compress the input images in such a way that the LDA classifier would

only achieve 16.24% of accuracy.

In Figure 4.5, we present the mIoU score after every incremental step, comparing our

LDA-CP&S with other continual learning methods. As we saw in the previous example,

regularization-based methods do not handle this type of segmentation problem well. The

tasks that we constructed from the Magnetic tile dataset can be quite dissimilar having

significant differences in defects areas. Therefore, by updating all the parameters without

having task-specific ones, regularization-based approaches are only slightly better than

simple finetuning where no anti-forgetting measures are considered. In contrast, our LDA-

CP&S creates task-specific parameters for each defect, fixing the values of the parameters

once they are assigned to a subnetwork (i.e., defect type or task ID). This allows LDA-

CP&S to deal with sequences of tasks as well as joint training, which is very encouraging

because joint training is a performance upper bound since all the data is available at each

incremental step.

We also investigated how the mIoU score changes for every task after each incremental

step. In Figure 4.6, we consider one of the task orderings: Fray → Crack → Uneven

→ Blowhole → Break. The figure clearly shows the advantage of our algorithm over

regularization-based ones because they are heavily dependent on the similarity of the

tasks in the order. For example, learning the Break sub-dataset (the last incremental

step) improves performance on Fray and Crack sub-datasets compared to the previous

incremental step for MAS, LwF and finetuning strategies. However, Uneven is totally

forgotten after the network is trained on the Blowhole sub-dataset.

On the contrary, LDA-CP&S does not forget previous tasks and is still able to learn new

ones even having fewer free parameters. It has comparable performance with a single-task

scenario, where a separate U-Net is trained for every task. Also, we observe that task-wise
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Figure 4.5: IoU score after every incremental step for Magnetic tile datasets. The results are shown for all five

selected defect orderings.

performance is almost the same as for joint training, meaning the subnetwork overlaps

provide enough knowledge transfer to learn a new task.

Figure 4.7 illustrates the model output in every learning scenario. We observe that

regularization-based methods and finetuning cannot capture the defects of the first tasks
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Figure 4.6: IoU score after every incremental step for one of the defects orderings from the Magnetic tile dataset.

in the sequence, while our LDA-CP&S finds defects’ segments close to the joint training.

4.4.3 Hyperparameters choice
The choice of hyperparameters for pruning has a significant impact on subnetwork sparsity

and, as a result, performance. In this subsection, we compare different options for the

pruning hyperparameter 𝛼 and the number of pruning iterations. A lower number of 𝛼
and a higher number of pruning iterations lead to higher sparsity (more free connections

to learn future tasks) but may cause lower segmentation performance. Also, the values for

hyperparameters depend on the length of task sequences. In our work, we pre-define these

hyperparameters at the beginning and do not change them during the training process.

Figure 4.8 illustrates how different pairs of hyperparameters affect the training process

for our approach. For both datasets, we clearly see that the network starts to saturate if

pruning is not aggressive enough (e.g., 𝛼 = 0.95 where most of the signal is conserved)

because the network does not have enough free parameters for new tasks. In the case of

the SD-saliency-900 dataset, we can also observe the trade-off between sparsity and mIoU

score: with 𝛼 = 0.9 it is clear that pruning the network twice leads to better performance

than doing it three times, as the subnetwork that results is less expressive (has fewer

parameters). The results on the Magnetic tile dataset show the trade-off between learning

the first tasks and the last ones: if we prune the network twice, 𝛼 = 0.9 leads to better

performance if there are no more than three tasks, while 𝛼 = 0.85 is better suitable for
longer task sequences.
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Figure 4.7: Visualization of defects prediction for the considered scenarios on Fray → Crack → Uneven →
Blowhole → Break task ordering.

1 2 3
Incremental step

0.73

0.74

0.75

0.76

0.77

0.78

m
Io

U

SD-saliency-900 dataset

=0.95, #iters = 1
=0.9, #iters = 1
=0.95, #iters = 2
=0.9, #iters = 2
=0.95, #iters = 3
=0.9, #iters = 3

1 2 3 4 5
Incremental step

0.65

0.70

0.75

0.80

0.85

m
Io

U

Magnetic tile dataset

=0.95, #iters = 1
=0.9, #iters = 1
=0.85, #iters = 1
=0.95, #iters = 2
=0.9, #iters = 2
=0.85, #iters = 2
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method on SD-saliency-900 dataset (left) and Magnetic tile dataset (right). The results after each incremental step

averaged over the number of considered task orderings.
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4.5 Conclusion
The LDA-CP&S method that we have proposed successfully learns to segment the defects

incrementally, without any forgetting, using only the data that is given at the current time

step. Meanwhile, other methods that do not use data from previous tasks fail to remember

all tasks, exhibiting considerable forgetting in segmenting previously seen defects. Overall,

the performance of LDA-CP&S is more than two times higher in terms of mean Intersection

over Union score for the two datasets considered herein when compared to other continual

learning methods.

This Chapter aims to illustrate the importance of a precise subnetwork selection strategy.

By training the LDA classifier and eliminating the issue of requiring multiple images for

subnetwork prediction, we have obtained a powerful continual learning model that shows

comparable performance as the scenario where all data is available at every incremental step.

Thus we want to point out the necessity of developing other task prediction approaches

for a more general class of problems.
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Part II: Application
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5
Incremental learning for
physics-informed neural

networks

In previous chapters, we have described a general approach to tackling catastrophic forgetting
issues in deep neural networks. The proposed solution is based on constructing task-related
subnetworks during training and subnetwork prediction, if necessary, to make a prediction.
In some cases, the information about the task being solved is provided, which means that
subnetwork selection is not required. In this chapter, we consider one of these examples.

This Chapter introduces an incremental learning procedure for physics-informed neural net-
works (PINNs), which have recently become a powerful tool for solving partial differential
equations (PDEs). Our goal is to show that by learning multiple PDEs incrementally with the
proposed in the first part paradigm, the algorithm can improve the generalization capability
of PINNs compared to conventional training. In addition, the algorithm does not exhibit
significant forgetting of old PDEs.

This chapter is based on Aleksandr Dekhovich, Marcel H.F. Sluiter, David M.J. Tax, and Miguel A. Bessa. iPINNs:

Incremental learning for physics-informed neural networks. arXiv preprint arXiv:2304.04854, 2023, and it has

been partly presented at Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.
Code repository: https://github.com/adekhovich/incremental_PINNs.
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5.1 Introduction
Deep neural networks (DNNs) play a central role in scientific machine learning (SciML).

Recent advances in neural networks find applications in real-life problems in physics [157–

160], medicine [161–163], finance [164–167], and engineering [168–171]. In particular, they

are also applied to solve Ordinary Differential Equations and Partial Differential Equations

(ODEs/PDEs) [23, 172–174]. Consider the following PDE,

[𝑢(𝐱, 𝑡)] = 𝑓 (𝐱), 𝐱 ∈ Ω, 𝑡 ∈ (𝑡0, 𝑇 ], (5.1)

[𝑢(𝐱, 𝑡)] = 𝑏(𝐱), 𝐱 ∈ 𝜕Ω, (5.2)

𝑢(𝐱, 𝑡0) = ℎ(𝐱), 𝐱 ∈ Ω, (5.3)

where  is a differential operator,  is a boundary condition operator, ℎ(𝐱) is an initial

condition, and Ω is a bounded domain.

The first neural network-based approaches incorporated a form of the equation into the

loss function with initial and boundary conditions included as hard constraints [175, 176].

However, these works used relatively small neural networks with one or two hidden layers.

On the contrary, PINNs [23] encode initial and boundary conditions as soft constraints into

the loss function of a DNN. Subsequently, PINNs and their extensions found applications

in fluid mechanics [177–179], inverse problems [180–182] and finance [23, 183]. Later, the

generalized version of PINNs, called XPINNs [184], was proposed by decomposing the

domain into multiple subdomains. However, this method uses as many networks as the

number of subdomains, increasing the algorithm’s complexity. Almost simultaneously

with our work, Multi-head PINNs (MH-PINNs) [185] have been proposed as a multi-task

and meta-learning approach for PINNs that is employed to learn stochastic processes,

synergistic learning of PDEs and uncertainty quantification. MH-PINNs have a shared part

of the network and task-specific output heads for prediction. Therefore, it uses additional

parameters for every head, increasing the model’s size with respect to the number of tasks,

without sharing knowledge between them. In addition, the parameters in MH-PINN are

shared between all tasks in the non-output layer, which is a limitation if the tasks are very

different as the authors noted [185]. Other meta-learning approaches were also employed

in the context of PINNs [186, 187]. However, meta-learning literature focuses on obtaining

good initialization for a new task given some tasks for pretraining. Unfortunately, once

the network is adapted to a new task, it loses the ability to solve the previous ones, i.e. it

undergoes catastrophic forgetting of other tasks. We take a different route inspired by the

incremental learning and continual (or lifelong) learning literature, as discussed below.

Despite the popularity of DNNs, and PINNs in particular, there are few incremental
learning algorithms available in SciML literature. Yet, incremental learning and continual

learning algorithms [97, 99, 188] are capable of handling tasks sequentially, instead of

altogether as in multi-task learning and other strategies. Moreover, they are still capable

of not forgetting how to solve all of the previously learned tasks. If tasks have some

similarities with each other, new tasks have the potential of being learned better (i.e., faster

or with lower testing error) with the help of previously learned ones. The goal of this work

is to propose an incremental learning algorithm for PINNs such that similar symbiotic

effects can be obtained.
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Background and main challenges PINNs formulate the PDE solution problem by

including initial and boundary conditions into the loss function of a neural network as

soft constraints. Let us denote the output of the network  with learnable parameters

𝜃 as �̂�(𝜃,𝐱, 𝑡) = (𝜃;𝐱, 𝑡). Then sampling the set of collocation points, i.e. a set of points

in the domain,  = {(𝑥 𝑖, 𝑡 𝑖) ∶ 𝑥 𝑖 ∈ int Ω, 𝑡 𝑖 ∈ (𝑡0, 𝑇 ], 𝑖 = 1,2,…𝑁 }, the set of initial points
 = {(𝑥𝑗 , 𝑡0) ∶ 𝑥𝑗 ∈ 𝜕Ω, 𝑗 = 1,2,… ,𝑁𝑢0 } and the set of boundary points = {(𝑥𝑘 , 𝑡𝑘) ∶ 𝑥𝑘 ∈
𝜕Ω, 𝑡𝑘 ∈ (𝑡0, 𝑇 ], 𝑘 = 1,2,… ,𝑁𝑏} one can write the optimization problem and loss function

arising from PINNs as follows:

(𝜃) =  (𝜃)+𝑢0(𝜃)+𝑏(𝜃)→min
𝜃
, (5.4)

 (𝜃) =
1
𝑁

𝑁

∑
𝑖=1

||||[�̂�(𝜃,𝑥 𝑖, 𝑡 𝑖)]− 𝑓 (𝑥 𝑖)||||
2, (𝑥 𝑖, 𝑡 𝑖) ∈  , (5.5)

𝑢0(𝜃) =
1
𝑁𝑢0

𝑁𝑢0

∑
𝑗=1

||||�̂�(𝜃,𝑥
𝑗 , 𝑡0)−ℎ(𝑥𝑗 )||||

2, (𝑥𝑗 , 𝑡0) ∈  , (5.6)

𝑏(𝜃) =
1
𝑁𝑏

𝑁𝑏

∑
𝑘=1

||||[�̂�(𝜃,𝑥
𝑘 , 𝑡𝑘)]− 𝑏(𝑥𝑘)||||

2, (𝑥𝑘 , 𝑡𝑘) ∈  . (5.7)

However, sometimes PINNs struggle to learn the ODE/PDE dynamics [189–192] (see

Figure 5.1). Wight & Zhao [193] proposed several techniques to improve the optimiza-

tion process compared to the original formulation: mini-batch optimization and adap-

tive sampling of collocation points. Adaptive sampling in time, splits the time interval

[𝑡0, 𝑇 ] = ∪𝐾𝑘=0[𝑡𝑘−1, 𝑡𝑘], 𝑡𝐾 = 𝑇 , and solves an equation on the first interval [𝑡0, 𝑡1], then on

[𝑡0, 𝑡2], and so on up to [𝑡0, 𝑇 ]. Thus, if a solution can be found on a domain Ω× [𝑡0, 𝑡𝑘−1],
then the network is pretrained well for the extended domain Ω×[𝑡0, 𝑡𝑘]. Krishnapriyan et

al. [190] proposed the seq2seq approach that splits the domain into smaller subdomains in

time and learns the solution on each of the subdomains with a separate network. Thus,

both adaptive sampling in time and seq2seq are based on the idea of splitting the domain

into multiple subdomains, on which solutions can be learned more easily.

