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Abstract
Inspired by the natural nervous system, synaptic plasticity rules are applied to train spiking neural
networks. Different from learning algorithms such as propagation and evolution that are widely used
to train spiking neural networks, synaptic plasticity rules learn the parameters with local information,
making them suitable for online learning on neuromorphic hardware. However, when such rules are
implemented to learn different new tasks, they usually require a significant amount of work on task-
dependent fine-tuning. This thesis aims to make this process easier by employing an evolutionary
algorithm that evolves suitable synaptic plasticity rules for the task at hand. More specifically, we
provide a set of various local signals, a set of mathematical operators, and a global reward signal, after
which a Cartesian genetic programming process finds an optimal learning rule from these components.
In this work, we first test the algorithm in basic binary pattern classification tasks. Then, using this
approach, we find learning rules that successfully solve an XOR and cart-pole task, and discover new
learning rules that outperform the baseline rules from literature.
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Nomenclature
α, β Rate constants

∆W Weight update

∆t Time difference between the pre- and postsynaptic spikes

Learning rate

λ Number of off-springs

µ Number of parents

τ+, τ− STDP time constants

τz Decay constant of the synapse eligibility trace

ξ Synapse dynamics

A,B,C,D Coefficients of the parameterized Hebbian rule

A+, A− STDP amplitude

ad Learning window of the STDP rule

Cm Neuron cell capacitance

Dtr
Tj

Support dataset

Dtrain Training dataset

E Voltage source of ion flux

Em Equilibrium membrane potential

F Synapse strength

f classifier function

fθ Neural network model with the connection weights θ

fi Postsynaptic spike

fj Presynaptic spike

g Nonlinear conductance of the ion channel

H(t) Heaviside function

I Current

kθ Similarity kernel

L Loss function

m,n, h Gating variables of the ion channels

N Evolution population

P+, P− Pre- and postsynaptic traces
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x Nomenclature

Pθ Probability distribution

R Environment reward at each episode

r Reward signal

Rbase Baseline environment reward at each episode

Rm Membrane resistance

S(t) Spike train

T Duration of network simulation

ti Spike time of postsynaptic neuron

tj Spike time of presynaptic neuron

u Membrane recovery variables

urest Membrane rest potential

V Membrane potential

wij Connection weights of synapse

xi, yi Input data and label

z Synapse eligibility trace



Acronyms
ANN artificial neural network.
BNF Backus-Naur form.
BVP Bon-hoeffer-van der Pol.
CGP cartesian genetic programming.
CPPN compositional pattern producing network.
DSL domain-specific language.
EA evolutionary algorithm.
eSNN evolving spiking neural networks.
GE grammatical evolution.
GEP gene expression programming.
HH Hodgkin-Huxley.
I&F integrated-and-fire.
l2l learning-to-learn.
LIF leaky integrated-and-fire.
LTD long-term depression.
LTP long-term potentiation.
MAML model-agnostic meta-learning.
MANN memory-augmented neural network.
MNIST Modified National Institute of Standards and Technology.
MSTDP modulated STDP.
MSTDPET modulated STDP with eligibility trace.
NEAT neuroevolution of augmenting topologies.
PPO proximal policy optimization.
ReSuMe Remote supervised method.
RNN recurrent neural network.
RSTDP reward-modulated STDP.
SNN spiking neural network.
SPAN spike pattern association neuron.
STDP spike-timing-dependent-plasticity.
TD-STDP temporal difference modulated STDP.
XOR exclusive OR.
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1
Introduction

Throughout the history of artificial intelligence, scientists and researchers have been striving for imit-
ating human brains. Human brains can perform complex tasks with extremely low power consumption.
The signal transmission in human brains is performed by electrical signals in the form of spike trains,
which is considered to be an important reason for the low consumption. Inspired by it, neuromorphic
hardware containing analog circuits has been invented (Mead, 1990). In recent decades, various neur-
omorphic chips have been developed such as the TrueNorth from IBM and Loihi from Intel (Modha,
2014; Davies et al., 2018). With the development of neuromorphic chips, research in spiking neural
networks (SNNs) which can be implemented in neuromorphic chips has become a popular research
topic in the field of artificial intelligence. Compared to conventional artificial neural networks (ANNs),
the working principle of SNNs is closer to that of the natural nervous systems. Regarding the neural
network architecture, a component usually ignored by conventional ANNs is the model of each neuron.
While in SNNs, biological neural models are implemented in individual neurons, where information is
only transmitted by the neuron when its membrane potential reaches the threshold of a spike (Gerstner
et al., 2014). Another major difference between conventional ANNs and SNNs is the format of real
information transmitted. Information transmission in ANNs is usually in the format of values and
involves large-scale and dense matrix operations. However, SNNs encode values to sparse spike trains
containing both spatial and temporal information. These unique features provide SNNs the potential
to be significantly more energy-efficient than conventional ANNs (Tavanaei et al., 2019), thus, favorable
for applications in power-constrained systems such as robotics and micro air vehicles.

Although the advantage of SNNs in reducing energy has been proved both theoretically and experi-
mentally (Merolla et al., 2014; Poon and Zhou, 2011), a critical problem of lacking efficient algorithms
for training SNNs remains unsolved, which limits the learning capability of SNNs. For training ANNs,
commonly used efficient learning algorithms are usually based on the backpropagation method, where
the neural networks are learned by computing the gradient of the loss function with respect to the
weights. However, the backpropagation algorithm fails to work as efficiently in SNNs due to the com-
plex neuron models and discrete spiking signals (Lee et al., 2016). Currently, SNNs are usually trained
using synaptic plasticity rules. Synaptic plasticity rules are learning rules based on the synapse con-
nection scheme discovered in biological nervous systems. They describe the strengthening or weakening
of synapse connection for pairs of pre- and postsynaptic neurons (Markram et al., 1997). When the
synaptic plasticity rules are used for training SNNs, the connection weights of the neural network are
represented by synapse connection strength. These learning rules can not only train SNNs to perform
pattern classification tasks without labels but also perform supervised learning tasks by introducing
teaching signals (Diehl and Cook, 2015; Ruf and Schmitt, 1997). Later research also proved that SNNs
can be trained to perform reinforcement learning tasks with reward modulated plasticity rules (Florian,
2007). Aside from learning with plasticity rules, evolutionary algorithms have also been implemented
for training SNNs recently (Hagenaars et al., 2020).

Different from the approaches mentioned above, the proposed project will apply the idea of meta-
learning to the training process of SNNs, which allows an automated search of learning rules. Meta-
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2 Introduction

learning is a broad field referring to the learning-to-learn in artificial intelligence (Schmidhuber, 1987).
The goal of meta-learning is to allow the neural networks to learn new tasks efficiently and therefore,
improve the learning capability of the learning algorithms. The idea of meta-learning has been exten-
ded to the field of SNNs for optimizing the learning process (Jordan et al., 2021; Risi and Stanley,
2010). Compared to training SNNs with synaptic plasticity rules on a specific task, the meta-learning
approach allows the learning rules to adjust dynamically based on the task family the network is trained
on. It can improve the generality and flexibility of the algorithm. Additionally, the process of searching
learning rules has the potential to unravel the mechanisms of synaptic plasticity in biological neural
systems, leading to the discovery of new effective learning rules.

1.1 Motivation and Research Question

As discussed before, the potential of decreasing power consumption makes SNNs ideal for low-power ap-
plications such as micro-robotics and drones (Tavanaei et al., 2019). The development of neuromorphic
hardware such as the Loihi chip also encourages the implementation of SNNs (Davies et al., 2018).
However, the major obstacle for wide applications of SNNs is the lack of effective learning algorithms.
Although synaptic plasticity-based learning algorithms are commonly used for training SNNs, the learn-
ing rules and implementation details are not universal. Original synaptic plasticity rules were derived
based on discoveries in biological neuron behaviours. However, they are usually modified based on the
task and network characteristics. For example, Guo et al. (2019) applied a softbound to the basic STDP
rule while Diehl and Cook (2015) implemented a triplet STDP rule. The derivation of plasticity rules
for a specific task usually requires a large amount of work. Additionally, there is a lack of comparison
between alternative learning rules for solving a certain type of task since an exhaustive comparison is
also time-consuming (Jordan et al., 2021). Thus, the goal of this research is to enhance the learning
capability of SNNs by developing an algorithm that evolves learning rules automatically. The research
objective is phrased as follows:

To achieve effective learning rules using local information for spiking neural networks
by means of evolutionary programming.

To realize the research objective, various questions need to be answered. The expression method of
learning rules and the evolutionary algorithm are the major problems to be solved. The type of task
that the SNNs will be trained on is selected to be continuous control problems since they are essential
applications of neural networks on robotics and they are relatively more complex than simple pattern
recognition tasks such as MNIST tasks. The main research question is then formulated:

How can effective learning rules be evolved for training a predefined spiking neural
network on continuous control problems?

To answer the main research question, several sub-questions need to be studied. Since the subjects to
be evolved are learning rules, how to describe the learning rule should be figured out. Additionally,
the input signals required for the evolutionary search and an appropriate evolution strategy should be
investigated. Thus, the main research question is divided into the following sub-questions:

• How can the learning rules be expressed?

• What are the input signals needed for the evolutionary search?

• What is an appropriate evolution strategy for the evolutionary search?
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1.2 Structure of the Report

The report is structured into three parts. Part II presents an overview of the literature on the related
topics. Starting from an introduction to the SNNs, the background knowledge in neuroscience, neuron
models, and general learning approaches are discussed. Then, the information on meta-learning is
presented including general categories of meta-learning and implementations in SNNs. A summary of
the information is given in the end of the literature review.

Part III discusses the preliminary experiments of the thesis. To obtain a better understanding of the
topic and analyze alternative solutions, in a total of three experiments with different settings were
performed. The methodology of the preliminary experiments is provided, where the logic flow between
the experiments and the settings for each experiment are given. The results for each experiment are
demonstrated afterward. Finally, the analysis of the preliminary experiments is presented.

The appendix is attached in the end as Part III.
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Evolving-to-Learn Reinforcement Learning Tasks with Spiking Neural Networks

J. Lu∗ , J. J. Hagenaars , G. C. H. E. de Croon
Micro Air Vehicle Laboratory, Delft University of Technology

Abstract
Inspired by the natural nervous system, synaptic
plasticity rules are applied to train spiking neu-
ral networks with local information, making them
suitable for online learning on neuromorphic hard-
ware. However, when such rules are implemented
to learn different new tasks, they usually require
a significant amount of work on task-dependent
fine-tuning. This paper aims to make this process
easier by employing an evolutionary algorithm that
evolves suitable synaptic plasticity rules for the task
at hand. More specifically, we provide a set of var-
ious local signals, a set of mathematical operators,
and a global reward signal, after which a Carte-
sian genetic programming process finds an optimal
learning rule from these components. Using this
approach, we find learning rules that successfully
solve an XOR and cart-pole task, and discover new
learning rules that outperform the baseline rules
from literature.

1 Introduction
In the 1990s, research progress in the field of neural dynamics
in biological nervous systems promoted the development of
spiking neural networks (SNNs) [Maas, 1997]. SNNs are a
special type of artificial neural network (ANN) composed of
biologically more realistic computational units. Similar to
the communication between biological neurons, information
transfer in SNNs is performed via spikes. A spike is a
discrete event that occurs when the membrane potential of
a neuron exceeds the threshold [Gerstner et al., 2014]. As
a result, neurons in SNNs are sparsely activated, giving
these networks the potential to perform computations more
energy-efficiently compared to conventional ANNs, which
communicate with dense, continuous values [Maas, 1997;
Stone, 2016]. For this reason, SNNs are promising for
power-limited applications. Additionally, the recent devel-
opment in neuromorphic chips has paved the way for the
hardware implementation of SNNs [Davies et al., 2018;
DeBole et al., 2019], and they have been trained successfully
with methods such as evolution [Howard and Elfes, 2014;

∗Contact Author

Hagenaars et al., 2020] or backpropagation of surrogate
gradients [Shrestha and Orchard, 2018; Neftci et al., 2019].
Nevertheless, these algorithms, making use of a lot of non-
local information, are not particularly suitable for on-chip
learning in neuromorphic hardware.

Efficient on-chip learning of SNNs can be realized through
synaptic plasticity rules like Hebb’s rule [Hebb, 1949] or
spike timing-dependent plasticity (STDP) [Markram et al.,
1997], or improved variants like Oja’s rule [Oja, 1982] and
triplet STDP [Pfister and Gerstner, 2006]. Some of these
learning rules were derived from experimental data [Artola et
al., 1990], while others were derived to optimize some metric,
like the efficiency of information transmission [Toyoizumi
et al., 2005]. Most research takes both factors into account
in the derivation process of the learning rule, but how much
each aspect is relied on is rarely specified. Additionally, the
discovery of alternative learning rules is usually a procedure
of trial-and-error, which can be a time-consuming task. To
solve these issues, Jordan et al. [2021] proposed an evolu-
tionary algorithm to discover the mathematical expressions of
synaptic plasticity rules. Genetic programming was applied
to evolve the rules to train SNNs on diverse tasks. The evolu-
tionary search successfully (re)discovered existing solutions
with high performance, and identified the essential terms for
training. In some tasks, the algorithm also evolved new
learning rules with competitive performance. However, since
this work was the first attempt to evolve symbolic synaptic
plasticity rules for SNNs, the tasks selected for the training
were relatively simple and the search space was confined to
the components present in existing solutions.

As an extension of [Jordan et al., 2021], we will implement
the same algorithm to evolve synaptic plasticity rules for
training SNNs, targeting reinforcement learning tasks with
increased task complexity and an expanded evolutionary
search space. The objective is to evolve synaptic plasticity
rules for solving reinforcement tasks, identify the critical
terms for successful learning, and discover new learning rules
with comparable or better performance.

This paper will start with an overview of related work and
the methodology in Section 2 and Section 3, respectively.
Next, Section 4 will present the results of the experiments.
We will end with a discussion of the experiments and results
in Section 5.



2 Related Work

The idea of evolving synaptic plasticity rules was first applied
to ANNs. To improve the learning capability of ANNs with
biologically plausible models, Bengio et al. [1991] optimized
the parameters of synaptic plasticity rules using gradient
descent and a genetic algorithm. Later, the generality of this
approach was demonstrated by applying it to learn simple but
diverse tasks: a biological circuit, a Boolean function, and
various classification tasks [Bengio et al., 2007]. Following a
similar approach, Niv et al. [2002] and Stanley et al. [2003]
evolved learning rules to train ANNs to perform reinforce-
ment learning tasks and automatic control tasks with adaptive
environments, respectively. In all these works, the optimiza-
tion of the learning rules is based on a parametric function,
which is usually an existing synaptic plasticity rule such as
Hebb’s rule. The optimizer only learns the coefficients of the
function. The main advantage of this approach is that fixing
the format of the learning rule constrains the search space
and reduces the computational effort. However, the robust-
ness and generality of this approach are compromised since
variables outside the parametric function are all excluded.

A more general method is to replace the symbolic learn-
ing rule with an ANN and optimize it for better learning
performance. The adaptive HyperNeat algorithm is a meta-
learning method that evolves the connection pattern and
weights of the ANN which encodes the learning rule [Risi
and Stanley, 2010]. This approach uses neuronal states such
as neuron traces and spike activities as inputs to the ANN,
which outputs the weight update of the synapse in question.
Recently, a similar approach has been implemented in the
neuromorphic hardware to optimize the training of SNNs in
basic reinforcement learning tasks [Bohnstingl et al., 2019].
This approach simplifies the adaptive HyperNeat algorithm
and only evolves the connection weights of the ANN. Both
works compared their approaches with methods that optimize
a parametric learning rule on the same tasks, and it was found
that optimizing the learning rule encoded by an ANN is more
robust to tasks with changing environments. The drawback
of this approach is also obvious. Since the learning rules
are expressed by ANNs, which are hardly interpretable, it is
difficult to analyze the learning behaviour and generalize the
evolved learning rules to learn other tasks.

With the development of computational neuroscience and
SNNs, various synaptic plasticity rules have been derived for
learning diverse tasks [Markram et al., 1997; Florian, 2017].
To come up with more general rules that can be applied to a
broader array of problems, researchers have proposed meta-
learning approaches that evolve and evaluate the symbolic
expressions of the synaptic plasticity rules. Different from the
previous methods that have a fixed function, the coefficients,
operators, and operands of the learning rule are all genomes to
be evolved in this approach. Jordan et al. [2021] implemented
Cartesian genetic programming (CGP) to evolve synaptic
plasticity rules for learning reward-driven, error-driven, and
correlation tasks. Confavreux et al. [2020] successfully
applied covariance matrix adaptation evolution strategy to
rediscover Oja’s rule and an anti-Hebbian rule. Compared to
the optimization algorithms discussed in the previous para-

graphs, these approaches evolve the entire expression of the
learning rule. They have a larger search space than methods
that only evolve coefficients. Therefore, they are also more
robust and flexible. Furthermore, the result of the evolution is
a mathematical expression of the learning rule, which makes
interpretation of learning behaviour easier. For these reasons,
we will follow a similar approach in this paper.

3 Methodology
3.1 Neuron Model
There are a number of neuron models with varying levels of
complexity and fidelity [Hodgkin and Huxley, 1952; Brunel
and van Rossum, 1907]. Because the evolution of learning
rules for training SNNs is computationally very expensive, a
neuron model with low complexity is favorable. Furthermore,
high fidelity regarding the biological neural system is not an
essential factor for succesful evolution. For these reasons,
the leaky integrate-and-fire (LIF) model is sufficient for the
spiking neuron simulation here. Analogous to an RC circuit,
the neuron membrane can be considered as a capacitor and
the membrane potential U varies with the current I flowing
into it, which is the summation process. When the membrane
potential reaches the spiking threshold, the neuron releases a
spike S and the membrane potential drops to the equilibrium
or resting value. The leaky behavior describes the decay of
the potential due to ion diffusion. The LIF model can be
expressed mathematically as follows:

Uk
i = (1− Sk−1

i )αUk−1
i + (1− α)Iki (1)

Iki =
∑

j

wijS
k
j (2)

where i, j indicate the post- and presynaptic neurons respec-
tively, and k indicates the simulation timestep. The constant
α is the membrane decay and w is the synaptic weight.

3.2 Reward Modulated Spike Timing Dependent
Plasticity (R-STDP)

STDP is a learning rule fitted to experimental data of bi-
ological neurons [Markram et al., 1997], and variants of
STDP have been widely applied for training SNNs. The
biological foundation is Hebb’s theory, which is summarized
as “cells that fire together wire together” [Hebb, 1949].
It was later extended with the long-term potentiation and
long-term depression phenomena discovered in the rabbit
hippocampus [Lømo, 1966]. The LTP phenomenon shows
that a long-term increase in synaptic strength occurs when
the postsynaptic neuron fires after the presynaptic spike in
a certain time window. Oppositely, a long-term decrease
takes place when the postsynaptic neuron fires before the
presynaptic spike in a certain time window. Thus, in the basic
STDP learning rule, synapse strength change is a function of
the time difference between the pre- and postsynaptic spikes.
In some variations of the basic STDP, the eligibility trace
of the pre- and postsynaptic neurons or synapses are used
to represent the time difference of spikes. To further imi-
tate the reward driven learning behaviour in nature, reward-
modulated STDP (R-STDP) introduces a reward signal in the



Figure 1: Two learning loops of the evolving-to-learn algorithm.
The outer loop evolves the learning rule f(...) to learn the task in the
inner loop. The output of the inner loop is the fitness of the learning
rule, which is used to select better learning rules.

learning rule, making it suitable for training SNNs to perform
reinforcement learning tasks. An example is the MSTDPET
rule proposed by Florian [2017]:

wij(t+∆t) = wij(t) + γR(t+∆t)Eij(t+∆t) (3)

Eij(t+∆t) = Eij(t)e
−∆t/τz + ξij(t) (4)

ξij(t) = X+
j (t)Si(t) +X−

i (t)Sj(t) (5)

X+
j (t) = X+

j (t−∆t)e−∆t/τ+ +A+Sj(t) (6)

X−
i (t) = X−

i (t−∆t)e−∆t/τ− +A−Si(t) (7)

where γ is the learning rate and ∆t is the simulation timestep.
The reward R is updated at each timestep. The eligibility
trace at each synapse Eij is a low-pass filter over synaptic
activity ξij , which has a pre-before-post (+) and a post-
before-pre (−) term. All τs represent decay time constants.
Constants A± scale the contributions of spikes S to the
neuron activity traces X±.

3.3 Evolving-to-learn
The evolving-to-learn algorithm proposed by Jordan et
al. [2021] can be considered as an optimization-based meta-
learning algorithm with two loops, as visualized in Figure 1.
The outer loop is an evolutionary search for the mathematical
expressions of learning rules, which will be performed with
CGP [Miller, 2007]. The learning rules are represented by an
indexed 2D Cartesian graph. The graph has a fixed number
of input, output, and internal nodes. Each internal node has a
string of three integers: the first integer indicates the operator
and the other two integers indicate the index of nodes to be
connected. The output of the internal nodes can also be used
as input to other internal nodes.

At the beginning of the evolution, the indexed graphs are
randomly initialized. After each generation, the µ best solu-
tions will be selected as parents and an offspring of size λ will
be generated from the parents through mutation. Mutation
can take place in both the operators and the connection of
the nodes. An example of CGP with three columns and three
rows is shown in Figure 2.

Learning rules generated by CGP will then be used to train
SNNs to perform a particular task in the inner loop. The
performance of the inner loop is in turn the fitness of the outer
loop for the evolution. Summarized, the algorithm can be
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Figure 2: An example of the mutation in CGP. The left graph
shows the mutation in the operator. The first index 1 is replaced
by 0, the minus operator is mutated to a plus sign. The right graph
shows the mutation in the operand. The index corresponding to the
input x2 is mutated to the index of the input x1.

described by the following steps:1

1. Define the task to be learned for the inner loop and the
fitness function.

2. Design the SNN architecture and determine encoding-
decoding methods.

3. Specify the input signals for the evolutionary search.

4. Perform the evolution to discover learning rules with
high fitness.

The same procedure will be implemented in our exper-
iments. However, different from the work of Jordan et
al. [2021] which used only the input signals of baseline learn-
ing rules, we also included neuronal states such as spikes and
neuron traces, in order to give the evolution more freedom.
Hyperparameters such as the membrane decay and threshold
of spike are not included in the evolution; they are pre-tuned
with the baseline learning rule and remain fixed.

4 Experiments
4.1 XOR Classification
We first test the proposed method on the elementary XOR
classification task. Each XOR input is encoded as a spike
train of 500 timesteps. 50 spikes are randomly distributed
within the interval, generating two distinct patterns for 0 and
1 respectively. At the beginning of each learning epoch,
different sets of input patterns are generated as training and
test samples. The SNN has three layers of LIF neurons: 2
input neurons, 20 hidden neurons, and a single output neuron.
The classification depends on the total number of output
spikes. The output will be 1 if the output neuron spikes more
than the average output spikes of one learning cycle; else, the
output will be 0.

As a baseline learning rule, we use the MSTDPET
rule [Florian, 2017], as given in Equations 3-7. Differ-
ent from the Urbanczik and Senn’s rule used in [Jordan
et al., 2021], MSTDPET updates connection weights every
timestep of the simulation. Therefore, the reward should also
be assigned to the network at each timestep. If the correct
output is 1, a reward of 1 will be assigned to the synapse

1Code will be made open-source upon publication.



for each output spike released. If the correct output is 0, the
reward is −1 for each output spike released. In the absence
of output spikes, the reward for both cases is 0.

As discussed before, the signals available to the baseline
learning rule will be included in the evolution, which in this
case are Eij and R. To expand the search space and endow
more freedom to the evolutionary search, neuronal states that
play a role in biological synaptic plasticity are also made
available to the evolution: pre- and postsynaptic spikes Si and
Sj , and pre- and postsynaptic neuron traces with two different
decays ei1, ei2, ej1 and ej2. The general form of the learning
rule is then expressed as follows:

∆wij = γf(Eij , R, Si, Sj , ei1, ei2, ej1, ej2) (8)

Since the weight initialization is performed randomly,
there can be cases that the initialization is already near an
optimal solution, resulting in good performance, and also
cases where the initialization is unfavorable for learning.
Thus, each individual performs three trials of the experiment
in the evolutionary search. The fitness function is defined to
be the average of the end test accuracy of the three trials.

The results of 10 evolutionary runs are shown in Fig-
ure 3(a-b). It shows that two of the learning cycles suc-
cessfully evolved the MSTDPET learning rule within 100
generations. Besides, it can be noticed that the term ER
appeared in all of the evolved learning rules with high fitness,
indicating that it is critical for learning the XOR task. This
can be explained as follows. With temporal encoding, the
two input neurons will spike simultaneously for pattern 0.
Synapses between a postsynaptic neuron and the two input
neurons will have an identical E at each timestep. Receiving
a negative reward for each output spike released, the synapse
weights will also be decreased by the same amount. However,
when the label of the input is 1, the two input spike trains
will be different. If the synapse connection is strong, there
is a larger possibility that the postsynaptic neuron will spike
right after the presynaptic spike resulting, in a larger synapse
trace. Oppositely, connections with smaller weights tend to
have smaller synaptic traces. Thus, after a number of learning
cycles, strong connections will be stronger and the weak get
weaker, which is a pattern favorable to solving the XOR task.

Aside from rediscovering the baseline learning rule, a
learning rule that achieved a better performance was discov-
ered, which has the expression E(Sj + R) + Sj . In addition
to the synapse trace and reward, the presynaptic spike is
also included in the learning rule. Similar to the MSTDPET
rule, the evolved rule learns the XOR task by increasing the
strength difference between the synapses connected to the
two input neurons. With the baseline learning rule, weights
will only be updated when the postsynaptic neuron spikes.
The evolved rule also updates weights when the presynaptic
neuron spikes. For pattern 0, weights of synapses connected
to both input neurons will increase identically when there
is only a presynaptic spike and decrease when there is only
an output spike. For pattern 1, both the presynaptic spike
and output spike will increase the strength difference between
the synapses connected to two input neurons, thereby speed-
ing up the learning as shown in Figure 3(c). Figure 3(d)
demonstrates that after 500 learning epochs with the evolved

(a)

(b)

(c)

(d)

Figure 3: Results of the evolution for learning the XOR task.
(a) The learning curve of the evolutionary search shows the fitness
of the best solution at each generation. The grey curves are trials
that failed to discover solutions with performance comparable to
the baseline learning rule; the others are successful trials. The
evolutionary process is also shown in the plot for the best learning
trial. (b) The final evolved learning rules of the successful trials were
validated with 50 random learning cycles. The average test accuracy
at the end of the learning with the inter-quartile range (IQR) is
plotted. (c) The plot shows the average variation of the difference
between the weights connected to the two input neurons for both
the baseline learning rule and the best evolved solution. The shaded
area represents the IQR. (d) The output spike trains before and after
learning with the evolved learning rule are visualized.
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Figure 4: The architecture of the SNN for the cart-pole task.
Each blue circle represents five neurons for negative values and each
red circle represents five neurons for positive values. Only the input
neurons corresponding to the angular velocity are used in the final
experiment.

learning rule, the output spikes rate for input [0, 1] and [1, 0]
is significantly larger.

4.2 Cart-pole Task
Next, the same evolving-to-learn approach was implemented
to learn plasticity rules for training SNNs to perform the
cart-pole task. The CartPole environment of OpenAI Gym2

was used, where four observation states were available: cart
position, cart velocity, pole angle, and pole angular velocity.
The actions of the system are discrete: a force exerted on
the cart towards the left or right. The SNN has two layers:
an input layer of pairs of Poisson encoders and 2 output
neurons. Each pair of Poisson encoders has 5 neurons for
positive values and 5 neurons for negative values. The
Poisson encoders convert the absolute value of the input
state into a spike train with 50 network simulation timesteps.
One of the binary encoders will be activated according to
the sign of the state. An episode is a simulation cycle of
the cart-pole with a number of environment timesteps. For
each environment timestep, the model will receive a set of
observation states. After being encoded into spike trains, the
SNN will go through the network simulation. At the end of
the network simulation, the system will take an action based
on the output of the model. The 2 output neurons control
the action of the cart. If the output neuron corresponding
to the left action spikes more than the other neuron, a force
towards the left will be applied to the cart. Otherwise, a force
towards the right will be exerted. The architecture of the SNN
is visualized in Figure 4.

After the system takes an action, the model will receive a
reward from the environment. If the action is to the left and
causes the pole to move to the center, the synapses connected
to the left output neuron will receive a positive reward while
the other synapses will receive an opposite reward. If the
action to the left causes the pole to fall, the connection with
the output neuron corresponding to the left will receive a
negative reward, and the other connections will receive a
positive reward.