As explained in [191], improving PINN’s solutions by considering small subdomains is

possible because the loss residuals ( term) can be trivially minimized in the vicinity of

fixed points, despite corresponding to nonphysical system dynamics that do not satisfy the

initial conditions. Therefore, the reduction of the domain improves the convergence of the

optimization problem (5.4) and helps to escape nonphysical solutions.

We propose incremental PINNs (iPINNs) and implement this strategy by creating one

subnetwork per task such that a complete neural network can learn multiple tasks. Each

subnetwork 𝑖 has its own set of parameters 𝜃𝑖 ⊂ 𝜃, and the model is trained sequentially

on different tasks. A subnetwork for a new task can overlap with all previous subnetworks,

which helps to assimilate the new task. As a result, the network consists of overlapping

subnetworks, while the free parameters can be used for future tasks. To illustrate the

benefits of the algorithm we consider two problem formulations (Section 5.3). Firstly, we

learn a family of equations (e.g., convection) starting from a simple one and incrementally

learning new equations from that family. Secondly, we learn a dynamical system that
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(a) Exact solution.
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(b) PINNs solution.

Figure 5.1: 1-D reaction equation with parameter 𝜌 = 5 (see P1.2).

consists of two processes (e.g., reaction-diffusion) by first learning the individual compo-

nents of the process. Both scenarios demonstrate that the incremental approach enables an

iPINN network to learn for cases where regular PINNs fail. To the best of our knowledge,

this is the first example where one network can sequentially learn multiple equations

without extending its architecture, with the added benefit that performance is significantly

improved.

5.2 Related work
Our methodology is based on creating task-specific subnetworks that transfer knowledge

between each other. Also, similarly to other PINN research, the algorithm is sensitive to

the choice of activation functions. We briefly highlight key related work on these topics

herein.

Transfer learning Transfer learning is commonly used in computer vision and natural

language processing [194–197]. It tries to improve the optimization process by starting

with better weight initialization. In PINNs, transfer learning is also successfully used to

accelerate the loss convergence [198–201]. For instance, Chen et al. [202] apply transfer

learning to learn faster different PDEs creating tasks by changing coefficients or source

terms in equations. Analogously, curriculum regularization (similar to curriculum learning

[203]) is proposed in [190] to find good initial weights.

Choice of the activation function There are several studies that investigate how

different activation functions affect the performance of neural networks in classification

and regression tasks [204, 205]. It was shown that ReLU [206] activation function which

can be powerful in classification tasks, in the case of physics-informed machine learning

(PIML) regression, may not be the optimal choice. Meanwhile, hyperbolic tangent (tanh)
or sine (sin) perform well for PIML. Sinusoidal representation networks (SIRENs) [207]

tackle the problem of modeling the signal with fine details. Special weights initialization

scheme combined with sin activation function allows SIREN to learn complex natural

signals. Hence, we use sin activation function in our experiments. In Section 4.4.3, we

provide the comparison in results between the discussed activation functions.
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5.3 Problem formulation
We focus on two scenarios: (1) incremental PINNs learning, where the network sequentially

learns several equations from the same family; and (2) learning a combination of multiple

equations that create another physical process. To illustrate these cases, we consider one-

dimensional convection, reaction and reaction-diffusion problems with periodic boundary

conditions.

Scenario 1: Eqation incremental learning
We consider the problem of learning the sequence of equations that belong to one family:

𝑘[𝑢(𝑥, 𝑡)] = 0, 𝑥 ∈ Ω, 𝑡 ∈ [𝑡0, 𝑇 ], 𝑘 = 1,2,… , (P1)

where 𝑘 , 𝑘 = 1,2,… are differential operators from the same family of equations.

1-D convection equation

𝜕𝑢
𝜕𝑡

+𝛽𝑘
𝜕𝑢
𝜕𝑥

= 0, (P1.1)

𝑢(𝑥,0) = ℎ1(𝑥),
𝑢(0, 𝑡) = 𝑢(2𝜋, 𝑡),

where 𝑡 ∈ (0,1], 𝑥 ∈ [0,2𝜋], 𝛽𝑘 ∈  ⊂ ℝ.

1-D reaction equation

𝜕𝑢
𝜕𝑡

−𝜌𝑘𝑢(1−𝑢) = 0, (P1.2)

𝑢(𝑥,0) = ℎ2(𝑥),
𝑢(0, 𝑡) = 𝑢(2𝜋, 𝑡),

where 𝑡 ∈ (0,1], 𝑥 ∈ [0,2𝜋], 𝜌𝑘 ∈ ⊂ ℝ.

In this case, every task 𝑘 is associated with𝑘 = {(𝑥, 𝑡, 𝑘) ∶ 𝑥 ∈ [0,2𝜋], 𝑡 ∈ [𝑡0, 𝑇 ], 𝑘 ∈ℕ}.

Following [190], we take ℎ1(𝑥) = sin𝑥 and ℎ2(𝑥) = 𝑒−
(𝑥−𝜋)2
2(𝜋/4)2

.

Scenario 2: Combination of multiple eqations
We also consider the case when a dynamic process consists of multiple components. Let us

consider the reaction-diffusion equation:

𝜕𝑢
𝜕𝑡

− 𝜈
𝜕2𝑢
𝜕𝑥2

−𝜌𝑢(1−𝑢) = 0, (P2)

𝑢(𝑥,0) = ℎ2(𝑥),
𝑢(0, 𝑡) = 𝑢(2𝜋, 𝑡),

where 𝑡 ∈ [0,1], 𝑥 ∈ [0,2𝜋], 𝜈,𝜌 > 0. This process consists of two parts: reaction term

(𝜈 = 0): −𝜌𝑢(1−𝑢) and diffusion term (𝜌 = 0): −𝜈 𝜕2𝑢
𝜕𝑥2 . Therefore, we construct one task as

the reaction, another one as the diffusion, and the final one as the reaction-diffusion. We

can change the order of the reaction tasks and diffusion tasks to show the robustness of

incremental learning. The reaction-diffusion task should be the last one since our goal is

first to learn the components of the system and only then the full system.

Considering these two problems, we want to show that better generalization can be

achieved by pretraining the network with simpler related problems rather than by dividing

the domain into smaller subdomains. In the following section, we show how one network

can incrementally learn different equations without catastrophic forgetting.
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5.4 Proposed method
The proposed method needs to be applicable to both types of problems P1 and P2. However,

these problems cannot be solved by one network with the same output head for every

different task, since 𝑖[𝑢(𝑥, 𝑡)] ≠ 𝑗 [𝑢(𝑥, 𝑡)] for 𝑖 ≠ 𝑗 and 𝑥 ∈ Ω, 𝑡 ∈ [𝑡0, 𝑇 ]. Instead, the

incremental learning algorithm we propose (iPINNs) focuses on learning task-specific

subnetworks 1,2, ...,𝑘 , ... for each task 𝑘.
We start by creating the above-mentioned subnetworks using an iterative pruning algo-

rithm that we have developed in Chapter 2. Other pruning strategies could be considered,

without loss of generality – see Remark 5.1.

Remark 5.1 In principle, any connections pruning algorithm or any other approach that is
able to find and train sparse network representations is suitable for the iPINNs strategy we
propose herein. However, most pruning algorithms aim at reducing memory requirements or
reducing inference time, instead of aiming at subnetwork creation with the smallest number of
neuron connections. NNrelief was developed with this in mind, so it creates sparser subnetworks
for a given performance level when compared to state-of-the-art methods, as we showed in
Chapter 2 for multiple datasets. This makes it particularly interesting for iPINNs, as the
subnetworks we generate are smaller and leave additional free connections for subsequent
incremental training.

An important concept in the proposed iPINN strategy is that the pruning method is

used to train task-specific subnetworks, but allowing the subnetworks to naturally overlap

on some connections (see Figure 5.2). This way the method provides knowledge sharing

between the subnetworks. These overlaps are updated with respect to all tasks that are

assigned to a particular connection. Let us denote the loss of each task𝑗 as𝑗 =(𝜃𝑗 ;𝑗 ),
where 𝜃𝑗 is the parameter vector for task 𝑗 , 1 ≤ 𝑗 ≤ 𝑘. Then the total loss and its gradient

with respect to a parameter 𝑤 can be written as:

 =
𝑘
∑
𝑗=1

𝑗 , (5.8)

𝜕
𝜕𝑤

=
𝑘
∑
𝑗=1

𝜕𝑗

𝜕𝑤
= ∑

𝑗∶ 𝑤∈𝑗

𝜕𝑗

𝜕𝑤
, (5.9)

because if 𝑤 ∉𝑗 , then
𝜕𝑗
𝜕𝑤 = 0.

Algorithm 5 includes the pseudocode for iPINNs. For every new task 𝑘 that enters the
network, we first find a corresponding subnetwork𝑘 with NNrelief (line 4 of Algorithm 5),

then adapt the overlaps between previous subnetworks1,2,… ,𝑘−1 and a new one𝑘
(line 5 of the Algorithm 5). We can prune a (sub)network multiple times (hyperparameter

𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑠) to achieve a lower sparsity level, however, this is computationally expensive.

Therefore we prune every network only once and control the sparsity level with parameter

𝛼.
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Figure 5.2: An example of iPINNs with two PDEs: every subnetwork corresponds to only one task (PDE).

Algorithm 5 PINN incremental learning: adding new task 𝑘
Input: neural network , training datasets 1,2,… ,𝑘−1 and 𝑘 , training hyper-

parameters, pruning hyperparameters (𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑠, 𝛼).
1: 𝑘 ← ⊳ set full network as a subnetwork

2: Train 1,2,… ,𝑘 on tasks 1,2,… ,𝑘 using Eq. 5.9. ⊳ training step

3: for 𝑖𝑡 = 1,2,… , 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑠 do ⊳ repeat pruning

4: 𝑘 ← NNrelief(𝑘 ,𝑘 ,𝛼) ⊳ pruning step: Algorithm 1

5: Retrain subnetworks 1,2,… ,𝑘 on tasks 1,2,… ,𝑘 using Eq. 5.9. ⊳
retraining step

6: end for

Remark 5.2 The pruning strategy allows us to have more flexible variation in parameter
sharing because we can keep task-specific parameters within a subnewtork that are not shared
with other subnetworks, but we can also keep parameters that are shared among different
subnetworks. Task-specific parameters are shown by the red and blue connections in Figure 5.2,
and they result from pruning the entire network and training free connections (in black) that
are unused. The magenta connections in Figure 5.2 highlight cases where their parameters are
being shared across different tasks, and they result from the pruning algorithm not removing
those connections when training for a new task.