The baseline learning rule for learning the cart-pole task is
the multiplicative R-STDP rule used in [Shim and Li, 2017]

2https://gym.openai.com/envs/CartPole-v1/

to learn robot control tasks:

wij(t+∆t) = wij(t)+ γR(t+∆t)Eij(t+∆t)wij(0) (9)

Different from MSTDPET, this learning rule involves the ini-
tial weight at the beginning of the learning window wij(0) to
boost the performance. However, the problem with applying
this learning rule is that the reward has to be available at each
network simulation timestep while the SNN model will only
receive the feedback after taking an action at the end of the
network simulation. To solve this issue, the neuronal states
at each network timestep were stored during the simulation.
After the action is taken, the weight will be updated with the
reward and stored states. Next, it was noticed that the baseline
learning rule failed to perform the cart-pole task stably. This
is because in cases where the pole falls and pushes the cart
to move fast, the output gets dominated by a large-magnitude
state, leading to very-high-rate input spike trains. For this
reason we modified the experiment: 1) instead of receiving
all four states (cart position, cart velocity, pole angle, and pole
angular velocity), the network receives only the pole angular
velocity (most essential information); 2) the network weights
were only updated during a certain amount of timesteps at the
beginning of each episode.

Similar to the XOR task, pre- and postsynaptic neuron
activities and traces are also included in the evolution along
with the input variables of the baseline learning rule. The
synaptic plasticity rule can be expressed as follows:

∆wij = γf(Eij , R, fi, fj , ei1, ei2, ej1, ej2, wij(0)) (10)

During the evolution, each candidate learning rule has three
random trials of the task and each trial has 50 episodes. The
maximum lifespan is 100 environment timesteps, and the
episode will be terminated when the pole angle exceeds 15◦.
The fitness of the candidate learning rule is measured by the
average time balance time of the last 5 episodes.

The results of 10 evolution runs are shown in Figure 5(a-
b). It can be noticed that one of the evolution runs resulted
in the baseline learning rule exactly and another run evolved
a similar expression with comparable fitness: Rw(0)(E −
1). For strong connections with large synaptic traces, the
additional constant term is negligible and, therefore, has little
influence on the learning performance. There are also two
evolution runs that obtained high fitness during the evolution.
However, they had an unstable learning performance and
achieved a lower fitness in the validation. More importantly,
the evolution also discovered a learning rule which obtained
higher fitness and a more stable learning performance than
other rules: ∆wij(t) = γtR(t)Eij(t)wij(0)

2. Compared to
the baseline learning rule, it includes all the inputs from the
multiplicative R-STDP (Equation 9), but the initial weight has
a power of two. It boosts the learning performance compared
to the baseline learning rule as shown in Figure 5(c). When
the strong connection results in the correct action and obtains
a positive reward, the learning rule will further strengthen the
connection pattern. However, when the strong connection
results in a wrong action and obtains a negative reward, the
learning rule will decrease the strong connection weights and
increase the weak connection weights. The wij(0)

2 term will
lead to the desired pattern faster. Figure 5(d) demonstrates
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Figure 5: Results of the evolution for learning the cart-pole task.
(a) The learning curve of the evolutionary search shows the fitness
of the best solution at each generation. The grey curves are trials
that failed to discover solutions with comparable performance as the
baseline learning rule, the others are successful trials. The evolution
process is also shown in the plot for the best learning trial. (b) The
final evolved learning rules of the successful trials were validated
with 50 random learning cycles. The average test accuracy at the end
of the learning with IQR is plotted. (c) The plot shows the average
learning curves of 50 validation runs for both the baseline learning
rule and the evolved learning rule. The shaded area represents the
IQR. (d) The agent behaviour trajectory of one episode before and
after learning with the evolved learning rule are visualized. To show
the entire trajectory, the episode was not terminated when the pole
angle exceeded 15◦.

that the pole remained balanced for the entire episode after
50 learning epochs with the evolved learning rule.

5 Discussion
In this article, we applied an evolving-to-learn algorithm to
evolve mathematical expressions of synaptic plasticity learn-
ing rules using local input signals. The algorithm successfully
learned learning rules for training SNNs on the XOR and
cart-pole task. As demonstrated by the experiment results,
both the XOR and cart-pole experiments (re)discovered the
baseline learning rules and identified the essential terms for
solving the tasks. This approach allows for better generaliza-
tion of the synaptic plasticity rules to other similar tasks, since
the learning rule can be customized based on these essential
terms. Meanwhile, compared to previous work [Jordan et
al., 2021; Confavreux et al., 2020], we expanded the search
space and solved a more complex problem in the form of the
cart-pole task, further proving the generality of the algorithm
and the flexibility of the evolutionary approach. Additionally,
for both experiments we discovered a new learning rule with
higher performance and stability than the baseline solution.

During the experiments, the significance of the prior
knowledge in the existing synaptic plasticity rules was re-
vealed. Not only because the baseline learning rule provided
a part of the input signals, but also because preliminary
learning was necessary for tuning the hyperparameters of the
network model to ensure that the model was active for solving
the task. However, since the hyperparameters were fixed
during the evolution, it may discourage the discovery of new
learning rules which work with other sets of hyperparameters.

Moreover, there is a part of the experiment that is usually
neglected by other works and other research on synaptic
plasticity learning for SNNs. In this work, it was found that
the design of the experiment has a large influence on the
evolution of the learning rule. For instance, the encoding
and decoding, the definition of the reward are all elements
that are important to training the SNN model. If one of
these elements is not properly defined, it can lead to low
performance for both the evolution as well as the learning
rules themselves. These design decisions are usually made
through trial-and-error and iteration during the experiments.
Therefore, although the evolving-to-learn algorithm reduces
the workload for manually deriving and comparing different
synaptic plasticity rules, there is still a large amount of work
for designing the experiment properly.

In conclusion, the evolving-to-learn algorithm is an effec-
tive tool for helping to understand the learning procedure of
an existing synaptic plasticity rule and assisting the manual
generalization of the learning rule. It is also capable of
discovering and optimizing learning rules with a predefined
experimental setup. However, due to the dependence on prior
knowledge and the sensitivity to the design decisions, the
algorithm is not yet able to fully automatically discover new
learning rules for a random new task. One next step towards
a higher level meta-learning of synaptic plasticity rules can
be including an automatic tuning of the hyperparameters in
the evolution, which may allow the discovery of more new
learning rules with the corresponding hyperparameters.
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A Hyperparameters
Table 1 lists the hyperparameters used in the SNNs and
evolution for XOR and cart-pole tasks respectively.

Hyperparameters XOR Cart-pole
number of spikes per pattern (N ) 50 -
number of patterns per training epoch (M ) 4 -
number of episode per epoch (Nep) - 100
simulation duration (T ) 500 50
environment duration (Tenv) - 100
number of training epoches (Ne) 500 50
SNN architecture [2, 20, 1] [10, 2]
membrane potential decay (τV ) 10 10
synapse trace decay (τe) 100 100
spike threshold (θ) 100 1
activity decay (τ+, τ−) 10 2
pre- and postspike constants (A+, A−) +1, -1 +1.5, -0.5
reward (R) +1, -1 +1, -0.5
leanring rate (η) 5 e-3 e-5
number of parents (µ) 20 50
number of offsprings (λ) 20 50
number of generations (Ng) 100 100
CGP architecture 2 × 12 2 × 12
operators + - × \constantfloats + - × \constantfloats
mutation rate 0.3 0.3

Table 1: Hyperparameters for the XOR and cart-pole experiments.
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2
Spiking Neural Networks

Along with the development of artificial intelligence, artificial neural networks have also been evolving
throughout the decades. According to Maass (1997), neural networks can be classified into three
generations. Starting from the computation units based on the McCulloch-Pitts models, which are
also referred to as perceptions and threshold gates, various neural networks were generated. Although
the neural networks in this stage only generate digital outputs, they already had the ability to model
Boolean functions. What is now commonly referred to as ANN is the neural network of the second
generation. The activation functions started playing an important role in the neural networks, which
allows the networks to generate continuous outputs and learn more efficiently. ANNs in the second
generation such as the feed-forward neural networks have been rapidly developed into a powerful tool
for solving artificial intelligence tasks in various fields. However, the learning algorithms of ANNs of the
second generation are usually based on the gradient descent method such as backpropagation, which
are efficient for learning but not biologically plausible (Bengio et al., 2015). In order to improve the
biological plausibility of the learning algorithms of ANNs and further mimicking the natural neural
systems, research in spiking neural networks (SNNs) has risen in recent decades. SNNs are known
as third-generation neural networks. Compared to ANNs, SNNs are more bio-mimetic. SNNs are
composed of biological neurons which emit spikes. An introduction to the SNNs will be presented
in this chapter starting from a brief discussion of its background in neuroscience in section 2.1. In
section 2.2, several commonly used neuron models will be introduced. It is followed by an introduction
to the typical learning algorithms for SNNs in section 2.3.

2.1 Neuroscience Background

The nervous system in nature is a highly complex system that transmits signals and coordinates actions
towards changes in the environment. Because of its significant functions and importance in biological
systems, there are various interests in neuroscience that study the nervous system from different as-
pects. For the field of bio-inspired artificial intelligence, the understanding of the neurons and the signal
transmission plays an important role. Thus, the following paragraphs will introduce the nervous system
from these aspects based on the book of Gerstner et al. (2014).

Neurons are the elementary processing units in biological nervous systems. Ideal neurons consist of
three components: dendrites, soma, and axon as distinguished in the sketch in Figure 2.1. These com-
ponents analogize the input device, the central processing unit, and the output device in a computer.
Dendrites collect input signals from other neurons and transmit them to the soma. The input signal
will then accumulate in the soma. Once the total accumulated signal exceeds a certain threshold, the
axon will generate an output signal and deliver it to other neurons. Neurons are connected by synapses.
For a pair of connected neurons, the neuron which delivers the output signal is called the presynaptic
neuron and the neuron which receives the signal is called the postsynaptic neuron. The signals trans-
mitted between neurons are in the form of electrical pulses, which are also known as action potentials
or spikes. The signal sequence generated by one neuron is the spike train. One single spike does not
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18 Spiking Neural Networks

contain information, but it is the pattern of the spike train that encodes the information for transmission.

Figure 2.1: Sketch of a single neuron by Ramón y Cajal adapted from Gerstner et al. (2014).

The signal transmission between neurons relies on the potential difference between the interior of the
neuron and the surroundings. When there is no input signal, the neuron is at a constant resting mem-
brane potential. The membrane potential changes at the arrival of input signals and decays with time
until reaching the resting membrane potential again. Synapses can be categorized into two different
types based on the sign of the potential variations: excitatory synapses lead to positive changes in
potential while inhibitory synapses result in negative changes.

The scheme of the potential variation is different between neurons in different nervous systems. In the
case of a nervous system with chemical synapses, the axon of the presynaptic neuron releases chem-
ical substances when its membrane potential is above the firing threshold. The chemical substances
are known as neurotransmitters. The receptor in the dendrite of the postsynaptic neuron will detect
the neurotransmitters and thereafter open specific channels of corresponding ions. The ions flow into
the neuron cell and cause changes in the membrane potential. A sketch of the variation of the mem-
brane potential of an excitatory synapse with spikes received from the presynaptic neuron is shown
in Figure 2.2. The green pulses indicate the incoming spike train. The blue curve demonstrates that
the membrane potential rises when the spike arrives and decays with time. When the accumulated
membrane potential reaches the firing threshold V , the neuron will release a spike and the membrane
potential will drop below the rest potential urest. The neuron will then enter the refractory phase when
the neuron is inactive to input spikes until the membrane potential rises to the rest level again.

Figure 2.2: Variations of action potential adapted from Paugam-Moisy (2012).
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2.2 Neuron Models

Based on the discoveries and experimental data in the field of neuroscience as mentioned before, the
neurons can be expressed by a mathematical model to mimic the membrane potential variations of
neurons in nature. The mathematical model is therefore called the neuron model. The neuron models
are not only applied in research in neuroscience but also implemented as the unit components of SNNs.
Neuron models in SNNs will respond to input signals and transmit signals like biological neurons. There
are various neuron models with different fidelity and complexity, which can be selected for tasks with
different requirements in accuracy and computational cost. This section will introduce three commonly
used neuron models in the field of SNNs: the Hodgkin-Huxley model, the integrate-and-fire model, and
the Izhikevich model.

2.2.1 Hodgkin-Huxley (HH) model

The Hodgkin-Huxley (HH) model developed by Hodgkin and Huxley (1952) is considered the most
accurate mathematical neuron model. It includes all the elements of the neuron into the model and
treats them as electrical components. The model treats the lipid bilayer as a capacitance Cm. The
electrochemical gradients are considered as voltage sources E for each type of ion flux. In the original
HH model, the neuron membrane has three ion channels: the leakage channel, Sodium channel, and
Potassium channel. Hodgkin and Huxley discovered that the conductance of the ion channels is a
function depending on the voltage and time (voltage-gated). Thus, each voltage-gated ion channel can
be represented by a nonlinear conductance g and the value of the conductance varies with the open or
close of the channel. The main achievement of the HH model is it successfully describes the conductance
of each ion channel as a function of time and voltage and introduces “gating” variables m,n, h, which
represent the possibility of the open or close of the channels respect to time. The conductance of the
leaky channel is a constant value gL. Along with the current source I, the mathematical expression of
the HH model can be represented by the following set of four ordinary differential equations:

Cm
dv

dt
= −gL(V − EL)− gNam3h(V − ENa)− gKn4(V − EK) + I (2.1)

dn

dt
= αn(V )(1− n)− βn(V )n (2.2)

dm

dt
= αm(V )(1−m)− βm(V )m (2.3)

dh

dt
= αh(V )(1− h)− βh(V )h (2.4)

where α and β are rate constants that depend on voltage.

The HH model can describe complex biological processes. However, it is seldom used in large-scale
simulations due to its complexity. To reduce the computational cost, there are also some simplified
representations of the HH model such as the BVP model proposed by FitzHugh (1961), which ignores
several neuron behaviors.

2.2.2 Integrate-and-Fire (I&F) model

The Integrate-and-fire model (I&F) proposed by Brunel N. (1907) is the most widely used neuron as
a first and rough approximation of the neuron to prove analytical results and understanding the basic
properties of large networks of neurons. Compared to the HH model, I&F is much simpler since it
only describes two key mechanisms of the neuron dynamics: the summation process and the trigger of
action potentials. The summation process is the potential variation due to the incoming current. In
analog to an RC circuit, the neuron membrane can be considered as a capacitor with a capacitance of
Cm, and the membrane potential increases with the current flowing into it. When the potential reaches
the spiking threshold, the neuron releases a spike and the membrane potential drops to the equilibrium
value Em, which describes the trigger of action potentials.
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There are various variations of the I&F model, a commonly used model is the leaky integrate-and-fire
(LIF) model. The LIF model also includes the leaky behavior of the membrane, which allows the current
to flow across the membrane with a resistance of Rm. The mathematical expression of the LIF model
is shown below:

Cm
dV

dt
= −V − Em

Rm
+ I (2.5)

Another variation of the I&F model is the adaptive integrate-and-fire model, which involves the leaky
integration voltage and adaptation variables. By including adaptation variables, the model describes
the neuronal adaptation referring to the variation of the firing threshold with time. An advanced model
is the fractional-order LIF model. Instead of using several adaptation variables, the fractional-order
LIF model uses a single adaptation variable to describe the variation of membrane potential with time
(Gerstner et al., 2014).