The main advantage of the proposed approach is that a neural network learns all tasks
(equations) that were given during training and not only the last one. This is achieved

by constantly replaying old data. Data for previous tasks is easily available by sampling

collocation points, which eliminates all issues of data replaying for continual learning

problems in computer vision and natural language processing tasks andmakes the algorithm

well-suited in the context of PINNs. Wewant to emphasize that iPINN does not need to know

how many tasks will be handled overall, and it accesses only those that were considered up

to task 𝑘 inclusive, which distinguishes it from multi-task learning. In the next section, we

experimentally show that pretrained parts of the network help to improve the convergence

process.
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5.5 Numerical experiments
Our findings illustrate the advantage of Algorithm 5 over regular PINNs [23]. The Algorithm

allows the network to learn multiple equations (P1) from the same family. Furthermore, by

starting with simpler tasks, the network can subsequently learn more complex ones that

cannot be learned in isolation.

Experiments setup Let us start by examining the proposed algorithms on the convection

and reaction equations with periodic boundary conditions (P1). Following the setup in

[190], we use a four-layer neural network with 50 neurons per layer. We use 1000 randomly

selected collocation points on every time interval between 0 and 1 for  . Adam is used as

the optimizer [66] with a learning rate of 0.01 and 20000 epochs to train the model. We

divide the learning rate by 3 every 500 epochs in which the loss does not decrease. We

repeat our experiments multiple times with different random initializations of the network

parameters and show the average values of error.

To evaluate the performance of the algorithms we compare the final error after the last

task. In addition, following continual learning literature [110], we compare backward and

forward transfer metrics. Let us denote the test set as 𝑡𝑒𝑠𝑡 = {(𝑥 𝑖, 𝑡 𝑖, 𝑙) ∶ 𝑥 𝑖 ∈ [0,2𝜋], 𝑡 𝑖 ∈
[0,1], 𝑙 is the task-ID} and 𝑁 = #𝑡𝑒𝑠𝑡

, the solution of the equation at the point (𝑥 𝑖, 𝑡 𝑖, 𝑙)
as 𝐮𝑖𝑙,𝑘 = 𝑢𝑖𝑙,𝑘(𝑥

𝑖, 𝑡 𝑖), and �̂�𝑖𝑙,𝑘 is a prediction of the model at point (𝑥 𝑖, 𝑡 𝑖, 𝑙) after task 𝑘 is

learned. Relative and absolute errors are denoted as 𝑟𝑙,𝑘 and 𝜀𝑙,𝑘 , respectively, as they are

calculated for task 𝑙 after task 𝑘 is learned (𝑙 ≤ 𝑘).

Relative error: 𝑟𝑙,𝑘 =
||𝐮𝑙 − �̂�𝑙,𝑘 ||2

||𝐮𝑙 ||2
×100%, (5.10)

Absolute error: 𝜀𝑙,𝑘 =
1
𝑁

𝑁
∑
𝑖=1

|𝐮𝑖𝑙 − �̂�𝑖𝑙,𝑘 |, (5.11)

Backward Transfer: BWT =
1

𝑘−1

𝑘−1
∑
𝑙=1

𝜀𝑙,𝑘 − 𝜀𝑙,𝑙 or (5.12)

BWT =
1

𝑘−1

𝑘−1
∑
𝑙=1

𝑟𝑙,𝑘 − 𝑟𝑙,𝑙 (5.13)

5.5.1 Results
Table 5.1 presents the results after all reaction equations are learned varying 𝜌 from 1 to

5. Figure 5.3(a) shows the error history for every equation after incremental steps. The

Table summarizes the performance improvement of iPINNs compared to regular PINNs,

exhibiting negligible error for all values of 𝜌, which is especially relevant for cases when 𝜌
is larger. Moreover, iPINNs provide negative BWT which means that previous subnetworks

help to learn the following ones.

Similarly, we observe for the convection equation the same learning behaviour. By

learning incrementally the sequence of convection equations, we achieve much lower

absolute and relative errors for the equations that are more difficult to learn (𝛽 = 30,40).
In Table 5.2 we show final errors at the end of the training, and Figure 5.3(b) shows the
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1 2 3 4 5
Tasks Learned

1
2

3
4

5

0.172 0.033 0.058 0.038 0.039

0.095 0.128 0.066 0.070

0.410 0.238 0.210

0.545 0.458

0.763

1-D reaction equation

0.0 0.2 0.4 0.6
Relative error (%)

1 2 3 4 5
Tasks Learned

1
1
0

2
0

3
0

4
0

0.030 0.062 0.055 0.082 0.074

0.076 0.087 0.083 0.087

0.244 0.116 0.288

0.233 0.246

1.139

1-D convection equation

0.0 0.2 0.4 0.6 0.8 1.0
Relative error (%)

Figure 5.3: Relative error history for reaction equations (a) and convection equations (b). Every row shows the

error after a new task is learned.

Table 5.1: Final error and forgetting after all reaction equations are learned.

regular PINN iPINN

𝜌 = 1 abs. err 1.09×10−3 𝟏.𝟓×𝟏𝟎−𝟒
rel. err 0.263% 𝟎.𝟎𝟑𝟗%

𝜌 = 2 abs. err 1.97×10−3 𝟐.𝟓×𝟏𝟎−𝟒
rel. err 0.479% 𝟎.𝟎𝟕𝟎%

𝜌 = 3 abs. err 6.72×10−3 𝟔.𝟏×𝟏𝟎−𝟒
rel. err 2.05% 𝟎.𝟐𝟏𝟎%

𝜌 = 4 abs. err 1.13×10−2 𝟏.𝟏𝟖×𝟏𝟎−𝟑
rel. err 3.68% 𝟎.𝟒𝟓𝟖%

𝜌 = 5 abs. err 5.04×10−2 𝟏.𝟗𝟏×𝟏𝟎−𝟑
rel. err 12.19% 𝟎.𝟕𝟔𝟑%

BWT

abs. err N/A -3.8×10−4
rel. err N/A -0.112%

absolute error history for each equation. In this case, we observe some level of forgetting,

however, it is insignificant compared to the error values.

In Figures C.1 and C.2, we illustrate the error of iPINNs on convection and reaction

equations and the exact solutions for every value of parameter 𝛽 or 𝜌 that were considered.

Overall, we see that the neural network learns more complicated tasks more accurately if

parts of the network are pretrained with easier tasks. At the same time, iPINNs replay the

training data for previous PDEs during training for the new one. There are no additional

costs to store or generate input points (𝑥, 𝑡) for previous tasks since they can be easily
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Table 5.2: Final error and forgetting after all convection equations are learned.

regular PINN iPINN

𝛽 = 1 abs. err 𝟐.𝟑×𝟏𝟎−𝟒 4.2×10−4
rel. err 𝟎.𝟎𝟒𝟐% 0.074%

𝛽 = 10 abs. err 1.3×10−3 𝟓.𝟎×𝟏𝟎−𝟒
rel. err 0.222% 𝟎.𝟎𝟖𝟕%

𝛽 = 20 abs. err 1.9×10−3 𝟏.𝟔𝟔×𝟏𝟎−𝟑
rel. err 0.339% 𝟎.𝟐𝟖𝟖%

𝛽 = 30 abs. err 2.2×10−1 𝟏.𝟒𝟒×𝟏𝟎−𝟑
rel. err 3.957% 𝟎.𝟐𝟒𝟔%

𝛽 = 40 abs. err 2.3×10−1 𝟔.𝟎𝟐×𝟏𝟎−𝟑
rel. err 37.4% 𝟏.𝟏𝟑𝟗%

BWT

abs. err N/A 1.8×10−4
rel. err N/A 0.0280%

sampled when necessary.

Remark 5.3 The proposed iPINNs may require more training epochs than standard PINNs
for one PDE because of the subnetwork creation strategy. However, the algorithm pursues a
different goal: provide the ability to learn the solutions sequentially sharing previously learned
knowledge.

We also illustrate the effectiveness of the iPINN method by addressing problem P2. We

consider the values of 𝜌 and 𝜈 for which a PINN does not have difficulties when learning

each component of the reaction-diffusion separately. Results obtained when first learning

the reaction part (or vice-versa, the diffusion part) are shown in Table 5.3 (Table 5.4). The

main finding is that the network can learn every equation at least as well as when it is

learned independently. In fact, for the reaction equation, the neural network improves

significantly the prediction error. Another interesting observation is that the model learns

the reaction-diffusion equation with almost the same error, regardless of the order of the

tasks. This gives us a hint about the robustness of the algorithm to different task orders

in terms of prediction error. In Section 5.6.2, we analyze the percentages of parameters

assigned to every subnetwork to illustrate the same conclusion in terms of the number of

allocated parameters.
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Table 5.3: Final error and forgetting for reaction→ diffusion → reaction-diffusion.

parameters equation regular PINN iPINN

𝜌 = 3, 𝜈 = 5

reaction

abs. err 6.72×10−3 𝟗.𝟒𝟏×𝟏𝟎−𝟒
rel. err 2.05% 𝟎.𝟑𝟏%

diffusion

abs. err 𝟏.𝟑𝟖×𝟏𝟎−𝟒 1.85×10−4
rel. err 𝟎.𝟎𝟓% 0.06%

reaction-diffusion

abs. err 4.89×10−3 𝟒.𝟏𝟎×𝟏𝟎−𝟑
rel. err 0.80% 𝟎.𝟔𝟖%

𝜌 = 4, 𝜈 = 4

reaction

abs. err 1.13×10−2 𝟕.𝟖𝟖×𝟏𝟎−𝟑
rel. err 3.68% 𝟐.𝟗𝟗%

diffusion

abs. err 𝟒.𝟑𝟓×𝟏𝟎−𝟒 5.84×10−4
rel. err 𝟎.𝟏𝟔% 0.19%

reaction-diffusion

abs. err 4.58×10−3 𝟒.𝟒𝟐×𝟏𝟎−𝟑
rel. err 0.70% 𝟎.𝟔𝟕%

𝜌 = 4, 𝜈 = 5

reaction

abs. err 5.04×10−2 𝟒.𝟐𝟎×𝟏𝟎−𝟑
rel. err 12.19% 𝟏.𝟕𝟏%

diffusion

abs. err 5.18×10−4 𝟐.𝟑𝟎×𝟏𝟎−𝟒
rel. err 0.18% 𝟎.𝟎𝟖%

reaction-diffusion

abs. err 4.61×10−3 𝟒.𝟓𝟖×𝟏𝟎−𝟑
rel. err 0.69% 𝟎.𝟔𝟖%

Table 5.4: Final error and forgetting for diffusion→ reaction → reaction-diffusion.

parameters equation regular PINN iPINN

𝜌 = 3, 𝜈 = 5

diffusion

abs. err 𝟏.𝟑𝟖×𝟏𝟎−𝟒 8.64×10−4
rel. err 𝟎.𝟎𝟓% 0.28%

reaction

abs. err 6.72×10−3 𝟐.𝟏𝟏×𝟏𝟎−𝟑
rel. err 2.05% 𝟎.𝟔𝟖%

reaction-diffusion

abs. err 4.89×10−3 𝟒.𝟎𝟕×𝟏𝟎−𝟑
rel. err 0.80% 𝟎.𝟔𝟕%

𝜌 = 4, 𝜈 = 4

diffusion

abs. err 4.35×10−4 𝟑.𝟒𝟓×𝟏𝟎−𝟒
rel. err 0.16% 𝟎.𝟏𝟐%

reaction

abs. err 1.13×10−2 𝟒.𝟗𝟏×𝟏𝟎−𝟑
rel. err 3.68% 𝟏.𝟗𝟕%

reaction-diffusion

abs. err 4.58×10−3 𝟒.𝟒𝟐×𝟏𝟎−𝟑
rel. err 0.70% 𝟎.𝟔𝟕%

𝜌 = 4, 𝜈 = 5

diffusion

abs. err 𝟓.𝟏𝟖×𝟏𝟎−𝟒 1.05×10−3
rel. err 𝟎.𝟏𝟖% 0.33%

reaction

abs. err 5.04×10−2 𝟗.𝟏𝟓×𝟏𝟎−𝟑
rel. err 12.19% 𝟑.𝟑𝟗%

reaction-diffusion

abs. err 4.61×10−3 𝟒.𝟑𝟎×𝟏𝟎−𝟑
rel. err 0.69% 𝟎.𝟔𝟓%
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5.6 Additional study
In this section, we provide additional information about the learning procedure of iPINNs.

We highlight some important training details such as the presence of regularization and

the choice of activation functions. Also, we explore the subnetworks that our approach

produces showing the proportion of parameters allocated to each task.

5.6.1 Sensitivity to hyperparameters
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Figure 5.4: Influence of weight decay on the results for reaction (left) and convection (right) equations after all

tasks are learned.

Here we illustrate the influence of different training hyperparameters on the perfor-

mance of iPINNs. First, we compare the results with and without regularization parameter

(weight decay). In Figure 5.4, it can be observed that the presence of weight decay worsens

the prediction error. However, looking at the result it is clear that iPINNs still work if

weight decay is present. We can explain the lack of need for weight decay with the fact

that many parameters are assigned to multiple tasks and cannot overfit to a particular one.

Each subnetwork is also less parameterized than the original network and therefore does

not tend to overfit. Thus, weight decay is not necessary and its presence only worsens the

result due to the complication of the optimization procedure.

Furthermore, we compare the performance when using sin and tanh activation

functions for two task orderings in Figure 5.5. We observe that sin works significantly

better in both cases. Also, we test ReLU activation but it exhibits poor performance in

both PDE orderings, as expected. If the reaction is learned first, the absolute errors are

0.4959,0.2369 and 0.1493. If we start with the diffusion equation and then learn reaction

and reaction-diffusion PDEs, the errors are 0.2399,0.2977 and 0.3003.
In addition, we present how different values of pruning parameter 𝛼 affect the results.

The higher the value of 𝛼 is, the less the network is pruned. Therefore, if 𝛼 = 0.95 the

task-specific subnetworks are sparser than with 𝛼 = 0.99 but less sparse if 𝛼 = 0.9. In
Figure 5.6, we observe that for the reaction equation, we can prune less and achieve better

performance which can be explained by the fact that PDEs in the reaction family are quite

similar. Therefore, we can allow the network to have more overlaps to share knowledge

between subnetworks. For the case of learning within the same family of convection PDEs,

the value of 𝛼 = 0.95 was revealed to be a better option for constructing a sufficiently
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Figure 5.5: Influence of activation function on the results when the reaction learned first (left) and diffusion

learned first (right).
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Figure 5.6: iPINNs with different values of pruning parameter 𝛼.

expressive task-specific subnetwork and frees space for future tasks. Notwithstanding, the

performance is good with any reasonable choice of pruning parameter.

5.6.2 Subnetworks analysis
In Figure 5.7, we present the portions of the subnetworks that are occupied by each task.

We will illustrate this by considering both orders – when the model learns the reaction

equation first (Figure 5.7a), and when diffusion comes first (Figure 5.7b). These results

are averaged over 3 different runs for each of the orderings. It is noteworthy that the

percentage of parameters occupied by all tasks is very similar for both orderings (31.8% and

31.5% respectively of all network parameters). On the other hand, the percentages of used

parameters for both cases are 79.5% and 79.3%. This means that the total number of trained

parameters for the two incremental procedures is the same for both cases, which shows

the robustness of the method. Moreover, the network has about 20% of free connections to

learn new tasks.
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Figure 5.7: Percentage of parameters used for every equation with 𝜌 = 4, 𝜈 = 4.

5.7 Conclusion
This chapter proposes an incremental learning approach for physics-informed neural

networks where every task is presented as a new PDE. The algorithm is based on task-

related subnetworks for every task obtained by iterative pruning. The parameters in these

subnetworks are updated with respect to the assigned task. To illustrate our idea, we

consider two cases when incremental learning applies to a sequence of PDEs. In the first

case, we consider the family of convection/reaction PDEs, learning them sequentially.

In the second example, we consider the reaction-diffusion equation and learn firstly the

components of the process, namely reaction and diffusion, and only then the reaction-

diffusion equation.

The purpose of this chapter is twofold. First, we show the possibility of incremental

learning for PINNs without significantly forgetting previous tasks. From our numerical

experiments, the proposed algorithm can learn all the given tasks, which is not possible

with standard PINNs. Second, we also illustrate that future tasks are learned better because

they can share connections trained from previous tasks, leading to significantly better

performance than if these tasks were learned independently. We demonstrate that this

stems from the transfer of knowledge occurring between subnetworks that are associated

with each task. Interestingly, the model’s performance on previous tasks is also improved

by learning the following tasks. In essence, iPINNs demonstrate symbiotic training effects

between past and future tasks by learning them with a single network composed of

dedicated subnetworks for each task that share relevant neuronal connections.
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6
Coopertative modeling via

continual learning of
different material behavior

The previous chapter illustrated the benefits of the parameters sharing between subnetworks.
We have shown better error generalization in the case of physic-informed neural networks by
creating PDE-related subnetworks.

In this chapter, we present another example where training a model sequentially with task-
specific subnetworks may facilitate the learning process. We show that the chosen continual
learning strategy can sequentially learn several constitutive laws without forgetting them,
using less data to achieve the same error as standard (non-cooperative) training of one law per
model. This research direction is also motivated by FAIR research principles to make the field
more transparent and open.

This chapter is based on  Aleksandr Dekhovich, O. Taylan Turan, Jiaxiang Yi, and Miguel A. Bessa. Cooperative

data-driven modeling. Computer Methods in Applied Mechanics and Engineering, 417:116432, 2023. https:
//doi.org/10.1016/j.cma.2023.116432, and it has been partly presented atWorkshop on Machine
Learning for Materials, ICLR 2023.
Code repository: https://github.com/bessagroup/CDDM.
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6.1 Introduction
Machine learning permeated almost every scientific discipline [208–210], and Solid Me-

chanics is no exception [211–213]. With all their merits and flaws [214], these algorithms

provide a means to understand large datasets, finding patterns and modeling behavior

where analytical solutions are challenging to obtain or not accurate enough. This work

introduces the concept of cooperative data-driven modeling by highlighting the importance

of continual or lifelong learning and exemplifying it in Solid Mechanics. Without loss

of generality, the examples provided in this article pertain to using neural networks to

create constitutive models from synthetic data [211], but the proposed strategy is based on

a general method introduced by the authors in the Computer Science community [148],

so it is applicable to many other fields that can also benefit from cooperative data-driven

modeling.

For readers unfamiliar with the field of using machine learning to learn constitutive

models of materials, we provide a short review of the topic. Using neural networks to

describe constitutive material behavior was first proposed decades ago by Ghaboussi et

al. [215] using simple experimental data. However, advances in numerical modeling

and the ability to create large synthetic datasets have led to a new era of data-driven

modeling initiated in [211] that is based on fast analysis of representative volume elements

of materials. Since then, there has been rapid progress in the field, first by considering

similar architectures [216–219], then by considering deep learning strategies to characterize

more complex behavior [220–225], and recently including physical constraints [226, 227].

In particular, the first work to propose the use of recurrent neural networks for plasticity

modeling [220] showed that these architectures could learn the path- and time-dependency

behavior of materials. Soon after, several research groups proposed new neural network

architectures and solved increasingly complex plasticity problems [223, 228–230]. A similar

trend is ongoing in other fields within and outside Mechanics [231–234].

Simultaneously, the scientific community is experiencing strong incentives to adhere

to open science, with vehement support from funding agencies throughout the World to

share data and models according to FAIR principles (Findable, Accessible, Interoperable and

Reusable) [235–237]. There is also a clear need for end users to reuse these models and data.

Nevertheless, there is a serious issue that obstructs the synergistic use of machine learning

models by the community. Artificial neural networks, unlike biological neural networks,

suffer from catastrophic forgetting [6, 10, 11]. Human beings when learning a new task,

e.g. playing tennis, do not forget how to perform past tasks, e.g. swimming. Unfortunately,

artificial neural networks fail at this because they are based on updating their parameters

(weights and biases) for the task and data being considered, but this changes the previous

configuration obtained for a past task (that led to different values of weights and biases).

This catastrophic forgetting has important implications in practice, as illustrated by the

following scenario.

Imagine that Team A of scientists collects computational or experimental data about the

constitutive behavior of Material A, and then trains an artificial neural network to predict

the behavior of that material. In the end, Team A publishes the artificial neural network

model and corresponding data according to FAIR principles. Later, if Team B aims to create

a model that predicts the behavior of Material B then it faces two options: 1) collect data

and train a model from scratch for this new material; or 2) use the model developed by
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Team A in an attempt to get a better model for Material B and use less data during the

training process. If the material behavior for B has some commonality with the one for A,

there is an advantage in leveraging the work from Team A. However, the state of the art in

the literature is to use transfer learning or meta-learning methods [195, 238–240] to adapt

Model A and retrain it for Team B’s scenario [241, 242]. Unfortunately, in this case, the

new model obtained by Team B is no longer valid for Team A’s scenario. Although Team

B may create a model that is valid for its purposes, this would not be a truly cooperative

effort with Team A because a general model valid for both scenarios would not be obtained.

This represents a significant challenge to cooperative data-driven modeling because it

discourages different groups from working towards a common model, ultimately leading

to many independent models. Note that the problem gets worse as more tasks accumulate

(more materials and more teams).

We believe that continual learning addresses this limitation and will unlock a new

era of cooperative data-driven modeling traversing all fields of application. The CP&S

method proposed in Chapter 3 is applied to various standard computer science datasets to

demonstrate the best performance to date in the challenging class-incremental learning

scenario when compared with state-of-the-art methods. Further developments are needed,

but this algorithm represents an essential step towards democratizing cooperative data-

driven modeling. Here, the continual learning method is applied to a new architecture

suitable for plasticity modeling, demonstrating its benefit and motivating future research

in this nascent field.

6.2 Related work
Here the focus is to be the first to apply continual learning strategies to mechanics problems,

in particular for plasticity modeling. These cases are expected to involve known task-IDs,

as illustrated by the previously invoked example of Team A and B that were aiming to

model the behavior of two different materials because each team already knows a priori the
material of interest to them (known task-ID). Therefore, this article only needs to consider

the simpler formulation of our CP&S method presented in Chapter 3.

Unlike the standard computer vision problems for which CP&S was originally imple-

mented and compared [148], here we apply CP&S to model irreversible material behavior.