2.2.3 Izhikevich Model

The Izhikevich model (Izhikevich, 2003) is a neuron model that keeps a good balance between fidelity and
computational cost. It is also inspired by the Hodgkin-Huxley model but only involves four parameters
and two differential equations. Thus, the Izhikevich model is much less computationally expensive than
the HH model. In the meantime, it is relatively more biologically accurate than the I&F model. Apart
from the basic mechanisms of the neuron dynamics as described by the integrate-and-fire model, it is
also capable of describing the bursting behavior of cortical neurons. The mathematical expressions of
the model are two ordinary differential equations shown in Equation 2.6 and Equation 2.7.

dv

dt
= 0.04v2 + 5v + 140− u+ I (2.6)

du

dt
= a(bv − u) if v ≥ 30mV, then

{
v = c

u = u+ d
(2.7)

Variables v and u are membrane potential and membrane recovery variables respectively. The para-
meters a,b,c,d are dimensionless constants that describe the characteristics of the recovery variable and
membrane potential.

2.3 Learning in Spiking Neural Networks

Although SNNs are favorable for the low computational cost, they are not yet widely used in practical
applications. One critical problem is the difficulty in training SNNs effectively. Nowadays, the learning
algorithms in the field of SNNs can be categorized into four approaches: unsupervised learning, super-
vised learning, reinforcement learning, and neuroevolution. The principle of each learning approach will
be introduced in this section along with several examples.

2.3.1 Unsupervised Learning

Similar to unsupervised learning in ANNs, unsupervised learning in SNNs is also intended for learning
tasks without labels. The main difference is that unsupervised learning in SNNs is usually based on the
synaptic plasticity mechanism in biological neural systems. The first explanation of synaptic plasticity
is the theory proposed by Hebb (1949), which is also known as Hebb’s rule. Hebb proposed that
the synaptic connection between two adjacent neurons enhances if one neuron fires immediately after
the other repeatedly, and reduces otherwise. It is also summarized as ”cells that fire together wire
together”. Hebb’s rule was later proved by the long-term potentiation (LTP) and long-term depression
(LTD) phenomena discovered in the rabbit hippocampus (Lømo, 1966). It was found that a long-term
increase in synaptic strength occurs when the postsynaptic neuron fires after the presynaptic neuron
in a certain time window, which is named the LTP phenomena. Oppositely, a long-term decrease
takes place when the postsynaptic neuron fires before the presynaptic neuron in a certain time window.
Later in 1996, Markram demonstrated the spike-timing-dependent plasticity (STDP) rule based on
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the qualitative expression of the LTP phenomena and LTD phenomena discovered with dual patch
clamping techniques (Markram et al., 1997). Compared to Hebb’s rule, STDP emphasizes the effects
of the temporal order of the neuron pairs. The mathematical expression of the STDP rule was later
established by Song et al. (2000) as shown in Equation 2.8.

F (∆t) =


A+ exp(∆t/τ+) if ∆t < 0

A− exp(−∆t/τ−) if ∆t > 0
(2.8)

The synaptic strength is represented by the peak conductance of the synapse. The equation describes
the relationship between the synaptic strength and the time difference between the pre- and postsynaptic
spikes ∆t. The time difference is computed as ∆t = tj − ti, where tj is the time of the presynaptic
spike and ti is the time of the postsynaptic spike. When ∆t is negative, the presynaptic neuron spikes
before the postsynaptic neuron resulting in the LTP phenomena. Thus, the amplitude A+ is positive.
Oppositely, the amplitude for the LTD phenomena A− is negative. The constants τ+ and τ− are positive
parameters describing the time window of the LTP and LTD phenomena respectively. In other words,
they determine the time interval between the presynaptic and postsynaptic spikes over which distinct
synapse variation occurs. In the experiments of Song et al. (2000), they found a typical time window of
20ms for both τ+ and τ−. Below is a visualization of the model proposed by Song et al. (2000) as shown
in Figure 2.3. The figure shows rough equality between the LTP and LTD phenomena. However, there
are experimental discoveries demonstrating that synaptic weakening has a larger effect than synaptic
strengthening (Gerstner et al., 1997). It can also be realized by varying the amplitude and time window
of the model.

Figure 2.3: Visualization of the STDP mathematical model proposed by Song et al. (2000)

Later experiments also found that the original STDP model with pairs of presynaptic spikes and post-
synaptic spikes can not fully describe the communication scheme for all types of neurons (Morrison et
al., 2007). Morrison et al. (2008) developed a symmetric triplet model for the cortical neurons. STDP
of a triplet model depends on three connected neurons: pre-post-pre or post-pre-post. A variation
of the triplet model was proposed by Pfister et al. (2006). Aside from neuron and synapse paramet-
ers in the original STDP rule, they also involved traces of the pre and postsynaptic neurons in the model.

Theories in synaptic plasticity have been adapted and implemented in training SNNs with unsupervised
learning algorithms in recent years. Diehl and Cook (2015) applied both the original pair-based STDP
and triplet STDP on training a two-layer SNN on the MNIST task. They also implemented the concept
of eligibility trace at each synapse in their learning rule and updated it at each timestep. The network
trained with the triplet STDP achieved a test accuracy of 95% in the end. The performance of the one
trained with the pair-based STDP is slightly lower, but also obtained an accuracy of around 93%. Guo
et al. (2019) implemented a variation of the standard pair-based STDP model, where a softbound was
applied to the synapse strength (Kistler and Hemmen, 2019). The STDP characteristics were designed
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according to the resistive random access memory (RRAM) devices. By training the SNNs on MNIST
successfully, they revealed the feasibility of performing unsupervised learning in RRAM array-based
neuromorphic systems.

2.3.2 Supervised Learning

Supervised Learning is referred to train neural networks by mapping input to target output on tasks
with labeled training data. One of the most popular learning algorithms for supervised learning is
backpropagation. It is a gradient-based method that updates connection weights by computing the
gradient of the loss with respect to weights for each pair of input and output in the training dataset.
The loss is a function that depends on the difference between the output and the label, which is usually
cross-entropy or minimum square loss. Backpropagation is widely used in training ANNs since it is
fast, simple, flexible, and general. Attempts have also been made to train SNNs with backpropagation.
However, the discrete nature of SNNs makes it difficult for computing gradients.

There are several solutions that deal with discreteness. They are categorized into two approaches by
Neftci et al. (2019). The first approach smooths the SNN model to obtain a well-behaved gradient for
direct optimization, which can be realized by various methods such as softening the nonlinearity of the
neuron model or applying a rate-based coding scheme. A widely used solution of the first category is
the SpikeProp algorithm proposed by Bohte et al. (2002), which is also one of the earliest backpropaga-
tion algorithms for training SNNs. In their method, all the neurons are only allowed to spike once.
The gradients of the hidden layers are computed by linearizing the analytical expressions of the fire
time. The loss is defined as a function depending on the time difference of the output spikes and target
spikes. They implemented the SpikeProp in a multi-layer feed-forward SNN and successfully learned the
XOR classification task. The SpikeProp algorithm was further improved and expanded by including the
neuron decay and spike threshold to weight update and applying adaptive learning rate (Schrauwen and
Van Campenhout, 2004; Fang et al., 2012). The enhanced SpikeProp algorithm has faster convergence
and can be applied in non-linear neuron models. However, the algorithm based on SpikeProp can not
be used to train complex tasks due to the limitation that neurons are only allowed to spike once. A
breakthrough is an algorithm proposed by Booij and Nguyen (2005), they only limited the neurons in
the output layer to spike once while neurons in the input and hidden layers had no limitation in spikes.
A similar approach is a Multi-SpikeProp algorithm raised by Ghosh-Dastidar and Adeli (2009). Both
algorithms showed better performances in more complex tasks than the original SpikeProp. The second
approach implements surrogate gradients instead of changing the model. Surrogate gradients can adjust
the locality of the optimization algorithm or replacing the derivative of the spiking nonlinearity with
that of a smooth function (Neftci et al., 2019).

Apart from training with backpropagation, synaptic plasticity can also be implemented in supervised
learning of SNNs by introducing teaching signals. The first example that applies the Hebbian rule in
supervised learning of SNNs is the research done by Ruf and Schmitt (1997). They used the time of
the target spikes as the teaching signal, and the output neuron learned to spike at the targeted time by
updating the synaptic connection with the time difference between the output spike and the target spike.
Another popular supervised learning algorithm for SNNs is the remote supervised method (ReSuMe),
which applied the STDP rule on the weight update as shown in Equation 2.9:

∆W = (Sd(t)− Si(t))[ad +
∫ ∞

0
adi(s)Sj(t− s)ds] (2.9)

where Sd(t), Si(t), Sj(t) are target spike train, postsynaptic spike train, and presynaptic spike train re-
spectively. The sign of ad indicates the type of synapse, positive is for excitatory synapse and negative
for inhibitory synapse. The function adi describes the learning window of the STDP rule.

The ReSuMe has been successfully applied on training single-hidden-layer SNNs in various temporal
or spatial pattern classification and recognition tasks. The algorithm was further expanded to multi-
hidden-layer SNNs by applying the SpikeProp method, which allows the learning of complex pattern
classification tasks.
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In addition to backpropagation and synaptic plasticity approaches, another widely used method for
training SNNs with supervised learning is converting ANNs to SNNs. This approach uses a kernel
function to convert the spike trains to convolutionary signals, then training the networks as the su-
pervised learning of ANNs. An example is the Spike Pattern Association Neuron (SPAN) algorithm
proposed by Mohemmed and Schliebs (2012). They used the kernel function α(t) = eτ−1te−t/τH(t) to
convert the spike train signals, where H(t) is the Heaviside function. After the signals are converted to
convolutionary functions, the weights can be updated by the Widrow-Hoff rule.

2.3.3 Reinforcement Learning

Reinforcement learning is a bio-inspired learning mechanism that trains the intelligent agent to take
actions based on observations of the environment to maximize the reward (Hu et al., 2020). The basic
model of reinforcement learning can be described by the Markov decision process (MDP) (van Otterlo
and Wiering, 2012). The model consists of four elements: the state space S, the action space A, p
representing the probability of a certain transition of state under the action, and r is the reward of an
action that results in a certain transition of states. Figure 2.4 demonstrates an example of an MDP,
where the state space consists of three states and the action space consists of two actions. The values
besides the black arrows indicate the possibility of transition between two states under the action a.
The goal of reinforcement learning is to find an action policy that optimizes the total reward obtained
from the environment in a certain duration. A solution to this problem has been studied intensively in
the past decades and various algorithms have been proposed. Typical algorithms are the Monte-Carlo
methods, temporal difference methods, and policy search methods (Yuxi, 2017). Due to the robustness
and the ability in solving complex tasks, reinforcement learning has become a popular learning rule
aside from supervised learning and unsupervised learning and is widely used in various fields such as
control theory and swarm intelligence (Hu et al., 2020; Hüttenrauch et al., 2019).

Figure 2.4: Visualization of MDP adapted from Bohnstingl et al. (2019)

Compared to other learning algorithms, reinforcement learning is more similar to the learning behaviour
in biological systems that adjust actions based on the environment. Thus, it is natural to associate re-
inforcement learning with biologically plausible neural networks such as SNNs. Before reinforcement
learning was applied in SNNs, the hypothesis of combining reward in synaptic plasticity was supported
by research in ANNs with binary elements or threshold gates (Barto, 1985; Alstrøm and Stassino-
poulos, 1995). The early algorithms which modulate the synaptic plasticity for SNNs are proposed by
Seung (2003) and Xie and Seung (2004). The former method considers the action as the release of a
neurotransmitter vesicle instead of a spike and the goal is to optimize the parameter which controls
the release of the vesicle. The latter realized reinforcement learning by correlating fluctuations with a
reward signal. One of the early examples that implemented SNNs trained with reward modulated syn-
aptic plasticity rule was the research done by Soula et al. (2005). They developed an SNN controller for
obstacle avoidance by applying anti-Hebbian STDP when the robot hits an obstacle and STDP opposite.

The definite model of reward-modulated STDP (RSTDP) was later proposed by Florian (2007). Apart
from the reward signal, Florian (2007) also investigates the influence of eligibility trace. Two approaches
were proposed, the approach that involves the synapse trace is named MSTDPET and the other without
the trace is named MSTDP. The learning rules for both approaches are shown in Equation 2.10 and
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Equation 2.11 respectively. The constant γ is the learning rate and δt is the timestep. The reward r is
updated at each timestep.

wij(t+ δt) = wij(t) + γδtr(t+ δt)zij(t+ δt) (2.10)

wij(t+ δt) = wij(t) + γr(t+ δt)ξij(t) (2.11)

The eligibility trace at each synapse is computed by Equation 2.12.

zij(t+ δt) = zij(t) + ξij(t) exp(−δt/τz) (2.12)

The dynamics of ξij describes the presynaptic trace P+
ij and postsynaptic trace P−ij , which are updated

by presynaptic spike fj and postsynaptic spike fi. The amplitude A+ is positive and A− is negative
describing the LTP and LTD phenomena respectively. The constants τz, τ+, τ− are decay parameters.

ξij(t) = P+
ij (t)fi(t) + P−ij (t)fj(t) (2.13)

P+
ij (t) = P+

ij (t− δt) exp(−δt/τ+) +A+fj(t) (2.14)
P−ij (t) = P−ij (t− δt) exp(−δt/τ−) +A−fi(t) (2.15)

In the research of Florian (2007), both the MSTDP and MSTDPET approaches successfully learned the
rate-encoded and temporal-encoded XOR task, while the MSTDPET learns faster for both experiments
and achieved better performance for the temporal-encoded experiment. Based on these models, several
applications of training SNN controllers on reinforcement learning tasks have been performed. Bing
et al. (2018) applied the RSTDP rule to train an SNN controller to perform lane-keeping tasks. Shim
and Li (2017) modified the standard RSTDP rule to a multiplicative RSTDP and trained the SNN
controller to avoid collisions.

Apart from modulating the STDP rule with reward, there are also approaches that apply temporal
difference modulated STDP (TD-STDP). Frémaux et al. (2013) applied the continuous TD learning
to an actor-critic SNN and trained the controller to perform continuous maze and cart-pole tasks.
Chung and Kozma (2020) further extended the TD-STDP to training SNNs to perform discrete tasks
by introducing feedback modulation.