Without loss of generality, we focus on plasticity simulations but other history- and time-

dependent phenomena such as damage or visco-elasticity could be considered. In fact,

CP&S can be applied to other classification or regression tasks (they do not need to be tasks

in Mechanics). Given the time and/or history-dependency of these problems, considering

neural network architectures with recurrent units facilitates the learning process.

Recurrent neural networks (RNNs) [243, 244] typically deal with sequential data, e.g.

in natural language processing problems [245] or voice recognition [246]. However, they

suffer from vanishing and exploding gradients issues [247, 248]. Further improvements of

RNNs, such as the Long Short-Term Memory (LSTM) network [249] and Gated Recurrent

Unit (GRU) [250] solved this problem, enabling their application in different contexts. In

particular, LSTMs and GRUs have been shown to learn history-dependent phenomena in

mechanics [220, 251]. In this work, we use GRUs as described in our past work [220] due to

their simplicity and effectiveness when compared to LSTM, although other neural network

architectures with recurrent units could be considered. Computations that occur in the
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GRU can be described as follows:

𝑧𝑡 = sigmoid(𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1+ 𝑏𝑧), (6.1)

𝑟𝑡 = sigmoid(𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1+ 𝑏𝑟), (6.2)

ℎ̂𝑡 = tanh(𝑊ℎ𝑥𝑡 +𝑈ℎ(𝑟𝑡 ⊙ℎ𝑡−1)+ 𝑏ℎ), (6.3)

ℎ𝑡 = 𝑧𝑡 ⊙ℎ̂𝑡 +(1− 𝑧𝑡)⊙ℎ𝑡−1, (6.4)

where ℎ0 = 0, 𝑥𝑡 is an input vector, 𝑡 = 0,1,… , 𝑇 . Matrices𝑊𝑧 ,𝑊𝑟 ,𝑊ℎ, 𝑈𝑧 , 𝑈𝑟 , 𝑈ℎ are learnable
weights and 𝑏𝑧 , 𝑏𝑟 , 𝑏ℎ are learnable biases. In this work, the PyTorch [252] implementation

of GRUs is used to conduct the experiments consisting of simplified representative volume

elements of materials with different microstructures, as described in Section 6.4.

6.3 Proposed method
Independently of the architecture chosen for the neural network, we advocate here that

architectural continual learning algorithms such as CP&S [148] (see Chapter 3) enable

Cooperative Data-Driven Modeling (CDDM). The method creates different subnetworks

within an artificial neural network that are associated to particular tasks without forgetting

past tasks. For example, in our context each subnetwork is associated to a specific material

model for a class of materials with a given microstructure, constituent properties and

external conditions (see e.g. [211]). Architectural methods, however, are limited by the

availability of free neural connections that can be trained for a new task. A particular

advantage of CP&S is that it is based on the NNrelief (Chapter 2) iterative pruning strategy

[22] which was developed aiming to create sparser subnetworks (using fewer connections)

than other pruning methods such as magnitude pruning [29] or neural pruning [30].

Additionally, although CP&S was implemented in the original article for convolutional and

fully connected networks, it can easily be adapted to GRU networks as shown in this work.

CP&S is based on a set of simple steps to create a group of overlapping subnetworks,

each of them learning a particular task without disrupting the knowledge accumulated by

the other subnetworks. Importantly, the subnetworks can (and usually do) share knowledge

among them by sharing connections that are useful to each other. This mechanism allows

to learn different tasks, and transfer knowledge between them but avoids forgetting, unlike

transfer learning methods.

Overall, cooperative data-driven modeling via the proposed CP&S method is described

as follows:

• Training:

1. At the beginning of the learning process, initialize the entire neural network

with random weights (see Figure 6.1a).

2. Set the hyperparameters (architecture, optimizer, learning rate, weight decay,

pruning parameters, etc.).

3. For a task 𝑇𝑖 (e.g. learning a new material), create a subnetwork 𝑖 that is

associated to that task:
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Figure 6.1: Overview of the proposed CDDM approach.

(a) Use the NNrelief [22] algorithm to prune connections from the entire

neural network (see Figure 6.1b, details in Chapter 2).

– Remark 6.1 Every connection can be pruned, whether they are already
part of another subnetwork or not.

– Remark 6.2 Pruning is controlled by hyperparameter 𝛼 ∈ (0,1) that
represents the amount of information that is maintained coming out of
the neurons after removing the connections. So, 𝛼 = 0.95 indicates that
95% of the signal coming out of the neurons is kept on average for the
training set of task 𝑇𝑖 after removing the connections. The amount of
information is measured according to a metric called importance score –
see the original article [22] or Chapter 2 for details.

– Remark 6.3 Allowing to prune any connection of the entire network
(whether belonging to a previous subnetwork or not) is crucial because it
provides a mechanism to keep connections that are useful for performing
the current task but remove the ones that are not. If some connections
are kept from other subnetworks, then there is potential for knowledge
transfer.
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(b) Among the remaining connections, i.e. the ones that are not pruned, retrain

the “free” connections but do not update the ones that are part of other

subnetworks (see Figure 6.1c).

– Remark 6.4 By refraining from updating connections that are part
of other subnetworks, the CP&S algorithm avoids forgetting past tasks
because the other subnetworks are not affected by the current training
of this subnetwork. Instead, only connections that have not been used
previously by any subnetwork are updated so that new knowledge can
be accumulated, as needed to solve a new task.

(c) Assess performance of this subnetwork (𝑖) on the dataset for this task

(𝑇𝑖). If error is not acceptable, go to 3a and iterate again until a maximum

number of iterations 𝑛 is met. Else save the connections that form this new

subnetwork into mask 𝐌𝑖. The weights belonging to this subnetwork will

no longer be updated when training another subnetwork later.

4. Consider the next task 𝑇𝑖+1 by finding a new subnetwork (𝑖+1) as described

in step 3 (see Figure 6.1d-f)).

• Inference (testing):

1. For the given test point 𝑥 from task 𝑇𝑖, select subnetwork𝑖 (see Figure 6.1g).

– Remark 6.5 In this chapter, task selection from the data is not necessary,
because practitioners already know what is the material model that they
want to consider. Otherwise, see the original article for the task incremental
learning scenario [148].

2. Make a prediction 𝑦 =𝑖(𝑥).

We highlight from the above description that the performance of CP&S is controlled only

by two hyperparameters: the number of pruning iterations 𝑛 and the pruning parameter 𝛼 ∈
(0,1). A low value of 𝛼 will cause more connections to be pruned (information compression)

but also lower expressivity (worst performance of the subnetwork after pruning and

retraining for 𝑛 iterations). The subnetwork is represented by a binary mask𝐌, where every

active connection is represented by 1 and where every inactive connection is represented

by 0. The weights and biases that are first assigned to a particular task are not updated for

subsequent tasks – ensuring that the original subnetwork for which these connections were

trained remains unchanged by the training process of a new subnetwork. This strategy

was proven effective in the context of computer vision, and it should remain valid for

computational mechanics applications.

An important disadvantage of CP&S is that fixing the parameters associated with

a trained subnetwork can quickly exhaust the number of “free” connections available

to be trained in subsequent tasks. In other words, the artificial neural network can be

“saturated” after several tasks have been learned. This is reported in Chapter 3 and the

original investigation [148]. However, we note that CP&S does not have limitations on the

type of neural network architecture to be considered. Therefore, the choice of architecture

depends only on the solvable problem. In this paper, we consider the case when all tasks

have the same input and output dimensions. This condition can be relaxed if one uses
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separate task-specific input and output heads. In this case, shared parameters are the ones

that are in the intermediate layers.

6.4 First case study: learning plasticity laws for
different microstructures

The first and simpler case study considers non-periodic material domains subjected to

uniform displacements at the boundary. The goal is to create constitutive models from

these material domains similarly to the original publication on this subject [211], but

including history-dependent behavior [220]. We consider four different materials with

different porous microstructures but the same matrix phase – a simple von Mises plasticity

model. This canonical example can be extended to more complex cases, including realistic

microstructures, as shown in case study 2.

We present two case studies to demonstrate the usefulness of cooperative data-driven

modeling (CDDM). CDDM aims to create a model that is capable of performing multiple

tasks but that also uses past knowledge from different tasks to decrease the number of

training points required to learn a new task. Therefore, CDDM should achieve better

performance than conventional training (without cooperation) for the same number of

training points. In addition, the fact that CDDM uses the same neural network should

make it more efficient in terms of the number of new parameters needed to learn a new

task.

6.4.1 Problem description
We consider an elastoplastic von Mises material with hardening to create a path-dependent

problem. After applying the boundary conditions, the average Cauchy strain (�̄�𝟏∶𝒕) and
Cauchy stress (�̄�𝟏∶𝒕) measures are obtained for the deformation path. Then the learning

problem for a single task can be defined as,

�̄�𝟏∶𝒕 = 𝑓 (�̄�𝟏∶𝒕), (6.5)

where amachine learningmodel is utilized to find the relationship 𝑓 ∶ �̄�𝟏∶𝒕 ↦ �̄�𝟏∶𝒕 , which is a

supervised regression problemwith the history of the average strain components as an input

and the average stress components as an output. Since we consider the 2D problems, every

pair of input-output datapoint is (�̄�𝟏∶𝒕 , �̄�𝟏∶𝒕), where �̄�𝟏∶𝒕 = (𝜀11, 𝜀12, 𝜀22), �̄�𝟏∶𝒕 = (𝜎11,𝜎12,𝜎22)
and all 𝜀𝑖𝑗 ,𝜎𝑖𝑗 ∈ ℝ𝑡

.

The tasks originating from different domains can be seen in Figure 6.2. Each domain

represents a square plate with the different number of holes. More details about the data

simulation process can be found in Appendix D.1. We reinforce that Case Study 1 considers

simpler finite element analysis because we want to facilitate the dissemination of the

methodology and use fully open-source software – facilitating replication of the example

and easy adaptation to other scenarios.

The four material domains are subjected to the same 1000 paths of deformation. These

1000 paths are obtained from 100 end displacement values of the top boundary of the domain

that are sampled from a Gaussian Process posterior that is conditioned on 20 displacement

values sampled from a uniform distribution for each path. Then the average stress obtained

for each path is calculated via the finite element method – see for example Figure 6.3. The
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Figure 6.2: Different domains introduced as different tasks.
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Figure 6.3: An example of strain and stress paths.

dataset is made available, and the simulations used to obtain it can be replicated via the

source code. We highlight that different strategies for sampling the paths of plasticity

material laws have been proposed [253] and that this choice can affect the number of paths

needed to train the neural network up to the desired accuracy. Nevertheless, each presented

task was subjected to the same deformation paths to calculate the domain-specific average

stress and strain values. The data is generated using FEniCS [254].

In order to illustrate the difference in stresses obtained for the four tasks, Figure 6.4

shows the error according to Eq. 6.6 and the mean-squared-error (MSE) between stresses

for the training data for all tasks. We scale all the data since the model receives it in a

scaled format. Here we use standard scaling where we remove the mean from every input

feature and divide it by the standard deviation of the training set. The figure clarifies that

Tasks A, B and C are more similar with each other than Task D.

To evaluate the performance of CDDM we measure the error 𝐸𝑖 on every test path as

follows:
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Figure 6.4: The difference between the stress train data for considered tasks, calculated using the error measure-

ment (left) and the MSE measurement (right).

Table 6.1: Training hyperparameters.

training

epochs

learning rate weight

decay

pruning iter-

ations

pruning pa-

rameter 𝛼
retraining

epochs

1000 0.01 10−6 1 0.95 200

𝐸𝑖 =
1
3(

||𝜎𝑖
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11||2
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11||2
+
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⋅100%, 𝑖 = 1,2,… ,𝑁 , (6.6)

where 𝑁 is the number of testing points, ||⋅||2 is the L2 norm, �̂�𝑖
11, �̂�𝑖

22, �̂�𝑖
12 ∈ ℝ𝑡

are predicted

stress components, and 𝜎𝑖
11,𝜎𝑖

22,𝜎𝑖
12 ∈ ℝ𝑡

are the test ones.

Then, we compute the average over all 𝑁 test points to compute the final test error:

𝐸𝑟𝑟 =
1
𝑁

𝑁
∑
𝑖=1

𝐸𝑖. (6.7)

The hyperparameters that we use to train a neural network are shown in Table 6.1.

We use Adam [66] optimizer to train the model with the mean-squared-error (MSE) loss

function. To prevent overfitting, we add weight decay regularization [255, 256] to the

networks’ parameters.

As it is common in continual learning literature [257], we test the approach with

different task orderings. Overall, we consider four orderings for the case of four tasks in a

sequence:

• ordering 1: Task A→ Task B → Task C → Task D;

• ordering 2: Task B→ Task D → Task A → Task C;

• ordering 3: Task C→ Task A → Task D → Task B;

• ordering 4: Task D→ Task C → Task B → Task A.
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6.4.2 Results
Firstly, we train the GRU with 2 cells and a hidden size of 128 in the sequence of four

tasks. We train the first task with 800 training paths, and for each of the following tasks,

we consider the cases of 800, 400, 200 and 100 training paths. We compare these results

with the conventional case (non-cooperative) where every new task is trained with the

same GRU but independently of the other tasks. Our main goal is to show the benefits of

cooperative learning compared to non-cooperative under a low-data regime.

Figure 6.5 shows this comparison, where the blue bars refer to the cooperative model

(CDDM) and the orange ones to the conventional case (standard or non-cooperative train-

ing). The test error is computed using Eq. 6.6. It is clear that CDDM significantly outper-

forms standard training when we decrease the number of training points. This effect is

consistent across all four orders, independently of which task is considered to be the first.

The main advantage of CDDM is that the pretrained parameters have an accumulative

effect on future tasks. This multi-transfer effect has more significance under the low-data

regime (e.g., 100 training paths). Also, the set of parameters depends on the order in which

the tasks are learned. In Table 6.2, we present the average error for every task when

considering a different number of training points (number of paths); note that this error is

the average over the four task orderings. We can clearly see that CDDM performs better

than standard training for tasks 2 – 4 on average.

Table 6.2: Test error (%) averaged over four considered task orders.

task 1 tasks 2–4

800 paths 800 paths 400 paths 200 paths 100 paths

standard training 2.02 2.02 2.82 3.75 6.43

CDDM 2.14 1.92 2.18 2.84 3.97

Moreover, we learn all four tasks with one network, while four separate networks are

necessary for the conventional case. Therefore, using fewer parameters and achieving

better performance. As clarified next, this is explained by the knowledge transfer that

happens between subnetworks. Also, it should be noted that the network still has free space

to learn future tasks, although saturation would occur soon if more tasks were considered

because the neural network is small.

In Figure 6.6, we show the prediction of CDDM with 200 training paths for tasks 2-4

respectively; the first task is learned with 800 paths. We compare CDDM with standard

(non-cooperative) training with one network per task. As the figure illustrates, CDDM

learns the data better than conventional training and requires just one network instead of

four. Hence, Figure 6.6 justifies our hypothesis of using continual learning as a possible

solution to tackle the data scarcity problem in history-dependent constitutive law modeling.

From this figure, it is clear that the GRU is able to learn material behavior by having 200

training paths for tasks 2-4.

Overall, we observe that the continual learning strategy allows us not only to learn

four different geometries with one network but also improves test error under the limited

data regime. In addition, we can see that even if we have enough data, continual learning



6.4 First case study: learning plasticity laws for different microstructures

6

89

Task B Task C Task D0

2

4

6

8

Er
ro

r (
%

)

800 training paths

Task B Task C Task D0

2

4

6

8

Er
ro

r (
%

)

400 training paths

Task B Task C Task D0

2

4

6

8

Er
ro

r (
%

)

200 training paths

Task B Task C Task D0

2

4

6

8

Er
ro

r (
%

)

100 training paths
First task: Task A with 800 training paths

CDDM standard trainingCDDM standard trainingCDDM standard trainingCDDM standard training

(a) Ordering 1.

Task D Task A Task C0

2

4

6

8

Er
ro

r (
%

)

800 training paths

Task D Task A Task C0

2

4

6

8

Er
ro

r (
%

)

400 training paths

Task D Task A Task C0

2

4

6

8

Er
ro

r (
%

)

200 training paths

Task D Task A Task C0

2

4

6

8

Er
ro

r (
%

)

100 training paths
First task: Task B with 800 training paths

CDDM standard trainingCDDM standard trainingCDDM standard trainingCDDM standard training

(b) Ordering 2.

Task A Task D Task B0

2

4

6

8

Er
ro

r (
%

)

800 training paths

Task A Task D Task B0

2

4

6

8

Er
ro

r (
%

)

400 training paths

Task A Task D Task B0

2

4

6

8

Er
ro

r (
%

)

200 training paths

Task A Task D Task B0

2

4

6

8
Er

ro
r (

%
)

100 training paths
First task: Task C with 800 training paths

CDDM standard trainingCDDM standard trainingCDDM standard trainingCDDM standard training

(c) Ordering 3.

Task C Task B Task A0

2

4

6

8

Er
ro

r (
%

)

800 training paths

Task C Task B Task A0

2

4

6

8

Er
ro

r (
%

)

400 training paths

Task C Task B Task A0

2

4

6

8

Er
ro

r (
%

)

200 training paths

Task C Task B Task A0

2

4

6

8

Er
ro

r (
%

)

100 training paths
First task: Task D with 800 training paths

CDDM standard trainingCDDM standard trainingCDDM standard trainingCDDM standard training

(d) Ordering 4.

Figure 6.5: First case study: CDDM results on orderings 1-4.

does not worsen the results significantly compared to standard training (no more than 0.5%

difference).
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Figure 6.6: First case study: 800 training paths for task 1 and 200 training paths for tasks 2-4.

6.5 Second case study: RVEs with periodic boundary
conditions

In this second case study, we apply the CDDM strategy to more realistic representative

volume elements (RVEs) subjected to periodic boundary conditions, as thoroughly discussed

in a past work [211]. The data is generated with a commercial finite element solver,

but both the code to generate the data as well as the dataset itself are made available

with RVE simulator
1
[258]. The RVE average stress–strain response is influenced by the

microstructure, properties of each material phase, and loading conditions (average strain

path that is converted into a periodic displacement at the boundary). Four different RVEs

are considered in order to create four tasks. Each task pertains to learning the homogenized

plasticity constitutive behavior (average stress–strain response) of a corresponding RVE.

These RVEs were created such that they share some similarities and significant differences

by considering different microstructures and material properties while applying the same

average deformation paths to generate the dataset.

6.5.1 Problem description
Figure 6.7 illustrates the type of two-dimensional composite material used to create the 4

RVEs (tasks). The two-phase RVEs are defined by 4 geometric descriptors: (1) RVE size, (2)

fiber
2
volume fraction (𝑣𝑓 ), (3) fiber mean radius (𝑟), and (4) fiber radius standard deviation

(𝑟std). The last two descriptors are used to create circular fibers whose radius is drawn

from a Gaussian distribution with the corresponding mean and standard deviation. The

descriptors of the material properties are simply the elastic properties of the fibers and

matrix (Young’s modulus (𝐸) and Poisson’s ratio (𝜈)), and the plasticity properties of the

matrix (isotropic hardening law that depends on the yield stress that completely defines the

von Mises yield surface). These descriptors are all defined on the right part of Figure 6.7,

where the red font indicates the descriptors that are changed among the 4 RVEs and where

the ones in black font indicate parameters that are fixed in this investigation, without loss

1
The code for the RVE simulator is available athttps://github.com/bessagroup/rvesimulator.

2
We consider plane strain conditions, so we tend to view the reinforcement phase as fibers instead of particles.
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Figure 6.7: Illustration of commonalities and discrepancies on setting up tasks

of generality. The 4 RVEs (i.e. Tasks) are labeled A, B, C and D and the corresponding values

for the descriptors are included in Table 6.3. For clarity, the 3 microstructures defining the

RVEs (note that two RVEs have the same microstructure) are shown in Figure 6.8.

Table 6.3: Parameters configuration of different tasks (Units:SI(𝑚𝑚))

Task

Mircostructure parameters

Hardening law 𝐸fiber
Fixed parameters

𝑣𝑓 𝑟 𝑟std size 𝐸matrix 𝜈matrix 𝜈fiber

A 0.45 0.01 0.003 𝜎𝑦 = 0.5+0.5𝜀 10

0.048 100 0.30 0.19

B 0.30 0.003 0.0 𝜎𝑦 = 0.5+0.5(𝜀)0.4 1

C 0.15 0.0015 0.0003 𝜎𝑦 = 0.5(1+ 𝜀)
1
0.4 1000

D 0.30 0.003 0.0 𝜎𝑦 = 3.0+0.5(𝜀)0.4 1

As in Case Study 1, the target is to learn the average Cauchy stress (�̄�𝟏∶𝒕) which is

dependent on the applied average strain path (�̄�𝟏∶𝒕). Therefore, the learning problem can

be defined as: �̄�𝟏∶𝒕 = 𝑓 (�̄�𝟏∶𝒕), where 𝑡 is the pseudo-time step (load step) in the simulation

defined to be 100. Meanwhile, 1000 different strain paths are generated according to a

simple interpolation method. Specifically, for each average strain component (𝜀11, 𝜀22, and
𝜀12) of a path, 8 equally spaced points are sampled within the strain path, and the quadratic

interpolation method is adopted to generate the full strain path. Then, the strain path is

converted into a boundary value problem of the RVE and the finite element prediction is

conducted with the commercial software ABAQUS [259] to simulate the corresponding

average stress for different tasks. In Figure 6.9, we present the difference between data

computed with error metric (Eq. 6.6) and the mean squared error (MSE).

6.5.2 Results
First, we train GRU on tasks A, B and C with the same hyperparameters as in Section 6.4.

We consider three different tasks orders:
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(a) (b) (c)

Figure 6.8: Schematics of different microstructure configurations: (a) 𝑣𝑓 = 0.45, 𝑟 = 0.01, 𝑟std = 0.003; (2) 𝑣𝑓 = 0.30,
𝑟 = 0.003, 𝑟std = 0.0 ; (c) 𝑣𝑓 = 0.15, 𝑟 = 0.0015, 𝑟std = 0.0003.
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Figure 6.9: The difference between the stress train data for considered RVE tasks, calculated using the error

measurement (left) and the MSE measurement (right)

• ordering 1: Task A→ Task B → Task C;

• ordering 2: Task C→ Task A → Task B;

• ordering 3: Task B→ Task C → Task A.

In Figure 6.10, we show the results for these three task orderings. It is clear that with

the decrease in the number of training paths, CDDM starts to outperform conventional

training.

In Figure 6.11, we present the prediction of one stress path with CDDM and standard

training. The first task (task B) is trained with 800 training paths, while the next two tasks

(tasks C and A) are trained using 200 training paths (left) and 25 training paths (right). If
tasks C and A are learned with 200 paths, both CDDM and standard training predict stress

well, however, CDDM does this with a single network. We observe that if GRU learns

tasks in the cooperative approach, the prediction is more accurate than with conventional

training if 25 training paths are given for the second and third tasks.