2.3.4 Evolutionary Algorithms

Evolutionary algorithm (EA) is a general term referring to optimization algorithms that mimic the
evolution process in nature (Vikhar, 2016). A pseudo-code demonstrating its general scheme is shown
in Figure 2.5. Basic EA consists of four steps: generating the initial population, evaluating each indi-
vidual by the fitness function, selecting individuals with high fitness, and breeding the next generation.
The goal is to evolve individuals with high fitness at the end of a certain number of generations. EA
is a broad field that contains various techniques with different implementation details. In the field
of ANN, EA is usually known as neuroevolution. Aside from evolving the connection weights of the
neural networks, neuroevolution algorithms can also be applied to optimize the hyper-parameters, the
topology of the network, and the learning rules (Risi and Togelius, 2017).

Similar to neuroevolution in ANNs, various evolutionary algorithms have been proposed for evolving dif-
ferent components of the SNNs. For example, the research of Pérez et al. (2018) evolved the connection
weights and the type of neuron for an SNN controller to perform dynamic system control. Hagenaars
et al. (2020) evolved the connection weights and neuron characteristics for performing divergence-based
landing tasks with a real-world micro air vehicle. Another widely used neuroevolution approach in
SNNs is based on the neuroevolution of augmenting topologies (NEAT) algorithm developed by Stanley
and Miikkulainen (2002). The NEAT algorithm does not only evolve the connection weights but also
the topology of the networks. Qiu et al. (2018) evolved the SNN controller with the NEAT algorithm to
perform the cart-pole task. Another algorithm that learns the network topology is the evolving spiking
neural network (eSNN) proposed by Lobo et al. (2018). The architecture of the eSNN consists of three
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Figure 2.5: Pseudo code of EAs adapted from Qiu et al. (2018)

layers: input data, encoding, and output layer. The evolution is only involved in the output layer to
update the connection weights.

Aside from evolving the weights and hyperparameters of SNNs, evolutionary algorithms have also been
developed to optimize the learning rules of SNNs. Niv et al. (2002) and Toenlli and Mouret (2011)
applied evolutionary algorithms to optimize the coefficients of the Hebbian learning rule. The adaptive
HyperNeat algorithm proposed by Risi and Stanley (2010) is an extended version of NEAT which
evolves a neural network representing the weight update function. Since these algorithms do not only
evolve the weights of the SNNs but also the learning process of the SNNs, they can also be considered
to be meta-learning algorithms, which will be discussed in detail in the following chapter.





3
Meta-Learning

Although the effectiveness of machine learning has been proven in performing tasks in various fields,
designing the appropriate training algorithm for specific tasks can be challenging. The learning al-
gorithms are usually particularly designed for different tasks. Thus, transferring the algorithm to solve
other tasks usually needs modifications and also needs to train the network again, which can be time-
consuming. The demand for a robust machine learning algorithm led to the proposal of meta-learning.
The idea of meta-learning was first introduced to the field of artificial intelligence by Schmidhuber
(1987). Also known as learning-to-learn(l2l), meta-learning endows artificial neural networks the ability
to learn, which allows the networks to learn new tasks rapidly without modifying the neural networks
manually. Recent research has also extended the idea of meta-learning to the field of SNNs (Jordan
et al., 2021). In this chapter, the general meta-learning methods will first be introduced in section 3.2.
Then, meta-learning algorithms for SNNs will be discussed in section 3.3.

3.1 Basic Information of Meta-Learning

As mentioned above, meta-learning refers to the idea of learning to learn (Schmidhuber, 1987; Weng,
2018). By training the learner on a group of tasks, it can learn a new task outside the task group
because of the learning skills obtained during the training. Meta-learning is sometimes confused with
life-long learning. Life-long learning trains one model to perform a group of tasks, while meta-learning
learns new models. Taking the example of a pattern classification task, the goal of machine learning is
to learn a classifier f which maps the input pattern to its corresponding class. The goal of meta-learning
is to learn a learning algorithm F , the output of which is the classifier f as described by Equation 3.1.

f = F (Dtrain) (3.1)

For machine learning, the training dataset consists of inputs with or without labels. The training data-
set for meta-learning is then the dataset for the group of tasks, and one dataset is one training sample.
To avoid confusion, the training dataset for meta-learning is named the support set and the test set is
named the query set (Weng, 2018).

Few-shot classification refers to meta-learning for supervised learning tasks. During the training pro-
cess, n tasks are selected randomly from the support set and m samples are selected for each task.
The learning is then called m-shot-n-class classification (Ravi and Larochelle, 2017). An example of a
4-shot-2-class image classification task is shown in Figure 3.1.

Recently, meta-learning has also been implemented in the field of reinforcement learning (Wang et al.,
2016). The algorithms developed are usually known as Meta-RL. Meta-RL can be considered as two
learning loops. At each iteration, the outer loop generates a new environment and adjusts the function
or parameters which influence the agent’s behaviour. The inner loop simulates the agent’s behaviour
in the environment and optimizes the accumulated reward. Different from the original reinforcement
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Figure 3.1: 4-shot-2-class classification (Weng, 2018)

learning, Meta-RL includes the reward and action at the previous timestep in the observation of the
current step, acting as the history for updating the action strategy.

3.2 Common Approaches in Meta-Learning

Meta-learning is a broad field referring to an algorithm that learns the learning process of ANNs.
Through the decades, researchers and scientists have developed various approaches to realize learning-
to-learn. In the work of Huisman et al. (2021), they categorized meta-learning algorithms into three
common methods: metric-based, model-based, and optimization-based. These three approaches will be
introduced in this section respectively based on Huisman et al. (2021).

3.2.1 Metric-Based Meta-Learning

Metric-based meta-learning, also known as non-parametric meta-learning, is realized by learning the
feature space for a group of tasks. The meta-learned feature will learn new tasks in a non-parametric
way by comparing the new inputs to example inputs from the support set. The closer the prediction
input is to the input example, the likelier that the prediction input has the same label as the example.
Thus, the feature space for the metric-based meta-learning is also named the similarity kernel or atten-
tion mechanism, which computes the similarity between the test inputs and the example inputs. The
probability distribution pθ over classes Y of the output prediction of certain input is represented by the
equation below:

pθ(Y |x,Dtr
Tj

) =
∑

(xi,yi)∈Dtr
Tj

kθ(x, xi)yi (3.2)

where x is the input data from the query set and (xi, yi) are input data and label from the support set
Dtr
Tj

. The similarity kernel kθ(x, xi) computes the similarity between the prediction data and support
data.

There are several implementations of metric-based meta-learning. For example, the Siamese neural
network proposed by Koch (2015). consists of two twin networks with identical weights and network
parameters. The Siamese neural networks learn a distance function to compute the difference between
input data pairs. In the experiments carried out by Koch (2015), he first trained Siamese neural net-
works to learn discriminative features by comparing two input images in an image verification task. In
the next stage, the model quickly learned to perform a new task with previously unseen input.
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Metric-based meta-learning is favorable for non-parametric learning when the trained model is applied
to new tasks, as no adjustments need to be made on the weights and parameters of the model. However,
the defect of this method is its low performance when the distance between the test inputs and example
inputs is large. Additionally, the computational cost for computing the similarity between pairs becomes
huge when the dataset size increases.

3.2.2 Model-Based Meta-Learning

Model-based meta-learning, also known as black-boxes techniques, uses an internal architecture of the
meta-learning controller to update parameters quickly. The neural networks process the input data in
temporal order. The internal states of the model update with the input fed in at each time step. Inputs
at each time step are remembered by a memorizer, which is essential for internal dynamics used to
predict the output. The probability distribution for the prediction of a new input x can be described
as:

pθ(Y |x,Dtr
Tj

) = fθ(x,Dtr
Tj

) (3.3)

where fθ is a neural network model with the connection weights θ.

A typical model-based meta-learning method is the recurrent meta-learners proposed by Duan et al.
(2017), which applied a recurrent network functioning as the dynamic storage. Munkhdalai and Yu
(2017) developed the meta networks that utilized another neural network learner to predict and gen-
erate weights of the model rapidly. Mishra et al. (2018) combines the temporal convolution and soft
attention mechanism to serve as the memory storage.

As mentioned before, the core idea of model-based meta-learning is the memorizer for quick learning.
Therefore, models with external memory storage are usually implemented. A widely used model is the
memory-augmented neural network (MANN), which uses a storage buffer allowing the rapid encoding
of new information and storing it for a long duration. An example of the implementation of the MANNs
in model-based meta-learning was the work of Santoro et al. (2016). At each timestep of the training
process, instead of feeding a pair of input data and its corresponding label, the input data at the
current step and the label of the previous step are fed to the model. By doing so, the model is forced to
memorize the input data and the stored information can later be retrieved for the prediction process.
The backpropagation error signal during the prediction will be used to update the model weights.

Figure 3.2: Learning scheme of model-based meta-learning with MANN adapted from Santoro et al. (2016)

Compared to metric-based meta-learning, model-based algorithms are more robust due to the flexibility
of the internal dynamics. However, the performance of the model-based meta-learning in supervised
learning is lower than that of the metric-based meta-learning. The performance also degrades when the
data size increases. When the similarity between the new test tasks and the example tasks, model-based
meta-learning also leads to unsatisfactory performances.
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3.2.3 Optimization-Based Meta-Learning

Another common approach in meta-learning is optimization-based meta-learning. The optimization-
based meta-learning usually consists of two learning loops, the inner loop learns to perform a specific task
and the outer loop optimizes the performance in a task group. The goals of the outer loop are various for
different algorithms. For example, some algorithms aim at optimizing the neural network architecture,
while some may optimize the activation function. In general, any component of the algorithm that has
the possibility to influence the performance can be considered as the target for optimization in this
approach. Similarly to the other two approaches, the probability distribution pθ over classes Y of the
output prediction of certain input is represented as follow:

pθ(Y |x,Dtr
Tj

) = fgϕ(θ,DTj
,LTj

)(x) (3.4)

where f is the inner loop learner, gϕ is the outer loop learner which optimizes f based on the parameters
θ of f with support set DTj

and loss function LTj
.

There are various examples of applications of optimization-based meta-learning. LSTM optimizer pro-
posed by Andrychowicz et al. (2016) learns the backpropagation update function by an RNN optimizer
using a gradient-based method. As shown in Figure 3.3, the parameters θ of the optimizee neural
network f referring to the inner loop learner are updated by the output g of the outer loop optimizer
m. The optimizer m is a recurrent neural network, and its state h is updated by the gradient ∇ at each
time step.

Figure 3.3: Learning scheme of LSTM adapted from Andrychowicz et al. (2016)

LSTM meta-learner is another algorithm that learns the weight update function, but it embeds the
weights into the cell state and updates the weights by updating cell states (Ravi and Larochelle, 2017).
Yuxi (2017) applied a reinforcement approach to learn the optimizer which is in the form of a recur-
rent neural network. Another popular optimization-based meta-learning method is the model-agnostic
meta-learning (MAML) algorithm proposed by Finn et al. (2018). The outer loop in MAML learns to
set a good initialization for each task learned in the inner loop.

The advantage of optimization-based meta-learning is that it is more robust compared to metric-based
and model-based methods. For a task group with larger diversity, the optimization-based approach
showed better performance (Finn and Levine, 2018). However, the disadvantage is the high computa-
tional cost for learning the algorithm for each task.

3.3 Meta-Learning in Spiking Neural Networks

Recently, the concept of meta-learning has been applied in the field of SNNs. Aside from enhancing
the robustness of the models by allowing rapid adaptation, meta-learning can also be used to optimize
the learning algorithm. Due to the difficulty in training SNNs, meta-learning has been considered as
an approach to increase the learning capacity of SNNs in recent years. Most research in meta-learning
of SNNs belongs to the category of optimization-based meta-learning, where the weight update rules
are learned for training the SNNs. In this work, the algorithms are divided into two types based on
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the format of the learning rule optimizer: symbolic approach and ANN approach. The former utilizes
symbolic expressions to describe the weight update function and the latter applies neural networks to
compute weight update. Examples of both approaches will be introduced in this section.

3.3.1 Symbolic Approach

The earliest examples of evolving the weights update were mainly based on a parameterized Hebbian
rule in the following format (Niv et al., 2002; Toenlli and Mouret, 2011):

∆W = η(Axixj +Bxi + Cxj +D) (3.5)
where xi and xj are the pre- and post-synaptic neural activities. Coefficients A−D and learning rate η
are parameters to be evolved. Although boosted performances have been observed, the search space was
very limited due to the specified Hebbian rule format. Thus, additional solutions with other formats
were excluded using these methods. However, in the research of Jordan et al. (2021), the update rules to
be evolved are not limited to a preliminarily defined formula. The coefficients, operands, and operators
are all genomes to be evolved. The plasticity can be expressed by a general format: ∆W = ηf(...),
where f(...) is the function to be evolved. Additionally, the generality of this method was proven by
experiments in three different types of tasks: reinforcement learning tasks (reward-driven tasks), super-
vised learning tasks (error-driven tasks), and tasks where correlations between pre- and postsynaptic
activity are available.

The strategy can be summarized into three steps:

1. Determine a task family of interest and associated network architecture (neuron types and con-
nectivity).

2. Define the fitness function from examples from the given task family.

3. Specify the input signals available to the plasticity rule, such as traces of pre- and postsynapsess.

The fitness function is simply expressed by the average cumulative reward obtained over n experiments.
The reward R is 1 if the classification is correct and -1 otherwise. They chose the input variables for the
weight update rule based on prior knowledge in the learning of this type of task. A previous research by
Urbanczik and Senn (2009) discovered a learning rule as expressed in Equation 3.6. The plasticity rule
only depends on the reward R and synapse trace E and has been proven to learn pattern classification
tasks effectively.

∆W = η(R− 1)E (3.6)
Thus, the same variables (E,R) were selected as the inputs to the evolutionary algorithm. In about
half of the total generations, the evolutionary algorithm evolved a plasticity rule identical to the one
derived in previous work in most cases. Some runs also evolved variations of the learning rule with
good learning performance. Similarly, the experiments in the other two types of tasks also used the
prior knowledge in the learning rules of the specific tasks to determine the input variables. For both
cases, they successfully evolved efficient learning rules identical to the prior derived learning rules and
other variations which lead to comparable performance.

Symbolic Expression Evolution Method

The meta-learning of learning rules with the symbolic approach usually involves the evolution of a
symbolic expression. There are various algorithms for evolving symbolic expressions. Three commonly
used methods will be introduced below: gene expression programming (GEP), grammatical evolution
(GE), and cartesian genetic programming (CGP).

Gene Expression Programming (GEP)

Gene Expression Programming (GEP) uses a linear string of fixed length to express the chromosomes,
which is named K-expression (Oltean et al., 2009). The K-expression is then mapped into expression
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trees as shown in Figure 3.4. The conversion starts from the first position in the string, which corres-
ponds to the root of the expression tree, and reads through the string one by one. For each node in one
layer in the tree, if it is a function with n(n ≥ 1) arguments, then the next n symbols in the string are
attached below it as n child branches. Otherwise, the terminal node will become a leaf of the expression
tree.

Figure 3.4: K-expression and the corresponding expression tree adapted from Oltean et al. (2009)

The string is divided into a head and a tail (Oltean et al., 2009). The head contains both operators and
operands, while the tail only contains operands. The length of head h is a parameter determined by the
user and the tail length t is a function of h and the maximum arity of functions n: t = (n− 1) ∗ h+ 1.
In the case of multigenic chromosomes, the genes will be described by sub-expression trees and linked
by a ”+” function to form the final expression tree. The multigenic chromosomes can also be composed
by including a homeotic gene, which describes how the sub-expression trees interact with each other.
New individuals can be generated by crossover, mutation, and transposition.

Grammatical Evolution (GE)

Grammatical evolution (GE) uses a domain-specific language (DSL) such as Backus-Naur Form (BNF)
to describe mathematical expressions (Oltean et al., 2009). There are many different grammars de-
veloped for GE, a relatively simple grammar designed by Bello et al. (2017) to learn optimizers for
reinforcement learning will be introduced in detail. In Bello’s work, a string is constructed with certain
components. The string consists 1) the first operand to select op1, 2) the second operand to select op2,
3) the unary function to apply on the first operand u1, 4) the unary function to apply on the second
operand u2, and 5) the binary function to apply to combine the outputs of the unary functions b. The
output of the binary function is then either temporarily stored in the operand bank (can be selected as
an operand) or used as the final learning rule. The mathematical expression and visualization of the
algorithm are shown in Equation 3.7 and Figure 3.5 respectively.

∆W = η × b(u1(op1), u2(op2)) (3.7)
Their experiments demonstrated that with a limited number of iterations, the DSL can only represent
a subset of all mathematical equations. However, it can represent common optimizers within one
iteration assuming access to simple primitives such as gradients or bias-corrected running estimates of
the gradients.
Bello et al. (2017) used a Proximal Policy Optimization (PPO) algorithm to learn the optimizer while
Alber et al. (2018) used an evolutionary approach. The evolutionary controller maintains a fixed
population N . Initially, the controller samples N equations at random from the search space. At each
iteration, the evolutionary controller does one of the following:

1. With probability p, the controller chooses an equation randomly at uniform within the N best
candidates found so far during the search.
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Figure 3.5: Overview of the grammatical evolutionary controller adapted from Bello et al. (2017)

2. With probability 1−p, it chooses an equation randomly at uniform from the rest of the population.

The controller applies k mutations to the selected equation. Each of these k mutations simply selects
one of the components (an operand, a unary function, or a binary function) at random and replaces it
with another component of the same category chosen uniformly at random. Certain mutations lead to
mathematically infeasible equations, when this is the case, the controller restarts the mutation process
until a feasible equation is found. An advantage of this method is that it can start from existing equa-
tions (Alber et al., 2018).

Cartesian genetic programming (CGP)

Cartesian genetic programming (CGP) uses an indexed graph representation of programs (Oltean et al.,
2009). The genotype of an individual is a 2D Cartesian graph with a fixed number of input, output,
and internal nodes. The nodes of the inputs indicate the index of the input. Each internal node has a
string of three integers: the first integer indicates the operator and the other two integers indicate the
index of nodes to be connected. The output of the internal nodes can also be used as input to other
internal nodes.

The genes of a CGP are randomly initialized but several constraints should be designed to ensure the
validity of the chromosome. Mutation can occur in the operator and the connection of the nodes.
However, the mutation operator should also follow the constraints for the initialization. An example of
the CGP is shown in Figure 3.6, the internal nodes have two columns and three rows. The index and
the corresponding operators or operands are listed in the function table. The mutation example shows
both the mutation in nodes connection and the mutation in function gene.

Figure 3.6: Visualization of Cartesian Genetic Programming adapted from [Jordan et al., 2021]
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3.3.2 ANN Approach

Aside from learning symbolic expressions of plasticity rules, more meta-learning solutions in SNNs evolve
ANNs for weight update. An algorithm with high influence is the Adaptive HyperNEAT developed by
Risi and Stanley (2010). The origin version is the HyperNEAT, which uses a compositional pattern
producing network (CPPN) to generate a connection pattern along with weights within the geometry
of the ANNs.

Adaptive HyperNEAT extends HyperNEAT by including the patterns of plasticity rules. By adjusting
the architecture of CPPNs, the algorithm can generate both a general but noninterpretable weight
update and a less general but interpretable plasticity rule. The general Adaptive HyperNEAT model is
named the iterated model. Aside from the location of each pair of nodes in the neural networks (x, y),
presynaptic activity oi, postsynaptic activity oj , and the current connection weight wij are all used to
update weights as shown in Equation 3.8.

∆wij = CPPN(x1, y1, x2, y2, oi, oj , wij) (3.8)

The less general HyperNEAT model is called the Hebbian ABC model, which is based on a parametric
Hebbian formula. The inputs to the CPPN remain the same as the original HyperNEAT but the output
of CPPN should also generate the learning rate and coefficients of the Hebbian learning rule as expressed
by Equation 3.9. The demonstration for both models are visualized in Figure 3.7.

∆wij = η(Ao1oj +Boi + Coj) (3.9)

Figure 3.7: Visualization of two HyperNeat models adapted from [Risi and Stanley, 2010]

The experiments performed in Risi and Stanley (2010) trained networks to perform the T-maze problem
with two scenarios. The first scenario had a linear reward signal, and the second scenario had a nonlin-
ear reward signal. The ANN meta-learner is a simple two-layer neural network with three input neurons
and three output neurons. It was found that in the scenario with linear reward, both the iterated and
ABC models were able to reach the target fitness after a similar number of generations, but the ABC
model evolves faster in the beginning. However, in the scenario with nonlinear reward, the ABC model
failed to meet the target model since it could not evolve a nonlinear learning rule. Although the iterated
model evolved slowly, it is able to perform the task well in the end. Thus, the authors concluded that
while the ABC model with a properly designed ANN topology should be sufficient for most domains,
the iterated model is more robust to different scenarios even with a simple ANN topology. However, Risi
and Stanley (2010) also mentioned that the iterated model is computationally expensive because the
CPPN must be requeried for every ANN connection every time step. It might be too computationally
expensive for tasks requiring large neural networks.

Instead of evolving both the connection pattern and the weight update, more examples have a designed
neural network architecture and another ANN to be evolved for computing the weight update. An
example is the research of Orchard and Wang (2016), where they used a three-layer recurrent and fully
connected neural network (4 input neurons, 3 or 5 hidden layer neurons, 2 output neurons) to perform
a foraging task. The genomes to be evolved are the initial weights and bias of the network and con-
nection weights. For comparison, they also did the same experiments using the approach of evolving
the parametric Hebbian update rule. The experimental results demonstrated that the approach based
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on the parametric Hebbian rule learned faster and better in a certain number of timesteps. They also
extended the lifetime of each run and applied a sensory offset that varies every 1000 steps. In this case,
the learning of the Hebbian update rule was similar to that of the ANN update but stalled at a certain
number of action steps. Thus, they concluded that the ANN update rule allows the neural controller
to adapt to changing circumstances.

Another example is the implementation of meta-learning in neuromorphic hardware (Bohnstingl et al.,
2019), where they applied the idea of learning-to-learn (L2L) with an inner loop and an outer loop.
The outer loop evolves the hyperparameters of the neural network model in a family of tasks and the
inner loop learns one task from the family using the evolved model. The task family they chose was
a simple reinforcement learning task: multi-arm bandit problem. Similar to the previous example,
they also did the experiments using two approaches: one is evolving the coefficients of the parametric
Q-learning rule and the other is evolving an ANN to update weights. Performing both experiments
in the neuromorphic hardware, they demonstrated that learning using an ANN for the weight update
achieved better performance.





4
Synthesis of Literature

After an overview of the related topics has been given, a summary of the most relevant content will
be presented in this chapter. For the preliminary experiments, the high-level design decisions will also
be discussed based on an analysis and comparison of the candidate solutions. Section 4.1 will draw
attention to the neuron model. The properties of different neuron models will be summarized and
compared. Then, section 4.2 will provide synthesized information on the learning approaches presented
in section 2.3. Section 4.3 focuses on the state-of-art meta-learning algorithms for the SNNs followed
by a trade-off between the symbolic approach and ANN approach. In the end, the expression methods
for learning rules will be compared in section 4.4.

4.1 Neuron Model

The neuron model is the unit component of SNNs, which mimics the behaviours of biological neurons in
the process of signal transmission. As discussed in section 2.2, there are various neuron models available
for the SNNs. The neuron models are derived based on experimental data of communication in natural
nervous systems. The signal transmission between biological neurons is a complex process involving a
number of neuronal behaviours (Gerstner et al., 2014). The derived neuron models describe a part or
all of the behaviours. For examples mentioned in section 2.2, the HH model exhibits almost all the
behaviours that have been discovered in signal transmission between neurons while the I&F model and
Izhikevich model only describe a few neuronal behaviours (Abusnaina and Abdullah, 2014). The models
that exhibit more behaviours mimic the biological nervous systems more closely, and therefore, have
higher fidelity. However, it usually comes with the cost of larger computational consumption, which
can be unfavorable for training SNNs on complex tasks. Thus, it is important to choose the appropriate
model for the research based on the objective and settings of the experiments.

A comparison of the complexity and fidelity of the models are shown in Table 4.1. The complexity is
represented by the number of floating-point operations and variables and the fidelity is represented by
the number of behaviours that the models can describe.

Based on the comparison, the LIF model is selected for this work. Since the objective of this research is
to evolve learning rules for training SNNs automatically, the process of learning-to-learn will consume
large computational power. Additionally, the research also aims to increase the evolutionary search space
and the complexity of the SNNs architecture and tasks, which will further increase the computational
cost. Therefore, a neuron model with low complexity is favorable for this work. Furthermore, high-
fidelity regarding the biological neural system is not a critical factor in this work. Thus, the LIF model
is sufficient to describe the neuron model in this research. Furthermore, the neuron model in the Loihi
chip is also the LIF model (Davies et al., 2018). Applying the same neuron model is helpful for the
later implementation of the algorithm on hardware.
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Model Number of floating
point operations

Number of
variables

Number of
behaviours

LIF 6 1 3
Izhikevich 13 2 20
BVP 72 2 11
Wilson 180 2 14
Morris-Lecar 600 3 14
HH 1200 1 21

Table 4.1: Comparison between neuron models. [Abusnaina and Abdullah, 2014]

4.2 Learning Approach

Similar to ANNs, SNNs can be trained with unsupervised learning, supervised learning, reinforcement
learning, and evolutionary algorithms. In most cases, the learning algorithms for SNNs are based on
the synaptic plasticity rules, which describe the variation of synaptic connection strength with spike
activities of pre- and postsynaptic neurons. Hebb’s rule first proposed the theory of ”cells that fire
together wire together” (Hebb, 1949). After the discovery of LTD and LTP phenomena, the STDP
rule was developed, which exhibits the influence of the temporal order of the pre- and postsynaptic
spikes (Markram et al., 1997). Synaptic plasticity rules allow the SNNs to learn unsupervised tasks
by correlations between spikes of neuron pairs (Diehl and Cook, 2015; Guo et al., 2019). They can
also be used for learning supervised tasks by introducing teaching signals (Ruf and Schmitt, 1997). A
closer imitation of the learning behaviour in nature is realized by modulating the synaptic plasticity
rules by rewards received from the environment. The reward modulated synaptic plasticity rules also
allow the reinforcement learning of SNNs (Florian, 2007). Neuroevolution is a broader field, which
applies evolutionary algorithms in training SNNs. It can be used to evolve connection weights without
plasticity learning rules (Hagenaars et al., 2020; Qiu et al., 2018).

The selection of learning approaches is usually performed based on the target type of tasks. Since this
research aims at evolving learning rules, learning without plasticity rules such as evolving connection
weights directly will be dismissed. Furthermore, the target type of task is continuous control tasks,
which are usually solved by reinforcement learning. As a result, the reinforcement learning approach
will be implemented to train SNNs in this work. In other words, this research will evolve reward-
modulated plasticity rules for training SNNs.

4.3 Meta-Learning Approach

There have been several meta-learning algorithms developed in the field of SNNs, which have the goal
of optimizing learning rules for training SNNs. Based on the expression methods for the learning rules,
these algorithms are categorized into two approaches: symbolic approach and ANN approach. The
former describes the learning rules with mathematical expressions. Most examples evolve the coeffi-
cients of the Hebbian learning rule (Niv et al., 2002; Toenlli and Mouret, 2011). There is also research
that evolves the entire learning rule by symbolic expression (Jordan et al., 2021). The other approach
expresses the weight update function as an ANN instead of a mathematical formula (Risi and Stanley,
2010; Orchard and Wang, 2016; Bohnstingl et al., 2019). The learning of SNNs is optimized by evolving
the ANN learner.

The advantages and disadvantages of both approaches will be discussed. The most important feature of
the symbolic approach is that the evolved learning rules are interpretable expressions, which is favorable
for understanding how the network is shaped during the learning and human-guided generalization in
different task domains (Jordan et al., 2021). Besides, the symbolic approach which evolves coefficients
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of a fixed learning rule is usually simple and less computationally expensive (Bohnstingl et al., 2019).
Also, experiments have proven that the algorithms have achieved good learning performances in various
tasks (Niv et al., 2002). However, a disadvantage of this approach is that learning symbolic expressions
usually requires prior knowledge (Jordan et al., 2021). Methods that evolve parameters have limited
search space compared to the ANN approach. Additionally, the learning performance can be influenced
by the design of the neural networks (Bohnstingl et al., 2019).

Compared to the symbolic approach, the ANN approach is more robust to the neural network archi-
tecture and more generalizable to different task domains (Risi and Stanley, 2010). Experiments that
applied both approaches demonstrated that the ANN approach could achieve comparable or even bet-
ter performances than the symbolic approach. Additionally, the ANN approach is less limited by prior
knowledge. The main drawback of this approach is that it is more computationally expensive even for
simple tasks with small neural networks. Furthermore, since the weight update is computed by the
ANN directly, the learning procedure is difficult to analyze (Jordan et al., 2021).