However, in an attempt to explore and report on the limitations of the presented method,

we also investigated what occurs when we add task D (see Figure 6.12) where an RVE has

much larger yield stress (see Table 6.3, i.e. where the yield stress of the matrix becomes
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Figure 6.10: Second case study: CDDM results on orderings 1-3.

3.0 MPa instead of 0.5 MPa as in the other tasks. In this case, the plastic response of the

RVE is delayed, and we noticed that when Task D is learned first then there would be

no advantage in learning cooperatively – see Figure 6.12b. However, if the ordering is

different, as shown in Figure 6.12a, then the proposed cooperative model is still better. We

think it is important to be clear that there might be situations in which the ordering of

tasks actually leads to difficulties in learning cooperatively.
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Figure 6.11: Second case study: Comparison of the CDDM and standard training predictions with different

numbers of training paths.
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(a) Task A → Task B → Task C→ Task D.
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(b) Task D → Task C→ Task B → Task A.

Figure 6.12: Second case study: CDDM results on the sequences of four tasks.
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6.6 Discussion
We want to highlight that all the above-mentioned results for both case studies are robust

to the hyperparameter choice. For simplicity of presenting the previous results, they

refer to a particular architecture configuration. However, in this section we elaborate on

the robustness of the CDDM approach presented herein by considering different GRU

architectures, varying the number of units and hidden state size. In addition, we elaborate

on the knowledge transfer effect and analyze the portion of parameters shared between

tasks and the ones dedicated only to one task.

6.6.1 Architectures comparison
In this section, we explore how CDDM depends on different GRU architecture hyperpa-

rameters such as the number of units or hidden states size. To begin, we consider the first

learning case study (Section 6.4) with the corresponding four tasks: the first task is trained

with 800 training paths and for the second task we vary the number of training points from

800 to 50. For GRU, we change the number of units from 1 to 3 and consider the hidden

state size equal to 64, 128, and 256. Corresponding numbers of learnable parameters are

shown in Table 6.4. In Figure 6.13, we compare these three network configurations. Overall,

we observe similar performance for all of these architectures with insignificant differences.

From the figure, we observe that all architectures give us similar results, therefore CDDM

is not limited to some special network configuration.
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Figure 6.13: First case study: architectures comparison on ordering 4.

Table 6.4: Architectures comparison.

Architecture (1, 256) (2, 128) (3, 64)

The number of parameters 201K 151K 63K

We also want to note that smaller networks (fewer parameters) do not predict the mate-

rial behavior better when considering the conventional training scenario (non-cooperative).

To illustrate this, consider the GRU with 1 cell and the hidden state size of 64 which results

in 13K parameters. We train this network on the second case study data and consider

average error on tasks A – D using 800, 400, 200, 100, 50 and 25 training paths. The test

errors for these cases are 2.09%, 2.74%, 3.59%, 5.2%, 7.73%, 12.9%. On the other hand, we

consider the model with 2 cells and the hidden size of 128 (151K parameters, see Table 4),
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for which the test errors are 2.01%, 2.54%, 3.35%, 4.84%, 7.40%, 11.34%. As can be seen, the

larger model has lower test error.

6.6.2 Knowledge transfer
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(a) Occupied parameters.
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(b) Shared parameters.

Figure 6.14: First case study: subnetworks analysis: occupied and shared parameters.

A crucial characteristic necessary to establishing the CDDM paradigm is the robustness

to different task orderings, both in terms of prediction error and the number of parameters

used for every task. Focusing on the first case study, we show the relation between

subnetworks in the case where the first task is trained with 800 paths and all the other tasks

with 200 training paths. In Figure 6.14a, we show which percentage of the total number

of parameters is occupied after a new task is learned. We compare these percentages

across four orderings, and in general, we observe the consistency in the number of used

parameters with insignificant differences. This means that the ordering of tasks has a

negligible effect on how many parameters are occupied in the end.

At the same time, in Figure 6.14b, we demonstrate the percentage of shared connections

while the model learns a new task. So, for instance, we observe in ordering 3 that up to 60%

of parameters are assigned to more than one subnetwork when all the tasks are learned.

Overall, at least 45% of the parameters are shared between multiple tasks without a negative

impact on model performance. From the figure, it is clear that the changes in the numbers

of shared parameters are consistent across all orderings, illustrating robustness to different

task sequences. Nevertheless, after experimenting with many tasks and considering two

different case studies, we were able to find one task ordering for Case Study 2 where the

cooperative data-driven modeling process was not beneficial when compared to learning

all tasks separately (recall Figure 6.12b).

6.7 Conclusion
This chapter introduces the concept of continual learning in the notion of cooperative

data-driven modeling. We focus on solid mechanics applications by considering two case

studies involving history-dependent plasticity problems. To the best of our knowledge,

this is the first example of the application of continual learning in Mechanics and among

the first in Engineering applications. We demonstrate that a recurrent neural network can
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sequentially learn multiple tasks, without replaying data from previous tasks and without

forgetting – an important distinction when comparing to transfer learning methods and a

key enabler of cooperative modeling. The proposedmethod is based on creating task-related

subnetworks that transfer knowledge from each other by sharing neural connections. This

is demonstrated to decrease the number of training data required to learn a new task (in

this case, a new material law). The approach is robust to different task orders.

As a final note, the authors share their belief that the proposed cooperative data-driven

modeling concept has a lot of potential for future developments. More efficient ways

of sharing knowledge or selecting subnetworks (when needed), delaying the premature

saturation of the network, and accelerating training are only a few possibilities to improve

the proposed strategy. Notwithstanding, the prospect of fostering collaborations across

different research communities by taking advantage of a machine learning model from a

group and adding new capabilities to it such that it solves a new task using less training data

and without forgetting how to perform the original task is an exciting new development.
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7
Conclusion and Future Work

This chapter summarizes the methodology and findings of the thesis. We also discuss the
limitations of the proposed method and future work for improvements. In particular, we focus
on network saturation and task prediction problems.
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7.1 Conclusion
In the first part of the thesis, we have introduced a general paradigm for solving continual

learning problems where the network creates task-specific subnetworks at the training

stage and selects the correct one during inference to make a prediction. In Chapter 2,

we have presented an iterative pruning algorithm (NNrelief) that uses an input signal

to evaluate the importance of each parameter and prune the least significant ones. By

pruning the network, we create sparse subnetworks that perform the task as well as the

original network, meaning that we created a task-specific region in the network (RQ1).
We have demonstrated the superiority of the developed method on a range of image

datasets. Moreover, we explored the impact of the two most popular optimizers – Adam

and SGD, showing that Adam produces sparser subnetworks for architectures without

skip-connections (LeNet and VGG). In addition, we have explained why the proposed

NNrelief is a more promising pruning approach than a magnitude-based one which is a

common baseline.

Chapter 3 illustrates a continual learning algorithm that incorporates the proposed

pruning strategy for creating a separate subnetwork for every task. By freezing the

parameters assigned for a certain task for the first time and reusing them without retraining

for the following tasks, we achieved overlapping subnetworks that do not disturb each other

(RQ2). We also examine two subnetwork selection strategies — maxoutput and importance

scores-based one. However, both of these strategies have one significant limitation: they

require a batch of test samples to predict the correct subnetwork. This happens due to the

intra-task distribution multi-modality and the similarity between tasks. This issue makes

task prediction an extremely challenging task. However, if every task can be modeled

with unimodal distribution, we can train a model to predict the correct subnetwork during

inference. Thus, in Chapter 4, we consider a surface defect segmentation problem, where

each task consists of one type of defects. Therefore, we have trained the streaming LDA

model to predict the correct subnetwork first and then predict the defect mask. As a result,

the batch size issue was successfully resolved in this problem. This Chapter illustrates how

the subnetwork selection challenge can be resolved under simpler problem formulation

(RQ3).
The second part of the thesis introduces the concept of cooperative learning via contin-

ual learning. The idea behind cooperative learning is accumulating knowledge without

forgetting and using it when learning new tasks. We have applied the proposed methodol-

ogy to engineering problems, demonstrating the advantage of cooperative learning using

the examples of physics-informed neural networks and constitutive modeling problems. In

Chapter 5, we could show that by leveraging past knowledge and adapting the overlap-

ping parts of multiple subnetworks the model can generalize the new given task better.

Moreover, we showed that in the case of the reaction PDE, previous subnetworks can learn

from the new ones. Secondly, in Chapter 6, we have developed a Cooperative Data-Driven

Modeling (CDDM) network which has access only to the current stress-strain data but can

predict this relation for every task seen if the information about the task is provided. Thus,

in the second part of the thesis, we have addressed RQ4, showing the advantages of the
proposed paradigm in terms of generalization and the need for the number of training

points. It is important to note that the concept of cooperative learning works effectively

when the tasks are similar enough that subnetworks can transfer knowledge to each other.
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7.2 Future Work
Developing deep learning models that do not forget will have a huge impact on their

applicability to real-life problems. In the second part of the thesis, we have considered

some applications of continual learning to computational mechanics and physics and the

benefits associated with it. However, some challenges still should be addressed for better

performance of the proposed methodology. In this section, we discuss further directions

for improving the proposed paradigm.

Network saturation. In Chapter 3, we have demonstrated the performance of the

proposed CP&S algorithm on a variety of examples including the well-known CIFAR-

100 dataset split into 20 classification tasks of 5 classes per task. Thus, 20 overlapping

subnetworks were constructed by the algorithm, which led to the situation where a newly

created subnetwork did not have enough free trainable connection after learning a certain

task (in our case, this was task eleven). As a result, we observed a significant degradation

of the network’s learning capabilities. We called this phenomenon network saturation.In
this situation, the network does not physically have available connections for new tasks,

in contrast to capacity saturation [113, 260] where all parameters are still available but

generalization capabilities are declining due to the fixed network architecture. One of the

directions of future work should be dedicated to overcoming this issue. A possible solution

lies in applying a regularization-based approach (e.g., EWC [84], SI [5] or MAS [85]) to

overlapping parts instead of freezing them. This way the model gets flexibility that allows

slight updates of the overlapping parameters without significant forgetting. As a result,

the network is still able to assimilate new knowledge even if there are no free parameters.

Task prediction. In the most general case, every task may consist of objects of different

classes. Therefore, modeling intra-task distribution is quite challenging due to the multi-

modality of the distribution. In Chapter 3, we used two strategies for task prediction to

activate the correct subnetwork during the inference stage. The limitation of the considered

strategies is the necessity of a batch of test samples for prediction. As shown in Chapter 4,

this issue can be eliminated in the special case of segmentation problem if images contain

only one type of defect. However, the task prediction strategy should be more general and

not require multiple test samples for task identification. Moreover, in the second part of

the thesis, we have considered two examples of engineering problems. In both cases, task

ID was available during inference, meaning the model knows which subnetwork needs to

be activated to make a prediction. Therefore, a logical extension would be to develop a task

prediction strategy that is not limited to the classification problem but applies to different

types of problems. One possible solution could be exploring out-of-distribution (OOD)

detection literature due to the correlation between task prediction and OOD detection

[149]. This would allow to first identify if a new test sample is an outlier for a certain task,

and then assign it to this task.

Knowledge transfer in engineering problems. One of the most interesting and

promising features of the continual learning algorithm is its ability to facilitate the learning

process for the next tasks by leveraging the learned knowledge from the previous ones.