The algorithm proposed by Jordan et al. (2021) can be considered as a middle ground between both
approaches. Since this algorithm evolves the entire expression of the learning rule, it has a larger search
space than methods that only evolve coefficients. Therefore, it is also more robust and flexible. Besides,
the result of evolution is a mathematical expression of the learning rule. Thus, the algorithm has the
potential to reveal the learning scheme of SNNs on a certain type of task. As a result, this specific
meta-learning method will be implemented in this research.

4.4 Symbolic Expression

Since the selected meta-learning algorithm evolves the mathematical expression of the learning rule,
it is also necessary to choose an appropriate symbolic expression method. Section 3.3.1 introduced
three typical symbolic expression methods: gene expression programming (GEP), grammatical evolu-
tion (GE), and cartesian genetic programming (CGP). GEP describes a formula by a linear string that
can be mapped into an expression tree. GE refers to the expression methods that construct functions
by a domain-specific language, where the functions can be represented by a string or a list of numbers.
CGP represents the mathematical expression by using an indexed graph. The integers in the graph
represent the operators or operands.

Each expression method has its own advantages and disadvantages, and the selection of expression
method can be based on two criteria according to Oltean et al. (2009): syntactic validity and expression
capability. By dividing the chromosome into a head and tail, GEP can generate syntactically correct
math expressions efficiently. CGP requires a set of properly designed constraints for initialization and
mutation to generate valid output. GE allows chromosomes encoding invalid expressions, thus an extra
program for validity check is needed. Regarding the expression capability, it can also be evaluated by
the maximum length of the functions. The number of terms of the function is limited by the designed
length of string for GEP. Similarly, the maximum number of terms is also fixed by the number of
columns of the phenotype graph in the CGP approach. However, the search space for GE is much
larger since it has fewer limitations in mapping and the output of one generation can be used as the
input for next generations. Thus, prior knowledge of the format of the target formula can help the
user determine the design parameters when using CGP and GEP and narrow down the search space.
However, the program may fail to generate the target formula if the design parameters are not properly
selected. GE is suitable for evolving expressions with little prior knowledge but it may require a large
number of generations to learn the target function. An additional advantage of GE is that it allows
learning from bootstrap by including half-evolved expressions in the initial operand bank.

CGP will be implemented in this work since it is relatively simple and requires less computational
power. Moreover, the output of CGP is syntactically valid and it eliminates the very-long learning rules
by setting a limit on the number of terms. Thus, it automatically eliminates candidates that are invalid
or intricate.
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5
Methodology

The objective of the preliminary experiments is to understand the scheme of evolving biological plaus-
ible learning rules for SNNs. By investigating different components of the experiments such as the SNN
architecture and input to the evolutionary search, a better knowledge of the necessary prerequisite for
answering the research question can be obtained. The preliminary experiments started from a rough
reproduction of the reinforcement learning task in Jordan et al. (2021) and further extended to other
simple tasks and varied experiment settings. By the end of the preliminary experiments, a preliminary
understanding of the research topic should be obtained.

In this chapter, the outline of the preliminary experiments will be presented in section 5.1. The task
description and experiment settings for each experiment will be discussed in section 5.2, section 5.3,
and section 5.4.

5.1 Outline of the Analysis

Since this research is inspired by the evolving-to-learn algorithm developed by Jordan et al. (2021)
and can be considered an extension of their work, it is natural to start by reproducing their experi-
ments to obtain a comprehensive understanding of the principle of their algorithm. In their work, three
experiments were performed: evolving reward-modulated synaptic plasticity rules in a reinforcement
learning task, evolving error-driven synaptic plasticity rules in a supervised learning task, and evolving
correlation-driven synaptic plasticity rules in an unsupervised learning task. Although the experiment
details such as the SNN architecture vary for each task, the main settings and principles such as the
evolutionary strategy and symbolic expression method are the same. Thus, it should be sufficient to
select one of the tasks for reproduction. Since the final goal of this research is to evolve learning rules
for training SNNs to perform continuous control tasks, which are usually learned with reinforcement
learning methods, the reinforcement learning task among Jordan’s three experiments is more relevant
to this work. Therefore, the first preliminary experiment is reproducing the reinforcement learning task
in Jordan et al. (2021), which is a binary random pattern recognition task.

In the second experiment, the task is redesigned so that the input patterns have a meaningful differ-
ence between the classes. The original task uses random Poisson patterns, which is less meaningful.
Additionally, the randomness of the input pattern also increases the difficulty in analyzing the evolved
learning rules. Thus, the patterns used in the second experiment were classified based on the temporal
order of their spikes while the general settings remained the same as the first experiment.

The third experiment is a further extension of the original experiment. In Jordan’s work, the evolution
of learning rules was based on the prior knowledge of specific tasks. In other words, they had a baseline
learning rule that had been proven to be able to train the SNNs on the task successfully and the inputs
to the evolutionary search were also terms taken from the baseline learning rule. In the third prelimin-
ary experiment, attempts are made to evolve learning rules without prior knowledge.
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5.2 Evolving Learning Rules for a Random Pattern Classification Task

5.2.1 Task Description

Since the aim of the first preliminary experiment is to reproduce the work of Jordan, the task was set to
be the same as in Jordan et al. (2021). For each experiment trial, 30 random Poisson spike patterns are
generated. Each pattern consists of N spike trains with a duration of T timesteps. Thus, each pattern
has a shape of (N,T ), where N was set to be 50 and T was set to be 500 ms. The spiking rate is 6 Hz
for all spike trains resulting in an average spike number of 3 for each spike train. The 30 patterns were
assigned a label of 0 or 1 randomly. For each experiment trial, the spiking neural network is trained
to learn classifying the patterns by updating the weights for 200 epochs. The classification is done by
counting the total number of output spikes, the prediction is 1 if the total number of output spikes is
higher than the average and the prediction is 0 otherwise.

5.2.2 Neuron Model and Spiking Neural Network Structure

The neuron model used in Jordan et al. (2021) for this task was a LIF model with exponential post-
synaptic currents. Compared to the standard LIF model, it describes the current input to the post-
synaptic neuron more accurately and is thus closer to the signal transmission in biological neurons.
However, introducing an exponential term also increases the complexity of the model and requires more
computational power. Since the evolutionary search already requires a large amount of computational
power, a simpler neuron model is preferred. As a result, a standard LIF model will be used in the
preliminary experiments instead and the refractory phase of the neuron is ignored.

As discussed in section 2.2, the LIF model can be represented by a differential equation as shown in
Equation 5.1. The differential equation can be further interpreted as equations for updating the neuron
states at each time step. The neuron states to be updated are current I, membrane potential V , and the
indicator of spike Z. They are computed by Equation 5.2, Equation 5.3, and Equation 5.4 respectively.
The current is accumulated by the input, which is the multiplication of the synapse weights and input
spikes. The membrane potential is updated by the current. The term (1−Z) describes the phase when
the potential drops to zero after the neuron releases a spike. The constants τI and τV describe the decay
of current and membrane potential with time. Aside from the states in the LIF model, another neuron
state usually involved in learning is the eligibility trace E of the neuron. It is usually updated at each
time step by Equation 5.5. The equation describes the trace of the spikes f , which can be either the
presynaptic spike or postsynaptic spike. The constants τe and α are the trace decay and amplitude.

Cm
dV

dt
= −V − Em

Rm
+ I (5.1)

Inew = IτI + (1− τI)Iinput (5.2)

Vnew = V τV (1− Z) + (1− τV )Inew (5.3)

Znew =
{

1 if Vnewθ

0 else
(5.4)

Enew = E ∗ τe + αf (5.5)

Since deriving the topology of the SNN is not the goal for the evolution, the architecture of the network
is designed manually. A simple SNN with two layers is implemented. The first layer is an input
layer consisting of 50 neurons. The input neurons are Poisson generators without neuron states and
characteristics. The output layer has only one output neuron. The output neuron is a LIF neuron
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described by the model given above. Compared to other SNNs with multiple layers of LIF neurons, the
simple architecture applied in the experiment reduces the computational cost but increases the difficulty
of learning in the meantime. The task is visualized in Figure 5.1.

Figure 5.1: Visualization of the random pattern classification task adapted from Jordan et al. (2021)

5.2.3 Genetic Programming for Evolutionary Search

The genetic programming method implemented in this work to search for effective plasticity learning
rules is the Cartesian Genetic Programming (CGP) method, which is the same as the one used in Jordan
et al. (2021). The plasticity rule for training the SNNs has the form of ∆W = ηf(...). The learning
rate η is pre-tuned and fixed during the evolution. It is also possible to include the learning rate into
the evolutionary search, however, the computational cost will also increase. The function f(...) is the
mathematical expression to be evolved. The variables to the function are specified from the baseline
plasticity rule. The baseline function is the plasticity rule derived by Urbanczik and Senn (2009), where
the weight update only depends on the synapse trace and reward.

As already discussed in subsection 3.3.1, the genotype of the individuals is represented by a 2D indexed
graph. The phenotype is then a list of indexes that can be interpreted into a mathematical expression.
The elements of the indexed graph are the two variables, four basic operators (+,−,×,÷), and a con-
stant float. The number of columns and rows of the indexed graph is set to be the same as that in
Jordan’s work, which is 12 and 2 respectively. Thus, the evolved plasticity rule can be relatively long,
allowing more space for the evolutionary search.

Since the weight initialization is performed randomly for each experiment trial, there can be cases that
the initialization is coincidentally near an optimal solution resulting in a good performance, and also
cases where bad initialization brings difficulties for training. Thus, each individual performs three trials
of the experiment in the evolutionary search. The fitness function is defined to be the average of the
test accuracy of the three trials. The individuals with higher fitness are selected based on the µ + λ
algorithm. µ is the number of parents and λ is the number of offspring mutated from each parent.
In each generation, the two individuals with the highest fitness are set to be the parent for the next
generation. The breed is realized by random mutation in the phenotype. In other words, the index of
the index list will be replaced randomly. Thus, both the operators and operands can be mutated.

5.2.4 Pseudo Code

The algorithm of the task is described by the pseudo-code below.
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1: Initialise parents candidate solutions and their offspring
2: loop for each individual
3: while number of trials not met do
4: Initialise weights
5: loop for each epoch
6: loop for each pattern
7: Reset neuron states and synapse trace
8: loop for each time step
9: Feed input to the SNN

10: Update neuron states and synapse trace
11: end loop
12: Compute reward
13: Update weights with the candidate solution
14: end loop
15: end loop
16: end while
17: Compute fitness
18: end loop
19: Select new parents and breed offspring for the next generation

5.3 Evolving Learning Rules for a Temporal Order Classification Task

5.3.1 Task Description

In the second experiment, the content of the task is different but most experiment parameters are kept
the same: each trial has 30 patterns with 2 classes and each pattern has a shape of (50, 500). However,
instead of generating random spike patterns and labels, the patterns are classified by the temporal order
in this task. For the first class with the label of 0, the input neurons spike in order, the first neuron
spikes first and the last neuron spikes last. For the second class with the label of 1, the input neurons
spike in the opposite order, the last neuron spikes first and the first neuron spikes last. Each input
neuron only spikes once and the exact time of spike is not fixed. Thus, the input spike trains can be
different for the 30 patterns.

5.3.2 Experiment Setup

The experiment setup is similar to that of the first experiment. The SNN also has 2 layers: the input
layer with 50 spike generators and the output layer with only one LIF neuron. For the evolutionary
search, the same CGP parameters are used. The input variables to the CGP are also the synapse trace
and reward.

5.4 Evolving Learning Rules for an XOR Task without Prior Know-
ledge

5.4.1 Task Description

The evolutionary search in the experiments before was based on prior knowledge, the SNNs were first
trained with a baseline learning rule and the hyperparameters were tuned before the evolutionary
search. To investigate whether the algorithm can evolve effective learning rules without pre-training,
the algorithm is implemented in a different pattern classification task. The task is selected to be the
XOR pattern classification, which has a comparable difficulty level with the previous tasks. The XOR
problem has four patterns with two labels: (0,0) with the label of 0, (0,1) with the label of 1, (1,0)
with the label of 1, and (1,1) with the label of 0. The integer inputs are converted to spike trains by
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rate encoding. 0 corresponds to spike trains with a spiking rate of 10 Hz, while 1 corresponds to spike
trains with a spiking rate of 50 Hz. Each spike train has a total duration of 100 time steps. Thus, each
input pattern has a shape of (2, 100). For each experiment trial, 30 inputs are generated by randomly
selecting spike trains from the four patterns.

5.4.2 Experiment Setup

The SNN designed for this task has three layers: an input layer with 2 neurons, a hidden layer of 5
neurons, and an output layer of 1 neuron. Similar to other experiments, the input neurons are spike
generators without neuron characteristics while other neurons have the LIF characteristics. Different
from previous experiments where the input variables to the evolutionary search are taken from the
baseline learning rule, this experiment is independent of prior knowledge of learning rules that can solve
the task. Since the goal of this project is to expand the search space of the evolutionary search, more
input signals are made available:

• Presynaptic traces with slow and fast decays: x1, x2

• Postsynaptic traces with different decay constants: y1, y2, y3

• Binary variable indicating the spike of the pre- and postsynaptic neuron: x0, y0

• Reward trace: r1

For each synapse, multiple presynaptic traces and postsynaptic traces with different decay parameters
are available.





6
Experimental Results

The results of the three preliminary experiments will be discussed in this chapter. For the experiments
pre-trained with prior knowledge, both the results of the SNNs trained with the baseline learning rule
and the evolutionary search will be discussed in section 6.1 and section 6.2. In section 6.3, the results
of the evolutionary search for the last experiment will be discussed.

6.1 Random Pattern Classification

6.1.1 Baseline Learning Rule

The reproducing of the experiments of Jordan started from training the SNNs on the random pattern
classification task with the baseline plasticity rule. The reward-modulated plasticity rule utilized by
Jordan is the Urbanczik rule derived in the work of Urbanczik and Senn (2009). Urbanczik and Senn
developed a reinforcement learning scheme that only depends on the synapse trace and reward achieved
at the end of each episode, which is expressed in Equation 6.1. R is the reward obtained each episode
and Rbase is the reinforcement baseline that balances reinforcement and punishment. In Jordan’s work,
Rbase was set to 1, R was 1 for a correct prediction, and -1 for a wrong prediction. Using the same
plasticity rule as designed by Jordan, it was found that the connection weights decreased with training
epochs in general due to the reinforcement baseline. Thus, it requires large initial weights, which is
different from common learning approaches. Since the Urbanczik rule performs weight updates at the
end of each episode, in this case, the plasticity rule will be applied at the end of the time step for each
training cycle. As a result, integration of the synapse trace is required to describe the trace over the
episode duration. Performing the integration at each time step also requires more computational cost.
Additionally, the prediction of patterns in Jordan’s work is defined as follows: the prediction is 0 if the
total number of output spikes is 0, the prediction is 1 if the total number of output spikes is larger than
0. A drawback of this prediction method is that the 0 output spike for patterns with label 0 may lead
to small weights. In case the weights are too small, the neural networks may be inactive and fail to
learn due to zero trace.

∆W = η(R−Rbase)E(T ) (6.1)

Because of the above issues revealed in the early attempts of the reproduction task, other baseline
learning rules were investigated. Since the RSTDP rule developed by Florian (2007) has proven its
ability in learning simple pattern classification tasks, it was selected and implemented in this experiment.
As mentioned in section 2.3, Florian derived two plasticity rules: MSTDP for learning without eligibility
trace, MSTDPET for learning with eligibility trace. MSTDPET rule was implemented in this work since
it was found to have a slightly better performance in learning pattern classification tasks. The plasticity
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rule consists of five equations as mentioned in section 2.3:

wij(t+ δt) = wij(t) + γδtr(t+ δt)zij(t+ δt) (6.2)
zij(t+ δt) = zij(t) + ξij(t) exp(−δt/τz) (6.3)

ξij(t) = P+
ij (t)fi(t) + P−ij (t)fj(t) (6.4)

P+
ij (t) = P+

ij (t− δt) exp(−δt/τ+) +A+fj(t) (6.5)
P−ij (t) = P−ij (t− δt) exp(−δt/τ−) +A−fi(t) (6.6)

Different from the Urbanczik rule, the MSTDPET rule updates weights every timestep. Thus, the
reward should also be assigned to the network at each timestep. Therefore, the prediction can not be
performed at the end of the simulation duration and a new prediction method should be defined. The
new prediction method was inspired by the experiment in classifying temporal coded XOR patterns
performed by Florian. If the label is 0, the reward is -1 for each spike released. If the label is 1, the
reward is 1 for each spike released. In case of no output spike, the reward is 0 for both labels. An
example of a learning process for a pattern with label 1 is shown below. As shown in Figure 6.1, since
the label is 1, each release of the output spike fi will result in a reward of 1.

Figure 6.1: Learning process with MSTDPET

With the baseline learning rule, 50 experiments were performed. 32 experiments showed steady learning
curves, 20 experiments obtained the best accuracy of 75% or above, 14 experiments had a bell-shaped
learning curve and 4 failed to learn at all. The results of trials with good performance are comparable
to those learned with the Urbanczik rule in Jordan’s work. The average accuracy over epoch and an
example of one learning curve is plotted in Figure 6.4.

Figure 6.2: Learning curves of random pattern classification tasks with MSTDPET.
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6.1.2 Evolutionary Search

After the task was successfully learned with the baseline learning rule, the evolutionary search was per-
formed for evolving learning rules that could learn the task with comparable or even better performance
than the baseline learning rule. As mentioned in section 5.2, the learning rate was fixed during the
evolution. It was set to be the same as the learning rate tuned in the experiments with the baseline
learning rule. Although MSTDPET was applied as the baseline learning rule instead of the Urbanczik
rule, the weight update can also be considered as a function depending on synapse trace and reward.
Thus, the input operands to the CGP were also the trace and reward. Since the weight update is now
performed at each time step, the algorithm described in section 5.2 is updated as follows:

1: Initialise parents candidate solutions and their offspring
2: loop for each individual
3: while number of trials not met do
4: Initialise weights
5: loop for each epoch
6: loop for each pattern
7: Reset neuron states and synapse trace
8: loop for each time step
9: Feed input to the SNN

10: Update neuron states and synapse trace
11: Compute reward
12: Update weights with the candidate solution
13: end loop
14: end loop
15: end loop
16: end while
17: Compute fitness
18: end loop
19: Select new parents and breed offspring for the next generation

A total of 10 runs of the evolutionary search were performed. Similar to the findings of Jordan, half
of the experiments evolved the baseline learning rule. Some of the trials also evolved other learning
rules with comparable performance. In addition to learning rules with a form approximately equal
to the baseline rule such as ER + constant. Interestingly, some evolved learning rules that achieved
good performance have the form of E+ constant. Figure 6.3 shows the learning curves obtained by two
examples of the evolved learning rules in the test experiments. Both learning rules have some trials with
good performance and some with bad performances, while the learning rule with the term of E ·R shows
more stable learning behaviour. However, it was questioned that since the spike patterns and labels
were both random, the evolved learning rules may not be plausible. Thus, the pattern classification
task was modified in the following experiments.

(a) ∆W = ER + 0.5 (b) ∆W = E + 0.5

Figure 6.3: Learning curves of random pattern classification tasks.
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6.2 Temporally Ordered Pattern Classification

6.2.1 Baseline Learning Rule

Since the pattern classification task was similar to the first experiment, the same baseline learning rule
was implemented, which was the MSTDPET derived by Florian. The reward was defined the same as
the previous task: if the label of the pattern is 1, the network receives a reward of 1 for each output
spike. If the label of the pattern is 0, the network receives a reward of -1 for each output spike. 50
trials of the experiments were performed. It obtained stable learning curves in most trials and accuracy
higher than 80 % in around half of the trials. The figure below plots the average accuracy with epochs
of the 50 trials and the learning curve of one example trial. Similar to the previous experiment, it shows
that the performance of the task improves over epochs in general.

Figure 6.4: Learning curves of temporal ordered pattern classification tasks with MSTDPET.

6.2.2 Evolutionary Search

After the effectiveness of the MSTDPET on learning temporal ordered pattern classification task had
been proven, the experiments of evolving new learning rules with CGP was performed. Similar to the
evolutionary search in the previous task, the term E ·R in the weight update function was replaced by
the learning rules generated by CGP. Similarly, 10 runs of the evolutionary search were performed. Half
of the experiments successfully evolved the baseline MSTDPET learning rule. Similar to the results of
Jordan’s work and the first preliminary experiments, the CGP also learned other learning rules which
contain the term of E · R. Some examples are: ER + R,ER–R,ER + constant. . . ... These learning
rules can learn the task by strengthening the connection pattern which responds correctly in case the
additional term is less effective than the term of E · R. Interestingly, the experiment shows that the
trace itself can also learn the task well. The learning curves of five random trials where the learning
rule is E are shown in Figure 6.5a. Two of the trials achieved a stable accuracy of 70% and above, the
other learned in the beginning but the performance decreases after a number of epochs. Figure 6.5b
shows the learning curves of E+1, which also had three trials with relatively high accuracy. One reason
why the trace itself can learn the task may be caused by the difference of the trace due to the spike
order. Thus, the weights of the first input neuron and the last input neuron were set to be zero in
an additional experiment. However, the performance was similar to that of the original experiment,
which means the task was not solved by classifying the track of the pattern. The learning rule of E can
also be interpreted as E · R, where the reward R is always 1. As a result, the connection will always
be strengthened for every time step. With some cases of initializations where the trace for the correct
prediction is higher than that of the wrong prediction, the trace can result in a comparable performance
as the baseline learning rule. However, the learning rule will fail to learn when the initialization is the
opposite. If the initial trace for the wrong prediction is higher, the strengthening of the pattern will
carry on in the opposite direction as the baseline learning rule. This discovery indicates that the task
can be learned as long as the ∆W for patterns with label 1 is sufficiently larger than that of patterns
with label 0.
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(a) ∆W = E (b) ∆W = E + 1

Figure 6.5: Learning curves of temporally ordered pattern classification tasks trained with learning rules evolved.

6.3 XOR Pattern Classification without Prior Knowledge

After the above two pattern classification tasks have been successfully solved by baseline learning rules
and evolutionary search has evolved learning rules with comparable performances, another XOR pattern
classification task with the same complexity level was performed. As mentioned before, the goal of this
experiment was to investigate the robustness of the evolutionary algorithm in case that the model had
not been trained with prior knowledge. The evolutionary search was implemented directly on the SNN.
The definition of reward was the same as the previous tasks and the reward and weights were updated
at each time step.

Similar to the evolutionary search in the previous experiments, 10 search trials were performed and
each trial has 100 generations. It was found that none of the experiments evolved learning rules with
satisfactory performance. The output of the evolution for almost all the trials achieved a fitness of
around 50%, which means the SNNs were performing random guesses instead of learning to classify.
The learning rules evolved were also implausible and random. Most learning rules evolved have the
form of ∆W = constant. Learning curves of five random trials of an example learning rule are shown
in Figure 6.6. It indicates that the evolved learning rule has little influence on training the model to
perform the task. The reason for the failure may be due to the bad initialization of the hyper-parameters.
In the previous experiments, hyper-parameters were tuned during the training process with the baseline
learning rule. However, this process was skipped in this experiment and the hyper-parameters were not
included in the evolutionary search. Thus, it was unknown whether the hyper-parameters were properly
set or not. This issue will be further discussed in the next chapter.

Figure 6.6: Learning curves of XOR pattern classification tasks with a learning rule evolved: ∆W = 1.





7
Discussion of Preliminary Experiments

After the experiments of three tasks have been carried out, a discussion of the results presented in
chapter 6 will be performed in this chapter. Since the preliminary experiments serve as a practice for
understanding the research topic and an early attempt to reach the research objective, the discussion
will focus on the research questions as listed in chapter 1. As mentioned in chapter 1, to answer the
main research question of ”how can the learning rules be evolved for training a predefined spiking
neural network on continuous control problems”, the expression method of the learning rules and the
information needed for the evolutionary search should be figured out first. Thus, the discussion in
section 7.1 will be about the expression method for the candidate learning rules. Next, the knowledge
related to the evolutionary search obtained in preliminary experiments will be summarized in section 7.2.
Finally, indications and inspirations for the later experiments will be concluded in section 7.3.

7.1 Expression Method

Since the goal of this work is to evolve learning rules for training SNNs, how to express the candidates
of the learning rule should be figured out first. As mentioned in chapter 4, the approach was selected
to be evolving the symbolic expression of the entire learning rule and CGP was utilized as the symbolic
expression method. According to the results of the experiments on the random pattern classification
and temporal ordered pattern classification, the selected expression method can be considered to be
a good approach. Both these two experiments successfully evolved the baseline learning rules and
alternative learning rules with comparable performances. Some of the alternative learning rules had
structures different from that of the baseline learning rule. It reveals the advantage of evolving the
entire symbolic expression over only evolving the coefficients of the Hebbian learning rule. Since the
structure of the learning rule is not fixed, this approach allows larger search space and therefore has the
ability to generate new plasticity rules with unconventional structures. Additionally, the learning rules
with good performances discovered by the evolutionary search of both the experiments on the random
pattern classification and temporal ordered pattern classification contain the term E×R. The discovery
indicated that this is the essential term for the plasticity learning rules and the rules can still learn
tasks well with a bias to trace or reward. It demonstrates another advantage of the symbolic expression
method over the ANN approach. Since the output of the evolutionary search is symbolic mathemat-
ical expressions, the evolved learning rules are interpretable, which is favorable for understanding the
learning process of SNNs.

In the first two preliminary experiments, the CGP method demonstrated sufficient expression capab-
ility. Since the baseline learning rule has a simple expression with only one term, CGP can narrow
down the search space by adjusting the number of columns of the index graph, which determines the
maximum number of terms for the evolved learning rules. Thus, it could evolve the baseline learning
rule rapidly. Additionally, by limiting the number of terms, it also eliminates solutions with extremely
long expressions which are difficult to interpret. Moreover, the outputs of CGP are syntactic valid.
Thus, no additional valid check program was needed.
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7.2 Architecture of the Evolutionary Search

In the preliminary experiments, evolutionary searches both with or without prior knowledge were per-
formed. In the experiments with prior knowledge, the SNNs were first trained with the baseline learning
rule. During this pre-training, the appropriate learning rule, learning scheme, and hyper-parameters
such as neuron characteristics and learning rate were derived and tuned. As described in section 6.1,
the selection of the baseline learning rule and learning scheme is essential for the training performance.
In the first preliminary experiment, the Urbanczik rule with the reward updated at the end of each
episode failed to learn the task, while the MSTDPET rule with the reward updated at each time step
learned the task well. Thus, the same learning scheme was applied in the evolutionary search, where
the reward and weights were updated at each time step and the reward was defined the same as the
pre-training. By doing so, it ensures that the baseline learning rule can be evolved from the evolutionary
search. Additionally, it was found that tuning the hyper-parameters was also essential for successful
learning. With a set of badly assigned hyper-parameters, the SNN can be either too active or inactive.
In the former case, the neuron spikes almost at each time step. In the latter case, the neuron releases
almost no spikes. Both cases make learning difficult. Thus, the hyper-parameters were first manually
tuned in the pre-training and the same values were used in the evolutionary search.

Since the learning performance highly relies on the learning scheme and hyper-parameters, it was not
surprising that the evolutionary search without prior knowledge failed to evolve effective learning rules.
Since the evolutionary search for the last experiment was performed directly without the pre-training,
the hyper-parameters were set to be commonly used values, and the trace and reward were defined
using the general definition. Although more input variables such as traces with different decays were
available for the evolution, it was still difficult for the evolution since it was unknown whether the
search space includes a solution or not. Furthermore, even though there is a good solution, it may
not be discovered due to the inappropriate hyper-parameters or learning scheme. The problem may be
solved by including the hyper-parameters into the gene for evolution. However, it will largely increase
the search space and will require much more computational power.

7.3 Later Experiments

It can be concluded from the discussion above that the symbolic approach with CGP can be considered
as an appropriate expression method of the learning rules. Thus, the same expression method will
be used in the later experiments. The experiments also indicated the importance of prior knowledge.
Thus, in the next stage, the XOR pattern recognition task will be performed again by including prior
knowledge in the evolutionary search. Similar to the previous experiments, the results of the evolution
will be analyzed. The importance of prior knowledge will be further investigated by evaluating the
operands involved in the evolved learning rules. Next, the main research question will be answered.
The evolutionary search for effective learning rules for training SNNs on continuous control tasks will
be performed. The research plan for the next phase is summarized in Figure 7.1.

Figure 7.1: Research plan.
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A
Simulation Configurations

Table A.1: Hyperparameter values for the three preliminary experiments.

Hyper-parameters Unit Task 1 Task 2 Task 3
N - 50 50 2
M - 30 30 10
T ms 500 500 100
τI ms 2 2 2
τV ms 10 10 10
τe ms 100 100 50, 100
θ mV 1 1 1
η - 0.001 0.001 0.001
µ - 2 2 2
λ - 4 4 4
epoch - 200 300 200
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