In the second part of the thesis, we have illustrated this phenomenon in two different
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terms: the improvement of prediction generalization and the reduction of the need for

training data. However, in the case of CDDM (Chapter 6), we have also exemplified cases

where there is no knowledge transfer between subnetworks even if a sufficient number of

points were provided for training. This may happen if the tasks are not similar enough to

facilitate further training by sharing parameters. In this case, it is more efficient to train a

new network from scratch or find a subnetwork that does not overlap with all the previous

ones. The key question here is to determine to what extent the two problems are similar

(or different) and what is the acceptable similarity threshold for cooperative learning.
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Appendix to Chapter 2

A.1 Pruning setups
We implement our approach with PyTorch [252]. Table A.1 shows the training parameters

for each network.

Table A.1: Training setups.

Network dataset optimizer learning rate (by epoch) weight

decay

LeNet-5/300-

100

MNIST Adam

{
10−3 , 1 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 30
10−4 , 31 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 60

5 ⋅10−4

VGG-like/13 CIFAR-

10/100, Tiny-

ImageNet

SGD/Adam

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

10−1/10−3 , 1 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 80
10−2/10−4 , 81 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 120
10−3/10−5 , 121 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 150

5 ⋅10−4

ResNet-20/56 CIFAR-10/100

SGD

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0.1, 1 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 80
0.01, 81 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 120
0.001, 121 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 150

5 ⋅10−4

Adam

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

10−3 , 1 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 120
10−4 , 121 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 160
10−5 , 161 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 200

5 ⋅10−4

Table A.2 shows the parameters for retraining on every iteration.

Table A.3 shows the pruning parameters and total number of iterations.
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Table A.2: Retraining parameters

Network dataset optimizer learning rate (by epoch) weight

decay

LeNet-5/300-

100

MNIST Adam

{
10−3 , 1 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 30
10−4 , 31 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 60

5 ⋅10−4

VGG-like/13 CIFAR-

10/100, Tiny-

ImageNet

SGD/Adam

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

10−1/10−3 , 1 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 20
10−2/10−4 , 21 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 40
10−3/10−5 , 41 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 60

5 ⋅10−4

ResNet-20/56

CIFAR-10 SGD/Adam

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

10−1/10−3 , 1 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 20
10−2/10−4 , 21 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 40
10−3/10−5 , 41 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 60

5 ⋅10−4

CIFAR-100 SGD/Adam

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

10−1/10−3 , 1 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 30
10−2/10−4 , 21 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 60
10−3/10−5 , 41 ≤ 𝑒𝑝𝑜𝑐ℎ ≤ 80

5 ⋅10−4

Table A.3: Pruning parameters

Network dataset (𝛼conv, 𝛼fc) # iterations best it-

eration

SGD/Adam

LeNet-300-100 MNIST (-, 0.95) 15 11

LeNet-5 MNIST (0.9,0.95) 20 20

VGG-

like

CIFAR-10 (0.95,0.95) 6 6

Tiny-ImageNet (0.95,0.95) 5 5

ResNet-20 (SGD/Adam)

CIFAR-10 (0.95,0.99) 10 7/10

CIFAR-100 (0.95,0.99) 10 7/8

ResNet-56 (SGD/Adam)

CIFAR-10 (0.95,0.99) 10 6/2

CIFAR-100 (0.95,0.99) 10 6/9

A.2 FLOPs computation
According to [261], we compute FLOPs as follows:

• for a convolutional layer: FLOPs = 2𝐻𝑊 (𝐶𝑖𝑛𝐾 2 + 1)𝐶𝑜𝑢𝑡 where 𝐻,𝑊 and 𝐶𝑖𝑛 are

height, width and number of channels of the input feature map, 𝐾 is the kernel width

(and height due to symmetry), and 𝐶𝑜𝑢𝑡 is the number of output channels.

• for a fully connected layer: FLOPs = (2𝐼 −1)𝑂, where 𝐼 is the input dimensionality

and O is the output dimensionality.
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B.1 Additional information on CIFAR-100 experi-
ments

Task-selection We present CP&S results with different test batch sizes and task-selection

strategies in Figure B.1.

Also, we provide an additional comparison between maxoutput and IS strategies in

Figs. B.2 and B.3. In both cases, we observe the advantage of importance scores (IS) over

maxoutput strategy in the case of imbalanced tasks.

Training hyperparameters In Table B.1, we show the hyperparameters that we used

for experiments on CIFAR-100 in Section 3.4. For iTAML, all the parameters are taken from

the original work and the results were reproduced using the official GitHub repository.

Memory buffer contains 2000 training samples to mitigate forgetting. For CP&S, we used 3

pruning iterations, 1000 training samples per task to estimate importance scores in NNrelief

and 𝛼𝑐𝑜𝑛𝑣 = 0.9. For retraining (after pruning sep), we use 40 epochs with Learning Rate

(LR) 0.01 multiplied by 0.2 on epochs 15, 25 and 40.

Table B.1: Hyperparameters for (ResNet-18)/3 training on CIFAR-100 (5/10/20 tasks).

Method # epochs optimizer LR LR scheduler weight decay

iTAML 70 RAdam [262] 0.01 on epochs 20, 40, 60

multiply LR by 0.2

0

CP&S (ours) 70 Adam 0.01 on epochs 20, 40, 60

multiply LR by 0.2

0.0005

In Table B.2, we present the training hyperparameters for experiments in Section

3.5. To reproduce the results, we use PODNet and AFC GitHub repositories using the

hyperparameters from the original works. All the previous works use 2000 training samples

in the fixed-size memory buffer to mitigate forgetting. For CP&S, we used 1 pruning
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(b) CIFAR-100: 10 tasks

CP&S (bs=10, maxoutput)
CP&S (bs=20, maxoutput)
CP&S (bs=60, maxoutput)
CP&S (bs=60, IS)
CP&S (bs=100, IS)
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(c) CIFAR-100: 20 tasks

CP&S (bs=120, maxoutput)
CP&S (bs=120, IS)
CP&S (task-IL)

Figure B.1: The performance of CP&S with different batch sizes and task-selection strategies.

iteration, 1000 training samples per task to estimate importance scores in NNrelief and

𝛼𝑐𝑜𝑛𝑣 = 0.9. For retraining (after the pruning step), we use 50 epochs with LR 0.001multiplied

by 0.1 on epochs 20 and 40.
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Figure B.2: Task-selection accuracy using Importance Scores (IS) (left) as opposed to maxoutput (right) on
CIFAR-100 with class imbalance (50 classes in the first task and 10 classes in each of the following five tasks) for

CP&S. The test batch size is 60 images in both cases.
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Figure B.3: Task-selection accuracy using Importance Scores (IS) (left) as opposed to maxoutput (right) on
CIFAR-100 with class imbalance (50 classes in the first task and 10 classes in each of the following five tasks) for

CP&S-frozen. The test batch size is 60 images in both cases.

Table B.2: Hyperparameters for ResNet-32 training on CIFAR-100 (6 tasks).

Method # epochs optimizer LR LR scheduler weight decay

iCaRL 70 SGD 2.0 on epochs 49 and 63 multi-

ply LR by 0.2

0.00005

LUCIR 160 SGD 0.1 on epochs 80, 120 multiply

LR by 0.1

0.0005

PODNet 160 SGD 0.1 on epochs 80, 120 multiply

LR by 0.1

0.0005

AFC 160 SGD 0.1 on epochs 80, 120 multiply

LR by 0.1

0.0005

CP&S (ours) 160 Adam 0.001 on epochs 80, 120 multiply

LR by 0.1

0.0005
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B.2 ImageNet-100/1000 results
For ImageNet-100/1000, we present exact numbers from which the plots are constructed

for CP&S in Tables B.3 and B.4.

Table B.3: ImageNet-100 results with different test batch sizes and task-IL scenario trained with SGD and Adam.

optimizer batch
size

1 2 3 4 5 6 7 8 9 10

Adam

20 98.20 98.80 98.67 98.50 98.48 98.60 98.63 98.63 98.50 98.38

10 98.20 98.80 98.67 98.41 98.25 98.15 97.90 97.94 97.23 97.00

5 98.20 98.02 97.03 95.86 94.23 92.51 92.08 92.12 90.53 89.39

task-IL 98.20 98.80 98.67 98.50 98.48 98.60 98.63 98.63 98.50 98.38

SGD

20 99.00 98.90 98.67 98.60 97.90 98.09 98.05 98.25 94.20 92.62

task-IL 99.00 98.90 98.67 98.60 98.20 98.33 98.26 98.43 98.20 98.06

Table B.4: ImageNet-1000 results with different test batch sizes and task-IL scenario trained with SGD.

optimizer batch
size

1 2 3 4 5 6 7 8 9 10

SGD

50 94.38 94.96 94.52 94.42 94.40 94.45 94.40 94.16 93.88 93.77

20 94.38 94.96 94.52 94.42 94.40 94.40 94.34 94.12 93.77 93.66

10 94.38 94.96 94.42 94.09 93.91 93.70 93.40 92.92 92.19 91.97

5 94.38 94.31 92.74 91.53 90.41 89.24 88.07 86.59 84.82 83.92

task-IL 94.38 94.96 94.52 94.42 94.40 94.45 94.40 94.16 93.88 93.77

B.3 CUB-200-2011 additional comparison
In this section, we provide an additional comparison for ResNet-18 on CUB-200-2011

dataset using 5 test images per batch to predict the task-ID in Fig. B.4.
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(a) CUB-200: 4 tasks (accuracy)

iTAML (memory=1000)
iTAML (memory=2000)
CP&S
CP&S (task-IL)

50 100 150 200
Classes learned

8

6

4

2

0

BW
T 

(%
)

(b) CUB-200: 4 tasks (forgetting)
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Figure B.4: Comparison with iTAML on four tasks constructed from CUB-200-2011. Notation: “memory” is the

number for images from previous tasks; “task-IL” refers to task-IL scenario as an upper-bound for CP&S.
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C.1 Additional information about 1-D reaction PDE
Figure C.1 illustrates the absolute error and exact solutions for 1-D convection PDE consid-

ering the values of parameter 𝜌 = 1,3,5.
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(a) 1-D reaction equation (absolute error).
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(b) 1-D reaction equation (exact solution).

Figure C.1: iPINNs on 1-D reaction equation.

In the case of periodic boundary conditions that we have considered, the analytical

solution is [190]:

𝑢analytical(𝑥, 𝑡) =
ℎ(𝑥) 𝑒𝜌𝑡

ℎ(𝑥) 𝑒𝜌𝑡 +1−ℎ(𝑥)
,

where ℎ(𝑥) is the initial condition.
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C.2 Additional information about 1-D convection
PDE

Figure C.2 illustrates the absolute error and exact solutions for 1-D convection PDE consid-

ering the values of parameter 𝛽 = 1,20,40.
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Figure C.2: iPINNs on 1-D convection equation.
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D.1 Additional information on the First case study
An elastoplastic von Mises material with hardening is investigated to create a path-

dependent problem. A fixed-sized square is utilized as a domain and holes of varying

sizes and locations are placed inside the domain to create different tasks (see Figure D.1).

For all the tasks the bottom part of the domain is fixed and the top part is deformed

according to a uniform displacement in 𝑢𝑥1∶𝑡 and 𝑢𝑦1∶𝑡 .

u

tu(t)

u

t

Figure D.1: A square domain fixed on the bottom and displaced on the top. Displacement is done in a pseudo-time.
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